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Abstract

Monte Carlo (MC) simulations of the full kinetic equation for the neutral particles in the
plasma edge become computationally costly for reactor-relevant regimes. To accelerate
the simulations, we propose a hybrid fluid-kinetic approach that is based on a micro-
macro decomposition of the kinetic equation. This leads to a macro/fluid model with
kinetic corrections that follow from an MC simulation of the micro/kinetic part. We
distinguish three hybrid models with different underlying fluid equations: (i) a pure
pressure-diffusion equation with equal neutral and ion temperatures (Tn = Ti); (ii) a
continuity and parallel momentum equation with pressure-diffusion transport retained
in the directions perpendicular to the magnetic field lines, with Tn = Ti; and (iii) the
same model as (ii), but with a separate neutral energy equation (Tn , Ti). To facilitate
the future integration in more complete plasma edge codes, we neglect some kinetic
correction terms. Hence, the hybrid model is not exactly equivalent to the full kinetic
equation. We assess the hybrid performance on the basis of the reduction of the CPU
time compared to an MC simulation of the full kinetic equation for the same statistical
error on a certain plasma source. This is done for a high recycling slab case. Only
the models with parallel momentum equation ((ii)-(iii)) are able to significantly reduce
the CPU time. However, due to the incomplete kinetic corrections there is a remaining
hybrid-kinetic discrepancy that mainly pops up in the ion energy source from the model
with energy equation (iii).

1. Introduction

The plasma edge in magnetic confinement based nuclear fusion devices consists
of plasma (mixture of ions and electrons) and neutral particles (atoms and molecules).
The neutrals play a crucial role in reducing the particle and energy fluxes towards the
divertor targets in the so-called detached operating regime. In this regime, a kind of
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neutral cushion in front of the divertor targets, with increased ion-neutral interactions,
prevents a direct high-energetic plasma flow towards the targets. The detached regime
is absolutely indispensable for large reactors as ITER and DEMO to keep the heat load
below the maximum permitted value of 10 MW/m2 [1]. Consequently, it is of crucial
importance to accurately model the plasma and neutral species in the plasma edge for
the development of operational scenarios and the design of future fusion reactors.

For the plasma species, one typically solves a set of Navier-Stokes like fluid equa-
tions, i.e., the Braginskii equations [2] supplemented with a model for anomalous trans-
port perpendicular to the magnetic flux surfaces [3]. On the other hand, the neutral par-
ticles are usually described by means of a kinetic equation, which is an equation for the
position-velocity phase-space distribution. The kinetic equation facilitates the incor-
poration of multiple kinds of advanced microscopic processes, such as the AMJUEL-
HYDHEL databases [4, 5] for microscopic cross-sections and rate coefficients. Al-
though deterministic approaches can be used to solve the plasma fluid equations, as
implemented for example in the B2 and B2.5 finite-volume codes [6], such methods
become computationally extremely costly for the kinetic neutral model due to the addi-
tional particle velocity dimensions. To cope with the high-dimensionality, a stochastic
MC code is typically used, e.g., the EIRENE code [6], where an ensemble of particles
is tracked from place of creation until absorption with a number of collisions on the
particle trajectories.

The problems with the MC approach, in the way that it is for example implemented
in the EIRENE code, are the fact that it hampers the convergence assessment when
solving the coupled plasma-neutral equations [7] and the fact that it becomes computa-
tionally cumbersome for high-collisional cases, such as the (partially) detached regime.
The latter issue originates from the fact that the full kinetic MC scheme is not asymp-
totic preserving [8], which means that the efficiency of the method strongly depends on
the collisionality of the problem. Hence, a carefully designed (partially) deterministic
neutral model can lead to a significant speed-up of plasma edge simulations.

For high-collisional cases, also the neutrals approach the fluid limit. Hence, as for
the plasma, fluid equations can be solved for the neutrals, usually with a deterministic
finite-volume approach. These approximate fluid neutral models tremendously accel-
erate the plasma edge simulations. In Ref. [9], we have assessed fluid models for the
neutral atoms for a (partially) detached ITER case with fixed background plasma. De-
veloping consistent fluid models for the molecules is still future research, since the
molecule particle velocity distribution tends to strongly deviate from a Maxwellian
equilibrium distribution. The use of fluid models for the atoms in Ref. [9] leads to
plasma sources close to the target within 30% of accuracy compared to the kinetic so-
lution. In the current paper, we go one step further by combining the fluid and kinetic
approaches in a so-called hybrid fluid-kinetic model to resolve the remaining fluid-
kinetic discrepancies, but with still a reduction of the computational time compared to
the full kinetic MC solution for a given statistical error on a certain output of interest.

Hybrid fluid-kinetic methods are for example used in rarefied gas dynamics [10]
and for neutron transport calculations [11]. The methods can be roughly subdivided in
two categories: (i) domain decomposition methods, where the spatial domain consists
of fluid and kinetic regions [12]; and (ii) full hybrid methods, where the particle pop-
ulation is split into a fluid and kinetic part [13]. A particularly beneficial property of a
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certain (hybrid) scheme is that it is asymptotic preserving, where the scheme degener-
ates to a consistent discretization of the (fluid) limit equations when the collisionality
becomes high. Most of the asymptotic-preserving methods in literature are based on
fully deterministic grid-based schemes, see, e.g., Refs. [14, 15, 16, 17, 18, 19] and
many others. In the particle setting, there are much less references for asymptotic-
preserving schemes, e.g., Refs. [13, 20, 21, 22].

The first hybrid fluid-kinetic model for the neutrals in the plasma edge was theoret-
ically elaborated in 1998 [23]. It is a full hybrid approach of type (ii) with interacting
kinetic and fluid neutrals by means of fluid-kinetic transition sources/sinks. This hybrid
approach is only recently implemented in the SOLEDGE2D-EIRENE code suite [24],
where the magnitude of the fluid-kinetic transition sources is based on the local charge-
exchange based Knudsen number. When using the hybrid method exclusively for the
atoms (i.e., the molecules are still treated fully kinetically) for a high recycling ITER
case, it leads to a reduction of approximately 10% for the EIRENE computational time
compared to the full kinetic MC simulation with remaining hybrid-kinetic discrepan-
cies on the plasma sources within 10%.

For the method of Refs. [23, 24], priori knowledge of the fluid and kinetic re-
gions is needed to impose the transition sources. To avoid the need of fluid-kinetic
detection criteria, we elaborate a hybrid approach based on a micro-macro decompo-
sition of the kinetic equation. The micro-macro decomposition is, e.g., presented in
Refs. [20, 25], where asymptotic-preserving schemes are obtained. Here, we apply
the method specifically for the plasma edge neutrals, where the MC procedure differs
from Refs. [20, 25] due to (i) the presence of sources and sinks, (ii) the dominance of
neutral-ion charge-exchange scattering collisions instead of elastic self-collisions, and
(iii) the fact that we use an MC procedure, which is particularly suitable for studying
the neutral steady-state solution for a certain background plasma. Kinetic contributions
appear in the fluid moment equations to correct for the closure approximations. For the
micro-macro approach, there is no need for fluid-kinetic detection criteria, because the
kinetic correction terms automatically vanish in the regions where the fluid limit is
reached.

We have already applied the micro-macro hybrid approach to a 1D case with fixed
background plasma that corresponds to the plasma results in a single flux tube from
a 2D B2-EIRENE simulation on the ITER F12 geometry for a (partially) detached
case [26]. In Ref. [27], we have reported that there is a reduction of the particle and
momentum source statistical errors in that case with approximately a factor 5, and
approximately a factor 3 for the ion energy source statistical error, compared to the full
kinetic MC simulation for a given computational time.

In this paper, we extend the method for the 2D plasma edge. The plasma vari-
ables are kept fixed, i.e., the plasma equations are not solved. We provide a detailed
algorithmic description of the method, using three different underlying fluid neutral
models. The first fluid model consists of a pure pressure-diffusion equation, whereas
the second model consists of a continuity and parallel momentum equation retaining
pressure-diffusion transport in the directions perpendicular to the magnetic field. Both
models assume that the ions and neutrals are at the same temperature, i.e., ion-neutral
thermal equilibrium. This ion-neutral thermal equilibrium assumption disappears for
the third model, where we solve a separate neutral energy equation. Preliminary nu-
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merical results obtained with the first two models with ion-neutral thermal equilibrium
assumption are already published in Ref. [28].

The paper is outlined as follows. In Section 2, we present the kinetic equation for
the hydrogenic plasma edge atoms, for which we aim to develop a hybrid model. A
hybrid approach for the molecules and other species is out of the scope of this paper,
because of the lack of consistent fluid models for these species. In Section 3, we elabo-
rate on the micro-macro decomposition of the kinetic (state) equation. The same micro-
macro decomposition procedure is used for the boundary conditions in Section 4. Sec-
tion 5 describes in detail the MC procedure for solving the micro equation, with main
focus on the differences with the full kinetic MC procedure. In Section 6, we explain
how the coupled fluid (macro)–kinetic (micro) neutral equations are solved. In Sec-
tion 7, we compare the solutions from the different hybrid models with the kinetic and
fluid solutions for a high recycling slab case. We evaluate the performance of the hy-
brid simulations on the basis of the reduction of the CPU time compared to the full
kinetic MC solution for the same statistical error on a certain plasma source. Finally,
Section 8 contains the conclusions and outlook for future work.

2. Kinetic equation

We only consider steady-state problems. The steady-state kinetic (Boltzmann)
equation for the neutral atoms is

v · ∇ fn(r, v) = S ( fn(r, v)), (1)

with r ∈ D ⊂ R2 and v ∈ R3 respectively the position and particle velocity vec-
tors (D corresponds to the considered plasma edge domain, which is 2D due to the
toroidal symmetry assumption), ∇ the gradient with respect to the position, fn(r, v)
the position-velocity phase-space distribution and S ( fn(r, v)) the term that contains all
particle interactions (sources, sinks and scattering collisions). In this paper, we only
consider deuterium atoms. However, the models from this paper can also be used for
other hydrogen isotopes, because they undergo the same interactions. We take into ac-
count three processes: volumetric radiative recombination, electron impact ionization
and charge-exchange collisions with respectively rate coefficients Kr, Ki and Kcx. The
processes are sketched in Fig. 1, with e an electron, D a deuterium atom and D+ a deu-
terium ion. From the neutral point of view, recombination is a source, ionization a sink
and charge exchange a scattering event. The expressions for Kr and Ki as a function of
the electron temperature can be found in Ref. [29, Section 10.3] and the expression for
Kcx as a function of the ion temperature is taken from Ref. [30].

