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Abstract

Uniformly most powerful confidence distributions are obtained for parameters in
selected models of the exponential family. A conditioning on the selection event as well
as on the sufficient statistics of nuisance parameters guarantees valid post-selection
inference. Optimal confidence intervals are obtained directly from the confidence dis-
tribution without requiring an inversion of pivotal quantities. Simulations showcase
that the method works also when all models are misspecified.
Keywords: Confidence distribution, confidence interval, exponential family, model se-
lection, post-selection inference, sufficiency

1 Introduction

While variable selection in generalized linear models is now standard, the construction of
valid post-selection inference is still not commonplace. Via the concept of confidence dis-
tributions (see, e.g., Schweder and Hjort, 2016) which summarize all information about the
power of tests, p-values and confidence intervals at all levels, we approach the inference on
model parameters after a model has been selected using the same data. In linear models this
method leads to finite sample exact and uniformly most powerful results, see Garcia-Angulo
and Claeskens (2022). In this paper we extend the methodology to be applicable to the class
of generalized linear models. We test the method on simulated data for selecting Poisson
and logistic regression models and we re-analyse a published analysis using logistic regression
but now obtaining valid inference results after selection.

This method can be framed as selective inference (see Lee et al., 2016, for Gaussian
data) where a pivotal quantity is used conditional on a selected model by characterizing the
event of selection. For lasso selection this selection event corresponds to certain polyhedral
regions while for selection by the Akaike information criterion in likelihood models quadratic
regions results (Charkhi and Claeskens, 2018). Rügamer and Greven (2018) consider the
construction of selection regions and conditional inference for likelihood, or test-based model
selection in a linear model. For non-Gaussian data much fewer results exist for selective post-
selection inference. Some asymptotic results are obtained by Tian and Taylor (2017) and a
more powerful method by the use of randomization is provided by Tian and Taylor (2018).
Taylor and Tibshirani (2018) discuss extensions to generalized regression models by using
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one-step approximations and asymptotic normality of the resulting estimators. Tibshirani
et al. (2018) obtain asymptotic uniform inference for linear regression models with non-
Gaussian errors. For other ways of performing valid inference that do not condition on the
selection, but consider some orthogonality conditions instead, see for example Belloni et al.
(2016) for the case of ℓ1-regularized estimation in generalized linear models. None of these
papers has considered the use of confidence distributions to get full inferential results and
no finite sample results were obtained.

2 Models, sufficient statistics and selection regions

Let Yn = (Y1, . . . , Yn)
⊤ be a n-dimensional vector of independent random variables. In an

exponential family model, each Yi has a density or probability mass function (pmf) of the
form

fi(yi; ζi, ϕ) = exp

{
yiζi − b(ζi)

ϕ
+ c(yi, ϕ)

}
, (1)

where b and c are known functions, ϕ is a scale parameter and ζi is the canonical parameter
of the exponential family which might be different for each i = 1, . . . , n. Denote b′(ζi) =
∂b(ζi)/∂ζi and b′′(ζi) = ∂2b(ζi)/∂ζ

2
i . For members of the exponential family distributions

with densities or probability mass functions expressed as (1) it can be shown that E(Yi) =
b′(ζi) and Var(Yi) = ϕb′′(ζi).

For p-vectors of covariates xi with i = 1, . . . , n, define the n× p full rank design matrix
X = (x⊤

1 , . . . , x
⊤
n )

⊤ and β = (β1, . . . , βp)
⊤ the corresponding parameter vector. For fixed

regressors, the responses are independent though their means will differ. For a random
design the vectors (Yi, x

⊤
i ), i = 1, . . . , n are assumed independent and identically distributed

and in this case in all expressions a conditioning on X takes place, though this is not always
explicitly indicated in the notation.

The class of generalized linear models (GLM) with canonical link function g̃ = (b′)−1

specifies the canonical parameter as ζi = g̃(E(Yi|xi)) = x⊤
i β such that the joint density or

probability mass function of Yn|X has the form

fn(yn|X, β, ϕ) =
n∏

i=1

fi(yi|xi, ζi, ϕ) =
n∏

i=1

[
exp

{
yix

⊤
i β − b(x⊤

i β)

ϕ
+ c(yi, ϕ)

}]
. (2)

When ϕ is known, it immediately follows from (2) and the factorization criterion for suffi-
ciency, that

∑n
i=1 xiYi is a sufficient statistic for β/ϕ. When ϕ requires estimation, c(yi, ϕ)

contains information about the sufficient statistic for ϕ. Table 1 gives a list of the most
used GLM with canonical links and their natural parameters and sufficient statistics. Work-
ing with the canonical link function allow us to rewrite (2) in what is called the natural
parametrization of exponential family distributions,

fn(yn|X, π(β, ϕ)) = h(yn) exp
{
π(β, ϕ)⊤T̃ (yn;X)− κ(π(β, ϕ))

}
, (3)

with a k-dimensional vector of natural parameters π(β, ϕ) = (π1(β, ϕ), . . . , πk(β, ϕ))
⊤ and

(conditional on X) the corresponding vector of sufficient statistics T̃ (yn;X) = (T1(yn;X),
. . . , Tk(yn;X))⊤, with k = p + 1 when ϕ requires estimation, and with k = p when ϕ is
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Distribution
Canonical link

g̃(E(Yi|xi)) = x⊤
i β

Natural
parameters

Sufficient statistics

Normal: N(µi, σ
2) µi = x⊤

i β (−1/2, β⊤)⊤/σ2 (Y ⊤Y, Y ⊤X)⊤

Inverse Gaussian(µi, γ) −1/(2µ2
i ) = x⊤

i β (−γ/2, γβ⊤)⊤ (
∑n

i=1 Y
−1
i , Y ⊤X)⊤

Exponential(λi) −λi = x⊤
i β β X⊤Y

Gamma(v, λi) −λi/v = x⊤
i β (v, vβ⊤)⊤ (

∑n
i=1 log(Yi), Y

⊤X)⊤

Poisson(λi) log(λi) = x⊤
i β β X⊤Y

Binomial: Bin(ni, pi) log( nipi
ni(1−pi)

) = x⊤
i β β X⊤Y

Table 1: Most used generalized linear models with canonical links and their natural param-
eters and sufficient statistics.

known. A slightly more general case allows to specify ζi = h̃(E(Yi|xi)), where h̃ is any
monotone function that is linear in the parameter β. In this case, the working model also
yields the natural parametrization of the exponential family as in (3).

