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Abstract 20 

Chromatin accessibility, or the compaction of the complex of DNA and associated proteins, is 21 
a widely studied characteristic of the eukaryotic genome. Since the 1970s, research on 22 
chromatin accessibility has been instrumental for studying genome regulation. As regulatory 23 
DNA is generally found accessible when it is operational, genome-wide profiling of chromatin 24 
accessibility can be used as experimental tool to identify all candidate genomic regions that 25 
underlie the regulatory state of a tissue or cell type. Multiple biochemical techniques have been 26 
developed to profile chromatin accessibility, which have yielded an extensive source of 27 
chromatin accessibility maps across a broad range of species, tissues, cell types and diseases. 28 
With the help of cis-regulatory sequence analysis and the adoption of single-cell chromatin 29 
accessibility profiling, insight into the key regulators underlying developmental and disease 30 
processes is rapidly increasing. Both bulk and single-cell methods are based on high-31 
throughput sequencing, making computational analysis and bioinformatics tools invaluable for 32 
the exploration and interpretation of the generated data. We foresee exciting technological 33 
improvements including single-molecule, multi-omics, and spatial methods to bring further 34 
insight into the outstanding secrets of genome control. 35 

1. Introduction  36 

Chromatin accessibility refers to the level of physical compaction of chromatin, a complex 37 
formed by DNA and associated proteins consisting mainly of histones and DNA-binding 38 
transcription factors (TF)1–3. Although eukaryotic genomes are generally packed into 39 
nucleosomes, which comprise ~147 bp of DNA wrapped around an octamer of histones4,5, 40 
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nucleosomal occupancy is not uniform across the genome, and varies across tissues and cell 41 
types. Nucleosomes are typically depleted at genomic locations that interact with 42 
transcriptional regulators (e.g. TFs), such as at enhancers, promoters and other regulatory 43 
elements; which thus present themselves as ‘accessible’ or ‘open’ chromatin6–10. Therefore, 44 
profiling chromatin accessibility on a genome-wide scale serves as an excellent tool to map 45 
putative regulatory elements in a cell type or cell state. Note that not only nucleosome 46 
positioning, but also chemical modifications of the chromatin, including DNA methylation (in 47 
mammals) and histone tail methylation and acetylation, are dynamic and change between 48 
different cell states. These modifications, which are often correlated with chromatin 49 
accessibility, can reflect specific functionalities of genomic regions in relation to the regulation 50 
of gene expression11,12. Initial changes in accessibility are due to the binding of TFs, which 51 
outcompete histones and recruit co-factors, including ATP-dependent chromatin 52 
remodelers13,14; or TFs that preferentially bind to their recognition sequence in nucleosomal 53 
DNA15,16. The binding of such "pioneer factors" can facilitate other TFs to co-bind and further 54 
stabilize the nucleosome depleted region and cooperatively regulate gene expression of target 55 
genes17–19. Consequently, the analysis of TF binding sites within accessible regions can bring 56 
insights into cell type specific master regulators and gene regulatory networks.  57 

Changes in the chromatin landscape, as well as mutations in chromatin remodelers and in 58 
regulatory regions, have been linked to a range of traits and diseases20–23. In fact, many causal 59 
genome-wide association study (GWAS) variants are located in accessible regulatory 60 
elements24 and TF-bound DNA harbors increased mutation rates since TFs and DNA repair 61 
enzymes compete for damaged regulatory regions25,26. In order to improve our understanding 62 
of chromatin dynamics during development and in disease contexts, researchers and large 63 
consortia such as the ENCODE Consortium27, the International Human Epigenome Consortium 64 
(IHEC)28, the NIH Roadmap Epigenomics Mapping Consortium29 and the BLUEPRINT 65 
epigenome project30, have collected and compared chromatin landscapes across cell types and 66 
during disease development. 67 

Over the past decades, we have witnessed the development and widespread use of several 68 
chromatin accessibility profiling methods31–41. Generally, these methods are based on the 69 
physical accessibility to enzymes that fragment, tagment, or methylate DNA in chromatin. 70 
Initial screens in the 1970s showed that regions of active transcription were particularly 71 
sensitive to digestion by DNA endonucleases, such as deoxyribonuclease I (DNase I), 72 
indicating a more permissive form of the chromatin42, and that chromatin digested at regularly 73 
spaced sites due to nucleosome phasing2,43. Still today, DNase I is the reagent of choice for TF 74 
footprinting, which can determine the location of TF binding sites due to the protection of the 75 
site by the TF itself44–46. With the advent of next generation sequencing (NGS) techniques, 76 
DNase I hypersensitive site sequencing (DNase-seq) was the first adaptation to perform 77 
genome-wide profiling of accessible chromatin32,37. This was followed by the development of 78 
a handful more methods, of which Assay for Transposase-Accessible Chromatin using 79 
sequencing (ATAC-seq) and variants33–35 together with DNase-seq are the two most commonly 80 
used chromatin accessibility profiling methods today47. As these methods are high-throughput 81 
sequencing-based, the analysis of the generated genomics data relies heavily on bioinformatics, 82 
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not only for the initial processing but also to biologically interpret chromatin accessibility 83 
profiles and to perform more intricate downstream analyses.  84 

Importantly, as regulatory regions co-define a cell type, their accessibility is cell type-85 
dependent, especially for distal regulatory regions10,48,49. When investigating heterogeneous 86 
samples, it is therefore advisable to measure chromatin accessibility at a single-cell level as 87 
bulk methods yield population-averaged accessibility profiles (Fig. 1). Currently, the field of 88 
single-cell omics, including single-cell epigenomics such as single-cell ATAC-seq, provides 89 
exciting new opportunities to study genome regulation in complex tissues such as the brain, 90 
whole embryos and tumors50–57. Accompanied by the rise of several single-cell chromatin 91 
accessibility profiling technologies, a wide range of bioinformatics tools have been developed 92 
that allow analysis of the generated data, which is intrinsically sparse58–67. 93 
 94 

 95 
Figure 1. Chromatin accessibility profiling at bulk and single-cell level reveals putative regulatory 96 
regions. On top, a representation of a chromatin landscape is shown in which TF-bound enhancers and 97 
the promoter of a gene are nucleosome depleted. On the bottom, accessibility profiles of a 98 
heterogeneous sample are visualized when measuring chromatin accessibility in bulk or on single-cell 99 
level. 100 
  101 
Although chromatin accessibility profiling methods may serve as an analytic foundation to 102 
identify regulatory regions, it is reported that only around 10-26% of accessible regions in 103 
human are active as enhancers68,69. Interestingly however, work in both the Drosophila 104 
embryo51 and the Drosophila eye imaginal disc70 shows that when a genomic region is uniquely 105 
accessible in a specific cell type, the success rate for corresponding enhancer activity is above 106 
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80%71. In addition, linking (active) accessible regulatory regions to their target genes solely 107 
based on accessibility data remains a challenge. Therefore, additional data, including 108 
transcriptomics, enhancer-reporter assays, and 3D chromatin architecture maps, especially 109 
when combined in a multi-omics fashion, help to determine the function of an accessible region 110 
and identify its putative target genes70,72–77. 111 

This Primer on chromatin accessibility profiling methods provides an overview of commonly 112 
used and most recent methods to profile chromatin accessibility, both at bulk and single-cell 113 
level. In addition, it provides an outline of computational analysis techniques and examples of 114 
applications in diverse organisms and fields. Lastly, the Primer discusses standards for data 115 
deposition and examines currently unmet needs and future possibilities to increase our 116 
understanding of chromatin accessibility landscapes and their functional role in gene regulation 117 
during development, evolution and in disease contexts. 118 

2. Experimentation 119 

2.1. Experimental assays for analyzing bulk cell chromatin accessibility  120 

Chromatin accessibility is traditionally probed by assays such as digestion by nucleases or 121 
restriction enzyme digestion, typically at a few selected genomic regions each time43. However, 122 
NGS has revolutionized the way that chromatin is investigated by allowing us to study its 123 
accessibility genome-wide. In the following section, we will briefly describe the principles, 124 
pros and cons of several commonly used experimental techniques to assess chromatin 125 
accessibility or nucleosome positioning in bulk, including (1) DNase-seq, (2) ATAC-seq, (3) 126 
MNase, (4) ChIP-seq, and (5) single-molecule chromatin accessibility profiling methods. 127 
Lastly, a variety of less commonly used chromatin accessibility and nucleosome positioning 128 
methods are described in Box 1. 129 

2.1.1. DNase-seq 130 

The first genome-wide profiling of accessible chromatin was performed in 2008 by sequencing 131 
genomic DNA fragments following digestion by DNase I, an endonuclease that preferentially 132 
introduces double-stranded breaks in accessible chromatin, a technique referred to as DNase-133 
seq32,37 (Fig. 2a). In a DNase-seq workflow, nuclei are first isolated and permeabilized using a 134 
mild detergent such as 0.1% Triton X-100, so that the DNase I enzyme can enter the nucleus 135 
efficiently. After digestion, the small DNA fragments (50-100bp) are purified and size-selected 136 
for downstream library construction and sequencing. Note, since DNase I digestion is a 137 
continuous process, it is necessary to titrate the amount of DNase I to achieve optimal activity 138 
when using a new type of cells, or when using DNase I from a different manufacturer or from 139 
a different batch. Next to fresh cells, DNase-seq has also been applied fixed (FFPE) samples32,10 140 
 141 
Major limitations of the traditional DNase-seq include the large number of cells (millions) 142 
required as input materials and its tedious and lengthy protocol78. In addition, caution must be 143 
taken when interpreting DNase-seq results because they show some intrinsic bias in cleavage 144 
sites79,80, which should be considered when interpreting the footprint of a TF81.  145 
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2.1.2. ATAC-seq 146 

