
MPC for Q2 Access Structures over Rings and
Fields

Robin Jadoul1 , Nigel P. Smart1 , and Barry Van Leeuwen1

imec-COSIC, KU Leuven, Leuven, Belgium.
robin.jadoul@esat.kuleuven.be, nigel.smart@kuleuven.be

barry.vanleeuwen@kuleuven.be

Abstract. We examine Multi-Party Computation protocols in the active-
security-with-abort setting for Q2 access structures over small and large
finite fields Fp and over rings Zpk . We give general protocols which work
for anyQ2 access structure which is realised by a multiplicative Extended
Span Program. We generalize a number of techniques and protocols from
various papers and compare the different methodologies. In particular we
examine the expected communication cost per multiplication gate when
the protocols are instantiated with different access structures.

1 Introduction

Secure multiparty computation (MPC) considers the situation where some set of
parties P come together to compute a function, each with their own inputs. The
security requirement is that no party is able to learn more than what the output
of this computation and their own input would allow them to. From another
perspective, this can be seen as a protocol that emulates a perfectly honest,
trusted third party that obtains each party’s input, performs the computation,
and outputs the result.

We can distinguish different security notions based on the power an adversary
can have. One axis along which to distinguish is whether the adversary is active
or passive. A passive adversary, also sometimes called honest but curious, follows
the protocol correctly, but tries to obtain more information from the parts of the
transcript of the execution it can see. An active adversary on the other hand, is
able to arbitrarily deviate from the protocol. In this situation we either require
that the honest parties still obtain the correct output from the function, in which
case we say that the protocol is robust, or we require that the honest parties
abort the protocol with overwhelming probability, in which case we say the
protocol is actively-secure-with-abort. In this paper we concentrate on protocols
which are actively-secure-with-abort, as they are relatively fast and practical in
a large number of situations. Those readers who are interested in robust active
security should consult [1, 9].

Another axis to consider is how many or which subsets of parties the ad-
versary can corrupt. If we have n parties then a full threshold adversary is one
who is able to corrupt at most n− 1 parties. In such a situation we can achieve

1

https://orcid.org/0000-0002-5997-9992
https://orcid.org/0000-0003-3567-3304
https://orcid.org/0000-0002-3792-4042

active-security-with-abort, however this comes at the expense of a costly prepro-
cessing phase; see [11, 6] for the case of MPC over finite fields, or over finite rings.
Simpler protocols can be obtained if one restricts the adversary to corrupt less
parties. The classic restriction is that of threshold adversaries who are allowed to
corrupt up to t < n parties. When t < n/2 very efficient MPC protocols can be
realised, using a variety of methodologies to obtain active-security-with-abort.
The natural generalisation of the threshold t < n/2 case is that of so-called Q2

adversary structure. A Q2 adversary structure is one where the union of no two
unqualified sets contains the whole set of players P. For threshold structures
the set of unqualified sets are all subsets of P of size t, thus clearly no two sets
can contain all of P when t < n/2. In this paper we will focus on Q2 access
structures, again as they are relatively fast and practical in a large number of
situations.

A third axis to consider is the underlying field or ring over which the MPC
protocol is implemented. Traditionally the focus has been on MPC protocols
over fields Fp, either large finite fields or small ones (in particular F2). However,
recently interest has shifted to also considering finite rings such as Zpk , and in
particular Z2k . In this setting sometimes, to obtain active security, underlying
protocols require the players to work in the extended ring Z2k+s , for some security
parameter s, and sometimes this is avoided. In this work we will consider all such
possibilities.

The final axis to consider is the precise protocol to use. Almost all practical
protocols which are actively-secure-with-abort for Q2 access structures divide
the protocol into two, and sometimes three stages. The first stage, called the
offline or pre-processing stage, is function independent and generates various
forms of correlated randomness amongst the parties. A second stage, called the
online stage, uses the pre-processing to compute the output of the function in
a secure manner. Sometimes a third stage, called the post-processing stage, is
required to ensure active-security.

The investigation of the combination of the second, third and fourth axes
forms the basis of this work. We generalize, where needed, prior works in order
to investigate as many prior protocol variants as possible, when instantiated over
finite rings or fields. We also generalize results from specific Q2 access structures
to general Q2 access structures so as to obtain a complete smorgasbord of op-
tions. We then analyse the different options, as it is unclear in which situation
which protocol is to be preferred (even in the case of finite fields).

Prior Related Work: The majority of the literature has focused on the case
where the underlying arithmetic is a finite field. These are often based, for gen-
eral finite fields and Q2 access structures, on the classic multiplication protocol
of Maurer [17], which works for an arbitrary multiplicative secret sharing scheme.
In the case of small finite fields and small numbers of parties, for example F2 and
three players it is common to utilize a multiplication protocol based on repli-
cated secret sharing, which originally appeared in the Sharemind software [4].
The generalisation of this specific multiplication protocol to arbitrary fields and

2

Q2-access structures implemented by replicated secret sharing [16], the general-
ization to an arbitrary Q2 MSP was done in [18]. Both of these multiplication
protocols we shall refer to as KRSW. There is a third passively secure multi-
plication protocol due to Damg̊ard and Nielsen [10], which we shall refer to as
DN multiplication. The DN multiplication protocol is often combined with a
“king-paradigm” for opening a sharing, this reduces the total amount of data
sent at the expense of doubling the number of rounds. As round complexity has
often a bigger impact on execution time than data complexity we assume no king
paradigm is used in our protocols1 Thus before one even considers the various
protocols, one has (at least) three base passively secure multiplication protocols
to consider. In this work we will concentrate on these three, Maurer or KRSW
or DN. The one which is more efficient depends on the precise context as we
will show. From these, when using multiplication triples, one can derive a third
passively secure multiplication triple which we shall call Beaver multiplication.

In more recent works, research has started to focus on MPC over finite rings,
such as Zpk , and Z2k in particular. For many cases, this choice is more natural,
as it more closely aligns with the bitwise representation of numbers found in
standard computing, and it can enable efficient high level operations such as
bit-decomposition (which are very useful in practice). For example, working over
Z264 would closely mimic the behaviour we have on most currently used CPUs.
The main problem with working with such rings is the presence of zero-divisors.

A method to avoid the problem of zero-divisors in secret sharing schemes over
rings with zero-divisors was presented in the SPDZ2k protocol of [6]. Originally,
this was presented in the case of a full threshold adversary structure, but the
basic trick used applies to any access structure. To avoid the problem of zero
divisors when working modulo 2k, the authors extend (for some protocols) the
secret sharing to a large modulus 2k+s, for some statistical security parameter
s. This idea was extended to the case of simple Q2 access structures, using a
replicated secret sharing schemes, in [12]. With some of the resulting protocols
for n = 3 and n = 4 parties implemented in the MP-SPDZ framework [14].