We first consider the case that a single regression coefficient is the focus for inference. The
natural parameter vector is split as π(β, ϕ) = (θ, η⊤)⊤ and we denote the vector of sufficient

statistics T̃ (Yn;X) = (T (Yn;X), U⊤(Yn;X))⊤. The first component T = T (Yn;X) is the
sufficient statistic for θ, while the other components form the vector of sufficient statistics for
what we call the nuisance parameter vector η. We use this parametrization to obtain post-
selection confidence distributions for θ based on the conditional distribution of T given U .

Model selection takes place in order to create a more parsimonious model with fewer
covariates. Using a selection method a best model is chosen from the model set M =
{M1, . . . ,Mm} which consists of a fixed number m models.

Each model selection method imposes a partitioning of Y , the sample space of the data.
That is, Y = ∪m

j=1Aj with Ak ∩ Al = ∅ if k ̸= l. Each of these regions Aj is connected
to one model Mj ∈ M such that selecting model Mj is equivalent with Yn ∈ Aj. All
models in M are assumed to have a nonzero selection probability implying that each Aj

with j ∈ {1, . . . ,m} is nonempty. We make the assumption that the selection regions can
be described using the sufficient statistics. The selected model is denoted by Mȷ̂ to stress
the randomness in the selection in the notation.

Example: Poisson regression. The logarithm is the canonical link function such
that E(Yi|xi) = exp(x⊤

i β). The working density in (2) takes a known ϕ = 1, b = exp
and c(yi, ϕ) = − log(yi!). It can be rewritten as in (3) with h(yn) =

∏n
i=1 exp{c(yi, ϕ)},

κ(π(β, ϕ)) =
∑n

i=1 b(x
⊤
i β) and a p-variate sufficient statistic for π(β, ϕ) = β is T̃ (yn;X) =∑n

i=1 xiYi.
Let M = {M1, . . . ,Mm} be the model selection set where each model Mj is a Poisson

regression model with canonical log-link function and design matrix XMj
with |Mj| columns,

which denotes the number of parameters that is to be estimated in model Mj. Models in M
are not necessarily nested. The probability mass function for model Mj, can be expressed
in terms of the sufficient statistics as

fn(yn|XMj
, βMj

) =

( n∏
i=1

1

yi!

)
exp

{
β⊤
Mj

n∑
i=1

xiyi −
n∑

i=1

exp(x⊤
i βMj

)

}
.
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Let Mȷ̂ be selected by AIC. Since AIC(Mj) = −2 log fn(yn|XMj
, β̂Mj

) + 2|Mj|, using the
model’s maximized log-likelihood value, it is readily seen that also Aȷ̂ can be expressed in
terms of the sufficient statistics. The selection yields the following selection region for the
observed sample: Aȷ̂ = {yn ∈ Rn : AIC(Mȷ̂) < AIC(Mk), for all Mk ∈ M \Mȷ̂}.

3 Post-selection conditional confidence distributions

3.1 Uniformly most powerful confidence distributions

Garcia-Angulo and Claeskens (2022) define a conditional post-selection confidence distribu-
tion as a confidence distribution (Schweder and Hjort, 2002, 2016; Singh et al., 2005; Xie and
Singh, 2013) that is restricted to the area of selection instead of on the whole sample space and
there is a conditioning on the selected model. In order to take possible model misspecifica-
tion into account, pseudo-true parameters (White, 1994) are used instead of true parameter
values. Such values are defined to minimize the Kullback-Leibler divergence between the
model density and the true data generating density, the latter is denoted by g. Thus for a
possibly misspecified model with density function fn(yn|X, π(β, ϕ)) and parameter of interest
renamed to θ and the remaining, nuisance parameters renamed to η, the pseudo-true param-
eter value in a model M is defined as (θ∗M , η∗⊤M ) = argmax(θ,η⊤) Eg[log fn(Yn|XM , π(βM , ϕ))]
where the expectation is with respect to the true but unknown density of Yn and the model
M is considered given.

Conditional on the selected model Mȷ̂ with pseudo-true parameter vector (θ∗Mȷ̂
, η∗⊤Mȷ̂

),

Garcia-Angulo and Claeskens (2022) defined a function

Cn|̂ȷ : Θ× Aȷ̂ → [0, 1] : (θ,Yn) 7→ Cn|̂ȷ(θ,Yn)

to be a conditional post-selection confidence distribution if

(i) the function Θ → [0, 1] : θ 7→ Cn|̂ȷ(θ,yn) is a cumulative distribution function on Θ for
each given Yn = yn ∈ Aȷ̂.

(ii) whatever the value of the pseudo-true parameter vector, considered as a function of
Yn taking values in Aȷ̂, Cn|̂ȷ(θ

∗
Mȷ̂
,Yn) ∼ U [0, 1], a uniform distribution.

