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Deep homography estimation in dynamic surgical scenes for laparoscopic camera 
motion extraction
Martin Huber , Sébastien Ourselin , Christos Bergeles and Tom Vercauteren

School of Biomedical Engineering & Image Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, UK

ABSTRACT
Current laparoscopic camera motion automation relies on rule-based approaches or only focuses on 
surgical tools. Imitation Learning (IL) methods could alleviate these shortcomings, but have so far been 
applied to oversimplified setups. Instead of extracting actions from oversimplified setups, in this work we 
introduce a method that allows to extract a laparoscope holder’s actions from videos of laparoscopic 
interventions. We synthetically add camera motion to a newly acquired dataset of camera motion free da 
Vinci surgery image sequences through a novel homography generation algorithm. The synthetic camera 
motion serves as a supervisory signal for camera motion estimation that is invariant to object and tool 
motion. We perform an extensive evaluation of state-of-the-art (SOTA) Deep Neural Networks (DNNs) 
across multiple compute regimes, finding our method transfers from our camera motion free da Vinci 
surgery dataset to videos of laparoscopic interventions, outperforming classical homography estimation 
approaches in both, precision by 41%, and runtime on a CPU by 43%.

ARTICLE HISTORY 
Received 27 October 2021  
Accepted 1 November 2021 

KEYWORDS 
Deep learning; homography 
estimation; laparoscopic 
surgery; image processing 
and analysis; visual data 
mining and knowledge 
discovery; virtual reality

1. Introduction

The goal in IL is to learn an expert policy from a set of expert 
demonstrations. IL has been slow to transition to interventional 
imaging. In particular, the slow transition of modern IL methods 
into automating laparoscopic camera motion is due to a lack 
state-action-pair data (Kassahun et al. 2016; Esteva et al. 2019). 
The need for automated laparoscopic camera motion (Pandya 
et al. 2014; Ellis et al. 2016) has, therefore, historically sparked 
research in rule-based approaches that aim to reactively centre 
surgical tools in the field of view (Agustinos et al. 2014; Da Col 
et al. 2020). DNNs could contribute to this work by facilitating 
SOTA tool segmentations and automated tool tracking (Garcia- 
Peraza-Herrera et al. 2017, 2021; Gruijthuijsen et al. 2021).

Recent research contextualises laparoscopic camera motion 
with respect to (w.r.t.) the user and the state of the surgery. 
DNNs could facilitate contextualisation, as indicated by 
research in surgical phase and skill recognition (Kitaguchi 
et al.2020). However, current contextualisation is achieved 
through handcrafted rule-based approaches (Rivas-Blanco et 
al. 2014, 2017), or through stochastic modelling of camera 
positioning w.r.t. the tools (Weede et al. 2011; Rivas-Blanco et 
al. 2019). While the former do not scale well and are prone to 
nonlinear interventions, the latter only consider surgical tools. 
However, clinical evidence suggests camera motion is also 
caused by the surgeon’s desire to observe tissue (Ellis et al. 
2016). Non-rule-based, i.e. IL, attempts that consider both, tis
sue, and tools as source for camera motion are Ji et al. 2018; Su 
et al. 2020; Wagner et al. 2021, but they utilise an oversimplified 
setup, require multiple cameras or tedious annotations.

In current laparoscopic camera motion automation, DNNs 
merely solve auxiliary tasks. Consequentially, current laparo
scopic camera motion automation is rule-based, and disregards 

tissue. While modern IL approaches could alleviate these issues, 
clinical data of laparoscopic surgeries remains unusable for IL. 
Therefore, SOTA IL attempts rely on artificially acquired data (Ji 
et al. 2018; Su et al. 2020; Wagner et al. 2021).