With these three processes, S ( fn(r, v)) becomes

S ( fn(r, v)) = f̃i(r, v)ni(r)(ne(r)Kr(r) + nn(r)Kcx(r)) − fn(r, v)Rt(r), (2)

with Rt(r) the total collision rate of neutrals (i.e., ionization and charge exchange),
given by

Rt(r) = ne(r)Ki(r) + ni(r)Kcx(r), (3)

and ni(r), ne(r) and nn(r) =
∫

v fn(r, v)dv respectively the ion, electron and neutral
density (number of particles per m3), and f̃i(r, v) = fi(r, v)/ni(r) the normalized ion
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Figure 1: Processes for deuterium that we take into account.

distribution
∫

v f̃i(r, v)dv ≡ 1. With
∫

v . . . dv, we denote the integral over the whole
velocity space for all velocity components from −∞ to ∞. The spatial dependence of
the rate coefficients follows from their temperature dependence, i.e., Kr(r) ≡ Kr(Te(r)),
Ki(r) ≡ Ki(Te(r)) and Kcx(r) ≡ Kcx(Ti(r)), with Te and Ti respectively the electron
and ion temperature. The neutral that results from a recombination or charge-exchange
event gets the pre-collision ion velocity. This is the reason that the ion distribution
appears in the recombination and charge-exchange terms from Eq. (2). Although, in
fact, the ion distribution follows from the Braginskii approximation [2], which contains
corrections on a perfect drifting Maxwellian distribution, it is nevertheless typical to
assume a perfect drifting Maxwellian for the neutral simulations [31]. Then, the ion
distribution is given by

f̃i(r, v) = M̃(v; Vi(r),Ti(r)), (4)

with

M̃(v; V,T ) =

( m
2πT

)3/2
exp

(
− m

2T
||v − V||2

)
, (5)

with m the ion particle mass (or also the neutral atom mass, because we neglect the
electron mass) and Vi the ion fluid velocity vector. In this paper, temperatures are
expressed in Joules. With || . . . ||, we denote the Euclidean norm. We assume that the
ion fluid velocity is completely aligned to the magnetic field with parallel velocity
component u||.

3. Micro-macro decomposition of the kinetic equation

The idea of the micro-macro decomposition is to write the neutral distribution as the
sum of a fluid (macroscopic) part (subscript f) and kinetic (microscopic) part (subscript
k):

fn(r, v) = fn,f(r, v) + fn,k(r, v). (6)

The fluid part is determined by solving a set of macroscopic fluid moment equations for
the density, velocity and temperature (see Section 3.2). The errors made when closing
the fluid equations are corrected by means of kinetic correction terms that follow from
an MC simulation of the kinetic part (see Section 3.1). It is possible to use an arbitrary
fluid distribution fn,f(r, v) in Eq. (6), but the efficiency of the hybrid method strongly
increases when using a fluid approximation that is already close to the total neutral
distribution.

Such hybrid methods have been proposed, e.g., in Refs. [23, 24]. There, the dis-
tributions fn,f(r, v) and fn,k(r, v) are both positive for all r ∈ D and v ∈ R3, which
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implies that the fluid and kinetic parts can be considered as two physically meaningful
interacting particle populations. In contrast, here, we impose the following condition:

nn(r) =

∫
v

fn(r, v)dv =

∫
v

fn,f(r, v)dv, (7)

which implies that all mass is contained in the fluid part of Eq. (6). The kinetic term in
Eq. (6) then represents a correction with net zero mass at every location. This means
that fn,k(r, v) becomes negative for some values of v at every possible position r.

In Section 3.1, we elaborate the micro model that determines fn,k(r, v). The distri-
bution fn,f(r, v) follows from the solution of one of the fluid models from Section 3.2.

3.1. Micro/kinetic part
Inserting Eq. (6) in Eq. (1), gives

v · ∇ fn,k(r, v) = S v( fn,f(r, v)) + f̃i(r, v)ni(r)Kcx(r)
∫

v
fn,k(v)dv︸                                 ︷︷                                 ︸

≡0

−Rt(r) fn,k(r, v), (8)

with
S v( fn,f(r, v)) = −v · ∇ fn,f(r, v) + S ( fn,f(r, v)). (9)

The left hand side of Eq. (8) corresponds to the transport of kinetic neutrals. The term
S v( fn,f(r, v)) represents the volumetric source of kinetic neutrals. In fact, the source is
the residual of Eq. (1), when using the assumed fluid neutral distribution for the entire
neutral population, and hence, the error of the fluid approximation on the kinetic level.
Due to condition (7), the second term in the right hand side of Eq. (8) vanishes and
the charge-exchange scattering character disappears from the kinetic equation. Conse-
quently, there only remains absorption of kinetic neutrals with absorption rate Rt.

3.2. Macro/fluid part
The fluid distribution fn,f(r, v), which is needed for solving the micro part (Eq. (8)),

is uniquely determined by its corresponding macroscopic properties, which follow
from the solution of a chosen fluid model. The fluid equations are obtained by tak-
ing moments of the kinetic equation. The zeroth, first and second order moment of
Eq. (8) lead to the continuity, momentum and energy equations:∫

v
µ(v)(v · ∇ fn,k(r, v))dv =

∫
v
µ(v)(S v( fn,f(r, v)) − Rt(r) fn,k(r, v))dv, (10)

with

µ(v) =
[
µ1(v) µT

2 (v) µ3(v)
]T
, with µ1(v) = 1, µ2(v) = mv, µ3(v) = m||v||2/2.

(11)
First, we elaborate the full continuity, momentum and energy equations. Subsequently,
we reduce the models to obtain the fluid models from Ref. [9]. In this way, we show
how the kinetic correction terms appear in the fluid equations. Although an arbitrary
fluid model can be used, we will verify in Section 7.4 that the efficiency of the hybrid
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approach strongly depends on the accuracy of the underlying fluid model. From now
on, we omit the spatial dependence in the notation of the variables.

The continuity equation, i.e., the component for µ1(v) in Eq. (10) (after rearranging
the terms), becomes

∇ ·
(
nnVn,f +

∫
v

v fn,k(v)dv
)

= −S ni , (12)

with the fluid momentum defined as nnVn,f
∆
=

∫
v v fn,f(v)dv and the plasma particle

source S ni = −nineKr + nnneKi. For all upcoming fluid models, we impose that the
macroscopic neutral particle flux follows entirely from the fluid distribution. This
means that

nnVn =

∫
v

v fn(v)dv =

∫
v

fn,f(v)dv = nnVn,f , (13)

and
∫

v v fn,k(v)dv ≡ 0. With this condition, the continuity equation becomes

∇ · Γn = −S ni , (14)

with Γn the neutral particle flux density vector, given by

Γn = nnVn. (15)

The momentum (vector) equation (µ2(v) in Eq. (10)) becomes

∇ · Γn
m = −SmVi , (16)

with Γn
m the momentum flux density tensor, given by

Γn
m = mnnVnVn + pn,fI + pn,kI + Πn,f + Πn,k, (17)

with I the identity tensor, and the fluid pressure pn,f and fluid stress tensor Πn,f defined
as

pn,f
∆
=

m
3

∫
v
||v−Vn||2 fn,f(v)dv, Πn,f

∆
= m

∫
v
(v−Vn)(v−Vn) fn,f(v)dv− pn,fI. (18)

The kinetic pressure pn,k and kinetic stress tensor Πn,k are defined as

pn,k
∆
=

m
3

∫
v
||v||2 fn,k(v)dv, Πn,k

∆
= m

∫
v

vv fn,k(v)dv − pn,kI. (19)

It should be noted that for the kinetic contributions (Eq. (19)) the total second order
moment is taken instead of the moment with the peculiar velocity for the fluid contri-
butions (v − Vn in Eq. (18)). Doing so is valid due to the assumption of zero kinetic
particle flux (Eq. (13)). The momentum source term becomes

SmVi = −mni(neKr + nnKcx)Vi + mnn(neKi + niKcx)Vn. (20)

We use Γn
m for the neutral momentum flux density tensor, defined in Eq. (16).
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Finally, the energy equation (µ3(v) in Eq. (10)) becomes

∇ ·Qn = −S Ei , (21)

with Qn the energy flux density vector, given by

Qn =

(
5
2

pn,f +
m
2

nn||Vn||2
)

Vn + Πn,f · Vn + qn,f + qn,k, (22)

with the fluid and kinetic heat flux vectors defined as

qn,f
∆
=

m
2

∫
v
||v − Vn||2(v − Vn) fn,f(v)dv, qn,k

∆
=

m
2

∫
v
||v||2v fn,k(v)dv, (23)

where again the total moment is taken for the kinetic heat flux vector. The energy
source becomes

S Ei = −ni(neKr +nnKcx)
(

3
2

Ti +
m
2
||Vi||2

)
+(neKi +niKcx)

(
3
2

pn,f +
3
2

pn,k +
m
2

nn||Vn||2
)
.

(24)
The neutral energy flux density vector is indicated with Qn, see Eq. (21).

Now, we have obtained all moment equations with kinetic correction contributions,
i.e., the continuity (Eq. (14)), momentum (Eq. (16)) and energy (Eq. (21)) equations.
We notice that kinetic correction terms appear in these equations, i.e., pn,k and Πn,k in
Eq. (16) and qn,k in Eq. (21). These kinetic contributions follow from an MC simulation
of the micro part (Eq. (8)), as will be explained in Section 5. Besides that, the moment
equations are not closed due to the presence of the unknown fluid viscosity tensor Πn,f
and heat flux vector qn,f . In the following subsections, we elaborate the three fluid clo-
sure approximations from Ref. [9]. The first model (Section 3.2.1) consists of a pure
pressure-diffusion equation with ion-neutral thermal equilibrium assumption. The sec-
ond model (Section 3.2.2) consists of a continuity and parallel momentum equation re-
taining the pressure-diffusion transport in the directions perpendicular to the magnetic
field. We still assume ion-neutral thermal equilibrium. The last model (Section 3.2.3)
is similar as the second model, but we add a separate neutral energy equation, i.e., it is
no longer assumed that the ions and neutrals are at the same temperature.