Across the many papers on Q2 MPC we identify three forms of actively
secure pre-processing used in the literature, which we generalise2 to an arbitrary
setting of pk. The first, which we denote by Offline1, uses a passively secure
multiplication protocol to obtain 2 · N triples. These are then made actively
secure using the classic technique of sacrificing (which effectively uses internally
a Beaver multiplication), resulting in an output of N triples. This variant has
been used in a number of papers, e.g. [18]. A second variant, which we denote by
Offline2, generates N passively secure triples, and then checks these are correct

1 Note the kind-paradigm can be used not only in DN multiplication but in any
protocol which involves opening shares to all players, as long as suitable additional
checks are performed to ensure active security.

2 There are a few others which we do not consider, as they do not easily fit into
our protocol descriptions below. For example the protocol of [2] looks at threshold
structures and uses the multiplication protocol of [10] using a king paradigm.

3

using a different checking procedure, based on the underlying passively secure
multiplication protocol of choice. This variant was used in [12].

A third offline variant, which we shall denote by Offline3, uses a passively se-
cure multiplication protocol to obtain triples in the offline phase. These are then
made actively secure using a cut-and-choose method, as opposed to sacrificing.
The reason for this is that they are interested in MPC over F2 and classical sac-
rificing has a soundness error of one over the field size, and using cut-and-choose
allows one to perform an actively secure offline phase without needing to pass to
a ring of the form Z2k . This methodology was presented in [3], and we shall also
call this ABF pre-processing. This method seems very well suited to situations
when pk is small as it does not require extending the base ring to Zpk+s .

From these one can derive a number of complete protocol variants. The first
variant, which we shall denote Protocol1, exploits the error-detecting properties
of a Q2 access structure to obtain a protocol which uses an actively secure offline
phase, and then uses an online phase based on the classical Beaver multiplication
method. Active-security-with-abort is achieved using the error detecting prop-
erties of the underlying secret sharing scheme. This has been considered in a
number of papers in the case of threshold structures with (n, t) = (3, 1), with
the generalisation to arbitrary Q2 structures in the case of large finite fields
being done in [18].

In [12] a three party protocol is presented which makes use of a different
methodology, which we generalise to arbitrary Q2 access structures. Here the
online phase is executed optimistically using a passively secure multiplication
protocol. The multiplications are then checked to be correct at the end of the
protocol using a post-processing phase. Depending on the method used to per-
form this checking, we can either generate auxiliary, passively secure triples in
an offline phase, that can be used in a form of sacrificing in the post-processing
phase (which we dub Protocol2), or we can completely remove the need for a
preprocessing step (which we dub Protocol3).

The paper [3] also uses an optimistic passively secure online phase with a
post-processing step, but combines this with an actively secure offline phase. By
doing this the post-processing check is always checking possibly incorrect mul-
tiplications (from the online phase) against known-to-be-correct multiplications
(from the offline phase). This means the post-processing check can be done using
a method which is close to that of classical sacrificing, without the need to worry
about the small field size. We call this variant Protocol4.

The final protocol variant we consider, which we dub Protocol5, comes from
[5]. In this paper the authors dispense with the offline phase, and instead generate
a shared MAC-key [α], a bit like in SPDZ, and evaluate the circuit on both
[x] and [α · x] using a passively secure multiplication protocol. Thus, in some
sense, the circuit is evaluated twice in the online phase. The correctness of the
evaluation is then established using the MAC-Check protocol from the SPDZ
protocol. Thus there is a post-processing step, but it is relatively light-weight,
however the online phase is more expensive than other techniques.

4

We summarize these in five protocol variants in Table 1 as a means for the
reader to maintain a quick overview as they read the paper.

Offline Phase Online Post-Processing
Protocol Passive Active Phase Heavy Light

Protocol1 - Beaver - -

Protocol2 - Passive -

Protocol3 - - Passive -

Protocol4 - Passive -

Protocol5 - - 2 × Passive -
Table 1. Summary of our five protocol variants. A “heavy” post-processing phase
denotes a phase akin to sacrificing, where as a “light” post-processing denotes a phase
akin to SPDZ-like MAC checking. A Passive online phase refers to an online phase
using either Maurer or KRSW multiplication.

Our Contribution: In this work we unify all these protocols; in prior work
they may have been presented for finite fields, or for rings of the form Z2k , or
for specific access structures. We consider, in all cases, the general case of MPC
over rings of the form Zpk ; i.e. where we consider both the case of k = 1, large k,
small p, and large p in one go. Our methodology applies to all multiplicative Q2

access structures over such rings. To do so we utilize the language of Extended
Span Programs, ESPs, introduced in [13]. This allows us to consider not only
replicated access structures, but also access structures coming from Galois Ring
constructions. By considering such Galois Ring constructions as an ESP, we
can maintain working over Zpk without the need to worry about complications
arising from the Galois Ring.

We first show how one can create the necessary ESPs for a specific access
structure, by constructing an associated MSP over the field Fp and then lifting
it to Zpk in a trivial manner. This preserves the access structure, but it does not
always preserve multiplicity (see [1] for a relatively contrived counter example).
For all “natural” MSPs one might encounter in practice (arising from Shamir
or Replicated secret sharing) the lifting does preserve multiplicity. In any case
if the resulting ESP over Zpk is not multiplicative, it can be extended to a
multiplicative ESP in the standard manner3.

We show that the error-detection properties of [18] apply in this more gener-
alized context of finite rings. This allows us to reduce the communication cost in
our protocols for ESPs. Note the error-detection properties exploited in [18] are
the precise generalization to arbitrary Q2 MSPs of the classical check for cor-
rectness performed in threshold systems for (n, t) = (3, 1) based on replicated
sharing.

3 This is a standard result for MSPs over fields, but it is easily extended to ESPs over
finite rings.

5

We also show that the trick of modulus extension from Zpk to Zpk+s also
works in general, and we combine it with other tricks. For example we use
Schwarz-Zippel over Galois rings to allow greater batching, and modulus ex-
tension even in the case of checking over finite fields. Indeed we show that one
can also utilize modulus extension to avoid the problems with sacrificing when
k = 1 and p is small. However, this comes at the expense of requiring to work
modulo pk+s and not working modulo pk, which may be a problem in some in-
stances (for example in the interesting case of pk = 2). Thus our multiplication
checking procedures in Section 3 generalise a number of earlier results, and unify
various approaches. Note, that depending on the underlying protocol choice such
modulus extensions may not be needed.

We finally examine the smorgasbord of options for the offline, online and
post-processing which we outlined above in this general context and examine
the various benefits and tradeoffs which result. Our cost metrics in this matter
are the total number of rounds of communication, as well as the total amount of
data sent per multiplication4. We consider the case where the user is interested
in minimizing the total cost (i.e. the combined cost of all three phases), as well
as the case where the user is interested in minimizing the costs of the online and
post-processing phases only (i.e. where the user assumes that the offline phase
can be done overnight for example and is not an important consideration).