In this work, we aim to extract camera motion from videos of 
laparoscopic interventions, thereby creating state-action-pairs for 
IL. To this end, we introduce a method that isolates camera 
motion (actions) from object and tool motion by solely relying 
on observed images (states). To this end, DNNs are supervisedly 
trained to estimate camera motion while disregarding object, and 
tool motion. This is achieved by synthetically adding camera 
motion via a novel homography generation algorithm to a newly 
acquired dataset of camera motion free da Vinci surgery image 
sequences. In this way, object, and tool motion reside within the 
image sequences, and the synthetically added camera motion can 
be regarded as the only source, and therefore ground truth, for 
camera motion estimation. Extensive experiments are carried out 
to identify modern network architectures that perform best at 
camera motion estimation. The DNNs that are trained in this 
manner are found to generalise well across domains, in that 
they transfer to vast laparoscopic datasets. They are further 
found to outperform classical camera motion estimators.

2. Related work

Supervised deep homography estimation was first introduced 
in (DeTone et al. 2016) and got improved through a hierarchical 
homography estimation in (Erlik Nowruzi et al. 2017). It got 
adopted in the medical field in (Bano et al. 2020). All three 
approaches generate a limited set of homographies, only 
train on static images, and use non-SOTA VGG-based network 
architectures (Simonyan and Zisserman 2014).
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Unsupervised deep homography estimation has the 
advantage to be applicable to unlabelled data, e.g. videos. 
It was first introduced in (Nguyen et al. 2018), and got 
applied to endoscopy in (Gomes et al. 2019). The loss in 
image space, however, can’t account for object motion, and 
only static scenes are considered in their works. 
Consequentially, recent work seeks to isolate object motion 
from camera motion through unsupervised incentives. 
Closest to our work are Le et al. (2020), where the authors 
generate a dataset of camera motion free image sequences. 
However, due to tool, and object motion, their data genera
tion method is not applicable to laparoscopic videos, since it 
relies on motion free image borders. Zhang et al. (2020) 
provide the first work that does not need a synthetically 
generated dataset. Their method works fully unsupervised, 
but constraining what the network minimises, is difficult to 
achieve.

Only (Le et al. 2020) and (Zhang et al. 2020) train DNNs on 
object motion invariant homography estimation. Contrary to 
their works, we train DNNs supervisedly. We do so by applying 
the data generation of DeTone et al. (2016) to image sequences 
rather than single images. We further improve their method by 
introducing a novel homography generation algorithm that 
allows to continuously generate synthetic homographies at 
runtime, and by using SOTA DNNs.

3. Materials and methods

3.1. Theoretical background

Two images are related by a homography if both images view 
the same plane from different angles and distances. Points on 
the plane, as observed by the camera from different angles in 
homogeneous coordinates pi ¼ ui vi 1½ �

T are related by 
a projective homography G (Malis and Vargas 2007) 

αgpi ¼ Gp0i : (1) 

Since the points pi and p0i are only observed in the 2D image, 
depth information is lost, and the projective homography G can 
only be determined up to scale αg. The distinction between 
projective homography G and homography in Euclidean coor
dinates H ¼ K� 1GK, with the camera intrinsics K, is often not 
made for simplicity, but is nonetheless important for control 
purposes Huber, et al., 2021. The eight unknown parameters 
of G can be obtained through a set of N � 4 matching points 
P = ðpi;p0iÞ; i 2 0;N � 1½ �

� �
by rearranging (1) into 

u0i v0i 1 0 0 0 � u0i ui � v0i ui � ui
0 0 0 u0i v0i 1 � u0i vi � v0i vi � vi

� �

g ¼ 0 "i; (2) 

where g holds the entries of G as a column vector. The ninth 
constraint, by convention, is usually to set jjgjj2 ¼ 1. Classically, 
P is obtained through feature detectors but it may also be used 
as a means to parameterise the spatial transformation. Recent 
deep approaches indeed set P as the corners of an image, and 
predict Δpi ¼ p0i � pi. This is also known as the four point 
homography G4point 

G4point ¼

Δu0 Δv0
Δu1 Δv1
Δu2 Δv2
Δu3 Δv3

2

6
6
4

3

7
7
5; (3) 

which relates to G through (2), where p0i ¼ pi þ Δpi.