3.2.1. Model 1: pressure-diffusion equation
If the convective and viscous (fluid) transport in the momentum equation (Eq. (16))

is neglected, we obtain immediately an expression for the neutral particle flux density:

Γn = nnVn = nn,eqVi − Dn
p∇pn,f − Dn

p∇pn,k − Dn
p∇ · Πn,k, (25)

with nn,eq = (nineKr + nnniKcx)/(niKcx + neKi) and the pressure-diffusion coefficient
Dn

p = (m(niKcx +neKi))−1. Inserting Eq. (25) in the continuity equation (Eq. (14)) leads
to the so-called pressure-diffusion equation:

∇ · (nn,eqVi − Dn
p∇pn,f − Dn

p∇pn,k − Dn
p∇ · Πn,k) = −S ni . (26)

Eq. (26) is a single convection-diffusion equation that is solved for the fluid neutral
pressure pn,f . The neutral density follows from the ideal gas law where we assume
ion-neutral thermal equilibrium, i.e., pn,f = nnTi.
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3.2.2. Model 2: continuity and parallel momentum equation
For the second model, we solve the continuity equation (Eq. (14)) together with the

component of the momentum equation (Eq. (16)) parallel to the magnetic field. For the
expression of the fluid stress tensor, we use Chapman-Enskog’s closure method [32]
(based on the charge-exchange collision frequency). This gives

Πn,f = −ηn
(
∇Vn + (∇Vn)T − 2

3
(∇ · Vn)I

)
, (27)

with the viscosity ηn = pn,f/(niKcx). Only the expected relevant curvilinear effects for
a dominant flow in the parallel direction are taken into account [9]. Then, the parallel
momentum equation (solved for the neutral parallel velocity un||) becomes

1
R
∇ ·

(
R

(
mnnun||Vn − ηn

(
∇un|| − un||

1
R
∇R

)))
= −∇||pn,f − ∇||pn,k − [∇ · Πn,k

]
|| − S mu|| ,

(28)
with R the local value of the major radius, the subscript || indicating the parallel com-
ponent of a vector, and the parallel momentum source S mu|| , given by

S mu|| = −mni(neKr + nnKcx)u|| + mnn(neKi + niKcx)un||. (29)

The neutral transport perpendicular to the magnetic field (the so-called radial and dia-
magnetic directions) is still governed by the pressure-diffusion law:

[nnVn]r,⊥ =
[
−Dn

p∇pn,f − Dn
p∇pn,k − Dn

p∇ · Πn,k

]
r,⊥ , (30)

with the subscripts r and ⊥ for respectively the radial and diamagnetic components.
Again, we still assume that pn,f = nnTi.

3.2.3. Model 3: continuity, parallel momentum and energy equation
For the last model, we again solve the continuity equation (Eq. (14)) with parallel

momentum equation (Eq. (28)), with pressure-diffusion transport perpendicular to the
magnetic field (Eq. (30)). However, we no longer assume ion-neutral thermal equilib-
rium. Then, the fluid pressure becomes pn,f = nnTn, with Tn the solution of the neutral
energy equation. Again, the Chapman-Enskog procedure is used for the fluid heat flux
vector. This gives

qn,f = −κn∇Tn, (31)

with the heat conduction coefficient κn = 5nnTn/(2mniKcx). Then, the energy equa-
tion (Eq. (21)), with the assumption of dominant neutral fluid velocity parallel to the
magnetic field, becomes

∇ ·
((

5
2

Tn +
m
2

u2
n||

)
nnVn − η

n

2
∇

(
u2

n||
)

+ ηnu2
n||

1
R
∇R − κn∇Tn + qn,k

)
= −S Ei . (32)

It should be noted that for this last model pn,k ≡ 0, due to the fact that the fluid pressure
corresponds to the total population, i.e.,

pn,f =
m
3

∫
v
||v − Vn||2 fn(v)dv. (33)
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3.2.4. Fluid neutral velocity distribution
To solve the micro equation (Eq. (8)), we need an expression for fn,f(r, v). In fact,

this fluid distribution depends on the chosen fluid model. However, this distribution
might become complicated, which makes the future integration in a more complete
plasma edge code suite difficult, as e.g., SOLPS-ITER [33]. Additionally, it is not sure
that there always exists a distribution [34]. Therefore, we assume that the fluid neutral
distribution corresponds to a perfect drifting Maxwellian for all fluid models, i.e.,

fn,f(r, v) = nn(r)M̃(v; Vn(r),Tn,f(r)), (34)

with Tn,f = pn,f/nn the neutral fluid temperature. In practice, fn,f(r, v) deviates from a
perfect drifting Maxwellian due to the fact that some terms are neglected in the fluid
moment equations (e.g., the convective momentum transport for the pressure-diffusion
approach) and the possible presence of viscous momentum transport and conductive
heat losses in the fluid equations. Hence, the perfect drifting Maxwellian assumption
is a zeroth order approximation of the complete Chapman-Enskog fluid distribution.

Summarized, we now have obtained a micro equation (Eq. (8)) with contributions
from the fluid neutrals in the density nn and distribution fn,f(v). These fluid properties
follow from one of the macro/fluid models (Sections 3.2.1-3.2.3). However, in these
fluid equations, at their turn, kinetic correction terms appear (kinetic pressure, stress
tensor and heat flux vector). These kinetic corrections are specific moments of the
kinetic distribution. This means that we have obtained a set of coupled kinetic (micro)
and fluid (macro) equations. In the next section, we define the boundary conditions.

4. Micro-macro decomposition of the boundary conditions

In this section, we repeat the same micro-macro decomposition procedure for the
boundary conditions. First, we present the boundary condition of the full kinetic equa-
tion (Eq. (1)) in Section 4.1. Subsequently, we perform the micro-macro decomposition
to obtain boundary conditions for the micro equation (Eq. (8)) in Section 4.2 and for
the macro models (Sections 3.2.1-3.2.3) in Section 4.3.

4.1. Kinetic boundary condition

The emitted neutral particle flux at a certain boundary point consists of a recycled
and reflected part. With the recycled part, we mean the fraction due to the recombina-
tion of ions and electrons at the surface. The recycling coefficient Ri(rb) (with rb a point
at the boundary, i.e., rb ∈ ∂D) gives the probability that the particle is recycled, hence,
1−Ri(rb) of the incident plasma is absorbed at location rb. The distribution of the inci-
dent ions is fi,b(rb, v′), which is a truncated Maxwellian ( fi,b(rb, v′) ≡ 0, ∀v′·ν(rb) > 0,
with ν(rb) the surface normal unit vector pointing inward the plasma region) possibly
accelerated by the sheath potential if the magnetic field is not perfectly aligned to the
boundary surface [35]. Besides the incident plasma, there are also incident neutrals
that are reflected (with probability Rn(rb)). Finally, the reflection kernel R(rb; v′ → v)
gives the velocity distribution of the recycled/reflected particles if the incident parti-
cle velocity is v′. Because the recycling/reflection probability is already contained in
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Ri(rb) and Rn(rb), we know that
∫

v·ν(rb)>0 R(rb; v′ → v)dv = 1, with
∫

v·ν(rb)>0 . . . dv the
integral over {v ∈ R3|v · ν(rb) > 0}.

Then, the kinetic boundary condition becomes

fn(rb, v)(v·ν(rb)) = −
∫

v′·ν(rb)<0
R(rb; v′ → v)(Ri(rb) fi,b(rb, v′)︸             ︷︷             ︸

recycled

+ Rn(rb) fn(rb, v′)︸             ︷︷             ︸
reflected

)(v′·ν(rb))dv′,

for v · ν(rb) > 0, rb ∈ ∂D, (35)

with
∫

v′·ν(rb)<0 . . . dv′ the integral over {v′ ∈ R3|v′ · ν(rb) < 0}.
Now, we also apply the micro-macro decomposition to the boundary condition.

4.2. Micro/kinetic part

Inserting Eq. (6) in Eq. (35) and rearranging the terms, gives

fn,k(rb, v)(v · ν(rb)) = −S −b (rb, v) + S +
b (rb, v) −

∫
v′·ν(rb)<0

R(rb; v′ → v)Rn(rb) fn,k(rb, v′)(v′ · ν(rb))dv′,

for v · ν(rb) > 0, rb ∈ ∂D, (36)

with S −b (rb, v) and S +
b (rb, v) the kinetic surface sources arising from the fluid part of

the distribution, given by

S −b (rb, v) = fn,f(rb, v)(v · ν(rb)), (37)

S +
b (rb, v) = −

∫
v′·ν(rb)<0

R(rb; v′ → v)(Ri(rb) fi,b(rb, v′) + Rn(rb) fn,f(rb, v′))(v′ · ν(rb))dv′.(38)

The last term of Eq. (36) corresponds to the reflection of kinetic neutrals.

4.3. Macro/fluid part

For the macro/fluid equations, we impose boundary fluxes, i.e., particle, momentum
and energy fluxes for the corresponding equations. These boundary fluxes follow from
the particular moments of Eq. (36):

Γn
µ(rb) =

[
Γn(rb)

(
Γn

m(rb)
)T Qn(rb)

]T

=

∫
v′·ν(rb)<0

µ(v′) fn,f(rb, v′)(v′ · ν(rb))dv′︸                                             ︷︷                                             ︸
incident fluid neutrals

−
∫

v·ν(rb)>0
µ(v)

(∫
v′·ν(rb)<0

R(rb; v′ → v)(Ri(rb) fi,b(rb, v′) + Rn(rb) fn,f(rb, v′))(v′ · ν(rb))dv′
)

dv︸                                                                                                                          ︷︷                                                                                                                          ︸
recycled/reflected fluid neutrals

+Γn
µ,k(rb), (39)
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with µ(v) defined in Eq. (11), Γn(rb) = Γn(rb) · ν(rb), Γn
m(rb) = Γn

m(rb) · ν(rb) and
Qn(rb) = Qn(rb) · ν(rb) respectively the particle, momentum and energy flux density
(with Γn, Γn

m and Qn defined in Eqs. (14)-(16),(21)), and

Γn
µ,k(rb) =

∫
v′·ν(rb)<0

µ(v′) fn,k(rb, v′)(v′ · ν(rb))dv′︸                                             ︷︷                                             ︸
incident kinetic neutrals

−Rn(rb)
∫

v·ν(rb)>0
µ(v)

(∫
v′·ν(rb)<0

R(rb; v′ → v) fn,k(rb, v′)(v′ · ν(rb))dv′
)

dv︸                                                                                              ︷︷                                                                                              ︸
reflected kinetic neutrals

,(40)

the kinetic corrections in the fluid boundary conditions. The particle flux density
is imposed for the continuity and pressure-diffusion equation (respectively Eq. (14)
and Eq. (26)), the parallel component of the momentum flux density for the parallel
momentum equation (Eq. (28)), and the energy flux density for the energy equation
(Eq. (32)).