By explicitly using properties of the normal distribution function, Garcia-Angulo and
Claeskens (2022) constructed such a conditional post-selection confidence distribution for
selection among normal linear models and proved it to be finite sample uniformly most
powerful. The novelty of this paper is that we extend such property to selection in an
exponential family class of models. We prove below that theoretical finite sample results
can be obtained for continuous such distributions under some assumptions. We provide also
answers for discrete distributions and for cases where all models are wrong.

Optimality properties of exponential families were extended to confidence distributions
by Schweder and Hjort (2016, Ch. 5). A confidence distribution is uniformly optimal (most
powerful) if for every loss function B, nondecreasing on the positive half-axis, nonincreasing
on the negative half-axis and B(0) = 0, loss(θa, Copt) ≤ loss(θa, C) for any other C, for every
value θa (Schweder and Hjort, 2016, Def 5.9).
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We first consider the scenario where there might be misspecified models but the selected
model is minimal true or overparametrized. In this case exact finite sample results hold. An
overspecified model Mj contains the minimal true model and it is overparametrized if there
are some zero components in the parameter vector βMj

.
This is precisely the same scenario as in Tian and Taylor (2018) and Fithian et al. (2014)

for the general exponential family (disregarding the Gaussian case) where selective tests
based on the conditional distributions of the sufficient statistics are only valid under the
model assumptions. This is not a strong assumption since many model selection methods
will overselect, including the lasso approach and efficient selection methods such as the
Akaike information criterion, for example.

In this case we can obtain optimal exact finite sample inference for the parameter of
interest. We first state the result for continuous distributions. Discrete distributions require
a continuity correction, as is explained below. We here extend Proposition 2 of Garcia-
Angulo and Claeskens (2022), which proved optimality for selecting normal linear models,
to generalized linear models.

For Mȷ̂ the minimal true or overspecified selected model using the data Yn with a con-
tinuous exponential family density, and the design matrix XMȷ̂

, the univariate parameter of
interest is θ with parameter space Θ and sufficient statistic T = T (Yn, XMȷ̂

) with observed
value tobs. The (|Mȷ̂| − 1)−dimensional vector of nuisance parameters is η with sufficient
statistic U = U(Yn, XMȷ̂

). Define by UM = UM(Yn, X) the combined vector of sufficient
statistics for the nuisance parameters η∗ in M, removing duplicates, with observed value
uobs. Since the decision on which parameter to perform inference on and which other pa-
rameters are nuisance happens after the model selection step, a conditioning on the selected
model takes place and the inference is different from classical inference where the model is
given beforehand. Section 7 contains the proof.

Proposition 1. We condition on Mȷ̂ being an overspecified selected model with parameters
(θ, η⊤) from a set of continuous exponential family models M, which is equivalently expressed
as Yn ∈ Aȷ̂, the corresponding selection region which can be expressed in terms of the suf-
ficient statistics (T (Yn;XMȷ̂

), U⊤
M) for the model parameters in M. If the parameter space

for (θ, η⊤) contains an open rectangle and the sample space region does not depend on the
parameters,

(i) the conditional post-selection confidence distribution:

Cn,|̂ȷ : Θ× Aȷ̂ → [0, 1] : (θ,Yn) 7→ P
(
T (Yn;XMȷ̂

) > tobs | UM = uobs,Yn ∈ Aȷ̂

)
(4)

is the uniformly most powerful (UMP) conditional post-selection confidence distribution
for θ.

Consequently,

(ii) for testing H0 : θ∗Mȷ̂
= θ against θ∗Mȷ̂

> θ, the p-value of the uniformly most powerful

unbiased test for each value θ ∈ Θ is given by Cn,|̂ȷ(θ,yn).

(iii) The shortest 100(1 − α)% confidence intervals among all coverage proper confidence
curves for the pseudo-true value θ∗Mȷ̂

for every 0 < α < 1 are obtained by the α/2 and
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1−α/2 quantiles of Cn,|̂ȷ(θ,Yn), or equivalently by the 1−α level set of the confidence
curve ccn,|̂ȷ : Θ → [0, 1] : θ 7→ ccn,|̂ȷ(θ) = |1− 2Cn,|̂ȷ(θMȷ̂

,Yn)|.

Working with a confidence curve is graphically enlightening to compare the performance
of different methods to produce confidence intervals. See for example the left panels in
Figure 1. A confidence curve provides confidence intervals at all levels and the confidence
intervals’ length is depicted by the spread of the curve. The guaranteed confidence level
is obtained since for any α ∈ (0, 1), the level set ccn,|̂ȷ(θ) = 1 − α (a horizontal line at

1− α in the graph) consists of two values: θ̂left and θ̂right for which by definition holds that

Cn,|̂ȷ(θ̂left,Yn) = α/2 and Cn,|̂ȷ(θ̂right,Yn) = 1− α/2, hence P (θ ∈ (θ̂left, θ̂right)) = 1− α.
Note that the optimal shortest confidence intervals are obtained directly via the confi-

dence distribution. The main advantage is that we do not need to invert pivotal quantities
as is typically done in selective inference (e.g. Tibshirani et al., 2018).

3.2 A continuity correction for discrete distributions

The finite sample optimality result in Proposition 1 only applies to continuous distribu-
tions. For discrete distributions we may use a continuity correction to approximate the uni-
formly most powerful conditional post-selection confidence distribution. A ‘half’-correction
Cn,|̂ȷ(θMȷ̂

,Yn) = P (T > tobs | UM = uobs,Yn ∈ Aȷ̂) + 1/2 P (T = tobs | UM = uobs,Yn ∈ Aȷ̂)
has been used by Schweder and Hjort (2002) while Veronese and Melilli (2018) proposed the
use of the geometric mean of fiducial densities that for exponential families coincide with
the asymptotic confidence distributions for the discrete case. The continuity correction for
discrete distributions has been studied theoretically by Stone (1969, Appendix 5, Theorem
1). There it was found that using the constant 1/2 has the best properties. We refer to this
paper for further details. This choice was further advocated by Schweder and Hjort (2002,
2016). For other approaches for discrete distributions, see Blaker (2000).

