
An Improved Real-time Collision-Avoidance Algorithm Based on
Hybrid A* in a Multi-Object-Encountering Scenario for Autonomous
Surface Vessels
Tianlei Miaoa,b,1, Ehab El Amamb,2, Peter Slaetsc,3 and Davy Pissoorta,4

aDepartment of Electrical Engineering (ESAT), Waves: Core Research and Engineering (WaveCore), Bruges Campus, KU Leuven, Bruges, Belgium
bAutonomy department, RH Marine Netherlands B.V. , Schiedam, The Netherlands
cGroup T, Robotics, Automation and Mechatronics(RAM), Leuven Campus, KU Leuven, Belgium

A R T I C L E I N F O
Keywords:
real-time Collision Avoidance
Hybrid A*
Autonomous Surface Vessels
multiple objects encountering

A B S T R A C T
Collision-avoidance algorithms for maritime autonomous surface vessels are increasingly being
analyzed for challenging scenarios. However, the trade-off between the computation’s effectiveness
and efficiency is always an intractable problem, especially in complex, multi-object-encountering
cases. This paper proposes an improved Hybrid A* algorithm that searches a node map with discrete
control behaviors as ‘movement options’. The real-time performance in maritime, multi-object-
encountering scenarios is improved by narrowing the search space with the proposed pre-processing
method, i.e., the collision velocity check (CVC). The following is incorporated within the mentioned
approach: the compliance of the relevant rules in International Regulations for Preventing Collisions
at Sea and the dynamics of the ship. A comparative study with various multi-target scenarios is
conducted with a baseline method. Simulation results show the effectiveness of the proposed method.
The use of the CVC significantly reduces the time of the computation with little reduction in the
solution’s accuracy. Additionally, the proposed method is applied within a real-time simulation
environment, which is fed by logged data collected during an actual sea trial.

1. INTRODUCTION
An autonomous surface vehicle (ASV) can reduce the

number of sailing accidents caused by human error. In addi-
tion, onboard crew expenses are greatly reduced. However, a
collision-avoidance (CA) algorithm is always an intractable
problem in terms of real time, robustness, and rule compli-
ance. Even though a substantial amount of research has been
conducted in this area, the main challenge faced by many
researchers when dealing with the massive uncertainties and
complexity of the dynamic environment for local CA still
exists. Furthermore, compliance with the International Reg-
ulations for Preventing Collisions at Sea (COLREGs) has
accentuated the calculation complexity of CA algorithms. In
addition, uncertainty and calculation costs increase further
with the growth of the number of targets in multi-target

∗Corresponding author: Tianlei Miao
tianlei.miao@rhmarine.com (T. Miao)

1Tianlei Miao is a Ph.D. researcher at the KU Leuven and RH Marine
on ensuring autonomous sailing from A to B. He obtained a joint Masters
in Science from both Norwegian University of Science and Technology and
Royal Institute of Technology in 2019. His current research interests include
data fusion, multi-target tracking, and collision avoidance in autonomous
sailing.

2Ehab El Amam is an engineering consultant at RH Marine Nether-
lands B.V., the Netherlands. His expertise includes dynamic position sys-
tem, autopilot system, and energy management system.

3Peter Slaets is an associate professor in Robotics, Automation, and
Mechatronics(RAM) at the Faculty of Engineering Technology, Catholic
University of Leuven. His research interests include autonomous localiza-
tion, navigation, embedded hardware, and sensor fusion.

4Davy Pissoort is a professor in the M-Group (WaveCore), Faculty
of Engineering, KU Leuven. His research interests include autonomous
systems, system safety, electromagnetic compatibility, and electromagnetic
interference.

scenarios. This paper proposes a hybrid method based on the
improved Hybrid A* using discrete control behaviors as the
input with a node map. A collision pre-check method, i.e. the
collision velocity check (CVC), is used to narrow the search
space, resulting in high computation speed. This method
aims to provide ASV systems with an effective solution
in real time, with an appreciable frequency update, so that
collisions can be avoided. The COLREGs rules 6, 8, 13, 14,
15, and 16 (seen in Appendix) are considered. Complying
with these rules is designed as a part of the cost functions.
In addition, the proposed algorithm can offer suggested
routes or alternatively new control commands (e.g., a new
course and speed setpoint) to assist manned surface vehicles
(MSVs) with an Integrated Navigation System (INS).

Benefiting from the development and applications of
artificial intelligence in, e.g., the automotive and airplane
industries, an increasing number of researchers are trying to
apply deep learning (DL) to the maritime CA context. Cheng
and Zhang (2018) used deep reinforcement learning (DRL)
with a deep Q-networks architecture to achieve obstacle-
collision avoidance. Meyer et al. (2020) applied a DRL
agent trained in a simulated environment to the real and
complex shorelines of the Trondheim fjord. Although most
articles claim the effectiveness of the proposed method,
the lack of explanation makes these methods challenging
to be accepted by the industry. Besides, the processing of
sensors and uncertainties is included in the end-to-end DL,
which is similar but still varies to the other methods. The
lack of a standardized description of the perceived maritime
environment also leads to differences between the data sets,

T. Miao, et al: Preprint submitted to Elsevier Page 1 of 19

which reduces the reliability of the data.
Fuzzy logic is a popular method that combines expert

knowledge with international rules like COLREGs. Hu et al.
(2020) proposed a real-time collision-avoidance method
based on fuzzy logic. The solutions are retrieved from a
knowledge base to find a new heading command for collision
avoidance. Brcko et al. (2021) proposed a multi-parametric
decision model based on fuzzy logic. The model calculates
the necessary course alteration in a collision-avoidance
situation. However, the dependence on prior knowledge is
always a critical issue for this method.

Another option is the field method, such as the artificial
potential field (APF)(Khatib, 1986) or the limited cycle
method (LCM)(Soltan et al., 2009). A potential field is
created to describe the collision risk with objects and then
converts the path-finding problem into a gradient-descent
problem or a dynamic-model-solving problem. For example,
Beser and Yildirim (2018) proposed a COLREGs-compliant
APF method for the obstacle avoidance of ASVs. Lyu
and Yin (2019) used this modified APF for ASVs in real-
time path planning. However, the main drawback of the
field method is that the algorithm might be trapped in a
local minimum, especially in terms of the dynamic factors.
Though many studies have been conducted to solve the local
minima problem, finding a generalized method still remains
unsolved.

Optimization-problem solving can also be a class of
solutions for collision avoidance. These methods try to find
the corresponding variables to optimize the cost function
with all kinds of constraints. Typically, such optimization
problems can be solved with computational algorithms, such
as the evolution algorithm (EA)(Lin et al., 1994) or the
ant-colony optimization (ACO) algorithm (Dorigo et al.,
2006). Szłapczyński and Ghaemi (2019) proposed a method
of planning safe trajectories that is able to simultaneously
make decisions in real time and without any interaction
with a human operator, handle basic types of encounters and
guarantee compliance with the COLREGs. A multi-criteria
ACO-based algorithm for ships in the environment with
static and dynamic obstacles was proposed by Lazarowska
(2017). More variants (Huang et al., 2019) are proposed to
cope with a generalized situation and the collision-avoidance
behaviors of other ships. However, these methods usually
require a relatively long computation time (Vagale et al.,
2021), especially when the ships are in complex scenarios.
Apart from that, the optimal solution is usually given by
solvers, which is not very transparent to users. EA might
not converge within the desired time in complex scenarios,
and a discrete algorithm’s computational time can be slow
when the sample numbers or solution space are large. To
speed up the solving process, a method, velocity obstacle
(VO) (Zhuang et al., 2016) is proposed for optimization
problems by excluding dangerous velocity areas. Besides,
a method based on model predictive control (MPC) with

discrete control behaviors was proposed by Johansen et al.
(2016). It is computationally simple and yet quite versatile
as it accounts for the dynamics of the OS, the dynamics
of the steering and propulsion system, and the forces due
to wind and ocean current. However, this method is not
globally optimal and over-depends on the risk model for the
future. Despite this, the proposed concept of discrete control
behaviors provides a new idea to balance the computational
effectiveness and efficiency in practice.

Graph search methods, a kind of computational algo-
rithm for the optimization problem, are classical methods
for pathfinding and collision avoidance. The well-known
algorithms, like Dijkstra (Dijkstra et al., 1959), A* (Hart
et al., 1968) and their numerous variants, have been validated
in various fields. Instead of searching the optimization in a
continuous or discrete space, these methods search a graph
representation of the space. One variant, Repairing A* (R-
RA*) was used for maritime CA by Campbell and Naeem
(2012) within a decision-making framework. Another vari-
ant Theta* (Daniel et al., 2010) uses some key points (such
as corners) and a line of sight pointing directly back to
an ancestor during retrace. Kim et al. (2014) proposed an
approach based on the Theta* algorithm to create paths
in real-time, considering both angular rate (yaw rate) and
heading angle of unmanned surface vehicles. Singh et al.
(2018) extended the implementation of this Theta* in an
environment cluttered with static and moving obstacles and
different current intensities. The variant, Hybrid A* (HA*),
unlike conventional variants that only allow visiting centers,
corners, or edges of grid cells, associates with each cell
a continuous state of vehicles (Dolgov et al., 2008). Bitar
et al. (2020) detailed a two-stage trajectory planner, where
the initial step uses a discrete polygonal representation of
the configuration space, such that a Hybrid A* algorithm
can compute an initial dynamically feasible trajectory. Ship
dynamics can be considered during the graph search. How-
ever, there is still a common problem with these methods: the
computational load depends on the resolution of the map or
the sample number, even though there has been a lot of work
to overcome it (Kurzer, 2016; Chen et al., 2016).

Considering the limitations of each method, this paper
proposes a hybrid method that is applicable to maritime
CA scenarios. The proposed method uses discrete control
behavior as an input and uses one of the newest variants of
A*, Hybrid A*, with a dynamic node map to find the best
route. The dynamics of the own ship (OS) are considered
during each movement. A pre-processing step, the CVC,
is proposed to narrow the search space. It uses the same
idea as VO and has an easier implementation with discrete
inputs. COLREGs rules 6,8,13,14,15,and 16 are considered
as a part of the cost function. This method is designed
for the application in different scenarios and scopes, from
an intermediate sailing scope (e.g., 5 nautical miles) to
a local scenario (within 1 nautical mile). More specific

T. Miao, et al: Preprint submitted to Elsevier Page 2 of 19

Figure 1: Overview diagram of information flow of Autonomous Sailing System.

contributions are listed as follows:

• An improved Hybrid A* is proposed using a node map
associated with discrete control behaviors instead of
a grid map. In this way, each movement during the
search process can be directly associated with specific
control commands. This algorithm can modify the
local route and indicate the specific control commands
to follow the route.

