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1. INTRODUCTION

The estimation of conditional covariances between asset returns is central to many areas of empirical

finance, including portfolio selection, asset pricing, and hedging. A large literature on multivariate

GARCH models has developed; see Bauwens, Laurent, and Rombouts (2006) for a survey. Two

prominent and widely used models are the Baba, Engle, Kraft, and Kroner (BEKK) model, pro-

posed by Engle and Kroner (1995), and the scalar dynamic conditional correlation (DCC) model,

proposed by Engle (2002) and Tse and Tsui (2002). These models, however, were are not set up

to easily handle full-scale volatility or correlation spillover effects across many assets. In the scalar

DCC model, for example, the asset return correlations are assumed to evolve identically for all

assets. This entails no restriction for bivariate systems, but when the number of assets is large this

assumption becomes harder to defend. To address this problem, “diagonal” and “full” versions

of the DCC model have been proposed; see, e.g., Engle (2002), Cappiello, Engle, and Sheppard

(2006), Hafner and Franses (2009), and Billio and Caporin (2009). But these do not fully solve

the problem. While the diagonal DCC model allows for idiosyncratic correlation dynamics, it still

ignores correlation spillover effects. The full DCC model does allow for correlation spillovers, but

here the number of parameters is of order n2, with n the number of assets considered, so estimation

of the full DCC model is feasible only when n is small or, at most, moderately large. Essentially the

same holds for BEKK models, where the diagonal model version ignores volatility spillovers and

the general model version runs into estimation problems unless n is relatively small. In short, in

multivariate GARCH modeling there is a conflict between flexibility and feasibility of estimation.

A recent account from the perspective of the DCC model is given in Bauwens, Grigoryeva, and

Ortega (2016), along with a proposal of several new non-scalar DCC models and improved estima-

tion of the full DCC model when n is moderately large. In addition, these authors identify a second

issue, the risk of overfitting: in an empirical study of the thirty DJIA assets, the full DCC model

is often dominated by less richly parameterized models. In an application to pricing DJIA options,

Rombouts, Stentoft, and Violante (2014) compared the predictive accuracy of 444 DCC model

variants with different specifications of the conditional variances, conditional correlations, and in-

novation distribution. They reached the complementary conclusion that allowing for correlation

spillovers in a parsimonous way yields substantial gains in pricing performance.

In this paper we develop sparse versions of the DCC and BEKK models, in an effort to mitigate

the conflict between flexibility and feasibility as well as the risk of overfitting.
1

The proposed sparse

models are more flexible than the diagonal models, yet more parsimonious than the full models.

They are intended to capture correlation and volatility spillover effects while still being estimable

when the dimension, n, is moderately large (n = 24 in our application). Prior to estimation,

the sparse models can be viewed as full models, with parameter restrictions being imposed along

1
These difficulties are not unique to the DCC and BEKK models. They occur generally in multivariate GARCH

models and could, in principle, be addressed using sparse model versions, similar to those presented here for the DCC
and BEKK models. Alternative ways to estimate large-dimensional GARCH models—but without regularization—
were considered by many authors, including Ledoit, Santa-Clara, and Wolf (2003) for the diagonal VEC model
(Bollerslev, Engle, and Wooldridge 1988), Engle (2009) for the DCC and factor DCC models, Francq and Zaköıan
(2016) for the BEKK and DCC models, and Pakel, Shephard, Sheppard, and Engle (2021) for the BEKK, DCC,
and cDCC (Aielli 2013) models.
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the estimation in a data-compatible way rather than a priori. The sparse parameter structure

is obtained by regularization. Specifically, we add an L1 (or lasso) penalty (Tibshirani 1996) to

the log-likelihood function to penalize the off-diagonal elements of the coefficient matrices, and

we select the degree of regularization by cross-validation. This drives many of the off-diagonal

elements to zero, so that a sparse structure of correlation or volatility spillover effects obtains.

Thus, one of the key aims of our proposal is exploratory analysis: out of the many possible directed

correlation or volatility spillovers in a large-dimensional system of asset returns, how to detect the

true ones or, realistically, how to detect the discernable ones? Our approach is similar in spirit

to work by Sun and Lin (2012) and Cattivelli and Gallo (2018), who regularize, respectively, the

loadings of the full-factor multivariate GARCH model of Vrontos, Dellaportas, and Politis (2003)

and the coefficient matrices of the vector multiplicative error model of Cipollini, Engle, and Gallo

(2006, 2013). It is also related to Callot, Kock, and Medeiros (2017) and Croux, Rombouts, and

Wilms (2018), who proposed equation-by-equation regularization to forecast realized (co)variances.

Although our focus here is on GARCH models, we note that our approach can also be applied

to models involving multivariate realized measures, for example the multivariate HEAVY model

of Noureldin, Shephard, and Sheppard (2012) or multivariate extensions of the realized GARCH

model of Hansen, Huang, and Shek (2012).

To explore the merits of the sparse GARCH approach we use both simulations and empirical

data. In simulations we examine how well a sparse GARCH parameter structure, with unknown

degree of sparsity, can be detected by L1 regularization coupled with cross-validation. To give an

idea of the performance, in a sparse 24-dimensional BEKK model with 6000 observations, a high

degree of persistence (GARCH coefficients between 0.985 and 0.990), and 96% of the spillover

coefficients (the off-diagonal ARCH coefficients) being zero or nearly zero and 4% being non-

negligible (around one-fourth of the value of the diagonal ARCH coefficients), 87% of the former

coefficients are estimated as zero and 83% of the latter as nonzero.

Our empirical analysis studies the daily returns on the 24 individual commodities that are the

constituents of the daily Bloomberg Commodity Index. Like Bloomberg, we select the nearest

futures price, not the spot price. One reason is that not all commodity spot markets are equally

well organized; spot soy and wheat prices, for instance, are averages of prices bilaterally arranged

throughout the morning at the silos in Illinois and Indiana. Second, futures markets often react

faster (see, e.g., Tse 1999; Yang, Bessler, and Leatham 2001; and Zhong, Darrat, and Otero 2004).

In selecting Bloomberg’s commodity prices as our data set, an important consideration was

synchronicity. Our data are settlement prices fixed around noon EST, and while some timing

issues remain, they are minor compared to what one would face in international stock-index returns;

see, e.g., Jung and Maderitsch (2014). Equally important, the commodity data allow us to judge

whether the reported spillover patterns are just the result of in-sample overfitting; below, we

articulate our priors as to which market(s) should be a leader or a follower, absent timing issues.
2

2
Prior work on multivariate GARCH patterns related to commodity markets often focuses on links between com-

modities as a group and other asset classes like bonds, stocks, and currencies, or on links among closely related
commodities (e.g., energy). Our interest, instead, is in links between broad subclasses of commodities, namely energy,
metals, and agricultural goods. Within that narrower literature, prior work has focused on explaining the changing
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Being the source versus the receiver of spillovers reflects the relative speed of information pro-

cessing. In perfect markets, all markets should react instantly to any relevant news, leaving no room

for spillovers. In reality, we hypothesize that oil and gold are comparatively fast, with other metals

coming up second and agricultural goods bringing up the rear. This pattern is roughly in line with

the empirical results cited below, but it also fits an economic logic. One prime argument in support

of the above ranking is that, in reality, the acquisition and processing of information is costly. With

partially informed players, crowds become wiser the more opinions they reflect. For that reason

we expect more alertness in markets that enjoy more visibility and attract more analyst attention.

Energy and precious metals, especially oil and gold, do enjoy a very high visibility and are even

covered in general news media. Metals and energy-related commodities also have a wider analyst

following, being relevant to more industrial firms than are agricultural goods, relevant to just food

& beverages and textile sectors. It is not a coincidence, in that light, that energy and metals are

heavily traded in London too.
3

For New York and Chicago traders, one benefit is that, every morn-

ing, they observe London’s consensus digest of the overnight news, which reduces the tâtonnement

noise that normally arises when a daily market re-opens. In addition, energy and metals markets

tend to have higher turnovers, and this is associated with better liquidity and lower trading costs.