2 Preliminaries

2.1 Notation

We let F denote a general finite field, and R denote a general finite commutative
ring. We let Fp denote the specific finite field of p elements, and Zpk denote the
ring of integers modulo pk. For two sets X,Y we write X ⊂ Y if X is a proper
subset and X ⊆ Y if X is not necessarily proper. For a set B, we denote by
a ← B the process of drawing a from B with a uniform distribution on the set
B. For a probabilistic algorithm A, we denote by a← A the process of assigning
a the output of algorithm A; with the underlying probability distribution being
determined by the random coins of A.

For a vector x we let x(i) denote it ith component, and for two vectors x
and y of the same length we let 〈x,y〉 denote the dot-product, unless otherwise
noted. We let Mn×m(K), where K = F or K = R, be the set of all matrices with
n rows and m columns. For M ∈Mn×m(K) denote the transpose by MT . We let
ker(M) to denote the subspace of Km which maps to 0 under left multiplication
by M , and we let Im(M) to be the subspace of Kn which is the image of all
elements in Kn upon left multiplication by M . If V is a subspace of Kr for
some r, we let V ⊥ = {w ∈ Kr | ∀v ∈ V : 〈w,v〉 = 0} denote the orthogonal
complement. Moreover, we let 0 and 1 be the all zero and all one vector of
appropriate dimension (defined by the context unless explicitly specified) and let

4 Note, as MPC protocols do not usually work in practice over arithmetic circuits this
is only an approximation of the cost of the various options.

6

ei be the ith canonical basis vector, that is e
(j)
i = δi,j where δ is the Kronecker

Delta.

2.2 Monotone and Extended Span Programs

As is standard we can associate linear secret sharing schemes over fields with
Monotone Span Programs. In [13] these definitions are extended to linear secret
sharing schemes over finite rings, such as Zpk , with the associated structure being
called an Extended Span Program. We recap on the relevant definitions here.

Access Structures: The set of parties that the adversary can corrupt is drawn
from an access structure (Γ,∆). The set Γ is the set of all qualified sets, whilst
∆ is the set of all unqualified sets. The access/adversary structure is assumed
to be monotone, i.e. if X ⊂ X ′ and X ∈ Γ , then X ′ ∈ Γ and if X ⊂ X ′ and
X ′ ∈ ∆ then X ∈ ∆, and we assume Γ ∩∆ = ∅. We are only interested in this
paper in access structures which are Q2:

Definition 2.1 (Q2 Access Structure). Let P = {P1, . . . , Pn} be a set of par-
ties, with access structure (Γ,∆), then (Γ,∆) is said to be a Q2 access structure
if

P 6= A ∪B for all A,B ∈ ∆.

In other words: An access structure (Γ,∆) is Q2, if for any two sets in ∆ the
union of those sets does not cover P. An access structure is called complete if
for any Q ∈ Γ it holds that P\Q ∈ ∆ and vice versa. In this paper we will only
consider complete access structures.

Monotone Span Programs over Fields: Using this notation, the definition
of a Monotone Span Program follows.

Definition 2.2. A Monotone Span Program (MSP), denotedM, is a quadruple
(F,M, ε, ϕ), where F is a field, M ∈Mm×d(F) is a full-rank matrix for some m
and d ≤ m, ε ∈ Fd is an arbitrary non-zero vector called the target vector, and
ϕ : [m] → P is a surjective map of the rows of M to the parties in P. The size
of M is defined to be m, the number of rows of the matrix M .

Given a set of parties S ⊆ P, the submatrix MS is the matrix whose rows are
indexed by the set {i ∈ [m] : ϕ(i) ∈ S}. Similarly sS is the vector whose rows
are indexed by the same set. We also define the supp-mapping, which maps the
rows of a matrix M to a player in P. Formally this is defined as supp : Fd → 2[d]

with s 7→ {i ∈ [d] : s(i) 6= 0}.

Extended Span Programs over Rings: In this paper we are not only inter-
ested in the Monotone Span Programs, but also their extensions to finite rings,
which are known as Extended Span Programs, [13]. An Extended Span Program
(ESP) over a ring R is a tuple M = (R,M, ε, ϕ) where M ∈ Mm×d(R) is a

7

full-rank matrix for some m and d ≤ m, ε ∈ Rd is an arbitrary non-zero vector
called the target vector, and ϕ : [m] → P is a surjective map of the rows of M
to the parties in P.

Definition 2.3. An ESP M is to compute an access structure (Γ,∆) if for
every set A ⊂ 2P it holds that

A ∈ Γ ⇒ ε ∈ Im(MT
A), (1)

A /∈ Γ ⇒ ∃v ∈ ker(MA) ⊂ Rd : 〈ε,v〉 ∈ R∗. (2)

For the rest of this paper we will only be considering MSPs over finite fields
Fp, or ESPs over the finite ring Zpk . Let P = {P1, . . . , Pn} be the set of parties
involved in our protocols. To implement our MPC functionality over Zpk we will
utilize an ESP (Zpk ,M , ε, ϕ) given by a matrix M ∈ Zm×d, such that M = M
(mod p) (i.e. the entries of M are in the range [0, . . . , p)), such that to share a
value x ∈ Zpk one generates a vector k ∈ Zdpk such that 〈ε,k〉 = x (mod pk)
and then compute the share values s = M · k. The entries of s are passed to the
players depending on the value of the function ϕ : [m] → P. i.e. player Pi gets
s(j) if ϕ(j) = i. Such a sharing x ∈ Zpk of a value will be denoted by [x]k, note
the subscript k which will be used to keep track of which ring we are considering
at any given point.

2.3 Linear Secret Sharing Schemes Induced from MSPs and ESPs

When you have a Monotone/Extended Span Program it induces a Linear Secret
Sharing Scheme (LSSS) using the method in Figure 1. Recombination works for
qualified sets A ∈ Γ , since if A is qualified there exists a recombination vector
λA such that MT

A · λA = ε, by requirement (1) of the MSP. Hence

〈λA, sA〉 = 〈λ, s〉 = 〈λ,M · x〉 = 〈MT · λ,x〉 = 〈ε,x〉 = s.

Conversely, if A /∈ Γ then A is unqualified, hence by requirement (2) of the ESP,
there is no λ that allows for reconstruction. We note that the reconstruction step
2 can be relatively expensive for large MSPs, i.e. those with large m. Thus it is
common to only send “just enough” information to each player in order to allow
reconstruction. How this is done in a manner which prevents active attacks is
discussed in the full version.

Multiplicative Linear Secret Sharing Scheme A secret sharing scheme
induced from a MSP/ESP is by definition linear, i.e. one can compute arbitrary
linear functions of secret shared values without interaction. Q2 access structures
are interesting as they allow us to also multiply secret shared values, but using
interaction, if the underlying LSSS is multiplicative.