3.2. Data preparation

Similar to (Le et al. 2020), we initially find camera motion free 
image sequences, and synthetically add camera motion to them. 
In our work, we isolate camera motion free image sequences 
from da Vinci surgeries, and learn homography estimation super
visedly. We acquire publicly available laparoscopic, and da Vinci 
surgery videos. An overview of all datasets is shown in Figure 1. 
Excluded are synthetic, and publicly unavailable datasets. Da 
Vinci surgery datasets, and laparoscopic surgery datasets require 
different pre-processing steps, which are described below.

3.2.1. Da Vinci surgery data pre-processing
Many of the da Vinci surgery datasets are designed for tool 
or tissue segmentation tasks, therefore, they are published at 
a frame rate of 1fps, see Figure 1 (left). We merge all high 
frame rate (HFR) datasets into a single dataset and manually 
remove image sequences with camera motion, which 
amount to 5% of all HFR data. We crop the remaining data 
to remove status indicators, and scale the images to 306�
408 pixels, later to be cropped by the homography generation 
algorithm to a resolution of 240� 320.

3.2.2. Laparoscopic surgery data pre-processing
Laparoscopic images are typically observed through a Hopkins 
telescope, which causes a black circular boundary in the view, 
see Figure 2. This boundary does not exist in da Vinci surgery 
recordings. For inference on the laparoscopic surgery image 
sequences, the most straightforward approach is to crop the 
view. To this purpose, we determine the centre and radius of 
the circular boundary, which is only partially visible. We detect 
it by randomly sampling N points pi ¼ ðui; viÞ

T on the bound
ary. This is similar to work in (Münzer et al. 2013), but instead of 
computing an analytical solution, we fit a circle by means of a 
least squares solution through inversion of 

2u0 2v0 1
..
.

2uN� 1 2vN� 1 1

2

6
4

3

7
5

x0
x1
x2

2

4

3

5 ¼

u2
0 þ v2

0

..

.

u2
N� 1 þ v2

N� 1

2

6
4

3

7
5; (4) 

where the circle’s centre is ðx0; x1Þ, and its radius is 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x2

0 þ x2
1

p
. We then crop the view centrally around the 

circle’s centre, and scale it to a resolution of 240� 320. An 
implementation is provided on GitHub.1

3.2.3. Ground truth generation
One can simply use the synthetically generated camera motion 
as ground truth at train time. For inference on the laparoscopic 
dataset, this is not possible. We therefore generate ground 
truth data by randomly sampling 50 image sequences with 10 
frames each from the Cholec80 dataset. In these image 
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Figure 1. Da Vinci surgery and laparoscopic surgery datasets, referring to Section 3.2. Shown are relative sizes and the absolute number of frames. Da Vinci surgery 
datasets (left). Included are: SurgVisDom Zia, et al., 2021, GN Giannarou, et al., 2012, MT Mountney, et al., 2010, SARAS-ESAD Bawa, et al., 2020, KBD Hattab, et al., 2020, 
RIS Allan, et al., 2019, and RSS Allan, et al., 2020. They are often released at a low frame rate of 1fps for segmentation tasks. Much more laparoscopic surgery data is 
available (right). Included are ROBUST-MIS Maier-Hein, et al., 2020, Cholec80 Twinanda, et al., 2016, ISAT Bodenstedt, et al., 2018, and the HFR da Vinci dataset from 
(left) for reference.

Figure 3. Deep homography estimation training pipeline, referring to Section 3.3. Image pairs are sampled from the HFR da Vinci surgery dataset. The homography 
generation algorithm then adds synthetic camera motion to the augmented images, which is regressed through a backbone DNN.