An additional approximation is required for binary data with continuous covariates as
UM = uobs might only be reached by the observed yn, therefore conditioning on UM = uobs

might imply conditioning on Yn. A solution is to allow some error threshold value δ such
that Cn,|̂ȷ(θMȷ̂

,Yn) = P (T > tobs | ∥UM∥2 ≤ ∥uobs∥2 + δ,Yn ∈ Aȷ̂) + 1/2 P (T = tobs |
∥UM∥2 ≤ ∥uobs∥2 + δ,Yn ∈ Aȷ̂), with ∥ · ∥ the Euclidean norm and δ determined by the
magnitude of X and the sample size n. The idea is to set δ as small as possible to have
UM in the neighborhood of uobs but still big enough to have some information left over after
conditioning. In practice, one might perform a grid search to choose δ, as discussed in the
next section.

3.3 Accounting for misspecification of all models

Even though, our theory requires the selected model to be overspecified, when the true gener-
ating process is unknown the selected model might be misspecified. In that case, the sufficient
statistics T̃ (yn;X) are still sufficient for the pseudo-true parameter vector (θ∗Mȷ̂

, η∗⊤Mȷ̂
). How-

ever, as the true distribution of Yn might not have the natural parametrization form of the
exponential family distributions in (3), the true distribution of T̃ (yn;X) is unknown and it
might not have the optimal properties of the exponential family distributions.
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In sections 4.2 and 4.3 we find empirical evidence that the simulated distribution of
T |(UM = uobs,Yn ∈ Aȷ̂) still works for inference on θ∗Mȷ̂

also when the selected model is
misspecified. A theoretical difficulty in the case of completely misspecified models is the lack
of information on the distributions of the sufficient statistics.

To account for model misspecification we adjust the Monte-Carlo sampling scheme for
the computation of Cn,|̂ȷ(θMȷ̂

,yn) that is conditional on the sufficient statistics (Lindqvist and
Taraldsen, 2005; Schweder and Hjort, 2016) and conditional on the selection event. Such
scheme was previously used for normal models only. For more details for the Gaussian case,
see Garcia-Angulo and Claeskens (2022, Sec. 5).

Step 1. We compute the sufficient statistics for the parameter of interest as well as
for all the nuisance parameters in the model set M. For the observed sample yn and X
we compute (T (yn;X), U⊤

M(yn)) = (tobs, u
⊤
obs). It is clear that all nuisance parameters are

required since the decision to select a model depends on which other models are in M. As
an example, think about computing an information criterion such as AIC for all models in
M and selecting the model for which the AIC value is smaller than all other models’ AIC
values.

Step 2. For a grid of candidate values for the parameter of interest θ in the selected model,
we sample from the model distribution under two constraints. First, that the sufficient
statistics for the nuisance parameters computed with the new data are the same as the
observed values from step 1. Second, that the same model is selected using the sampled data
instead of the original data. The generating model uses as parameter values the candidate
value for θ and estimated values for η such that the constraints hold.

In practice, we might turn the first constraint into an optimization problem, where for
sampling, we find values for η that minimize the Euclidean norm of the difference between
the observed sufficient statistics of the nuisance parameters and the sampled ones. Once that
first constraint is satisfied, we test whether the selected model is the same in the sampled
data. For more details see Garcia-Angulo and Claeskens (2022, Sec. 5). This constrained
generation is computationally demanding. For instance, to generate samples for a grid of 20
candidate values in the simulation in Section 4.3, it takes on average 5.9 minutes (sd= 2.4
min, 5 replicates). An algorithm to speed up this step is currently under investigation.

Step 3. A linear interpolation is performed on the set of grid points for θ and the empirical
probability that the newly computed sufficient statistics for θ with the generated data exceed
the value tobs. This gives the confidence distribution Cn,|̂ȷ(θMȷ̂

,yn). To get the confidence
curve we compute |1− 2Cn,|̂ȷ(θ,yn)| for a range of values for θ.

The result is referred to as Post-cc1.
For binary response, we might choose δ from a grid search. After step 1, for the smallest

(or largest) candidate value for the parameter of interest θ, we sample at least 10 times
from the model distribution under the constraint that ∥u∗

M − uobs∥2 = δ and the model
selection constraint. Here u∗

M is the vector of sufficient statistics for the nuisance parameters
calculated using the sampled data. We choose the smallest δ for which the sampled response
vectors are different from yn. Once δ is defined, we follow steps 2 and 3.

To account for model misspecification the method Post-cc2 adjusts step 2 in the algorithm
which implies a modification of step 3 too. For this correction, the Post-cc2 sampling scheme
introduces extra variability by the use of a sandwich standard error estimator of θ̂Mȷ̂

in the
selected model. This estimator is denoted by σ̃2(θMȷ̂

). For examples of such estimators, see
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MacKinnon and White (1985).
Step 2 (modified). For a grid of candidate values for the parameter of interest θ in the

selected model, we sample from the model distribution under the same constraints as in
step 2. However, for each candidate value ϑ, the generating model uses as parameter values
randomly generated values ϑb ∼ N(ϑ, σ̃2(θMȷ̂

)) for θ and estimated values for η such that
the constraints hold.