ATAC-seq emerged as an alternative assay to investigate accessible chromatin profiles33. In 147 
this assay, a genetically engineered hyperactive DNA transposase (Tn5) transposes preloaded 148 
monovalent mosaic end (ME) adapters to accessible or nucleosome-depleted chromatin regions 149 
and tags the DNA with the ME sequence simultaneously33,82,83 (Fig. 2b). The target DNA 150 
fragments are purified, PCR-amplified, and sequenced by NGS platforms. Note that sequences 151 
detected by ATAC-seq have been found to be highly enriched in DNAse hypersensitivity sites 152 
(DHSs)84–86.  153 
 154 
ATAC-seq and its variants34,35 are sensitive assays that work well on low-input samples (for 155 
example 500-50,000 cells) and require a simplified library preparation procedure due to the 156 
simultaneous chromatin fragmentation and tagging33. In addition to fresh cells and slowly 157 
cooled cryopreserved cells, it is possible to generate high signal-to-background profiles from 158 
snap-frozen samples using the improved Omni-ATAC protocol35 or nuclei collected via flow 159 
cytometry87. 160 
 161 
Some limitations of ATAC-seq are related to the intrinsic properties of Tn5: (1) it shows steric 162 
hindrance and sequence bias in chromatin tagmentation82,88,89, which would be a challenge for 163 
the mapping resolution on both chromatin accessibility and TF footprints. (2) The 164 
contamination from organellar DNA, such as mitochondrial DNA and/or chloroplast DNA for 165 
plants, or Wolbachia DNA in infected Drosophila lines can also increase the sequencing costs 166 
as large amounts of sequencing reads can be consumed by these contaminations33,90. Organellar 167 
contamination can be significantly reduced either by improved lysis condition (as is the case 168 
in Omni-ATAC35), purification of nuclei via flow cytometry87 or by applying the clustered 169 
regularly interspaced short palindromic repeats (CRISPR) technology to cleave the 170 
mitochondrial ribosomal DNA prior to the experiment91,85. Another deficiency of the original 171 
procedure is that half of all fragments are lost due to the fact that they contain two adapter 172 
sequences of the same kind. The Transposome Hypersensitive Sites Sequencing (THS-seq) 173 
version of ATAC-seq attempts to rescue the other half of fragments by utilizing a T7 RNA 174 
Polymerase linear amplification protocol92. 175 

2.1.3. MNase-seq 176 

Nucleosome position and occupancy in the genome play key roles in chromatin accessibility. 177 
MNase is an endo-exonuclease that cleaves the DNA regions without nucleosome protection 178 
and leaves the nucleosome core particles undigested, which can be purified, ligated to adaptors, 179 
PCR-amplified and sequenced to reveal genome-wide nucleosome positions (MNase-seq)39 180 
(Fig. 2c). 181 
  182 
In MNase-seq, 10,000 to 100,000 of either fresh or formaldehyde crosslinked cells are used for 183 
library construction. Digestion of chromatin by MNase typically results in a nucleosome ladder 184 
consisting of mononucleosome, dinucleosome, trinucleosome etc., depending on the 185 
concentration of MNase in the reaction. The optimal range of digestion usually leads to about 186 
70-80% mononucleosomes and 20-30% higher nucleosome ladders39. 187 
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MNase-seq has been applied to investigate the dynamics of the nucleosome landscape and their 188 
function in transcriptional regulation93. However, since nucleosome position and occupancy 189 
revealed by MNase-seq are based on the average profile of a large number of cells, caution 190 
should be taken when interpreting the results, particularly at inactive chromatin regions94. 191 

2.1.4. ChIP-seq 192 

The N-terminal tails of core histones are enriched with various covalent modifications, which 193 
serve as the docking sites for many chromatin-binding proteins95,96. Chromatin 194 
immunoprecipitation and sequencing (ChIP-seq) is developed to analyze the occupancy of 195 
chromatin-binding factors, as well as the landscapes of various histone modifications at a 196 
genome-wide level31,97–99. Typical histone marks used to define regulatory elements are histone 197 
H3 lysine 27 acetylation as this mark correlates well with DNase-seq and ATAC-seq data at 198 
TSSs, active promoters and distal active enhancers100,101; and H3K4me1 that correlates with 199 
poised chromatin states in animals102 200 
  201 
In ChIP-seq, chromatin is isolated from either formaldehyde fixed cells or non-fixed cells 202 
(native chromatin), and fragmented to a range from 100bp to 500bp by sonication or enzymatic 203 
digestion103–105. Using specific antibodies, the target proteins or histone modifications are 204 
captured along with the associated DNA fragments by protein A/G coupled agarose beads or 205 
magnetic beads. Then, the DNA fragments are eluted, end-repaired, ligated to adaptors, PCR-206 
amplified and sequenced by NGS. 207 
  208 
Traditionally, ChIP-seq needs hundreds of thousands of cells for profiling histone 209 
modifications and millions of cells for profiling TFs. The ChIP-seq data quality critically 210 
depends on the antibody specificity, the efficiency of chromatin fixation and the residence time 211 
of the TF to DNA. Moreover, the whole procedure for ChIP-seq is time-consuming and 212 
laborious. In the past decade, several ChIP-seq derivatives have been developed that work with 213 
a lower number of cell input and detect TF binding at higher resolution102,106–109, including a 214 
method that combines aspects of ChIP-seq and ATAC-seq (ChIPmentation) by performing 215 
tagmentation on immunoprecipitated chromatin fragments110. In addition, techniques without 216 
the need of prior chromatin fragmentation became available for profiling chromatin 217 
modification and TF occupancy on chromatin using hundreds or thousands of cells111–116, which 218 
use antibody guided MNase cleavage or Tn5 tagmentation of chromatin to simplify the 219 
procedure of library construction. 220 

2.1.5. Methods based on single-molecule chromatin accessibility profiling 221 

An emerging class of methods aims to map chromatin accessibility and TF binding within 222 
single molecules. The advantage of such approaches is that they do not rely on enrichment and 223 
provide information about the distribution of accessibility states within the population of 224 
chromatin fibers. The assays in this class rely on methyltransferase enzymes that preferentially 225 
modify accessible DNA (Fig. 2D). For years, the only readout that such methods could rely on 226 
was bisulfite conversion of DNA followed by Sanger sequencing (for localized analysis of 227 
particular loci)117–120 and later NGS (for both local and genome-wide coverage), which also 228 
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dictated the enzymes used to modify DNA. The first genome-wide assay of this kind was 229 
methylation accessibility protocol for individual templates (MAPit121), followed by NOMe-230 
seq122,38, which both use a m5C methyltransferase that modifies cytosines in a GpC context. 231 

As genomes of many eukaryotes contain abundant endogenous methylation in the CpG context, 232 
and no non-specific m5C methyltransferases are available with the exception of plants, this is 233 
the only modification that can be used to reliably measure accessibility. This presents a serious 234 
limitation, as GpC nucleotides are rare in mammalian genomes, only found once every 20 to 235 
30 bp, with much larger stretches of sequence with no informative positions at all being quite 236 
common123. However, in species such as yeast and Drosophila, which lack endogenous 237 
methylation, a combination of both a GpC and a CpG methyltransferase can be used, which 238 
increases assay resolution down to ∼10 bp, a method termed dSMF (digital Single Molecule 239 
Footprinting124). This approach has proven to be very powerful in enumerating the distinct 240 
functional states of individual regulatory elements, down to the ability to footprint the 241 
occupancy of individual TFs. Note that the approach could also be applied to mammalian 242 
genomes when endogenous methylation is eliminated, although this is not generally applicable 243 
as it requires knock out of endogenous methyltransferases125. There are additional limitations 244 
as only a limited fraction of regulatory regions (typically 30-50%) contains enough informative 245 
GpC dinucleotides, and it only provides information about the state of individual molecules 246 
within at most 600 bp (the current limit of combined paired-end read length for Illumina 247 
sequencing). 248 

The latter issue has been resolved by the advent of long-read sequencing platforms such as 249 
PacBio and Oxford Nanopore, which are capable of reading modified bases directly within 250 
individual long molecules, though with significantly decreased accuracy compared to bisulfite 251 
sequencing. nanoNOMe-seq and MeSMLR-seq (methyltransferase treatment followed by 252 
single-molecule long-read sequencing) assays use GpC methylation and nanopore sequencing 253 
to map accessibility on a multikilobase scale, though it is still limited in its resolution by 254 
available informative positions126,127. 255 

