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Abstract

Background The interaction between the muscle methylome and transcriptome is understudied during ageing and pe-
riods of resistance training in young, but especially older adults. More information is needed on the role of retained
methylome training adaptations in muscle memory to understand muscle phenotypical and molecular restoration after
inactivity or disuse.
Methods We measured CpG methylation (microarray) and RNA expression (RNA sequencing) in young (n = 5;
age = 22 ± 2 years) and older (n = 6; age = 65 ± 5 years) vastus lateralis muscle samples, taken at baseline, after
12 weeks of resistance training, after training interruption (2 weeks of leg immobilization in young men, 12 weeks
of detraining in older men) and after 12 weeks of retraining to identify muscle memory-related adaptations and reju-
venating effects of training.
Results We report that of the 427 differentially expressed genes with advanced age (FDR < 0.1), 71% contained dif-
ferentially methylated (dm)CpGs in older versus young muscle (FDR < 0.1, M-value difference >0.4). The more
dmCpGs within a gene, the clearer the inverse methylation–expression relationship. Around 73% of the age-related
dmCpGs approached younger methylation levels when older muscle was trained for 12 weeks. A second resistance
training period after training cessation increased the number of hypomethylated CpGs and upregulated genes in both
young and older muscle. We found indication for an epi-memory within pro-proliferating AMOTL1 in young muscle and
mechanosensing-related VCL in older muscle. For the first time, we integrate muscle methylome and transcriptome
data in relation to both ageing and training-induced/inactivity-induced responses and identify focal adhesion as an im-
portant pathway herein.
Conclusions This preliminary evidence indicates that previously trained muscle is more responsive to training than un-
trained muscle at methylome and transcriptome level and recurrent resistance training can partially restore
ageing-induced methylome alterations.
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Introduction

Age-related skeletal muscle decay is the consequence of pri-
mary and secondary ageing.1 The first is described as the in-
evitable deterioration of cellular structures and biological
functions with little chance of reversal and inter-individual
differences caused by genetic factors.2 Secondary ageing,
on the other hand, is the result of harmful lifestyle choices
and environmental factors. These harmful factors can influ-
ence epigenetic mechanisms, defined as events that regulate
gene expression without changing the DNA sequence. One of
the most studied epigenetic events is DNA methylation,3

which mostly refers to CpG methylation and implies the bind-
ing of a methyl group to a 50-cytosin-phosphate-guanine-30
dinucleotide (CpG). Hypermethylation of CpG-dense pro-
moter regions of actively transcribed genes has been associ-
ated with transcriptional repression, also known as ‘gene
silencing’.4 The methylome of ageing tissues is characterized
by global CpG hypomethylation, loci-specific differential
methylation and more divergence between DNA methylation
patterns of different individuals with the end result leading to
aberrant gene expression, reactivation of transposable ele-
ments and genomic instability.5,6 Age-related methylation
changes in muscle tissue, on the other hand, appear distinct
compared with other tissues.7 Recently, two genome-wide
DNA methylation analyses identified 55188 and 17 9949 dif-
ferentially methylated CpGs (dmCpGs) between old and
young skeletal muscle with most of them hypermethylated
in older adults. The integration between age-related muscle
methylome and transcriptome changes remains yet to be
studied and is a crucial step in understanding the molecular
mechanism behind muscle ageing.

As DNA methylation modifications are reversible,
adopting a healthy lifestyle could potentially restore the
age-associated damage to the muscle methylome and pro-
moting physical activity is one strategy to do this. For in-
stance, endurance exercise interventions are associated
with altered methylation levels in genes involved in metab-
olism, cardiovascular adaptations, inflammatory and immu-
nological processes, and muscle remodelling in young and
middle-aged muscle.10–13 More recently, methylome modifi-
cations comparing change of direction to straight line run-
ning also identified a more explicit hypomethylated
signature for change of direction running in genes within
protein binding, MAPK, AMPK, insulin, and axon guidance
pathways.14 These beneficial methylome adaptations could
even be passed on to later generations, as has been ob-
served in mice.15 In older muscle, lifelong physical activity
induced promoter hypomethylation of genes involved in en-
ergy metabolism, myogenesis, contractile properties, and
oxidative stress.16 The impact of resistance training (RT)
on the muscle methylome is less documented in literature,
especially in elderly, but it has been suggested that RT has

a distinct effect on the methylation status of, among other,
growth-related genes.13,17 Understanding the impact of RT
on the muscle methylome is important, as resistance exer-
cises can contribute to regaining muscle mass and strength
and should be part of the exercise programme designed to
counteract muscle ageing.

Nevertheless, lifelong training without training interrup-
tions seems utopian as training can be occasionally ceased
for various reasons. Fortunately, training-related muscle ad-
aptations, and especially strength gains, are preserved lon-
ger than the initial training period and are often more
rapidly regained following retraining.18–20 In addition, the
basal and acute RT-induced transcription of key genes in-
volved in muscular adaptations appears to be influenced
by a previous RT period.21 This so-called muscle memory
has been partially attributed to motor learning19 and linked
to the retention of myonuclei during muscle atrophy,22 as
well as to lasting epigenetic modifications.17 The slow re-
versibility of methylation has been, for instance, seen when
methylation changes in young skeletal muscle following
5 days of high-fat diet only partially and non-significantly
reversed after 6 to 8 weeks.23 The epigenetic retention of
prior external stimuli in a way that re-encountering these
stimuli later in life is associated with an enhanced muscle
phenotypical response compared with the initial response
(i.e. epi-memory24), has been described in relation to meta-
bolic (e.g. obesity25), catabolic (e.g. TNF-α26), and anabolic
(e.g. RT17) stimuli. As DNA methylation modifications are
transient in nature after one bout of exercise,27 the ques-
tion remains how long beneficial methylation alterations
due to an extended period of RT are retained and whether
multiple re-encounters are necessary to accumulate and
stabilize these changes. Recently, a number of genes were
identified in young skeletal muscle with a possible ‘epi-
memory’.17,28 These genes displayed hypomethylation after
7 weeks of RT and continued to be hypomethylated during
7 weeks of detraining, leading to enhanced gene expression
following retraining. The number of hypomethylated
dmCpGs following retraining was also twice the number
compared with following training, which coincided with
larger muscle growth.17 Our knowledge on epi-memory is,
however, still rudimentary and identifying genes that consti-
tute the epi-memory might provide crucial insights for the
future development of therapies that promote muscle re-
gain after inactivity.