Recall a vector s = (si) = M · k is some sharing of a value s if we have that
〈ε,k〉 = s, with the shares distributed to party Pi being si = (sj)ϕ(j)=i. We let
the total number of shares held by party Pi be given by ni. The local Schur

8

Induced LSSS from an MSP/ESP

Given a Monotone/Extended Span Program, M = {Zpk ,M, ε, ϕ} and a secret s,
distribution and reconstruction for the associated secret sharing scheme are as
follows:

Distribution:

1. Sample x← Zd
pk under the condition that 〈x, ε〉 = s.

2. Compute s = M · x, such that s = (s1s2 . . . sn) and distribute each si to the
party indicated by ϕ(i), such that each party Pj has the vector

sPj =

{
si ϕ(i) = Pj

0 otherwise

Reconstruction: Let A ∈ Γ be a qualified set of players:

1. Define λA such that MT
A · λA = ε.

2. Each player Pi ∈ A sends their shares to all other Pj ∈ A and computes
sA =

∑
Pi∈A sPi .

3. Compute s∗ = 〈sQ, λQ〉.
4. Return s∗.

Fig. 1. Induced LSSS from a Monotone/Extended Span Program.

product of two sharings xi and yi of values x and y for party Pi are the n2i terms

given by xi⊗yi, i.e. the terms pi,j = x
(v)
i ·y

(v′)
i for j = 1, . . . , n2

i and v, v′ range
over all values for which ϕ(v) = ϕ(v′) = i. An MSP is said to be multiplicative
if there are constants µi,j for i = 1, . . . , n and j = 1, . . . , n2

i such that

x · y =
∑
i,j

µi,j · pi,j (3)

for all valid sharings of x and y. By abuse of notation we shall refer to the
MSP/ESP being multiplicative, and not just the induced LSSS.

Many “natural” MSPs/ESPs computing Q2 access structures are multiplica-
tive, i.e. those arising from Shamir secret sharing, or replicated sharing. It is
well known, see [8], that when you have an non-multiplicative MSP over a field
that computes a Q2 access structure then it can be made multiplicative with
only a small expansion of the dimensions of M . In the full version we prove the
following theorem, generalising this result to ESPs over Zpk ,

Theorem 2.1. There exists an algorithm which, on input of a non-multiplicative
ESP M over Zpk computing a Q2 access structure (Γ,∆) outputs a multiplica-
tive ESPM′ computing Γ and of size at most 4 · |M|. This algorithm is effective
if ker(MT) admits a basis.

9

3 Multiplication Check

We present various protocols which allow one to verify that a set of passively
secure multiplications are indeed correct. In the context of generating triples,
we note that, we are unable to “lift” a valid triple modulo pk to a valid triple
modulo pk+v. Thus, if one needs to perform a check modulo pk+s, one needs to
generate the passively secure multiplication triples modulo the larger modulus
first, even if one is only interested in computation modulo pk.

We assume that the desired security level is 2κ, i.e. the probability that an
adversary can pass off an incorrect passively secure multiplication as correct
should be 2−κ. To ensure this we define four (integer) parameters (u, v, w,B)
for our protocols defined by, where Bz = 0 unless B 6= 1 in which case we set
Bz = 1.

u = d(κ+Bz)/ log2 pe
v = u− 1,

1 ≤ B ≤ 1 + (pw − 1)/2κ+Bz .

The value u defines the size of the challenge space in our protocols, the
value v defines how much bigger a modulus we need to work with, the value w
defines the degree of any extension needed to allow the Schwartz-Zippel Lemma
to apply, using a set S of size pw−1, whilst B defines the bucket size of the check
(equivalently the degree of the polynomial used in the Schwartz-Zippel Lemma).

Our methods here are a natural generalisation of the methods given in [12, 2]
which are themselves based on ideas used in [6]. We note for the case of k = 1
and a small prime p the following protocols produce more efficient “sacrificing”
steps than the “traditional” method of repeating the protocol κ/ log2 p times.

3.1 MultCheck1

The first protocol, often called sacrifice, takes a set of N passively secure multi-
plication triples ([xi]k+v, [yi]k+v, [zi]k+v), and checks whether indeed zi = xi · yi
(mod pk), using another set of passively secure multiplication triples ([ai]k+v,
[bi]k+v, [ci]k+v). The “unchecked” triples ([ai]k+v, [bi]k+v, [ci]k+v) need to be
discarded at the end of the protocol (thus the term sacrificing). The output
of the protocol is either an abort signal, or a set of N “actively” secure triple
([xi]k, [yi]k, [zi]k). The protocol is described in Figure 2 and is based internally on
the Beaver multiplication protocol. For ease of exposition we assume B exactly
divides N in the protocol, this can easily be removed.

The number of calls to the procedure OpenToAll(·), which is the main cost of
the protocol is given by 2 ·N +N · w/B, and the number of rounds of commu-
nication (for the OpenToAll calls) is bounded by two (if one executes the main
j-loop in parallel). This means the communication cost, per output triple, is
equal to the communication of 2 + w/B executions of OpenToAll(·). In practice
one would try to select w/B to be as small as possible. In such a situation we
can treat the cost as two calls to OpenToAll(·).

10

The Protocol MultCheck1

Input: ([xi]k+v, [yi]k+v, [zi]k+v)N−1
i=0 and ([ai]k+v, [bi]k+v, [ci]k+v)N−1

i=0 .
Output: abort or ([xi]k, [yi]k, [zi]k)N−1

i=0 .

1. Let R denote a degree w Galois ring over Zpk+v .
2. Let S denote the set from the Schwartz-Zippel Lemma of size pw − 1.
3. t← FAgreeRandom(Zpu).
4. For j ∈ [0, . . . , N/B) do

(a) r ← FAgreeRandom(S).
(b) For i ∈ [0, . . . , B) do

i. [ρi]k+v ← t · [aj·B+i]k+v − [xj·B+i]k+v.
ii. [σi]k+v ← [bj·B+i]k+v − [yj·B+i]k+v.

(c) (ρi)
B−1
i=0 ← (OpenToAll([ρi]k+v))B−1

i=0 .
(d) (σi)

B−1
i=0 ← (OpenToAll([σi]k+v))B−1

i=0

(e) [τ]k+v ← 0.
(f) For i ∈ [0, . . . , B) do

i. [di]k+v ← t·[cj·B+i]k+v−[zj·B+i]k+v−σi ·[xj·B+i]k+v−ρi ·[yj·B+i]k+v−
σi · ρi.

ii. [τ]k+v ← [τ]k+v + ri · [di]k+v.
(g) τ ← OpenToAll([τ]k+v)
(h) If τ 6= 0 (mod pk+v) output abort and stop.

5. For i ∈ [0, . . . , N) do
(a) [xi]k ← [xi]k+v (mod pk), [yi]k ← [yi]k+v (mod pk), [zi]k ← [zi]k+v

(mod pk).
6. Output ([x]k, [y]k, [z]k)Ni=1.