• The real-time performance of the proposed method is
improved using the proposed pre-processing method,
i.e. collision velocity check. It uses the same idea
as VO, i.e., the selected velocity should fall outside
the collision velocity cone. With the given discrete
control commands, each control combination (e.g.,
course and speed) can be directly checked if it is risky
or relatively safe. The search space is narrowed by
removing potentially risky options.

• The algorithm takes many aspects into consideration,
including the sailing time, distance, safety, the ship’s
own motion constraints, dynamic obstacles, and com-
pliance with a subset of the COLREGs. Two new
factors, relative posture and trajectory smoothness,
are proposed and quantitatively calculated in the cost
function. The calculation of the heuristic cost is im-
proved to adapt to maritime scenarios.

The remaining parts of this paper are organized as an
autonomous sailing system overview, a CA algorithm, a
simulation and a comparative study, the discussion and the
conclusions.

2. AUTONOMOUS SAILING SYSTEM
2.1. Overview

Figure 1 is an overview of an autonomous ship’s system
architecture. According to the given missions and the chart
information, an initial path is first generated by the global
path planning (GPP) module. The autopilot outputs specific
steering and propulsion commands to the propulsion and

steering of the OS in order to follow the path. The sensor
module, including both endogenous and exogenous sensors,
aims to collect the current state of the own ship (OS) and the
states of the obstacles. Typically, data from different sensors
need to be fused to reduce the data uncertainty and deal
with data conflict, e.g., fusing the global navigation satellite
systems (GNSS) and the inertial measurement unit (IMU)
for the OS, fusing the radar and automatic identification sys-
tem (AIS) for obstacles. A detailed description and surveys
of such data-fusion modules are beyond the scope of this
paper, and we refer to our previous work (Miao et al., 2020).
The local CA module is the focus of this study. Compared
to the GPP module, the local CA module is designed to
modify the local route according to a dynamic and more
detailed surrounding environment. After that, the autopilot
will command the ship to follow the new route or commands.
2.2. Collision Avoidance Module

The specific workflow of the proposed CA module is
illustrated in Figure 2. Firstly, discrete control options like
course offsets and speeds are set in advance as one of the
inputs for the CA module. The range and interval of options
are based on the sailing scale and associated requirements.
With the current states, the motion model of the OS, and
the environment disturbances, a list of optional trajectories
of the OS is obtained. Static local environment information,
such as the shore geometry, water depth, restricted areas, is
inputted as a factor for the hazard evaluation. For dynamic
obstacles, according to the current and historically observed
states, a prediction model is used to obtain the obstacles’
trajectory for a certain period in the future. The waypoints
provided by the GPP module will be set as the initial nominal
destination in the local CA. Cost/loss functions are built and
normalized for all these factors, and different weight factors
are given according to specific design requirements. Then
we select the trajectory combination with the minimum total
cost and its corresponding control behaviors.

In this paper, in order to support the local CA module,
we assume the following information and capacities are
available:

T. Miao, et al: Preprint submitted to Elsevier Page 3 of 19

Figure 2: Architecture of Collision Avoidance module.

• Real-time updated states (position, velocity, heading)
of the OS, measured by endogenous sensors such as
IMU, GNSS.

• A list of obstacle states (positions and velocities),
measured by exogenous sensors such as Radar, AIS,
LiDAR, camera. Data from different sensors is as-
sumed to be already fused and taken as the truth in
this research.

• A desired destination of the OS.
• Kinematic and dynamic models of the OS.
• A prediction model of the obstacles’ future trajectory.
• Static environment information (shore geometry, wa-

ter depth, etc.) from electronic charts.
• Measurements or estimates of wind and ocean current

relative speed of the sailing area.

2.3. Dynamic Model of the Ship
A 3-degrees-of-freedom (DOF) dynamic model of the

ship is used in this paper based on Fossen’s simplification
(Fossen, 2011):

�̇� = 𝑅(𝜓)(𝑣 + 𝑣0)

𝑀�̇� + 𝐶(𝑣)𝑣 +𝐷(𝑣)𝑣 = 𝜏 + 𝑅(𝜓)𝑇𝑤
(1)

where 𝜂 is the system state that contains the position and
heading angle (𝑥, 𝑦, 𝜓), the vector v consisting of the linear
velocities and the angular velocity (𝑢, 𝑣, 𝑟), the vector 𝑣0 is
the current velocity. The input 𝜏 represents the commanded
thrust and the moments from a PD controller and w is the
wind force on the ship. 𝑀 , 𝐶(v), 𝐷(v) and the 𝑅(𝜓) are
inertia matrix, the Coriolis–centripetal matrix, the damping
matrix, and the rotation matrix, respectively.

2.4. Algorithm Implementation
The proposed algorithm functionalizes the local CA

module. Within a finite prediction-time horizon, the initial
route will be locally modified according to dynamic envi-
ronments. The local collision-free route will be re-planned
within a certain time interval. The selection of the time
interval depends on the requirements of the sailing scenarios
and is limited by the computational time of obtaining each
solution. In order to reduce unnecessary repetition of the
calculations, the re-planned route is only accepted when it is
significantly better than the old one or there are apparent
differences detected between the measurements and the
previous predictions. Once a new local route is accepted,
it will become the new nominal route for future steps.

The original Hybrid A* has been used successfully in
the automotive industry (Dolgov et al., 2008). Though it
searches for a solution in a discrete grid map, the states
of vehicle can be kept continuous. Both the environment
constraints and ship motion constraints can be considered.

Based on HA*, we proposed an improved Hybrid A*
(IHA*) using a set of discrete control behaviors as input.
The movements during the extension process of the HA*
take place in a node map rather than a typical grid map. The
nodes of the alternative trajectories are generated dynami-
cally, such that no pre-calculation of the cell cost is needed.
The following set of optional control behaviors is a simple
example:

• Optional course offsets: -15, 0, 15 (in degrees)
• Optional speeds: full speed (100% nominal propul-

sion), half speed (50% nominal propulsion)
The course offsets here are relative to the current course
of the OS, and the speed options are the percentage of the
full propelling speed of the OS. The example gives only
three options for the course and one option for speed. In a
practical system, the optional control behaviors should be
as extensive as the computation time allows to ensure the

T. Miao, et al: Preprint submitted to Elsevier Page 4 of 19

solution’s accuracy.

Figure 3: Graphical comparison of search algorithms. Left:
A* only visits grid center. Center: Hybrid A* associates a
continuous state with each cell, so it can visit all the positions
within a cell (Dolgov et al., 2008). Right: improved Hybrid A*
searches in a node map.

Figure 4: Generated searching nodes and corresponding trajec-
tories tree.

As shown in Figure 4, 𝑇0 is the current time, 𝑇𝑒𝑛𝑑 is the
end time of the prediction time horizon, 𝑇𝑒𝑛𝑑 − 𝑇0 is the
prediction time horizon, Δ𝑇 is the time interval between two
prediction points within the time horizon, expressed as

Δ𝑇 =
𝑇𝑒𝑛𝑑 − 𝑇0

𝑁
(2)

where 𝑁 is the desired number of predicted time points.
Similar to the number of discrete control behaviors, a more
significant number of time points always helps to improve
the prediction fineness when the computation time allows.
A certain time point in the future within the prediction time
horizon is described as

𝑇 = 𝑇0 + 𝑛 ⋅ Δ𝑇 , , 𝑛 = 1, 2,… , 𝑁 (3)

The same set of control behaviors associated with propulsion
force and steering angle is given at each prediction step.
Endogenous sensors give the measured states of the OS.
With the dynamic model of the OS, predicted trajectories are
generated correspondingly within the time interval Δ𝑇 . The
ends of the trajectories are exactly the nodes dynamically
created for the solution searching list in traditional A*. The
historical cost and the heuristic cost are calculated for each
node, and the one with the smallest cost will be added into
the Close List (Hart et al., 1968). This list stores all the nodes
reached at least once during the expansion searching of A*.

Concerning the dynamic environment, the sensor mod-
ule with multi-target tracking functionality provides the es-
timated real-time states of the obstacles. In order to estimate
the collision risk in the future, it is necessary to predict the
motions of the obstacles. Optimal prediction is used for the
motion prediction, based on the observed historical states
using a simple kinematic model within the time horizon. Due
to the lack of updated measurements, it gives the prediction
by iterating the prediction step of the Kalman filter (Särkkä,
2013) and adding the noise of the motion model with a
Gaussian distribution. It is noted that the obstacles or other
ships will also try to avoid the collision, which leads to
a significant offset between the prediction and the actual
states. We can use better models considering the dynamics,
maneuverability, and intention of the obstacles to improve
the motion prediction, which is currently beyond the scope
of this paper. Nevertheless, with timely updating of the states
of obstacles from the sensor module and re-predicting their
motions, a new solution with corresponding control behavior
can be found, which guides the OS to avoid the collision.
After the prediction, each node’s historical cost and heuristic
cost can be calculated in terms of different aspects, which is
elaborated in Section III.C.
Pre-processing: narrowing search space

Although the improved HA* can generate both a modi-
fied route and associated control behaviors using a node map,
the size of the search space using a node map is not reduced.
On the contrary, the exploration of adjacent nodes on the
map increases the search space to some extent. To improve
its real-time performance, a collision pre-check method is
proposed to narrow the search space. Like the VO, this
method excludes nodes with apparently high collision risk
in advance. Figure 5 illustrates its essential idea. 𝐴 and 𝐵
are two vessels with velocity v𝐴 and v𝐵 , respectively. The
circles denote the safety domain of each vessel with radius
𝑑𝑠𝑎𝑓𝑒𝐴 and 𝑑𝑠𝑎𝑓𝑒𝐵 respectively, where other obstacles are not
allowed to enter. According to the specific sailing scenarios,
the safety domain can be represented as other types, such
as ellipse and polygon. When the velocity of one vessel is
fixed (e.g., v𝐵 is fixed), one can find a velocity range of
another vessel (e.g., v𝐴), within which there is going to be
a collision in the future. As long as we choose the velocity
outside this range, the collision can be avoided. An easy way
to obtain the velocity range of vessel 𝐴 is demonstrated in
Fig 5.(b). Firstly, the vessel 𝐴 is regarded as a point target.
Velocity v𝐴, v𝐵 are vectors induced from points 𝐴 and 𝐵,
respectively. Secondly, v′𝐵 is generated by translating v𝐵 to
the point 𝐴, then the relative velocity v𝐴𝐵 can be drawn that
is induced from v′𝐵 . The movement relation can be regarded
as the situation that vessel 𝐵 is relatively static and vessel 𝐴
is moving with velocity v′𝐴𝐵 that obtained by translating v𝐴𝐵
to𝐴. A new safety circle with radius 𝑑𝑠𝑎𝑓𝑒𝐴𝐵 , the sum of 𝑑𝐴 and
𝑑𝐵 , is drawn around vessel𝐵. Finally, two tangents are added
to the circle from point A and the cone area sandwiched by
the tangents is the collision cone of the velocity. If and only
if the relative velocity vector v′𝐴𝐵 induced from point 𝐴 falls