Step 3 (modified). The linear interpolation of step 3 gives a conservative distribution

C̃n,|̂ȷ(θMȷ̂
,Yn) obtained using the sample from the step 2 (modified). Conservative confidence

curves are obtained as |1− 2C̃n,|̂ȷ(θMȷ̂
,Yn)|.

Indeed, step 2 (modified) corrects for possible misspecification in the data at the price of
wider confidence curves.

Example: Poisson regression: computation under misspecification. Assume
β = (β1, β2)

⊤ where θ = β1 is of interest and η = β2 is a nuisance parameter. The model se-
lection set M consists of two Poisson regression models, M1 for which E(Yi|xi1) = exp(xi1β1)
and M2 for which E(Yi|xi2) = exp(xi1β1 + xi2β2). Assume M2 is selected and it might be
misspecified. To simulate a confidence distribution for β1, first (step 1) we compute the
values of the sufficient statistics tobs =

∑n
i=1 xi1yi and uobs =

∑n
i=1 xi2yi. Then, (step 2

modified) we choose a grid of candidate values for β1. For each candidate value ϑ in the
grid we sample B times data (y1,b . . . , yn,b) for b = 1, . . . , B from M2 with a mean speci-
fied as E(Yi|xi2) = exp(xi1ϑb + xi2β

o
2). Here ϑb is generated each of the B times from a

N(ϑ, σ̃2(β1,M2)) where σ̃(β1,M2) is the sandwich standard error estimator of β̂1,M2 in the se-
lected model M2. βo

2 is estimated such that the uobs =
∑n

i=1 xi2yi,b. We perform the same
model selection procedure we used in the original data now using (y1,b . . . , yn,b) instead and
check whether M2 is selected. We redo this until we have B samples satisfying all con-
straints. Finally we follow the linear interpolation of step 3 to obtain C̃n,|̂ȷ(β1,M2 ,Yn) as in
step 3 (modified).

4 Simulation study

We compare both methods Post-cc1 and Post-cc2 to three other methods. 1. A “naive”
approach that ignores the model selection step and pretends as if the selected model was given
beforehand and is correct. For the naive method confidence distributions are obtained as
Cn(θMȷ̂

,Yn) = Fn−p(T ) where Fn−p is the cumulative distribution function of a t-distribution

with n−p degrees of freedom and T = (θ− θ̂Mȷ̂
)/σ̂(θ)Mȷ̂

the t-statistic in the selected model.
2. We also compare with Post-AIC confidence intervals (Charkhi and Claeskens, 2018), which
were developed especially for inference after selection by AIC and are based on asymptotic
results. This method also conditions on the model selected by AIC but is not finite sample
exact and leads to conservative inference, meaning too wide confidence intervals.
3. For Simulation 3 we compare to a general method for post selection inference that is unlike
the other methods in the comparison not conditional on the selected model. For normal
linear models Berk et al. (2013) coined the acronym PoSI (post-selection inference). For
logistic regression models we use the version of Bachoc et al. (2020), which is a simultaneous
uniform post-selection inference method and is guaranteed to give conservative inference
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with confidence intervals having at least the wanted confidence level.
Neither of these post-selection methods was used before in the context of confidence distri-

butions, only single-level confidence intervals were studied in the literature. The simulations
show a more complete picture by considering the confidence curves.

4.1 Simulation 1. Poisson regression

The data were generated from a Poisson regression model with log-link such that E[Yi] =
exp(

∑6
j=1 βjxi,j), for i = 1, . . . , 100. The true value β⊤ = (1.2,−0.4, 1.6,−0.05, 0, 0). We

set xi,1 = 1 and (xi,2, . . . , xi,6)
⊤ ∼ N(05,Ω) where Ω is the variance-covariance matrix

with an equi-correlation structure set equal to 0.25. The set of models M consists of 32
models obtained by all possible combinations of the covariates but the intercept which is
included in all models. We generated 1000 data sets which select an overparametrized
model Mȷ̂ with parameters (β1, . . . , β5). The selection procedure is AIC. To obtain the
conservative confidence curves Post-cc2, we use as σ̃(θMȷ̂

) in the modified sampling procedure,

the estimated standard error in the selected model for β̂Mȷ̂,r, r = 2, 5 which in this case is
equivalent to the sandwich estimator as the selected model is correct.

Figure 1 summarizes the results of this simulation. We observe that the average width
of the curve using our proposed method Post-cc1 is between the naive approach and the
Post-AIC method. The average naive confidence curve for β5 is too narrow leading to
drastic under-coverage for βMȷ̂,5 = 0. The naive approach for a true relatively big non-zero
parameter such as βMȷ̂,2 = −0.4 gives valid inference. On the other hand, PostAIC and
Post-cc2 are conservative methods, for instance, both methods show over-coverage for βMȷ̂,2,
even though, Post-AIC is much more conservative. However, for βMȷ̂,5, Post-AIC shows
under-coverage for 1−α confidence intervals up to level 0.5, while Post-cc2 still shows over-
coverage. The problem of conservative methods is that the uniformity requirement of a
confidence distribution is clearly violated. Even though Post-AIC and Post-cc2 can be used
for conservative inference, they may not satisfy the second requirement of a post-selection
confidence distribution, that is, the distribution evaluated at its pseudo-true parameter value
might not follow a uniform distribution.

