
Multi-stage Optimal Control Problem Formulation
for Drone Racing Through Gates and Tunnels

Mathias Bos1, Wilm Decré, Jan Swevers, Goele Pipeleers
MECO Research Team, Department of Mechanical Engineering, KU Leuven, Belgium

DMMS lab, Flanders Make, Leuven, Belgium
1mathias.bos@kuleuven.be, ORCID: 0000-0002-5471-6691

Abstract—Finding a time-optimal trajectory through gates and
tunnels is a difficult challenge in autonomous drone racing,
especially in a fully autonomous context where the computations
are all performed onboard. This paper presents an optimal
control problem formulation to represent and solve the motion
planning problem for a multirotor drone racing through a series
of gates or tunnels, without a priori knowledge about the drone
pose right in front of or behind the gates nor about the exact
time instance when to pass through the gates. The formulation
is shown to produce feasible trajectories for a set of handcrafted
configurations, and has the potential to be fast enough for online
replanning purposes.

Index Terms—Drones, Motion planning, Optimal control,
Multi-stage, Gates

I. INTRODUCTION

Drone racing is a spectacular sport for which the control
research community has recently found an interest. One of the
goals of autonomous drone racing is to defeat human pilots.
The large interest expresses itself in a number of autonomous
drone racing competitions such as those at the IROS and
NeurIPS conferences and the AlphaPilot challenge [1]–[3]. In
a drone race, the goal of each contender is to fly a race track
in minimum time without crashing. A race track is composed
of a sequence of gates, often rectangular, in a predefined order.

The literature on drone racing splits up into two main
categories, each connected to an important challenge. Firstly,
the localization of the drone and the perception of the envi-
ronment, including the gates, is an important aspect of the
aforementioned competitions, and is therefore under strong
focus in the reports of contestants [4]–[6]. Secondly, the
motion planning and control of drones consist of finding
a trajectory that runs through the gates and is dynamically
feasible given the platform’s capabilities, and of generating
control inputs that make the drone travel the trajectory as
planned while rejecting disturbances and compensating for
model imperfections. A fully autonomous drone performs
all computations including state estimation, motion planning
and control onboard, which adds the restriction of limited
computational power. An example of a technique to speed

This work has been carried out within the framework of projects Flanders
Make SBO MULTISYSLECO: Multi-System Learning Control and Flanders
Make SBO MULTIROB: Rigorous approach for programming and optimal
control of multirobot systems. Flanders Make is the Flemish strategic research
centre for the manufacturing industry. This work also benefits from project
G0C4515N of the Research Foundation - Flanders (FWO - Flanders).

up the computations in online optimal control is the use
of real-time iteration (RTI) schemes [7]. The remainder of
this paper considers the challenge of motion planning, while
paying attention to computational efficiency and robustness.
The drone pose, gate poses and gate geometries are assumed
to be known.

Mellinger et al. [8], [9] presented strategies and success-
ful experiments to race through hoops and narrow windows
already in 2011. First in [8] they use polynomial represen-
tations of trajectories with “sufficiently smooth” derivatives
and rely on differential flatness of the quadrotor dynamics
to infer the control inputs from these polynomal trajectories.
This approach does not allow for direct constraints on the
control inputs (either thrust force and orientation or angular
rates, or individual motor thrust forces). Later in [9] they
represent trajectories as a sequence of segments, each with
a controller parameterized by a goal state, tracking a desired
velocity towards a window and tracking the desired orientation
with constant thrust while passing through the window. This
approach focuses on very accurate pose control through a
narrow passage, with a recovery controller becoming active
after the passage, rather than planning a full path through a
gate taking into account what comes after the gate. Neunert
et al. [10] consider trajectory generation and control through
narrow windows with a simultaneous trajectory optimization
and tracking control approach using fast Model Predictive
Control (MPC). The full state of the drone right in front of and
behind a gate, including the passing time, is considered given.
A common difficulty that can render the planning problem
quite complex, is that the times at which the drone will pass
through the gates is a priori unknown. In Neunerts work the
passing time of the waypoint is decided upon by a heuristic.
A different motion planning approach that decouples motion
planning and control instead of unifying them alleviates the
computational burden of the motion planning by the use of
motion primitives in a lattice, referred to as lattice-based
motion planning [11].

