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A B S T R A C T

Buildings need advanced control for the efficient and climate-neutral use of their energy systems. Model
predictive control (MPC) and reinforcement learning (RL) arise as two powerful control techniques that have
been extensively investigated in the literature for their application to building energy management. These
methods show complementary qualities in terms of constraint satisfaction, computational demand, adaptability,
and intelligibility, but usually a choice is made between both approaches. This paper compares both control
approaches and proposes a novel algorithm called reinforced predictive control (RL-MPC) that merges their
relative merits. First, the complementarity between RL and MPC is emphasized on a conceptual level by
commenting on the main aspects of each method. Second, the RL-MPC algorithm is described that effectively
combines features from each approach, namely state estimation, dynamic optimization, and learning. Finally,
MPC, RL, and RL-MPC are implemented and evaluated in BOPTEST, a standardized simulation framework for
the assessment of advanced control algorithms in buildings. The results indicate that pure RL cannot provide
constraint satisfaction when using a control formulation equivalent to MPC and the same controller model
for learning. The new RL-MPC algorithm can meet constraints and provide similar performance to MPC while
enabling continuous learning and the possibility to deal with uncertain environments.
1. Introduction

To achieve a net-zero carbon building stock by 2050, the Inter-
national Energy Agency estimates that direct building CO2 emissions
need to decrease by 50% and indirect building sector emissions need
to decline 60% by 2030 [1]. Optimal control in buildings has gained
popularity in recent years because of the substantial energy savings
potential in the building sector. Building energy automation systems
that use optimal predictive controllers can improve indoor comfort
while lowering energy use locally and enabling demand response strate-
gies to offer flexibility from the buildings to the electric grid [2–4].
Model predictive control (MPC) and reinforcement learning (RL) are
two approaches for optimal control that pursue the same goal but
follow different strategies. Both approaches show promising potential
for their implementation in buildings but come along with relevant
challenges.

The MPC approach is mainly studied within the field of control
theory, and it is well known for its robustness and sample efficiency,
but falls short in terms of adaptability. It usually requires a signifi-
cant engineering effort to implement and configure a controller model
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suitable for optimization. Particularly, large and complex systems, like
buildings, can easily lead to models comprising several variables and
equations that give rise to non-convex optimization problems that are
challenging to solve. Even if a solution to the optimization problem
can be found, the controller model suffers from unavoidable model
mismatch, and the system is usually exposed to forecast uncertainty.
The latter can be addressed using stochastic MPC like robust or chance-
constrained MPC, but these approaches require the description of the
process uncertainties, which is usually hard to provide [5,6].

RL is mainly studied within the machine learning community. Con-
trarily to MPC, this advanced control approach is well known for its
adaptability, but it has difficulties dealing with constraints, it needs
extensive training, and it lacks intelligibility. The curse of dimensional-
ity has always threatened the usability of RL. Nevertheless, the recent
developments in deep learning have opened up the possibilities of these
algorithms to applications as complex as building automation systems.
Still, constraint satisfaction remains a relevant challenge in RL and is
a research topic intensively investigated [7,8]. In the building sector,
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RL has been mainly used at a supervisory level with a few set-points as
controllable actions and with low dimensional observation spaces.

Usually, authors use either one approach or another based on
their expertise and justify their choice by highlighting the strengths of
their approach and stressing the weaknesses of the other. Both control
families have advantages and disadvantages, and the complementarity
between them is clear. On the one hand, MPC struggles with uncer-
tainties, system complexity and long term prediction horizons while
deep RL can naturally deal with the uncertainty of complex systems and
tackle infinite prediction horizons. On the other hand, RL can difficultly
satisfy constraints and lacks interpretability, while MPC can provide
safety guarantees and intelligibility.

Although there is a clear potential for synergy between both fam-
ilies of methods, minimal efforts have been made to merge them and
combine their relative merits. This research gap is not only seen in the
application of building energy management. The control and machine
learning communities keep evolving independently with a radically
different notation natively adopted to formulate the same problem.
Despite the parallel developments, some authors have pointed out that
potential benefits may arise from their collaboration [9–12]. Combining
these methodologies is a powerful way to integrate robust methods
from the control theory with machine learning approaches that can
exploit further information from real-time data [12,13].

The motivation for the work presented in this paper revolves around
the question how RL and MPC can work together for the application
of building energy management. While there appears to be universal
agreement that benefits may arise from their combination, little has
been done to develop methods that involve both algorithms working
together. Moreover, the works that have investigated how these con-
trollers can collaborate either have the algorithms working at different
control levels e.g. in [14], or tested their collaborative methods with
a low-dimensional state–action space [15]. There is no prior work
that compares and merges MPC and RL for the same optimal control
problem formulation for building energy management.

The aim of this paper is twofold: First, it is of interest to compare
RL and MPC for their application to building energy management.
This comparison begins on a conceptual level to underline the main
similitudes and differences between the optimal control approaches.
Then, the algorithms are tested when implemented separately. In the
comparison, the MPC uses a gray-box model and the RL agent uses
a value-based algorithm implemented by an equivalent control for-
mulation and for the same building test case taken from the Build-
ing Optimization Testing (BOPTEST) framework [16]. The BOPTEST
framework is a new environment meant to evaluate the performance
of advanced controllers for building energy management systems in
simulation. BOPTEST provides a menu of detailed building emula-
tors and standardizes the way controllers are evaluated. Moreover, a
BOPTEST-Gym wrapper [17] has been developed that facilitates the
implementation of RL algorithms. The second aim of this paper is to
propose a novel method named Reinforced Model Predictive Control
(RL-MPC) that synergistically combines RL and MPC. The conceptual
and practical comparison of MPC and RL motivates the development
and formulation of this new RL-MPC algorithm. Differently to similar
approaches proposed in the literature like [15], our method combines
the MPC objective function with the RL agent value function while us-
ing a nonlinear controller model encoded from domain knowledge. This
practice ensures the interoperability between both methods and enables
truncation of the MPC optimization problem, which can become very
complex even for fairly simple buildings. Finally, this new algorithm is
explained and tested in the same BOPTEST building case.

Therefore, the main novelty of this paper is the introduction of
RL-MPC, a control algorithm that combines methods from the control
theory and the machine learning communities. This algorithm is tested
in BOPTEST, a new standardized framework for advanced control of
building energy management systems. Furthermore, the proposed RL-
2

MPC algorithm can be used in different applications and domains a
e.g. complex industrial processes or energy markets. This study also
brings control theory and machine learning closer by comparing and
disentangling the principal differences between MPC and RL.

The main limitations of this paper relate to the lack of theoretical
guarantees of RL-MPC, which has only been tested empirically. Ad-
ditionally, the tests are performed in a deterministic setting since the
BOPTEST framework does not yet provide the functionality to emulate
uncertainties. Although RL-MPC is expected to excel in stochastic set-
tings, this study shows that it can achieve similar performance levels
to MPC in the deterministic case.