With the definition of micro and macro boundary conditions, we have obtained a
closed micro-macro model that can be solved. Section 5 deals with the MC simulation
for the micro part and Section 6 discusses the global solution procedure for the system
of coupled fluid-kinetic equations.

5. Monte Carlo simulation of the kinetic part

The MC procedure, as implemented in the EIRENE code [31], exploits the linear-
ity of the Boltzmann equation (Eq. (1)) due to the fact that the neutral particles only
interact with the plasma background, which can be considered as fixed from the neutral
point of view. Therefore, the neutral paths are treated as independent non-interacting
trajectories and the code can be easily parallellized. The default EIRENE analog simu-
lation of an individual particle trajectory consists of the following steps: 1) sample the
initial position and velocity based on the source distributions (in the volume or at the
boundary surface), 2) calculate the particle trajectory until the next event (a collision in
the domain or at a boundary surface), 3) determine if the particle is absorbed, and 4) if
the particle is not absorbed, re-sample the velocity and go back to step 2, otherwise, the
trajectory is ended. This process is repeated (possibly in parallel) for the total amount
of particles N.

Each particle has a weight w, which can vary on the particle trajectory. This weight
determines how much the particle contributes to the estimates of the outputs of interest,
which are called tallies in MC terminology, see Section 5.4. With analog simulation,
we mean that the particle is launched with initial weight w0 and this weight does not
alter on the particle trajectory. At a collision event at location r, the particle is ab-
sorbed with probability Ra(r)/Rt(r), with Ra(r) and Rt(r) respecitvely the absorption
and total reaction rate. The initial weights are mostly one, except when importance
sampling [36] is used. For the latter technique, the particle position and velocity are
sampled from an alternative distribution and the particle gets the ratio of the original
and sampled distribution as initial weight. Besides the analog simulation, it is also
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possible to, e.g., rescale the particle weight on its trajectory to account for absorption
events, instead of immediately ending the particle trajectory. See, e.g., Ref. [37] for an
overview of different simulation strategies.

The same steps can be found in the MC procedure for the micro equation in the
hybrid model (Eq. (8) with boundary condition (36)). However, there are significant
differences that we highlight in this section.

The total position- and velocity-dependent source S k(r, v) for the micro equation
can be written as

S k(r, v) = S v( fn,f(r, v)) + (S +
b (r, v) − S −b (r, v))δ(r ∈ ∂D, v · ν(r) > 0), (41)

with S v( fn,f(r, v)) the volumetric source (defined in Eq. (8)), S +
b (r, v) and S −b (r, v)

respectively the magnitude of the positive and negative boundary source (defined in
Eq. (36)), and δ(r ∈ ∂D, v·ν(r) > 0) the Dirac delta function (δ(r ∈ ∂D, v·ν(r) > 0) ≡ 0
if r < ∂D or v · ν(r) < 0).

To sample from this source, we use the stratified sampling technique [38, Sec-
tion 4.3]. This means that the source is priori subdivided in different sub-sources,
which are called strata. For the hybrid simulation, we distinguish two strata: a stratum
for the positively weighted particles S +

k (r, v) and a stratum for the negatively weighted
particles S −k (r, v), given by

S +
k (r, v) = S +

v ( fn,f(r, v)) + S +
b (r, v)δ(r ∈ ∂D, v · ν(r) > 0), (42)

S −k (r, v) = S −v ( fn,f(r, v)) + S −b (r, v)δ(r ∈ ∂D, v · ν(r) > 0), (43)

with S +
v ( fn,f(r, v)) and S −v ( fn,f(r, v)) defined in Section 5.1. The corresponding source

strengths (integrals over the velocity space) become

Q+
k (r) =

∫
v

S +
k (r, v)dv = Q+

v (r) + Q+
b (r), (44)

Q−k (r) =

∫
v

S −k (r, v)dv = Q−v (r) + Q−b (r), (45)

with

Q±v (r) =

∫
v

S ±v ( fn,f(r, v))dv, (46)

Q±b (r) =

∫
v

S ±b (r, v)δ(r ∈ ∂D, v · ν(r) > 0)dv, (47)

where the superscript + refers to the positive stratum and − to the negative stratum.
Due to the linearity of the micro equation, the positive and negative stratum can be
treated independently with N+ particles for the positive stratum and N− particles for
the negative stratum. With a probability

∫
D Q±v (r)dr/(

∫
D Q±v (r)dr +

∫
D Q±b (r)dr) (with∫

D . . . dr the volume integral over the domain D) the initial particle position and veloc-
ity are sampled from the volumetric source. Otherwise, the particle originates from a
boundary source.

We elaborate the sampling procedure for the volumetric source in Section 5.1 and
for the boundary source in Section 5.2. In Section 5.3, we explain the recommended
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method to simulate the particle trajectories. Finally, the MC estimators for the output
quantities of interest, i.e., the kinetic contributions in the macro/fluid equations, are
defined in Section 5.4.

5.1. Sampling from volumetric sources

The volumetric source for the micro equation (defined in Eq. (8) with Eq. (2) for
S ( fn,f(r, v))) consists of different contributions

S v( fn,f(r, v)) = S r(r, v) − S i( fn,f(r, v)) + S cx( fn,f(r, v)) + S t( fn,f(r, v)), (48)

where the different contributions are given by

S r(r, v) = f̃i(r, v)ni(r)ne(r)Kr(r), (49)
S i( fn,f(r, v)) = fn,f(r, v)ne(r)Ki(r), (50)

S cx( fn,f(r, v)) = ( f̃i(r, v)nn(r) − fn,f(r, v))ni(r)Kcx(r), (51)
S t( fn,f(r, v)) = −v · ∇ fn,f(r, v). (52)

It should be noted that S r(r, v), S i( fn,f(r, v)) > 0, ∀r ∈ D, v ∈ R3, whereas S cx( fn,f(r, v))
and S t( fn,f(r, v)) can be both positive and negative. Because we assume a perfect drift-
ing Maxwellian for fn,f(r, v) (see Eq. (34)), the source contribution S t( fn,f(r, v)) can be
written as

S t( fn,f(r, v)) = −M̃(v; Vn(r),Tn,f(r))

 3∑
i=1

viAiM(r) +

3∑
i=1

3∑
j=1

(viv jAiM j(r) + viv2
j AiM j j(r))

 ,
(53)

with vi the i-th component of the particle velocity vector defined in an arbitrary orthog-
onal coordinate system. The coefficients in Eq. (53) are given by

AiM = nn

− 3
2Tn,f

+
m

2T 2
n,f

||Vn||2
∇iTn,f − m

Tn,f
Vn · ∇iVn

 + ∇inn, (54)

AiM j = nn

− m
T 2

n,f

un j∇iTn,f +
m

Tn,f
∇iun j

 , (55)

AiM j j = nn
m

2T 2
n,f

∇iTn,f , (56)

with uni and ∇i the i-th component of respectively the neutral fluid velocity vector and
the gradient. We omit the spatial dependence in the notation. Writing S t( fn,f(r, v)) as
a sum of drifting Maxwellians multiplied by a certain product of the particle velocity
components facilitates the particle velocity sampling, see Section 5.1.2.

Now, we define the volumetric sources for the positive and negative stratum in
Eqs. (42)-(43) as

S +
v ( fn,f(r, v)) = S r(r, v) + S +

cx( fn,f(r, v)) + S +
t ( fn,f(r, v)), (57)

S −v ( fn,f(r, v)) = S i(r, v) + S −cx( fn,f(r, v)) + S −t ( fn,f(r, v)), (58)
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with superscript + for the positive part and superscript - for the negative part of a certain
source contribution. To exactly determine these contributions, we define the following
operators on a function f (x):

[
f (x)

]
+

∆
=

 f (x) if f (x) > 0,
0 else,

[
f (x)

]
−

∆
=

− f (x) if f (x) < 0,
0 else.

(59)

Then, the unknown terms in Eqs. (57)-(58) can be written as

S +
cx( fn,f(r, v)) =

[
S cx( fn,f(r, v))

]
+ , (60)

S −cx( fn,f(r, v)) =
[
S cx( fn,f(r, v))

]
− , (61)

S +
t ( fn,f(r, v)) = M̃(v; Vn(r),Tn,f(r))

 3∑
i=1

[viAiM(r)]− +

3∑
i=1

3∑
j=1

([
viv jAiM j(r)

]
− +

[
viv2

j AiM j j(r)
]
−
) ,(62)

S −t ( fn,f(r, v)) = M̃(v; Vn(r),Tn,f(r))

 3∑
i=1

[viAiM(r)]+ +

3∑
i=1

3∑
j=1

([
viv jAiM j(r)

]
+

+
[
viv2

j AiM j j(r)
]
+

) .(63)

The corresponding source strengths are

Q+
v (r) =

∫
v

S +
v ( fn,f(r, v))dv = Qr(r) + Q+

cx(r) + Q+
t (r), (64)

Q−v (r) =

∫
v

S −v ( fn,f(r, v))dv = Qi(r) + Q−cx(r) + Q−t (r), (65)

with the different contributions defined as

Qr(r) = ni(r)ne(r)Kr(r), (66)
Qi(r) = nn(r)ne(r)Ki(r), (67)

Q±cx(r) =

∫
v

S ±cx( fn,f(r, v))dv, (68)

Q±t (r) =

∫
v

S ±t ( fn,f(r, v))dv. (69)

In Section 5.1.1, we explain the sampling process to determine the initial parti-
cle position. Subsequently, the particle velocity is determined, as explained in Sec-
tion 5.1.2. Then, the particle gets also an initial weight, which is positive for the
positive stratum and negative for the negative stratum. Although the particle can be
launched now, it happens that the initial position and velocity are rejected and the
sampling procedure is repeated. This rejection sampling algorithm is presented in Sec-
tion 5.1.3.