Another approach to the gate passing problem is based on
a more general obstacle avoidance technique: in [12] a gate is
represented by surrounding walls or plates, which are avoided
using a separating hyperplane formulation. The separating
hyperplane approach to obstacle avoidance is elaborately em-
ployed in previous work of our research group on the OMG-
tools motion planning toolbox [13]. However, for the very



simplified quadrotor model with small angle approximation
and only two edges of a gate, the order of magnitude of
the computation time for a horizon of ten seconds using a
cubic spline representation with ten polynomial intervals is
already 200 ms. This computation time is sufficient for online
replanning if additional reference tracking control is active,
but it is expected to increase substantially when including full
nonlinear dynamics and a full gate (or multiple gates) with four
edges. In comparison, the replanning time in [10] is 25 ms, but
there the gate is rather implicitly modeled via waypoints with
a priori fully defined state. Moreover, the approach in [12]
is not robust against varying initial and terminal (position)
conditions: for a configuration where the optimal trajectory
is strongly curved, the optimizer often fails to find a feasible
solution [14].

Recent advances in (Deep) Reinforcement Learning (RL)
have sparked new approaches to the drone racing challenge,
most notably by Song et al. [15]. Rather than solving an
optimization problem online to obtain a trajectory with cor-
responding control inputs, this approach applies a model-free
policy search to learn a neural network policy by interaction
with the environment in a large number of rollouts. Through a
smart choice of rewards and techniques to allow for substantial
data generation, it is possible to learn a policy that is applicable
to unseen tracks. In practice, the neural network policy is
trained in simulation using a high fidelity model of the
drone dynamics. For experiments on the physical platform,
a simulation rollout of the policy on the new track generates
a reference trajectory, which is then tracked by the real drone
with an MPC controller.

This paper proposes an optimal control problem formulation
for the motion planning problem through a gate or a series
of gates by representing the geometry of the gate by the
free space rather than by the forbidden area. This formulation
avoids having to know a priori specific waypoints or keyframes
with a predefined state that guarantees safe passage through the
gate. First, Section II describes the formulation of the optimal
control problem as a multi-stage problem with convex box
constraints. Next, Section III shows simulation results, which
are discussed and related to the approaches described earlier.

II. METHODOLOGY

As the presented approach is model based, this section first
discusses the used simplified dynamic quadrotor model. Next,
it shows how the gates of a race track are parametrized. Finally,
it discusses the multi-stage optimal control problem (OCP)
formulation used to produce feasible, time optimal trajectories
through the gates using the dynamic model.

A. Drone Dynamics

A derivation of the most commonly used basic quadrotor
model is presented in [16]. In order to keep the optimization
tractable to solve onboard, the continuous-time quadrotor
dynamics f are expressed here by the following simplified
quadrotor model, which relates the 3D position p and velocity

v to the control inputs being the roll, pitch, yaw, and thrust
acceleration references u = [φ, θ, ψ, at]

>:

ẋ =

[
ṗ
v̇

]
= f(x,u)

=

[
v

at − g

] (1)

Thrust acceleration at is defined as the mass-normalized
thrust force from all propellers combined and g is the gravita-
tional acceleration vector. For simplicity, aerodynamic drag is
neglected. The thrust acceleration vector at is assumed to be
oriented along the body z-axis, such that it is given in the world
frame by at = R [0, 0, at]

>. The rotation matrix R from the
body to the world frame in terms of the roll-pitch-yaw Euler
angles is, introducing cγ , cos(γ) and sγ , sin(γ),

R = RψRθRφ

=


cψ −sψ 0
sψ cψ 0
0 0 1




cθ 0 sθ
0 1 0
−sθ 0 cθ




1 0 0
0 cφ −sφ
0 sφ cφ

.
(2)

B. Gate Representation

We present the mathematical description of two types of
gate geometry: rectangular and circular. The multi-stage mo-
tion planning approach for both is fully equivalent, but their
specific geometry requires a tailored description in order to
formulate suitable path constraints.