Lastly, metals resemble financial assets better, compared to agricultural commodities. Their value

per unit of volume is higher, for instance, which means that shipment costs are lower relative to

the price; and there is no seasonality in supply and therefore in convenience yield, which simplifies

pricing.
4

The empirical literature on this subject tends to agree that energy is a main source of spillovers,

followed by metals, with agricultural commodities being the net receivers. The statistical ap-

proaches behind these findings are quite varied: bivariate E-GARCH with time-varying correlation

(Ji and Fan 2012), Diebold-Yilmaz generalized VAR (Chevallier and Ielpo 2013), causality-in-

variance tests (Nazlioglu, Erdem, and Soytas 2013), quantile-regression-based conditional value-

at-risk (CoVaR) (Algieri and Leccadito 2017), multivariate DECO-GARCH (Kang, McIver, and

Yoon 2017), and regime-switching CoVaR copulas (Ji, Bouri, Roubaud, and Shahzad 2018). The

consensus is not complete, though. Kaltalioglu and Soytas (2011) and Cabrera and Schulz (2016),

using causality-in-variance tests and DCC-GARCH, respectively, find essentially no spillover links.

Lu, Yang, and Liu (2019), lastly, who work with a HAR model, detect bidirectional links before

the 2008 crisis, and spillover links towards oil thereafter.

levels of correlations, associating these with the 2008 financial crisis, financialization, the introduction of bio-fuels,
or OPEC announcements. See, e.g., Du, Yu, and Hayes (2011), Creti, Jots, and Mignon (2013), Liu, Ji, and Fan
(2013), Mensi, Hammoudeh, Nguyen, and Yoon (2014), Adams and Glck (2015), Antonakakis, Floros, and Kizys
(2016), Roy and Roy (2017), Bollerslev, Hood, Huss, and Pedersen (2018), Green, Larsson, Lunina, and Nilsson
(2018), Shahzad, Hernandez, Yahyaee, and Jammazi (2018), Uddin, Hernandez, Shahzad, and Hedstrm (2018), and
Pal and Mitra (2019).
3
London does trade some of New York’s agricultural commodities too, but rather as part of the round-the-clock

trading arrangement set up by U.S. exchanges; the key trading sessions remain American-based. In metals and Brent
oil, London is a leading venue.
4
Buying ‘cash’ (i.e., holding physical inventory) is similar to buying forward, to an industrial user of the good.

Unlike a futures position, a cash position also offers the option of actually using the goods if there is a surge in
demand or a problem with deliveries. This extra benefit, the convenience yield, is valuable and leads to a premium
in cash prices if and when market-wide inventories are low, which happens more often for seasonally-produced and
weather-sensitive agricultural goods.
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Our empirical findings in terms of model evaluation and spillover patterns are as follows. For the

purpose of out-of-sample prediction of commodity price risks and portfolio choice, the sparse DCC

model has the overall best performance, followed by the diagonal and scalar DCC variants. The

sparse BEKK model is a distant fourth, but it still beats the diagonal BEKK version and static

portfolio choices. Regarding the spillover patterns, our empirical results are in line with our priors,

with most of the literature, and with the out-of-sample results. Using the sparse DCC model, we

find that among the ten commodities that rank highest in terms of being a net source of spillovers,

only one is agricultural, while among the ten commodities that rank lowest, eight are agricultural.

This suggests that our findings are based on real effects, not overfitting. The pattern is still present

if we employ the sparse BEKK model, but it is much weaker.

Section 2 introduces the sparse DCC and BEKK models. Section 3 presents the results of a

simulation experiment for the sparse BEKK model. In Section 4 we estimate and evaluate sparse

DCC and BEKK models for daily excess returns on 24 commodities in the period 2000–2018.

We compare the performance of the sparse models with the diagonal BEKK model and with the

scalar and diagonal DCC models using the Giacomini and White (2006) test, compute the model

confidence set of Hansen, Lunde, and Nason (2011), and report on the estimated covariance and

correlation spillover effects. Section 5 concludes.

2. SPARSE MULTIVARIATE GARCH MODELS

2.1. Specification

Let rt be the vector of returns on n assets in period t. Write rt = Et−1rt + et, where Et−1 is the

conditional expectation given past information, so that Et−1et = Eet = 0. Define the conditional

and unconditional variance and correlation matrices

Ht = Et−1(ete
′
t), H = E(ete

′
t),

Rt = Et−1(εtε
′
t) = D−1t HtD

−1
t , R = E(εtε

′
t),

where εt is the vector of standardized returns and Dt is the diagonal matrix with the conditional

standard deviations of the returns on the diagonal, i.e.,

εt = D−1t et, Dt = (In �Ht)
1/2,

where � is the Hadamard product. Multivariate GARCH models specify how Ht and Rt evolve

over time, often through a first-order ARMA-type structure.

One challenge in multivariate GARCH modeling is to keep the model sufficiently flexible while

preventing the number of parameters from growing too rapidly with n. See, for example, the dis-

cussion in Bauwens, Laurent, and Rombouts (2006). Leaving other differences aside, multivariate

GARCH models typically come, in increasing order of generality, in “scalar”, “diagonal”, and “gen-

eral” versions, with O(1), O(n), and O(n2) parameters, respectively. It is generally acknowledged

that the richly parameterized models, with O(n2) parameters, can only be estimated sensibly when

n is small enough. For greater n, researchers tend to resort to scalar or diagonal model versions,

with O(1) or O(n) free parameters. These more tightly parameterized models result from imposing
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prior restrictions on the coefficient matrices. Our aim is to avoid such a priori restrictions. Starting

from a rich model specification with O(n2) parameters, we impose parameter sparsity through L1

regularization. In this way, the sparsity structure is the result of a data-driven procedure instead

of being imposed ex ante.

Consider the general DCC model with the correlation part specified as

Rt = (In �Qt)−1/2Qt(In �Qt)−1/2, (2.1)

Qt = R−ARA′ −BRB′ +Aεt−1ε
′
t−1A

′ +BQt−1B
′, (2.2)

where A and B are coefficient matrices. This is the model of Cappiello, Engle, and Sheppard (2006)

without the asymmetry term. For given R (which can be pre-estimated by correlation targeting),

this model has 2n2 correlation parameters. The scalar version of the model is the standard DCC

model of Engle (2002), with A = aIn, B = bIn, and scalar parameters a and b. The diagonal

version restricts A and B to be diagonal matrices and has 2n correlation parameters (Cappiello,

Engle, and Sheppard 2006; Hafner and Franses 2009). Other variants include models with regime

switching correlations (Pelletier 2006) or a block structure on A and B, possibly obtained via

clustering (Billio, Caporin, and Gobbo 2006; Billio and Caporin 2009; Otranto 2010). A common

motivation in these papers is to specify the asset return correlation dynamics flexibly, yet tractably

for estimation. Our approach is to obtain sparsely parameterized correlation dynamics via an L1

penalized log-likelihood with penalty function

penλA,λB (A,B) = λA
∑
i6=j

|Aij |+ λB
∑
i6=j

|Bij |

for chosen tuning parameters λA > 0 and λB > 0. Note that only the off-diagonal elements of A

and B enter the penalty function. The effect of L1 penalization is that estimates of the off-diagonal

elements of A and B are being shrunk towards zero, typically resulting in many estimates being

identically zero. Therefore, the estimated model lies between the diagonal and the general model

versions.

The penalization approach can be applied in the same way to multivariate GARCH models that

specify Ht directly. For example, the first-order BEKK model of Engle and Kroner (1995), subject

to the variance targeting constraint, specifies

Ht = H −AHA′ −BHB′ +Aet−1e
′
t−1A

′ +BHt−1B
′, (2.3)

which is analogous to (2.2) and has analogous scalar and diagonal versions. Hence, penalization of

A and B in the BEKK model can proceed in exactly the same way as in the DCC model. Note,

however, that despite the technical similarity the role of penalization in the DCC and BEKK models

is different. In the BEKK model, penalization affects the variance and covariance spillovers whereas

in the DCC model only correlation spillovers are affected, that is, the DCC variance estimates are

unaffected by the penalization.

The distinction between different types of tuning parameters (here, λA and λB) in the penalty

function allows additional modeling and penalization flexibility. For example, setting 0 < λA <∞
and λB = ∞ imposes diagonality on B and sparsity on the off-diagonal elements of A. Further-

more, the model can easily be extended to incorporate slowly changing unconditional variances
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or correlations (Engle and Rangel 2008; Hafner and Linton 2010; Bauwens, Hafner, and Pierret

2013) or additional effects such as asymmetries (Cappiello, Engle, and Sheppard 2006). Additional

effects typically entail additional parameter matrices, which may be penalized as above to the

desired degree. Note, furthermore, that penalization of the diagonal model version also fits into

our framework, by writing A = aIn + diag(α) and B = bIn + diag(β), where a and b are scalars

and α and β are vectors, and using penλα,λβ (α, β) = λα
∑
i |αi|+ λβ

∑
i |βi| as penalty function.