Here, we use a training, immobilization and retraining re-
sistance exercise protocol in young men to identify muscle
memory-related genes at muscle methylome and tran-
scriptome level. In addition, we test the rejuvenating effect
of RT on the older skeletal muscle methylome and whether
these beneficial methylome adaptations are maintained
during detraining and promote an enhanced transcriptional
response during retraining.
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Methods

Subjects and experimental design

Nine older men, divided in an exercise group (n = 6, age:
66 ± 5 years, BMI: 26 ± 3 kg/m2; mean ± SD) and control
group (n = 3, age: 70 ± 4 years, BMI: 26 ± 2 kg/m2), and five
younger men (age: 22 ± 2 years, BMI: 24 ± 3 kg/m2) gave writ-
ten consent for this study after being fully informed. All men
were non-smoking, untrained, healthy individuals (exclusion
factors described in detail elsewhere29). The experimental
design of the study is displayed in Figure 1. One younger sub-
ject withdrew after the first training period for reasons unre-
lated to this investigation. Baseline and post-training samples
from this subject are included in the analysis. The study pro-
tocol was approved by the Medical Ethics Committee of the
Catholic University of Leuven (S59380) and is in accordance
with the Declaration of Helsinki.

Resistance training programme

A 12 week supervised RT programme was conducted as pre-
viously described.29 Briefly, three times a week, on
non-consecutive days, subjects performed eight exercises
targeting all major muscle groups of the upper and lower
body with load intensity gradually increasing every 4 weeks
(65% to 80% of one repetition maximum). The training load
was increased for each exercise when the final set comprised
more repetitions than the prescribed number. The vastus
lateralis muscle was specifically trained with a Signature
Series Plate Loaded Linear Leg Press and Insignia Series Leg

Extension machine (Life Fitness, Barendrecht, the
Netherlands). The same RT programme was used for training
and retraining phases with starting loads adapted to the
physical state at that time.

Training interruption

Young subjects
The right leg of the young subjects was immobilized with the
knee in nearly full extension for 2 weeks using a full leg cast
(foot included). Subjects were instructed to walk with
crutches during the immobilization phase. To prevent deep
vein thrombosis, subjects were screened for risk factors and
anticoagulant enoxaparin (40 mg per 0.4 mL per day,
Clexane®, Sanofi Belgium, Diegem, Belgium) was adminis-
tered daily via subcutaneous injection into the abdominal
skinfold.

Older subjects in the exercise group
The training programme was interrupted by a detraining
phase. Subjects were instructed not to engage in any struc-
tured strength or endurance exercises for 12 weeks and to re-
sume normal physical activities from before the start of the
study. To verify this, subjects weekly filled in a physical activ-
ity diary.

Skeletal muscle biopsy

Muscle biopsies were collected at baseline (left leg), ~72 h af-
ter the final RT session of the first training period (left leg), at
the end of week 12 from the detraining period (older

Figure 1 Experimental design. Five younger and six older subjects participated in a 12 week RT programme (training). Thereafter, the right leg of the
younger subjects was immobilized for 2 weeks (cast), whereas the older subjects ceased training for 12 weeks (detraining). A second 12 week
RT-period was provided following the casting/detraining phase (retraining). Muscle biopsies (image of a muscle) were taken before training, after train-
ing, after casting/detraining and after retraining. Three older subjects provided a muscle sample from before and after a 12 week period of normal
daily living (control group). Part of the biopsy was used to extract DNA and measure DNA methylation (image of a double strand). The other part
was used to extract RNA and perform RNA expression analysis (image of a single strand).
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subjects, right leg) or immediately after cast removal (youn-
ger subjects, right leg) and ~72 h after the final RT session
of the retraining period (right leg). The older control subjects
provided samples at the post-training (right leg) and
post-detraining (left leg) time point of the exercise group.
Samples were taken under local anaesthesia from the
mid-portion of the m. vastus lateralis with a 5 mm Bergström
needle,30 immediately cleaned of fat and connective tissue
and frozen in liquid nitrogen before being stored at �80°C
for further analysis.29 Subjects were asked not to participate
in moderate to vigorous physical activity and not to consume
alcohol in the 24 h before biopsy collection. Food intake dur-
ing the 72 h before biopsy collection was comparable be-
tween each time point within each subject.

DNA extraction and Illumina methylation assay

Genomic DNA was extracted from 15 to 20 mg muscle tissue
with the proteinase K method, which uses proteinase K and
lysis buffer. DNA was quantitated with the Qubit 2.0 Fluorom-
eter (Invitrogen). DNA samples were transferred to the Geno-
mics Core facility (UZ/KULeuven, Belgium) to measure DNA
methylation level at over 850 000 CpGs using the Illumina
Infinium MethylationEPIC BeadChip.

Pre-processing DNA methylation data

IDAT-files, containing raw intensity data from the EPIC
BeadChip, were pre-processed in R (version 3.6.1).31 Firstly,
the R/Bioconductor package minfi v1.30.031 was used to read
the IDAT files and perform quality control. None of the sam-
ples contained more than 10% of sites with detection P-
value > 0.05,32 and all samples were considered good quality
samples based upon clustering the log median intensities of
raw methylated and unmethylated values. Background cor-
rection was performed with Noob dye-bias normalization,33

implemented in minfi. Next, β-values, defined as the ratio
of the methylated probe intensity and the overall intensity,
with β = 0 indicating sites are completely unmethylated and
β = 1 expressing fully methylated sites,34 were extracted from
the normalized data. These β-values were subsequently nor-
malized with BMIQ,35 implemented in R/Bioconductor pack-
age wateRmelon v1.28.0,36 to correct for the different
design of type I and type II probes in the EPIC BeadChip, as
suggested by Liu et al.37 Finally, we filtered out 357 probes
that had failed in 20% of the samples based on detection P-
value > 0.05,32 20 655 probes that had failed to hybridize
based on a bead count <3 in 5% of the samples,32 97 253
probes that are cross-reactive or overlap with genetic vari-
ants based on the h19 genome38 and 206 probes with un-
known genomic location. Ultimately, 747 741 probes were
considered for downstream analyses, which was performed

on M-values, the log2 ratio of the intensities of methylated
probe versus unmethylated probe.39 Principal component
analysis (PCA) plots were able to cluster young and older
samples based on age, sample ID and timing in the interven-
tion (Supporting Information, Figures S1 and S2). To correct
for unwanted sources of variation, such as batch effects and
cell type heterogeneity within muscle tissue, we used the
package sva v.3.32.140 to perform surrogate variable analysis
(SVA) on the M-values of each subject group, while
protecting the information coming from the intervention
(variable of interest, included in the full model) and the
paired subject IDs (adjustment variable, included in the null
and full model). The number of surrogate variables per group
was estimated with the default ‘be’ approach.41 No SVA was
performed when comparing young to older muscle
methylome, as the function could not handle a design where
individuals were nested within groups.