1) Rectangular gates: In 2D, as illustrated in Fig. 1a,
rectangular gates are defined through the following charac-
teristics: their geometry, parametrized with the height and
depth Γr = [h, d]

>, and their pose, comprising the position
of the gate center t and the gate orientation. The latter is
defined by the normal unit vector x̂, which points in the
flight direction, and the unit vector ẑ, which points parallel
to the gate face. In 3D, the geometry is extended with the
gate width w, such that Γr = [w, h, d]

>. w measures the gate
opening along the unit vector ŷ, which is perpendicular to
x̂ and ẑ and therefore also points parallel to the gate face.
The 3D orientation can be expressed in terms of the roll-
pitch-yaw Euler angles Φg = [φg, θg, ψg]

> that represent the
rotation from the world frame to the gate frame. The margin
m determines how much a planned trajectory must at least be
seperated from the gate edge. This should be more than the
drone radius to avoid collision.

2) Circular Gates: Fig. 1b illustrates the representation of
a circular gate. Gates of this type are defined through the
following characteristics: their geometry, parametrized with
the radius and depth Γc = [r, d], and their pose, comprising the
position of the gate center t and the gate orientation defined
by the normal vector x̂ which points in the flight direction.
The margin m is defined in the same way as for a rectangular
gate.



(a) 2D rectangular gate representation.

(b) Circular gate representation.

Fig. 1: Rectangular (in 2D) and circular gate representation.
Gates are indicated in light gray.

C. Multi-stage Optimal Control Problem Formulation

With the drone dynamics and the representation of gates
in place, the control problem can be formulated. For one
gate, the time-optimal control problem is split up into three
stages, similarly to the multi-frame approach by Mercy et
al. for traveling through vast environments [17]: an approach
stage, a fly-through stage and a fly-away stage. The drone
position is subject to stage-specific box constraints, determined
by the relative location with respect to the gate opening. In
the approach stage, the drone position is restricted to the area
in front of the gate. In the equivalent 2D case this is the area
left of the red line in Fig. 1a. Similarly, in the fly-through
stage, the position is restricted to the area between the yellow
lines. For a circular gate this area is represented by the yellow
cylinder in Fig. 1b. Finally, in the fly-away stage, the position
is restricted to the area to the right of the blue line.

Mathematically, this is expressed as follows. Let ph be
the homogeneous coordinate representation of the position
vector p = [px, py, pz]

>, i.e. ph =
[
px, py, pz, 1

]>
. Then

the red, blue and yellow planes (in 2D equivalently lines) are
formulated using the standard equation of a plane wxpx +
wypy+wzpz+wd = w>ph = 0. The plane parameter vectors
wj are derived from the gate representation by defining the

normal vector nj for each of the planes and a point tj in each
plane as follows:

Approach -


n1 = x̂
t1 = t− (d/2 +m)n1

=⇒ w1 =

[
n1

−n>1 t1

]

Fly-through -



n2u = ẑ
t2u = t+ (h/2−m)n2u

=⇒ w2u =

[
n2u

−n>2ut2u

]
n2l = −ẑ
t2l = t+ (h/2−m)n2l

=⇒ w2l =

[
n2l

−n>2lt2l

]

Fly-away -


n3 = −x̂
t3 = t− (d/2 +m)n3

=⇒ w3 =

[
n3

−n>3 t3

]

(3)

Each of the obtained wj for stage j is now available to
express a box constraint of the form w>j ph ≤ 0. For brevity,
(3) is given for a gate in 2D. Note that this formalism readily
extends to 3D by adding two constraints for the sides of the
gate, expressed in terms of the gate width w and the unit vector
ŷ.

For a circular gate, the fly-through stage formulates a tubular
box constraint on the drone position in terms of the gate’s
position vector, normal vector, radius and margin expressed
as

∆p>⊥∆p⊥ ≤ (r −m)2 (4)

where
∆p⊥ = ∆p−∆p‖

= ∆p− (∆p · x̂) x̂
= (t− p)− ((t− p) · x̂) x̂,

with ∆p the displacement vector between the drone position
p and gate center t, and ∆p⊥ and ∆p‖ its components
perpendicular and parallel to the gate normal respectively, as
illustrated in Fig. 1b.