2.2. Estimation

To estimate the sparse DCC model we use the two-step procedure of Engle (2002), augmented with

penalization in the second step.
5

The volatility part of the DCC model consists of n univariate

GARCH(1,1) models, one for each asset, with parameters jointly denoted as θ. The correlation

part consists of (2.1)–(2.2), with parameters φ = (A,B). We use a Gaussian quasi-likelihood

function. Although the distribution of financial returns has fatter tails than the normal distri-

bution, maximizing a Gaussian (quasi-)likelihood gives consistent estimates of GARCH models

under non-normality, provided that the first two moments are correctly specified (Bollerslev and

Wooldridge 1992). The penalized Gaussian quasi log-likelihood, for given R and tuning parameters

λ = (λA, λB), is

lpen(θ, φ) = −1

2

∑
t

(n log(2π) + log |Ht|+ e′tH
−1
t et)− penλ(φ)

= lv(θ) + lc(θ, φ)− penλ(φ),

where lv and lc correspond to the volatility and correlation parts,

lv(θ) = −1

2

∑
t

(n log(2π) + 2 log |Dt|+ r′tD
−2
t rt),

lc(θ, φ) = −1

2

∑
t

(log |Rt|+ ε′tR
−1
t εt − ε′tεt),

as in Engle (2002). In step one, lv(θ) is maximized by fitting a GARCH(1,1) model for each asset

separately. This gives θ̂, D̂t, ε̂t = D̂−1t rt, and lc(θ̂, φ), with T−1
∑
t ε̂tε̂

′
t as the correlation-targeting

estimate of R. The second step is to solve

max
φ

{
lc(θ̂, φ)− penλ(φ)

}
,

for which we use the block-coordinate update method. Dividing φ = (φpen, φunp) into a block

of penalized parameters φpen and a block of unpenalized parameters φunp, we update one block

at the time, cycling over the two blocks until convergence. In each cycle, we update φunp with

one step of the Newton-Raphson method and φpen with a single pass of the coordinate ascent

optimization algorithm (given that penλ(φ) is not differentiable in φpen at the origin). The latter

algorithm updates one parameter at the time, φj ∈ φpen, with all others held fixed, as follows:

5
It should be noted that Aielli (2013) pointed out an inconsistency problem with the two-step estimation method

of Engle (2002) and suggested a solution, the cDDC model. In practice, however, the differences between cDCC and
two-step DCC estimates tend to be small; see Aielli (2013) and Bauwens, Grigoryeva, and Ortega (2016). Therefore,
we employ the (simpler) two-step estimation method.
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if |∇φj lc(θ̂, φ)|φj=0 is less than the tuning parameter, φj is set to zero; else φj is set such that

∇φj lc(θ̂, φ) equals the tuning parameter.

The sparse BEKK model with volatility specification (2.3) and parameters φ = (A,B) can

be estimated along the same lines in one step by maximizing lpen(φ) = lv(φ) − penλ(φ), where

lv(φ) = − 1
2

∑
t(n log(2π) + log |Ht| + r′tH

−1
t rt) and with T−1

∑
t ete

′
t as the variance-targeting

estimate of H.

At each iteration of the optimization, we check positive definiteness of Qt or Ht (in the DCC or

BEKK model, respectively) for all t in the estimation data. If positive definiteness does not hold

at some iteration, the step size of the parameter update is reduced by a factor 1/2 until positive

definiteness is restored. This guarantees positive definiteness at the converged estimates in the

estimation data, but not necessarily outside the estimation data, although we did not encounter

this problem. Should it occur, one may impose a positive lower bound on the eigenvalues of Qt or

Ht as in, e.g., Callot, Kock, and Medeiros (2017). Without further restriction, the sparse GARCH

models do not guarantee positive definiteness.

Multivariate GARCH models with high-dimensional parameters are numerically challenging to

estimate. The penalization step is numerically slow, adding to the challenge. Furthermore, the

degree of regularization is controlled by the tuning parameters λA and λB , which have to be

chosen. At the present stage, we set λB =∞ (enforcing B to be diagonal) and, in the DCC model,

we impose the further restriction B = bIn, where b is a scalar. Hafner and Franses (2009) noted

that, in the diagonal DCC model, the parameters associated with the autoregressive part Qt−1 are

less varying than those associated with the innovations εtε
′
t. So, broadly speaking, B may be more

tightly parameterized than A. With B = bIn in the DCC model, we have φ = (A, b); in the BEKK

model, with B = diag(β), we have φ = (A, β). In both models, φpen consists of the off-diagonal

elements of A only. We choose λA by cross-validation, using the first 90% of the data as training

data and the remaining 10% as validation data, involving the following steps:

(i) based on the training data, we estimate φunp with φpen set to zero;

(ii) at these values of φunp and φpen, we compute the log-likelihood gradient vector for φpen, that

is, Gφpen
= ∇φpen

lc(θ̂, φ) (in the DCC model) or Gφpen
= ∇φpen

lv(φ) (in the BEKK model);

(iii) we compute the 60–98th percentiles, in steps of 2%, of the elements of |Gφpen |;
(iv) for λA equal to each of these percentiles, we compute the penalized estimate of φ based on

the training data and evaluate the unpenalized log-likelihood on the validation data at this

value of φ;

(v) we choose the percentile that maximizes this log-likelihood, and set λA equal to that percentile

of the new |Gφpen
| that is computed based on both the training and the validation data.

3. SIMULATIONS

This section reports on simulations for the sparse BEKK model. The simulation setup broadly

mimics the dimension and properties of the daily excess return data of the 24 Bloomberg commodity

subindexes for 2000–2018 that we use in the empirical application discussed in the next section.
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Table 1. Estimated versus true sparsity (BEKK model, first 5 replications)

percentile of |Gφpen
|

diag. BEKK 95 90 85 80 75 70 65 60 55

loglik. -40.3342 -40.3051 -40.2927 -40.2811 -40.2920 -40.2699 -40.2695 -40.2699 – –

zero 552 516 509 501 470 476 459 453 – –
“large” 0 6 10 12 15 16 16 16 – –
“small” 0 0 0 0 1 1 3 3 – –

loglik. -40.7406 -40.4661 -40.4606 -40.4571 -40.4564 -40.4562 -40.4561 -40.4558 -40.4567 –

zero 552 509 494 470 445 425 405 393 365 –
“large” 0 11 12 15 16 16 16 16 17 –
“small” 0 0 1 1 2 2 3 4 5 –

loglik. -40.2537 -40.0338 -40.0276 -40.0256 -40.0235 -40.0229 -40.0223 -40.0219 -40.0215 -40.0218

zero 552 513 504 497 490 472 442 432 415 381
“large” 0 8 12 15 16 16 17 17 17 17
“small” 0 0 0 0 0 0 0 2 2 2

loglik. -40.7528 -40.3729 -40.3673 -40.3646 -40.3657 – – – – –

zero 552 491 462 434 389 – – – – –
“large” 0 14 18 19 19 – – – – –
“small” 0 1 1 1 1 – – – – –

loglik. -40.5466 -40.3318 -40.3253 -40.3220 -40.3208 -40.3207 -40.3210 – – –

zero 552 507 490 468 449 435 410 – – –
“large” 0 12 16 16 17 17 17 – – –
“small” 0 0 0 0 0 2 2 – – –

Model: rt ∼ N(0, Ht), Ht = H − AHA′ − diag(β)Hdiag(β) + Aet−1e′t−1A
′ + diag(β)Ht−1diag(β), with sparsity

imposed on the off-diagonal elements of A. Loglik: log-likelihood, normalized by the number of observations and
evaluated at validation data and at penalized estimates obtained from the estimation data with λA set to a percentile
of |Gφpen |; the maximum log-likelihood is indicated in boldface. “zero” is the number of zero estimated parameters
whose true value is 0. “large” and “small” are the number of nonzero estimated parameters whose true values are
±0.02 and ±0.002, respectively.

Our aim here is to explore how well the estimator can detect the sparse parameter structure in a

moderately high-dimensional, highly parameterized BEKK model. We generated data

rt = et ∼ N(0, Ht), t = 1, . . . , 6000,

(in addition to a burn-in sample of 1000 periods) with n = 24, Ht as in (2.3) with B = diag(β)

and β1, . . . , βn independently drawn from the uniform distribution U [0.985, 0.990], H equal to the

empirical daily return covariance matrix, and A chosen as follows. We drew the diagonal elements

of A independently from U [0.08, 0.11]. For the off-diagonal elements of A, we randomly set 10 of

them equal to 0.02, 10 equal to −0.02, 5 equal to 0.002, 5 equal to −0.002, and the other 522 equal

to zero. For each simulated data set, we estimated φ = (A, β), with the covariance matrix of the

simulated data as an estimate of H.