That limitation has been overcome by taking advantage of the ability of long read platforms to 256 
read any modification, and the use of non-specific methyltransferases, such the m6A depositing 257 
enzyme EcoGII combined with nanopore or PacBio sequencing, either on total genomic DNA 258 
(Single-Molecule long-read Accessible Chromatin mapping sequencing assay (SMAC-seq)123; 259 
Fiber-seq128) or in combination with a phasing MNase digestion step (single-molecule adenine 260 
methylated oligonucleosome sequencing assay (SAMOSA)129). The large number of 261 
informative positions allows for fine-scale footprinting almost everywhere in the genome, 262 
subject to the limitations imposed by the higher error rate of single-molecule sequencing. 263 
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 264 
Figure 2. Primary experimental approaches for measuring chromatin accessibility and 265 
nucleosome positioning. A, In ATAC-seq, hyperactive version of the Tn5 transposase is used to 266 
preferentially insert into accessible chromatin while simultaneously attaching adapters to the resulting 267 
fragments that can be used to directly amplify sequencing libraries. B, In DNase-seq, the DNase I 268 
enzyme is used to preferentially cleave accessible chromatin, generating fragments that can then be 269 
amplified into sequencing libraries. Both ATAC-seq and DNase-seq generate peaks in read coverage 270 
over accessible regions in the genome. C, In MNase-seq, the MNAse enzyme is used to digest 271 
unprotected DNA, leaving intact fragments protected by protein occupancy (primarily nucleosomes). 272 
These fragments are then amplified, resulting in increased read coverage over positioned nucleosomes. 273 
D, Methyltransferase-based approaches, such as NOMe-seq, dSMF, SMAC-seq, 274 
nanoNOMe/MeSLMR-seq and SAMOSA, rely on the labeling of accessible DNA within open 275 
chromatin regions and over nucleosome linkers with DNA methylation modifications. These 276 
modifications can be m5C methylation in GpC and CpG contexts and also m6A methylation. Bisulfite 277 
conversion or the EM-seq assay can be used to convert fragmented DNA into Illumina-compatible 278 
libraries, resulting in short-range and sparse-coverage single-molecule footprints. Alternatively, long-279 
read sequencing, which can also directly read m6A methylation and take advantage of its much higher 280 
density in the genome, can be used, resulting in multikilobase-scale single-molecule footprints. 281 
Methyltransferase-based approaches tend to provide a simultaneous readout of both nucleosome 282 
positioning and open chromatin regions, appearing as small “bumps” in the methylated fraction of bases 283 
over linker regions and larger peaks over regulatory elements, respectively. 284 

Box 1. Other bulk chromatin accessibility profiling methods 285 

A variety of other methods such as nuclease-accessible site sequencing (NA-seq)130, restriction 286 
endonuclease digestion of chromatin coupled to deep sequencing (RED-seq)131, quantitative 287 
DNA accessibility assay (qDA-seq)132, and occupancy measurement via restriction enzymes 288 
and high-throughput sequencing (ORE-seq)133 have been used to estimate absolute accessibility 289 
levels in yeast and mammalian genomes. Nucleosome positioning has now also been probed 290 
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using long-read methods, which allow the mapping of the ends of larger nucleosome arrays 291 
rather than the single, di-, or at most trinucleosomes measurable with short reads. Nicking 292 
enzyme assisted sequencing (NicE-seq)134 uses a nicking enzyme to probe accessible DNA. 293 
Formaldehyde assisted isolation of regulatory elements (FAIRE-seq)36,135 is based on the 294 
preferential release of accessible chromatin during sonication of crosslinked cells. A technique 295 
termed as transposase-mediated analysis of chromatin looping (TrAC-looping), which utilizes 296 
Tn5 and a bivalent ME adaptor, also detects genome-wide chromatin accessibility in addition 297 
to providing genome-wide chromatin interaction information on regulatory regions136. Protect-298 
seq137 was recently developed to assay the inverse of accessible chromatin, strongly 299 
heterochromatinized genomic regions, based on their resistance to nuclease digestion. 300 
Differential viral accessibility (DIVA)138,139 utilizes the preferential viral insertion into 301 
accessible DNA to map open chromatin regions. Chromatin accessibility profiling using 302 
targeted DamID (CATaDa)140 labels open chromatin using ectopic expression of the E. coli 303 
Dam methyltransferase. Next to this, reactive small molecules have also been applied to probe 304 
the fine-grained features of accessibility, such as Dimethyl sulfate (DMS) (in DMS-seq141) and 305 
methidiumpropyl-EDTA (MPE) (in MPE-seq142).  306 

Lastly, several chemical approaches for direct mapping of nucleosome positions have been 307 
developed. The first such method is based on replacing endogenous histone H4 genes with a 308 
H4S47C protein variant. The cysteine in position 47 is located close to the nucleosome center 309 
position and can be chemically modified and, using copper and hydrogen peroxide catalysis, 310 
used to trigger the cleavage of the DNA backbone close to it143. This method was first used to 311 
precisely map nucleosome positions in the budding yeast S. cerevisiae144, and more recently in 312 
mouse embryonic stem cells145, though its application is somewhat limited in more complex 313 
eukaryotes by the large number of copies of histone genes. A more recent conceptually similar 314 
approach relies on the H3Q85C mutation, which generates cleavage at positions close to the 315 
nucleosome flanks146. 316 

2.2. Single-cell chromatin accessibility profiling 317 

Innovation in barcoding and microfluidic strategies have recently enabled high-throughput 318 
biochemical profiling of chromatin accessibility at single-cell resolution, including single-cell 319 
DNase-seq (scDNase-seq54), MNase-seq (scMNase-seq94) and ATAC-seq (scATAC-seq147–151). 320 
Of these protocols, scATAC-seq has emerged as a popular and relatively simple approach to 321 
profile chromatin accessibility across hundreds to thousands of individual cells, and we will 322 
thus focus on multiple experimental methods of this technique. Current scATAC-seq methods 323 
rely on either (droplet) microfluidic or fluorescence cytometrical/plate-based partitioning to 324 
uniquely label nuclei in isolation. Procedures characteristic to both flavors of scATAC-seq, as 325 
well as consideration for experimental design (Box 2), are described below. 326 

2.2.1. Single-cell ATAC-seq 327 

Microfluidics scATAC-seq 328 

Droplet-based single-cell partitioning via microfluidic devices has emerged as a powerful 329 
approach for single-cell data generation owing to its reproducibly and relative ease of use. In 330 
combination with standard sequencing library reagents and instruments, popular microfluidic 331 
approaches for scATAC-seq, such as those commercially available from 10X Genomics 332 



10 

(Chromium Next Gem Single Cell ATAC-seq Library Kit)151 and BioRad (SureCell ATAC-333 
seq Library Preparation Kit)150, provide all required reagents necessary to produce scATAC-334 
seq libraries. However, these commercial applications require the acquisition of proprietary 335 
robotic sample processing devices (Chromium Controller, 10X Genomics and ddSEQ single-336 
cell isolator, BioRad) that are non-standard in most laboratories.  337 
  338 
Droplet microfluidic-based scATAC-seq methods are generally composed of four major steps. 339 
First, Tn5 adapter integration is performed on the bulk nuclei suspension, similar to traditional 340 
ATAC-seq. Second, transposed nuclei are loaded onto an aqueous channel with PCR reagents 341 
and proprietary buffers and mixed with gel-beads containing distinct barcodes. To encapsulate 342 
individual nuclei in picolitre reactions with a single gel-bead, the aqueous flow is restricted to 343 
channels measuring ~55 uM in width151. Droplets are produced by exposing the aqueous flow 344 
to a continuous stream of oil. Nuclei droplet loading follows a Poisson distribution and nuclei 345 
are thus loaded at low concentrations. Third, barcoded sequences with P5 adapters and tail 346 
sequences complementary to Tn5-inserted adapters are released from gel-beads following 347 
droplet generation; enabling PCR amplification of accessible chromatin fragments within each 348 
droplet in isolation. Finally, the droplet-oil mixture is emulsified, purified with magnetic beads, 349 
and subjected to bulk PCR to attach sequencing indices and P7 sequences.  350 

Plate-based scATAC-seq 351 

 352 
An alternative to microfluidics approach is to physically separate cells into the wells of plates. 353 
Straightforward 96- and 384-well scATAC-seq protocols have been published148, however, 354 
their throughput remains limited by the low number of wells available. The adaptation of 355 
scATAC-seq to the ICELL8 Single Cell System (Takara Bio), which has 5,084 nanoliter wells, 356 
in the form of µATAC-seq152, increased the throughput of the assay to a few thousand cells.  357 
 358 

Combinatorial indexing (sciATAC-seq) 359 
 360 

Higher throughput can be achieved using a combinatorial indexing strategy, as implemented in 361 
sciATAC-seq51,52,149. In contrast to microfluidic approaches, sciATAC-seq can be performed 362 
with access to standard instruments and reagents, with the exception that it requires custom-363 
made Tn5. The core idea behind combinatorial indexing is the repeated pooling-and-splitting 364 
of cells or nuclei coupled with labeling of DNA fragments at each step, in such a way that 365 
statistically each cell or nucleus is tagged with a unique combination of barcodes. In the 366 
simplest implementation of sciATAC-seq, nuclei are distributed into wells containing uniquely 367 
indexed Tn5 transposomes, in which tagmentation is performed. Nuclei are then pooled and 368 
distributed into the wells of a second plate at numbers sufficiently low to minimize the 369 
generation of doublets. The reactions in these wells are then subjected to indexed PCR, 370 
generating statistically unique barcode combinations for each cell. Additional rounds of 371 
barcoding is also possible, utilizing ligation of barcodes to transposed fragments153–155, vastly 372 
increasing potential throughput. Another approach for increasing throughput is to combine 373 
upstream transposition of barcoded Tn5 with a droplet-based scATAC platform such as 10X 374 
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or BioRad, in the form of droplet combinatorial indexing, or droplet-based single-cell 375 
combinatorial indexing for ATAC-seq (dsciATAC)150. 376 