4.2 Simulation 2. Poisson regression with heteroscedasticity in
the data

We now show what happens if all 32 models in M are misspecified. To this end, we redo
the previous simulation in Section 4.1 but this time the data were generated from a negative

binomial regression model with log-link P (Yi = y) =
(
y+1.3−1

y

)(
µi

µi+1.3

)y( 1.3
µi+1.3

)1.3
with µi =

exp(
∑6

r=1 βrxi,r), i = 1, . . . , 100. The set M consists of Poisson regression models with
all possible combinations of predictors. We keep the selection procedure and the selected
model Mȷ̂ as in Section 4.1. For the estimated standard errors we use a heteroscedasticity
consistent covariance matrix estimator in the selected model known as HC3 proposed by
MacKinnon and White (1985). HC3 is asymptotically equivalent to the classical White’s
sandwich estimator but has better finite sample properties and in simulation studies it shows
better performance for sample sizes smaller than 250 (see, Long and Ervin, 2000).
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Post−cc1 Post−cc2 Post−AIC Naive

Figure 1: Left: Average confidence curves over 1000 replications for the Poisson regression
parameters β2 and β5 when the selected model by AIC is correctly specified. The true param-
eter values are indicated with a dashed vertical line. Center: Simulated mean coverage of the
1− α confidence intervals with α = [0, 1], for βMȷ̂,2 = −0.4 and βMȷ̂,5 = 0. Right: Quantiles
of the simulated distribution of Cn|̂ȷ(−0.4,Yn) and Cn|̂ȷ(0,Yn) for β2 and β5, respectively,
versus expected quantiles of a U [0, 1]. The naive method fails for β5, while Post-AIC is too
conservative for β2 and has the widest intervals for β5. Post-cc1 is uniformly most powerful
and indeed works best for both parameters. Using Post-cc2, when in doubt of possible mis-
specification, we lose power resulting in wider confidence intervals with slight overcoverage.

For the naive approach we compute two t-statistics, first using the estimated standard
error for the coefficient of interest in the selected model and next using the sandwich estimator
HC3. For Post-AIC confidence intervals we use the HC3 estimated covariance matrix in the
full model as in the simulation study of Charkhi and Claeskens (2018). Once again, we
summarize the results for β2 and β5 in Figure 2, showing that the HC3 estimated covariance
matrix well captures the heteroscedasticity in the data. The simulated coverage using our
proposed method Post-cc2 is proper while keeping the average width of the confidence curves
almost the same as for the naive curves. The naive intervals using the HC3 estimated
covariance matrix give proper coverage for βMȷ̂,2 = −0.4 but fail for βMȷ̂,5 = 0. Post-AIC
confidence curves are conservative for all the parameters, as expected.

4.3 Simulation 3. Logistic regression

We study the approximate optimal conditional post-selection confidence distributions for a
parameter of interest on a selected logistic model under two scenarios, when it is correct and
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Figure 2: Left: Average confidence curves over 1000 replications for the regression parameters
β2 and β5 when the data are generated using a negative binomial model and M contains
only Poisson regression models. The selected model by AIC is therefore misspecified. The
true parameter values are indicated with a dashed vertical line. Center: Simulated mean
coverage of the 1 − α confidence intervals with α = [0, 1], for βMȷ̂,2 = −0.4 and βMȷ̂,5 = 0.
Right: Quantiles of the simulated distribution of Cn|̂ȷ(−0.4,Yn) and Cn|̂ȷ(0,Yn) for β2 and
β5, respectively, versus quantiles of a U [0, 1]. Post-cc2 gives the correct coverage with narrow
intervals, while the naive methods have undercoverage and Post-AIC has overcoverage with
wider intervals.

when it is misspecified. In the first setting, the data were generated from a logistic regression
model Yi ∼ Bernoulli(pi) with logit(pi) =

∑5
j=1 βjxi,j, for i = 1, . . . , 30. The true values for

the parameters are β⊤ = (0.1, 2, 0.1, 0, 0). We set xi,1 = 1 and (xi,2, . . . , xi,5)
⊤ ∼ N(04,Ω4)

where Ω4 is the variance-covariance matrix with an equi-correlation structure set equal to
0.25.

In the second setting, the true generating process is Yi ∼ Bernoulli{Φ(
∑6

j=1 βjxi,j)}, with
Φ the cdf of a standard normal distribution, which corresponds to a probit model. The true
values for the parameters are β⊤ = (0.1, 2, 0.1, 0, 0,−0.3). We set xi,1 = 1 and the covariates
(xi,2, . . . , xi,6)

⊤ ∼ N(05,Ω5) with Ω5 having the same equi-correlation structure set equal to
0.25. We assume that we fail to observe the covariate xi,6, therefore the parameter β6 is not
estimated by any of the candidate models.

All working candidate models in M are logistic regression models in both settings. The
selection procedure is as follows. We start with a full logistic model Yi ∼ Bernoulli(pi)
with pi as specified above, for i = 1, . . . , 30, and perform a backward selection based on
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t-tests. In the first step, we compute four t-statistics TM,r = Σ̂
−1/2
M,r β̂M,r with Σ̂

−1/2
M,r the (r, r)

element of the estimated covariance matrix of β̂M , for r = 2, . . . , 5 and discard the covariate
with the smallest |TM,r| as long as it is smaller than the critical value for t0.05/2,30−5. Here
tα/2,n−|M | is the 1 − α/2 quantile of a t-distribution with n − |M | degrees of freedom. We
repeat the first step under the reduced model once and discard another covariate adjusting
the degrees of freedom of the critical value with |M | = 4. After this, the final model Mȷ̂

contains only two covariates plus an intercept. We generate 1000 data sets such that after
this selection procedure the final selected model contains the parameters (β1, β2, β3) and
all |TMȷ̂,r| > t0.05/2,30−3, for r = 1, 2, 3. This procedure is part of a “significance hunting”
strategy.