The estimation, including the selection of the tuning parameter λA as described above, is quite

time-consuming. We only ran 20 replications, but this already gives an idea of the performance

of the cross-validation to select λA. In addition, to speed up the algorithm, we slightly changed

steps (iii)–(v). We started with λA equal to the 95th and 90th percentiles of |Gφpen
|, and compared

the corresponding log-likelihoods, evaluated at the validation data. If the log-likelihood associated

with the 95th percentile dominates the other, we selected λA as the 95th percentile of |Gφpen |
and stopped. Otherwise, we continued and compared the log-likelihoods (again evaluated at the

validation data) with λA equal to the 90th and 85th percentiles of |Gφpen
|, and so forth, until



10

Table 2. Estimated versus true sparsity (BEKK model, 20 replications)

estimated zero estimated nonzero total

true zero 456.95 65.05 522
true “small” 8.30 1.70 10
true “large” 3.70 16.70 20

total 468.95 83.45 552

Model: rt ∼ N(0, Ht), Ht = H − AHA′ − diag(β)Hdiag(β) + Aet−1e′t−1A
′ + diag(β)Ht−1diag(β), with sparsity

imposed on the off-diagonal elements of A. “large” refers to values ±0.02; “small” refers to values ±0.002.

the log-likelihood started to decrease. At that point, λA was set equal to the percentile of |Gφpen
|

yielding the greatest log-likelihood. These modifications shorten (iii)–(iv) because the step size is

larger, the algorithm stops as soon as the log-likelihood decreases, and (v) is not executed at all.

Table 1 reports, for the first 5 replications, the sequence of log-likelihood values (“loglik.”),

normalized by the number of observations and evaluated at the validation data and at penalized

parameter estimates obtained from the training data with λA equal to different percentiles of

|Gφpen
|. In all 20 replications, the log-likelihood value first increases as λA decreases (and more

nonzero parameter estimates appear), but at some point it starts to decrease, a sign of overfitting

as too many nonzero estimates appear. When λA is set to the 95th percentile of |Gφpen | (a heavy

penalty for nonzero estimates), on average 506 out of the 522 true zero parameters are estimated

to be zero, 0.5 of the 10 parameters with true value ±0.002 are estimated to be nonzero, and 12.3

out of the of 20 parameters with true value ±0.02 are estimated to be nonzero. As λA decreases

to the 90th percentile of |Gφpen
|, on average 486.8 of the 522 true zeros are estimated as zero;

and 1.05 of the 10 true ±0.002’s are estimated as nonzero, and 14.95 out of the 20 true ±0.02’s.

Naturally, the lesser the penalization, the more frequently true nonzeros are estimated as nonzero,

at the cost of more frequently estimating true zeros as nonzero. On average, λA is selected as the

79.25th percentile of |Gφpen |.
Table 2 is a contingency table of the true and estimated off-diagonal elements of A, averaged

across the simulations. As the table shows, the underlying sparsity structure is uncovered reason-

ably well, with 83.5% of the “large” nonzero parameter values ±0.02 being detected and 87.54% of

the zeros being estimated as zero. As expected, most “small” nonzero parameter values, ±0.002,

are shrunk to zero.

Table 3 gives further details for each simulation separately, showing that the estimation results

are reasonably stable across the replications. The first column gives the percentile of |Gφpen
| that

was selected by cross-validation. The next three columns pertain to the off-diagonal elements of

A: the number of true zeros estimated as zero and the number of “small” and “large” values,

respectively, estimated as nonzero. The last four columns report the true and estimated values of

the average of the diagonal elements of A and diag(β). These estimates are very close to the true

values.
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Table 3. Estimation results for each replication (BEKK model, 20 replications)

percentile
of |Gφpen

| zero “small” “large”
∑
iAii/n

∑
i Âii/n

∑
i βi/n

∑
i β̂i/n

70 464 2 16 0.0954 0.0961 0.9878 0.9876
65 410 2 16 0.0956 0.0945 0.9878 0.9880
55 404 1 18 0.0950 0.0955 0.9876 0.9873
85 441 1 19 0.0951 0.0906 0.9872 0.9878
75 363 3 19 0.0954 0.0969 0.9875 0.9860
70 424 1 19 0.0946 0.0936 0.9875 0.9875
85 487 2 16 0.0980 0.0969 0.9881 0.9880
80 459 1 17 0.0952 0.0940 0.9876 0.9879
70 412 6 19 0.0942 0.0935 0.9874 0.9874
90 478 1 18 0.0945 0.0934 0.9873 0.9871
85 487 1 15 0.0955 0.0964 0.9875 0.9876
75 462 2 16 0.0938 0.0920 0.9875 0.9871
80 474 0 18 0.0967 0.0986 0.9870 0.9863
95 508 2 16 0.0933 0.0946 0.9872 0.9869
85 472 1 17 0.0943 0.0920 0.9870 0.9876
90 508 1 16 0.0934 0.0928 0.9875 0.9873
95 512 0 12 0.0917 0.0916 0.9873 0.9869
65 437 3 16 0.0950 0.0929 0.9877 0.9878
90 502 2 13 0.0962 0.0971 0.9876 0.9869
80 435 2 18 0.0934 0.0906 0.9878 0.9881

mean 79.25 456.95 1.70 16.70 0.0948 0.0942 0.9875 0.9873

Model: rt ∼ N(0, Ht), Ht = H − AHA′ − diag(β)Hdiag(β) + Aet−1e′t−1A
′ + diag(β)Ht−1diag(β), with sparsity

imposed on the off-diagonal elements of A. The first column gives the cross-validated percentile of |Gφpen | to select

λA. The next three columns refer to the off-diagonal elements of A (522 zeros; 10 “small” values ±0.002; 20 “large”
values ±0.02) and report the numbers of zeros estimated as zero, “small” values estimated as nonzero, and “large”
values estimated as nonzero, respectively.

The appendix reports on simulations for the DCC model (under a slightly different setup), which

yield qualitatively similar results.

4. APPLICATION TO COMMODITY MARKETS, 2000–2018

In this section we estimate and compare scalar, diagonal, and sparse multivariate GARCH mod-

els for (close-to-close) daily excess returns on the 24 commodities eligible for inclusion in the

Bloomberg Commodity Index over the period from January 4, 2000, to December 31, 2018. The

commodities are aluminum, cocoa, coffee, copper, corn, cotton, composite crude oil (with two des-

ignated contracts: Brent and WTI), gold, heating oil, lead, lean hogs, live cattle, natural gas, nickel,

platinum, silver, soybean meal, soybean oil, soybean, sugar, tin, unleaded gas, wheat,
6

and zinc.

The excess returns were obtained from Datastream using codes ‘.BCOM**’, e.g., ‘BCOMCR’

for composite crude oil. Figure 1 provides more detail about the commodities, the trading venue,

and the times when prices settle. The Bloomberg Commodity Index is intended to reflect New

York prices at noon or shortly thereafter. Eighteen of the prices settle between 13:00 and 14:30

EST. Among the earliest fixings are aluminum, lead, nickel, tin, and zinc, where Bloomberg goes

6
The wheat subindex included in the Bloomberg Commodity Index has two designated contracts: soft (Chicago)

and hard red winter (KC HRW), but the latter is only available as of 2012. Therefore, we use the Chicago wheat
contract.
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Figure 1. Commodity price settlement times (EST)

 

11.00	 12.00	 13.00	 14.00	

Heating	Oil,	NYMEX	
Henry	Hub	Natural	Gas,	NYMEX	

Unleaded	Gasoline	RBOB,	NYMEX	
WTI	(light	sweet),	NYMEX	

Brent	Crude	Oil,	ICE	
High-Gr	Primary	Alum,	LME	(kerb)	

Copper,	COMEX	
Gold,	COMEX	

ReQined	Standard	Lead,	LME	(kerb)	
Primary	Nickel,	LME	(kerb)	

Platinum,	NYMEX	
Silver,	COMEX	

ReQined	Tin,	LME	(kerb)	
Special	High	Grade	Zinc,	LME	(kerb)	

Cocoa,	NYBOT	
Coffee	“C”,	NYBOT	

Corn,	CBOT	
Cotton,	NYBOT	
Lean	Hogs,	CME	
Live	Cattle,	CME	
Soybean,	CBOT	

Soybean	Meal,	CBOT		
Soybean	Oil,	CBOT		

World	Sugar	No.	11,	NYBOT	
Soft	Wheat	(Chicago),	CBOT	

gas and oil

metals

agricultural

.. ..