Box 2. Experimental design of a scATAC-seq experiment 377 
Similar to other sequencing-based profiling methods, scATAC-seq is susceptible to batch 378 
effects that can obscure biological variation. Careful attention to experimental design is central 379 
to mitigating batch and other sources of technical variation that strongly depend on the goals of 380 
the researcher. For example, in atlas and test versus control studies, a common objective is to 381 
contrast regulatory patterns among and within cell-types found in different tissues and organs, 382 
or between treatments and control samples. For such cases, scATAC-seq libraries should be 383 
constructed in parallel from as many sample types as possible, and should include at least two 384 
biological replicates, permitting resources, with the exception of ultra-dense time series or 385 
titration series, where the individual wells are intrinsically replicating each other. Prioritizing 386 
sample type diversity in preparations from individual batches aids in the mitigation of technical 387 
effects and allows researchers to average environmental and genotype influences across 388 
replicates. In contrast, comparison of two scATAC-seq libraries produced from separate 389 
preparations and from different samples will be confounded by batch effects, resulting in 390 
misleading or even erroneous results due to inflated variance between samples. Computational 391 
removal of batch effects from single-cell data has been a major focus of many informatics 392 
laboratories and shows promise in correcting mistakes stemming from poorly constructed 393 
experimental design (see Results). However, there is currently no accepted method to reliably 394 
remove all batch effects while preserving biological variation in the absence of true biological 395 
replicates. Thus, in cases where generating and sequencing scATAC-seq libraries in different 396 
batches is unavoidable, it is pertinent that the researcher takes note of possible sources of 397 
variation among samples. 398 

3. Results  399 

In general, a chromatin accessibility analysis workflow consists of three main steps (1) pre-400 
processing, (2) peak calling and (3) downstream analysis (Fig. 3). The latter can include 401 
differential accessibility analysis, annotation, footprinting, motif enrichment and integration 402 
with other omics data. Additional computational steps are needed for single-cell ATAC-seq 403 
data. We will discuss each of the steps in more detail and mention commonly used 404 
bioinformatics tools. Although there is not yet a gold standard in the field, some general 405 
pipelines, such as the ENCODE pipeline for ATAC-seq analysis156, exist and propose specific 406 
tools and a guided workflow for the analysis of chromatin accessibility data.  407 

3.1. Pre-processing 408 

  409 
Like most high-throughput sequencing data (Fig. 3A), pre-alignment quality control is 410 
recommended for chromatin accessibility data and can for instance be performed using 411 
FastQC157 or MultiQC158 to examine sequencing quality, GC bias and overrepresented 412 
sequences (Fig. 3B). Next, sequencing adaptors should be removed using tools like cutadapt159, 413 
trimmonmatic160 and fastq-mcf161, which require the input of known Illumina adaptor 414 
sequences. Depending on the experimental techniques and when paired-end reads are available, 415 
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a size selection can be performed at this point. For instance, removal of multi-nucleosomal 416 
reads is advised for MNase-seq data, and for the ‘double-hit’ DNase-seq protocol an additional 417 
in silico filtering for fragment inserts between 50-100 bp for TFs binding site detection can be 418 
performed in addition to the gel-based or SPRI-based experimental size selection81,162. Trimmed 419 
and filtered reads are mapped to an organism-specific reference genome. The most widely used 420 
aligners for chromatin accessibility data are Bowtie2163 (used in the ENCODE ATAC-seq 421 
pipeline156), bwa-mem164 (used in the Cell Ranger ATAC Algorithm) or STAR165 (Fig. 3C). 422 
Following alignment, some additional filtering steps are advised to discard reads with low 423 
mapping quality or multi-mapped reads, PCR-duplicated reads, ENCODE blacklisted 424 
regions166 and mitochondrial reads (specifically important for ATAC-seq data in which these 425 
can make up as high as 75% of the total amount of mapped reads when using the original 426 
protocol33) (Fig. 3D). 427 
  428 
An additional quality control step is recommended at this point by visualizing accumulated 429 
read abundance around transcription start sites, which are generally highly accessible167 (Fig. 430 
3E). In addition, visually inspecting the distribution of reads across the genome using genome 431 
browsers such as IGV168, UCSC169 or JBrowse170,171 can further increase insight in the quality 432 
of the samples (Fig. 3H).  433 

3.2. Peak calling 434 

  435 
Following initial read processing and quality control comes one of the crucial steps in 436 
chromatin accessibility data analysis, namely defining so-called ‘peaks’ or locations with a 437 
high accumulation of reads compared to the background (Fig. 3F). These peaks form the basic 438 
units in most of the downstream analyses. The most widely used tool for peak calling is 439 
MACS2172, which is also the default in the ENCODE ATAC-seq pipeline156. MACS2 is a model-440 
based algorithm originally designed for ChIP-seq data analysis, and implements a dynamic 441 
Poisson distribution to capture local background biases in the genome and to effectively detect 442 
peaks172. Other general (e.g. ZINBA173) or more technology-specific peak callers exist, e.g. 443 
HMMRATAC174 for ATAC-seq; F-seq175 and Hotspot176 for DNase-seq and ATAC-seq. MNase-444 
seq is actually an orthogonal assay compared to the other discussed chromatin accessibility 445 
profiling methods as it measures nucleosome-occupied regions. It is therefore the method of 446 
choice to map nucleosome positions genome-wide, for which specific tools have been 447 
developed177,178 (Fig. 3I). ATAC-seq also lends itself for nucleosome positioning by for 448 
instance using the tool NucleoATAC179. An important parameter to consider during the peak 449 
calling step is the signal threshold, which influences the sensitivity and specificity of peak 450 
retrieval. The default minimum false discovery rate (FDR) cutoff of 0.05 for MACS2 has been 451 
shown to be optimal for a range of DNase-seq datasets180. 452 
  453 
As datasets often comprise different samples, the construction of a common set of features (i.e., 454 
genomic intervals) is crucial in order to be able to compare samples to each other in 455 
downstream steps. Usually, a consensus peak file comprising a set of merged peaks across the 456 
samples is used. The ENCODE pipeline provides a possible workflow with merge and filter 457 
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steps for this objective156, although other tools can serve the same purpose (e.g. 458 
consensusSeekeR181). Alternatively, a pre-defined set of regions or a binned genome can be 459 
used as features in downstream analyses51,70. For human and mouse studies, the ENCODE 460 
SCREEN regions182 provide comprehensive sets of intervals, as well as two recently published 461 
catalogs of consensus DHS regions (926,535 for human and 339,815 for mouse). For species 462 
with more compact genomes and higher regulatory density, such as Drosophila, a set of 463 
134,000 regions covering the entire non-coding genome may be used70. 464 
 465 
An important quality control step is to calculate measures that represent the signal-to-noise 466 
ratio, which is usually done by calculating the fraction of reads in called peaks (FRiP score). 467 
For ATAC-seq the FRiP should preferably be greater than 0.2-0.3 for mammalian species, and 468 
the signal proportion of tags (SPOT score) for DNase-seq should exceed 0.4 for mammalian 469 
species (i.e. 40% of mapped reads within DHSs)156,183. Note that these metrics vary depending 470 
on the organism, and can be dependent on the size and complexity of the genome.  471 
 472 
Lastly, to ensure reproducibility in the data, ENCODE guidelines recommend that each ATAC-473 
seq experiment should have two or more biological replicates and that replicate concordance 474 
should be checked by calculating Irreproducible Discovery Rate (IDR) values184. 475 