Figure 2. Cholec80 dataset pre-processing, referring to Section 3.2.2. The black boundary circle is automatically detected through fitting a circle to the binary 
segmentation. The binary segmentation mask is shown on the left. The circular boundary fitting and static landmarks (blue arrows) are shown on the right. Landmarks 
are manually annotated and tracked over time.
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sequences, we find characteristic landmarks that are neither 
subject to tool, nor to object motion, see Figure 2 (right). 
Tracking of these landmarks over time allows one to estimate 
the camera motion in between consecutive frames through (2).

3.3. Deep homography estimation

In this work we exploit the static camera in da Vinci surgeries, 
which allows us to isolate camera motion free image 
sequences. The processing pipeline is shown in Figure 3.

Image pairs are sampled from image sequences of the HFR 
da Vinci surgery dataset of Figure 1. An image pair consists of 
an anchor image In, and an offset image Inþt . The offset image 
is sampled uniformly from and interval t 2 ½� T; T� around the 
anchor. The HFR da Vinci surgery dataset is relatively small, 
compared to the laparoscopic datasets, see Figure 1 (right). 
Therefore, we apply image augmentations to the sampled 
image pairs. They include transform to greyscale, horizontal, 
and vertical flipping, cropping, change in brightness, and con
trast, Gaussian blur, fog simulation, and random combinations 
of those. Camera motion is then added synthetically to the 
augmented image I aug

nþt via the homography generation algo
rithm from Section 3.4. A DNN, with a backbone, then learns to 
predict the homography G4point between the augmented 
image, and the augmented image with synthetic camera 
motion at time step nþ t.

3.4. Homography generation algorithm

In its core, the homography generation algorithm is based on 
the works of DeTone et al. 2016. However, where DeTone et al. 
crop the image with a safety margin, our method allows to 
sample image crops across the entire image. Additionally, our 
method computes feasible homographies at runtime. This 
allows us to continuously generate synthetic camera motion, 
rather then training on a fixed set of precomputed homogra
phies. The homography generation algorithm is summarised in 
Alg. 1, and visualised in Figure 3.

Initially, a crop polygon Pc is generated for the augmented 
image I aug

n . The crop polygon is defined through a set of points 
in the augmented image Pc ¼ fpc

i ; i 2 0; 3½ �g, which span 
a rectangle. The top left corner pc

0 is randomly sampled such 
that the crop polygon Pc resides within the image border poly
gon Pb, hence pc

0 2 ð½0; hb � hc�; ½0;wb � wc�Þ, where h, and w 
are the height and width of the crop, and the border polygon, 
respectively. Following that, a random four point homography 
G4point (3) is generated by sampling edge deviations 
Δui ^ Δvi 2 � %; %½ �. The corresponding inverse homography 
G� 1 is used to warp each point of the border polygon Pb to 
P
0
b. Finally, the Dimensionally Extended 9-Intersection Model 

(Clementini et al. 1994) is used to determine whether the 
warped polygon P0b contains Pc, for which we utilise the 
Python library Shapely.2 If the thus found intersection matrix 
DE9IM satisfies 

DE9IMðP0b;PcÞ ¼

T
�

F

�

�

F

�

�

�

2

4

3

5 (5) 

the homography G� 1 is returned, otherwise a new four point 
homograpy G4point is sampled. Therein, � indicates that the 
intersection matrix may hold any value, and T; F indicate that 
the intersection matrix must be true or false at the respective 
position. In the unlikely case that no homography is found after 
maximum rollouts, the identity G4point ¼ 0 is returned. Once 
a suitable homography is found, a crop of the augmented 
image CropðI aug

n ;PcÞ is computed, as well as a crop of the 
warped augmented image at time nþ t, 
CropðWarpðI aug

nþt;G� 1Þ;PcÞ. This keeps all computationally 
expensive operations outside the loop. 

Algorithm 1: Homography generation algorithm, referring to Section 3.4.