The figure shows settlement times for each of the 25 goods (of which Bloomberg merges two, Brent and WTI, into
a single ‘crude’ series). The earliest price (and therefore the most stale price, by the time the last markets settle)
is cocoa at NYBOT, which settles at 11:50 EST, followed by five LME kerbstone prices settled at 12:00 EST. The
abbreviated names mean the following. ICE: InterContinental Exchange; NYMEX: New York Mercantile Exchange;
LME: London Metal Exchange; COMEX: Commodities Exchange, NY; NYBOT: New York Board of Trade; CME:
Chicago Mercantile Exchange; CBOT: Chicago Board of Trade. Some of these are legacy names: COMEX, NYMEX,
and CBOT are now part of CME, and NYBOT is part of ICE (the owner of NYSE).

for 12:00 EST ‘kerbstone’ prices from the London Metal Exchange.
7

Also cocoa and coffee settle

early, as the graph shows.

4.1. Estimation

For each commodity excess return subindex, ri,t, we assume the mean equation is an AR(1) process,

ri,t = β0,i + β1,iri,t−1 + ei,t, and apply the multivariate GARCH models to the least-squares

residuals, êi,t. We divide the data into three parts, with the first 80% as the in-sample training

data, the next 10% as the in-sample validation data, and the remaining 10% as the out-of-sample

testing data. The cross-validation algorithm (i)–(v) selects the tuning parameter λA as the 76th

percentile of |Gφpen | for the sparse DCC model and as the 74th percentile for the sparse BEKK

model; see Table 4. The selections, indicated in boldface, result in 117 and 78 nonzero estimated

7
The term kerbstone originally refers to informal trading in the street, outside the exchange, after the official

closing. Nowadays it refers to electronic trading after the traditional session, which used to be open outcry.
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Table 4. Sparse DCC and BEKK estimates for different levels of regularization

sparse DCC sparse BEKK
percentile
of |Gφpen

| λA loglik.
no. of

param.

percentile
of |Gφpen

| λA loglik. param.

60 0.1042 −38.8486 158. 60 0.2047 −39.2133 122
62 0.1094 −38.8472 149 62 0.2179 −39.2127 116
64 0.1138 −38.8463 145 64 0.2316 −39.2124 112
66 0.1177 −38.8456 143 66 0.2511 −39.2121 101
68 0.1217 −38.8451 138 68 0.2638 −39.2122 96
70 0.1258 −38.8448 136 70 0.2758 −39.2123 87
72 0.1306 −38.8447 126 72 0.2981 −39.2120 80
74 0.1348 −38.8446 121 74 0.3155 −39.2118 78
76 0.1390 −38.8446 117 76 0.3311 −39.2119 73
78 0.1438 −38.8447 111 78 0.3654 −39.2120 69
80 0.1547 −38.8460 92 80 0.3826 −39.2124 68
82 0.1616 −38.8470 86 82 0.4265 −39.2125 66
84 0.1688 −38.8489 81 84 0.4487 −39.2132 61
86 0.1759 −38.8509 75 86 0.4925 −39.2138 59
88 0.1825 −38.8527 71 88 0.5321 −39.2142 58
90 0.1965 −38.8569 60 90 0.6053 −39.2153 56
92 0.2088 −38.8592 52 92 0.7326 −39.2158 51
94 0.2339 −38.8639 41 94 0.8231 −39.2158 50
96 0.2864 −38.8677 32 96 0.9984 −39.2160 49
98 0.3656 −38.8692 28 98 1.2097 −39.2158 48

DCC specifications: Qt = R−ARA′ − b2R+Aεt−1ε′t−1A
′ + b2Qt−1 with A = aIn in the scalar DCC, A diagonal

in the diagonal DCC, and A unrestricted in the sparse DCC. BEKK specifications: Ht = H − AHA′ − BHB′ +
Art−1r′t−1A

′ + BHt−1B′ with A and B diagonal in the diagonal BEKK, and A unrestricted and B diagonal in
the sparse BEKK. For the sparse DCC model, the number of parameters refers to the correlation part only. Loglik:
log-likelihood, normalized by the number of observations and evaluated at validation data. The cross-validated
percentile of |Gφpen | to select the regularization parameter λA is indicated in boldface.

Table 5. Summary of model estimates and log-likelihood values

log-likelihood log-likelihood number of a or b or

in sample out-of-sample parameters
∑
iAii/n

∑
iBii/n

sparse DCC −39.1938 −35.9882 107+72 0.0668 0.9922

diagonal DCC −39.2497 −36.0046 25+72 0.0727 0.9902
scalar DCC −39.3213 −36.0388 2+72 0.0640 0.9955
sparse BEKK −39.7197 −36.4939 84 0.1060 0.9898
diagonal BEKK −39.7909 −36.5467 48 0.1070 0.9897

DCC specifications: Qt = R−ARA′ − b2R+Aεt−1ε′t−1A
′ + b2Qt−1 with A = aIn in the scalar DCC, A diagonal

in the diagonal DCC, and A unrestricted in the sparse DCC. BEKK specifications: Ht = H − AHA′ − BHB′ +
Art−1r′t−1A

′ + BHt−1B′ with A and B diagonal in the diagonal BEKK, and A unrestricted and B diagonal in
the sparse BEKK. For the DCC models the number of parameters is split between those in the correlation part
and the 3 × 24 = 72 parameters in the volatility part. The log-likelihood values are normalized by the number of
observations.

parameters in the sparse DCC (correlation part) and the sparse BEKK model with the training

data, respectively.

Using both the in-sample training and validation data, we estimated the sparse DCC and BEKK

models (with the corresponding λA obtained), the scalar and diagonal DCC models, and the di-
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agonal BEKK model. Table 5 reports a summary of the parameter estimates and the average

log-likelihood in and out-of-sample (computed with the parameters fixed at the in-sample es-

timates) for each model. The sparse DCC model has the greatest in-sample and out-of-sample

average log-likelihood values and the diagonal BEKK model has the least. There are 107 and 84

nonzero estimated parameters in the sparse DCC (correlation part) and the sparse BEKK model,

respectively. Given the number of unpenalized parameters (DCC: 24 diagonal elements in A and

one scalar parameter in B; BEKK: 24 diagonal elements in A and 24 in B), there are 82 nonzero

estimated off-diagonal elements of A in the DCC model, while there are only 36 in the BEKK

model. The average estimated a (or
∑
iAii/n) is 0.0668, 0.0727, and 0.0640 in the sparse DCC,

the diagonal DCC, and the scalar DCC model, respectively, much smaller than those in the sparse

BEKK and diagonal BEKK models (0.1060 and 0.1070). In contrast, the estimated b (or
∑
iBii/n)

of the DCC models are larger than those in the BEKK models. Finally, the estimated diagonal

elements in the sparse models are very close to those in the diagonal (or scalar) models, and the

estimated b (or
∑
iBii/n) is still very close to one, especially in the DCC model.

Our sample period includes the financial crisis of 2007–2008 and the Great Recession. One

may wonder if this negatively affects the predictive performance of the models due to a possible

structural break. Formal statistical inference regarding the presence of a structural break in models

estimated by regularization is challenging and beyond the scope of this paper. Our approach,

instead, is to compare the estimated models (and the out-of-sample fit in particular) with the

same set of models estimated with post-crisis data only. In view of the NBER declaration that

the U.S. recession ended in June 2009, we consider the period from July 1, 2009 to December

31, 2018 as our post-crisis subsample. We divide this subsample into three parts such that the in-

sample validation period and the out-of-sample testing period are exactly the same as in our earlier

division of the full sample period. Thus, the only difference between our full-sample analysis and

our subsample analysis is the in-sample training data set, which spans a much shorter period in the

subsample (less than 6 years) than in the full sample (more than 15 years). The estimation of the

models based on the subsample data now proceeds as before. The cross-validation algorithm (i)-(v)

selects the tuning parameter λA as the 72nd percentile of |Gφpen
| for the sparse DCC model and as

the 88th percentile for the sparse BEKK model. The selected values are, respectively, λA = 0.0969

and λA = 0.1621, resulting in considerably more nonzero estimated parameters using the training

data than earlier: 154 in the sparse DCC (correlation part) and 126 in the sparse BEKK model.