T. Miao, et al: Preprint submitted to Elsevier Page 5 of 19

Figure 5: The concept of collision velocity region.

into the cone, it can be regarded that there is a collision in
the future.
The set of all the velocity vectors that fall in the cone area
is the collision cone set, which is denoted as the set CC.
Then, the control behaviors that have no collision risk should
fulfill:

V(𝛼, 𝑣) ∉ CC (4)

Where V is the velocity vector caused by the alternative
control behaviors, 𝛼 is the course and 𝑣 is the velocity of OS.
The way to use this relation to check the potential collision
possibility is named as the CVC, and an index of CVC with
a certain target ship (TS) is defined as

𝑖𝑛𝑑𝑒𝑥𝐶𝑉 𝐶𝑇𝑆 =

⎧

⎪

⎨

⎪

⎩

1, 𝜃(V𝐴𝐵 ,AB) < 𝑎𝑟𝑐𝑠𝑖𝑛

(

𝑑𝑠𝑎𝑓𝑒𝐴𝐵
|AB|

)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5)

where 𝜃 is the angle between two vectors and AB is a vector
pointing from A to B.

Figure 6: Operating Collision Velocity Check for the discrete
time points in the future to exclude the nodes with collision
risk

The above check is based on the fixed and known
velocities of the OS and the target. To cope with non-linear
trajectories according to the prediction model, we sample

the predicted states of OS and TS in the discrete future
time points and operate CVC for selected future time points.
An example is illustrated by the node 𝑛3 in Figure 6: The
trajectories and states of the OS and TS can be predicted with
the motion prediction model, at discretized prediction time
points 𝑡0, 𝑡1, . . . , 𝑡𝑚, (𝑡0 is the initial time) with time interval
Δ𝑡 in the future. A CVC is done with predicted positions and
velocities of the OS and the obstacles for each prediction
point. Considering the uncertainty of the prediction over
time, we add up the effect of time:

𝑖𝑛𝑑𝑒𝑥𝐶𝑉 𝐶𝑇𝑆 (𝑡) =

⎧

⎪

⎨

⎪

⎩

Δ𝑡
𝑡 − 𝑡0 + Δ𝑡

, 𝜃(V𝑂𝑇 ,OT) < 𝑎𝑟𝑐𝑠𝑖𝑛

(

𝑑𝑠𝑎𝑓𝑒𝑂𝑇
|OT|

)

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(6)

where the 𝑑𝑠𝑎𝑓𝑒𝑂𝑇 is safe distance between the OS and the TS.
OT is a vector pointing from the OS to the TS. The CVC
index with a certain target over the whole predicted time is
𝑖𝑛𝑑𝑒𝑥𝐶𝑉 𝐶𝑇𝑆, 𝑡𝑜𝑡 =

∑
(

𝑖𝑛𝑑𝑒𝑥𝐶𝑉 𝐶𝑇𝑆 (𝑡)
)

, 𝑡 = 𝑡0, 𝑡1,… (7)

which should not exceed the threshold in order to keep a
control behavior sufficiently safe. Mathematically, CVC can
be described as a boolean function:

𝐶𝑉 𝐶𝑇𝑆 =

{

𝑇 𝑟𝑢𝑒 , 𝑖𝑛𝑑𝑒𝑥𝐶𝑉 𝐶𝑇𝑆, 𝑡𝑜𝑡 ⩽ 𝜆𝐶𝑉 𝐶

𝐹𝑎𝑙𝑠𝑒 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(8)

where 𝜆𝐶𝑉 𝐶 is the threshold to pass the CVC in terms of
each target. The 𝜆𝐶𝑉 𝐶 is determined by several properties,
such as the number of obstacles in the detection range and the
number of the total predicted time points. The state ‘True’
means the current control behavior passes the check and can
be left in the search space. It is not necessary to count all
the moments. With the above expression, the CVC index
becomes small after the first few time points. Thus we can
only calculate the time points with the most influence on the
result.

For multiple targets, 𝑇𝑆1, 𝑇𝑆2,. . . ,𝑇𝑆𝐾 , a good alter-
native control behavior should keep OS collision-free or
sufficiently safe with all objects. It can be described as

𝐶𝑉 𝐶𝑇𝑆1 ∧ 𝐶𝑉 𝐶𝑇𝑆2 ∧… ∧ 𝐶𝑉 𝐶𝑇𝑆𝐾 = 𝑇 𝑟𝑢𝑒 (9)

For the control behaviors that not fulfill the CVC, we remove
them from the search space.
Post-processing

In addition to pre-processing, we can also apply post-
processing steps to improve the execution process of the
algorithm further. The idea of pruning used here is cutting
down similar branches, which contributes only very little
to the solution, but vastly increases the size of the search
space, after cost calculation. The similarity of all kinds
of states (position, velocity, acceleration, etc.) needs to be
checked in this node-searching HA* method. The branch
will be pruned when similarities are found in all aspects.

T. Miao, et al: Preprint submitted to Elsevier Page 6 of 19

The pseudo-code of implementation of this improved HA*
is given in Algorithm 1.
Algorithm 1 Improved HA* (𝑛𝑠𝑡𝑎𝑟𝑡,𝑛𝑑𝑒𝑠)

1: 𝐿𝑖𝑠𝑡𝑜𝑝𝑒𝑛 ← 𝑛𝑠𝑡𝑎𝑟𝑡
2: 𝐿𝑖𝑠𝑡𝑐𝑙𝑜𝑠𝑒 ← ∅
3: while 𝐿𝑖𝑠𝑡𝑜𝑝𝑒𝑛! = ∅ do
4: 𝑛𝑝 = 𝑃𝑜𝑝𝑇 𝑜𝑝(𝐿𝑖𝑠𝑡𝑜𝑝𝑒𝑛)
5: 𝐿𝑖𝑠𝑡𝑐𝑙𝑜𝑐𝑒 ← 𝐿𝑖𝑠𝑡𝑐𝑙𝑜𝑠𝑒 ∪ 𝑛𝑝
6: if 𝐺𝑜𝑎𝑙𝑅𝑒𝑎𝑐ℎ = 𝑡𝑟𝑢𝑒 then
7: break
8: else
9: for 𝑐𝑜𝑢𝑟𝑠𝑒𝑠 = 𝑐1, 𝑐2,… , 𝑐𝑖,… , 𝑐𝐼 do

10: for 𝑠𝑝𝑒𝑒𝑑𝑠 = 𝑠1, 𝑠2,… , 𝑠𝑗 ,… , 𝑠𝐽 do
11: run 𝐶𝑉 𝐶
12: if 𝐶𝑉 𝐶 = 𝑓𝑎𝑙𝑠𝑒 then
13: continue
14: else
15: compute total cost 𝑓 𝑖,𝑗
16: if 𝑃𝑟𝑢𝑛𝑖𝑛𝑔 = 𝑡𝑟𝑢𝑒 then
17: continue
18: else
19: 𝐿𝑖𝑠𝑡𝑜𝑝𝑒𝑛 ← 𝐿𝑖𝑠𝑡𝑜𝑝𝑒𝑛 ∪ 𝑛

𝑖,𝑗
𝑇

20: end if
21: end if
22: end for
23: end for
24: end if
25: end while

2.5. Cost Function
The design of cost functions over paths that yields the

desired sailing behavior is usually a major challenge in a
practical system. The construction of the cost function in
this paper mainly refers to existing literature (Johansen et al.,
2016) and (Vagale et al., 2021). Several improvements are
made according to the scope of our research and the specific
implementation method HA*. New factors and concepts
such as relative posture and smoothness are introduced and
quantitatively calculated for a better cost estimation. Overall,
the cost function 𝑓 (𝑛) of HA* consists of two parts: the
historical cost 𝑔(𝑛) and heuristic cost ℎ(𝑛):

𝑓 (𝑛) = 𝑔(𝑛) + ℎ(𝑛) (10)

where 𝑛 is the current node. The cost functions of all aspects
are normalized to make a fair comparison.

2.5.1. Historical cost
The historical cost of one node is the minimal accumu-

lated cost from the start point to this node. In this paper, the
total historical cost is the sum of the costs for distance, time,
safety, COLREGs, and smoothness

𝑔 =𝑊𝑑𝑖𝑠𝑡 ⋅ 𝐶𝑑𝑖𝑠𝑡 +𝑊𝑡𝑖𝑚𝑒 ⋅ 𝐶𝑡𝑖𝑚𝑒 +𝑊𝑠𝑎𝑓𝑒 ⋅ 𝐶𝑠𝑎𝑓𝑒
+𝑊𝑐𝑜𝑙𝑟 ⋅ 𝐶𝑐𝑜𝑙𝑟 +𝑊𝑠𝑚𝑡ℎ ⋅ 𝐶𝑠𝑚𝑡ℎ

(11)

where 𝑊 is the weight factor in terms of 5 aspects. These
weight factors are set to a value of 1 by default. We can adjust
according to the specific scenarios and requirements.
Distance

The distance cost consists of the minimum accumulated
distances of the calculated trajectories.

𝐶𝑑𝑖𝑠𝑡 =
∑

(

𝐷𝑡𝑟𝑎𝑗
)

𝐷𝑛𝑜𝑚𝑖
(12)

where 𝐷𝑛𝑜𝑚𝑖 is the length of the nominal path. The nominal
path is initialized as the path from one global waypoint to
the next global waypoint output from the GPP module and
it will be updated when a new route is accepted.
Time

The time cost is the accumulated sailing time starting
from the initial time 𝑇0.