Randomly sample crop polygon Pc of desired shape in Pb ;
while rollouts < maximum rollouts do
Randomly sample G4point, where Δui ^ Δvi 2 � %; %½ �"i;
Perspective transform boundary polygon p : Pb; G� 1 ! P0b;
Compute intersection matrix DE9IMðP0b;PcÞ; 

if DE9IM ¼
T
�

F

�

�

F

�

�

�

2

4

3

5 then  

return G4point, Pc ;
end
Increment rollouts;
end
return 0, Pc ;

4. Experiments

We train DNNs on a 80% train split of the HFR da Vinci surgery 
dataset from Figure 1. The 20% test split is referred to as test set 
in the following. Inference is performed on the ground truth set 
from Section 3.2.3. We compute the Mean Pairwise Distance 
(MPD) of the predicted value for G4point from the desired one. 
We then compute the Cumulative Distribution Function (CDF) of 
all MPDs. We evaluate the CDF at different thresholds 
ti; i 2 30; 50; 70; 90f g, e.g. 30% of all homography estimations 
are below a MPD of t30. We additionally evaluate the compute 
time on a GeForce RTX 2070 GPU, and a Intel Core i7-9750 H CPU.

4.1. Backbone search

In this experiment, we aim to find the best performing back
bone for homography estimation. Therefore, we run the same 
experiment repeatedly with fixed hyperparameters, and vary
ing backbones. We train each network for 50 epochs, with 
a batch size of 64, using the Adam optimiser with a learning 
rate of 2e � 4. The edge deviation % is set to 32, and the 
sequence length T to 25.

4.2. Homography generation algorithm

In this experiment, we evaluate the homography generation 
algorithm. For this experiment we fix the backbone to 
a ResNet-34, and train it for 100 epochs, with a batch size of 
256, using the Adam optimiser with a learning rate of 1e-3. 
Initially, we fix the sequence length T to 25, and train on 
different edge deviations % 2 32; 48; 64f g. Next, we fix the 
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edge deviation % to 48, and train on different sequence lengths 
T 2 f1; 25; 50g, where a sequence length of 1 corresponds to 
a static pair of images.

5. Results

5.1. Backbone search

The results are listed in Table 1. It can be seen that the 
deep methods generally outperform the classical methods 
on the test set. There is a tendency that models with 
more parameters perform better. On the ground truth 
set, this tendency vanishes. The differences in perfor
mance become independent of the number of parameters. 
Noticeably, many backbones still outperform the classical 
methods across all thresholds on the ground truth set, 
and low compute regime models also run quicker on 
CPU than comparable classical methods. E.g. we find that 

EfficientNet-B0, and RegNetY-400MF run at 36Hz, and 
50Hz on a CPU, respectively. Both outperform SURF & 
RANSAC in homography estimation, which runs at 20Hz.

5.2. Homography generation algorithm

Given that ResNet-34 performs well on the ground truth set, 
and executes fast on the GPU, we run the homography genera
tion algorithm experiments with it. It can be seen in Figure 4 
(left), that the edge deviation % is neglectable for inference. In 
Figure 4 (right), one sees the effects of the sequence length T 
on the inference performance. Notably, with T ¼ 1, corre
sponding to static image pairs, the SURF & RANSAC homogra
phy estimation outperforms the ResNet-34. For the other 
sequence lengths, ResNet-34 outperforms the classical homo
graphy estimation. The CDF for the best performing combina
tion of parameters, with T ¼ 25, and % ¼ 48, is shown in 

Figure 4. Homography generation optimisation, referring to Section 5.2. Shown is a ResNet-34 homography estimation for different homography generation 
configurations, and a SURF & RANSAC homography estimation for reference. Varying edge deviation % 2 32; 48; 64f g, and fixed sequence length T ¼ 25 (left). 
Varying sequence length T 2 1; 25; 50f g, and fixed edge deviation % ¼ 48 (right).