Maximizing the penalized likelihood over the joint training and validation data with fixed λA

ultimately gives 146 nonzero parameters in the sparse DCC (correlation part) and 126 in the

sparse BEKK model. Table 6 reports summary results, in the same format as Table 5, and yields

some interesting results. First, in all models the in-sample fit is better in the subsample than in the

full sample. This is hardly surprising since the model fit worsens during the crisis period. Second,

the estimated diagonals of the coefficient matrices in Tables 5–6 are broadly similar, although the

estimates in Table 6 show less persistence, in particular for the BEKK models. Third, and of interest

for our purpose, the out-of-sample fit is better (for all models) if we use the full sample rather than

the post-crisis subsample only. Perhaps this may come as a surprise, but recall that the training
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Table 6. Summary of model estimates and log-likelihood values (based on post-crisis data only)

log-likelihood log-likelihood number of a or b or

in sample out-of-sample parameters
∑
iAii/n

∑
iBii/n

sparse DCC −36.7622 −36.9612 146+72 0.0650 0.9880

diagonal DCC −36.8509 −36.9966 25+72 0.0705 0.9845
scalar DCC −36.9675 −37.1661 2+72 0.0719 0.9905
sparse BEKK −37.2976 −37.7943 131 0.1080 0.9570
diagonal BEKK −37.5654 −38.6035 48 0.1519 0.8226

DCC specifications: Qt = R−ARA′ − b2R+Aεt−1ε′t−1A
′ + b2Qt−1 with A = aIn in the scalar DCC, A diagonal

in the diagonal DCC, and A unrestricted in the sparse DCC. BEKK specifications: Ht = H − AHA′ − BHB′ +
Art−1r′t−1A

′ + BHt−1B′ with A and B diagonal in the diagonal BEKK, and A unrestricted and B diagonal in
the sparse BEKK. For the DCC models the number of parameters is split between those in the correlation part
and the 3 × 24 = 72 parameters in the volatility part. The log-likelihood values are normalized by the number of
observations.

data period is much shorter in the subsample analysis than in the full-sample analysis. Because of

the better out-of-sample fit, we will continue to use the full-sample models in the remainder of the

paper.

4.2. Further out-of-sample evaluation

We further evaluate the estimated models using the 10% out-of-sample data with two methods:

the pairwise model comparison test of Giacomini and White (2006) and the model confidence set

of Hansen, Lunde, and Nason (2011).

Our comparison of the five estimated GARCH models using the Giacomini-White test adopts two

alternative loss functions. The first is a standard statistical loss function: minus the out-of-sample

(Gaussian quasi-)log-likelihood. This loss function is evaluated with rtr
′
t as a noisy but unbiased

proxy for the latent conditional variance Ht, against which the forecasts of Ht are evaluated to

determine the loss. The use of a proxy for Ht potentially affects the ranking of the various forecasts,

a point that received considerable attention in the literature. The Gaussian quasi-log-likelihood

loss function, however, enjoys robustness, in the sense of Patton (2011), to using an unbiased proxy

for Ht instead of Ht. That is, the asymptotic ranking of the forecasts is unaffected (see also Patton

and Sheppard 2009 and Laurent, Rombouts, and Violante 2013). Table 7 reports the p values

of the tests. The sparse DCC model has the lowest loss and outperforms the diagonal DCC and

scalar DCC models, though not significantly. The sparse BEKK model significantly improves on

the diagonal BEKK model. All three DCC models significantly outperform the BEKK models.

Our second loss function in the Giacomini-White test adopts a more economic criterion, based

on the asset-allocation methodology proposed by Engle and Colacito (2006). Consider an asset

allocation problem for n assets with return vector rt whose conditional variance matrix is Ht. The

variance minimization problem is

min
wt

w′tHtwt subject to w′t1n = 1,
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Table 7. Giacomini-White tests based on the out-of-sample log-likelihood value

sparse DCC diag. DCC scalar DCC sparse BEKK diag. BEKK

sparse DCC − 0.5396 0.2801 0.0000 0.0000

diagonal DCC 0.5396 − 0.2970 0.0000 0.0000
scalar DCC 0.2801 0.2970 − 0.0000 0.0000
sparse BEKK 0.0000 0.0000 0.0000 − 0.0000
diagonal BEKK 0.0000 0.0000 0.0000 0.0000 −
average loss 35.9882 36.0046 36.0388 36.4939 36.5467

Entries: p values of the Giacomini-White test of the null that the corresponding row and column models have equal
expected loss, with minus the out-of-sample log-likelihood as the loss function.

Table 8. Giacomini-White tests based on out-of-sample asset allocation

sparse diagonal scalar sparse diagonal constant equal

DCC DCC DCC BEKK BEKK weight weight

sparse DCC − 0.0184 0.3724 0.1537 0.0549 0.0000 0.0000

diagonal DCC 0.0184 − 0.2587 0.1306 0.0453 0.0000 0.0000
scalar DCC 0.3724 0.2587 − 0.2266 0.0773 0.0000 0.0000
sparse BEKK 0.1537 0.1306 0.2266 − 0.0003 0.0000 0.0000
diagonal BEKK 0.0549 0.0453 0.0773 0.0003 − 0.0000 0.0000
constant weight 0.0000 0.0000 0.0000 0.0000 − 0.0000 0.0060
equal weight 0.0000 0.0000 0.0000 0.0000 0.0000 0.0060 −
average loss 0.1602 0.1593 0.1619 0.1699 0.1743 0.2426 0.3351

Entries: p values of the Giacomini-White test of the null that the corresponding row and column models have equal
expected loss, with the out-of-sample squared portfolio return multiplied by 10000 as the loss function.

where 1n is an n× 1 vector of ones. The solution is wt = (1′nH
−1
t 1n)−1H−1t 1n and the minimum-

variance portfolio has return w′t(rt − Et−1rt) in excess of the expected return. With the out-of-

sample squared return (w′t(rt − Et−1rt))2 as the loss function, we compare each pair of GARCH

models using the Giacomini-White test. In addition to the portfolios constructed from the GARCH

models, we also consider the equally-weighted portfolio, with weights wt = n−11n, and the constantly-

weighted portfolio with weights wt = (1′nH
−1

1n)−1H
−1

1n based on the unconditional variance of

rt − Et−1rt. Table 8 shows that in terms of asset allocation the sparse BEKK model significantly

outperforms the diagonal BEKK model, while the sparse DCC model does not outperform the

diagonal DCC model. The constantly-weighted portfolio is significantly dominated by all BEKK

and DCC models. The equally-weighted portfolio is dominated by all other portfolios and the dom-

inations are statistically significant (in the absence of transaction costs). Again, the DCC models

dominate the BEKK models in terms of average loss, although this time the dominations are, at

best, only marginally significant.

To complement the Giacomini-White tests we also report the out-of-sample model confidence

set of Hansen, Lunde, and Nason (2011). Table 9 provides the model confidence sets calculated

with the same loss functions as above, a significance level of 5%, 1000 bootstrap replications, and

an average block length of 10. The model confidence set is indicated in boldface. With the log-

likelihood-based loss function, only the DCC models are in the model confidence set. With the
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Table 9. Out-of-sample model confidence sets

log-likelihood value asset allocation

loss rank loss rank

sparse DCC 35.9882 1 0.1602 2

diagonal DCC 36.0046 2 0.1593 1
scalar DCC 36.0388 3 0.1619 3
sparse BEKK 36.4939 4 0.1699 4
diagonal BEKK 36.5467 5 0.1743 5
constant weight 38.0810 6 0.2426 6
equal weight 48.1407 7 0.3351 7

Boldface numbers indicate the models in the model confidence set with signif-
icance level 5%. Computed with 1000 bootstrap replications and an average
block length of 10.

asset allocation loss function, the DCC models and the sparse BEKK model are in the confidence

set.

4.3. Covariance and correlation spillovers

The main advantage of the sparse BEKK and DCC models, relative to their scalar and diagonal

versions, is that they allow covariance and correlation spillovers through the off-diagonal elements

of A. Consider the sparse BEKK model. If Aij is nonzero, then a shock to market j’s return at time

t−1 will affect market i’s (co)volatility at time t. Figure 2 depicts the estimated covariance spillover

effects based on the in-sample estimates. Each directed arrow corresponds to a nonzero estimated

off-diagonal element of A in the sparse BEKK model, with darker lines representing stronger effects.

In the same way, Figure 3 depicts the estimated correlation spillover effects associated with the

sparse DCC model. When interpreting the patterns of covariance and correlation spillovers, one

should keep in mind the very different role of the coefficients in the BEKK and DCC models and,

correspondingly, the different role of penalization in the two models. Simply stated, given that

covariance and correlation spillovers are rather different objects, one should not necessarily expect

their patterns to be roughly similar.

We note that the graph for the sparse DCC model, the approach ranked as the best-performing

among all models (sparse or not), contains far more links than that of the sparse BEKK model.

Finding many links is helpful only if those links pick up useful features, though. Below, we argue

that the DCC results again rank best here.