In order to combine the three stages into one OCP, the
boundary conditions are linked together by stitching con-
straints. They impose equality of the full dynamic state at
the end and start of two subsequent stages. The exact point on
the time horizon of the stitching points is a priori unknown, as
they are taken as degrees of freedom in the OCP. This approach
directly addresses the problem of deciding at what time on the
horizon to pass through the gate. The sum of the stage times Tj
constitutes the minimization objective. The terminal condition
is selected as the hover state at a given point behind the gate,
possibly the entrance to a next gate. The planning problem
through one gate is readily extended to a planning problem



through multiple subsequent gates by including more stages
and corresponding stitching constraints.

To pass from the continuous-time dynamics to a finite-
horizon OCP, we discretize the dynamics using a multiple
shooting scheme with fourth order Runge Kutta integra-
tion. Starting from the continuous-time dynamics ẋ(t) =
f(x(t),u(t)), this yields the discrete-time dynamics xk+1 =
F (xk,uk). Control inputs are parametrized as first-order
hold equivalents, such that their derivatives can be bounded
to account for finite tracking speed of low-level reference
tracking control loops.

The complete OCP for a race track with a series of rectan-
gular gates is formally expressed as

minimize
xj,k,uj,k,Tj

T =

M∑
j=1

Tj

subject to: x1,0 = x0

x1,k+1 = F (x1,k,u1,k) for k=0,1,...,N1−1

u̇min ≤ u̇1,k ≤ u̇max for k=0,1,...,N1−1

w>1 ph,1,k ≤ 0 for k=0,1,...,N1

x1,N1
= x2,0

...
xj,k+1 = F (xj,k,uj,k) for k=0,1,...,Nj−1

u̇min ≤ u̇j,k ≤ u̇max for k=0,1,...,Nj−1

w>j ph,j,k ≤ 0 for k=0,1,...,Nj

xj,Nj
= xj+1,0

...
xM,k+1 = F (xM,k,uM,k) for k=0,1,...,NM−1

u̇min ≤ u̇M,k ≤ u̇max for k=0,1,...,NM−1

w>Mph,M,k ≤ 0 for k=0,1,...,NM

xM,NM
= xf ,

(5)
where Nj is the horizon length for the j’th stage and M is

the number of stages, three for a problem with one gate. The
estimated initial state and the desired final state are denoted
by x0 and xf respectively. For circular gates, the constraints
in the fly-through stage of the form w>j ph ≤ 0 are replaced
by a constraint as in (4).

The Rockit toolbox for the rapid prototyping of optimal
control problems in Python presented in [18] allows for the
formulation of free end-time and multi-stage OCPs, making it
a useful tool for the OCP presented in this paper. The OCP
is solved in Rockit with Python3.6 using IPOPT with HSL’s
ma57 linear solver with default initialization for the decision
variables [19], [20].

III. RESULTS AND DISCUSSION

To show that the suggested approach is successful in solving
the motion planning problem and retrieving time-optimal tra-
jectories, this section presents the solution to three challenging
problem configurations. The computation times of these cases

are discussed, as well as a consideration on the limitations on
possible gate configurations.

Table I reports the average computation times over 10 runs
for each of three problem configurations1 2. In all cases,
the margin is m = 0.4 m, the maximal thrust acceleration
at,max = 5g, and the maximal angular rate is φ̇max = θ̇max =
6 rad/s. The yaw angle is kept constant. The corresponding
optimal trajectories in 3D are displayed in Fig. 2, 3 and 4
for a configuration with one rectangular gate, a configuration
with two rectangular gates of varying dimensions (a short
stretched gate and a narrow long tunnel) and a configuration
with a rectangular and a circular gate respectively. Fig. 2 also
highlights the three stages in red, yellow and blue for the one
rectangular gate problem.

The reported computation times are promising for online use
of this motion planning approach, given that all simulations
are performed in Python and there is quite some efficiency to
be gained through techniques for speeding up computations.
Examples of such techniques are: the use of SQP solvers
dedicated to optimal control problems, rather than IPOPT,
in an RTI scheme; introducing sensible initial guesses that
will benefit the efficiency of the SQP solver, which were left
out in this work because of the very limited added value
for the current toolchain; formulating the problem in C-code,
rather than the significantly slower Python using the CasADi
virtual machine. The automatic C-code generation capabilities
of CasADi, upon which Rockit is built, allow for a direct
translation from the Python code used for this paper [21].