Figure 5. CDF for SURF & RANSAC, and ResNet-34, trained with a sequence length T ¼ 25, and edge deviation % ¼ 48, referring to Section 5.2. The identity is added for 
reference. CDF thresholds for the SURF & RANSAC are tgt

1=10=30=50=70=90 ¼ 0:51=0:80=1:09=1:48=2:07=3:53pixels, and for the ResNet-34 

tgt
1=10=30=50=70=90 ¼ 0:50=0:83=1:00=1:26=1:59=2:15pixels. ResNet-34 generally performs better, and has no outliers.
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Figure 5. Our method generally outperforms SURF & RANSAC. 
The advantage of our method becomes most apparent for a 
CDF � 0:5. Even the identity outperforms SURF & RANSAC for 
large MPDs. This aligns with the qualitative observation that 
motion is often overestimated by SURF & RANSAC, which is 
shown in Figure 6. An exemplary video is provided.3

6. Discussion

In this work we supervisedly learn homography estimation in 
dynamic surgical scenes. We train our method on a newly 
acquired, synthetically modified da Vinci surgery dataset and 
successfully cross the domain gap to videos of laparoscopic 
surgeries. To do so, we introduce extensive data augmentation 
and continuously generate synthetic camera motion through 
a novel homography generation algorithm.

In Section 5.1, we find that, despite the domain gap for the 
ground truth set, DNNs outperform classical methods, which is 
indicated in Table 1. The homography estimation performance 
proofs to be independent of the number of model parameters, 
which indicates an overfit to the test data. The independence of 
the number of parameters allows to optimise the backbone for 
computational requirements. E.g. a typical laparoscopic setup runs 
at 25 � 30Hz, the classical method would thus already introduce 
a bottleneck at 20Hz. On the other hand, EfficientNet-B0, with 
36Hz, and RegNetY-400MF, with 50Hz, introduce no latency, and 
could be integrated into systems without GPU.

In Section 5.2, we find that increasing the edge deviation has 
no effect on the homography estimation, see Figure 4 (left). This is 
because the motion in the ground truth set does not exceed the 
motion in the training set. In Figure 4 (right), we further find how 

training DNNs on synthetically modified da Vinci surgery image 
sequences enables our method to isolate camera from object and 
tool motion, validating our method. In Figure 5, it is demonstrated 
that ResNet-34 generally outperforms SURF & RANSAC. This shows 
that generating camera motion synthetically through homogra
phies, which approximates the surgical scene as a plane, does not 
pose an issue.

The object, and tool motion invariant camera motion 
estimation allows one to extract a laparoscope holder’s 
actions from videos of laparoscopic interventions, which 
enables the generation of image-action-pairs. In future 
work, we will generate image-action-pairs from laparoscopic 
datasets and apply IL to them. Describing camera motion 
(actions) by means of a homography is grounded in recent 
research for robotic control of laparoscopes (Huber et al. 
2021). This work will therefore support the transition 
towards robotic automation approaches. It might further 
improve augmented reality, and image mosaicing methods 
in dynamic surgical environments.

Notes

1. https://github.com/RViMLab/endoscopy.
2. https://pypi.org/project/Shapely.
3. h t t p s : / / d r i v e . g o o g l e . c o m / fi l e / d / 1 t o t j H b h I M E L 7 a - Q A i L  

7B1rT44wvWB6lO/view?usp=sharing.
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Figure 6. Classical homography estimation using a SURF feature detector under RANSAC outlier rejection, and the proposed deep homography estimation with 
a ResNet-34 backbone, referring to Section 5.2. Shown are blends of consecutive images from a 5 fps resampled Cholec80 exemplary sequence (Twinanda et al. 2016). 
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camera motion. Both methods perform well. (Bottom row) Homography estimation under predominantly object motion. Especially in the zoomed images it can be 
seen that the classical method (d) misaligns the stationary parts of the image, whereas the proposed method (e) aligns the background well.
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