Fig. 2. The Protocol MultCheck1

In the case of k = 1 and a large prime p, the values w = 1, u = 1, v = 0
and B = 1 give rise to exactly the traditional sacrifice protocol from SPDZ.
However, for such large p, we could choose w = 2 and allow B to be sufficiently
big, without needing an overly large amount of triples to check at once. Thus by
utilizing our modified protocol one can achieve an improvement on the classical
SPDZ sacrificing protocol. So for large p, for the classical SPDZ sacrifice, we
have w/B = 1 and hence the cost is three calls to OpenToAll(·), but for our
protocol we can achieve two calls to OpenToAll(·).

As long as we perform the calls to AgreeRandom only after the adversary
had a chance to influence the triples, and the adversary is fully committed to
any errors introduced in them, we can use the same random values for t and r
over all instantiations. The practical advantage of this is that the data cost of
these calls can then be amortized over all these executions, and we can consider
it negligible. Due to the commit-reveal nature of the AgreeRandom sub-protocol,
however, we still need to take a cost of two rounds of communication into account.
All invocations of AgreeRandom that we need to generate the required t and r
values can be executed in parallel, so the number of rounds we need does not
grow as the number of times MultCheck1 is executed grows.

11

In the full version we prove the following theorem which is an adaption of
similar results in [6] (especially Claim 6 in that paper) and the papers [12, 2], but
we have generalized the method to arbitrary p and also the case of potentially
small k.

Lemma 3.1. In the presence of an active adversary, who can introduce arbitrary
additive errors into the input triples, the protocol MultCheck1 will output an
invalid multiplication triple with probability (B − 1)/(pw − 1) + p−u ≤ 2−κ.

The Protocol MultCheck′1

Input: ([xi]k, [yi]k, [zi]k)N−1
i=0 and ([ai]k, [bi]k, [ci]k)N−1

i=0 .
Output: abort or OK.

1. Let R denote a degree w Galois ring over Zpk .
2. Let S denote the set from the Schwartz-Zippel Lemma.
3. For j ∈ [0, . . . , N/B) do

(a) r ← FAgreeRandom(S).
(b) For i ∈ [0, . . . , B) do

i. [ρi]k ← [aj·B+i]k − [xj·B+i]k.
ii. [σi]k ← [bj·B+i]k − [yj·B+i]k.

(c) (ρi)
B−1
i=0 ← (OpenToAll([ρi]k))B−1

i=0 .
(d) (σi)

B−1
i=0 ← (OpenToAll([σi]k))B−1

i=0

(e) [τ]k ← 0.
(f) For i ∈ [0, . . . , B) do

i. [di]k ← [cj·B+i]k − [zj·B+i]k − σi · [xj·B+i]k − ρi · [yj·B+i]k − σi · ρi.
ii. [τ]k ← [τ]k + ri · [di]k.

(g) τ ← OpenToAll([τ]k)
(h) If τ 6= 0 (mod pk) output abort and stop.

4. Output OK.

Fig. 3. The Protocol MultCheck′1

3.2 MultCheck′
1

We will also use the MultCheck1 protocol in the case where we are already guar-
anteed that the auxiliary triples ([ai]k, [bi]k, [ci]k)N−1i=0 are correct, and we have
v = 0 and u = k, and we are simply checking whether the passively secure triples
([xi]k, [yi]k, [zi]k)N−1i=0 are correct. We refer to this special case as MultCheck′1
and it is presented in Figure 3. The round complexity is the same as that of
MultCheck1, except for the output, although now we can operate modulo pk

only, without needing to extend to working modulo pk+s. In this special case we
obtain the following result,

Lemma 3.2. In the presence of an active adversary, who can introduce arbitrary
additive errors into the input triples ([xi]k, [yi]k, [zi]k)N−1i=0 , but not the input
triples ([ai]k, [bi]k, [ci]k)N−1i=0 , the protocol MultCheck′1 will output OK incorrectly
with probability (B − 1)/(pw − 1) ≤ 2−(κ+Bz).

12

3.3 MultCheck2

Our third protocol comes from a combination of ideas from [6] and [15]. Instead
of consuming previously produced multiplication triples (which themselves re-
quire a passively secure multiplication to produce) this second variant makes
direct use of a passively secure multiplication protocol PassMult; which can be
any of MaurerMult, KRSWMult or DNMult. The protocol, called MultCheck2, is
described in Figure 4. The argument for security is roughly the same as that for
protocol MultCheck1. These protocols use a PRSS functionality FPRSS which is
defined in the full version.

The Protocol MultCheck2

Input: ([xi]k+v, [yi]k+v, [zi]k+v)N−1
i=0 .

Output: abort or ([xi]k, [yi]k, [zi]k)N−1
i=0 .

1. Let R denote a degree w Galois ring over Zpk+v .
2. Let S denote the set from the Schwartz-Zippel Lemma.
3. For i ∈ [0, . . . , N) do

(a) [ai]k+v ← FPRSS(k + v).
(b) [ci]k+v ← PassMult([ai]k+v, [yi]k+v).

4. t← FAgreeRandom(Zpu).
5. For j ∈ [0, . . . , N/B) do

(a) r ← FAgreeRandom(S).
(b) For i ∈ [0, . . . , B) do

i. [ρi]k+s ← t · [xj·B+i]k+v + [aj·B+i]k+v.
(c) (ρi)

B−1
i=0 ← (OpenToAll([ρi]k+v))B−1

i=0 .
(d) [τ]k+v ← 0.
(e) For i ∈ [0, . . . , B) do

i. [τ]k+v ← [τ]k+v + ri · (t · [z]k+v + [c]k+v − ρ · [y]k+v).
(f) τ ← OpenToAll([τ]k+s)
(g) If τ 6= 0 (mod pk+v) output abort and stop.

6. For i ∈ [0, . . . , N) do
(a) [xi]k ← [xi]k+v (mod pk), [yi]k ← [yi]k+v (mod pk), [zi]k ← [zi]k+v

(mod pk).
7. Output ([xi]k, [yi]k, [zi]k)N−1

i=0 .

Fig. 4. The Protocol MultCheck2

3.4 MacCheck

Our final protocol is the generalization of the MacCheck protocol from [11] to
our situation. The protocol checks, for an input of a single secret shared value
[α]k+v and a series of pairs of secret shared values ([xi]k+v, [yi]k+v)

N−1
i=0 , whether

we have yi = α · xi (mod pk+v), or whether yi is invalid up to an additive error.
Note, unlike the MacCheck protocol from [11] we are not checking the MACs

13

of opened values, but checking the consistency of pairs of unopened values with
respect to the shared MAC key α, as such it is closer to the verification stage
of the protocol in [5]. We note that with the instantiation given in Figure 5,
this checking procedure “burns” the value [α]k+v, thus this does not allow for
reactive computations. In [5] it is shown how to avoid this problem for specific
secret sharing schemes. The protocol is given in Figure 5

The Protocol MacCheck

Input: [α]k+v and ([xi]k+v, [yi]k+v)N−1
i=0 .

Output: abort or OK.

1. For i ∈ [0, N) do ri ← FAgreeRandom(Zpu).
2. [u]←

∑N−1
i=0 ri · [xi]k+v.