Differential DNA methylation analysis

Differential DNA methylation analysis was performed in
Partek Genomics Suite V.7.0 (Partek Inc., St. Louis, MO,
USA). To identify age-related dmCpGs, we applied a mixed
model with methylation M-values as response variable, ‘time’
(baseline, post-training) and ‘group’ (younger subjects, older
subjects of the exercise group) as fixed factors and ‘subject
ID’ as random factor. We specifically interpreted the planned
contrasts ‘younger versus older subjects at baseline’ and
‘younger subjects at baseline versus older subjects at post-
training’. A CpG list was generated using Benjamini-
Hochberg’s42 false discovery rate (FDR) < 0.1 and difference
in M-values > 0.439 as cut-off rules. A histogram of P-values
for all 747 741 tests for the planned contrast ‘younger versus
older subjects at baseline’ can be found in Data S1a. To de-
termine within-group differences over time, three separate
mixed models were fitted (one for each subject group). Meth-
ylation M-values were entered into the model as response
variable, ‘time’ (all available time points) and surrogate vari-
ables as fixed factors and ‘subject ID’ as random factor. Con-
trasts were specified to study the different combinations of
the various time points. As an example, the histogram of P-
values for all 747 741 tests for the planned contrast ‘casting
versus retraining in young subjects’ can be found in Data
S4. Because only one CpG remained after FDR-control
and this part of the study is considered explorative in
nature,43 statistical significance was determined at P < 0.01
with a M-value difference threshold of 0.4. Probes were an-
notated based on ‘HumanMethylation850’ reference,
‘MethylationEPIC_v-1-0_B4’ annotation file, and hg19 ge-
nome build. Overlapping genes and gene regions were deter-
mined based on Ensembl Transcripts data release 75.
‘Promoter regions’ are defined in this study as the combina-
tion of TSS1500 (1500–201 base pairs upstream from the
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transcription start site), TSS200 (200–0 base pairs upstream
from the transcription start site), and the first exon
(50UTR + the first coding sequence). ‘Intragenic’ will be used
as the overlapping term for all exons (except for the first cod-
ing sequence), introns, regions between the transcription
start and end site of non-coding transcripts and 30UTR re-
gions. ‘Intergenic regions’ are regions between genes, not in-
cluding the promoter region. The relationship to CpG islands
(island, shore, shelf, and open sea) was determined with the
UCSC genome browser. We furthermore performed pathway
enrichment via a Fisher’s Exact test in Partek Pathway (Partek
Inc., St. Louis, MO, USA) based on the KEGG pathway data-
base. We restricted the analysis to pathways of minimal 10
and maximal 500 genes, as small pathways are redundant
with larger pathways and larger pathways overly general (e.
g. pathways in cancer), inflating their statistical significance.44

Finally, to find overlapping CpGs, genes and pathways follow-
ing each intervention phase, we used the Venn diagram tool
available via http://bioinformatics.psb.ugent.be/webtools/
Venn/. This tool was also consulted to find overlap between
dmCpGs of the present study and comparable studies.
Pearson correlations tests and Fisher’s exact tests were
respectively used to identify correlations and associations
between the overlapping datasets (with significance level
set at P < 0.05).

RNA extraction and sequencing

Total RNA was homogenized from 15 to 20 mg of muscle tis-
sue with silicon beads in 1 mL Trizol reagent (Invitrogen)
using a FastPrep-24 5G (MP Biomedicals) and extracted with
phase separation reagent 1-Bromo-3-chloropropane. RNA
concentration and purity (A260/230) were determined with
SimpliNano (Biochrom). RNA integrity was assessed with the
Agilent 2100 Bioanalyzer System and was at least 7.7 in all
samples. At the Genomics Core facility, sequencing libraries
were prepared with the QuantSeq 30 mRNA-Seq Library Prep
Kit FWD (Lexogen) and sequenced on a HiSeq 4000 Sequenc-
ing System (Illumina) using the HiSeq3000/4000 SR Cluster
and SBS Kit (Illumina).

Pre-processing RNA-sequencing data

Quality control of raw reads was performed with FastQC
v0.11.5. Adapters were filtered with ea-utils v1.2.2.18.
Splice-aware alignment was performed with the CRAN pack-
age Star v2.6.1b against the human reference genome hg19
based on annotations from Ensembl release 75. The number
of allowed mismatches was two. Reads that mapped to more
than one site to the reference genome were discarded. The
minimal score of alignment quality to be included in count
analysis was 10. Resulting SAM and BAM alignment files were

handled with Samtools v0.1.19.24.45 Quantification of reads
per gene was performed with HT-Seq count v0.5.3p3.46 Fur-
ther pre-processing was performed in R (version 3.6.1).47

Data quality assessment and count-based differential expres-
sion analysis of the 56 638 sequenced genes were carried out
with R/Bioconductor package DESeq2 v1.26.48 By inspecting
heatmaps of the count matrix and PCA plots, we detected
and excluded one outlier within the older exercise group
(post-retraining time point) (Figure S3). The sva package
(svaseq-function) was used in a similar way as described ear-
lier to detect unwanted variation in the normalized counts.
Low count genes were filtered with DESeq2’s independent fil-
tering technique, leaving 23 296, 24 661, and 19 211 genes
left for expression analysis in the young exercise, older exer-
cise, and older control groups, respectively. Results were gen-
erated on normalized counts, corrected for library size.

Differential RNA expression analysis

To test for any difference over the multiple time points, a
likelihood ratio test was performed via DESeq2, including
‘time’, surrogate variables and ‘subject ID’ in the full model
and surrogate variables and ‘subject ID’ in the reduced
model. Pairwise comparisons between time points were
analysed with Wald tests. Reported P-values were adjusted
for multiple testing with the Benjamini–Hochberg
procedure42 after assigning weights using Independent Hy-
pothesis Weighting (IHW package v1.6.049). Differentially
expressed genes (DEGs) are reported if FDR < 0.1 and the av-
erage read count ≥ 5. Overlap between methylation and ex-
pression data was determined with the Venn diagram tool
(cfr. supra).

Comparison with the MetaMEx meta-analysis

We ran the top 100 DEGs of each analysis in MetaMEx,50 a
tool combining transcriptome data from more than 90 hu-
man studies that allows to meta-analyse changes in single
genes across exercise and disuse studies. The training and im-
mobilization data of the younger men was, respectively,
cross-referenced with RT studies of 10 to 20 weeks
(n = 58)51–56 (Data S4h) and immobilization/bed rest studies
of 5 to 21 days (n = 42)10,57–60 (Data S4i) in healthy, seden-
tary/active, lean/overweight, younger men. MetaMEx does
not include retraining studies. Therefore, we report genes
that display the same expression response as RT studies in
MetaMEx or the opposite expression response compared
with disuse studies in MetaMEx (Data S4j). We
cross-referenced the (re-)training data of the older men with
RT studies of 12 to 24 weeks in healthy, sedentary and active,
lean or overweight, elderly men (n = 66)51,53,55,61–63 (Data
S2h and S2j). MetaMEx does not include detraining studies;
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instead, the detraining data of the older men are compared
with a 5 day bed rest study in elderly men (n = 10)57

(Data S2i).