As we saw, the likelihood and portfolio-management results suggest that DCC’s larger catch,

in terms of spillover relations deemed relevant, improves the out-of-sample predictive power. The

same holds for the economic interpretation. In the introduction we argued that, everything else

being the same, energy and metals should be the leaders in the spillover network since they have

more analyst following, media attention, volume, and liquidity. Imperfections in the synchronicity

could possibly interfere with this. The five LME non-ferrous metal markets settle early, which

makes them miss the early-afternoon information and potentially creates the impression that they

are slow. The same holds for cocoa and coffee.
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Figure 2. Covariance spillover estimates in the sparse BEKK model

Figure 3. Correlation spillover estimates in the sparse DCC model

To check whether the estimates do detect these patterns, we rank the commodities by their

‘net’ volatility spillover or correlation spillover count, i.e., the number of outgoing links minus the

number of incoming links. Table 10 shows the results. The sparse DCC model fits the predictions

remarkably well. Of the ten goods with the strongest net ‘out’ profile, nine turn out to be energy

and metals. Two of these, aluminum and lead, manage to stay quite up to date even though their

price is 2–2.5 hours old by the time most markets settle. The group of net recipients of spillovers,

to the right of the table, also fits the predictions. Eight of the ten in this list are agricultural goods,

and the two metals that strayed into this group come with comparatively stale LME price tags,

which helps explain why they do not act as discoverers.

The results for the BEKK estimates are less clear. The classification of energy and metals versus
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Table 10. Ranking of commodities in terms of net lead-minus-lag spillover links

DCC correlation spillovers
top 10 sources of spillovers top 10 destinations of spillovers

commodity #outs #ins outs − ins commodity #outs #ins outs − ins
soybean oil 12 5 7 wheat Chicago 2 3 −1
copper 10 5 5 nickel 3 5 −2
platinum 6 1 5 cocoa 3 5 −2
heating oil 8 4 4 corn 1 3 −2
aluminum 5 2 3 tin 3 6 −3
composite crude 7 5 2 soybean 5 9 −4
silver 6 4 2 cotton 3 7 −4
lead 5 3 2 live cattle 2 6 −4
gold 4 2 2 sugar 2 7 −5
gasoline 5 4 1 coffee 2 8 −6

BEKK covariance spillovers
top 10 sources of spillovers top 10 destinations of spillovers

commodity #outs #ins outs − ins commodity #outs #ins outs − ins
lead 6 1 5 soybean meal 2 2 0
composite crude 6 2 4 soybean oil 2 2 0
nickel 4 1 3 tin 1 1 0
silver 5 3 2 cotton 1 1 0
coffee 3 1 2 heating oil 3 4 −1
cocoa 3 2 1 gasoline 1 2 −1
natural gas 2 1 1 lean hogs 1 4 −3
platinum 2 1 1 live cattle 1 5 −4
corn 2 1 1 aluminum 1 7 −6
sugar 2 1 1 soybean 1 7 −6

We rank the commodities on the basis of the number of outgoing spillover relations minus that of incoming relations
in the sparse DCC or BEKK model. Energy and metals are printed in bold, agricultural commodities in italics.
Markets that settle early (and therefore should seem to lag the others) are printed in grey font.

agricultural goods fits in six cases out of ten in each column, which is hardly better than a random

outcome. Of the seven markets in this list that close early, five end in the net ‘out’ group, against

the expectations. In defence of the sparse-BEKK results, we note that the expected pattern is

actually still detectable in the tails: 4 out of 4 of the top-‘out’ goods are energy and metals while

3 out of 4 of the strongest ‘in’ goods are agricultural goods, with the stray ‘follower’ metal, tin,

possibly explained by its 12:00 settlement time. In short, the sparse BEKK model does detect

useful links, but in this application it seems less good at this than the DCC model. This is in

line with what we found in terms of likelihoods and out-of-sample performance at portfolio risk

management.

5. CONCLUDING REMARKS

In this paper, we propose a sparse modeling approach towards multivariate GARCH. The focus

is on GARCH(1, 1) structures, the generalization to higher orders being obvious, as well as other

extensions. Our approach allows to explore the dynamics of moderately large-dimensional financial

time series, with particular attention to uncovering volatility or correlation spillover effects. As

the number of potential spillover effects increases quadratically with the dimension of the system,
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some form of regularization is needed, resulting in a sparse structure of identified spillover effects.

We use a lasso penalty to impose selectivity on the detection of spillover effects. One limitation of

this approach is that it becomes difficult to construct parameter confidence sets and to carry out

statistical tests on the parameters. But the merits are evident from our work on both simulated

and real-world data.

Specifically, in our application to daily returns for 24 commodities over the period 2000–2018,

we find that the sparse DCC model dominates the standard DCC models that exclude correlation

spillover effects. The dominance is evident both in-sample (i.e., fit) and out-of-sample in terms of a

likelihood-based loss function. The sparse BEKK model, likewise, dominates the standard diagonal

BEKK variants that exclude volatility spillovers. DCC models, whether sparse or not, do better

than BEKK ones. Looking for an economic interpretation of the links brought forward, we find

empirical support for the pattern we had advanced on a priori grounds: the sparse DCC model

almost unambiguously deems energy and metals to be the sources of spillovers, and agricultural

goods the receivers. Two metals are classified as followers, but this may reflect the fact that their

prices are at least two hours older than, e.g., those of the energy products. The BEKK model, in

contrast, seems to be overly selective: the predicted pattern is discernible only in the four most

extreme cases at each side.
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Francq, C. and J.-M. Zaköıan (2016). Estimating multivariate volatility models equation by equa-

tion. Journal of the Royal Statistical Society, Series B 78, 613–635.

Giacomini, R. and H. White (2006). Tests of conditional predictive ability. Econometrica 74,

1545–1578.



22

Green, R., K. Larsson, V. Lunina, and B. Nilsson (2018). Cross-commodity news transmission and

volatility spillovers in the German energy markets. Journal of Banking & Finance 95, 231–243.

Hafner, C. M. and P. H. Franses (2009). A generalized dynamic conditional correlation model:

Simulation and application to many assets. Econometric Reviews 28, 612–631.

Hafner, C. M. and O. Linton (2010). Efficient estimation of a multivariate multiplicative volatility

model. Journal of Econometrics 159, 55–73.

Hansen, P. R., Z. Huang, and H. H. Shek (2012). Realized GARCH: A joint model for returns and

realized measures of volatility. Journal of Applied Econometrics 27, 877–906.

Hansen, P. R., A. Lunde, and J. M. Nason (2011). The model confidence set. Econometrica 79,

453–497.

Ji, Q., E. Bouri, D. Roubaud, and S. J. H. Shahzad (2018). Risk spillover between energy and

agricultural commodity markets: A dependence-switching CoVaR-copula model. Energy Eco-

nomics 75, 14–27.

Ji, Q. and Y. Fan (2012). How does oil price volatility affect non-energy commodity markets?

Applied Energy 89, 273–280.

Jung, R. and R. Maderitsch (2014). Structural breaks in volatility spillovers between international

financial markets: Contagion or mere interdependence? Journal of Banking & Finance 47, 331–

342.

Kaltalioglu, M. and U. Soytas (2011). Volatility spillover from oil to food and agricultural raw

material markets. Modern Economy 2, 71–76.

Kang, S. H., R. McIver, and S.-M. Yoon (2017). Dynamic spillover effects among crude oil, precious

metal, and agricultural commodity futures markets. Energy Economics 62, 19–32.

Laurent, S., J. V. Rombouts, and F. Violante (2013). On loss functions and ranking forecasting

performances of multivariate volatility models. Journal of Econometrics 173, 1–10.

Ledoit, O., P. Santa-Clara, and M. Wolf (2003). Flexible multivariate GARCH modeling with an

application to international stock markets. Review of Economics and Statistics 85, 735–747.

Liu, M.-L., Q. Ji, and Y. Fan (2013). How does oil market uncertainty interact with other markets?

An empirical analysis of implied volatility index. Energy 55, 860–868.

Lu, Y., L. Yang, and L. Liu (2019). Volatility spillovers between crude oil and agricultural com-

modity markets since the financial crisis. Sustainability 11, in press.

Mensi, W., S. Hammoudeh, D. K. Nguyen, and S.-M. Yoon (2014). Dynamic spillovers among

major energy and cereal commodity prices. Energy Economics 43, 225–243.

Nazlioglu, S., C. Erdem, and U. Soytas (2013). Volatility spillover between oil and agricultural

commodity markets. Energy Economics 36, 658–665.

