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Inflatable structures have become essential components in the design
of soft robots and deployable systems as they enable dramatic shape
change from a single pressure inlet. This simplicity, however, often
brings a strict limitation: unimodal deformation upon inflation. Here,
we embrace multistability to design modular, inflatable structures that
can switch between distinct deformation modes as a response to a
single input signal. Our system comprises bistable origami modules
in which pressure is used to trigger a snap-through transition be-
tween a state of deformation characterized by simple deployment to a
state characterized by bending deformation. By assembling different
modules and tuning their geometry to cause snapping at different
pressure thresholds, we create structures capable of complex de-
formations that can be pre-programmed and activated using only
one pressure source. Our approach puts forward multistability as a
paradigm to eliminate a one-to-one relation between input signal and
deformation mode in inflatable systems.
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Introduction1

When safe human-machine interaction is paramount, the de-2

sign of smart devices and robotic systems often relies on3

inflatables and cylindrical structures as they support a variety4

of possible deformations (1–7). However, the vast majority of5

these suffer from an intrinsic one-to-one relationship between6

input pressure and output deformation. In other words, they7

exhibit increasing unimodal deformation with pressure (8–10).8

To compensate for this deficiency, common strategies include9

sequencing multiple elements (11–17) or pressurizing chambers10

independently (18, 19). Alternatively, material inextensibil-11

ity (20) and non-linearities (21, 22) have been harnessed to12

achieve bidirectional bending. Despite all this, targeting arbi-13

trary deformation modes with a single pressure input is beyond14

the capabilities of current inflatable systems.15

In the wider domain of adaptive systems, origami principles16

have extensively been employed to realize transformable archi-17

tectures (23–28), self-foldable machines (29–31), and waveg-18

uides (32–35). Distributed actuation approaches have been19

used to directly control the fold angle via pressurized air20

pockets (36) or stimuli-responsive materials (24, 37–40). How-21

ever, these strategies require multiple input sources and result22

in bulky assemblies with excessive tethering and/or slow ac-23

tuation. To overcome these limitations, recent efforts have24

achieved shape control of origami structures with embedded25

ferromagnetic elements via remote magnetic fields (41–43).26

Additionally, if the origami crease pattern supports a27

non-convex energy landscape, multiple stable states manifest28

(42, 44–51), which can expand the functionality of the struc-29

tures. For example, introducing multistability in the classic30

waterbomb origami pattern resulted in the creation of mechan-31

ical bits and logic elements (45, 52, 53); multistable origami 32

sheets based on the tiling of the degree-four vertex enabled the 33

design of self-locking grippers (54) and energy-absorbing com- 34

ponents for drones (55); finally, bistable configurations of the 35

Kresling pattern (46, 56) have been exploited to (i) generate 36

locomotion via peristaltic motion (57) or differential friction 37

(58), (ii) create flexible joints for robotic manipulation (59), 38

and (iii) store mechanical memory (42, 60). 39

Here, we employ the Kresling pattern as a building block to 40

realize inflatable cylindrical structures capable of supporting 41

multiple deformation modes, while being globally actuated 42

using a single pressure input. We start with a monostable 43

Kresling pattern and modify it by introducing two additional 44

valley creases in one of its panels (see Fig. 1). This makes the 45

panel bistable, so that during inflation it unfolds and snaps 46

outward, breaking the rotational symmetry of the module. Im- 47

portantly, upon vacuum such asymmetry gives rise to bending, 48

which persists until a critical negative pressure is reached at 49

which the panel snaps back. Next, we show that these modules 50

can be geometrically programmed to snap at different pressure 51

thresholds and assembled in various order and orientation to 52

form structures capable of multimodal deformation. Distinct 53

deformation modes can be first activated by snapping a se- 54

lected set of modules and then triggered by applying vacuum. 55

Such modes can be inverse-designed by optimizing the arrange- 56

ment and orientation of the building blocks. Importantly, the 57

same structure can shape-shift to multiple target deformation 58

modes using only one pressure input. Our approach paves 59

the way for new opportunities in the design of reconfigurable 60