Results

More hypomethylated CpGs and upregulated
genes in previously trained young muscle

A first training period affected methylation levels of 3623
CpGs in young skeletal muscle (P < 0.01, M-value
difference > 0.4) with an approximate 50/50-distribution of

hypomethylated versus hypermethylated CpGs (1822 vs.
1801) (Figure 2A, Data S4a). The dmCpGs were not overrep-
resented or underrepresented in any gene region or structure
(Figure 2B), thereby mirroring the distribution of the CpGs in
the whole genome (Data S4d). Interestingly, within
promoter-associated CpG islands, a higher number of CpGs
were hypomethylated (1326) compared with
hypermethylated (909), whereas in other areas, the number
of hypomethylated versus hypermethylated CpGs was more
equally distributed (Figure 2B). At transcriptional level, 11
genes were upregulated, and 16 genes were downregulated
following training (FDR < 0.1, average read count ≥ 5)
(Figure 2A, Data S4h). Ten of these 27 genes were differen-
tially expressed in the same direction as comparable training

Figure 2 (A) Number of hypomethylated and hypermethylated CpGs (P < 0.01, M-value difference > 0.4; no pattern) versus upregulated and down-
regulated genes (DEGs) (FDR < 0.1, average read count ≥ 5; dashed pattern) following training (n = 5), casting (n = 4) and retraining (n = 4) compared
with previous time point in young muscle. Venn diagrams displaying overlap between dmCpGS following training, casting, and retraining
(hypomethylated = green; hypermethylated = red). Alternative overlap patterns are presented in Data S4a. (B) Distribution of dmCpGs (% of the total,
hypomethylated = green; hypermethylated = red) following training (T), casting (C), and retraining (R) in young muscle across gene regions and gene
structures. (C) The hyper/hypo ratio of the seven overlapping pathways following training, casting, and retraining. This ratio is calculated by dividing
the number of hypermethylated CpGs with the number of hypomethylated CpGs. The dashed line (ratio = 1) delimitate an equal level of
hypermethylated and hypomethylated CpGs within a pathway.
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studies (cfr. Supra: Methods) included in the metaMEx
meta-analysis (Data S4h, 10 showing the same change, 0
showing the opposite change, 13 showing no change, and 4
not found in MetaMEx).

The 2 week casting period reversed methylation levels in
716 of the 3623 dmCpGs following training (P < 0.01,
M-value difference > 0.4) (Figure 2A, Data S4b). Using the
same threshold criteria, an additional 7627 CpGs unique CpGs
were differentially methylated following the 2 weeks of im-
mobilization compared with post-training with the majority
being hypermethylated (5138). This immobilization-induced
hypermethylation was also reflected within the different gene
regions and structures (Figure 2B). Two hundred seventy-four
genes were upregulated, and 560 genes were downregulated
following immobilization compared with post-training
(FDR < 0.1, average read count ≥ 5) (Figure 2A, Data S4i). Im-
mobilization has a clear and distinct effect on the muscle tran-
scriptome, as the top 100 most DEGs following immobilization
in the present study corresponded largely to what is found in
other disuse studies of the MetaMEx meta-analysis (Data S4i,
82 showing the same change, 1 showing the opposite change,
14 showing no change, and 3 not found in MetaMEx). Most
genes within this top 100 were downregulated following im-
mobilization and related to metabolism (49) or muscle struc-
ture and contraction (17) (Data S4i).

A second 12 week training period had a clear
hypomethylating effect as 5150 of the 6074 dmCpGs
displayed lower methylation levels following retraining com-
pared with post-immobilization (P < 0.01, M-value
difference > 0.4) (Figure 2A, Data S4c). Retraining reversed
methylation levels in 1264 of the 8343 dmCpGs following im-
mobilization (Figure 2A). Furthermore, merely 151 CpGs were
differentially methylated in the same direction following
retraining as following training (Figure 2A). This pattern of
similar training–retraining methylation changes is higher than
opposite patterns of methylation changes (65 CpGs), as
visualised in the alternative patterns in Data S4a (Venn dia-
grams). In both CpG-rich and CpG-poor gene areas, the fre-
quency of hypomethylated CpGs was enhanced compared
with following training (Figure 2B). A similar enhanced
retraining response was reported earlier in young men after
7 weeks detraining.17 The enhanced retraining response
was also reflected at transcriptional level with 431 genes up-
regulated and 188 downregulated (FDR < 0.1, average read
count ≥ 5) (Figure 2A, Data S4j). Retraining reversed expres-
sion levels in 463 of the 834 immobilization-induced tran-
scriptional dysregulated genes. Restoration was observed in,
among other, the mitochondrial respiratory chain (16 mem-
bers of the NADH ubiquinone oxidoreductase complex, 8
members of the ubiquinol-cytochrome c reductase complex,
13 members of the cytochrome c oxidase complex, and 13
members of the ATP synthase complex), in 11 myosin light
and heavy chain genes, in 8 genes of the mitochondrial ribo-
some complex, in 11 ribosomal protein-coding genes, and in

12 genes encoding for solute carrier membrane transport
proteins (Data S4i-j). Finally, of the top 100 most DEGs follow-
ing retraining, 32 genes displayed transcriptional changes in
the same direction as comparable RT studies (3 in opposite
direction, 62 no change) of the metaMEx database and 76
genes in the opposite direction compared with metaMEx dis-
use studies (1 in opposite direction, 20 no change) (Data S4j).
Most genes within this top 100 were upregulated and related
to metabolism (36), muscle structure and contraction (15) or
muscle remodelling (10) (Data S4j). This is the first study de-
scribing the retraining-related recovery of human muscle af-
ter disuse-induced atrophy in relation to the transcriptome
and methylome. In rats, denervation-induced muscle atrophy
decreased methylation in MYOG, TRIM63, FBXO32, and
CHRNA1 together with increased expression that was
returned to control levels following 7 days of recovery.64 In
accordance, TRIM63, FBXO32, and CHRNA1 were significantly
upregulated following immobilization (FDR ≤ 0.067) in the
present study and retraining reversed the RNA expression
of all three genes to untrained and trained levels. We could
not link this finding to any methylation changes.

Finally, pathway analysis on the methylome data identified
66, 79, and 12 enriched pathways (FDR< 0.1) following train-
ing, casting, and retraining, respectively (Table 1, Data S4e-g),
of which 7 enriched during the whole intervention period.
The overlapping pathways contained nearly the same num-
ber of hypomethylated and hypermethylated CpGs following
training, whereas the frequency of hypermethylated CpGs
clearly increased and decreased following casting and
retraining, respectively (Figure 2C). The pathway analysis
thereby confirmed that retraining induced more hypomethy-
lation in comparison with training.