𝐶𝑡𝑖𝑚𝑒 =
𝑇 − 𝑇0
𝑇𝑛𝑜𝑚𝑖

(13)

where 𝑇 is the current time at a certain node and 𝑇𝑛𝑜𝑚𝑖is nominal sailing time. We use the estimated time sailing
through the nominal path with the associated speed.
Safety

The safety cost is defined as a sum of risks of collision
and grounding. In terms of collision, the collision risk is the
product of collision likelihood factor and collision conse-
quence cost with a certain target, which is expressed as

𝐶𝑇𝑆𝑠𝑎𝑓𝑒,𝑐𝑜𝑙𝑙 = 𝐿 × 𝐶𝑇𝑆𝑐𝑜𝑙𝑙 (14)

where 𝐿, 𝐶𝑇𝑆𝑐𝑜𝑙𝑙 are collision likelihood factor and collision
consequence cost respectively. The collision likelihood fac-
tor 𝐿 takes the time effect, distance as well as the relative
posture 𝑅𝑃 between TS and OS into consideration.

𝐿 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑖𝑛𝑓 , 𝑑𝑖𝑇𝑂 ⩽ 𝑑𝑚𝑖𝑛𝑐𝑜𝑙𝑙

(1
|𝑇 − 𝑇0|

)𝑝 ⋅ (
𝑑𝑖𝑠𝑎𝑓𝑒
𝑑𝑖𝑇𝑂

)𝑞 ⋅ 𝑅𝑃 , 𝑑𝑚𝑖𝑛𝑐𝑜𝑙𝑙 < 𝑑
𝑖
𝑇𝑂 ⩽ 𝑑𝑖𝑠𝑎𝑓𝑒

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(15)

where 𝑑𝑚𝑖𝑛𝑐𝑜𝑙𝑙 is minimum allowable distance between OS
and TS, which is set as a hard constraint. The exponent
p and q describe the time effect and distance-associated
risk, respectively. The distance 𝑑𝑠𝑎𝑓𝑒 should be chosen large
enough to be compliant with COLREGs rule 8, 16, i.e. to
make the substantial action to keep well clear. The collision
consequence cost mainly depends on the relative velocity
and some properties of OS and TS such as type and size,
and OS’s right to stay on or responsibility to keep out of the
way.

The newly introduced factor 𝑅𝑃 aims to correct the im-
pact caused by the relative posture when two ships encounter

T. Miao, et al: Preprint submitted to Elsevier Page 7 of 19

Figure 7: The different postures when two ship encounter.

each other. As illustrated in Figure 7, different relative pos-
tures bring the OS different collision threats and costs, even
when the distance, time, and relative velocity are the same.
In particular, in the field of last-minute collision avoidance,
a parallel collision posture usually minimizes the collision
damage. However, this factor is ignored by most researchers.
It is denoted as

𝑅𝑃 = 2 ⋅
(

1 −
|

|

|

|

𝑠𝑖𝑛
(𝜃
2

)

|

|

|

|

)

(16)

where 𝜃 is the angle between relative velocity vector and the
vector pointing from the OS to the TS.

For multiple targets, the collision safety cost is the sum
over all targets.

𝐶𝑠𝑎𝑓𝑒,𝑐𝑜𝑙𝑙 =
∑

(

𝐶𝑇𝑆𝑘𝑠𝑎𝑓𝑒,𝑐𝑜𝑙𝑙

)

, 𝑘 = 1, 2,… , 𝐾 (17)

For the grounding, the safety cost is defined as

𝐶𝑠𝑎𝑓𝑒,𝑔𝑟𝑑 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑖𝑛𝑓 , 𝑑𝑔𝑟𝑑 ⩽ 𝑑𝑚𝑖𝑛𝑔𝑟𝑑

𝑑𝑚𝑎𝑥𝑔𝑟𝑑 − 𝑑𝑔𝑟𝑑
𝑑𝑔𝑟𝑑 − 𝑑𝑚𝑖𝑛𝑔𝑟𝑑

, 𝑑𝑚𝑖𝑛𝑔𝑟𝑑 < 𝑑𝑔𝑟𝑑 ⩽ 𝑑𝑚𝑎𝑥𝑔𝑟𝑑

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(18)

where 𝑑𝑚𝑖𝑛𝑔𝑟𝑑 is the minimum allowable distance to the shore,
𝑑𝑚𝑎𝑥𝑔𝑟𝑑 is the maximum distance that has grounding risk,
𝑑𝑔𝑟𝑑 is the minimum distance from the current position
to the shore. The 𝑑𝑚𝑖𝑛𝑔𝑟𝑑 is set as a hard limitation, and its
determination requires the information from the chart, such
as the water depth. The set of 𝑑𝑚𝑎𝑥𝑔𝑟𝑑 introduces an inflation
area where the cost gradually reduces to zero. The total
safety cost is the sum of costs of preventing the OS from
all the hazards:
𝐶𝑠𝑎𝑓𝑒 = 𝑊𝑠𝑎𝑓𝑒,𝑐𝑜𝑙𝑙 ⋅ 𝐶𝑠𝑎𝑓𝑒,𝑐𝑜𝑙𝑙 +𝑊𝑠𝑎𝑓𝑒,𝑔𝑟𝑑 ⋅ 𝐶𝑠𝑎𝑓𝑒,𝑔𝑟𝑑 (19)

Similarly, without specific requirements, we set both weight
factors to 1.

COLREGs-constraints
The Rules 6, 8, 13, 14, 15, and 16 (seen in Appendix) of

COLREGs are taken into consideration in this study. Rules
8 and 16 are considered by adding associated constraints
during the design of the function and selection of param-
eters. To be compliant with Rule 8, the prediction horizon
𝑇𝑒𝑛𝑑−𝑇0 is set to be significantly larger than the time to make
a substantial change of course and speed. The safe distance
𝑑𝑠𝑎𝑓𝑒 is set in the safety cost calculation. The reduce-speed
and stop options are included in the input discrete options.
The design of the safety cost makes it extremely high when
there is a risk of collision, which means the action to avoid
collision will always be taken even if rules are violated.
In the weighted cost function, the speed-change cost has
a higher weight than the course-change cost, such that the
OS is prioritized to change course, in compliance with both
Rules 8 and 16.

The compliance with Rules 6,13,14,15 is designed as a
part of the cost function, which is an indicator function as
follows:

𝐶 𝑖𝐶𝑂𝐿𝑅 =
{0 , 𝐶𝑂𝐿𝑅𝐸𝐺𝑠 𝑐𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑡 𝑤𝑖𝑡ℎ 𝑡𝑎𝑟𝑔𝑒𝑡 𝑖
1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(20)
The penalty cost will arise when any rules are violated. The
violation conditions of each rule are listed as follows:

• Rule 6 - Safe speed: It is violated when the current
selected speed is larger than the safe speed restriction.

• Rule 13 - Overtaking: It is violated when the TS and
OS is too close during overtaking.

• Rule 14 - Head-on: It is violated when the TS and OS
stands on each starboard during a head-on encounter.

• Rule 15 - Crossing: It is violated when the TS is on
the OS’s starboard side during a crossing encounter.

The specific judgment conditions for each encounter
situation are based on the Johansen et al. (2016). Besides,
an additional condition - Approaching, is added for the
violation of Rules 14 and 15. A TS is said to be approaching
the OS if

𝜃(V𝑂𝑇 ,OT) < 90◦(21)
where 90◦ could be replaced by a more suitable angle

depending on the velocity and type of target ships. The
violation of Rules 14 and 15 holds only when the TS and
OS are approaching each other.
Smoothness

The concept, smoothness of trajectory, is introduced and
quantitatively calculated in this session. For the CA system
on manned ships, the smoothness of the local collision-
free path influences the comfortableness of crews and pas-
sengers. Frequent and sharp acceleration and turning also
increase the fuel cost. People on the other surrounding

T. Miao, et al: Preprint submitted to Elsevier Page 8 of 19

vessels are anticipating the movements of the OS. Frequent
heading/course alternations make it hard to anticipate on,
as such this could lead to unwanted scenarios. With such
concern, we introduce the smoothness cost to describe the
cost caused by such changes. It consists of two parts: course
change cost and speed change cost expressed as

𝐶𝑐𝑐 =
|

|

|

|

|

𝑚𝑎𝑥
(

|

|

Δ𝛼 − 𝜆𝑐𝑐|| , 0
)

𝐾𝑐𝑐 ⋅ 𝜆𝑐𝑐

|

|

|

|

|

(21)

𝐶𝑠𝑐 =
|

|

|

|

|

𝑚𝑎𝑥
(

|

|

Δ𝑣 − 𝜆𝑠𝑐|| , 0
)

𝐾𝑠𝑐 ⋅ 𝜆𝑠𝑐

|

|

|

|

|

(22)

where Δ𝛼 and Δ𝑣 are the maximal change of course and
speed on each generated trajectory segmentation caused by
the control behaviors,𝐾𝑐𝑐 and𝐾𝑠𝑐 are scale factors to adjust
the effect brought by the changes. These two factors may
depend on several properties, such as the type of the OS
and its size. For small ships, they are usually more agile and
have better maneuverability, the same course-change rate or
accelerations lead to less impact of the total cost compared
to large vessels. Some slight changes are normal during the
sailing. Thus, when the change is sufficiently small, no cost
is generated. The entire smoothness cost is

𝐶𝑠𝑚𝑡ℎ = 𝑊𝑐𝑐 ⋅ 𝐶𝑐𝑐 +𝑊𝑠𝑐 ⋅ 𝐶𝑠𝑐 (23)

Weight factors are added to adjust the priority of each factor,
which is set to 1 by default.

2.5.2. Heuristic cost
The heuristic cost is essentially a prediction of cost

to the goal in the rest prediction time. Good construction
of heuristic cost can guide the expansion direction, which
shortens the searching process. But, due to the relative
scarcity of information, accurate estimation is rather diffi-
cult. We estimate the heuristic cost considering the aspects
of distance, time, and safety.

Firstly, we re-use the CVC index to indicate the heuristic
safety cost. Even though the options with high collision risk
have been abandoned during the CVC, the remaining options
are not 100% safe. The CVC index provides us with an es-
timation of potential collision risk. That no extra computing
time required required is also an important reason. Thus, the
heuristic safety cost is simply using a normalized CVC.