structures with embedded actuation. 61

Our building blocks based on the Kresling pattern 62

To realize multimodal origami structures, we use building 63

blocks that consist of one layer of the classic Kresling pattern 64

(also known as nejiri ori) (56). More specifically, in its initial, 65

undeformed state, the single module is capped by two hexag- 66

onal facets with edges of length l = 30 mm, separated by a 67

distance h = 24 mm, and rotated by an angle α = 30◦ with re- 68

spect to each other (see Fig. 1a). The hexagons are connected 69

at each side by a panel comprising a pair of triangular facets 70

coupled by alternating mountain (i.e. edges A′B and AB′) 71

and valley (i.e. edge BB′) folds. Since the Kresling pattern 72

is not rigid foldable (46), any change in its internal volume 73

will lead to an incompatible configuration. To accommodate 74

the resulting geometrical frustration, we 3D-print 1-mm thick 75

triangular facets out of a compliant material (TPU95A from 76
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Fig. 1. Bistable origami modules as building blocks for multi-output, single-input inflatable structures. (a) Schematics of a monostable module based on the
hexagonal-base Kresling origami pattern, along with a 3D-printed prototype. The panels of the monostable modules remain always folded inward. We refer to this state of
deformation as state s0. (b) State diagram of the pressurized origami modules. (c) Bistable module with a modified panel (highlighted in orange) made of four triangular facets
A′BO′, AO′B′, AO′B, and A′B′O′ and characterized by a depth ∆ from vertex O to O′, along with a 3D-printed prototype displayed in its two stable states: state s0 for
which all panels (including the modified panel) are folded inward; and state s1 for which the modified panel is popped outward (while all other panels are still folded inward).
(d) Norm of the vector connecting the two caps’ centroids, ||d||, and bending angle, θxz , vs. pressure, p, for the monostable (solid gray curves) and bistable with ∆ = 3 mm
(dashed orange curves) origami modules during inflation and deflation. (e) Experimental positive and negative pressure thresholds, p+

∆ and p−
∆, as a function of the modified

panel’s depth, ∆.

Ultimaker with Young’s modulus E = 26 MPa) and reduce77

the thickness locally to 0.4 mm to create the hinges (see pro-78

totype in Fig. 1a). Further, to facilitate coupling between79

different modules, we 3D-print the hexagonal caps out of a80

stiffer material (PLA from Ultimaker with Young’s modulus81

E = 2.3 GPa). Additionally, we coat the origami unit with82

a thin layer of polydimethylsiloxane (PDMS) to form an in-83

flatable cavity (see Supplementary Materials, Section S1 for84

fabrication details). Note that the chosen values of the pa-85

rameters (h, l, α) yield a monostable origami module (i.e. the86

Kresling pattern is only stable in its initial, undeformed state).87

To investigate the response of a single module, we position88

it on a flat surface and slowly inflate it with air at a rate of89

10 mL/min using a syringe pump (Pump 33DS, Harvard Ap-90

paratus). We monitor the pressure using a sensor (Honeywell91

ASDXRRX015PDAA5) and capture the module’s deformation92

via two digital cameras (SONY RX100 V) positioned in front93

and above it (see Supplementary Materials, Section S2 for94

details). As expected (46), the Kresling unit deploys and folds95

upon inflation and deflation and returns to its undeformed96

configuration as soon as the pressure is removed (Fig. 1b). 97

This state of deformation, in which all panels are folded in- 98

ward, is referred to as s0. To better characterize the response 99

of the module, we monitor the position of its top cap and 100

record the vector connecting the two caps’ centroids, d. In 101

Fig. 1d, we report the norm of d, ||d||, and the angle between 102

the projection of d on the xz-plane and the positive z-axis, 103

θxz, as a function of the internal pressure, p. We find that 104

||d|| increases from 30 mm to 36 mm during inflation and then 105

decreases to 4 mm during deflation. Differently, θxz remains 106

close to zero during the entire test (see gray curves in Fig. 1d), 107

indicating that the module purely deploys upon inflation and 108

folds upon deflation, deforming exclusively along its central 109

axis. 110

Aiming at unlocking different deformation modes with one 111

single pressure input, we then take inspiration from bista- 112

bility in degree-four vertices (48, 53, 61) and modify one of 113

the original Kresling panels by introducing two additional 114

valley creases (i.e. AO and A′O with O being the midpoint 115

of crease BB′, see Fig. 1c). While this effectively creates a 116
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degree-four vertex, it results in a monostable origami unit,117