3.3. Downstream analysis 476 

  477 
Usually chromatin accessibility profiling is performed on multiple samples, comparing 478 
treatment versus control, comparing multiple tissues, or comparing cells during a 479 
differentiation process. A central question is to define the set (or signature) of peaks that is 480 
differentially accessible in each sample (Fig. 3G). For a pairwise comparison between two 481 
conditions, differential peak calling can be performed, for example using MACS2, in which 482 
mapped BAM files of treatment and control samples are provided. Alternatively, statistical 483 
analyses can be performed on the read count matrix, with consensus peaks as rows and the 484 
different conditions or samples as columns. For pairwise comparisons, several approaches have 485 
been borrowed from the RNA-seq field, including MA-plots, and statistical analyses based on 486 
the negative binomial distribution, implemented in the DESeq2185 and edgeR186 packages (Fig. 487 
3G). Tools like DiffBind187, HOMER188, or DBChIP189 rely on this strategy.  488 
 489 
For multi-sample studies, the normalized (e.g., reads per million) region-count matrix can be 490 
used for dimensionality reduction and clustering, for example by hierarchical clustering or k-491 
means (Fig. 3G). Such clustering algorithms are for instance implemented in the deepTools 492 
package190. The differentially accessible regions can be visualized in a heatmap (Fig. 3G). 493 
Other researchers have drawn inspiration from tools designed for clustering of regions in 494 
single-cell epigenomics data using factor analysis and unsupervised learning. For instance, 495 
topic modelling or non-negative matrix factorization, in which a high-dimensional dataset is 496 
approximated by a reduced number of representative components, can be applied directly to 497 
bulk datasets, or to a matrix with simulated single-cells, created from bulk samples using a 498 
bootstrapping procedure59,191. 499 
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  500 
To gain biological insight in the sets of cell type specific regions identified via differential 501 
accessibility analysis, region set enrichment analysis via GREAT192, ChIPseeker193, 502 
ChIPpeakAnno194, Enrichr195, cisTarget196,197, and LOLA198 are used to (1) identify correlations 503 
of peaks sets with genome annotation (e.g., promoter, intronic, intergenic) or with existing 504 
ChIP-seq tracks; and (2) to couple peaks to the nearest gene, followed by Gene Ontology or 505 
pathway enrichment (Fig. 3L). In addition, chromatin segmentation approaches such as 506 
ChromHMM199, EpicSeg200 and Segway201 are used for genome-wide classification of genomic 507 
regions based on epigenomic marks (mostly based on histone modification ChIP-seq) into 508 
chromatin states, such as ‘active promoter’ or ‘weak/poised enhancer’ per cell type. These 509 
annotations can be useful to aid interpretation of gained or lost accessible regions in a study. 510 
  511 
As combinatorial binding of TFs to accessible regulatory regions forms the basis of gene 512 
regulation, one of the major downstream analysis steps is unravelling which TFs are bound to 513 
a set of cell type-specific or differentially accessible regions. Since TFs recognize and bind to 514 
TF-specific DNA sequences, we can leverage the enrichment of TF motifs in a set of sequences 515 
(Fig. 3K). Two major classes of motif analysis tools exist. The first class of tools, e.g. 516 
HOMER188, MEME202 and cisTarget196,197, rely on databases of predefined TF motifs (Position 517 
Weight Matrices or PWMs203), such as JASPAR204, CIS-BP205, TRANSFAC206 and 518 
HOCOMOCO207. These approaches scan the DNA sequences of accessible regions with 519 
PWMs, and perform an enrichment analysis compared to a background set or compared to the 520 
entire genome as background. The second class, (e.g., RSAT208, MEME202, Weeder209 and 521 
HOMER188) perform de novo motif discovery, allowing an unsupervised identification of 522 
enriched TF motifs.  523 
Going beyond motif discovery, machine-learning methods have shown promising results, 524 
because large sets of co-accessible peaks can be derived per cell type52. Examples of 525 
convolutional neural network models include DeepATAC210, DeepLIFT211 and DeepMEL212. 526 
Often, these models capture important TF motifs across the training regions but are also able 527 
to predict their importance at single-nucleotide resolution within the regulatory sequences. 528 
Note that whereas most motif discovery tools require a set of cell type specific peaks, MEDEA 529 
extracts cell-type-specific peaks from just one input sample using a panel of peaks from 530 
reference cell types (e.g. ENCODE-DREAM) prior to a TF motif enrichment analysis213. 531 
Altogether, motif detection on a set of specifically accessible regulatory regions allows to 532 
decode the genome sequences and may reveal possible master regulators that bind to these 533 
regions. 534 
  535 
An alternative approach to identify TF binding sites from chromatin accessibility data is TF 536 
footprinting (Fig. 3J). Footprints are small regions (8-30bp) that display relative protection 537 
from cleavage due to binding of a TF, and thus correspond to dips in the accessibility 538 
peak44,214,215. DNase I has been and is still the preferred footprinting reagent. ATAC-seq 539 
footprinting has been shown to be less accurate than DNase-seq footprints216, which might be 540 
attributed to the large size of the Tn5 dimer and Tn5-specific cleavage biases that are not 541 
accounted for in DNase-seq-designed footprinting algorithms33,217. Analytic genomic 542 
footprinting approaches either de novo annotate DNase I footprints (e.g. the Wellington 543 
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algorithm218, HINT219, DBFP220 and DNase2TF221); or determine TF occupancy at specific 544 
genomic location (e.g. CENTIPEDE222 and footprint likelihood ratio (FLR)223)224. Nevertheless, 545 
thanks to the success of DNase-seq data for footprinting, footprinting analysis on ATAC-seq 546 
data has also been attempted by several groups, for instance in the initial ATAC-seq 547 
publication33, using DeFCoM225 or ATAC-seq-specific footprinting algorithms such as HINT-548 
ATAC that consider ATAC-seq artefacts217. Note that TF footprinting comes with some 549 
limitations as it requires extremely deep sequencing, ideally at least 200 million uniquely 550 
mapped reads from a DNase-seq experiment224, and it is biased by short residence times for 551 
some TFs and by intrinsic sequence preferences of DNase I226. 552 
 553 

 554 
Figure 3. Overview of common bulk chromatin accessibility measurement processing and analysis 555 
tasks. Starting from raw sequencing reads (a), bulk chromatin accessibility data undergoes pre-556 
processing (b-e), followed by peak calling (f) and downstream analysis steps (g-m). 557 

Single-cell chromatin accessibility data analysis  558 

Single-cell chromatin accessibility data requires similar upstream processing steps as bulk data, 559 
including alignment, feature definition and the generation of a count matrix (Fig. 4A). However 560 
due to the substantial scale and sparsity of the region-by-cell count matrix, specialized 561 
bioinformatics tools have been developed, mostly for scATAC-seq data, to handle these assay-562 
specific challenges58–67. One major point in which these tools differ is the way they define 563 
genomic regions to be used as features [e.g. peaks from bulk or aggregated single-cell data 564 
(chromVar65, Cicero64, cisTopic59, scABC67, Scasat58), pseudo-bulk samples (Cusanovich et al., 565 
201852) or fixed size bins (Cusanovich et al., 201852, SnapATAC61, ArchR62))] and what the 566 
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count features represent [e.g. counting reads in peaks (cisTopic59, Cusanovich et al., 201852, 567 
scABC67, Scasat58), counting (gapped) k-mers under peaks or around transposase cut sites 568 
(BROCKMAN60, chromVAR65) or counting reads overlapping TF motifs in peaks or genome-569 
wide (chromVar65, SCRAT63)]227. Important follow-up steps are transformation (e.g. by 570 
binarization) and dimensionality reduction of the feature-by-cell matrix to visualize the cells 571 
into a 2D- or 3D-space and to perform further downstream analyses such as clustering to 572 
uncover the different populations in the sample and their specifically accessible regions (Fig. 573 
4B,C). Once cell clusters are obtained, BAM files of all cells belonging to the same clusters 574 
can be aggregated to generate pseudobulk tracks to visualize the data (Fig. 4D). Recently, 10 575 
computational methods for the analysis of scATAC-seq data have been benchmarked by Chen 576 
et al.227 demonstrating that SnapATAC61, Cusanovich et al., 201852, and cisTopic59 performed 577 
best in distinguishing cell populations in both synthetic and real datasets. Note that compared 578 
to scRNA-seq frameworks, there are no designated tools that correct for batch effects in 579 
scATAC-seq data, but batch correction is performed inexplicitly during the processing steps 580 
such as during feature selection or dimensionality reduction228. Batch correction tools designed 581 
for scRNA-seq data may be used with precautions to not remove biological variance. Batch 582 
effect removal becomes especially important when combining multiple runs into atlases or 583 
when integration with scRNA-seq data, for which BBKNN229, Scanorama230 and scVI231 584 
performed best in a recent benchmark232. Like in scRNA data, reconstruction of a pseudotime 585 
trajectory based on scATAC-seq data can be helpful when studying a system following a 586 
cellular differentiation, for instance during embryonic development233 or hematopoiesis234 (Fig. 587 
4F,G). Tools like Cicero64 (via implementing a modification of the scRNA-seq trajectory 588 
inference tools Monocle235) and STREAM234 have been used to infer such trajectories from 589 
scATAC-seq data.  590 
  591 
As the complexity of a system or disease exists across all molecular layers, computationally 592 
integrating multiple omics modalities holds great promise to achieve a systems biology view 593 
and to reconstruct gene regulatory networks. Especially the integration of chromatin 594 
accessibility profiles with ChIP-seq and RNA-seq data are of interest (Fig. 3M). As TF binding 595 
site enrichment within regulatory regions may elude to TF binding, correlation with TF ChIP-596 
seq tracks197; or enrichment/overlap of TF ChIP-seq signal/peaks within accessible regions can 597 
validate the predicted target sites. For the reconstruction of regulatory networks, specifically 598 
the integration of epigenomics and transcriptomics is of interest as this may predict links 599 
between accessible regulatory regions and target genes (Fig. 4E). An example from the single-600 
cell field is the study by Cao et al.236 where the authors used a least absolute shrinkage and 601 
selection operator (LASSO) model to correlate a gene’s expression level with the accessibility 602 
of all peaks within 100kB around its TSS , linking 1,260 distal regions to 321 potential target 603 
genes, which improved predictions of gene expression based on accessibility profiles by a 604 
fourfold as compared to only using chromatin accessibility at promoters. 605 
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 606 
Figure 4. Overview of common scATAC-seq processing and analysis tasks. A, Outline of key steps 607 
in processing scATAC-seq datasets. B, Clustering of cell types and UMAP embedding of single cells. 608 
C. Identification of marker genes and/or peaks. D, Generation of pseudobulk genome browser tracks 609 
for each cell type. E, Identification of peak-to-gene links. F, Assessing peak coaccessibility. G, 610 
Differentiation trajectories analysis.  611 