Ageing-related hypermethylation in
promoter-associated CpG islands and inverse
expression levels

Comparing young to older muscle samples at baseline, we
identified 50 828 age-related dmCpGs (FDR < 0.1, M-value
difference > 0.4), of which 28 443 were hypomethylated
and 22 385 were hypermethylated in older muscle tissue
(Data S1a). Two earlier genome-wide methylation studies8,9

that compared young and older human muscle samples
found a clear global trend towards hypermethylated aged
muscle. We could only confirm this trend in
promoter-associated CpG islands, where more than twice as
many hypermethylated CpGs (2761) were found compared
with hypomethylated ones (1202). In comparison, other
regions contained 23 to 45% more hypomethylated CpGs
(Figure 3A). Promoter-associated dmCpGs in CpG islands
were underrepresented compared with CpGs in the whole
genome (Figure 3B, Data S1b), which is a confirmation of
the results of Zykovich et al.,8 but in contrast to the findings
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of Turner et al.,9 where most dmCpGs were located in CpG
islands. Finally, we found a significant overlap of 2334 CpGs
between the age-related dmCpGs of the present study and
the age-related dmCpGs of Zykovich et al. (P = 2.2e-16)
(Figure 3C, Data S1d). Interestingly, the age-related differ-
ences in β-values of the overlapping dmCpGs was nearly iden-
tical (r = 0.94, P < 0.001) (Figure 3D). These overlapping
dmCpGs could, therefore, be a representation of an epigenetic
clock5 common between individuals, whereas the dmCpGs
uniquely found in each study represent the epigenetic drift5

between individuals due to stochastic factors and the specific
environmental conditions of the population under investiga-
tion. To test this assumption, the 2334 overlapping dmCpGs
were compared with the 200 CpGs that were recently selected
to create a muscle-specific epigenetic clock.65 We found a sig-
nificant overlap of 12 CpGs (P = 2.6e-12) (Figure 3C, Data S1d).

Pathway analysis identified 151 enriched pathways
(FDR < 0.1) (top 3 in Table 1), belonging to ‘organismal sys-
tems’ (52, e.g. axon guidance), ‘human diseases’ (44 of which
18 related to cancer), ‘environmental information processing’
(24, e.g. PI3K-Akt signalling pathway), ‘metabolism’ (16), ‘cel-
lular processes’ (13, e.g. focal adhesion), and ‘genetic infor-
mation processing’ (2) (Data S1c).

In addition, ageing affected expression levels of 427 genes
(FDR < 0.1), of which 183 were downregulated and 244 up-
regulated in older muscle. Remarkably, 71% of these 427

DEGs contained at least one promoter-associated or intra-
genic dmCpG (FDR < 0.1, M-value difference > 0.4) (Data
S1e). We selected all DEGs with dmCpGs methylated in the
same direction (i.e. all sites hypomethylated or all sites
hypermethylated within a specific gene region) (Figure 4A,
DEGs with differential methylation in promoter regions re-
ported in Data S1f). Most of the hypomethylated genes
displayed increased expression, whereas expression of
hypermethylated genes was generally downregulated. This
was independent of the gene region and especially true for
genes with more dmCpGs. However, many DEGs included
both hypomethylated and hypermethylated CpGs (Data
S1g), which confirms that the relationship between methyla-
tion and expression is more nuanced than a simple inverse
relation.66 Exploring the top 100 differentially methylated
and expressed genes between young and old, we found indi-
cations of impaired processes important for muscle function-
ing and remodelling in older muscle (Table A1).

Training has rejuvenating effects on the older
muscle methylome

Twelve weeks of training in the older men rejuvenated their
muscle methylome, as 37 339 of 50 828 age-related dmCpGs
at baseline were no longer significantly different between

Table 1 Top 3 enriched pathways per analysis

ES FDR DMG Genes in pathway dmCpGs hypo dmCpGs hyper

Young muscle following traininga

Longevity regulating 11.1 0.005 27 89 9 30
Axon guidance 9.7 0.009 43 182 24 23
Regulation of actin cytoskeleton 9.4 0.009 48 213 35 23

Young muscle following castinga

Focal adhesion 17.8 <0.001 89 199 35 80
Prostate cancer 13.0 <0.001 48 99 17 45
Rap1 signalling 12.1 <0.001 84 206 38 69

Young muscle following retraininga

MAPK signalling 12.2 0.002 91 296 104 9
Focal adhesion 8.5 0.031 61 199 61 12
Endocytosis 8.1 0.032 72 247 75 16

Young versus older muscle
Focal adhesion 37.4 <0.001 161 199 442 377
Axon guidance 31.3 <0.001 145 182 356 447
Oxytocin signalling 30.7 <0.001 125 153 372 314

Older muscle following traininga

Axon guidance 12.9 <0.001 54 182 43 24
Cholinergic synapse 11.0 0.003 36 112 27 20
Calcium signalling 9.7 0.005 51 187 37 31

Older muscle following detraininga

Focal adhesion 19.6 <0.001 85 199 40 69
MAPK signalling 10.7 0.004 102 296 41 88
Endometrial cancer 9.6 0.004 28 59 13 23

Older muscle following retraininga

Platelet activation 14.3 <0.001 42 124 36 14
Phospholipase D signalling 13.9 <0.001 47 147 40 16
Non-small cell lung cancer 12.2 <0.001 26 67 21 11

ES, enrichment score; FDR, false discovery rate-adjusted P-value; DMG/dmCpGs, differentially methylated genes/CpG sites determined at
the level of FDR < 0.1 for age-related analysis, P < 0.01 for other analyses.
aCompared with previous time point.
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trained older muscle and untrained young muscle (FDR ≥ 0.1
or M-value difference ≤ 0.4) (Data S1h). Of these 37 346
CpGs, we selected the ones that changed significantly with
training (606 CpGs with P < 0.01, M-value
difference > 0.4). Based on these 606 CpGs, cluster analysis
effectively clustered older post-training samples with youn-
ger baseline samples, instead of with older baseline samples
(Figure 5). Pathway analysis linked four pathways to these
CpGs (FDR < 0.1): ‘cortisol synthesis and secretion’
(ES = 9.6, FDR < 0.001), ‘cAMP signalling pathway’
(ES = 7.4, FDR = 0.067), ‘adrenergic signalling in
cardiomyocytes’ (ES = 6.8, FDR = 0.067) and ‘aldosterone

synthesis and secretion’ (ES = 6.75, FDR = 0.067). Most
dmCpGs in these four pathways were hypermethylated in
older compared with young muscle at baseline with a hy-
per/hypo ratio (i.e. number of hypermethylated CpGs/num-
ber of hypomethylated CpGs) between 2.7 and 11. Training
had the opposite effect, directing the methylation level to-
wards younger levels.