as no snap-through instability is recorded upon inflation (see118

Supplementary Materials, Section S2 for details). To increase119

the geometric incompatibility during deployment and achieve120

bistability in the unit, we then move the degree-four vertex121

inward by ∆ (see Fig. 1c where ∆ is the norm of vector OO′122

perpendicular to vectors AA′ and BB′).123

Choosing ∆ = 3 mm, for example, we can fabricate an124

origami unit that can easily transition between two stable125

states: state s0 for which all panels are folded inward, and126

state s1 for which the modified panel is popped outward (while127

all other panels are still folded inward - Fig. 1c). Similar to128

the unit based on the classic Kresling pattern, upon inflation129

this modified module deploys with all panels bent inward if130

p < 26.1 ± 0.9 kPa. However, at p+
3 = 26.1 ± 0.9 kPa (where131

the subscript refers to ∆ = 3 mm and the superscript refers132

to positive pressure), the unit snaps from state s0 to state133

s1, which is characterized by the modified panel popped out-134

ward (Fig. 1b)—a transition that results in a sudden small135

drop of ||d|| and slight increase of θxz (see zoom-in in Fig. 1d,136

left hand side). Finally, a further increase in pressure causes137

the unit to elongate until the maximum structural limit is138

reached. Afterward, when the input pressure is removed, the139

modified panel remains popped outward because of bistability.140

As such, when we apply negative pressure, the unit not only141

folds, but also bends (see Fig. 1b), exhibiting a behaviour142

that radically differs from that of the monostable Kresling143

module. In fact, we find that the vector d decreases in length144

and rotates in space. To characterize such rotation, we posi-145

tion the module with the modified panel facing the negative146

x-direction and monitor the angle θxz. We find that θxz mono-147

tonically increases until the two hexagonal caps come into148

physical contact, effectively clipping the available range of149

bending deformation to θmax
xz = 21.7 ± 0.3 ◦ (see Fig. 1d). As150

previously mentioned, this bending deformation is activated151

by the snapping of the modified panel, which remains in the152

popped outward configuration (while the other panels fold153

under increasing negative pressure) and breaks the radial sym-154

metry. Note that, as the Kresling twists when deflating, d also155

rotates in the xy-plane. Specifically, at p−
3 the angle between156

the projection of d on the xy-plane and the positive x-axis157

is θxy = 10.6 ± 0.6 ◦ (see Supplementary Materials, Section158

S2 for details). Finally, when the negative pressure passes159

the threshold p−
3 = −21.2 ± 0.7 kPa (where the superscript160

refers to negative pressure), the modified panel snaps back to161

the inward position (see Fig. 1b). At this point θxz suddenly162

decreases (see Fig. 1d) and the bending deformation mode gets163

deactivated. If one continues to apply negative pressure to the164

module, the unit folds (almost) flat with ||d|| = 3.8 ± 0.8 mm,165

θxz = 6.9 ± 0.9◦ and θxy = 22 ± 0.5◦ at p = −30 kPa (see166

Fig. 1d and Supplementary Materials, Section S2).167

Next, we investigate the effect of the depth ∆ of our degree-168

four vertex panel on the positive and negative pressure thresh-169

olds, p+
∆ and p−

∆, as well as the deformed configurations reached170

upon snapping. The experimental results reported in Fig. 1e171

for ∆ = 2, 3, and 4 mm indicate that the absolute value of172

the pressure thresholds increases with ∆ within the consid-173

ered range. By contrast, when the units are in state s1, we174

find that for all considered ∆, the angles reach θmax
xz ≈ 20◦

175

and θmax
xy ≈ 10◦ upon vacuum—a value determined by the176

contact between the caps and the geometry of the Kresling177