4. Applications 612 

Chromatin accessibility profiling is widely useful for applications in biology and biomedicine, 613 
ranging from the analysis of gene regulation and cellular states (section 1 below) over the 614 
dissection of healthy and diseased tissues and organs (sections 2 and 3) to the investigation of 615 
populations and species (sections 4 and 5). These applications profit from the high genomic 616 
resolution of chromatin accessibility profiling and from its relative ease and throughput of these 617 
assays. 618 

4.1. Regulation of chromatin accessibility 619 

As nucleosomal occupancy of DNA is refractory to TF binding and transcription, regulation of 620 
chromatin accessibility is key to gene regulatory mechanisms. Multiple mechanisms for 621 
accomplishing it can be conceived, have been proposed and have some evidence in their 622 
support.  623 
 624 
Nucleosomes appear to have clear preference for certain sequences, and this bias seems to play 625 
some role in establishing nucleosome positions in yeast237,238, but it is less predictive of 626 
nucleosome positioning in metazoan genomes239,240, and it is mostly not relevant to the major 627 
aspect of accessibility regulation, which involves relatively large nucleosome depleted regions 628 
associated with active cis-regulatory elements. Regulation of regulatory element accessibility 629 
and activity is accomplished through the combined dynamics action of TFs, RNA polymerases, 630 
chromatin remodeling complexes, histone chaperones and histone variants. 631 
 632 
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Many TFs only bind to DNA when it is accessible. As a classic example, the vast majority of 633 
occupancy sites of glucocorticoid nuclear receptor GR, following its activation by binding by 634 
its cognate ligands, are located in pre-existing open chromatin regions176; and this property also 635 
has direct implications for the cell type-specific effects of its activation.  636 
 637 
However, many developmental processes involve the opening up of previously inaccessible 638 
chromatin. This process is at its most extreme upon zygotic genome activation (ZGA) during 639 
embryonic development, when transcription of the zygotic genome is turned on, but it is also 640 
key to all subsequent lineage-specifying developmental transitions, responses to many external 641 
and internal stimuli, as well as to cellular reprogramming. A subset of TFs are capable of 642 
binding at previously inaccessible chromatin, and subsequently initiating chromatin 643 
remodeling leading to an accessible state, and are thus termed “pioneer” factors. Well-known 644 
examples of such factors include Zelda, which acts upon ZGA in Drosophila241–243, the 645 
Nanog/Oct/Sox pluripotency factors244–246, FoxA16, and numerous others247. Pioneer factors do 646 
not create and maintain an active and accessible state on their own, but this is accomplished 647 
together with the recruitment of other TFs, chromatin remodelers and reposition nucleosomes, 648 
and chromatin modifiers that deposit histone marks characteristic of active regulatory elements. 649 
 650 
What exactly constitutes a pioneer factor and how such TFs exert their action mechanistically 651 
has been a subject of much debate, and multiple alternative models have been proposed1. Under 652 
the strictest definition, a pioneer factor is a TF that directly binds nucleosomal DNA, for which 653 
there is direct in vitro evidence for a subset of TFs248,249,19; however, this is not necessarily the 654 
only or even primary mechanism of pioneer action. TFs could be initiating nucleosome 655 
displacement through passive competition with core histones for DNA binding during the 656 
process of nucleosome turnover250–252, through binding to linker regions253,250, or by action in 657 
trans, i.e. through recruitment of cofactors from an active distal regulatory element40. However, 658 
what happens in vivo is less clear, as no candidate pioneer TFs are known to initiate 659 
accessibility at all genomic occurrences of their short degenerate cognate motifs, suggesting a 660 
complex context-dependent mechanism of action. 661 
 662 
Note that TF binding at regulatory elements in turn can impose constraints on the lateral 663 
movement of nucleosomal particles. This is why the most strikingly phased nucleosomal arrays 664 
in mammalian genomes are located nearby occupancy sites for strongly and stably bound 665 
factors such as CTCF254 and NRSF255. 666 
 667 
Lastly, cell state transitions also involve the shutting down or “decommissioning” of previously 668 
active regulatory elements, which is accomplished by recruiting transcriptional repressors and 669 
chromatin modifying complexes removing active chromatin histone marks and depositing 670 
repressive ones such as H3K27me3 or H3K9me3, as well as leading to DNA methylation256. 671 

4.2. Chromatin accessibility across cell types and organs 672 

Chromatin accessibility at gene-regulatory regions is highly dynamic during cellular 673 
differentiation and organ development257,258. Chromatin accessibility profiling has contributed 674 



19 

to our understanding of chromatin regulation across a broad range of cells in human and 675 
mouse52,183 and in specific organs and cell types. The hematopoietic lineage in particular has 676 
served as a blueprint for deciphering the role of chromatin accessibility and epigenetic changes 677 
in cellular differentiation30,259. Application of ATAC-seq and/or ChIP-seq to FACS-purified 678 
hematopoietic cell populations established comprehensive maps of regulatory regions and their 679 
dynamic changes in the hematopoietic lineage of human and mouse34,102,260,261. Detailed 680 
investigations of macrophages connected the regulation of these immune cells to their tissue 681 
environment262,263 while analyses of CD4+ T cells33,264,265 and innate lymphoid 682 
cells266,267uncovered a striking degree of plasticity in these immune cell populations. Chromatin 683 
regulation in immune cells also contributes to the generation of memory T cells268 which are 684 
poised to implement effector functions upon re-exposure to pathogens, and to the more limited 685 
memory of inflammation in regulatory T cells269 Importantly, immune cell memory is not 686 
restricted to B cells and T cells, but also includes monocytes and NK cells270 and the regulation 687 
of such trained immunity appears to involve tightly regulated changes in the epigenomes of the 688 
affected cells271,272. 689 

Beyond the hematopoietic lineage, RNA-seq, ATAC-seq and ChIPmentation profiling of 690 
epithelial cells, endothelial cells and fibroblasts from 12 different organs uncovered widespread 691 
immune gene regulation in these non-hematopoietic, structural cells, as well as a regulatory 692 
potential that appears to pre-program these cells for contributing to pathogen response273. 693 
Chromatin accessibility has also been studied in neural development57,274–276 as well as in brain 694 
samples of humans53,55,277 and non-human primates278. Notable applications of chromatin 695 
accessibility profiling to other cell types and organs have included the analysis of cardiac 696 
development279,280, epidermal progenitor cells in skin281, and mammary gland development282. 697 
Finally, initial single-cell atlases of chromatin accessibility across tissues and organs are 698 
emerging52,56, which have the potential to discover new cell types and to define the chromatin 699 
states of cell types that are difficult to purify or enrich using FACS. In summary, chromatin 700 
accessibility profiling has uncovered a transcription-regulatory landscape that is cell-type-701 
specific and organ-specific, and dynamically changes over the course of cellular differentiation 702 
and organ development. 703 

4.3. Chromatin accessibility in human diseases 704 

 705 
Changes in chromatin accessibility have been implicated in multiple diseases, where they 706 
reflect disease-linked changes in cell composition, gene regulation and epigenetic cell states. 707 
Alterations in gene regulation are ubiquitous in cancer and often linked to the developmental 708 
abnormalities of cancer cells283. In blood cancers, chromatin accessibility patterns have been 709 
shown to reflect the cancer’s cell-of-origin as well as regulatory changes that appear to 710 
contribute to the process of malignant transformation and cancer evolution34,284–287. Changes in 711 
chromatin accessibility have been investigated over the course of targeted therapy in patients 712 
with chronic lymphocytic leukemia286 and combined with chemosensitivity screening to 713 
identify promising drug combination therapies288. Chromatin accessibility landscapes have also 714 
been mapped in solid tumors, including breast cancer289, colon cancer290,291, glioblastoma292,293, 715 
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gastric cancer294, and lung cancer295,296. Pediatric cancers tend to carry particularly pronounced 716 
regulatory changes, contrasting with their comparatively low rate of somatic mutations. For 717 
example, the EWS-FLI1 fusion oncogene in Ewing sarcoma has been shown to impose de novo 718 
enhancers and super-enhancers on the tumor cells297,298; and epigenome profiling has uncovered 719 
subtype-specific regulatory mechanisms in atypical teratoid rhabdoid tumors299 and in 720 
Langerhans cell histiocytosis300. 721 
 722 
An interesting line of research has investigated the role of the tumor-associated immune cells 723 
in solid tumors. Regulatory changes have been implicated in T cell exhaustion in the context 724 
of chronic inflammation and the tumor microenvironment301,302, which compromises the ability 725 
of these T cells to fight the tumor. Immunotherapy, most notably blocking of the PD1/PD-L1 726 
pathway, has been shown to revert some of the regulatory changes associated with T cell 727 
exhaustion151,303,304 and is widely useful for the treatment of those solid tumors that have a high 728 
degree of immunogenicity305. However, not all exhausted T cells can be rejuvenated by immune 729 
checkpoint blockade, as some T cells appear to transition to a fixed regulatory state that renders 730 
them resistant to reprogramming301. In addition to immunotherapy, selective reprogramming of 731 
DNA methylation can be used to alter the T-cell landscape resulting in enhanced treatment 732 
efficiency84,306. 733 
 734 
Beyond cancer, where chromatin accessibility has been studied most extensively, changes in 735 
chromatin accessibility have also been observed in immune diseases such as inflammatory 736 
bowel disease307 and rheumatoid arthritis308. Moreover, changes in epigenome and chromatin 737 
accessibility profiles have been observed in post-mortem brain tissue from patients with 738 
Alzheimer’s disease309, schizophrenia310 and autism spectrum disorder311. In summary, 739 
chromatin accessibility profiling of primary patient samples is already widely used for 740 
identifying disease-linked changes in chromatin structure and transcription regulation, and 741 
there is substantial scope for new discoveries as researchers move beyond cancer and are 742 
investigating regulatory mechanisms in many diseases that have yet received little attention. 743 