𝐶ℎ𝑒𝑢𝑟,𝑠𝑎𝑓𝑒 =
𝑖𝑛𝑑𝑒𝑥𝐶𝑉 𝐶𝑇𝑆, 𝑡𝑜𝑡

𝜆𝐶𝑉 𝐶
(24)

The distance is estimated based on current state of OS the
environment given by

𝐶ℎ𝑒𝑢𝑟,𝑑𝑖𝑠𝑡 =
𝐾ℎ𝑒𝑢𝑟,𝑑𝑖𝑠𝑡 ⋅𝐷𝑂𝐷

𝐷𝑛𝑜𝑚𝑖
(25)

where𝐾ℎ𝑒𝑢𝑟,𝑑𝑖𝑠𝑡 is the scale factor determined by the current
state (position, heading, speed) of the OS, 𝐷𝑂𝐷 is the dis-
tance between the OS’s current position and the destination.

The heuristic time cost is estimated based on the distance
and current speed of the OS, which is expressed as

𝐶ℎ𝑒𝑢𝑟,𝑡𝑖𝑚𝑒 =
𝐾ℎ𝑒𝑢𝑟, 𝑑 ⋅𝐷𝑂𝐷

(

𝐾ℎ𝑒𝑢𝑟, 𝑡 ⋅ ||v𝑐|| +
(

1 −𝐾ℎ𝑒𝑢𝑟, 𝑡
)

⋅ |
|

v𝑛𝑜𝑚𝑖||
)

⋅ 𝑇𝑛𝑜𝑚𝑖
(26)

where 𝐾ℎ𝑒𝑢𝑟, 𝑡 is the function of time and v𝑐 is the current
speed.

𝐾ℎ𝑒𝑢𝑟, 𝑡 =
𝑇 − 𝑇0
𝑇𝑒𝑛𝑑 − 𝑇0

(27)

The entire heuristic cost is
ℎ = 𝐶ℎ𝑒𝑢𝑟, 𝑠𝑎𝑓𝑒 + 𝐶ℎ𝑒𝑢𝑟, 𝑑𝑖𝑠𝑡 + 𝐶ℎ𝑒𝑢𝑟, 𝑡𝑖𝑚𝑒 (28)

3. SIMULATION & COMPARISON
This section illustrates the performance of the proposed

method by simulation and a real case study. At the same time,
to illustrate the impact of the real-time performance of using
the CVC, both results using improved the Hybrid A* only
and using the improved Hybrid A* with the CVC are given.
The same control behaviors are given as follows:

• Optional courses: -45, -30, -15, 0, 15, 30, 45 (in
degrees)

• Optional speeds: full speed (100% nominal propul-
sion), half speed (50% nominal propulsion), stop
speed (0% nominal propulsion)

A wide range of simulated multi-target cases is consid-
ered, from simple encountering scenarios to complex and
mixed encountering scenarios, from single target-moving-
mode to multiple target-moving-mode combinations. The
proposed algorithm operates once for each case because
these cases are static which are like frames extracted from
a dynamic sailing process. After that, the method is also
applied to a real multi-target case using logged Radar and
AIS data (the data here is pre-fused referring to our previous
work (Miao et al., 2020)) during a sea trial. The logged
data, including Radar AIS and GPS, is constantly sent by
a virtual user datagram protocol (UDP) sender according
to the logged timestamp with a frequency of more than 1
Hz. A 20-minute simulation runs in Simulink, which keeps
receiving and updating the data with a constant sampling
time of 1 second. The proposed algorithm is called once
every second. To ensure there is no latency, the algorithm
should finish the calculation and provide a modified solution
within the sample time interval.
3.1. Simulated Scenarios

We set the prediction time horizon as 800 seconds, the
time of straight-line sailing through the setting scenarios
at full-speed 19.4 knots (10 m/s), with a 40-second time
interval for all simulated cases. The parameter assumptions
of the OS used during the simulation are set in Table 1.
Three methods: Johansen et al. (2016) (named as Johansen’s
method below), the proposed improved HA* without CVC

T. Miao, et al: Preprint submitted to Elsevier Page 9 of 19

Table 1
Own ship’s parameters in simulations

Parameters Value Unit
length 120 m
breadth 24 m
draught 7 m

full speed 10 m/s
min turning radius 400 m

and with CVC, are implemented separately and illustrated
together in each scenario to make a comparison. Johansen’s
method is selected as it also uses discrete control behaviors
as the inputs, and the proposed method is also partly inspired
by it. Besides, it has a good real-time performance. One thing
we have to be aware is that the control behavior is fixed after
every single running of basic Johansen’s method, which is
caused by its mechanism. To plan a complete route to the
destination, one can either add the possibility of altering
control behavior during planning or use replanning. The
former leads to an exponential growth of the computation
time. We use replanning with the same time interval for
Johansen’s method to make it a complete route plan. It means
7 ⋅ 3 = 21 scenarios for each step and 21 ⋅ 20 = 420
in total are calculated during each complete computation.
The number of scenarios in Johansen’s method impacts the
computation efficiency, in a similar way to the concept of
the node number using IHA*. We also use the IHA* without
the CVC as another comparison to show the influence of the
CVC. All the parameters are the same for all the methods
and scenarios. The scenarios and results are illustrated in
Figures 8-10 representing the snapshots of the Scenarios 1-7
at the end of the time horizon. Figures 12 and 13 illustrate
the progression of route planning in time. For every scenario,
50 simulations are done, and the average computing time for
operating CA calculation and node numbers using IHA* are
listed in Table 2. The size of the search space in Scenario 7 is
visualized using the searched nodes or calculated scenarios,
illustrated in Figure 14. The statistic results of the compu-
tation time in all scenarios are illustrated in Figure 15. The
whole path length and the estimated subsequent sailing time
to the destination are listed in Table 3. The minimal distance
between the OS and TSs during the whole planned route in
Table 4. The following symbols and color codes are applied:

• The red solid point at the bottom left corner is the
current position of OS, which is also the starting point
of the whole local collision avoidance process. The
destination (nominal goal) locates at the top right cor-
ner, illustrated as a red hollow point. The nominal path
of OS is illustrated as a red dashed line connecting the
start point and destination.

• According to the three methods (the method of Jo-
hansen et al. (2016), the IHA* without and with CVC),

1 2 3 4 5 6 7 8 9

East (km)

2

3

4

5

6

7

8

N
o

rt
h

 (
k
m

)

OS

Land

T1

T2

T3

T4

T5

T = 800 sJohansen's method

IHA* without CVC

IHA* with CVC

(a) Scenarios 1: All head-on encounter

1 2 3 4 5 6 7 8 9 1

East (km)

2

3

4

5

6

7

8

N
o

rt
h

 (
k
m

)

OS

Land

T1

T2

T3

T4

T5

T = 800 sJohansen's method

IHA* without CVC

IHA* with CVC

(b) Scenarios 2: All crossing encounter

1 2 3 4 5 6 7 8 9

East (km)

2

3

4

5

6

7

8

N
o

rt
h

 (
k
m

)

OS

Land

T1

T2

T3

T4
T5

T = 800 sJohansen's method

IHA* without CVC

IHA* with CVC

(c) Scenarios 3: All overtaking encounter

Figure 8: Simulation scenarios with single encounter scenarios.

T. Miao, et al: Preprint submitted to Elsevier Page 10 of 19

1 2 3 4 5 6 7 8 9

East (km)

2

3

4

5

6

7

8

N
o
rt

h
 (

k
m

)

OS

Land

T1

T2
T3

T4

T5

T = 800 sJohansen's method

IHA* without CVC

IHA* with CVC

(a) Scenarios 4: Mixed encounter scenarios with 5 targets

1 2 3 4 5 6 7 8 9

East (km)

2

3

4

5

6

7

8

N
o
rt

h
 (

k
m

)

OS

Land

T1

T2
T3 T4

T5

T7

T8

T9

T10

T = 800 sJohansen's method

IHA* without CVC

IHA* with CVC

(b) Scenarios 5: Mixed encounter scenarios with 10 targets

Figure 9: Simulation scenarios with mixed encounter scenarios.

the OS, OS’s trajectory, OS safety range, and the
current minimum distance between OS and TSs are
uniformly denoted in green, orange, and red, respec-
tively. Furthermore, to tell the difference when results
are overlapped, the trajectories are also given with
4, 2, and 1 line widths, respectively. A ship-shape
expresses the final state of the OS. The dashed circles
around OS are the safety range.

• All targets, target trajectories are in blue. Trajectories
are illustrated as dashed lines, starting from solid blue
points.

• The bold black line is the land-sea boundary, and the
land side is pointed out.

Since many studies have provided a validation of A*
in the maritime CA context (Kim et al., 2014; Singh et al.,
2018), we no longer focus a single-target scenarios. Instead,
our research focuses on complex multi-target scenarios.
However, the complexity of the multi-target scenarios also

1 2 3 4 5 6 7 8 9

East (km)

2

3

4

5

6

7

8

N
o
rt

h
 (

k
m

)

OS

Land

T1

T2

T4

T5

T6

T7

T3

T = 800 sJohansen's method

IHA* without CVC

IHA* with CVC

(a) Scenarios 6: More target moving modes

1 2 3 4 5 6 7 8 9

East (km)

2

3

4

5

6

7

8

N
o
rt

h
 (

k
m

)

OS

Land

T1

T2

T4

T5

T6

T7

T3

T = 800 sJohansen's method

IHA* without CVC

IHA* with CVC

(b) Scenarios 7: More target moving modes

Figure 10: Simulation scenarios with mixed encounter scenarios
and more target moving modes.

differs a lot. We start simulations with relatively simple
cases. Figure 8(a)(b)(c) illustrates the CA solution in a five-
target scenario with a single encounter situation: only head-
on, only crossing, and only overtaking, respectively. Though
the encountering modes are the same, in each case, five
targets are set with different starting points and velocities.
The same factor is that they all have a linear moving mode,
which is relatively predictable. The results first show that a
collision-free solution with continuous states of the OS can
be successfully obtained with the improved Hybrid A*.

In the head-on and overtaking scenarios, three methods
all generate solutions sailing at the starboard side with
similar path lengths, which are 8385 m, 8353 m, and 8404
m in the head-on scenario, and 8801 m, 8798 m, and 8763
m in the overtaking scenario, respectively. In the crossing
case, though Johansen’s method and IHA* both suggest
going starboard, the solution given by Johansen’s method

T. Miao, et al: Preprint submitted to Elsevier Page 11 of 19

Table 2
Mean computation time of all scenarios using three methods,
and node number using the IHA* with or without the CVC.