pattern, respectively (see Supplementary Materials, Section 178

S2 for details). Finally, we note that for ∆ < 2 mm the mod- 179

ules are found to be monostable. This means that negligible 180

bending is recorded upon application of negative pressure, 181

since the degree-four vertex panel snaps back immediately. 182

Differently, for ∆ ≥ 4 mm, the positive pressure required to 183

snap the modified panel outward is so high that the module 184

fails (see Fig. S4). 185

Multimodal deformation via multistability 186

After demonstrating that our bistable module can transition 187

between two stable states (i.e. states s0 and s1) with dis- 188

tinct deformation modes (i.e. deployment/folding and bend- 189

ing), we next combine these units to form multimodal tubu- 190

lar structures whose deformation is controlled by a single 191

pressure input. By connecting n modules, we can construct 192

(3 × 2 × 6 + 1 × 2)n = 38n different structures. This is be- 193

cause for each module k we can select (i) either a regular 194

Kresling pattern or a unit comprising a modified, degree-four 195

vertex panel with depth ∆k ∈ {2, 3, 4} mm (Fig. 2a); (ii) the 196

chirality of the origami pattern (i.e. the rotation direction of 197

the upper cap with respect to the bottom one), ck ∈ {//, \\} 198

(Fig. 2b), and (iii) the side on which the modified panel is 199

located, fk ∈ {1, . . . , 6} (note that for the modified panel of 200

the bottom unit we choose f1 = 1, since it always faces the 201

negative x-axis—Fig. 2c). 202

For simplicity, we start by considering structures with 203

∆ ∈ {2, 4} mm. In Fig. 2d, we show the state diagram of such 204

structures. This is characterized by four pressure thresholds. 205

The positive pressure thresholds p+
2 and p+

4 corresponds to 206

the pressures at which the modified panels of all units with 207

∆ = 2 mm and ∆ = 4 snap outward, respectively. Equally, 208

the negative thresholds p−
2 and p−

4 correspond to the pressures 209

at which the panels snap inward. These thresholds lead to 210

four distinct stable states, sij with i, j ∈ {0, 1}, where the 211

subscripts i and j refer to the state of the modified panels 212

with ∆ = 2 and 4 mm, respectively. The state diagram also 213

establishes the pressure history one has to apply in order to 214

reach each stable state. It shows that the stable states s10
215

and s11 can be readily obtained by simply increasing pressure, 216

whereas a more complex pressure path is required to achieve 217

state s01, as one has to (i) increase pressure above p+
4 and 218

then (ii) decrease it below p−
2 . 219

While the state diagram in Fig. 2d applies to all tubular 220

structures assembled using modules with ∆ = 2 and 4 mm, 221

the deformation modes associated to each stable state upon 222

vacuum depend on the arrangement of the modules. To illus- 223

trate this, we consider two structures comprising one module 224

with ∆ = 2 mm and another one with ∆ = 4 mm con- 225

nected via 3D-printed screws (see Fig. S2 for details). In 226

the first structure, the two modules have opposite chiral- 227

ity and the modified panels facing the negative x-axis (i.e. 228

[∆1c1f1; ∆2c2f2] = [2\\1; 4//1] - note that we assume the 229

first unit to be the one at the bottom), whereas in the sec- 230

ond one the two modules have the same chirality and mod- 231

ified panels located on the opposite sides of the structure 232

(i.e. [∆1c1f1; ∆2c2f2] = [2\\1; 4\\4]). The experimental snap- 233

shots reported in Figs. 2e and 2f (on the right hand side) show 234

that under vacuum both structures simply fold in state s00, 235

but support more complex deformations in states s10, s11, and 236

s01. To better characterize these complex deformations, we 237

Melancon et al. 3
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once again track the vector connecting the bottom and top238