In total, 2657 CpGs were hypomethylated and 2163 CpGs
were hypermethylated after training compared with baseline
(P < 0.01, M-value difference > 0.4) (Figure 6A, Data S2a). In
comparison, 12 weeks of normal daily living changed the
methylation status of merely 255 CpGs in the older control

Figure 3 (A) Distribution of age-related dmCpGs (FDR < 0.1, M-value difference > 0.4) (older: n = 6, young: n = 5) across gene regions and structures,
expressed as percentage of the total number per gene region. (B) Distribution of age-related dmCpGs across gene regions and structures (observed)
relative to CpG distribution across the whole genome (expected). Negative log values correspond to an underrepresentation of dmCpGs within that
area (positive values vice versa). (C) Top Venn diagram displaying the overlap between the present age-related dmCpGs, selected from the
MethylationEPIC BeadChip, and the age-related dmCpGs from Zykovich et al.,8 selected from the HumanMethylation450K BeadChip. Bottom Venn di-
agram displaying the overlap between the overlapping 2334 dmCpGs from the top Venn diagram and the 200 CpGs from the epigenetic clock of Voisin
et al.,65 selected from 19 401 CpGs. (D) Grey dots represent the difference between average β-values of older men and younger men per dmCpG
(n = 2334, cfr. c). The black line is the trend line.
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group (P < 0.01, M-value difference > 0.4) (Figure 6A, Data
S3a). With respect to CpG islands and shores in these com-
parisons, training had a hypomethylating effect (Figure 6B).
Comparable with the results in younger men, the dmCpGs
were not overrepresented or underrepresented in any region
(Data S2d). Of the 20 DEGs following training, only 1
(TM4SF1) displayed similar transcriptional changes following
training as comparable training studies in older adults in
the metaMEx meta-analysis (Data S2h, 1 showing the same
change, 0 showing the opposite change, 17 showing no
change, and 2 not found in MetaMEx). Against expectations,
there were more genes downregulated than upregulated fol-
lowing a first training period (Figure 6A). Four of these genes
(PPDPFL, BBC3, PER1, and MCL1) were upregulated in older
versus young muscle (FDR ≤ 0.068) and subsequently rejuve-
nated (i.e. downregulated) following training (FDR ≤ 0.038)
(Data S1e and S2h). Twelve weeks of detraining, subse-
quently reverted the training effect and increased expression
levels again in PPDPFL, PER1, and MCL1 (FDR ≤ 0.040) (Data
S2i). In addition, detraining reversed training adaptations in
RNA expression of seven more genes (Data S2i), as well as
reverting methylation levels of 628 of the 4820 dmCpGs fol-
lowing training (Figure 6A, Data S2b). Globally, detraining
mainly induced hypermethylation compared with

post-training and more genes were downregulated (54) com-
pared with upregulated (40) (Figure 6A,B). Eleven of these 94
DEGs were transcriptionally altered in the same direction as a
5 day bed rest study in elderly men,57 as displayed by the
MetaMEx tool (Data S2i). On the other hand, RNA expression
of 10 genes changed in the opposite direction as this disuse
study. In addition, 43 upregulated and 28 downregulated
genes in our study did not show significant expression
changes by bed-rest in MetaMEx (Data S2i). These findings
indicate that detraining and bed-rest might have a different
effect on certain genes.

Similar to the results in young men, retraining
hypomethylated more CpGs compared with training (3077
vs. 2657) (Figure 6A), which was observed across all gene re-
gions and structures (Figure 6B). Pathway analysis identified
48, 66 and 107 enriched pathways (FDR < 0.1) following
training, detraining, and retraining, respectively (Table 1,
Data S2e-g). The majority of the pathways influenced by
training were also differentially methylated following
detraining and/or retraining, whereas 34 pathways were
uniquely affected by retraining (Figure 6C), suggesting that
the methylome was more responsive to retraining. We found
18 pathways in common between each intervention period
(Figure 6C). In the majority of the overlapping pathways,

Figure 4 Number of hypomethylated (green) and hypermethylated (red) genes that displayed differential expression between young (n = 5) and older
muscle (n = 6) (FDR < 0.1). Left of the Y-axes are downregulated genes, right are upregulated genes. Genes were categorized according to number of
dmCpG sites, methylated in the same direction per gene region.
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the number of hypomethylated CpGs further increased fol-
lowing retraining compared with training (Figure 6D). This
could be indicative for an epi-memory within these path-
ways. Furthermore, these 18 pathways were also enriched
when comparing the young and older muscle methylome at
baseline (Figure 6E). Only 12 genes were transcriptionally al-
tered following retraining (Figure 6A, Data S2j). However, half
of them were also picked up by comparable training studies
of the MetaMEx meta-analysis and are involved in inflamma-
tion (IL17D), muscle growth inhibition (PLN), muscle contrac-
tions (TPM3), mechanosensing (ANKRD2), muscle structure
(MYL5), and energy metabolism (CARNS1) (FDR ≤ 0.091)

(Data S2j). Four other upregulated genes, not picked up by
the meta-analysis, are involved in myogenic differentiation
(SOX11), energy metabolism (AK1, PGK1), and muscle devel-
opment and functioning (PDLIM7) (FDR ≤ 0.097) (Data S2j).

Genes indicative for an epi-memory in young and
older skeletal muscle

Of the differentially expressed genes across all intervention
phases in young and older muscle (FDR < 0.1, average read
count ≥ 5), 11 to 33% contained at least one dmCpG in the

Figure 5 (A) Heat map of normalized β-values (shifted to mean of zero and scaled to SD of one) of CpGs (n = 606) that had significantly different meth-
ylation levels between young (n = 5, black) and older men at baseline (n = 6, white) and were reverted to younger levels following training in the older
men (n = 6, grey). One CpG per column. Methylation levels are compared between subject groups (rows), with higher methylation coloured red and
lower methylation coloured green. CpGs were hierarchically clustered in two categories: CpGs that are hypomethylated (left, n = 367) and CpGs that
are hypermethylated (right, n = 239) following training in older men. (B) Average β-values of both clusters in each subject group. Values are
mean ± SEM. **FDR < 0.1 and difference between M-values > 0.4, *P < 0.01 and difference between M-values > 0.4.
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Figure 6 (A) Number of hypomethylated and hypermethylated CpGs (P < 0.01, M-value difference > 0.4; no pattern) versus upregulated and down-
regulated genes (DEGs) (FDR < 0.1, average read count ≥ 5; dashed pattern) following normal daily living (n = 3), training, detraining, and retraining
(n = 6/5, cfr. Outlier RNA expression) compared with previous time point in older muscle. Venn diagrams displaying overlap between dmCpGS follow-
ing training, detraining and retraining (hypomethylated = green; hypermethylated = red). Alternative overlap patterns are presented in Data S2a. (B)
Distribution of dmCpGs (% of the total, hypomethylated = green; hypermethylated = red) following training (T), detraining (D), and retraining (R) in
older muscle across gene regions and gene structures. (C) Venn diagram displaying the overlap of enriched pathways (FDR < 0.1) following training,
detraining, and retraining in older muscle and age-related pathways in older versus young muscle. (D, E) The hyper/hypo ratio of the 18 overlapping
pathways identified in ‘c’. This ratio is calculated by dividing the number of hypermethylated CpGs with the number of hypomethylated CpGs. The
dashed line (ratio = 1) delimitate an equal level of hypermethylated and hypomethylated CpGs within a pathway.
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promoter or intragenic region (P < 0.01, M-value
difference > 0.4) (Figure 7). Detailed information on these
genes, including plots, is available in Data S2l-m and S4l-m.
The interaction between the transcriptome and methylome
was stronger following retraining compared with training.
This might indicate that other epigenetic mechanisms were
responsible for the alterations in chromatin accessibility dur-
ing the first training period, whereas methylation was used
during retraining to stabilize these changes.