4.4. Chromatin accessibility variation within populations 744 

  745 
Extension of chromatin accessibility assays to populations of diverse genetic backgrounds has 746 
proven valuable for advancing our understanding of how sequence variation impacts cis-747 
regulation within a species. A striking 90% of disease-associated variants in humans identified 748 
via GWAS localize to gene-distal non-coding loci, obfuscating functional predictions24,312,313. 749 
Mounting evidence has implicated alteration of gene regulation as a key driver of phenotypic 750 
evolution and disease proliferation. Quantitative trait loci (QTL) mapping of molecular traits, 751 
such as expression variation (eQTL), provides an attractive approach for deciphering the gene 752 
regulatory potential of genetic variants within a population. Leveraging a molecular QTL 753 
framework, a large-scale DNase-seq panel of 70 lymphoblastoid cell lines from the Yoruba 754 
HapMap showed that approximately 50% of chromatin accessibility associated variants 755 
coincide with variants associated with expression variation, with the allele conferring increased 756 
accessibility generally associated with increased gene expression314. This study also provided 757 
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evidence that sequence alterations underlying cis-elements perturb TF binding affinities, 758 
leading to weakened or ablated binding. An analysis of CD4+ T cell chromatin accessibility 759 
from 105 healthy donors revealed that only 15% of genetic variants embedded within 760 
accessible chromatin regions affect the relative accessibility of the cognate locus315. Thus, the 761 
majority of genetic variants located within accessible chromatin appear to lack functional 762 
consequences. The same study further demonstrated that pairwise correlations of accessible 763 
regions (co-accessible regions) readily recapitulates three-dimensional higher-order chromatin 764 
interactions as defined by in situ HiC data, suggesting that local chromatin accessibility among 765 
pairs of regions are coordinated with higher-order genome structure, particularly within the 766 
same topologically-associated domains (TADs). In line with these findings, local chromatin 767 
accessibility in a subset of regions were associated with variants located 10s to 100s of 768 
kilobases away, reflecting putative interactions. Importantly, integration of population-scale 769 
accessibility data captured 10-30% of previously reported autoimmune-associated variants and 770 
explained 1-7% of disease heritability. In model organisms, chromatin accessibility can be 771 
performed across a cohort of homozygously inbred individuals, making the identification of 772 
chromatin accessibility QTL (caQTL) more straightward. Jacobs et al., revealed that a critical 773 
subset of caQTLs could be explained by making or creating binding motifs for pioneer 774 
factors316. In an alternative approach, chromatin accessibility can also be compared between 775 
alleles, within the same individual, to identify allele-specific chromatin accessibility317.   776 
 777 
Taken together, population-based and/or allele-specific analysis of chromatin accessibility 778 
provides a powerful approach for dissecting the regulatory potential of genetic variants 779 
associated with a trait of interest. Additional studies in other tissues and disease states 780 
leveraging single-cell technologies have the potential to systematically map all chromatin 781 
accessibility modifying variants in a cell-type specific fashion.  782 

4.5. Evolution of chromatin accessibility 783 

  784 
The use of chromatin accessibility data has greatly facilitated the identification of causal 785 
genetic variants underlying disease and trait variation; however, it is also proving useful to 786 
study the evolution of gene regulation and morphological evolution between species. For 787 
example, major morphological transitions, such as the loss of limbs in snakes and eye 788 
degeneration in subterranean mammals, have been linked to loss of regulatory elements318. 789 
These regulatory regions were discovered using a combination of tissue-specific ATAC-seq 790 
and comparative genomics. In another study, chromatin accessibility data in combination with 791 
H3K27ac and H3K4me3 was used to identify promoters and enhancers in liver tissue of 20 792 
mammalian species261. It was determined that the rate of sequence variation is much greater 793 
for enhancers in comparison to promoters. This was reflected by a lower conservation of 794 
enhancers between species, yet, newly evolved enhancers were more likely to be under positive 795 
selection in a lineage specific manner.  796 
 797 
A major advantage of incorporating chromatin accessibility data into these studies is that DNA 798 
sequence variation is often too high in intergenic regions to identify cis-regulatory elements 799 
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using sequence-based alignments alone319. This is especially problematic for studies in plants, 800 
where sequence turnover between related plant species is much greater than what is observed 801 
between related animal species320. As such, comparative epigenomics is revealing important 802 
clues about the evolution of gene regulation. For instance, rapid evolution of cis-regulatory 803 
regions has been identified in a comparative epigenomics study of numerous flowering plant 804 
species ranging in genome size from ~150 Mb to ~5,000 Mb321. The frequency of distal 805 
accessible chromatin regions was correlated with genome size and their distal location from 806 
genes was mostly likely due to transposon and repeat expansion in these plants322,75,318.  807 
 808 
Lastly, the lack of distal regulatory regions in Capsaspora owczarzaki, a unicellular organism 809 
sister to other animal species, has led to the hypothesis that distal regulation is a feature of 810 
animal multicellularity323, however, with the increase in profiles of chromatin accessibility 811 
across taxa it seems more likely that distal regulation is a consequence of genome size321. 812 
Additional comparative epigenomic studies of chromatin accessibility across diverse taxa and 813 
of species that represent key nodes in the tree-of-life will further unveil diverse mechanisms in 814 
the evolution of gene regulatory mechanisms. 815 

5. Reproducibility and Resources 816 

The genomics community has been leading the way in creating standards for data information, 817 
data quality and data deposition for decades. This reflects that many genome-wide datasets 818 
serve as community resources and, as a result, they are repeatedly used and incorporated into 819 
future studies by individual labs. To increase the usability of epigenomics data, it is common 820 
practice to submit the data to well-funded and stable data archive facilities such as the Gene 821 
Expression Omnibus (GEO) repository324 at the National Center for Biotechnology Information 822 
(NCBI) or to the ArrayExpress database325 at the European Bioinformatics Institute (EBI). 823 
These databases host records of genomics data containing not only count matrices and other 824 
useful processed output files (e.g. bigWig files or BED files enriched for chromatin 825 
modification or accessibility), but also a short description of the experimental design and 826 
processing steps to reach the submitted output files, as well as a link to the archived raw 827 
sequencing data. For non-human species and open-consent human donors, the raw sequencing 828 
data should be submitted to for instance Sequence Read Archive (SRA)326, European 829 
Nucleotide Archive (ENA)327 or DNA Data Bank of Japan (DDBJ)328. For human donors where 830 
controlled access is required, the raw sequencing data should be submitted for instance into the 831 
European Genome-phenome Archive (EGA)329 or the database of Genotypes and Phenotypes 832 
(dbGaP)330 from NCBI. Although rarely required by journals, many researchers are in addition 833 
hosting their data in track hubs through publicly accessible genome browsers, as well as other 834 
interactive web-based tools to for instance visualise dimensionality reduction plots of scATAC-835 
seq data using SCope331, a Shiny app63 or ASAP332. This increases data dissemination and 836 
provides a user-friendly tool for scientists not as familiar with computational methods for 837 
analyzing data. 838 
 839 
To facilitate interpretation and reproducibility, the deposited data should include metadata. For 840 
example, data entry requirements that are useful to addresses issues associated with 841 
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reproducibility could include sources of possible biological variation (i.e. genotype, sex of 842 
samples, age, tissue/organ/cell type) and technical variation (i.e. antibodies – lot number, 843 
nucleases/integrases – lot number, sequencing library procedure, instrument used for 844 
sequencing and type of sequencing run). They are also important variables that can be 845 
incorporated into data analyses as covariates or to correct for batch effects. Genome assembly 846 
and genome annotation versions used in data analyses should also be provided. 847 
 848 
Lastly, distribution of custom code and descriptions of computational methods are also 849 
paramount to reproducibility. As one example mentioned above, the ENCODE Consortia has 850 
developed extensive open source software that is accompanied with ‘best practices’ and 851 
descriptive details on the rationale for data processing steps, thresholds and quality metrics for 852 
data evaluation. In general, software used for data analyses should include the software version 853 
and parameter options applied. Custom code should be disseminated through public hosts such 854 
as GitHub, or can be archived in a static digital repository such as Zenodo, or on more 855 
specialized repositories such as Kipoi333 for ready-to-use trained machine learning models for 856 
genomics. Efforts to address the biological, experimental and computational variables 857 
described above will increase reproducibility in addition to the usability of these data for years 858 
to come. 859 