However, even with these techniques the potential computa-
tion efficiency gain should not be estimated overly optimistic,
especially for implementation on an onboard computational
unit. Therefore, for the practical application of the presented
motion planning technique an additional lower level tracking
control loop executed at a higher rate is expected to increase
performance, as explained in [10]. This control loop is capable
of rejecting disturbances at a frequency higher than that at
which the optimization can be computed, and can compen-
sate for modeling errors in the open loop prediction of the
optimized trajectory. This approach reduces the need for large
improvements in computation times, as recomputing the OCP
in a receding horizon fashion must then only cope with low
frequency disturbances.

Compared to the separating hyperplanes approach as in [12],
the proposed multi-stage gate passing approach scales much
better towards multiple gates. That method needed 200 ms on
average for a problem that only took into account two sides
of a gate, and moreover scaled badly when including more
obstacles, as shown in [14]. Moreover, the suggested approach
finds solutions even for challenging problem configurations
with narrow passages, whereas the separating hyperplanes ap-
proach struggles to find a feasible solution for even moderately
difficult configurations.

1All computations are performed on a system with an AMD®Ryzen 7 pro
3700u processor with eight cores at 2.3 GHz and 29.4 GiB of RAM.

2All numerical quantities are expressed in terms of SI-units: distances and
positions in m, velocities in m/s, accelerations in m/s2, angles in rad.



TABLE I: OCP configurations and corresponding average computation times.

Ocp configuration Gate geometry & pose Initital & terminal
conditions

Horizon lengths Avg. computation
time (10 runs)

One rectangular
gate

Γr = [1, 1, 0.5]>

t = [5, 5, 8]>

Φg = [0.2,−0.1, 0.5]>

x0 = [1, 1, 9, 0, 0, 0]>

xf = [9, 9, 1, 0, 0, 0]>

u0 = uf = [0, 0, 0, g]>

N1 = 25, N2 = 10,
N3 = 25

246.39 ms

Two rectangular
gates

Γr,1 = [3, 0.9, 0.2]>

Γr,2 = [0.8, 1, 2]>

t1 = [3, 6, 8]>

t2 = [7, 5, 3]>

Φg1 = [0.1, 0.2, 0.5]>

Φg2 = [0,−0.1, 0.6]>

x0 = [1, 1, 9, 0, 0, 0]>

xf = [9, 2, 1, 0, 0, 0]>

u0 = uf = [0, 0, 0, g]>

N1 = 20, N2 = 10,
N3 = 20, N4 = 10,
N5 = 20

345.05 ms

One rectangular,
one circular gate

Γr,1 = [1, 0.7, 0.7]>

Γc,2 = [0.6, 0.5]>

t1 = [3, 2, 8]>,
t2 = [6, 5, 5]>,
Φg1 = [0.1, 0.2, 0.2]>,
Φg2 = [0, 0.2, 1.5]>

x0 = [1, 1, 9, 0, 0, 0]>,
xf = [9, 9, 5, 0, 0, 0]>,
u0 = uf = [0, 0, 0, g]>

N1 = 20, N2 = 10,
N3 = 20, N4 = 10,
N5 = 20

384.17 ms

Fig. 2: Solution of the one rectangular gate problem, with
the approach stage, fly-through stage and fly-away stage
highlighted in red, yellow and blue respectively.

Fig. 3: Solution of the two rectangular gates problem with
varying gate dimensions.

Fig. 4: Solution of the two gate problem with varying gate
geometry.

Limitations to the Formulation

So far this discussion covered configurations that implicitly
comply with the following limitations on the admissible prob-
lem configurations. Firstly, the initial drone state is such that
its position is at the front side of the next gate. To clarify this,
consider the situation depicted on the left in Fig. 5, where this
assumption is violated. In that case, no feasible solution to the
OCP exists. Secondly, it is assumed that the initial velocity
is limited such that there exists a nonempty set of feasible
control actions that satisfy the given constraints. Thirdly, it is
assumed that the track layout is such that there are no gates
or obstacles in between two successive gates, such that only
those two gates must be taken into consideration for collision
avoidance. Lastly, two subsequent gates are assumed to be
separated by a distance no more than the order of magnitude
of 10 m.