We were specifically interested in genes constituting the
epi-memory. Epi-memory genes can be defined as genes
displaying an enhanced transcriptional response to retraining
compared with training that could be linked to retained
methylation modifications from the first training period
(genes with retained methylation levels over time displayed
in Data S2k and S4k). In young muscle, one CpG
(cg15758225) within the open sea area of intron 3 of
AMOTL1 became more methylated following training
(P = 0.006), which persisted during immobilization
(P < 0.001) and retraining (P < 0.001) (Figure 7). As response
to the second training period and potentially the
hypermethylated state of cg15758225 pre-retraining,
AMOTL1 expression levels decreased (FDR = 0.012). This
might indicate an epi-memory within AMOTL1 and we found
confirmation in the muscle biopsy data from Seaborne
et al.,17 as the hypermethylated state of two CpGs
(cg13554187 and cg06447552) within AMOTL1 following

loading, was retained following unloading and for
cg13554187 also following reloading. The investigators found
several retraining-upregulated genes themselves indicative
for an epi-memory in young muscle (AXIN1, TRAF1, GRIK2,
and CAMK4 in Seaborne et al.17 and FLNB, MYH9, SRGAP1,
SRGN, and ZMIZ1 in Turner et al.28). Despite finding one to
three hypomethylated CpGs following retraining in FLNB,
MYH9, ZMIZ1, GRIK2, and CAMK4, we did not find the ex-
pected increased expression levels in these genes. We did
find several genes with a trend towards enhanced expression
levels following retraining and a correlated methylation pat-
tern in young muscle (e.g. NEXN, SERF2, and PLCL2) (Data
S4m). Seaborne et al.17 also reported on a list of genes
(UBR5, RPL35a, C12orf50, BICC1, ZFP2, HEG1, PLA2G16,
SETD3, and ODF2) presenting a different pattern of epige-
netic memory with hypomethylation responses by loading,
no retention of methylation during detraining, followed by
a stronger hypomethylation and associated increased gene
expression during reloading. Specifically, the role of UBR5 in
muscle atrophy and hypertrophy was further confirmed by
in vivo and in vitro studies in mice and rats by the Sharples
group.67,68 Although not reaching the criteria (P < 0,01,
M-value difference >0.4) a pattern indicating hypomethyla-
tion by training (P = 0.02), hypermethylation by casting
(P = 0.01) and again hypomethylation by retraining
(P = 0.017) in cg21230538 in the young muscle was support-
ive of the role of epigenetic changes in UBR5 due to chronic

Figure 7 Overlap between differentially methylated (dotted) and expressed (full) genes following training (T), casting (C)/detraining (D), and retraining
(R) compared with the previous time point in young (n = 5/4, cfr. Drop out after week 12) and older muscle (n = 6/5, cfr. Outlier post-retraining RNA
expression). AMOTL1 and VCL are genes indicative for an epi-memory in young and older muscle, respectively. Methylation values (dotted) are
model-adjusted means ± SEM. Expression values (full) are model-adjusted log2 fold change values compared with baseline ± SEM. *P < 0.01,
**P < 0.001, ***FDR < 0.1.
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training and unloading. This pattern was however not found
in older muscle or in other CpGs in this gene region.

In older men, we identified VCL as a gene with retained
epigenetic modifications (Figure 7). Promoter-associated
and intron-associated cg15758225, located in open sea area,
was less methylated after training, detraining and retraining
compared with baseline (all P < 0.001). This methylation
change might have contributed to the trend towards an en-
hanced expression level following retraining (FDR = 0.136,
P = 0.002). In addition, we found several other genes with a
trend towards enhanced expression levels following
retraining and a correlated methylation pattern in older mus-
cle (e.g. SOX11, PDLIM7, and PGK1) (Data S2m).

Discussion

In this study, we identified CpG methylation as a potential up-
stream mechanism that can explain transcriptional changes in
skeletal muscle tissue associated with ageing and training. In-
terestingly, recurrent RT was accompanied with increasing
numbers of hypomethylated CpGs and upregulated genes in
young and older skeletal muscle and rejuvenated methylation
levels of several CpGs altered by ageing. In addition, we
found indications of an epi-memory within AMOTL1 in young
muscle and VCL in older muscle.

There have been many studies trying to reveal the
age-associated human muscle transcriptome signature,69–72

but literature lacks the integration of the mechanisms behind
these transcriptional changes. We discovered that of the 427
DEGs between young and old, 71% contained at least one
dmCpG. This confirms that DNA methylation might be an im-
portant regulator of gene expression in muscle tissue. Further-
more, we found that the more dmCpGs methylated in the
same direction, the clearer the inverse relationship between
DNA methylation and RNA expression and this was regardless
of the location of the dmCpG within the gene. It has been re-
ported that a threshold of three CpGs is required to effectively
inhibit transcription, with more CpGs and closer proximity to
the promoter region associated with a higher percentage of
gene repression.73 This explains why some but not all
methylome adaptations over time mediated gene expression
alterations in the present study, something that has been ob-
served before in blood tissue.74,75 In addition, the relationship
between methylation and expression is more complex than a
simple inverse correlation, as evidenced by the combination
of both hypomethylated and hypermethylated CpGs within
the different gene regions and structures of some genes.
The complex transcriptome–methylome relationship has been
described before,66 but lacked tissue specificity. Therefore, we
warrant further investigation into the interplay between
methylation and other epigenetic mechanisms in muscle tis-
sue (e.g. histone deacetylation, which works closely together

with DNA methylation to silence genes73) and their role in
the different gene regions and structures. Interestingly, older
muscle tissue displayed signs of impaired myogenesis,
mitochondrial bioenergetics, autophagy and glucose uptake,
as well as indications of muscle atrophy and inflammageing
at methylome and transcriptome level. These signs are closely
related to cellular senescence,76 one of the hallmarks of
ageing,77 and might contribute to age-related anabolic
resistance and impaired skeletal muscle growth in response
to an anabolic stimulus.78,79 In accordance, we reported ear-
lier that a first training period was unable to induce significant
muscle growth in these same older men.29 In the present
study, we were able to link this impaired muscle growth to
ageing-induced molecular dysregulation, both at transcrip-
tional and epigenetic level.