This paper uses the following notation: scalar-valued variables,
calar-valued functions, and scalar-valued sets are denoted by regular
talic symbols as in 𝑥. Vector-valued variables, vector-valued functions,
nd vector-valued sets are denoted by bold italic symbols as in 𝑥𝑥𝑥.
eterministic variables in the abstract domain are denoted by lower-
ase letters as in 𝑟, whereas stochastic variables in the abstract domain
re denoted by capital letters as in 𝑅. The latter does not apply to
he physical domain where a variable like the temperature or electric
ower may be denoted by capital letters e.g. by 𝑇 , or 𝑃 .

The outline of the paper is as follows: Section 2 summarizes related
ork; Section 3 performs a conceptual comparison between MPC and
L; Section 4 describes the RL-MPC algorithm. Section 5 describes the

mplementation details of MPC, RL, and RL-MPC for their assessment
n simulation. Section 6 presents the simulation results obtained from
he implementation of each control algorithm in the same simulation
est case building. Finally, Section 8 draws the main conclusions.

. Related work

Extensive scientific literature exists that explores the implementa-
ion of either MPC or RL in buildings, e.g. [18] or [19]. The increased
ttention to MPC for this application during the last years is remark-
ble. An elaborate review on the application of MPC in buildings is
ffered by [20]. This advanced control approach has been proven not
nly at the building supervisory level as a reference governor for tem-
erature set-point control [21], but also at the local loop level, where
PC directly decides on the actuator signals that drive the heating,

entilation, and air conditioning (HVAC) systems in buildings [22].
It is natural that MPC has dominated the control of individual build-

ngs because buildings are usually large continuous systems with well-
nown dynamics. Hence, analytical models can be derived from domain
nowledge to optimize the system in a receding horizon approach.
ultiple libraries and tools exist that facilitate the modeling task,

.g. [23–27]. These models can also help practitioners in making de-
isions for building energy commissioning. However, the complexity of
he optimization problems subject to these models (representing system
onstraints) remains a major bottleneck for the widespread adoption
f MPC in practice. That is why the configuration of control-oriented
odels is a central research topic in the field [28,29].

On the other hand, the rapid emergence and sophistication of gen-
ral function approximation techniques like neural networks or random
orests have leveraged the development of powerful RL algorithms that
an be implemented for various applications [9,30]. The latter has
ained the attention of the building sector, and recent studies arise as
ell where this optimal control technique is implemented in buildings,
sually to harness the flexibility of buildings in a demand response
etting [4]. A review of previous implementations of RL for demand
esponse can be found in [31]. Despite the substantial progress in RL,
his control approach is still generally implemented at a supervisory
evel, which allows only indirect control of the building HVAC systems.
xamples of this indirect control can be found in [32] or in [33].
ven when direct control is implemented, the RL agent usually controls
ow-dimensional action spaces like on/off operation [34,35].

Many simulation case studies have claimed that model-free RL

gents can learn policies for building climate control from only a few
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days of operation, but the agents are usually tested using reduced-
order models [4,36–38]. This practice directly conflicts the findings of
Picard et al. [39], who emphasized the relevance of using a detailed
and reliable plant model when evaluating the building controllers in
order not to overestimate their performance. Real implementations of
RL for building HVAC control like [15,40,41] never use model-free
RL techniques directly and rely on simulation-based off-line learn-
ing or model-based RL. To the best of the authors’ knowledge, only
Peirelinck et al. [34] has evaluated a model-free RL agent in a simula-
tion environment using a detailed emulator building model. However,
they used indirect control and a low-dimensional action space. By
using indirect control the agent does not need to deal with con-
straint satisfaction. Contrarily, it only suggests actions that can be
overwritten by the backup controller of the emulator, which is ulti-
mately responsible for satisfying constraints. Note that satisfying con-
straints is of utmost importance for every controlled system because it
avoids unwanted behavior, performance degradation, and the violation
safe-critical conditions.

This paper uses a detailed and high-fidelity building model from
the BOPTEST framework to evaluate the controllers. Similar setups
to BOPTEST are the EnerGym [42] environment or the CityLearn
challenge [43], although these use reduced-order building models and
focus on algorithms coordinating demand response strategies in dis-
tricts rather than control strategies for the energy management of
individual buildings. The CityLearn setup was extended in [32] with
a Q-learning agent based on TensorFlow [44] to compare a rule-based
controller with a single- and a multi-agent RL controller. Despite using
function approximations, the state and action spaces were limited to
only four states and one action. Moreover, the indoor temperature
was not included in the state space, making it impossible to exploit
the thermal flexibility of the building’s indoor air. We use a high-
order model from the BOPTEST framework to test the advanced control
algorithms, which contrasts with previous related studies that used first
or second order emulator models, e.g. in [4,36–38,42].

Most of the studies mentioned above consider either MPC or RL
independently, and only a few of them compare both methods for the
same building test cases. One example is described in [36], where
a model-based and a model-free RL algorithm was implemented to
control building space heating. They also compared this algorithm
in simulations against an idealized MPC and a rule-based controller.
However, the MPC served as an upper performance bound since it
assumed perfect knowledge of the system dynamics. Mbuwir et al. [4]
also compared two RL techniques to MPC, where again the MPC was
assuming full knowledge of the system parameters. Cost savings of a
simulation-based RL agent were shown in [41] during an experimental
study. This approach was then compared to other approaches using
a calibrated model for the evaluation, and it was indicated that a
model-based optimization approach could significantly outperform the
RL agent. The agent was shown to be highly affected by the training
model accuracy used in the off-line learning phase. Ernst et al. [9]
directly compared both control paradigms, showing that RL may be
competitive with MPC. However, they implemented such comparison
in a simple case without any disturbances.

Even less common are the studies that investigate the possibilities of
merging MPC and RL approaches to exploit the merits of each method.
Learning-based MPC is a research field that automates control design
and tuning from monitoring data to enhance performance. Although
the field of learning-based and data-driven MPC approaches is vast,
only a few studies investigate the possibilities of merging MPC and RL
to exploit the strengths of each method. Hewing et al. [45] present a
general review about learning-based MPC and classifies these methods
into three main categories: learning the system dynamics, learning
the controller design, and MPC for safe learning. An overview of
learning-based MPC with a major focus on RL can be found in [11].

For the application of collaborative methods in buildings, we high-
3

light the work of Ojand et al. [14] who present a two-level MPC
integrating Q-learning for the control of a residential community us-
ing an energy management system aggregator. The MPC computes
optimal planning for day-ahead operation at the aggregator level and
Q-learning is used for the real-time control of each thermostatically
controlled load in the community. Although MPC and RL collaborate
in this case study, they work at two different levels, with each agent
being independent of the other. It is also worth noting the work of Liu
et al. [46]. They laid the foundations of a theoretical framework for
implementing RL in an actual building and classified the solution of
sequential decision making problems into four main categories: pure
planning (MPC), classical RL, simulation-based RL and model-based RL.
They present simulation- and model-based RL as hybrid approaches
between both optimal control families. While it is true that model- and
simulation-based approaches combine learning and planning, they do
not combine the machinery of MPC and RL. On the contrary, these
approaches learn a model that serves an agent to update its policy from
simulated experience.