We are interested in the effect of β3 whose true value is relatively small for the sample
size n = 30. For the first setting, the true value of interest is β3 = 0.1 as the selected
model is correct. For the second setting, the pseudo-true value β∗

Mȷ̂
is the solution to the

equation
∑n

i=1{b′(x⊤
i β

∗
Mȷ̂
)− b′(ζi)}xi = 0, with xi = (xi,1, . . . , xi,5)

⊤, ζi = Φ(
∑6

j=1 βjxi,j) and

b(·) = log{1 + exp(·)}. The pseudo-true value of interest is the third component β∗
Mȷ̂,3

. As
the covariates are randomly generated in each of the 1000 data sets, the pseudo-true value
is different each time. Its average value in our study is 0.092 with standard deviation 0.134.

For the approximation in the conditioning UM we use δ = 3. Figure 3 illustrates the em-
pirical evidence of this study in terms of average confidence curves, simulated mean coverage
of confidence intervals and qq-plots of the simulated distribution at the pseudo-true value
compared to a uniform distribution. The upper panel corresponds to the first setting, where
Mȷ̂ is correct and the lower panel to the second setting where Mȷ̂ is misspecified. Due to mis-
specification we use a sandwich covariance matrix estimator HC3 to all methods displayed.
Post-cc1 seems approximately correct when the selected model is correct while ignoring the
selection step, the naive method is biased and overoptimistic for the true relatively small
β3 = 0.1. When the selected model is misspecified Post-cc1 slightly corrects the bias of the
naive method on average but produces narrower confidence curves and fails on coverage as
expected. A method correcting for misspecification as Post-cc2 is needed. Post-cc2 leads
to valid conservative inference for the best approximating value β∗

Mȷ̂,3
. In both settings,

Post-cc2 produces tighter confidence curves than the PoSI curves. As PoSI is valid for any
selection method, it is expected to be more conservative than the conditional approach for
a specific selection procedure.

5 Application: The levee failure data

As an application to another type of generalized linear model, we construct post-selection
confidence curves for a logistic regression model that has been analysed before by naive
methods. The data were collected and analyzed by Flor et al. (2010) and we retrieved it from
the University of Florida repository. As the authors specified, the goal of the analysis was
to test the relative importance of geologic, geomorphic, and other physical factors that have
led to levee failures in the Mississippi River. The data set has 70 observations in the Middle
Mississippi River collected over 120 years. The response variable is 1 if there was a levee
failure and 0 otherwise. There are 11 covariates, Channel fills: presence (1) or absence (0)
of channel fills at the site of levee failure, Borrow pits: presence (1) or absence (0) of borrow
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Figure 3: Left: Average confidence curves over 1000 replications for the regression parameters
β3 when the data are generated using a logistic (up) and a probit (bottom) model and M
contains only logistic regression models. The model is selected by a backward selection
procedure based on t-tests. The true and averaged pseudo true values are indicated with
a dashed vertical line. Center: Simulated mean coverage of the 1 − α confidence intervals
with α = [0, 1], for βMȷ̂,3 = 0.1 and mean β̄∗

Mȷ̂,3
= 0.092. Right: Quantiles of the simulated

distribution of Cn|̂ȷ(0.1,Yn) (up) and Cn|̂ȷ(β
∗
Mȷ̂,3

,Yn) (bottom), versus quantiles of a U [0, 1].
Post-cc2 still produces good coverage and narrower average confidence curves than PoSI even
when the model is misspecified.

pits, Meander: 4 levels categorical variable for location on a meander sequence (1: inside
bend, 2: outside bend, 3: chute, 4: straight), Channel’s width: width of channel in meters,
Floodway’s width: width of floodway in meters, Constriction factor: ratio for constriction
factor, Land cover: 4 levels categorical variable for land cover type (1: Open water, 2:
Grass, 3: Agricultural, 4: Forest), Vegetative: width of vegetative buffer, Sinuosity: a ratio
of the channel’s sinuosity, Dredging: a ratio of dredging intensity, Revetment: presence (1)
or absence (0) of bank revetment. See Flor et al. (2010) for more details about the data. As
the continuous variables have different scales, we standardize them for this analysis.

We redo the selection procedure applied by the authors in the original analysis. They
used two different selected models, the first one named “conservative” selects the covariate if
and only if it has an individual p-value smaller than 5% when regressing only that covariate
against the response. For the second selected model, they relax the threshold for selection
to a p-value smaller than 20% and they name it a “liberal” model. This “informal” model
selection procedure can be categorized within significance hunting practice by a one at a time
simple regression model. The “conservative” selected model has only one predictor and the
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point
estimate

p-value

Intercept Naive -0.894 0.024
Post-cc2 -0.774 0.354

Channel fills Naive 1.587 0.002
Post-cc2 1.215 0.209

Table 2: “Conservative” selected model for
levee failure data. Point estimates and p-
values ignoring (naive) and including (post-
cc2) model selection by significance hunting at
5%.
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Figure 4: Levee failure data. Confidence
curves for parameter in the “conserva-
tive” model ignoring (naive) and includ-
ing (post-cc2 and POSI) model selection.

“liberal” selected model has 5 predictors. We construct the naive confidence curves which
coincide with the analysis performed by the authors for the inference on the selected model
without any multiple testing correction and compare them with the post-selection confidence
curves (Post-cc2) for the parameters on the selected model and the POSI curves (See Figures
4 and 5). We allow for possible heteroscedasticity in the data and use the HC3 sandwich

variance estimator and we smoothed the obtained approximated C̃n,|̂ȷ(βMȷ̂,r,Yn) using linear
interpolation with the R-function approx. We also obtain a new point estimate defined as
the median of C̃n,|̂ȷ(βMȷ̂,r,Yn) and a post-selection p-value defined as 2min{C̃n,|̂ȷ(0,Yn), 1 −
C̃n,|̂ȷ(0,Yn)} for testing H0 : βMȷ̂,r = 0 versus Ha : βMȷ̂,r ̸= 0 (See Tables 2 and 3 ).