Scenarios Johansen IHA* IHA* with CVC
time(s) time(s) nodes time (s) nodes

1-Fig8(a) 0.4650 0.4825 638 0.2212 282
2-Fig8(b) 0.7926 1.1773 774 0.2048 276
3-Fig8(c) 0.9061 1.8385 781 0.5903 364
4-Fig9(a) 0.9344 0.9021 384 0.3949 222
5-Fig9(b) 0.8158 6.9560 2332 0.1921 371
6-Fig10(a) 0.9377 5.8816 2614 0.3421 253
7-Fig10(b) 0.6805 2.3437 1622 0.5380 754

reduces the speed at the beginning to avoid T5 while the
solutions from IHA* choose to sail with full speed. Besides,
Johansen’s method keeps going starboard instead of altering
the course back to pass the targets 3 and 5. It follows
the COLREGs rule with a sacrifice of the path distance
and subsequent sailing time. Since a full speed is kept
and the course is altered back to the goal, the position of
the OS by the end of the routes using IHA* is closer to
the destination rather than using Johansen’s method. Two
solutions generated by IHA* with and without the CVC
are similar. In terms of the computational time, Johansen’s
method can obtain results in three scenarios with 0.4650 s,
0.7926 s, and 0.9061 s, and IHA* with CVC took 0.2212
s, 0.2048 s, and 0.5903 s, respectively. The computational
time of IHA* without the CVC is relatively slower, which
takes 0.4825 s, 1.1773 s, and 1.8385 s, respectively. The
computational time of IHA* using the CVC, compared to
the one not using, is improved by an average of 68%. The
reduction of computational time benefits from the reduction
of the node number, which is from 638 to 282, from 774
to 276, and from 781 to 364, respectively. The minimum
distances between the OS and TSs using the three methods
are also similar: 665 m, 636 m, and 648 m in the head-on
case, 618 m, 610 m, and 603 m in the crossing case, and 636
m, 607 m, and 620 m in the overtaking case, respectively.

The simulations with mixed encounter scenarios are
shown in Figure 9. We put multiple targets with different
encountering scenarios (head-on, crossing, overtaking) in
one scenario. In such a mixed scenario, all three methods
generate a collision-free route. For the five-target case il-
lustrated in Figure 9(a), the three routes are all similar with
slight difference in the beginning. The minimum distance is
a bit greater with Johansen’s method than using IHA*, which
is 636 m, 614 m, and 614 m, respectively. However, the time
using IHA* with and without the CVC (0.9021 s and 0.3949
s) is shorter than using Johansen’s method (0.9344 s). In the
ten-target scenarios, there is a bigger difference of the routes
using Johansen’s method and IHA*. The Johansen’s method
generates a route sailing from the port side that is close to
the shore, while both the IHA* with and without the CVC

Table 3
Path length and left sailing time using three methods. 1:
Johansen’s method, 2: IHA* without CVC, 3: IHA* with CVC.

Scenarios Path length (m) left sailing time (s)
1 2 3 1 2 3

1-Fig8(a) 8385 8353 8404 40 37 42
2-Fig8(b) 12297 8633 8597 288 65 61
3-Fig8(c) 8801 8798 8763 81 82 79
4-Fig9(a) 8349 8334 8329 36 35 35
5-Fig9(b) 9281 10076 10400 352 210 242
6-Fig10(a) 9700 9472 9144 267 149 117
7-Fig10(b) 9187 9392 9361 220 141 139

Furthermore, we extend the motion models of the in-
troduced targets by adding a target (T4) turning a circle
and a target (T6) keeping still. The purpose is to test the
robustness of the proposed method by making the motion of
targets less predictable. Compared to the previous scenarios,
it takes a longer time to obtain the solution using IHA*
with the CVC 5.8816 s in Scenario 6 - Figure 10(a), and
2.3437 s in Scenario 7 - Figure 10(b), respectively). There is
no significant increase of the computation time using IHA*
with the CVC, which is 0.3421 s in Figure 10(a) and 0.5380 s
in Figure 10(b). In Figure 10(a), although the routes given by
Johansen’s method and the IHA* without CVC are similar,
the Johansen’s method reduced the speed at the beginning,
which causes a longer sailing time than using the IHA*,
while the IHA* with CVC keeps full speed. The solution
using IHA* with CVC goes to starboard. This selection leads
to a slightly smaller minimal distance (600 m, compared to
646m using Johansen and 610 m using IHA* without CVC),
while achieves a shorter path length and left sailing time.
For targets 4 and 6 (T4 and T6), a collision-avoidance action
from the starboard side is given by the IHA* with CVC. The
setting of targets in Scenario 7 is slightly different from the
one in (a) (the trajectory of T3 changes), while the route is
very different. All three methods select to sail from the port
side in this scenario. Due to the path change of T3, the route
given by the IHA* with the CVC also changes accordingly
to the port side to avoid it and then is similar to the route
using the one without CVC. After the altering course at the
beginning, the solution given by Johansen’s method keeps
the course until T=400s and then turns to starboard with
reduced speed. By contrast, the solutions of IHA* give a
larger course change at the beginning and turns back to the
destination earlier. The total path lengths do not vary much
using three methods (9187 m, 9392 m, and 9361 m), and
the computation time is 0.6805 s, 2.3437 s, and 0.5389 s,
respectively.

3.2. Real Case Study
The improved Hybrid A* with CVC is also applied to a

simulation with logged data during a real sea trial illustrated
in Figure 11(a). The sea trial was carried out on the coastal

T. Miao, et al: Preprint submitted to Elsevier Page 12 of 19

Table 4
Path length and minimum distance during sailing using differ-
ent methods. 1: Johansen’s method, 2: IHA* without CVC, 3:
IHA* with CVC.

Scenarios minimum distance (m)
1 2 3

1-Fig8(a) 665 636 648
2-Fig8(b) 618 610 603
3-Fig8(c) 636 607 620
4-Fig9(a) 636 614 614
5-Fig9(b) 700 610 852
6-Fig10(a) 646 610 600
7-Fig10(b) 668 602 603

water near the Netherlands, which is around 20 km away
from the shore. The logged data is associated with the sailing
period after 30-min departing from ‘Den Helder’ harbor. It
is seen in Figure 11(a), the area is busy within the selected
range (8 nautical miles) and there is far away from the shore.
So there are no shore restrictions and no other restrictions,
the ship has sufficient maneuvering space.

In the simulation, the logged data, including Radar
AIS and GPS is replayed, by using a virtual UDP sender
according to the timestamp. A UDP receiver keeps receiving
and updating data with a constant sample time of 1 second.
The CA algorithm is called once every second. The data
from different sensors are filtered with a Kalman filter and
fused. The corresponding preparing work like aligning the
timestamp is done in advance.

The circle here denotes the sensor’s detection range;
at the center of the circle is the current position of OS.
The symbols - diamond, square, cross, and triangle express
the measurements from F-Band Radar, I-Band Radar, F-
Heli Radar, and AIS, respectively. The blue points are the
positions of targets after fusion. The dashed lines describe
the velocity of the targets.

During this case, a collision-free path (red line) can be
generated successfully for each frame using the proposed
algorithm. According to the log period, a re-planning of the
path is done with a constant frequency (every 1 second). Due
to the sailing scope of this case, 1 HZ is sufficient for the
system to act. To stabilize the entire route, the re-planned
path is only accepted when it is significantly better than
the old one or the new updated environment information is
different from the prediction. The computation time of each
time step is recorded, and the statistic information is shown
by the boxplot in Figure 11(b). There is no latency with the
CVC as the pre-check during the entire simulation.

(a) Real-time simulation with logged data in a sea trial

1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
)

(b) Boxplot of the computation time of real case study

Figure 11: Real case study results

4. DISCUSSIONS
The proposed CA method can provide a collision-free

solution in all the simulated cases. A smooth path with
continuous state change can be generated, benefiting from
searching in a node map. Furthermore, a pre-collision check
method, the CVC, is proposed and applied to speed up the
computation time of this improved Hybrid A*. The collision
risk of each discrete control behavior can be estimated
in advance, such that the options with an obviously high
collision risk can be excluded from the search space in
advance. As seen from the results, the method, IHA* without
CVC, requires a longer computation time, especially in
complex scenarios. For example, the average computation
time can be up to 6.9569s in Scenario 6 and 5.8816s in
Scenario 7. This is precisely the common problem we men-
tioned before, limiting the application of A* algorithms in
dynamic collision avoidance. Using the CVC, all scenarios’
computation time is shortened considerably (average 76%)
with only slight changes (the most significant difference
occurs in Scenario 6, where a safe and effective solution
is still found) in the final solution. In the best case, the

T. Miao, et al: Preprint submitted to Elsevier Page 13 of 19

1 2 3 4 5 6 7 8 9

East (km)

2

3

4

5

6

7

8

N
o

rt
h

 (
k
m

)

OS

Land

T1

T2

T3

T4

T5

T = 200 sJohansen's method

IHA* without CVC

IHA* with CVC

1 2 3 4 5 6 7 8 9

East (km)

2

3

4

5

6

7

8

N
o

rt
h

 (
k
m

)

OS

Land

T1

T2

T3

T4

T5

T = 400 sJohansen's method

IHA* without CVC

IHA* with CVC

1 2 3 4 5 6 7 8 9

East (km)

2

3

4

5

6

7

8

N
o

rt
h

 (
k
m

)

OS

Land

T1

T2

T3

T4

T5

T = 600 sJohansen's method

IHA* without CVC

IHA* with CVC

(a) Scenario 1: All head-on encounter

1 2 3 4 5 6 7 8 9 1

East (km)

2

3

4

5

6

7

8

N
o

rt
h

 (
k
m

)

OS

Land

T1

T2

T3

T4

T5

T = 200 sJohansen's method

IHA* without CVC

IHA* with CVC

1 2 3 4 5 6 7 8 9 1

East (km)

2

3

4

5

6

7

8

N
o

rt
h

 (
k
m

)

OS

Land

T1

T2

T3

T4

T5

T = 400 sJohansen's method

IHA* without CVC

IHA* with CVC

1 2 3 4 5 6 7 8 9 1

East (km)

2

3

4

5

6

7

8

N
o

rt
h

 (
k
m

)

OS

Land

T1

T2

T3

T4

T5

T = 600 sJohansen's method

IHA* without CVC

IHA* with CVC

(b) Scenario 2: All crossing encounter

1 2 3 4 5 6 7 8 9

East (km)