The recently developed Differentiable MPC [47] provides a method-
ology to combine planning and control. This algorithm solves the linear
quadratic regulator problem formulated as a classical MPC problem in
a forward pass. In a backward pass, the parameters of the model are
estimated. Differentiable MPC has been adopted by Chen et al. [15]
to develop a new algorithm named Gnu-RL that allows end-to-end
planning and control of HVAC systems. A quadratic cost function with
linear constraints is formulated as in MPC, and the parameters of the
system dynamics are estimated from historical data. Remarkably, the
objective function parameters are also estimated to obtain the advan-
tage function of their gradient-based RL algorithm, which constitutes
their core novelty and bridges the gap between MPC and RL. On a
similar note, Drgoňa et al. [48] propose to use differentiable predictive
control combined with neural networks for optimal control without
requiring the supervision of an expert controller. Their approach is
successfully tested in a MIMO building system.

Although Differentiable MPC and Gnu-RL suppose a significant step
forward in merging both optimal control families, the implementation
of Chen et al. only used a low-dimensional state–action space and a
prediction horizon of only 1.5 h. Moreover, they formulate an objective
function that balances thermal discomfort and energy use, but do not
encode any building system dynamics in their optimization problem.
Contrarily, the system dynamics are introduced as state-space matrices
randomly initialized with parameters that lack any physical meaning.

More generally, RL has been proposed to collaborate with MPC for
applications other than building energy management. In [49–51], and
in [52] it is proposed to use the MPC as a function approximation
for RL, in the same spirit as Differentiable MPC. Formal theory for
this approach is presented in [53]. Kamthe et al. [54] use dynamic
programming combined with Pontryagin’s maximum principle to solve
the constrained open-loop optimization of an MPC. In the latter scheme,
Gaussian process models are learned instead of a parametrized policy
or value function.

Negenborn et al. [10] propose to use an explicit representation of
the system dynamics to optimize in the short term (e.g., for one step
ahead) and to lean on a value function to account for the long-term
value of an action. The idea is to use value functions to help the MPC
in dealing with suboptimality, finite horizons, and computational re-
quirements. In this approach, the MPC provides robustness and decision
making over the short term, and RL provides adaptation and decision
making over the long term.

The proposal of Negenborn et al. is probably the prior work that
resembles the RL-MPC algorithm of this paper the most, although they
never implemented their method in practice. On the contrary, Zhang
et al. [55] implemented a similar concept in the Q-learning-based
model predictive control using the Lyapunov technique (Q-LMPC) for
continuous nonlinear systems with complicated dynamics. They ana-
lyzed the convergence of such a scheme and showed that the control

policy approximated by the algorithm ensures the stability of the
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closed-loop system. The algorithm was successfully tested in simula-
tions for a well-mixed, non-isothermal continuous stirred tank reactor
with two states and two inputs. The simulation results showed that
when using an inaccurate system model to pretrain Q-LMPC can im-
prove the performance of the closed-loop system and that a well-trained
Q-LMPC can achieve performances similar to those of LMPC.

This paper elaborates on the approach proposed by Negenborn
et al. [10], which is also similar to Q-LMPC. The approach is extended
by encoding domain knowledge with a pretrained physics-based con-
troller model and using a state observer to estimate the initial states of
the model every control step. Additionally, the algorithm is empirically
tested in a standardized framework for the assessment of building
controls and compared against classical MPC and RL approaches.

3. Disentangling the differences between MPC and RL

Optimal control solves a sequential decision making problem to
determine the actions that optimize a performance objective. The pre-
vious section has underlined the need of comparing and the potential
of merging the two main approaches for optimal control applied to
building energy management: MPC and RL. Both methods share com-
mon components, while other components are more controller-specific.
These differences in formulation make it difficult to compare and merge
both approaches, and motivates an analysis at a conceptual level. Fig. 1
classifies the solution methods for optimal control. The arrows indicate
the dependencies of each element on a lower abstraction level, such
that a single algorithm can be characterized by tracing a downward
path. Ramifications may arise, especially for Markov Decision Processes
(MDP), where the solution methods for learning an optimal policy
are characterized as the combination of several features, rather than
exclusive attributes leading to a single thread. It is important to note
that the taxonomy presented in Fig. 1 is not exhaustive because of
the wide variety of existing approaches. However, it helps in locating
the main methods for optimal control and sets a common ground for
a complete classification. The following subsections report the main
aspects of these control methods.

3.1. Approach

Starting from the highest level of abstraction at the top of Fig. 1,
there exist mainly two ways of approaching an optimal control prob-
lem: using the receding horizon principle inherent to MPC, or formal-
izing the problem as a MDP.

In MPC, at every time step 𝑘 a vector of measurements 𝑚𝑚𝑚𝑘 is taken
from the plant, and an observer estimates the state vector �̂�𝑥𝑥𝑘 that fully
characterizes the controller model at current time. Then, the future
state 𝑥𝑥𝑥 and input 𝑢𝑢𝑢 trajectories are optimized for a finite prediction
horizon 𝛥𝑡ℎ according to the explicit representation of an objective
function 𝐽 and a controller model 𝐹𝐹𝐹 . The set of constraints 𝐻𝐻𝐻 are
also explicitly introduced in the optimization problem. The objective
function, model and constraints may also depend on the model outputs
𝑦, algebraic variables 𝑧𝑧𝑧, disturbances 𝑑𝑑𝑑, and time-invariant parameters
. The forecast of the disturbances along the prediction horizon 𝑑𝑑𝑑(𝑡𝑘, 𝑡𝑘+
𝑡ℎ) are provided as external data to the optimization. The objective
unction is usually defined as the integral of a function 𝑙 of the model
ariables along the prediction horizon, as indicated by Eq. (1). Only
he first control input from the optimized trajectory is implemented.
he complete MPC process is shown in Fig. 2(a).