Remarkably, 73% of the age-related dmCpGs in untrained
older muscle were no longer differentially methylated follow-
ing 12 weeks of RT compared with young untrained muscle.
The ability of resistance exercises to reverse age-related im-
pairments has been extensively described at the muscle phe-
notypic level,80–82 proteome level,53 transcriptome level,55,61

and other hallmarks of ageing.83 For the first time, we con-
firm this finding at methylome level. We are aware of only
one study53 that investigated the effect of RT on the older
muscle methylome. However, the investigators were unable
to find methylation changes after 12 weeks of RT, probably
due to the low sample size, the strict FDR adjustment and
the limited number of CpGs tested. We hypothesized that
training would reverse the ageing-induced hypermethylation,
predominantly found in older muscle tissue in literature,8,9

based on the hypomethylating effect of aerobic exercise,10–13

(lifelong) physical activity,16,84 and RT in young to
middle-aged adults.13,85 However, both in young and in older
muscle tissues, we observed that a first training period in-
duced both hypomethylation and hypermethylation. That
said, mainly training-induced hypomethylation was found in
CpG islands and shores, possibly counteracting the
ageing-induced hypermethylation in promoter-associated
CpG islands of the older muscle samples. At transcriptional
level, training altered 20 genes in older men. Interestingly,
PPDPFL, BBC3, PER1, and MCL1 were upregulated in older
versus young muscle, downregulated following training, and
upregulated again during detraining in older men. The role
of PPDPFL in muscular training adaptations is currently un-
known. The other three genes, on the other hand, are known
to be involved in apoptosis (BBC3, BCL2 Binding Component
3, also known as PUMA),86 (MCL1, MCL1 Apoptosis Regulator,
BCL2 Family Member),87 and circadian clock-regulated physi-
ological processes (e.g. muscle hypertrophy) (PER1, Period
Circadian Regulator 1).88

Both young and older muscles responded better to a sec-
ond training period. This was reflected by the higher number
of hypomethylated CpGs and upregulated genes following
retraining compared to training. In addition, retraining
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induced more hypomethylation than training did in the 7
overlapping pathways between training, immobilization and
retraining in young men and in the 18 overlapping pathways
between training, detraining and retraining in older men. In-
terestingly, these 18 pathways were also enriched in the
age-related analysis, which supports the fact that chronic RT
may act on several ageing-related pathways. Accordingly,
the indications of inflammageing at baseline in older muscle
tissue were only improved by the second training period,
and not by the first. We observed nine hypomethylated
dmCpGs in proximity to the promoter region of the
pro-inflammatory cytokine Interleukin 17D (IL17D) when
comparing older to young muscle, which was associated with
elevated IL17D RNA expression in older muscle. IL17D, which
also activates the acute inflammatory response mediated by
NF-κB in the first hours after intense RT,89 was successfully
downregulated following retraining compared to post-
detraining, whereas the decline in expression was not signif-
icant following the first training period. In addition, we found
one hypermethylated dmCpG within IL17D following
retraining. In agreement, NFKB Inhibitor Alpha (NFKBIA), in-
hibitor of NF-κB signalling, was downregulated following
12 weeks training. NFKBIA downregulation could be indica-
tive for a permanent state of inflammation in older
exercise-stimulated muscles. Surprisingly, NFKBIA expression
levels returned to baseline levels during detraining and
remained stable during retraining. These results indicate that
previously trained older muscle may be less susceptible to
exercise-induced chronic inflammation and recurrent RT
may in fact improve age-related low-grade inflammation, as
has been reported before.90

Most interestingly, we identified two genes, indicative for
an epi-memory within young and older muscle. In young
men, the epi-memory pattern was reflected within the Angio-
motin Like 1 (AMOTL1) gene. Upon activation of satellite cells,
AMOTL1 activates YAP1which triggers pro-proliferating genes
and inhibits differentiation of myotubes.91 The decreased ex-
pression following retraining might signal myotube differenti-
ation. Importantly, this result was confirmed when
investigating the data of Seaborne et al.17 In older men, an in-
creased expression level in Vinculin (VCL) following retraining
was linked to the retained hypomethylated state of one CpG
during training, detraining and retraining. In striated muscle,
vinculin is a structural component of costameres,92 which
connects sarcomeres to the cell membrane to stabilize
myofibres during contraction and relaxation. The gene,
furthermore, potentiates mechanosensing93,94 and is upregu-
lated in skeletal muscle tissue following chronic stimulation
and disuse.95 Most interestingly, VCL is part of the focal adhe-
sion pathway, which was enriched during both training,
detraining and retraining in older men, as well as during train-
ing, immobilization and retraining in younger men and the
age-related comparison between young and old. Focal adhe-
sion translates the (exercise-induced) cytoskeletal stress

signals into cell growth by activating a cascade of signalling
pathways.96 The importance of the focal adhesion pathway
in our results might indicate that the rapid regain of training
adaptations is related to improved mechanosensing signalling
during retraining. To support our results, we investigated
other genes related to the mechanosensing pathway and
found a trend towards enhanced gene expression and
several hypomethylated CpGs following retraining in
mechanosensitive transcriptional cofactor-encoding WWTR1,
stretch-activated ion channel-encoding PIEZO2 and
extracellular-matrix associated COL1A1 (Figure A1).

Finally, we would like to address several limitations and fu-
ture perspectives. First of all, sample sizes were small. This
limited the statistical power and especially the
intervention-related analyses might have been prone to type
I error. Findings are consequently exploratory and preliminary
in nature and should be validated in future studies. On the
other hand, findings that were found significant at FDR level
of 0.1 despite the limited sample size, should be considered
highly interesting. To increase power, a combined analysis
of both young and old muscle samples could have been per-
formed for the first training period, as the time*group inter-
action term was non-significant in the mixed model (data
not shown). However, we preferred to test specific hypothe-
ses and contrasts towards the ability of strength training to
decrease the large set of age-related dmCpGs between young
and old at baseline. Secondly, due to the different unloading
modalities (detraining versus casting), comparison of the
unloading and retraining phases between young and old
was limited. We chose not to apply both situations to each
group, because of the complex study design and the risks as-
sociated with immobilization in elderly. Nevertheless, by
using both unloading modalities, we were able to give addi-
tional insights in the differences between a more invasive
type of disuse versus long-term training cessation. Thirdly,
CpGs may overlap with different regions of different gene
transcripts belonging to one gene and it is not clear how each
gene transcript is influenced by differential methylation, as
RNA expression was only analysed at gene level. Fourthly, al-
though we did perform SVA, we did not directly correct for
cell type heterogeneity and fibre type differences between
muscle samples. This might have confounded the analysis.97

Finally, while we do integrate methylome and transcriptome
data, we currently lack the translation to the proteome level,
which should be the focus in future research. Also needed are
similar analyses at single-cell or -nucleus level and the inte-
gration of other epigenetic mechanisms to unravel the pre-
cise role of epigenetics in the muscle memory phenomenon.

To conclude, these results indicate an enhanced transcrip-
tional training response in previously trained young and older
muscle, partially explained by retained and novel methylation
adaptations. This supports that we might benefit from earlier
training periods and that RT is an effective strategy to rejuve-
nate our methylome.
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