5.1.1. Initial position
The plasma edge domain is subdivided in ND volumetric grid cells. All variables

are discretized in the cell centers. In cell i, the volumetric source is approximated by
the midpoint rule:

Q±v,i =

∫
Di

Q±v (r)dr ≈ Q±v (ri)Vi, (70)
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with
∫

Di
. . . dr the integral over the cell volume, ri the coordinate of the cell center and

Vi the cell volume. The + and - sign are used for respectively the positive and negative
stratum. This ± shorthand notation is also sometimes used in upcoming sections. The
ratio Q±v,i/

∑ND
j=1 Q±v, j gives the probability that the particle is created in cell i. Then, the

initial position is sampled uniformly in the cell volume. The resulting position in cell i
is indicated with r̃.

5.1.2. Initial velocity and weight
After determining the initial position, we sample from which source contribution

the particle originates. With a probability Q±c (ri)Vi/Q±v,i, the particle originates from
contribution c, with c = r for the recombination term, c = i for the ionization term,
c = cx for the charge-exchange contribution and c = t for the fluid transport source
(see Eqs. (64)-(65) for the definition of the contributions).

Now, we distinguish four different source origins:

1. Recombination (c = r). As can be seen in Eq. (48), the particle velocity needs
to be sampled from the ion distribution f̃i(ri, v), which is assumed to be a per-
fect drifting Maxwellian (see Eq. (4)). Hence, the velocity components in three
orthogonal directions have to be sampled each from a normal distribution with
average u j(ri) and standard deviation

√
Ti(ri)/m, with index j indicating the di-

rection. The particle gets initial weight w0 = 1.
2. Ionization (c = i). As can be seen in Eq. (48), the particle velocity has to be

sampled from the fluid neutral distribution, which we also assume to be a perfect
drifting Maxwellian (see Eq. (34)). Hence, the velocity components in three
orthogonal directions have to be sampled each from a normal distribution with
average un j(ri) and standard deviation

√
Tn,f(ri)/m, with index j indicating the

direction. The particle gets initial weight w0 = −1, which is negative because
the particle originates from the negative stratum, see Eq. (58).

3. Charge exchange (c = cx). From Eqs. (48), (60)-(61), it can be seen that
f̃i(ri, v)nn(ri)ni(ri)Kcx(ri) ≥ S +

cx( fn,f(ri, v)) and fn,f(ri, v)ni(ri)Kcx(ri) ≥ S −cx( fn,f(ri, v)),
∀v ∈ R3. This condition permits the use of the so-called rejection sampling
technique [39]. For the positive stratum, we sample the velocity from the ion
drifting Maxwellian distribution, whereas we sample from the neutral drifting
Maxwellian distribution for the negative stratum. Hence, the sampling distribu-
tions in cell i are defined as

S +
cx,s(ri, v) = f̃i(ri, v)nn(ri)ni(ri)Kcx(ri), (71)

S −cx,s(ri, v) = fn,f(ri, v)ni(ri)Kcx(ri). (72)

We indicate the resulting sampled velocity with ṽ. Then, with a probability
S ±cx(ri, ṽ)/S ±cx,s(ri, ṽ) the velocity is accepted. Otherwise, the velocity is sam-
pled again from the ion (+) or neutral (-) drifting Maxwellian distribution, until
the velocity is accepted. The particle gets initial weight w0 = ±1, with the + sign
for the positive stratum and the - sign for the negative stratum.

4. Fluid transport (c = t). From Eqs. (62)-(63), it can be seen that the fluid transport
source consists of the sum of drifting Maxwellians multiplied by the particle
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velocity components to a certain power. To sample from this fluid transport
source contribution, we first determine from which term the particle originates.
Subsequently, we sample the particle velocity from the corresponding (truncated)
Maxwellian multiplied by a certain product of the particle velocity components.
Below, we explain this sampling process in more detail.
In general, we can write Eqs. (62)-(63) as

S ±t,i(v) =

66∑
j=1

Q±t,i, jCi, jM̃(v; Vn(ri),Tn,f(ri))
3∏

k=1

vn( j,k)
k H(vk; j, k), (73)

with n( j, k) = 0, . . . , 3 a certain power depending on the particular term. The
definition of the function H(vk; j, k) depends on the specific value of j and k.
There are three options:

H(vk; j, k) = 1 ∀vk ∈ R, H(vk; j, k) =

0 if vk < 0,
1 if vk ≥ 0,

H(vk; j, k) =

1 if vk ≤ 0,
0 if vk > 0.

(74)
The first option only occurs when n( j, k) = 0. Finally, the constant Ci, j guaran-
tees that the velocity distribution is normalized, i.e.,

Ci, j =
1∫

v M̃(v; Vn(ri),Tn,f(ri))
∏3

k=1 vn( j,k)
k H(vk; j, k)dv

. (75)

The ratio Q±t,i, j/
∑66

k=1 Q±t,i,k represents the probability that the velocity is sampled
from the j-th contribution. The three orthogonal velocity components are sam-
pled independently from the following probability density function:

p(vk; i, j, k) =
vn( j,k)

k N(vk; unk(ri),
√

Tn,f(ri)/m)H(vk; j, k)∫ ∞
−∞ vn( j,k)

k N(vk; unk(ri),
√

Tn,f(ri)/m)H(vk; j, k)dvk

, (76)

with N(v; u, σ) the normal distribution with average u and standard deviation
σ. For n( j, k) = 0, we have to sample from a complete normal distribution. For
n( j, k) = 1, . . . , 3, we have to sample from a truncated normal distribution (vk ≤ 0
or vk ≥ 0). There are no direct sampling formulas for n( j, k) = 1, . . . , 3. Hence,
we use the method of importance sampling [36]. The idea is to sample from an
alternative distribution p∗(vk; i, j, k) and to assign an initial weight to the particle
that differs from ±1, i.e.,

w0 = ±
∏3

k=1 p(vk; i, j, k)∏3
k=1 p∗(vk; i, j, k)

, (77)

with + for the positive and − for the negative stratum. Below, we determine an
expression for p∗(vk; i, j, k) and we explain how to sample from this alternative
distribution.
Direct sampling from p(vk; i, j, k), given by Eq. (76), becomes feasible for n( j, k) =

1, . . . , 3 when unk(ri) = 0. Hence, we sample from the alternative distribution

p∗(vk; i, j, k) =
vn( j,k)

k N(vk; 0,T ∗)H(vk; j, k)∫ ∞
−∞ vn( j,k)

k N(vk; 0,T ∗)H(vk; j, k)dvk

, (78)
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Table 1: Coefficients A(n) to calculate the alternative temperature with Eq. (79).

A(1) A(2) A(3)
unl(ri)vl < 0 0.88 0.85 0.84
unl(ri)vl > 0 0.65 0.57 0.52

with the alternative temperature T ∗. The temperature is adapted to obtain an al-
ternative distribution p∗(vk; i, j, k) that is close to the original distribution p(vk; i, j, k).
This is accomplished by using the following ansatz for T ∗:

T ∗ =
Tn,f(ri)

1 ± A(n( j, k))unk(ri)/
√

2Tn,f(ri)/m
, (79)

with the plus sign in the denominator to sample a negative velocity (vk < 0) and
the minus for a positive velocity (vk > 0) and the values for A(n) given in Table 1.
This alternative distribution limits the variance of the initial weight in the range
0 ≤ |unk(ri)| ≤

√
2Tn,f(ri)/m [31].

The resulting sampled velocity component becomes

ṽk = ±
√√√

2T ∗

m

n( j,k)+1∑
l=1

ρ2
l , (80)

with ρl a standard normally distributed random number.

The sampled particle velocity is indicated with ṽ.

5.1.3. Reducing the cancellation error
Now we have sampled the initial particle position, velocity and weight, it is in

principle possible to immediately launch the particle. However, this leads to a a large
cancellation error. With cancellation error, we mean the fact that the results for the
quantities of interest from the MC simulation for the positive and negative stratum
become almost equal, but with an opposite sign. This leads to a large statistical error
on the net result. In Fig. 2, we illustrate this by plotting the velocity dependence of the
volumetric source distribution in a single direction for certain parameter values. E.g.,
for v1 ≈ −1 · 104 m/s, the magnitude of both S +

v and S −v becomes large. Consequently,
there is a large probability to generate a particle with a velocity component around this
value. However, the positive and negative contributions will more or less cancel each
other in the overall result.

To overcome this issue, we elaborate a method to sample from [S v(r, v)]+ for the
positive stratum and [S v(r, v)]− for the negative stratum (with the square bracket op-
erators defined in Eq. (59)). Then, we sample immediately from the blue solid curve
in Fig. 2. Due to the complexity of [S v(r, v)]±, we do not sample directly from this
distribution, but we use the rejection sampling technique. We sample the position and
velocity as explained in Sections 5.1.1-5.1.2. This results in the position r̃ and velocity
ṽ. Subsequently, we calculate

η± = [S v (̃r, ṽ)]±/S ±v (̃r, ṽ). (81)
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Figure 2: Volumetric source distribution at a fixed location as a function of the single velocity component v1
for v2 = v3 = 0. The chosen parameter values are Kr = Ki = 0, Kcx = 10−14 m3/s, ni = ne = nn = 1021 m−3,
u1 = 1 000 m/s, un1 = 500 m/s, u2 = u3 = un2 = un3 = 0, Ti = Te = Tn,f = 1 eV, ∇1nn = 6 · 1022 m−4,
∇1un1 = 105 s−1 and ∇1Tn,f = 15 eV/m. All gradients in the second and third direction are zero.

The value of η± gives the probability that the sampled position and velocity are ac-
cepted and the particle is launched. Otherwise, we sample again from S ±k (r, v), as
defined in Eqs. (42)-(43). Note that it is possible that the particle now originates from
a boundary source (Section 5.2).

It should be noted that also different expressions can be used for S ±v (r, v) instead of
Eqs. (57)-(58), as long as S +

v (r, v) ≥ [S v(r, v)]+ and S −v (r, v) ≥ [S v(r, v)]− ∀r ∈ D, v ∈
R3. However, the expressions given in this paper lead to a relatively large acceptance
rate and hence, a low computational cost for the sampling process.

Finally, also the total volumetric source strength Q±v,tot =
∫

D

∫
v [S v(r, v)]± drdv is

estimated as

Q̂±v,tot =< η± >
ND∑
i=1

Q±v,i, (82)

with < η± > the average value of η± for all rejection iterations for all particles and
Q±v,i given in Eq. (70). The hat on top of a variable means that it corresponds to an
MC estimate. This total volumetric source strength estimate is needed in Section 5.4
to scale the MC tallies.