𝑘 = ∫

𝑡𝑘+𝛥𝑡ℎ

𝑡=𝑡𝑘
𝑙(�̇�𝑥𝑥(𝑡), 𝑥𝑥𝑥(𝑡), 𝑢𝑢𝑢(𝑡), 𝑦𝑦𝑦(𝑡), 𝑧𝑧𝑧(𝑡), 𝑑𝑑𝑑(𝑡), 𝑝𝑝𝑝)𝑑𝑡 (1)

In the application of MPC to building energy management, the state
vector 𝑥𝑥𝑥 typically represents building temperatures like the zone oper-
ative, floor, or wall temperatures, and the model outputs 𝑦𝑦𝑦 are usually a
subset of these, e.g. the zone operative temperature only. The vector of

𝑧
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algebraic variables 𝑧𝑧 represents the variables dependent on the states,
e.g. the heat flows through the building envelope, and the vector of
disturbances 𝑑𝑑𝑑 comprises the main uncontrollable variables affecting
the building thermal behavior. Typically, the ambient temperature,
solar irradiation, and the occupancy are included in 𝑑𝑑𝑑. The set of time
invariant parameters 𝑝𝑝𝑝 may or may not represent physical properties of
the building depending on whether the controller model uses or does
not use physical insights, respectively.

In an MDP, the decision making model is defined by the state-space
, the action space , the rewards  ⊂ R, and the transition function
of the environment 𝑓𝑓𝑓 . Notice that 𝑓𝑓𝑓 represents the ground truth of the
system dynamics, contrarily to the controller model 𝐹𝐹𝐹 used in MPC,
which is a simplified representation of the system. In RL, the agent
interacts with the environment during a sequence of discrete-time steps.
Every step 𝑘, the RL agent receives an observation of the state-space
𝑆𝑘 ∈  and a reward 𝑅𝑘 ∈  that reflects the goodness of the action
taken. In turn, the agent computes its control logic and sends a new
action 𝐴𝐴𝐴𝑘 ∈  to the environment. The environment is defined by
 ∶ × → ×, and the objective of RL is to infer an optimal control
policy 𝜋 ∶  →  that maximizes the expected cumulative return 𝐺
when the agent acts according to it. The cumulative return is defined
as some function of the rewards sequence, and a typical definition is to
discount the rewards with a factor 𝛾 ∈ [0, 1] as shown in Eq. (2). The
process is summarized in Fig. 2(b).

𝐺𝑘 = 𝑅𝑘+1 + 𝛾𝑅𝑘+2 + 𝛾2𝑅𝑘+3 +⋯ =
∞
∑

𝑖=0
𝛾 𝑖𝑅𝑘+𝑖+1 (2)

3.2. Terminology

By analyzing the control processes from Figs. 2(a) and 2(b) it is pos-
sible to identify several expressions with a total or partial equivalence
between both approaches. Controller and agent, plant and environ-
ment, control input 𝑢𝑢𝑢 and action 𝐴𝐴𝐴, can all be considered as equivalent
elements. Notice, however, that slight differences arise from these
elements. For instance, the plant is limited to the representation of
the system process, while the environment is extended to provide the
states and rewards as perceived by the agent. Others, like the objective
and return, or the state’s definition, can be seen as analogous elements
only. The control community usually minimizes an objective function
𝐽 whereas the machine learning community maximizes a cumulative
return 𝐺. The relation between both can be formalized through the
immediate reward. In the deterministic setting, the scalar immediate
reward 𝑟𝑘+1 can be related to the objective function as follows:

𝑟𝑘+1 = −(𝐽𝑘+1 − 𝐽𝑘) (3)

Special attention should be paid to the definition of the state. The
control community tends to use the state 𝑥𝑥𝑥 to designate only inter-
nal properties of the system. On the contrary, the machine learning
community tends to use the state 𝑆𝑆𝑆 to refer to the environment’s con-
dition, which may include internal and external system variables like
the forecast of the disturbances, the previous measurements, or some
notion of time. Therefore, the state in machine learning may acquire
a different meaning than in control theory, especially for controllers
using a physics-based model where the state is a strict representation
of a system variable.

This terminology is conventionally used by each community sepa-
rately. However, it is common to find studies that maintain their native
notation while borrowing concepts from the other community, or the
other way around, e.g. in [12] or in [56]. While this is a valid practice
as far as consistency is maintained, it makes the cooperation of both
approaches difficult because it obscures the precise meaning of each
term. For the sake of clarity, this work strictly respects the notation
typically adopted by each community as presented above. Therefore, a
state 𝑥𝑥𝑥 has a different meaning than 𝑆𝑆𝑆, and the controller model 𝐹𝐹𝐹 is

𝑓
also different from the ground truth dynamics represented with 𝑓𝑓 .
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Fig. 1. The (non exhaustive) taxonomy of optimal control. An algorithm shall be characterized by tracing a path from the highest abstraction level to the lowest. Ramifications may arise for the same algorithm.
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.3. Solution method

MPC can either be solved implicitly by performing state estimation,
orecasting and resolving a dynamic optimization problem at every
ime step, or it can be solved explicitly by learning a control policy
rom data produced from an implicit MPC with any kind of function
pproximation. Therefore, implicit MPC has larger online computa-
ional cost since it requires to estimate the states and perform dynamic
ptimization every control step. Contrarily, explicit MPC can deliver
he optimal input just at the cost of a function evaluation, but it has

larger offline computational cost. The reason is that explicit MPC
equires the configuration and implementation of an implicit MPC to
earn the policy function using any supervised learning method. The
ain advantage of an explicit MPC formulation stems from its easy

mplementation even on low-level hardware [57]. The outcome of an
xplicit MPC is similar to the outcome of any algorithm solving an MDP
ince the function approximation of explicit MPC can be interpreted as
policy that decides actions from system observations.

The solution of the dynamic optimization problem is the core of the
mplicit MPC approach. Three main solution methods can be identi-
ied to resolve dynamic optimization problems: dynamic programming
DP), direct methods, and indirect methods [58]. Direct and indirect
ethods differ in when discretization takes place, but both require
iscretization. The process of transforming the infinite-dimensional
ptimization problem to the finite-dimensional optimization problem
hrough discretization is called transcription. Single-shooting, multiple-
hooting, and collocation are the most widely used transcription meth-
ds. These methods differ on how the system variables are discretized
nd how the system dynamic are imposed. After transcription, the
olution boils down to solving a (Mixed Integer) — (Non) Linear
rogram ((MI)-(N)LP) with methods that should be selected based
n the properties of the resulting problem. Examples are quadratic
rogramming, line search, or the Broyden–Fletcher–Goldfarb–Shanno
BFGS) algorithm [59]. The solution method used for an MDP depends
n the information accessible to the agent and the approximations
eeded to derive a control policy. When perfect knowledge of the MDP
s available, DP algorithms can obtain an exact solution. If the MDP
ontains infinite elements, as in continue state–action spaces, approxi-
ations are required, and Approximate Dynamic Programming (ADP)

s used. When the agent cannot reproduce the actual environment and
eeds to learn from samples of experience, RL methods are needed
nstead. In the latter case, the agent learns from empirical experience,
ither from historical data or direct interaction with the environment.
trade-off should be found between off-line and on-line learning. Fig. 1

hows the main aspects that may characterize the learning process of
6

he solution method of an MDP, i.e.: the period when learning takes a
lace, the approach used to decide actions, the exploration method, the
se of a system model, the way of representing the targets for training,
he method used for policy updates, and the agent’s architecture.