3. [v]←
∑N−1

i=0 ri · [yi]k+v.
4. [c]k+v ← FPRSS(k + v).
5. α← OpenToAll([α]k+v).
6. [t]k+v ← [v]k+v − α · [u]k+v.
7. [s]k+v ← PassMult([t]k+v, [c]k+v).
8. s← OpenToAll([s]k+v).
9. If s = 0 then return OK, else return abort.

Fig. 5. The Protocol MacCheck

Lemma 3.3. Protocol MacCheck in Figure 5 on input of an invalid set of pairs
([xi]k+v, [yi]k+v)

N−1
i=0 will return OK with probability less than 2−κ. Where a pair

being invalid means that yi = α · xi + ei, for an ei known to the adversary with
ei 6= 0 (mod pk).

3.5 Summary

We summarize the costs of various protocols in Table 2 for a general ESP over
Zpk . These are given in terms of the row m and column d dimensions of the ma-
trix generating the underlying ESP, the number of parties n, and the parameters
w and B used in the protocols above. We let |si| denote the share size of player
Pi for the given ESP. The data column indicates the total amount of data sent
for all players5 as a multiple of the underlying secret shared data size (i.e. either
k · log2 p or (k + v) · log2 p); we ignore rounds/data to check the running hash
values H as these are amortized over many sub-protocol executions. A ? in the
table indicates that the value depends highly on the specific ESP, and thus a
formula is hard to present. The cost ?1 of OpenToAll is generally n ·d−m for an
MSP with no redundancy, but it can be larger than this if the MSP has more
redundancy than necessary.

5 i.e. not the per-player amount

14

We present three lines corresponding to MultCheck2 and MacCheck depending
on whether the underlying passively secure multiplication is Maurer, KRSW or
DN based. We assume FPRSS is executed non-interactively in all cases, that any
calls to FAgreeRandom are amortized across many calls to MultChecki, and that
no king-paradigm is used in order to keep the number of rounds to a minimum.
As mentioned in the discussion on the multiplication checks, we always consider
w/B to be negligibly small.

General MSP
Protocol Rounds Data PRSS/PRZS Triples

Share 1 m− |si| 0 0
OpenToOne 1 m− |si| 0 0
OpenToAll 1 ?1 0 0

BeaverMult 1 2 · ?1 0 1
MaurerMult 1 (n− 1) ·m 0 0
KRSWMult 1 ?2 ?3 0
DNMult 1 n · (n− 1) 2 0

MacCheckM 4 (n− 1) ·m+ 2 · ?1 1 0
MacCheckK 4 ?2 + 2 · ?1 1 + ?3 0
MacCheckD 4 n · (n− 1) + 2 · ?1 3 0

MultCheck1 4 (2 + w/B) · ?1 0 0
MultCheckM2 5 (n− 1) ·m+ (1 + w/B) · ?1 1 0
MultCheckK2 5 ?2 + (1 + w/B) · ?1 1 + ?3 0
MultCheckD2 5 n · (n− 1) + (1 + w/B) · ?1 3 0

Table 2. Costs of the Base Protocols for a General Access Structures

To provide more concrete values we also give, in the full version, the values for
the three different instantiations of threshold sharings for (n, t) ∈ {(3, 1), (5, 2),
(10, 4)}. The three different sharings have been selected as replicated (for general
pk), standard Shamir (for the case of p > n) and Shamir obtained via Galois
rings (for the important case of p = 2).

4 Offline Preprocessing Protocols

Given the previous components there are a large number of variations one can
deploy to obtain an MPC protocol for a Q2 access structure which is actively
secure with abort. In many cases, some form of preprocessing is used to generate
multiplication triples. In this section, we aim to give an overview of different
methods to generate passive and active multiplication triples, and evaluate the
associated cost in terms of their round and data complexity. We give one pas-
sively secure offline protocol, and three actively secure variants. To generate
actively secure multiplication triples, we generally first generate passively secure
triples, and then we check for correctness (against potential additive attacks) in
different ways.

15

Some of these offline protocols inherently require working (internally) with
an extension of the modulus pk+v, whilst all can produce triples modulo pk or
pk+v depending on whether the output protocol requires triples modulo pk or
pk+v. Whether the output is modulo pk or pk+v will depend into which main
protocol we will embed the offline protocol. When we want to distinguish these
various cases we will write OfflineX(poutput, pinternal) for an offline protocol which
outputs triples modulo poutput, whilst working internally modulo pinternal. Note,
if output = k + v then we must have internal = k + v as well. In all cases we
assume that all PRSS and PRZS operations are performed non-interactively, and
all passive secure multiplications will be assumed to be performed using which
ever is the best out of KRSW or DN for the specific parameter sets6.

OfflinePass: When generating N passively secure multiplication triples, we take
the approach of first generating 2·N random sharings by performing 2·N calls to
PRSS. Following that, we perform a passively secure multiplication protocol N
times in parallel to compute the product over pairs of those shares. Since we can
perform the N required multiplications in parallel, for the multiplication we only
need a single round of communication, with a total data cost of N ·PassMultdata,
and a corresponding cost of PassMultdata per triple produced.

Offline1: The first actively secure protocol, Offline1, will follow the ideas pre-
sented in [11], in that to generate N actively secure multiplication triples it
starts by executing OfflinePass to produce 2 ·N triples. Then half of the obtained
triples are sacrificed, using MultCheck1, so as to check the remaining half for
correctness. The cost of Offline1(pk, pk+v) and Offline1(pk+v, pk+v) are identical.

Offline2: For the second active offline protocol, Offline2, we follow [12]. First
N passively secure triples are generated using OfflinePass. Then these triples are
checked to be resistant to additive attacks by running MultCheck2 on the vector
of N triples. Again, the cost of Offline2(pk, pk+v) and Offline2(pk+v, pk+v) are
identical.

Offline3: For our third variant of the Offline protocol, which we call Offline3, we
use the cut-and-choose methodology of [3, Protocol 3.1]. This is parametrized by
four integer parameters (Bk, C,X,L), and it generates N = (X − C) · L triples
in each iteration, given input of T = (N +C ·L) · (Bk− 1) +N passively secure
triples. The value Bk represents a bucket size for the final checking procedure.
The advantage of this version of the Offline protocol is that we achieve active
security without needing to extend the ring, i.e. we can work modulo pk and not
work pk+v if we require triples modulo pk as output.

6 These are both cheaper than Maurer in terms of data transfer, although they requires
more PRSS and PRZS calls.

16

The statistical security offered by this approach is 1/NBk−1 when used as a
standalone offline procedure, or 1/NBk when used with a specific online proce-
dure (see the third protocol of [3] for the details); note in the latter case one
needs to select C ≥ 3 and that this corresponds to our Protocol 4 below. In [3]
the authors, for pk = 2, target a statistical security level of κ = 40 bits. Thus,
they can select N = 220, Bk = 2, L = 512 and C = 3 to achieve an offline cost
of 12 bits per triple when utilized in Protocol 4 below.