5.2. Sampling from boundary sources

For the positive and negative boundary stratum we have respectively the boundary
source distribution S +

b (rb, v) and S −b (rb, v) with rb ∈ ∂D and v · ν(rb) > 0, defined in
Eq. (36). If the numerical grid consists of Nb boundary faces, the corresponding source
strengths at face j are approximated by the midpoint rule. The source strength of the
positive boundary stratum becomes

Q+
b, j =

∫
v·ν(rb, j)>0

S +
b (rb, j, v)dvA j = Q+

b,rec, j + Q+
b,refl, j, (83)
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with

Q+
b,rec, j = −Ri(rb, j)Vi(rb, j)·ν(rb, j)A j, Q+

b,refl, j = −Rn(rb, j)
∫

v′·ν(rb, j)<0
fn,f(rb, j, v′)(v′·ν(rb, j))dv′A j,

(84)
with rb, j the coordinate of the center of face j and A j the face area. For the negative
boundary stratum, the source strength becomes

Q−b, j =

∫
v·ν(rb, j)>0

S −b (rb, j, v)dvA j =

∫
v·ν(rb, j)>0

fn,f(rb, j, v)(v · ν(rb, j))dvA j, (85)

The integrals in Eqs. (84)-(85) can be calculated analytically for a perfect drifting
Maxwellian for fn,f(r, v) (see Eq. (34)). The ratio Q±b, j/

∑Nb
k=1 Q±b,k gives the probability

that the particle is born at face j. Then, the initial position is uniformly sampled at the
face.

Because of the Maxwellian ion and neutral distributions, the initial particle velocity
has to be sampled from a truncated Maxwellian. In Section 5.2.1, we consider the
positive stratum. The negative stratum is discussed in Section 5.2.2.

5.2.1. Positive stratum
For the positive stratum, with a probability Q+

b,rec, j/Q
+
b, j, with Q+

b,rec, j and Q+
b, j de-

fined in Eq. (83), the particle originates from the recycling source, which is already
present in a full kinetic simulation. In this case, the particle velocity is sampled at the
sheath entrance. The probability density function for the normal velocity component
vse,1 for the recycling source is given by

p+
rec(vse,1) =

vse,1N(vse,1; u1(rb, j),
√

Ti(rb, j)/m)∫ 0
−∞ vse,1N(vse,1; u1(rb, j),

√
Ti(rb, j)/m)dvse,1

, with vse,1 ≤ 0. (86)

The negative value of vse,1 means that the particle is flying towards the boundary sur-
face. Eq. (86) is similar as Eq. (76) for the power n = 1, but with ion macroscopic
properties instead of the neutral properties. Hence, we re-use the non-analog sampling
procedure from Section 5.1.2. The tangential velocity components vse,2 and vse,3 are
sampled from complete normal distributions with the ion properties. Next, the particle
is accelerated in the normal direction by the sheath potential. This leads to the parti-
cle velocity v =

[
v1 v2 v3

]T
. The tangential components remain unchanged, i.e.,

v2 = vse,2 and v3 = vse,3. The normal component becomes

v1 = −
√

v2
se,1 +

2
m
δ

pot
sh Te, (87)

with δpot
sh the sheath transmission coefficient.

For the reflected part (Q+
b,refl, j in Eq. (83)), the normal velocity component proba-

bility density function becomes

p+
refl(v1) =

v1N(v1; un1(rb, j),
√

Tn,f(rb, j)/m)∫ 0
−∞ v1N(v1; un1(rb, j),

√
Tn,f(rb, j)/m)dv1

, with v1 ≤ 0, (88)
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which is similar as Eq. (86), but with neutral bulk velocity and (fluid) temperature.
Again, the tangential velocity components are sampled from full normal distributions.
The resulting particle velocity for the positive stratum is oriented towards the boundary
surface. This implies that the reflection kernel is immediately applied, as explained in
Section 5.3.

5.2.2. Negative stratum
For the negative stratum, there is only a single contribution. Its normal velocity

component probability density function is given by

p−(v1) =
v1N(v1; un1(rb, j),

√
Tn,f(rb, j)/m)∫ ∞

0 v1N(v1; un1(rb, j),
√

Tn,f(rb, j)/m)dv1
, with v1 ≥ 0. (89)

Again, the non-analog sampling procedure from Section 5.1.2 is used with full normal
distributions (with fluid neutral properties) for the tangential velocity components. Be-
cause v1 ≥ 0, the particle is immediately sent into the plasma region without reflection.

5.3. Simulating the particle trajectories
At this point, we have determined the initial particle position, velocity and weight.

In contrast to the MC simulation of the full kinetic equation (Eq. (1)), there are no (vol-
umetric) scattering charge-exchange collisions for the hybrid micro equation (Eq. (8)).
Volumetrically, there only remains absorption with rate Rt(r), defined in Eq. (3). Whereas
the charge-exchange collision kernel is the stiff term in the full kinetic equation in terms
that it leads to very short times between two collision events, the charge-exchange
events are now mostly contained in the fluid part for the micro-macro model. This
means that the stiffness of the collision operator disappears in the micro-macro model
with this specific type of MC simulation. However, it should be noted that also the
micro-macro model might suffer from the stiffness of the collision operator for time-
dependent simulations, see, e.g., Ref. [20]. Time-dependent simulations are out of the
scope of this paper.

If we use the analog simulation strategy, which is the default simulation type in the
EIRENE code [31], as explained in the beginning of Section 5, the particle is rapidly
absorbed during the hybrid simulation due to the lack of scattering events. This leads
to very short particle trajectories. According to Ref. [37], it is not recommended to use
an analog simulation for absorption-dominated cases.

Instead of an analog simulation, we use a non-analog track-length type simula-
tion for the micro equation, where volumetric absorption is taken into account dur-
ing the particle trajectory. After crossing cell i, the particle weight is lowered to
w exp(−Rt(ri)di/||̃v||), with w the weight before entering cell i, di the traveled distance
in cell i and ṽ the particle velocity. From the moment the magnitude of the weight has
reached a user-imposed minimum value, the particle trajectory is ended.

When the particle hits a boundary surface, the reflection kernel is applied. In our
case, we use the TRIM code database similar as in the EIRENE code. More details
about the use of the TRIM database can be found in the EIRENE manual [31]. After
reflection at position rb, the particle weight is multiplied by Rn(rb) to take into account
the absorbed fraction.
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Finally, it should be noted that the reflection kernel is also applied to the boundary
source of the positive stratum (S +

b (rb, v)), as already mentioned in Section 5.2.1. How-
ever, for this source, the weight is not multiplied by Rn(rb) after reflection, because
the recycling and reflection coefficients, respectively Ri(rb) and Rn(rb), are already ac-
counted for in the source strengths (see Eq. (83)).

5.4. Estimating the tallies
Now, we are able to generate the particle trajectories from place of birth until death.

In this section, we elaborate the estimators for the kinetic quantities of interest that
appear in the macro/fluid equations, which are the kinetic pressure pn,k, stress tensor
Πn,k, heat flux vector qn,k and boundary flux densities Γn

µ,k.
According to Ref. [37], a track-length estimator in combination with a non-analog

track-length type simulation performs well with respect to the variance for a certain
computational time for absorption-dominated cases. Then, the estimate for a certain
macroscopic property Φ in cell i becomes

Φ̂±i =
1

N±
Q̂±t
Vi

N±i∑
k=1

µ(v±k )
1
||v±k ||

∫ d±k

0
w±k (s)ds

=
1

N±
Q̂±t
Vi

N±i∑
k=1

µ(v±k )
w±k,0

Rt(ri)

(
1 − exp

(
−Rt(ri)

d±k
||v±k ||

))
︸                                  ︷︷                                  ︸

w±k

, (90)

with k the particle index, superscript + for the positive stratum and - for the negative
stratum, N±i the total number of particle trajectories through cell i and d±k the distance
the particle with velocity v±k and weight w±k travels in the particular cell. Note that the
weight remains always positive for the positive stratum (w+

k ≥ 0) and negative for the
negative stratum (w−k ≤ 0). The weight of the particle when it enters the cell is w±k,0.
The moment corresponding to the tally is indicated with µ(v). The tally is scaled with
the total source estimate Q̂±t that follows from

Q̂±t = Q̂±v,tot +

Nb∑
j=1

Q±b, j, (91)

with the expression for Q̂±v,tot in Eq. (82). For upcoming expressions we use the notation
w±k as a shorthand notation, as indicated in Eq. (90). The total tally from the combined
positive and negative stratum becomes

Φ̂i = Φ̂+
i + Φ̂−i . (92)

The estimates of the total second order momentMk,i and heat flux vector qn,k,i in
cell i become

[
M̂±k,i q̂±n,k,i

]
=

1
N±

Q̂±t
Vi

N±i∑
k=1

m
[
v±k v±k

1
2 ||v±k ||2v±k

]
w±k . (93)

22



Then, the kinetic pressure and stress tensor tallies follow from

p̂±n,k,i =
1
3

trace
(
M̂±k,i

)
, Π̂±n,k,i = M̂±k,i − p̂±n,k,iI. (94)

For estimating the kinetic boundary flux density Γn
µ,k, j at face j, the particles score at

a boundary surface instead of in a volumetric cell. Hence, we use a collision estimator:

Γ̂±µ,k, j =
1

N±
Q̂±t
A j

N±j∑
k=1

µ(v±k ) w±k
v±k · ν(rb, j)
||v±k · ν(rb, j)||︸              ︷︷              ︸

w±k,b

, (95)

with N±j the total number of times the particles hit and leave the boundary face and
the moment vector µ(v) defined in Eq. (11). Again, we introduce a shorthand notation
(w±k,b).

6. Solution procedure for the coupled fluid-kinetic equations

The fluid equations are discretized on a staggered grid by means of finite volumes
with a first-order upwind scheme. With staggered grid, we mean that the scalar quan-
tities are discretized in the cell centers, whereas the vector quantities are discretized at
the cell faces. For the MC part, we need the fluid properties in the cell centers. Hence,
we use linear interpolation to obtain the staggered variables in the cell centers. For the
fluid equations, we use a sequential solver with a false-time-stepping procedure with
time step ∆t and implicit Euler time integration. In addition, under-relaxation is used
with a factor α. The restrictions for ∆t and α follow from the stability conditions for
the macro model discretization. In Section 7.1, we give the time-step and relaxation
values for the different simulations.