A sensible solution to overcome the first assumption is to



add an extra stage, or for more complex cases multiple extra
stages, before the approach stage that leads to the front of the
gate, as illustrated with the initial yellow part on the left in
Fig. 5. During this stage, one of the two constraints defined by
w0u or w0l as shown in the figure must be imposed, in this
case w0u. The selection of which one of the two boils down
to checking at which side of the gate the initial drone position
is situated, by looking at the scalar product between the
displacement vector ∆p between the drone position and the
gate center, and the normal vector corresponding to either w0u

or w0l. Mathematically this means selecting w corresponding
to the n that satisfies

n = argmax
n0i

n>0i∆p. (6)

The second assumption is satisfied automatically if the
initial condition results from a previous planning step that
accounts for recursive feasibility. For instance, if the previous
plan ends in the hover state in front of the gate, there is
always a nonempty set of feasible control actions for the
next planning update. Alternatively, if the previous planning
step accounted for the passing through multiple gates ahead,
then feasible control actions through the next gate are already
given. To avoid actually braking and coming to standstill at
the planned hover location at the end of the trajectory, which
would drastically deter the performance in a racing context,
the trajectory must be recomputed with a new, shifted terminal
condition long enough in advance before reaching this hover
location. The longer the horizon over which the motion is
planned, the lower the effect on the first part of the trajectory
the terminal constraint will have. This motivates including
multiple gates rather than only the first following gate, as
for more included gates a closer approximation of the time-
optimal trajectory over the full racetrack is achieved in each
planning step.

The third assumption ensures that the configuration on the
right in Fig. 5 can be handled by including a stage similarly
as for the configuration on the left in the same figure. In this
case two constraints w>u ph ≤ 0 and w>l ph ≤ 0 are selected
similarly as before, here as a function of the displacement
vector between the two gate centers ∆pg:

nu = argmin
n1i

n>1i∆pg

nl = argmax
n2i

n>2i∆pg.
(7)

Note that more elaborate checks and solutions are necessary
for more specific or complex cases, such as two gates placed
right next to each other without enough space between them
to pass through. In that case, the decision of passing the gate
at one side or the other would first have to be tackled, for
instance by a higher level planner.

Regarding the last assumption, more spatially extended
tracks require an increased planning horizon to keep the time
spacing and geometric spacing of control grid points in the
same range, at the cost of increased computational load. Or,
alternatively, the motion planning problem can be solved for

Fig. 5: Special cases of configurations.

flying through the gates as presented in this paper, and in
between the gates resort to planning using motion primitives.
This approach is close to optimality as the dynamics will reach
a steady state when traversing between two distant gates.

IV. CONCLUSION

This paper presented an optimal control approach to the
drone racing problem through gates in a known order. The
proposed formulation tackles the problem of simultaneously
generating control inputs and state trajectories with an approx-
imate dynamic model. No a priori knowledge of the timing
when to pass through the gates is required. The computation
times are promising to enable onboard replanning.

Future work involves speeding up the computations by using
for instance SQP solvers, rather than IPOPT, in an RTI scheme.
Together with adding an approach to recede the planning
horizon, this would enable online replanning in an MPC
fashion. SQP solvers strongly benefit from initial guesses for
the optimization variables, which were left out in this paper.
Moreover, all computations in this paper were performed using
the Python coding language and the CasADi virtual machine.
Automatic C-code generation which is available in CasADi
(upon which Rockit is built) is also expected to drastically
decrease function evaluation times, which will contribute to a
decrease in total computation time. The practical implementa-
tion on a physical experimental platform will demonstrate the
viability of the presented approach.

REFERENCES

[1] IROS 2018. Iros 2018 competitions. Accessed on: Aug. 26, 2021.
[Online]. Available: https://www.iros2018.org/competitions

[2] H. J. Escalante and R. Hadsell, “NeurIPS 2019 competition and
demonstration track: Revised selected papers,” in Proceedings of the
NeurIPS 2019 Competition and Demonstration Track, ser. Proceedings
of Machine Learning Research, H. J. Escalante and R. Hadsell, Eds.,
vol. 123. PMLR, 08–14 Dec 2020, pp. 1–12.