cap’s centroids, d, at the lowest pressure point of bending239

deformation associated to each state (see inset in Fig. 2g). We240

find that for the first structure the deformations associated to241

states s10, s11, and s01 are all bending-dominated and charac-242

terized by θxz ≈ 20◦ and θxy ∈ [−7.34◦, 20.4◦] (filled square243

markers in Fig. 2g). Differently, in the second structure, in244

addition to two off-axis bending modes with θxz ≈ 20◦ and245

θxy = −9.40 and 23.9◦, vacuum unlocks a distinct, twisting-246

dominated deformation mode characterized by θxz = −3.64◦
247

and θxy = 108◦ (filled triangular markers in Fig. 2g).248

The results of Fig. 2 show that the arrangement of the249

modules within the tubular structure has a profound effect 250

on the deformation modes associated with each stable state. 251

To systematically explore such effect, we develop a simple 252

algorithm that predicts the geometry of deformation under 253

each mode. First, we extract key geometric features from the 254

experiments conducted on single units, i.e. ||d||, θxz and θxy 255

each deformation modes (see Figs. S4-S5). When assuming 256

pressure continuity, these data allow the prediction of the 257

geometry of deformation of any n-unit structure (see Supple- 258

mentary Materials, Section S3 for details on the algorithm). 259

Note that we also assume perfect coupling between units, so 260

that the pressure thresholds, p
+/−
∆ , found in the experimental 261
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characterization of Fig. 1e, remain unchanged and identical262