.4. Optimality

In MPC, the quality of the optimization solution is subject to the
ccuracy of the controller model, which is often simplified for com-
utational reasons. Moreover, direct optimization methods are based
n Karush–Kuhn–Tucker conditions, and indirect methods are based
n Pontryagin’s maximum principle. Both can only provide necessary
onditions for optimality unless specific convexity properties are met
or the objective function and the constraints. Stability and feasibility
re inherently guaranteed for MPC, while there is only immature theory
or these matters in RL [12]. The lack of safety guarantees in RL stems
rom the constraints not being directly imposed in the formulation of
he solution method.

On the other hand, DP-based methods rely on Bellman’s princi-
le and can provide sufficient conditions for global optimality. As
downside, these methods are hampered by the curse of dimen-

ionality, i.e., an exponential complexity growth with the size of the
tate–action space. Pure DP can be used only when the state space is
ountable and the MDP is perfectly known. Algorithms approximating
ny element of the MDP, like ADP or RL, can only guarantee opti-
ality under certain conditions, namely when using linear function

pproximations or Monte Carlo learning. Despite these challenges, RL
an target real complex problems where exact methods may become
nfeasible [13], though optimality is not guaranteed in these cases.
dditionally, the same RL algorithms may extrapolate to very different

ypes of environments.

.5. Computational effort

A main drawback of implicit MPC is the burden of solving an
ptimization problem on-line that can be complex and involve a large
umber of optimization variables. This is why controller models for
PC are commonly simplified at the cost of optimality loss and why

fficiency gains in optimization solvers are highly wanted. Additionally,
tate estimation and forecasting need to be performed at every control
tep. Explicit MPC aims to overcome this burden by developing a
ontrol policy through behavior cloning, but an implicit MPC needs
o be developed beforehand. The off-line complexity of MPC relates
o the engineering effort required to develop and identify a controller
odel that is accurate and suitable for optimization. While the latter is

challenging task, its computational cost is limited.
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DP-based algorithms, on the other hand, typically work mostly off-
line, producing a policy that is then used to control the process [56].
Large computational efforts are expected to train policies even for fairly
simple systems. In RL, a model of the environment may be used for
off-line simulation-based learning. This approach provides a separate
training environment that does not limit exploration to obtain a high
variance data-set. Other off-line methods to learn a policy are behavior
cloning or Fitted-Q Iteration (FQI) [60]. Once the policy is developed, it
directly provides the estimated optimal action given the state and at the
cost of a policy evaluation only, which may be expressed by a neural
network or other mathematical functions. While learning may continue
on-line, the agent shall be more limited when exploring new actions to
improve its policy. This is because deviations from the learned policy
may result in performance degradation or unexpected behavior [13].

The sampling efficiency is defined as the capacity of an RL agent to
earn a reliable policy from the least possible amount of interactions
ith the environment, and it is an actively studied topic within the
achine learning community, especially in the context of model-based
L approaches [13,61].

.6. Prediction horizon

Both MPC and RL are predictive controllers, independently of
hether they integrate disturbances forecast in their control logic. MPC
ses explicit optimization along a finite prediction horizon, and RL
earns actions to optimize the sum of the immediate and the discounted

future rewards. A shortcoming of MPC is the finite horizon, which
is especially pronounced in tasks with sparse rewards where a short
horizon can make the agent extremely myopic [62]. Additionally, MPC
struggles with longer prediction horizons because these increase the
number of state and input variables in the optimization. Only single
shooting methods are independent of the number of states, but they
are known for their instability, especially for stiff systems. On the
contrary, the machine learning community usually works with infinite
discounted returns, although finite returns are sometimes considered as
well. The discount factor represents the extent of credit given to future
rewards and bounds the infinite sum. Notice that policies built with
finite returns require time as an argument to use the policy function
associated with the passed time.

An effective horizon can be defined as the number of steps after
which rewards are negligible for policies with infinite prediction hori-
zons. It is determined by the discount factor using the convergence of
a geometric series, as shown in Eq. (4).

1 + 𝛾 + 𝛾2 +⋯ = 1
1 − 𝛾

(4)

he above equation indicates that the rewards for time steps after
∕(1−𝛾) are ignored in the total return. Hence, it is possible to relate the
iscount factor of an RL agent with the finite prediction time horizon
f an MPC as follows.

𝑡ℎ = 𝛥𝑡𝑠
1

1 − 𝛾
(5)

here 𝛥𝑡ℎ is the finite prediction horizon of the MPC and 𝛥𝑡𝑠 is the
ontrol step period.

Although infinite prediction horizons may benefit from improved
ehavior in the long term, it should be noted that RL algorithms make
ess efficient use of the forecast information. The reason is that all
orecast data is flattened and brought to the agent’s observations with
he time dependency removed from it. The agent needs to figure out
he time dependency that is not explicitly described in the problem
efinition during the learning process. On the contrary, MPC naturally
reserves the time dependency (and thus the chronology) by taking
nto account the system dynamics computed in the controller model.

potential synergetic approach may use short prediction horizons to
olve an optimization problem for MPC while benefitting from the
nfinite horizons that characterize RL.
7

a

.7. Use of models

Models and function approximations are used differently in MPC
nd RL. In MPC, the model used to represent the system is called the
ontroller model. These models are obtained through domain knowl-
dge, system identification or supervised learning from historical mon-
toring data. Commonly, the controller models are qualified as white-,
ray-, or black-box depending on whether physical insights and/or
onitoring data are used for their configuration. The optimization
roblem in MPC imposes severe restrictions on the controller models,
hich are often simplified to guarantee convergence at the cost of per-

ormance loss. The same controller model (or a derivation) is commonly
sed for state estimation as well.

In RL, models approximate the policy or the value function, which
oes not directly represent the system dynamics. A particularity of
raining policies and value functions is that the training data targets
re continuously obtained from experience samples, in contrast to
hose used for supervised learning, which are fixed before learning
egins [63]. This characteristic poses a significant challenge to many
achine learning modeling approaches that are based on independent

nd identically distributed data. RL may also use a system model to
retrain a policy in simulation-based RL [41], or to alternate real
nd modeled experience in model-based RL [64,65]. An important
dvantage of using system models to train RL agents is that their
nalytical form is not required, such that they are not restricted in
omplexity.

.8. Partial observability

Since MPC uses a system model to optimize actions for every control
tep, it needs to know the present value of the state vector, which may
ot be entirely determined from the system measurements. Hence, state
stimation is required to estimate the hidden states of the controller
odel, i.e., those states that are not measured during operation. A

ew observers used for state estimation are listed in the scheme of
ig. 1. A Luenberger observer is probably the most straightforward and
ntuitive type. Instead, moving horizon estimation is a complex and
omputationally expensive approach since it requires optimization for
ach state estimation, but allows nonlinear dynamics. Extended Kalman
ilter methods are the non-linear version of the conventional stationary
alman filter and the time-varying Kalman filter. Finally, the unscented
alman filter uses a minimal set of carefully chosen sample points

o represent the state distribution. It uses the unscented transform to
ropagate through the true non-linear system empirically. Comparative
tudies of different state estimators for their application to building
ystems can be found in [66,67].