[3] Lockheed Martin Corporation. Alphapilot AI drone innovation chal-
lenge. Accessed on: Aug. 26, 2021. [Online]. Available: https://www.
lockheedmartin.com/en-us/news/events/ai-innovation-challenge.html



[4] P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski, M. Gehrig,
M. Muglikar, and D. Scaramuzza. (2020) Alphapilot: Autonomous
drone racing. [Online]. Available: https://arxiv.org/abs/2005.12813

[5] E. Kaufmann, M. Gehrig, P. Foehn, R. Ranftl, A. Dosovitskiy, V. Koltun,
and D. Scaramuzza, “Beauty and the beast: Optimal methods meet
learning for drone racing,” 2019 International Conference on Robotics
and Automation (ICRA), pp. 690–696, 2019.

[6] F. Ölsner and S. Milz, “Catch me, if you can! A mediated perception
approach towards fully autonomous drone racing,” in Proceedings of the
NeurIPS 2019 Competition and Demonstration Track, ser. Proceedings
of Machine Learning Research, H. J. Escalante and R. Hadsell, Eds.,
vol. 123. PMLR, 08–14 Dec 2020, pp. 90–99.

[7] M. Diehl, H. Bock, H. Diedam, and P.-B. Wieber, Fast Direct Multiple
Shooting Algorithms for Optimal Robot Control. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 65–93.

[8] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in 2011 IEEE International Conference on
Robotics and Automation, 2011, pp. 2520–2525.

[9] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation and
control for precise aggressive maneuvers with quadrotors,” The Interna-
tional Journal of Robotics Research, vol. 31, no. 5, pp. 664–674, 2012.

[10] M. Neunert, C. de Crousaz, F. Furrer, M. Kamel, F. Farshidian,
R. Siegwart, and J. Buchli, “Fast nonlinear model predictive control for
unified trajectory optimization and tracking,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA), 2016, pp. 1398–1404.

[11] O. Andersson, O. Ljungqvist, M. Tiger, D. Axehill, and F. Heintz,
“Receding-horizon lattice-based motion planning with dynamic obstacle
avoidance,” in 2018 IEEE Conference on Decision and Control (CDC),
2018, pp. 4467–4474.

[12] F. Giulietti, G. Pipeleers, G. Rossetti, and R. Van Parys, “Optimal
autonomous quadrotor navigation in an obstructed space,” in 2017
Workshop on Research, Education and Development of Unmanned
Aerial Systems (RED-UAS), 2017, pp. 19–24.

[13] T. Mercy, R. Van Parys, and G. Pipeleers, “Spline-based motion planning
for autonomous guided vehicles in a dynamic environment,” IEEE
Transactions on Control Systems Technology, vol. 26, no. 6, pp. 2182–
2189, 2018.

[14] M. Bos, R. Beck, J. Swevers, and G. Pipeleers, “Interactive demo on the
indoor localization, control and navigation of drones,” Master’s thesis,
KU Leuven, Leuven, Belgium, 2019.

[15] Y. Song, M. Steinweg, E. Kaufmann, and D. Scaramuzza, “Au-
tonomous drone racing with deep reinforcement learning,” CoRR, vol.
abs/2103.08624, 2021.

[16] X. Zhang, X. Li, K. Wang, and Y. Lu, “A survey of modelling and
identification of quadrotor robot,” Abstract and Applied Analysis, vol.
2014, p. 320526, Oct 2014.

[17] T. Mercy, E. Hostens, and G. Pipeleers, “Online motion planning for
autonomous vehicles in vast environments,” 2018 IEEE 15TH Interna-
tional workshop on advanced motion control (AMC), pp. 114–119, 2018.

[18] J. Gillis, B. Vandewal, G. Pipeleers, and J. Swevers, “Effortless modeling
of optimal control problems with rockit,” in 39th Benelux Meeting on
Systems and Control, Elspeet, The Netherlands, 2020.

[19] A. Wächter and L. T. Biegler, “On the implementation of a primal-
dual interior point filter line search algorithm for large-scale nonlinear
programming,” Mathematical Programming, 106(1):2557, 2006, preprint
at http://www.optimization-online.org/DB HTML/2004/03/836.html.

[20] HSL. A collection of fortran codes for large scale scientific
computation. Accessed on: Aug. 31, 2021. [Online]. Available:
https://www.hsl.rl.ac.uk/

[21] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and opti-
mal control,” Mathematical Programming Computation, vol. 11, no. 1,
pp. 1–36, 2019.