Noureldin, D., N. Shephard, and K. Sheppard (2012). Multivariate high-frequency-based volatility

(HEAVY) models. Journal of Applied Econometrics 27, 907–933.

Otranto, E. (2010). Identifying financial time series with similar dynamic conditional correlation.

Computational Statistics and Data analysis 54, 1–15.

Pakel, C., N. Shephard, K. Sheppard, and R. F. Engle (2021). Fitting vast dimensional time-varying

covariance models. Journal of Business & Economic Statistics 39, 652–668.



Volatility spillovers: Sparse multivariate GARCH 23

Pal, D. and S. K. Mitra (2019). Correlation dynamics of crude oil with agricultural commodities:

A comparison between energy and food crops. Economic Modelling 82, 453–466.

Patton, A. J. (2011). Volatility forecast comparison using imperfect volatility proxies. Journal of

Econometrics 160, 246–256.

Patton, A. J. and K. Sheppard (2009). Evaluating volatility and correlation forecasts. In T. G.

Andersen, R. A. Davis, J.-P. Kreiss, and T. Mikosch (Eds.), Handbook of Financial Time Series,

pp. 801–838. Springer.

Pelletier, D. (2006). Regime switching for dynamic correlations. Journal of Econometrics 131,

445–473.

Rombouts, J., L. Stentoft, and F. Violante (2014). The value of multivariate model sophistica-

tion: An application to pricing Dow Jones Industrial Average options. International Journal of

Forecasting 30, 78–98.

Roy, R. P. and S. S. Roy (2017). Financial contagion and volatility spillover: An exploration into

Indian commodity derivative market. Economic Modelling 67, 368–380.

Shahzad, S. J. H., J. A. Hernandez, K. H. A. Yahyaee, and R. Jammazi (2018). Asymmetric risk

spillovers between oil and agricultural commodities. Energy Policy 118, 182–198.

Sun, Y. and X. Lin (2012). Regularization for stationary multivariate time series. Quantitative

Finance 12, 573–586.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society, Series B 58, 267–288.

Tse, Y. (1999). Price discovery and volatility spillovers in the DJIA index and futures markets.

Journal of Futures Markets 19, 911–930.

Tse, Y. K. and A. K. C. Tsui (2002). A multivariate generalized autoregressive conditional het-

eroscedasticity model with time-varying correlations. Journal of Business & Economic Statis-

tics 20, 351–362.

Uddin, G. S., J. A. Hernandez, S. J. H. Shahzad, and A. Hedstrm (2018). Multivariate dependence

and spillover effects across energy commodities and diversification potentials of carbon assets.

Energy Economics 71, 35–46.

Vrontos, I. D., P. Dellaportas, and D. N. Politis (2003). A full-factor multivariate GARCH model.

The Econometrics Journal 6, 312–334.

Yang, J., D. A. Bessler, and D. J. Leatham (2001). Asset storability and price discovery in com-

modity futures markets: A new look. Journal of Futures Markets 21, 279–300.

Zhong, M., A. F. Darrat, and R. Otero (2004). Price discovery and volatility spillovers in index

futures markets: Some evidence from mexico. Journal of Banking & Finance 28, 3037–3054.

[dataset] Datastream, 2019. Daily settlement prices for aluminum, cocoa, coffee, copper, corn,

cotton, composite crude oil (Brent and WTI), gold, heating oil, lead, lean hogs, live cattle,

natural gas, nickel, platinum, silver, soybean meal, soybean oil, soybean, sugar, tin, unleaded

gas, wheat(Chicago) and zinc. The excess returns were obtained from Datastream using codes

‘.BCOM**’, e.g., ‘BCOMCR’ for composite crude oil.



24

Appendix: Simulations for the DCC model

Here we present simulation results for the sparse DCC model. The setup is qualitatively similar

to that for the BEKK model, but differs in some details. The setup here is tailored to a different

application: the daily market index return data of 24 developed countries for 1994–2014. We have

not re-run the sparse DCC simulations for the commodity data setup because the estimation is

very slow, but we believe that the results would be very similar to those presented below.

As in Hafner and Franses (2009), we focus on the DCC model’s correlation part only, ignoring

the volatility part. So we set Dt = In and only carried out step 2 of the DCC estimation. We

generated data rt = εt for t = 1, . . . , 5000 (and a burn-in sample of 1000 periods) according to

εt ∼ N(0, Rt), Rt = (In �Qt)−1/2Qt(In �Qt)−1/2,

Qt = R−ARA′ − b2R+Aεt−1ε
′
t−1A

′ + b2Qt−1,

with n = 24, b2 = 0.995, R equal to the empirical daily return correlation matrix, and A chosen

as follows. We drew the diagonal elements of A from the uniform distribution U [.8c, 1.2c] with

mean c = .07, set 20 randomly chosen off-diagonal elements of A equal to the values in the

set ±c · {.01, .02, .1, .15, .2} (each value being repeated twice), and set the other 532 off-diagonal

elements of A equal to zero. We generated 20 simulated data sets in this way.

For each simulated data set, we estimated φ = (A, b) as outlined above, with the correlation

matrix of the simulated data as an estimate of R. To reduce the computation time, we fixed the

tuning parameter λA at the 88th percentile of |Gφpen | (computed from the full simulated data

set) instead of determining λA by cross-validation. Table 11 is a contingency table of the true

and estimated off-diagonal elements of A, averaged across the simulations. As the table shows, the

underlying sparsity structure is uncovered reasonably well, with two thirds of the “large” nonzero

parameter values (those in ±c · {.1, .15, .2}) being detected and 95% of the zeros being estimated

as zero. As expected, “small” nonzero parameter values (those in ±c · {.01, .02}) are much harder

to detect: only 8% are estimated to be nonzero.

Table 11. Estimated versus true sparsity (DCC model, 20 replications)

estimated zero estimated nonzero total

true zero 503.85 28.15 532
true “small” 7.35 0.65 8
true “large” 4.00 8.00 12

total 515.20 36.80 552

Model: rt = εt ∼ N(0, Rt), Rt = (In �Qt)−1/2Qt(In �Qt)−1/2, Qt = R−ARA′ − b2R+Aεt−1ε′t−1A
′ + b2Qt−1,

with sparsity imposed on the off-diagonal elements of A. “large” refers to values in ±c · {.1, .15, .2}; “small” refers
to values in ±c · {.01, .02}.

Table 12 gives details for each simulation separately. The first three columns pertain to the

off-diagonal elements of A, giving the number of true zeros estimated as zero, and the number of
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“small” and “large” values, respectively, estimated to be nonzero. The last four columns report

the true and estimated values of the average of the diagonal elements of A and b2. These estimates

are very close to the true values, although b̂2 tends to slightly underestimate b2.

Table 12. Estimation results for each replication (DCC model, 20 replications)

zero “small” “large”
∑
iAii/n

∑
i Âii/n b2 b̂2

503 1 9 0.0697 0.0688 0.995 0.9945
498 1 7 0.0689 0.0666 0.995 0.9946
506 2 10 0.0714 0.0709 0.995 0.9948
507 0 5 0.0700 0.0718 0.995 0.9943
500 0 7 0.0719 0.0726 0.995 0.9943
508 0 9 0.0687 0.0679 0.995 0.9946
502 0 9 0.0660 0.0650 0.995 0.9946
502 2 9 0.0666 0.0641 0.995 0.9946
511 1 9 0.0683 0.0683 0.995 0.9946
508 1 7 0.0670 0.0674 0.995 0.9947
505 1 9 0.0688 0.0697 0.995 0.9944
502 1 7 0.0710 0.0691 0.995 0.9947
505 0 10 0.0687 0.0690 0.995 0.9946
517 0 9 0.0690 0.0695 0.995 0.9944
503 0 7 0.0685 0.0690 0.995 0.9944
484 0 5 0.0666 0.0648 0.995 0.9946
513 0 9 0.0697 0.0703 0.995 0.9943
504 1 8 0.0668 0.0665 0.995 0.9948
502 0 8 0.0674 0.0664 0.995 0.9946
497 2 7 0.0705 0.0688 0.995 0.9949

Model: rt = εt ∼ N(0, Rt), Rt = (In �Qt)−1/2Qt(In �Qt)−1/2, Qt = R−ARA′ − b2R+Aεt−1ε′t−1A
′ + b2Qt−1,

with sparsity imposed on the off-diagonal elements of A. The first three columns refer to the off-diagonal elements
of A (532 zeros, 8 “small” values, and 12 “large” values) and report the numbers of zeros estimated as zero, “small”
values estimated as nonzero, and “large” values estimated as nonzero, respectively.
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