In every iteration, we solve a linearized correction equation for every (fluid) state
equation for the correction vector ∆Φn, with n the iteration number. In cell i, this
finite-volume discretized correction equation can be written as

∆Φn
i

∆t
Vi = Ri(Φn−1) +

∂Ri

∂Φ
(Φn−1)∆Φn, (96)

with Φn the vector of the particular state variable in the different cells for iteration n, Ri

the residual of the discretized equation and ∆Φn
i the correction in cell i. The updated

state becomes Φn = Φn−1 + α∆Φn.
The micro and macro equations are solved in an iterative way. We start from a

certain initial guess for the fluid and kinetic properties, e.g., the solution of the pure
fluid model without kinetic corrections. Then, an MC simulation of the micro part is
performed. Subsequently, the fluid state is updated using the obtained kinetic contribu-
tions. This process is repeated until the residuals of the fluid equations are statistically
fluctuating around a constant value. This indicates the end of the transient phase. From
that moment, we keep iterating and start averaging the output variables of interest. This
random noise averaging technique from Ref. [7] is an excellent method to eliminate the
noise from the final results.
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After a single MC simulation of the micro part, conditions (7) and (13) to guarantee
that the kinetic neutrals contain no net mass and particle flux are violated. Additionally,
for the model with energy equation (model 3), also condition (33), which imposes zero
kinetic pressure, is violated. In Ref. [20], the authors recommend to add a projection
step to guarantee that all conditions for this specific hybrid approach are fulfilled. This
projection step was not yet included in the hybrid simulations of Ref. [28], but is added
in this paper. The projection step alters the particle weights w±k , defined in Eq. (90)
as the weight of an entering particle multiplied by the weight reduction factor due to
absorption events, to w̃±k by solving following least-squares optimization problem:

min
w̃+

k ,w̃
−
k

1
2


N+

i∑
k=1

(w̃+
k − w+

k )2 +

N−i∑
k=1

(w̃−k − w−k )2

 s.t.
1

N+

Q̂+
t

Vi

N+
i∑

k=1

µf(v
+
k )w̃+

k +
1

N−
Q̂−t
Vi

N−i∑
k=1

µf(v
−
k )w̃−k = 0,

(97)
with µf(v) =

[
1 vT

]T
for the fluid models without neutral energy equation (models 1-

2) and µf(v) =
[
1 vT ||v||2

]T
for the model with energy equation (model 3). Whereas

the macro equations were already discretized in a conservative way by means of finite
volumes, the hard constraints in Eq. (97) now also guarantee conservation of mass,
momentum and energy of the coupled micro-macro system, at the expense of a bias
introduced by adapting the particle weights. With the objective function of Eq. (97),
we try to minimize the bias. The optimization problem of Eq. (97) has to be solved for
every grid cell in the interior of the domain, i.e., i = 1, . . . ,ND. The solution of this
optimization problem gives

w̃±k = w±k − λT 1
N±

Q̂±t
Vi
µf(v

±
k ), (98)

with the vector of Lagrange multipliers λ as the solution of

Aλλ =
1

N+

Q̂+
t

Vi

N+
i∑

k=1

µf(v
+
k )w+

k +
1

N−
Q̂−t
Vi

N−i∑
k=1

µf(v
−
k )w−k , (99)

with the matrix Aλ given by

Aλ =

 1
N+

Q̂+
t

Vi

2 N+
i∑

k=1

µf(v
+
k )µT

f (v+
k ) +

 1
N−

Q̂−t
Vi

2 N−i∑
k=1

µf(v
−
k )µT

f (v−k ). (100)

The elements of Aλ can easily be calculated during the MC simulation.
It is not required to save all particle weights. The adapted tally in cell i after the

projection step for a particular moment µ(v) becomes

Φ̃±i =
1

N±
Q̂±t
Vi

N±i∑
k=1

µ(v±k )w̃±k =
1

N±
Q̂±t
Vi

N±i∑
k=1

µ(v±k )w±k︸                   ︷︷                   ︸
Φ̂±i

−λT

 1
N±

Q̂±t
Vi

2 N±i∑
k=1

µ(v±k )µf(v
±
k )︸                            ︷︷                            ︸

µ̃±i

,

(101)
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where Φ̂±i corresponds to the MC estimate before the projection step and µ̃±i has addi-
tionally to be calculated during the micro simulation.

The process is repeated for the boundary cells, for which the least-squares opti-
mization problem becomes

min
w̃+

k,b,w̃
−
k,b

1
2


N+

j∑
k=1

(w̃+
k,b − w+

k,b)2 +

N−j∑
k=1

(w̃−k,b − w−k,b)2


s.t.

1
N+

Q̂+
t

A j

N+
j∑

k=1

µf(v
+
k )

w̃+
k,b

v+
k · ν(rb, j)

+
1

N−
Q̂−t
A j

N−j∑
k=1

µf(v
−
k )

w̃−k,b
v−k · ν(rb, j)

= 0, (102)

for all boundary faces j = 1, . . . ,Nb and w±k,b defined in Eq. (95). The adapted weights
become

w̃±k,b = w±k,b − λT 1
N±

Q̂±t
A j

1
v±k · ν(rb, j)

µf(v
±
k ), (103)

with λ the solution of(  1
N+

Q̂+
t

A j

2 N+
j∑

k=1

1
(v+

k · ν(rb, j))2µf(v
+
k )µT

f (v+
k )+

 1
N−

Q̂−t
A j

2 N−j∑
k=1

1
(v−k · ν(rb, j))2µf(v

−
k )µT

f (v−k )
)
λ

=

N+
j∑

k=1

1
v+

k · ν(rb, j)
µf(v

+
k )w+

k,b +

N−j∑
k=1

1
v−k · ν(rb, j)

µf(v
−
k )w−k,b. (104)

Then, the adapted kinetic boundary flux density for a certain moment µ(vk) becomes

Γ̃n±
µ,k, j = Γ̂n±

µ,k, j − λT

 1
N±

Q̂±t
A j

2 N±j∑
k=1

µ(v±k )
v±k · ν(rb, j)

µf(v
±
k ). (105)

In this paper, we do not solve the plasma equations. However, the numerical grid
is magnetic-field aligned and also typical for the disretization of the plasma equations.
This grid choice limits the numerical diffusion due to the plasma anisotropy. Hence,
the grid can be retained for future coupled fluid plasma – hybrid neutral simulations.
As future research, it might be recommended to explore a different discretization for
the plasma and neutral equations to increase the performance w.r.t. accuracy and com-
putational time.

7. Results

In this section, we illustrate the performance of the method. In Section 7.1, we
describe the test case. In Section 7.2, we evaluate the global balances for the solved
fluid moments during the iterative process and show that the models are conservative.
Next, we compare the resulting plasma sources for the full kinetic, full fluid (without
kinetic corrections) and hybrid simulations in Section 7.3. Finally, we assess the per-
formance of the hybrid approach by evaluating the reduction of the computational time
compared to an MC simulation of the full kinetic equation for the same statistical error
on a certain source in Section 7.4.
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7.1. Description of the test case

The test case is similar to the case from Ref. [28], i.e., a single divertor leg from a
slab geometry. The geometry is shown in Fig. 3(a). The fixed (toroidally symmetric)
background plasma state, which is typical for the high recycling regime, is plotted in
Figs. 3(b)-3(d). The magnetic pitch, which is the ratio of the poloidal (θ) component
and the total magnetic field, is 0.075 in the whole domain.
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(a) Sketch of the domain.
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Figure 3: Geometry and background plasma.

There are four boundaries: the divertor target (Zt = 0 m), the upstream boundary
(Zt = 0.5 m), the private flux boundary (R = 2.5 m) and the wall boundary (R = 2.6 m).
The magnetic field is aligned to the private flux and wall boundaries and we assume that
there is no sheath acceleration for these field-aligned boundaries (δpot

sh = 0 in Eq. (87)).
For the upstream and target boundaries, we take δpot

sh = 3.1. The recycling and reflection
coefficient, respectively Ri and Rn in Eq. (35), are everywhere 1, except at the upstream
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boundary with Rn = Ri = 0 and at the private flux boundary with Rn = 0.9. The latter
coefficient accounts for neutral pumping losses. As mentioned in Section 5.3, we use
the TRIM database for the reflection kernel (R(rb; v′ → v) in Eq. (35)). All boundaries
are made of carbon. The TRIM database also tabulates the probability of fast reflection.
The non-fast reflected particles are emitted as thermally released molecules. However,
for this simple test case, we assume that these molecules dissociate immediately by
means of Franck-Condon dissociation. The dissociated atoms are emitted isotropically
with an energy of 2 eV.

The grid consists of 50 cells in the poloidal (θ) direction, with an exponential re-
finement towards the target plate (widths of cells adjacent to the upstream and target
boundary are respectively 2.85 and 0.19 cm). In the radial (R) direction, the grid con-
sists of 40 equidistant cells. No under-relaxation or false-time stepping is needed to
converge the pure fluid models (no kinetic corrections) without energy equation (mod-
els 1-2), i.e., α = 1 and ∆t = ∞. This is different for the model with energy equation
(model 3) where we take α = 0.5 and ∆t = 10−5 s. These relaxation factors and time
steps are also used for the hybrid simulations. It should be noted that these numerical
parameters are case dependent. As future research, it is interesting to perform a detailed
stability analysis w.r.t. the different parameters in the equations. The MC simulation
of the full kinetic equation is performed with 106 particles. For the hybrid simulations,
we use 106 particles for both the positive and negative stratum for each iteration, and
start the iteration procedure from the converged pure fluid neutral solution.

In Section 7.3, we show the resulting plasma sources from the different models in
some relevant flux tubes to obtain a quantitative assessment of the different models. For
a slab geometry, this means that we plot the plasma sources as a function of the distance
to the target Zt at fixed radial distances. The flux tubes with their radial locations are
indicated in Fig. 3(a). The colors of the plasma sources in Section 7.3 correspond to
the colors of the flux tubes in Fig. 3(a).