2

3

4

5

6

7

8

N
o

rt
h

 (
k
m

)

OS

Land

T1

T2

T3

T4
T5

T = 200 sJohansen's method

IHA* without CVC

IHA* with CVC

1 2 3 4 5 6 7 8 9

East (km)

2

3

4

5

6

7

8

N
o

rt
h

 (
k
m

)

OS

Land

T1

T2

T3

T4
T5

T = 400 sJohansen's method

IHA* without CVC

IHA* with CVC

1 2 3 4 5 6 7 8 9

East (km)

2

3

4

5

6

7

8

N
o

rt
h

 (
k
m

)

OS

Land

T1

T2

T3

T4
T5

T = 600 sJohansen's method

IHA* without CVC

IHA* with CVC

(c) Scenario 3: All over-taking encounter

1 2 3 4 5 6 7 8 9

East (km)

2

3

4

5

6

7

8

N
o

rt
h

 (
k
m

)

OS

Land

T1

T2
T3

T4

T5

T = 200 sJohansen's method

IHA* without CVC

IHA* with CVC

1 2 3 4 5 6 7 8 9

East (km)

2

3

4

5

6

7

8

N
o

rt
h

 (
k
m

)

OS

Land

T1

T2
T3

T4

T5

T = 400 sJohansen's method

IHA* without CVC

IHA* with CVC

1 2 3 4 5 6 7 8 9

East (km)

2

3

4

5

6

7

8

N
o

rt
h

 (
k
m

)

OS

Land

T1

T2
T3

T4

T5

T = 600 sJohansen's method

IHA* without CVC

IHA* with CVC

(d) Scenario 4: Mixed encounters with 5 targets

Figure 12: Collision avoidance progression in time of Scenarios 1-4. T = 200s, 400s, 600s, respectively

T. Miao, et al: Preprint submitted to Elsevier Page 14 of 19

1 2 3 4 5 6 7 8 9 1

East (km)

2

3

4

5

6

7

8

N
o

rt
h

 (
k
m

)

OS

Land

T1

T2
T3 T4

T5

T7

T8

T9

T10

T = 200 sJohansen's method

IHA* without CVC

IHA* with CVC

1 2 3 4 5 6 7 8 9

East (km)

2

3

4

5

6

7

8

N
o

rt
h

 (
k
m

)

OS

Land
T = 400 s

T1

T2
T3 T4

T5

T7

T8

T9

T10

Johansen's method

IHA* without CVC

IHA* with CVC

1 2 3 4 5 6 7 8 9

East (km)

2

3

4

5

6

7

8

N
o

rt
h

 (
k
m

)

OS

Land
T = 600 s

T1

T2
T3 T4

T5

T7

T8

T9

T10

Johansen's method

IHA* without CVC

IHA* with CVC

(a) Scenario 5: Mixed encounters with 10 targets

1 2 3 4 5 6 7 8 9

East (km)

2

3

4

5

6

7

8

N
o

rt
h

 (
k
m

)

OS

Land

T1

T2

T4

T5

T6

T7

T3

T = 200 sJohansen's method

IHA* without CVC

IHA* with CVC

1 2 3 4 5 6 7 8 9

East (km)

2

3

4

5

6

7

8

N
o

rt
h

 (
k
m

)

OS

Land

T1

T2

T4

T5

T6

T7

T3

T = 400 sJohansen's method

IHA* without CVC

IHA* with CVC

1 2 3 4 5 6 7 8 9

East (km)

2

3

4

5

6

7

8

N
o

rt
h

 (
k
m

)

OS

Land

T1

T2

T4

T5

T6

T7

T3

T = 600 sJohansen's method

IHA* without CVC

IHA* with CVC

(b) Scenario 6: More target moving modes - 1

1 2 3 4 5 6 7 8 9

East (km)

2

3

4

5

6

7

8

N
o

rt
h

 (
k
m

)

OS

Land

T1

T2

T4

T5

T6

T7

T3

T = 200 sJohansen's method

IHA* without CVC

IHA* with CVC

1 2 3 4 5 6 7 8 9

East (km)

2

3

4

5

6

7

8

N
o

rt
h

 (
k
m

)

OS

Land

T1

T2

T4

T5

T6

T7

T3

T = 400 sJohansen's method

IHA* without CVC

IHA* with CVC

1 2 3 4 5 6 7 8 9

East (km)

2

3

4

5

6

7

8
N

o
rt

h
 (

k
m

)

OS

Land

T1

T2

T4

T5

T6

T7

T3

T = 600 sJohansen's method

IHA* without CVC

IHA* with CVC

(c) Scenario 7: More target moving modes - 2

Figure 13: Collision avoidance progression in time of Scenarios 5-7, T = 200s, 400s, 600s, respectively

1 2 3 4 5 6 7 8 9

East (km)

2

3

4

5

6

7

8

N
o
rt

h
 (

k
m

)

OS

Land

T1

T2

T4

T5

T6

T7

T3

T = 800 scalculated scenarios

final route

target trajectories

(a) Search space of Johansen’s method
1 2 3 4 5 6 7 8 9

East (km)

2

3

4

5

6

7

8

N
o

rt
h

 (
k
m

)

OS

Land

T1

T2

T4

T5

T6

T7

T3

T = 800 ssearched nodes

selected route

target trajectories

(b) Search space of IHA* without CVC
1 2 3 4 5 6 7 8 9

East (km)

2

3

4

5

6

7

8

N
o

rt
h

 (
k
m

)

OS

Land

T1

T2

T4

T5

T6

T7

T3

T = 800 ssearched nodes

final route

target trajectories

(c) Search space of IHA* with CVC

Figure 14: Search space size of three methods in Scenario 7

T. Miao, et al: Preprint submitted to Elsevier Page 15 of 19

(a) Johansen

(b) IHA* without CVC

(c) IHA* with CVC

(d) Environment information

Figure 15: Computation time statistics of different scenarios

computation time is shortened by 97% (Scenario 5). With
this pre-check method, the real-time performance of HA* is
indeed greatly improved. Benefiting from increased compu-
tation efficiency, with the same computation power, a more
accurate solution can be found with a richer set of control
behaviors within the same sample time. Alternatively, a
higher computation frequency can be realized with the same
course and speed options.

As a comparison, Johansen’s method can also give an
effective solution with a relatively high real-time perfor-
mance. In Scenarios 1 and 3, there is no significant difference
between the solutions provided by IHA* and Johansen’s
method. In the crossing case (Scenario 2), the solution given
by Johansen’s method keeps the course to starboard until
passing T5. It follows the COLREGs, but the price is the

sacrifice of sailing distance and time. By contrast, IHA*
gives a relatively reasonable way, which benefits from setting
the heuristic cost of the A* algorithm. In complex scenarios
(Scenarios 4-7), IHA* gives a similar but relatively better
solution. E.g., the routes are identical in Scenario 4 and 7,
but the total path length is shorter using IHA*. In Scenarios
6, though the IHA* with CVC goes to a different side
and has more turning actions than Johansen’s method, the
minimal distance is still considered safe according to our
setting and the sailing distance and time are even less.
Furthermore, there is a speed reduction of the solution using
Johansen in Scenario 5. By contrast, the IHA* keeps the
full speed. A shorter computation time can be achieved
using the IHA* with the CVC than Johansen’s method in
all scenarios. Meanwhile, the solution is similar or better in
safety, sailing distance, and time. Theoretically, the solution
given by the IHA* is more optimal than Johansen’s method
with the setting in this study. Because it can search backward
and check all the possibilities during the solution searching
process. However, we must be aware that the two methods
have inherent differences. The cost functions are designed in
different structures, and solution searching mechanisms also
differ.

Besides, according to the number of options and replan-
ning times we set, Johansen’s calculated scenario number is
fixed to 420 in all scenarios. It is indeed seen from the results
that the computation time is relatively stable. Nevertheless,
the specific time can be different due to the calling of
different functions in different scenarios, e.g., when TSs and
OSs are close, a polygon distance is calculated instead of
point distance, which impacts the total computation time.
Note that the fixed number is only used for our comparison,
which can differ in other cases. The size of the search space,
i.e., the number of the nodes, is not fixed using the IHA*
method. It can be small, e.g., in Figure 9(a), when the
design of the heuristic cost is accurate. However, it is larger
than the one using Johansen’s method in most cases. So,
it usually takes longer to use the IHA* without the CVC
than when using Johansen’s method. Using the CVC, the
number of nodes can be significantly reduced, leading to a
shortened computation time. Furthermore, the computation
time of Johansen’s method is an accumulation of 20-time
replanning according to our setting. If we only consider the
safety and ignore the long-term impacts, it should be faster
than the proposed method. In addition, one can increase the
accuracy of the solution using Johansen’s method by adding
the possibility of changing control behaviors. However, it
will lead to the exponential growth of the computation
complexity, such that it is not selected for the comparison
in this paper.

Although the computation time of the solutions using
the CVC is shortened in all the scenarios, theoretically,
an improper parameter setting might lead to a longer time
using the CVC than when not using it. The reason is that

T. Miao, et al: Preprint submitted to Elsevier Page 16 of 19

good options can be removed inappropriately. Thus follow-
up studies on how to select a proper CVC threshold are
required. Another reason for this potential problem could be
the inappropriate safety domain. A circular safety domain
is applied to all the targets based on our current research
scope - coastal waters, which might not be suitable for other
scenarios like inland shipping. A sufficiently large safety
radius has to be selected to ensure safety in any situation. The
ships are assumed to be polygons to calculate the minimum
distance when they are close enough. To further describe
this domain, we can use more specific shapes such as an
ellipse, a polygon, or even an actual shape. Making these
parameters self-adjustable to different scenarios is one of
our future work.

Some COLREGs rules like 8, 16 are considered during
the parameter tuning. Some are considered as a part of
the cost function, which means COLREGs compliance is
not designed as a hard constraint. COLREGs rules can
be violated when the total cost can be much smaller as a
result. By giving more weight to the COLREGs cost, the
violation of the COLREGs will not be favorable. We made
such a design because the current version of COLREGs is
not designed for autonomous ships, and thus it is difficult
for the current autonomous systems to cover all the rules.
E.g., Rule 8 indicates if there is a risk of collision, a ship
is required to act even if it has the right-of-way. However,
the ‘risk of collision’ is not clearly defined and can be
subjective. In busy areas, the communication between crews
and signal lights might determine the actions of two encoun-
tering ships. Rules of the interaction between autonomous
ships and manned ships can be slightly different, while the
corresponding rules are not fully developed yet. Moreover,
with shared information between ships, there is a possibility
that a better decision beyond the COLREGs might be made.
With all these concerns, we make the weight of COLREGs-
compliance adjustable. Such that we can adjust the extent of
the compliance according to different cases.