Similarly, an MDP is partially observable when some of the elements
f the state-space remain hidden to the agent’s observation. The Markov
roperty is violated in these scenarios since the future behavior cannot
e entirely determined from the present state. To amend this, an
rbitrary selection of past features is introduced in the observation
pace, e.g. in [34], to allow the agent to extract the hidden features.

. Reinforced model predictive control (RL-MPC)

This section introduces the details of the novel proposed RL-MPC
lgorithm. The goal is to learn from the environment while ensur-
ng constraint satisfaction. With that aim, elements from the control
nd machine learning communities are effectively combined, namely
tate estimation, dynamic optimization, and learning. First, Section 4.1
rovides a high-level introduction on how MPC and RL are logically
erged. Then, Section 4.2 provides a formal description of the RL-MPC

lgorithm.
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4.1. Intuitive description

To understand the intuition behind RL-MPC it is first required to
realize the differences between the non-linear program used to solve
the online optimization problems in MPC and the two main learning
methods of RL: value-based and policy-based methods. Fig. 3(a) shows
a schematic representation of the non-linear program obtained from
an MPC. The solution method of MPC takes as an input the union
of the estimated states �̂� and the forecast of the disturbances 𝑑. In
his approach, the objective function 𝐽 is inferred every control step
ased on the controller model. Fig. 3 also depicts the value-based
pproach (Fig. 3(b)) and the policy-based approach (Fig. 3(c)) for uni-
imensional state and action spaces in an equivalent optimal control
roblem. These RL approaches take as an input the agent’s observation
. Value-based methods characterize an action-value function 𝑞(𝑠𝑠𝑠,𝑎𝑎𝑎) as
he expected total cumulative return from state 𝑠𝑠𝑠 when taking action 𝑎𝑎𝑎.
olicy-based methods directly map a state 𝑠𝑠𝑠 to an action 𝑎𝑎𝑎 with a policy

function 𝜋 parametrized with the parameter set 𝜃𝜃𝜃. In RL-MPC, the MPC
non-linear program is truncated with the expected value of the state
one step ahead 𝑠𝑠𝑠′ as estimated by the value-based RL approach. Hence,
RL-MPC uses value-based RL to estimate the value of being in a specific
state 𝑠𝑠𝑠′ as obtained by the MPC when using a prediction horizon of only
one control step. Therefore, the main components of the MPC remain
active in RL-MPC, namely the state estimator, forecaster and optimizer,
but the value function is used to shorten the non-linear program and to
enable learning. Fig. 4 shows a high-level diagram with the interaction
of the main components of RL-MPC. Fig. 4 intuitively illustrates how
MPC and RL are merged in the RL-MPC algorithm.

4.2. Formal description

In the deterministic setting of an MDP, the action-value function
𝑞𝜋 (𝑠𝑠𝑠,𝑎𝑎𝑎) is defined as the expected return when taking action 𝑎𝑎𝑎 from
tate 𝑠𝑠𝑠 and following policy 𝜋 hereafter. The objective is to find a policy
∗ that maximizes the sum of the expected cumulative returns. Imple-
enting Bellman’s principle of optimality, the following expression is

btained:

∗(𝑠𝑠𝑠,𝑎𝑎𝑎) = max
𝜋

𝑞𝜋 (𝑠𝑠𝑠,𝑎𝑎𝑎) = 𝑟𝑘+1 + 𝛾 max
𝑎𝑎𝑎′

𝑞∗(𝑠𝑠𝑠′, 𝑎𝑎𝑎′) (6)

Where 𝑞∗ represents the optimal 𝑞 function and 𝑠𝑠𝑠′ is the reached state
when applying action 𝑎𝑎𝑎 from state 𝑠𝑠𝑠. Using the equivalence from Eq. (3),
the previous expression can be rewritten as Eq. (7).

𝑞∗(𝑠𝑠𝑠,𝑎𝑎𝑎) = −(𝐽𝑘+1 − 𝐽𝑘) + 𝛾 max
𝑎𝑎𝑎′

𝑞∗(𝑠𝑠𝑠′, 𝑎𝑎𝑎′) (7)

This can be simplified by defining the state-value function 𝑣𝜋 (𝑠𝑠𝑠), which
is the expected return from state 𝑠𝑠𝑠 and following policy 𝜋 hereafter.
The state-value function can be related to the action-value function as
shown in Eq. (8).

𝑣∗(𝑠𝑠𝑠) = max
𝑎𝑎𝑎∈

𝑞𝜋∗ (𝑠𝑠𝑠,𝑎𝑎𝑎) (8)

This allows reformulating the action-value function as follows.

𝑞∗(𝑠𝑠𝑠,𝑎𝑎𝑎) = −(𝐽𝑘+1 − 𝐽𝑘) + 𝛾𝑣∗(𝑠𝑠𝑠′) (9)

Notice that Eq. (7) exposes the objective function from a classical
MPC formulation along the first prediction step. Hence, given a state
𝑠, the optimal action 𝑎𝑎𝑎 can be obtained by optimizing 𝑞∗(𝑠𝑠𝑠,𝑎𝑎𝑎) while
explicitly imposing system constraints, as typically done in the MPC
approach. Assuming that a controller model 𝐹𝐹𝐹 is available, the policy
followed by RL-MPC is defined in the set of Eqs. (10).

𝜋∗(𝑠𝑠𝑠) = argmax
𝑎𝑎𝑎

𝑞∗(𝑠𝑠𝑠,𝑎𝑎𝑎) = (10a)

argmax
𝑎𝑎𝑎

(

−∫

𝑡𝑘+1

𝑡=𝑡𝑘
𝑙(�̇�𝑥𝑥(𝑡), 𝑥𝑥𝑥(𝑡), 𝑎𝑎𝑎(𝑡), 𝑦𝑦𝑦(𝑡), 𝑧𝑧𝑧(𝑡), 𝑑𝑑𝑑(𝑡), 𝑝𝑝𝑝)𝑑𝑡 + 𝛾𝑣∗(𝑠𝑠𝑠′)

)

(10b)
8

𝑠.𝑡.
{

0 = 𝐹𝐹𝐹 (�̇�𝑥𝑥(𝑡), 𝑥𝑥𝑥(𝑡), 𝑎𝑎𝑎(𝑡), 𝑦𝑦𝑦(𝑡), 𝑧𝑧𝑧(𝑡), 𝑑𝑑𝑑(𝑡), 𝑝𝑝𝑝) (c)
0 ≤𝐻𝐻𝐻(�̇�𝑥𝑥(𝑡), 𝑥𝑥𝑥(𝑡), 𝑎𝑎𝑎(𝑡), 𝑦𝑦𝑦(𝑡), 𝑧𝑧𝑧(𝑡), 𝑑𝑑𝑑(𝑡), 𝑝𝑝𝑝) (d) (10)