7.2. Evalutation of the balances for the solved fluid moments
When a steady-state solution is reached, the residual Ri(Φn), defined in Eq. (96),

converges to machine accuracy. A finite-volume discretization of the macro part en-
sures a conservation of the solved fluid moments. This means that in steady-state fol-
lowing balance equation is fulfilled:

B(Φn) =

∣∣∣∣∣∣∣∣ 1∑ND
i=1 |Φn

iVi|

 ND∑
i=1

S i(Φn) −
Nb∑
j=1

F j(Φn)


∣∣∣∣∣∣∣∣ = 0, (106)

with S i(Φn) the source in cell i and F j(Φn) the outgoing boundary flux at face j. Al-
though, B(Φn) reaches machine accuracy for the pure fluid models, i.e., the solutions
of the macro equations of Section 3.2 without kinetic contributions, this is not the case
for the hybrid models due to the presence of the statistical noise. However, following
balance equation is fulfilled for every iteration for both the fluid and hybrid simulations:

C(Φn) =

∣∣∣∣∣∣∣∣ 1∑ND
i=1 |Φn

iVi|

 ND∑
i=1

(
S i(Φn−1) +

∂S i

∂Φ
(Φn−1)∆Φn

)
−

Nb∑
j=1

(
F j(Φn−1) +

∂F j

∂Φ
(Φn−1)∆Φn

)
−

ND∑
i=1

∆Φn
i

∆t
Vi


∣∣∣∣∣∣∣∣ = 0,

(107)
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which means that there is a balance for the linearized sources and fluxes. Fig. 4 shows
B(Φn) and C(Φn) as a function of the iteration number for both pure fluid and hybrid
simulations for the most advanced model with energy equation (model 3). This proves
the fact that the micro-macro scheme is conservative.
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(a) Pure fluid simulations.
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(b) Hybrid simulations.

Figure 4: Balances as a function of the iteration number: continuity (blue), momentum (red) and energy
(green). The solid and dashed lines represent respectively B(Φn) (Eq. (106)) and C(Φn) (Eq. (107)).

7.3. Plasma sources
Figs. 5-7 show the results for respectively the particle, parallel momentum and ion

energy source in the selected flux tubes. For the momentum and energy source, we
only show the results in the red flux tube at R = 2.55 m where these sources peak. The
results in the other flux tubes are qualitatively the same. Besides the hybrid solutions
with kinetic corrections averaged over a high number of iterations to obtain a negligible
statistical error on the final result, we also plot the deterministic fluid solutions.
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(a) Pure pressure-diffusion equation (model 1).
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Figure 5: Particle source in selected flux tubes: full kinetic MC solution (solid line), solution of the pure fluid
model (dashed line) and hybrid solution (circles). The colors correspond to the location of the flux tubes, as
indicated in Fig. 3(a).

Although the hybrid method in general succeeds to correct for the fluid errors, there
are some remaining hybrid-kinetic discrepancies. After averaging the solution over a
high number of iterations, the discretization error, finite-sampling bias and convergence
error are the only remaining numerical errors. In Ref. [28], we show that the hybrid
errors for the pure pressure-diffusion model (model 1, left hand side of Figs. 5-7) are
mainly caused by the discretization error. In Fig. 8, we illustrate this again for the
momentum and energy source by performing a grid refinement. The MC solution is
almost not influenced by the grid refinement. Hence, we only show the full kinetic
MC results on the 50 × 40 grid. The hybrid-kinetic discrepancies are much smaller
for the model with parallel momentum equation and ion-neutral thermal equilibrium
(model 2, middle of Figs. 5-7). For the model with energy equation (model 3, right
hand side of Figs. 5-7), there is a large remaining hybrid error for the ion energy source
(see Fig. 7(c)). To verify if this error is of numerical nature, we compare simulation
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Figure 6: Parallel momentum source in red flux tube at R = 2.55 m (see Fig. 3(a)): full kinetic MC solution
(solid line), solution of the pure fluid model (dashed line) and hybrid solution (circles).

results with different amounts of particles and on two grids.
According to Ref. [7], the sum of the finite-sampling bias and convergence error,

which we bluntly call the bias, is approximately inversely proportional to the number
of MC particles. Hence, if there is still a significant remaining bias for the hybrid result
in Fig. 7(c), then a variation of the number of particles should lead to a change in ion
energy profile. As can be seen in Fig. 9(a), this is definitely not the case and we can
conclude that the bias is not the cause for the hybrid-kinetic discrepancy in Fig. 7(c).

To estimate the discretization error, we perform the hybrid simulation on two dif-
ferent grids. Fig. 9(b) shows the results. Again, the differences for the results on both
grids are much smaller than the hybrid-kinetic discrepancy in Fig. 7(c). Hence, also
the discretization error is not the reason for the hybrid error.

From this analysis, we can conclude that the hybrid-kinetic discrepancy in Fig. 7(c)
is caused by a modeling error. By assuming a perfect drifting Maxwellian for the fluid
neutral distribution (see Eq. (34)), the hybrid model is not completely equivalent to
the kinetic equation. This issue is expected to disappear when using a fluid neutral
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Figure 7: Ion energy source in red flux tube at R = 2.55 m (see Fig. 3(a)): full kinetic MC solution (solid
line), solution of the pure fluid model (dashed line) and hybrid solution (circles).

distribution that exactly corresponds to the selected fluid model. A possible solution is
the use of Grad’s series expansion with Hermite polynomials for fn,f(r, v) to take into
account the viscous momentum and conductive heat transport [40]. We can conclude
that the use of a hybrid approach without an exact fluid neutral distribution expression
is here not recommended for model 3, as it only gives minor changes compared to the
pure fluid solution.

7.4. CPU time reduction

The objective of the hybrid approach is to reduce the CPU time compared to an MC
simulation of the full kinetic equation for the same statistical error on a certain quantity
of interest. We are mainly interested in the plasma sources and we define the statistical
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Figure 8: Grid refinement for the hybrid model with pure pressure-diffusion equation (model 1): full kinetic
MC solution on 50 × 40 grid (solid line), hybrid solution on 50 × 40 grid (dashed line) and on 100 × 80 grid
(circles). The results are plotted for the red flux tube, as indicated in Fig. 3(a).

error εs,S on an arbitrary source S (particle, momentum or energy) as

εs,S =

√√√ ND∑
i=1

σ2
S ,i, (108)

with σS ,i the local value of the standard deviation in the center of cell i. The sta-
tistical error of an MC simulation of the full kinetic equation (subscript K) can be
approximated as εs,S ,K ≈ AS ,K/

√
CPUK, with CPUK the CPU time and AS ,K a scaling

coefficient. This scaling law follows from the typical 1/
√

N statistical error scaling
and the assumption that CPUK ∼ N. According to Ref. [7], the statistical error for
a coupled finite-volume–MC simulation with averaging over I iterations scales with
1/
√

NI. We assume that the CPU time for the hybrid simulation (subscript H) scales
as CPUH ∼ NI. This scaling becomes valid when the cost of the fluid part and the
transient phase becomes negligible. Indeed, if we start from the pure fluid solution,
we can start averaging after a few iterations. Hence, the hybrid statistical error can be
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Figure 9: Ion energy source in red flux tube indicated in Fig. 3(a) from model with energy equation (model 3)
when varying the particle amount and grid size.

approximated as εs,S ,H ≈ AS ,H/
√

CPUH, and the ratio of the kinetic and hybrid CPU
time becomes

CPUK

CPUH
≈

(
AS ,K

AS ,H

)2

. (109)

Table 2 tabulates this ratio for the different models.
The pure pressure-diffusion model (1) is only able to slightly reduce the CPU time

for the same particle source statistical error, but the model is much slower for the other
sources. Due to large inaccuracies for the momentum and energy source from the pure
fluid solution (see left hand side of Figs. 6-7), the kinetic contribution becomes too
large to reduce the overall statistical error. A parallel momentum equation has to be
added to reduce the CPU time for the same momentum and energy source statistical er-
rors. Finally, the model with energy equation (3) clearly outperforms the other models
with respect to the statistical error reduction. However, it should be kept in mind that
the accuracy of model 3 for the ion energy source is still unsatisfactory (see Fig. 7(c)).
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Table 2: Ratio of CPU time of kinetic and hybrid simulations for the same statistical error on a certain source
(CPUK/CPUH) for the different hybrid models.

Particle source Parallel momentum source Ion energy source
Pure pressure-diffusion equation (model 1) 1.08 0.32 0.90

Continuity and parallel
momentum equation (model 2) 1.35 5.81 1.99
Continuity, parallel momentum
and energy equation (model 3) 5.34 27.56 23.91

Finally, we mention that simulations with pure fluid neutral models are at least an
order of magnitude faster than the kinetic MC simulations with a minimum number of
particles to reach a statistically stationary state when solving the coupled fluid plasma
– kinetic neutral equations. Pure fluid simulations are extremely useful for preliminary
fast parameter scans.

8. Conclusions and future work

We tested the micro-macro decomposition method of the kinetic equation for the
plasma edge atoms. We considered three macro/fluid models: (i) a pure pressure-
diffusion equation assuming equal ion and neutral temperatures; (ii) a continuity and
parallel momentum equation with pressure-diffusion transport only retained in the di-
rections perpendicular to the magnetic field lines, again with identical ion and neutral
temperatures; and (iii) the same as (ii), but with a separate neutral energy equation,
i.e., we no longer assume equal ion and neutral temperatures. By assuming a perfect
drifting Maxwellian for the fluid neutral distribution, we introduced a modeling error
compared to the full kinetic equation. Although the hybrid-kinetic discrepancies for
the plasma sources for the models without energy equation remain limited, there is a
significant remaining error for the ion energy source for the model with energy equa-
tion.

We have assessed the performance of the hybrid models on the basis of the CPU
time reduction compared to an MC simulation of the full kinetic equation for the same
statistical error on a certain source. We conclude that the accuracy of the underlying
fluid model is of crucial importance to substantially reduce the CPU time. Conse-
quently, the inaccurate pressure-diffusion model is not able to reduce the CPU time
regarding the parallel momentum and ion energy source statistical error. The model
with energy equation and including a projection step after each micro iteration gives
the largest CPU time reductions, i.e., approximately a factor of 5, 28 and 24 for respec-
tively the particle, parallel momentum and ion energy source statistical error.

As further research, the performance of the hybrid models has to be evaluated for
coupled plasma-neutral simulations. Besides that, the hybrid approach has to be as-
sessed for cases that include more extended physics. E.g., neutral-neutral collisions
have to be incorporated for high-density plasma simulations. It is expected that it is
much easier to handle these nonlinear neutral self-collisions with a (partially) macro-
scopic model instead of with a full kinetic approach. The mono-species simulation
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has to be extended towards multiple species (both atoms and molecules). The safest
option is to exclusively use the hybrid approach for the deuterium atoms. However,
(partially) deterministic models for the other species could further reduce the MC cal-
culation time. Especially, the CPU share of the deuterium molecules is significant and
a (partially) deterministic model might be beneficial.
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