for units with the same geometrical parameters. In Fig. 2g,263

we compare the results from our simple geometrical model264

(empty markers) with our experimental results (filled markers).265

Although experiments and model results are qualitatively sim-266

ilar, the error becomes large when the number of units in the267

structure increases. This error comes from the assumptions in268

the model, which does not take into account gravity, manufac-269

turing imperfections as well as non-rigid coupling between the270

units (see Table S1 of the Supplementary Materials, Section271

6 for the full quantification of the error between numerical272

predictions and experimental results). 273

Next, we use our numerical model to systematically in- 274

vestigate the deformation states that can be activated upon 275

application of vacuum in our tubular structures. In Fig. 3a, 276

we use black dots to show the location of the top cap’s cen- 277

troid at the lowest pressure for all complex deformation states 278

(i.e. sij with i + j > 0) of any structure with n = 2 mod- 279

ules. For reference, we also depict the structure’s bottom 280

and top hexagonal plates under atmospheric pressure. When 281

setting f1 = 1, we find that most datapoints are clustered in 282

a very narrow region that is contained within the top unit 283

Melancon et al. 5



of the structure (see zoom-in in Fig. 3a). To further charac-284

terize the supported deformation states, we plot the angles285

θxz (Fig. 3b) and θxy (Fig. 3c) as a function of ||d||/h for all286

datapoints. We find that the deformation modes for structures287

built out of only two modules are limited to the narrow range288

of θxz ∈ [−17.6◦, 38.8◦], whereas θxy spans the entire 360◦
289

range. Additionally, since our goal is to realize structures290

capable of switching between distinct deformation modes har-291

nessing a single pressure source, we select the structure that292

maximizes293

Φ =
nmodes∑
α,β=1

1
2 · ||dα − dβ ||2, [1]294

where nmodes = 2n∆ − 1 is the number of supported complex295

deformation modes (n∆ denoting the number of different ∆296

used in the structure). We find that for n = 2 the most distinct297

deformation modes are achieved in a structure comprising two298

modules with the same chirality and modified panels located299

on opposite sides, i.e. [∆1c1f1; ∆2c2f2] = [3\\1; 4\\5]. For300

this structure, states s10, s01 and s11 are characterized by301

θxz = 25.9◦, −17.2◦ and 13.1◦ and θxy = −8.51◦, 172◦ and302

−21.5◦, respectively (see colored markers in Figs. 3a-c). As303

shown by the front and top views reported in Fig. 3d, the304

structure is able to bend in three different directions.305

The complexity and number of deformation modes sup-306

ported by the structures can be expanded by increasing the307

number of modules. In Figs. 3e-h and 3i-l, we report results for308

structures comprising n = 4 and n = 12 modules, respectively.309

Note that, since 38n possible designs exist for a structure with310

n modules, while we can simulate all possible designs for n = 4,311

the number of designs for n = 12 is too large to perform an312

exhaustive search. Instead, we select 500, 000 random struc-313

ture geometries. As expected, by increasing the number of314

modules in the structure, we extend the space attainable by315

the top cap’s centroid (see Figs. 3e and 3i for n = 4 and 12, re-316

spectively). Specifically, in addition to θxy spanning the entire317

360◦ range, we find that ||d||/h ∈ [2.10, 3.40] and [3.46, 10.1]318

and θxz ∈ [−44.5◦, 63.3◦] and full 360◦ range, respectively for319

n = 4 and 12 (see Figs. 3f-g and 3j-k) Finally, the numerical320

snapshots of the 4 and 12-unit structures that maximise Φ321

reported in Figs. 3h and 3l show that by controlling the input322

pressure these structures can be made to bend in a variety of323

directions as well as simply contract and twist under vacuum.324

Inverse design to reach multiple targets325

Building on the established platform, we now aim at demon-326

strating how one can design structures that can reach multiple327

targets in space, despite being actuated through a single pres-328

sure source. However, since the use of n modules leads to329

38n possible structure designs, it is crucial to use a robust330

algorithm to efficiently identify configurations leading to the331

targets. To this end, given the discrete nature of our design332

variables, we use a greedy algorithm based on the best-first333

search method (62, 63)—a progressive local search algorithm334

that, at each iteration, minimizes the cost function by looking335

at a set of available solutions. Although there exists many336

algorithms to solve this type of discrete optimization problems337

(64, 65), we find that the greedy algorithm provides the best338

trade-off between accuracy and computational cost (see Sup-339

plementary Materials, Section S4 for details and comparison340

of the different algorithms). Specifically, our greedy algorithm 341

identifies tubular structures built out of ns super-cells each 342

with nu modules (so that n = nu · ns), whose tip can reach a 343

desired set of targets arbitrarily positioned in the surrounding 344

space. Note that the maximum number of targets a structure 345

can reach is ntargets = 2n∆ .At the first iteration, the algo- 346

rithm starts by selecting the structure super-cell design that 347

minimizes 348

Ψ = 1
ntargets · h

ntargets∑
m=1

min ||d − Tm||, [2] 349

where Tm is the vector connecting the m-th target with the 350

origin. Once the first super-cell is chosen, the algorithm 351

stores it in memory and starts a second iteration. This comes 352

to an end when the algorithm identifies a second super-cell 353

that, connected to the first one, minimizes Eq. (2). The first 354

two super-cells are then stored in memory and the algorithm 355

advances to the next one. Note that in this study, to balance 356

the number of available designs and computational cost, we set 357

the greedy algorithm to consider super-cells made out of three 358

units (i.e. nu = 3, see Figs. S9 and S12 for a comparison across 359

super-cells made with different nu). Additionally, in order to 360

avoid fabricating excessively long structures whose response 361