Using the naive inference, the presence of channel fills seems to be the only significant
variable at 5% related to the levee failures in the Middle Mississippi River in both models.
However, accounting for model selection, this is no longer the case, as all variables become
non-significant at the 5% level. The biggest change after accounting for the effect of model
selection is for channel’s width variable in the liberal model, whose naive p-value is 0.08
compared to the post-selection p-value of 0.75 and its post-selection confidence curve is
shifted and tight close to zero. We observe the same pattern for dredging intensity. Compared
to POSI curves, we observe that post-cc produces almost always tighter confidence curves
and therefore shorter confidence intervals.

Remark The variable meander sequence has an unbalanced design with 21 observations
collected inside of a meander, 20 along chutes, 23 from straight sections and only 6 outside of
a meander. The estimated standard error of the outside bend regression parameter is much
smaller using the HC3 estimator than the standard estimation. This causes the difference
in the width of the confidence curves and it needs to be interpreted carefully. “Land cover
type” has a drastic unbalance in its levels with only 3 observations in open water and a big
difference in the response variance of this group compared to the others. We decided to keep
the same categorization in order to make our results comparable to the original analysis but
do not provide inferential analysis for the open water category.

14



Naive Post-cc2
point estimate p-value point estimate p-value

Intercept -1.416 0.032 -0.417 0.000
Channel fills 1.997 0.005 1.384 0.384
Channel’s width -0.654 0.084 0.049 0.904
Land cover: grass -0.838 0.421 -0.880 0.554
Land cover: agriculture -0.751 0.253 -0.384 0.676
Minder: inside 1.335 0.093 0.041 0.954
Minder: outside -0.003 0.999 -0.036 0.992
Minder: chute 0.365 0.630 -0.268 0.708
Dredging -0.407 0.197 -0.188 0.598

Table 3: “Liberal” selected model for levee failure data: Point estimates and p-values ignoring
(naive) and including (post-cc2) model selection by significance hunting at 20% level using
one at a time simple regressions.
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Figure 5: Levee failure data. Confidence curves for parameters in the “Liberal” selected
model ignoring (naive) and including (post-cc and POSI) model selection. The vertical
dashed line indicates the zero value. The horizontal dashed line is for the endpoints of the
95% confidence intervals.

6 Discussion

Working with confidence distributions has as a major advantage that no separate study is
required for hypothesis testing and for the construction of confidence intervals, the latter
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were mostly studied before for a single confidence level only. This approach yields intervals
for all confidence levels. Another major advantage as compared to the available results
for selective inference is that no pivotal quantity needs to be inverted. Indeed, confidence
intervals are directly obtained as quantiles of the confidence distribution or as level sets of
the confidence curve. A graphical representation of the confidence curves allows for an easy
visual comparison of different methods, see for example Figure 4.

The finite sample exactness of our results for continuous distributions is another point
of distinction from the asymptotic results that are available in the literature. For discrete
distributions, the ‘half-correction’ works fine in practice as the simulations have illustrated.

Confidence distributions for a linear combination of parameters such as for the estimation
of the linear model part x⊤

i β can be dealt with in a similar way, see Garcia-Angulo and
Claeskens (2022, Sec. 4.2).

While the technical limitation required to have in the model set at least one over-
parametrized model in order to guarantee the theoretical results for the sufficient statistics
to hold within the exponential family, our simulations in misspecified models have illustrated
that the method also applies to such settings. An adjustment using a model-robust, or ‘sand-
wich’ variance estimator is advised in case of doubt of the model correctness. Conservative
results are obtained in such case.

7 Proof of Proposition 1

Proof. Only (i) requires a proof. The other parts follow by properties of the confidence
distribution. The proof of this proposition follows the main reasoning as that of Garcia-
Angulo and Claeskens (2022) except in this case we assume that both the true generating
model and the selected model are in the class of the exponential family, see (3). Define
the vector of sufficient statistics for the nuisance parameters in the selected model as Uȷ̂ =

U(Yn;XMȷ̂
). Then, UM =

(
U⊤
ȷ̂ , (U

c
ȷ̂ )

⊤)⊤ where U c
ȷ̂ is the vector of sufficient statistics for the

nuisance parameters in the other models in M where duplicated values have been removed.
In the classical exponential family theorem, when Yn is distributed as (3), the conditional
distribution of T |Uȷ̂ = u is again an exponential family distribution with one parameter θ
(Lehmann and Romano, 2006, Lemma 2.7.2). Moreover, as the parameter space contains an
open rectangle inRk, with k = |Mȷ̂|, Uȷ̂ is a complete sufficient statistic for η. By additionally
conditioning on U c

ȷ̂ , the distribution of T |UM remains a one-parameter exponential family.
This extra conditioning is needed to fix the selection regions given by the model selection
methods which use all the sufficient statistics in M. By doing so, the event Yn ∈ Aȷ̂ implies
that the domain of T |UM is restricted to fixed parts in R. Suppose, without loss of generality
that dom(T |UM = uobs,Yn ∈ Aȷ̂) = {t = t(y;XMȷ̂

) ∈ R : a ≤ t ≤ b}, with fixed a and b given
by the specificities of the selection method. Then, T |UM follows a truncated exponential
family distribution with a single parameter θ. The rest of the proof follows as in the proof
of Proposition 1 of Garcia-Angulo and Claeskens (2022), where given the strictly increasing
likelihood ratio property of the exponential families, Cn,|̂ȷ(θ,yn) = P (T (Yn;XMȷ̂

) > tobs |
UM = uobs,Yn ∈ Aȷ̂) has the optimal properties of confidence distributions based on sufficient
statistics.
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