An extensive set of tuning parameters is involved in this
method, such as the course change Δ𝛼 threshold and speed
change Δ𝑣 threshold. The selection of these parameters
depends on several properties such as the type and size of
OS. The cost calculation of all aspects is normalized, so
we can adjust weight factors to exhibit a range of different
priorities and behaviors. For different cases, it can also be
time-consuming as the tuning parameters are not completely
independent.

This method can be further refined by using more
detailed representations of the uncertainty of the models,
e.g., a more realistic ship model instead of the simplified
3-DOF model, a better motion-prediction model for obsta-
cles. The Kalman filter is used in this paper for motion
prediction, which is a predictor combining the historical
measurements and the kinematic model and its noise. We
can choose a better predictor, considering more factors,

such as more specific motion models of obstacles, a shared
destination, and a sailing intention, to improve the prediction
performance. Another point worth noting is that all the
calculation times mentioned in this paper are based on a
PC with the computational power of an Intel i5 core. The
details of the computation environment is given in Figure
15(d). The actual calculation time depends on the specific
computational environment.

For the real case study, it is indicated by the upper
quartile in Figure 11(b) that 75% computation time is less
than 0.2 s. The maximum is around 0.41 s, and the minimum
is 0.02 s. All the times are less than 1 second, including the
outliers. The result proves the effectiveness of the proposed
IHA*. Furthermore, it is observed that the average time is
less than the previous simulations. It means, in this case, the
upcoming encountering scenarios are not as complex as we
designed in the simulations. That is because the actual den-
sity of obstacles is smaller due to the larger map scale. The
own ship does not encounter all the targets simultaneously.
Instead, the encounters happen sequentially.

5. CONCLUSIONS
This paper proposes a hybrid method based on Hybrid

A* with discrete control behaviors for maritime real-time
collision avoidance in multi-target scenarios. A collision
pre-check method, i.e., the collision velocity check (CVC),
is proposed and applied to speed up the solution search
process. Simulations show that the method is effective and
can safely manage complex scenarios with multiple dynamic
obstacles and uncertainty associated with the sensors and
predictions. The computational efficiency is improved mas-
sively by using CVC, as shown by the comparison study,
while the selected trajectory is not changing much when a
proper threshold is selected. For the determination of the
CVC threshold in a generalized scenario, further studies
are required. Furthermore, the method is also successfully
applied to a real-time simulation of a multi-target case using
logged radar and AIS data from a real sea trial.

ACKNOWLEDGMENT
The research leading to these results has received fund-

ing from the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-
Curie Grant Agreement No 812.788 (MSCA-ETN SAS).
This publication reflects only the authors’ view, exempting
the European Union from any liability. Project website:
http://etn-sas.eu/.

APPENDIX
This section briefly lists the relevant rules for our re-

search from COLREGs, COLREG (2003):

T. Miao, et al: Preprint submitted to Elsevier Page 17 of 19

• Rule 6 – Safe speed. The following should be con-
sidered: visibility, traffic density, stopping distance
and turning ability, wind/waves/current, navigational
hazards, draught vs. depth, Radar/sensor state.

• Rule 8 – Actions to avoid collision. Actions shall
be made in ample time. If there is sufficient sea-room,
alteration of course alone may be most effective. Safe
distance required. Reduce speed, stop or reverse if
necessary. Action by the ship is required if there is risk
of collision, also when the ship has right-of-way.

• Rule 13 – Overtaking. Any vessel overtaking any
other shall keep out of the way of the vessel being
overtaken. A vessel shall be deemed to be overtaking
when coming up with another vessel from a direction
more than 22.5 degrees abaft her beam.

• Rule 14 – Head-on situation. When two power-
driven vessels are meeting on nearly reciprocal courses
so as to involve risk for collision, then alter course to
starboard so that each pass on the port side of each
other.

• Rule 15 – Crossing situation. When two power-
driven vessels are crossing so as to involve risk of
collision, the vessel which has the other on her own
starboard side shall keep out of the way.

• Rule 16 – Actions by give-way vessel. Take early and
substantial action to keep well clear.

References
Beser, F., Yildirim, T., 2018. Colregs based path planning and bearing

only obstacle avoidance for autonomous unmanned surface vehicles.
Procedia computer science 131, 633–640.

Bitar, G., Martinsen, A.B., Lekkas, A.M., Breivik, M., 2020. Two-
stage optimized trajectory planning for asvs under polygonal obstacle
constraints: Theory and experiments. IEEE Access 8, 199953–199969.

Brcko, T., Androjna, A., Srše, J., Boć, R., 2021. Vessel multi-parametric
collision avoidance decision model: Fuzzy approach. Journal of Marine
Science and Engineering 9, 49.

Campbell, S., Naeem, W., 2012. A rule-based heuristic method for colregs-
compliant collision avoidance for an unmanned surface vehicle. IFAC
proceedings volumes 45, 386–391.

Chen, L., Negenborn, R.R., Lodewijks, G., 2016. Path planning for
autonomous inland vessels using a* bg, in: International Conference on
Computational Logistics, Springer. pp. 65–79.

Cheng, Y., Zhang, W., 2018. Concise deep reinforcement learning obstacle
avoidance for underactuated unmanned marine vessels. Neurocomput-
ing 272, 63–73.

COLREG, I., 2003. Convention on the international regulations for
preventing collisions at sea, 1972. IMO: London, UK .

Daniel, K., Nash, A., Koenig, S., Felner, A., 2010. Theta*: Any-angle path
planning on grids. Journal of Artificial Intelligence Research 39, 533–
579.

Dijkstra, E.W., et al., 1959. A note on two problems in connexion with
graphs. Numerische mathematik 1, 269–271.

Dolgov, D., Thrun, S., Montemerlo, M., Diebel, J., 2008. Practical search
techniques in path planning for autonomous driving. Ann Arbor 1001,
18–80.

Dorigo, M., Birattari, M., Stutzle, T., 2006. Ant colony optimization. IEEE
computational intelligence magazine 1, 28–39.

Fossen, T.I., 2011. Handbook of marine craft hydrodynamics and motion
control. John Wiley & Sons.

T. Miao, et al: Preprint submitted to Elsevier Page 18 of 19

Hart, P.E., Nilsson, N.J., Raphael, B., 1968. A formal basis for the heuristic
determination of minimum cost paths. IEEE transactions on Systems
Science and Cybernetics 4, 100–107.

Hu, Y., Meng, X., Zhang, Q., Park, G.K., 2020. A real-time collision
avoidance system for autonomous surface vessel using fuzzy logic. IEEE
Access 8, 108835–108846.

Huang, Y., Chen, L., Van Gelder, P., 2019. Generalized velocity obstacle
algorithm for preventing ship collisions at sea. Ocean Engineering 173,
142–156.

Johansen, T.A., Perez, T., Cristofaro, A., 2016. Ship collision avoidance and
colregs compliance using simulation-based control behavior selection
with predictive hazard assessment. IEEE transactions on intelligent
transportation systems 17, 3407–3422.

Khatib, O., 1986. Real-time obstacle avoidance for manipulators and mobile
robots, in: Autonomous robot vehicles. Springer, pp. 396–404.

Kim, H., Kim, D., Shin, J.U., Kim, H., Myung, H., 2014. Angular rate-
constrained path planning algorithm for unmanned surface vehicles.
Ocean Engineering 84, 37–44.

Kurzer, K., 2016. Path planning in unstructured environments: A real-time
hybrid a* implementation for fast and deterministic path generation for
the kth research concept vehicle.

Lazarowska, A., 2017. Multi-criteria aco-based algorithm for ship’s trajec-
tory planning. TransNav: International Journal on Marine Navigation
and Safety of Sea Transportation 11.

Lin, H.S., Xiao, J., Michalewicz, Z., 1994. Evolutionary algorithm for
path planning in mobile robot environment, in: Proceedings of the First
IEEE Conference on Evolutionary Computation. IEEE World Congress
on Computational Intelligence, IEEE. pp. 211–216.

Lyu, H., Yin, Y., 2019. Colregs-constrained real-time path planning for
autonomous ships using modified artificial potential fields. The Journal
of navigation 72, 588–608.

Meyer, E., Heiberg, A., Rasheed, A., San, O., 2020. Colreg-compliant col-
lision avoidance for unmanned surface vehicle using deep reinforcement
learning. IEEE Access 8, 165344–165364.

Miao, T., El Amam, E., Slaets, P., Pissoort, D., 2020. Multi-target tracking
and detection, fusing radar and ais signals using poisson multi-bernoulli
mixture tracking, in support of autonomous sailing, in: Proceedings of
the International Naval Engineering Conference & Exhibition (INEC),
Institute of Marine Engineer, Science & Technology (IMarEST); Zen-
odo. pp. 1–13.

Särkkä, S., 2013. Bayesian filtering and smoothing. 3, Cambridge
university press.

Singh, Y., Sharma, S., Sutton, R., Hatton, D., Khan, A., 2018. A constrained
a* approach towards optimal path planning for an unmanned surface
vehicle in a maritime environment containing dynamic obstacles and
ocean currents. Ocean Engineering 169, 187–201.

Soltan, R.A., Ashrafiuon, H., Muske, K.R., 2009. Trajectory real-time
obstacle avoidance for underactuated unmanned surface vessels, in: In-
ternational Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, pp. 1059–1067.

Szłapczyński, R., Ghaemi, H., 2019. Framework of an evolutionary multi-
objective optimisation method for planning a safe trajectory for a marine
autonomous surface ship. Polish Maritime Research 26, 69–79.

Vagale, A., Oucheikh, R., Bye, R.T., Osen, O.L., Fossen, T.I., 2021. Path
planning and collision avoidance for autonomous surface vehicles i: a
review. Journal of Marine Science and Technology , 1–15.

Zhuang, J.y., Zhang, L., Zhao, S.q., Cao, J., Wang, B., Sun, H.b., 2016.
Radar-based collision avoidance for unmanned surface vehicles. China
Ocean Engineering 30, 867–883.

T. Miao, et al: Preprint submitted to Elsevier Page 19 of 19