could be affected by gravity, we impose that the algorithm 362

should end after stacking five super-cells. 363

To demonstrate our approach, we select a set of targets 364

within the reachable space (see red circular markers in Fig. 4a 365

and Supplementary Materials Figs. S14-S15 for additional tar- 366

gets). In Fig. 4b we show the minimum value of the objective 367

function Ψ identified by our algorithm at each iteration for 368

the selected set of targets. Further, in Fig. 4c we report the 369

deformed modes that most closely approach the three targets 370

for the corresponding structures. We find that for this set 371

of targets the minimum error is reached for a structure with 372

ns = 4 (note that the convex shape of Ψ in Fig. 4b is due 373

to a correlation between the optimal number of units and 374

the average distance of the targets from the origin—see Sup- 375

plementary Materials Fig. S15). This design comprises the 376

classic Kresling module as well as bistable units with ∆ = 2, 377

3, and 4 mm (see Fig. 4d). As such, the optimal structure 378

has eight stable states, 14 snapping transitions, and a more 379

complex state diagram in which not all targets are reached 380

consecutively by continuously decreasing pressure (Fig. 4e). 381

More specifically, to move from T 1 to T 2, this structure has to 382

be reset by decreasing the pressure below p−
3 before increasing 383

above p+
4 and then lowering it to p−

3 . As such, in this case 384

the centroid of the top plate of the structure passes through 385

the straight configuration O when moving from T 1 to T 2 and 386

its trajectory comprises two disconnected loops, O − T 1 and 387

O − T 2 − T 3 (Fig. 4f). Note that we can add additional con- 388

straints to our greedy algorithm to make sure the targets fall 389

within the same closed loop on the state diagram. This leads 390

to a different design and may increase the targets error, Ψ (see 391

Supplementary Materials Fig. S13 for details). However, the 392

ability to follow sequentially a discretized trajectory along a 393

closed pressure loop makes the platform compelling for robotic 394

applications (see Supplementary Materials, Section S5 for an 395

example of a single-input robot capable of locomotion through 396

multimodal deformation). 397
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Conclusion398

To summarize, in this work we have presented a platform to399

design tubular structures that can switch between distinct400

deformation modes using only one pressure input. The key401

component of our platform is an origami building block with402

a degree-four vertex panel, which can be geometrically pro-403

grammed to snap at a certain input threshold, unlocking404

complex deformation modes upon vacuum. This, together405

with the position of the modified panel in the origami module406

and their direction of rotation, constitute the parameters of a407

rich design space that we can efficiently scan with a custom408

greedy algorithm. While in this study we have used a simple409

geometric model to identify optimal designs, a fully mechani-410

cal model (66, 67) that accounts for the effect of gravity, the411

pressure drop during the snap-through transition as well as the412

non-rigid coupling between the units would reduce the error413

between numerical predictions and experimental results. In414

addition, the current design space could be further expanded 415

through investigating the effect of other geometrical param- 416

eters (e.g. l, h, and α) on the resulting deformation of the 417

modules, as well as expanding the range of the considered 418

values of ∆. While this could lead to more complex deforma- 419

tion modes and enhanced functionality, a drawback is a more 420

complex state diagram. This means that a given structure 421

might have to go through a longer loading history to reach 422

some prescribed targets, increasing the operational time-span. 423

A potential solution to this is to measure the volume at which 424

the module snaps inward and outward, assume constant flow 425

rate, and derive the time associated to each snapping tran- 426

sition. This time span could then be included as variable 427

in the optimization algorithm, in order to find a design that 428

reaches the target in the shortest possible time. Further, al- 429

though in this study we have used a specific platform based 430

on 3D-printed origami modules to realize multimodal deforma- 431
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tion, the findings are not restricted to these specific structures432

and could be used in the design of other functional systems.433

However, we hereby only claim the successful implementa-434

tion of our method by fabricating the modules with specific435

equipment, materials and geometrical parameters. If other436

equipment/materials/systems are employed, the reader should437

take care to verify that our findings are still valid. This is438

due to the fact that a chosen manufacturing technique might439

not be accurate enough to yield distinct input thresholds (i.e.440

internal pressures in our case) and to give rise to the distinct441

stable states. To conclude, given the recent advancement in442

origami fabrication across scales (25, 36, 68, 69), we envisage443

that our concept hereby presented could be employed in future444

applications where space is limited and simplified controls445

are required, such as space exploration, surgical devices, and446

rescue missions.447

Materials and Methods448

Details of the design, materials, and fabrication methods are sum-449

marized in Supplementary Materials, Section S1. The experimental450

procedure to measure the pressure-volume curve is described in451

Supplementary Materials, Section S2, along with additional ex-452

perimental data. Details on the numerical model are provided in453

Supplementary Materials, Section S3. The optimization algorithms454

used in this study are described in detail in Supplementary Mate-455

rials, Section S4. An example of a single-input robot capable of456

locomotion through multimodal deformation is reported in Sup-457

plementary Materials, Section S5. Finally, additional results are458

described in Supplementary Materials, Section S6.459
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