The main advantage of utilizing the formulation presented by Eqs. (10)
is that it imposes safety constraints in the short term while enabling
continuous learning from empirical experience. Moreover, shortening
the prediction horizon of the dynamic optimization problem consid-
erably eases the complexity of the resulting non-linear program. The
long-term behavior is still accounted for with the state-value function
𝑣. It is important to note that both terms from Eq. (10b) should be
jointly optimized, such that state 𝑠𝑠𝑠′ needs to be related to the expected
optimization variables in 𝑡𝑘+1. This leads to a lower overhead than
optimizing with longer prediction horizons that need discretization
over time. Additionally, the reward needs to be shaped in alignment
with the design of the objective function and the constraints to en-
courage cooperation between both terms in the action-value function.
This means that the first and second elements of the objective function
as shown in Eq. (10b) should not compete. Contrarily, they should be
defined to be complementary.

It is also worth noting that domain knowledge is encoded in the
controller model 𝐹𝐹𝐹 for optimization and state estimation, providing
intelligibility to the algorithm. The controller model 𝐹𝐹𝐹 can also be
used to configure a separate simulation environment 𝐹𝐹𝐹 to pretrain
𝑞(𝑠𝑠𝑠,𝑎𝑎𝑎) from simulated experience and expedite learning. The process is
summarized in Algorithm 1, where 𝛼 is known as the learning rate. Note
that lines 1–3 of Algorithm 1 constitute the off-line learning part, while
lines 4–10 constitute the deployment of the algorithm in the actual
building environment.

Algorithm 1 Reinforced model predictive control (RL-MPC)
1: Identify 𝐹𝐹𝐹 (�̇�𝑥𝑥(𝑡), 𝑥𝑥𝑥(𝑡), 𝑎𝑎𝑎(𝑡), 𝑦𝑦𝑦(𝑡), 𝑧𝑧𝑧(𝑡), 𝑑𝑑𝑑(𝑡), 𝑝𝑝𝑝) = 0
2: Configure 𝐹𝐹𝐹
3: Pretrain 𝑞(𝑠𝑠𝑠,𝑎𝑎𝑎) using 𝐹𝐹𝐹
4: while true do
5: 𝑠𝑠𝑠 ← current state
6: �̂̂��̂�𝑥 ← estimate from measurements
7: 𝑎𝑎𝑎 ← Solve Eqs. (10)
8: 𝑠𝑠𝑠′, 𝑟𝑘+1 ← Apply 𝑎𝑎𝑎 to 𝑓𝑓𝑓
9: 𝑞(𝑠𝑠𝑠,𝑎𝑎𝑎) ← 𝑞(𝑠𝑠𝑠,𝑎𝑎𝑎) + 𝛼[𝑟𝑘+1 + 𝛾 max𝑎𝑎𝑎 𝑞(𝑠𝑠𝑠′, 𝑎𝑎𝑎) − 𝑞(𝑠𝑠𝑠,𝑎𝑎𝑎)]
0: end while

5. Implementation

This section describes the implementation details of MPC, RL, and
RL-MPC to the same test building included in the BOPTEST framework.
Each controller uses equivalent features to enable a fair compari-
son. An explanatory diagram is shown in Fig. 5 that summarizes the
implementation methodology.

5.1. The control problem in BOPTEST

A standardized simulation environment is required to ensure a fair
evaluation of the algorithms. BOPTEST is an open-source framework
that provides a menu of high-fidelity emulator building models and
the standardization of test cases to assess control algorithms. In this
framework, the building models are containerized with the Docker
technology and considered as the ground truth plant to be controlled.
The functionality is enabled through a clear API to select a test scenario,
advance a simulation, and get data like measurements, forecast, or Key
Performance Indicators (KPIs) at every control step. The framework is
freely accessible in https://github.com/ibpsa/project1-boptest.

The building of interest in this study is the single-zone residential
hydronic case as in version v0.1.0 of the framework. The building

https://github.com/ibpsa/project1-boptest
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Fig. 3. Schematic overview of solution methods for optimal control. In the MPC approach, the objective function is inferred every control step based on the controller model. In
the value-based approach, a value function is constructed and cached to derive the most performant action from a specific state. Finally, the policy-based approach parametrizes
a policy to map states to actions directly.
Fig. 4. Block diagram showing a high-level introduction of RL-MPC. Every control step, RL-MPC decides an action 𝑎𝑎𝑎𝑘 by optimizing the sum of the one step ahead non-linear
program of the MPC and the value function from the estimated following state. Note: (⋅)𝑘

𝛥
= (⋅)(𝑡𝑘).
represents a residential dwelling of 192 m2 for a family of five members
located in Belgium. The family inhabits the building before 7:00 h and
after 20:00 h every weekday and full-time during weekends. The HVAC
system consists of an air-to-water modulating heat pump of 15 kW
thermal power coupled to a floor heating system. The control signal
is the heat pump modulation signal for compressor frequency 𝑢ℎ𝑝 ∈
[0, 1] that controls the heat delivered to the floor heating. In turn, this
heat is released to the building zone by a water emission circuit with
a hydronic pump that is activated when the heat pump is working.
The controlled signal is the zone operative temperature 𝑇𝑧 that should
remain within the temperature range 21–24 ◦C during occupied hours
and within 15–30 ◦C otherwise. No cooling is considered in this test
case.

All BOPTEST cases come with one year of boundary condition
data and predefined testing periods of two weeks. The cases can be
initialized at any arbitrary time of the year, although special attention
should be paid to not use any of the predefined testing periods for
training. The envisaged building offers a total of six testing scenarios
from the combination of two heating periods: peak and typical, and
three electricity price profiles: constant, dynamic, and highly dynamic.
This work considers the two heating periods with the highly dynamic
electricity pricing for testing. This highly dynamic price profile is
obtained from the sum of (1) historical day-ahead energy prices as
determined by the Belpex wholesale electricity market in 2019, and
(2) constant transmission fees and taxes representative for the same
location.
9

The final objective of the controller is to guarantee thermal comfort
while minimizing operational cost. From the control perspective, the
presented problem is particularly challenging for different reasons.
First, the controlled variable, 𝑇𝑧, has a significant delay with respect
to the control variable, 𝑢ℎ𝑝, because of the considerable thermal in-
ertia of the system. Second, the data used for system identification is
limited and has low variance because it is generated with the baseline
controller that comes along with the test case and that uses a regular
thermostatic control. Long training periods or extra-excitations are not
considered when identifying the controller model 𝐹𝐹𝐹 to emulate a realis-
tic scenario where the controller model works with typical operational
data. Third, the controller can only access a few of the signals that
influence the plant dynamics, as is the case in reality. Precisely, only
the operative zone temperature, out of the 63 continuous-time states
present in the emulator model, is measured. Moreover, only 6 out of the
31 disturbances are provided through the forecast. These are weather
variables like ambient temperature and solar irradiation or others like
energy pricing or comfort setpoint bounds. All control algorithms in
this work assume perfect deterministic forecast provided by BOPTEST.