To provide a fair comparison between all protocols in this paper we target a
statistical security level of κ = 128. Thus when using Offline3 in Protocol 1 below
we use the parameters (N,Bk, L, C) = (222, 7, 512, 1) and when using Offline3 in
Protocol 4 below we use the parameters (N,Bk, L, C) = (222, 6, 512, 3).

4.1 Comparing Actively Secure Offline Protocols

Having analysed the three actively secure offline protocols one could compare
them theoretically, using the formulae. This is alas however not that illuminative,
due to the complexity of the various parameters etc for Offline3. Comparing
Offline1 vs Offline2, is simpler as Offline1 is better in terms of number of rounds
of communication, whereas Offline2 is better in terms of the amount of data sent
per multiplication.

5 Complete Protocols

We now examine the five (main) protocol variants we discussed in the introduc-
tion. For each of the following protocols, if an actively secure offline phase is
required we can utilize the protocols Offlinex, for x either 1, 2 or 3, given in Sec-
tion 4. There are two basic metrics here that one could be interested in (assuming
to a first order approximation we are processing arithmetic circuits over Zpk),
namely, the amount of data transferred per multiplication in the online phase
only, or the amount of data transferred per multiplication in the combined online
and offline phases. In all cases we assume we are processing an arithmetic circuit
with N multiplication gates in a circuit of multiplicative depth d.

Protocol1: This protocol executes an actively secure offline phase to produce N
triples in Zpk , i.e. we execute Offlinex(pk, p?) for ? being either k or k + v, de-
pending on the precise protocol choice x. Note, this means we have three choices
for Protocol1 depending on which offline protocol the main protocol is com-
bined with. The online phase is executed, using these triples, using BeaverMult
as the multiplication procedure. Since the Beaver multiplication is instantiated
with actively secure triples the output will also be actively secure, and no post-
processing check is necessary. The online cost does not depend on the choice of
offline phase. In Table 3 we refer to the three combined costs per multiplication
as Totalx, depending on which Offline phase we are utilizing.

17

Protocol2: In this protocol we optimistically use a passively secure online mul-
tiplication protocol PassMult to execute the online phase, and a passively secure
Offline protocol to generate N passively secure multiplication triples, all over
Zpk+v . These are then checked using a post-processing methodology, based on
MultCheck1, to ensure active security. This approach of optimistic, passively se-
cure online multiplication was first suggested in [12].

Protocol3: This proceeds very much as Protocol2 except instead of using an
offline phase and the MultCheck1 procedure, one uses the MultCheck2 procedure.
As there is no offline phase, online and post-processing costs are the total costs
of the protocol. Again all operations needs to be performed over Zpk+v .

Protocol4: This protocol variant follows the pattern from [3] and thus is par-
ticularly suited to small values of pk. It can be applied using any of the actively
secure offline protocols, but is better suited (for small pk) to be used with Offline3.

In the offline phase we generate N actively secure multiplication triples in
Zpk . In the online phase a standard passively secure online phase is executed,
using PassMult. Then in the post-processing the triples produced in the offline
phase are checked against the ‘triples’ resulting from the passively secure mul-
tiplications, using MultCheck′1. The entire procedure can be executed in Zpk
without the need to extend to Zpk+v . Again in Table 3 we will refer to the three
different combined costs per multiplication as Totalx.

Protocol5: Our final approach is based upon the technique in [5]. At the start
of the protocol, in a (very short) offline phase a sharing for an unknown, secret
random value [α]k+v is generated. This value is used as an information theoretic
MAC key, similar to the SPDZ approach.

In the online phase each wire value x is held as two shared values {[x]k+v, [α ·
x]k+v}. To multiply two values x and y we execute a passively secure multi-
plication twice, once with [x]k+v and [y]k+v to obtain [x · y]k+v, and one with
[x]k+v and [α · y]k+v to obtain [α · x · y]k+v. In a short post-processing phase
the MAC values on all multiplication gates and all input and output wires are
checked using the MacCheck procedure. To ensure the security of the MacCheck
procedure all computation need to be performed in Zpk+v .

We can now present a summary (in Table 3) of all these options, by way of
presenting their respective online and total communications costs (in number of
bits communicated per multiplication), for a variety of different scenarios, access
structures and base rings. In the table we mark in blue the online variant which
is most efficient for a given access structure, ring, and ESP. This is almost always
Protocol1. We also mark in gray the most efficient protocol option when one is
interested in the total cost. For small rings this is always Protocol4 with Offline3
chosen as the pre-processing, for the others it is Protocol5.

Note, that in the case of Protocol4 and Offline3 the paper [3] obtains a total
cost of 21 bits per multiplication operation. As explained earlier this is because

18

Access Protocol1 Protocol2 Protocol3
Structure Ring Scheme Mult Online Total1 Total2 Total3 Online Total Online Total

(3, 1) F2 Replicated KRSW 6 1554 1167 63 1161 1548 1161 1161
(3, 1) F2 Shamir Z

2k
DN 6 2328 1941 84 1548 2322 1935 1935

(3, 1) Z
2128

Replicated KRSW 768 3840 3072 8067 2304 3072 2304 2304

(3, 1) Z
2128

Shamir Z
2k

DN 768 5376 4608 10756 3072 4608 3840 3840

(3, 1) Fp Replicated KRSW 768 3840 3072 8067 2304 3072 2304 2304
(3, 1) Fp Shamir KRSW 768 3840 3072 8067 2304 3072 2304 2304

(5, 2) F2 Replicated KRSW 40 7780 5200 350 6450 7740 5160 5160
(5, 2) F2 Shamir Z

2k
DN 40 10360 7780 420 7740 10320 7740 7740

(5, 2) Z
2128

Replicated KRSW 5120 20480 15360 44820 12800 15360 10240 10240

(5, 2) Z
2128

Shamir Z
2k

DN 5120 25600 20480 53782 15360 20480 15360 15360

(5, 2) Fp Replicated KRSW 5120 20480 15360 44820 12800 15360 10240 10240
(5, 2) Fp Shamir KRSW 2560 12800 10240 26891 7680 10240 7680 7680

(10, 4) F2 Replicated KRSW 1680 231300 122940 12116 223170 229620 121260 121260
(10, 4) F2 Shamir Z

2k
DN 260 57020 40250 2451 45150 56760 39990 39990

(10, 4) Z
2128

Replicated KRSW 215040 670720 455680 1550803 442880 455680 240640 240640

(10, 4) Z
2128

Shamir Z
2k

DN 33280 145920 112640 313735 89600 112640 79360 79360

(10, 4) Fp Replicated KRSW 215040 670720 455680 1550803 442880 455680 240640 240640
(10, 4) Fp Shamir KRSW 10240 56320 46080 116528 33280 46080 35840 35840

Access Protocol4 Protocol5
Structure Ring Scheme Mult Online Total1 Total2 Total3 Online Total