6. Limitations and optimizations  860 

While chromatin accessibility has proven a powerful and informative window into gene 861 
regulation, accessibility alone must often be linked to orthogonal measurements or 862 
perturbations to build a causal or mechanistic understanding of genomic function. While 863 
accessibility dynamics can be readily mapped, the specific molecular factors that drive 864 
accessibility changes may only be inferred by changes in the accessibility or footprints 865 
associated with DNA motifs. However, specific DNA motifs may often be bound by a variety 866 
of related protein factors, often within a family of structurally similar DNA binding domains. 867 
While motif-specific accessibility changes may be linked to specific TFs based on concomitant 868 
changes in gene expression of a specific member of a family, a mechanistic linkage to specific 869 
binding requires subsequent experiment, such as expression knockdown or ChIP-seq targeting 870 
the specific TF implicated.  871 
 872 
Additionally, the accessibility of a putative regulatory locus is likely a necessary but not 873 
sufficient criterion for bona fide functional regulation. Other markings, such as H3K27ac or 874 
the presence of nascent transcription of enhancer RNA appear to mark a subset of accessible 875 
elements that are more highly enriched for function334–336. Therefore, chromatin accessibility 876 
data might be merged with a variety of other genomic assays of function to build a more thickly 877 
constituted set of inferences supporting functionality of specific elements.  878 
 879 
Finally, many chromatin accessibility methods, notably DNAse-seq and to perhaps a lesser 880 
extent ATAC-seq, may require optimization of reaction time, lysis protocols, cell handling, 881 
freezing or thawing, as well as library purification, to produce optimal data. For methods such 882 
as ATAC-seq, a number of quality metrics exist prior to sequencing, such as relative PCR 883 
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cycles required to amplify the library, or the periodicity of the length distribution of fragments 884 
generated by the transposition reaction, which allow for relatively rapid and inexpensive 885 
optimization of sequencing libraries. 886 

7. Outlook 887 

The past decade has seen an explosion in studies examining chromatin accessibility and its 888 
variation in different cell types, tissues, organs and organisms. The current and future challenge 889 
is to dissect the function of these regulatory regions in relation to other regulatory layers and 890 
gene expression (Fig. 5). Chromatin accessibility alone does not reveal the activity state or the 891 
functional properties of the region (whether it acts as a promoter, enhancer, silencer), or which 892 
factors are bound to the region or its potential role in other functions such as 3D genome 893 
topology or replication origins. Moreover, information on the identity of the target genes, and 894 
whether a regulatory region is functionally required for gene expression, is also missing. 895 
 896 
Many of these challenges can be overcome by a more holistic multi-omics approach, by 897 
profiling multiple molecular layers from the same sample, such as the transcriptome, chromatin 898 
modifications and TF occupancy, in addition to chromatin accessibility. A common approach 899 
is to run multiple omics methods on fractions of the same sample, using protocols optimized 900 
separately for each assay, thus generating comparable datasets337,338. However, running 901 
separate assays can introduce batch effects that are difficult to mitigate computationally, which 902 
can be a drawback of this strategy. 903 
 904 
Chromatin accessibility profiling in single cells has surged dramatically in recent years, in part 905 
due to combinatorial indexing (sciATAC-seq)149 and the recent availability of commercial kits 906 
for droplet-based scATAC-seq150,151. We expect further improvements to the assay in the 907 
coming years as this trend keeps increasing. In contrast to RNA, which has a high dynamic 908 
range, there are only two loci that can be measured simultaneously in a diploid genome by 909 
single-cell regulatory genomics-based methods. As a result, the data is mostly binary and still 910 
very sparse due to the low coverage per cell, making the analysis of accessibility and other 911 
regulatory features at the single-cell level extremely challenging and a certain degree of data 912 
aggregation across cells or features is usually required. It is also difficult to estimate the 913 
sensitivity of scATAC-seq. Roughly ~10-15% of known peaks are recovered per single cell 914 
(PMID: 26083756), but it is actually not known how many regulatory elements are accessible 915 
in any given cell at any instance in time. Technical improvements during the past couple of 916 
years have boosted cell coverage, which ameliorated both issues to some extent and resulted in 917 
a significant increase in data resolution, allowing a sharper distinction between cell types as 918 
well as regulatory changes. Given this inherent difference between scRNA-seq and scATAC-919 
seq (and scChIP) data, specialized computational tools have been developed that address the 920 
sparsity and binary nature of scATAC-seq data and facilitate more integrated analyses across 921 
groups of cells58–67. However, the availability of tools designed for scATAC-seq is still very 922 
limited when it comes to specific analysis tasks, such as pseudotime and trajectory inference. 923 
While comparisons of performance and applicability of scATAC-seq methods have been 924 
performed227, there are no uniform pipelines adapted widely by the community, which 925 
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complicates a systematic comparison and interpretation of results coming from different labs. 926 
We foresee major efforts in the coming years towards standardizing comprehensive 927 
computational pipelines for analysis. 928 
 929 
Recent advances in single-cell methods are pushing technologies to perform multi-omic 930 
measurements from the same cell. Multiple methods have been published recently for 931 
simultaneous single-cell ATAC-seq and transcriptome profiling. These include sci-CAR236, 932 
Paired-seq155, and SHARE-seq153, which are all based on combinatorial indexing, as well as 933 
droplet-based methods, such as SNARE-seq339. Also joint profiling of chromatin accessibility 934 
with either protein levels (Pi-ATAC340); or with DNA methylation (scNOMe-seq341; chromatin 935 
overall omic-scale landscape sequencing (COOL-seq)342, EpiMethylTag343, methyl-ATAC-936 
seq344, ATAC-Me345); or with a combination of both DNA methylation and transcriptome 937 
measurements (single-cell nucleosome, methylation and transcription sequencing (scNMT-938 
seq)346) has been achieved. 939 
 940 
Several technical challenges have so far limited the widespread application of these methods. 941 
Sample fixation, reaction conditions and other experimental parameters are often not 942 
compatible for multiple assays, complicating the optimization of joint protocols. Moreover, the 943 
resulting data is limited by the combined sensitivity of the methods, for example running two 944 
assays each having a 10% capture rate could result in a very small set of overlapping features. 945 
Profiling multiple molecular layers raises the non-trivial computational challenge of integrating 946 
the datasets. Methods that can handle the harmonization of bulk and single-cell multi-omic 947 
measurements have recently been developed (MOFA347, Seurat v366). A key feature required 948 
for future computational methods is flexibility; methods need to handle datasets coming from 949 
very different modalities, coming from the same cell or from the same sample and will need to 950 
impute missing molecular layers based on the ones that were profiled. Measuring multiple 951 
parameters from the same single cell should greatly advance our ability to link regulatory 952 
properties and deconstruct regulatory connections. Having information on coordinated changes 953 
in distal open chromatin regions (putative enhancers) and gene transcription from the same 954 
cell, for example, would greatly help to link enhancers to their potential target genes. We 955 
anticipate important developments in both experimental and computational multi-omic 956 
approaches in the coming years. 957 
 958 
Functionality of accessible chromatin regions can also be probed by perturbation, for example 959 
by mutation of key transcription factors. The high degree of cellular heterogeneity in complex 960 
systems, such as developing embryos, has limited the usefulness of this approach. However, 961 
single-cell accessibility profiling could solve this issue, by identifying the impact of the 962 
mutations directly in the affected cell types, revealing both changes in regulation as well as 963 
alterations in cell fate decisions. Large-scale perturbation and profiling of regulatory networks 964 
has been performed in cell culture models by coupling CRISPR screening with scATAC-seq 965 
readout (Perturb-ATAC348). In more complex systems, where high-throughput targeted 966 
mutagenesis is not feasible, natural sequence variation could be exploited as a large-scale 967 
perturbation tool. In this context, profiling accessibility both intra- and inter- species can give 968 
insights into regulatory variation and functionality, as discussed above. 969 
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 970 
Finally, a particularly exciting area of future development is the integration of chromatin 971 
accessibility profiling with imaging-based approaches. Current chromatin accessibility 972 
profiling protocols involve tissue dissociation to extract cells or nuclei, which leads to the loss 973 
of the native spatial context. ATAC-see349 mitigates this problem by performing the Tn5 974 
reaction in situ on microscopy slides and using fluorescent adaptors that are compatible with 975 
both imaging and sequencing; and sciMAP-ATAC350 provides a medium-level spatial mapping 976 
of single-cell chromatin accessibility profiles by taking microbiopsies of a tissue prior to the 977 
sciATAC-seq workflow. Further integration of ATAC-seq with high-throughput fluorescence 978 
in situ hybridization (FISH) and other imaging-based methods will lead to new ways of 979 
interrogating the genome of complex systems in situ after stimuli and perturbations. 980 
 981 

 982 
Figure 5. Schematic overview of future roads and opportunities for chromatin accessibility 983 
profiling. In the coming years, our capability of measuring chromatin accessibility concurrently with 984 
multiple regulatory layers in the same single cell will continue to expand. New insights into regulatory 985 
biology will be gained by applying these methods in the native spatial context and in systems 986 
undergoing perturbations. Development of computational tools that can dive into the complexity of the 987 
emerging datasets will be crucial for the success of these endeavors. Ultimately, these approaches will 988 
empower us to functionally dissect the role of regulatory elements and their relationship to gene 989 
expression. 990 
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