(3, 1) F2 Replicated KRSW 9 1557 1170 57 774 774
(3, 1) F2 Shamir Z

2k
DN 12 2334 1947 78 1548 1548

(3, 1) Z
2128

Replicated KRSW 1152 4224 3456 7299 1536 1536

(3, 1) Z
2128

Shamir Z
2k

DN 1536 6144 5376 9988 3072 3072

(3, 1) Fp Replicated KRSW 1152 4224 3456 7299 1536 1536
(3, 1) Fp Shamir KRSW 1152 4224 3456 7299 1536 1536

(5, 2) F2 Replicated KRSW 50 7790 5210 310 2580 2580
(5, 2) F2 Shamir Z

2k
DN 60 10380 7800 380 5160 5160

(5, 2) Z
2128

Replicated KRSW 6400 21760 16640 39696 5120 5120

(5, 2) Z
2128

Shamir Z
2k

DN 7680 28160 23040 48659 10240 10240

(5, 2) Fp Replicated KRSW 6400 21760 16640 39696 5120 5120
(5, 2) Fp Shamir KRSW 3840 14080 11520 24329 5120 5120

(10, 4) F2 Replicated KRSW 1730 231350 122990 10435 12900 12900
(10, 4) F2 Shamir Z

2k
DN 350 57110 40340 2191 23220 23220

(10, 4) Z
2128

Replicated KRSW 221440 677120 462080 1335642 25600 25600

(10, 4) Z
2128

Shamir Z
2k

DN 44800 157440 124160 280432 46080 46080

(10, 4) Fp Replicated KRSW 221440 677120 462080 1335642 25600 25600
(10, 4) Fp Shamir KRSW 16640 62720 52480 106280 25600 25600

Table 3. Costs of the Full Protocols in number of bits per multiplication, for various
access structures; κ = 128, p ≈ 2128

they target a statistical security level of κ = 40, instead of our security level of
κ = 128.

Note that even when Protocol1 is not the most efficient choice, in practice one
might still prefer using this protocol as our analysis assumes the only interaction
occurs for multiplication. Most MPC protocols make use of OpenToAll executions
to open masked data for use in various function specific optimizations. Using
Protocol1 enables these protocol specific OpenToAll executions to be merged
easily with the OpenToAll executions used in multiplication; thus reducing the
total round count. For other online protocols this merging can be more complex.

Acknowledgements

We would like to thank Daniel Escudero and Tim Wood for conversions on
aspects of this work whilst it was carried out.

19

This work has been supported in part by ERC Advanced Grant ERC-2015-
AdG-IMPaCT, by the Defense Advanced Research Projects Agency (DARPA)
and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under con-
tract FA8750-19-C-0502, by the FWO under an Odysseus project GOH9718N,
and by CyberSecurity Research Flanders with reference number VR20192203.

Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of any
of the funders. The U.S. Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright annotation
therein.

References

1. Abspoel, M., Cramer, R., Damg̊ard, I., Escudero, D., Rambaud, M., Xing, C.,
Yuan, C.: Asymptotically good multiplicative LSSS over Galois rings and appli-
cations to MPC over Z/pkZ. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020,
Part III. LNCS, vol. 12493, pp. 151–180. Springer, Heidelberg (Dec 2020)

2. Abspoel, M., Dalskov, A., Escudero, D., Nof, A.: An efficient passive-to-active
compiler for honest-majority MPC over rings. Cryptology ePrint Archive, Report
2019/1298 (2019), https://eprint.iacr.org/2019/1298

3. Araki, T., Barak, A., Furukawa, J., Lichter, T., Lindell, Y., Nof, A., Ohara, K.,
Watzman, A., Weinstein, O.: Optimized honest-majority MPC for malicious adver-
saries - breaking the 1 billion-gate per second barrier. In: 2017 IEEE Symposium
on Security and Privacy. pp. 843–862. IEEE Computer Society Press (May 2017)

4. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast privacy-
preserving computations. In: Jajodia, S., López, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (Oct 2008)

5. Chida, K., Genkin, D., Hamada, K., Ikarashi, D., Kikuchi, R., Lindell, Y., Nof,
A.: Fast large-scale honest-majority MPC for malicious adversaries. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 34–64.
Springer, Heidelberg (Aug 2018)

6. Cramer, R., Damg̊ard, I., Escudero, D., Scholl, P., Xing, C.: SPD Z2k : Effi-
cient MPC mod 2k for dishonest majority. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 769–798. Springer, Heidelberg (Aug
2018)

7. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS, vol.
3378, pp. 342–362. Springer, Heidelberg (Feb 2005)

8. Cramer, R., Damg̊ard, I., Maurer, U.M.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (May 2000)

9. Cramer, R., Rambaud, M., Xing, C.: Asymptotically-good arithmetic secret shar-
ing over Z/(p`Z) with strong multiplication and its applications to efficient MPC.
Cryptology ePrint Archive, Report 2019/832 (2019), https://eprint.iacr.org/
2019/832

10. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (Aug 2007)

20

https://eprint.iacr.org/2019/1298
https://eprint.iacr.org/2019/832
https://eprint.iacr.org/2019/832

11. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (Aug 2012)

12. Eerikson, H., Keller, M., Orlandi, C., Pullonen, P., Puura, J., Simkin, M.: Use
your brain! Arithmetic 3PC for any modulus with active security. In: Kalai, Y.T.,
Smith, A.D., Wichs, D. (eds.) ITC 2020. pp. 5:1–5:24. Schloss Dagstuhl (Jun 2020)

13. Fehr, S.: Span programs over rings and how to share a secret from a module (1998),
MSc Thesis, ETH Zurich

14. Keller, M.: MP-SPDZ: A versatile framework for multi-party computation. In:
Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 20. pp. 1575–1590. ACM
Press (Nov 2020)

15. Keller, M., Orsini, E., Scholl, P.: MASCOT: Faster malicious arithmetic secure
computation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel,
C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016. pp. 830–842. ACM Press (Oct
2016)

16. Keller, M., Rotaru, D., Smart, N.P., Wood, T.: Reducing communication channels
in MPC. In: Catalano, D., De Prisco, R. (eds.) SCN 18. LNCS, vol. 11035, pp.
181–199. Springer, Heidelberg (Sep 2018)

17. Maurer, U.M.: Secure multi-party computation made simple. Discrete Applied
Mathematics 154(2), 370–381 (2006)

18. Smart, N.P., Wood, T.: Error detection in monotone span programs with appli-
cation to communication-efficient multi-party computation. In: Matsui, M. (ed.)
CT-RSA 2019. LNCS, vol. 11405, pp. 210–229. Springer, Heidelberg (Mar 2019)

21

	MPC for Q2 Access Structures over Rings and Fields
	Introduction
	Preliminaries
	Notation
	Monotone and Extended Span Programs
	Linear Secret Sharing Schemes Induced from MSPs and ESPs

	Multiplication Check
	MultCheck1
	MultCheck1'
	MultCheck2
	MacCheck
	Summary

	Offline Preprocessing Protocols
	Comparing Actively Secure Offline Protocols

	Complete Protocols