5.2. System identification

A controller model 𝐹𝐹𝐹 is required by the MPC, and to configure the
environment 𝐹𝐹𝐹 used to pretrain the policies in the RL and RL-MPC
algorithms. The same gray-box model is utilized in all cases, consisting
of a thermal resistance–capacitance (RC) architecture constructed from
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basic physical principles and without using any system metadata like
building geometry or material properties. A model of order five is
decided from a forward-selection procedure.

The model has a total of 20 lumped parameters that need to be
estimated. Two weeks of data are generated by the emulator with the
baseline controller for training, and two weeks are used for validation
of the model. The fitting variables are the zone operative temperature
𝑇𝑧, the heat pump condenser thermal power �̇�𝑐 and the heat pump
lectrical power use 𝑃ℎ𝑝. The last two variables determine the coef-
icient of performance of the heat pump. The model further consists
f three inputs: ambient temperature 𝑇𝑎, solar irradiation �̇�𝑟𝑎𝑑 , and
ccupancy gains �̇�𝑜𝑐𝑐 . Fig. 6 shows an overview of the training and
alidation periods that have been selected not to overlap any of the
esting periods.

.3. MPC implementation

The MPC of this study heavily relies on JModelica [68], a frame-
ork for dynamic simulation and optimization of Modelica models.
articularly, the non-linear JModelica MPC module developed in [69]
s used here and has been extended to enable mutable external data.
he JModelica MPC module utilizes the direct collocation scheme and
elies on CasADi [70] for algorithmic differentiation. This approach is
ell known for its versatility and robustness.

The optimization problem that needs to be solved at every control
tep is formulated in Eqs. (11).

min
𝑢𝐻𝑃

𝐽𝑘 = min
𝑢𝐻𝑃 ∫

𝑡𝑘+𝛥𝑡ℎ

𝑡=𝑡𝑘
(𝑝𝑒(𝑃ℎ𝑝 + 𝑃𝑓𝑎𝑛 + 𝑃𝑝𝑢𝑚) +𝑤𝛿𝑇𝑧 )𝑑𝑡 (11a)

̇ 𝑧, 𝑃ℎ𝑝, 𝑃𝑓𝑎𝑛, 𝑃𝑝𝑢𝑚 = 𝐹𝐹𝐹 (𝑢ℎ𝑝, �̇�𝑟𝑎𝑑 , �̇�𝑜𝑐𝑐 , 𝑇𝑎, 𝑇𝑧, 𝑇𝑇𝑇 ,𝑝𝑝𝑝) (11b)

𝑧 − 𝛿𝑇𝑧 ≤ 𝑇𝑧 ≤ 𝑇 𝑧 + 𝛿𝑇𝑧 (11c)

𝛿𝑇𝑧 ≥ 0 (11d)

0 ≤ 𝑢ℎ𝑝 ≤ 1. (11e)

In Eqs. (11), the time dependency has been omitted for clarity because
all variables are time-dependent except the vector of model parameters
10

w

𝑝, and the weighting factor 𝑤, the latter being used to account for the
different orders of magnitude between energy cost and discomfort 𝛿𝑇𝑧 .
The energy cost is the first term of the objective function where all
elements accounting for electrical power are summed and multiplied
by the electricity price 𝑝𝑒. These are the heat pump power 𝑃ℎ𝑝, the
vaporator fan power 𝑃𝑓𝑎𝑛, and the circulation pump power 𝑃𝑝𝑢𝑚.

represents the vector of non-measured temperature states of the
ontroller model. The discomfort 𝛿𝑇𝑧 is defined as the deviations of 𝑇𝑧
ut of the comfort range bounded by 𝑇 𝑧 and 𝑇 𝑧. The weighting factor 𝑤

is tuned to penalize more heavily the instantaneous discomfort than the
instantaneous energy cost, such that the thermal discomfort is treated
as a soft constraint in the optimization.

The MPC module is combined with the unscented Kalman filter of
the JModelica toolbox for state estimation. The specific state estimation
algorithm is the non-augmented version described in [71], and the
sigma points are chosen according to [72]. The controller model 𝐹𝐹𝐹
described in the previous section is directly used for optimization and
state estimation with a control step of 𝛥𝑡𝑠 = 15 min and a prediction
orizon of 𝛥𝑡ℎ = 24 h.

.4. RL implementation

The BOPTEST-Gym wrapper developed in [17] accommodates the
OPTEST API to the Gym standard [73] to assemble the testing envi-
onment 𝑓𝑓𝑓 , which we call the actual environment henceforth. Similarly,
he 𝐹𝐹𝐹 is developed by replacing the ground truth building model 𝑓𝑓𝑓 by
he simpler lower-order controller model 𝐹𝐹𝐹 explained in the previous
ections. We call 𝐹𝐹𝐹 the simulation environment. Both environments are
rapped following the Gym standard, which provides a convenient

etting for implementing any RL algorithm. Additionally, both envi-
onments expose the same observations and actions to the RL agent,
ut their underlying dynamics are different: the actual environment
ses a detailed emulator model representing reality, while the simu-
ation environment uses a simple RC model. The motivation for the
evelopment of 𝐹𝐹𝐹 is that it represents an environment that could be
btained in practice to train an agent with simulation-based RL and

ithout any restriction on the actions taken. Contrarily, 𝑓𝑓𝑓 represents
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Fig. 6. Training and validation periods for estimating the controller model 𝐹𝐹𝐹 . The training period is at the left of the vertical gray dashed line and the validation period at the
right. The inputs are presented in the bottom two plots, and the simulated outputs are presented in the top two plots and compared with the measured data. The gray lines in
the first plot represent the comfort constraints.
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an actual building and thus, only a limited set of interactions may be
permitted. In both environments, the state–action space is designed to
be analogous to the MPC formulation described in the previous section.
Specifically, the control step is also set to 𝛥𝑡𝑠 = 15 min, and the agent’s
observations include forecast over a prediction horizon of 𝛥𝑡ℎ = 24 h
with the same interval period. In this configuration, a discount factor
of 𝛾 = 0.99 accounts for an effective horizon of approximately one day
according to Eq. (5). The reward function is defined as the negated
increment of the MPC objective integrand cost as shown in Eq. (3).
The state observer is also replicated by including past measurements
of the zone operative temperature and the time of the week in the
agent’s observation. The agent shall use these observations to infer
the current building state and to deal with the partial observability
of the environment. As a result, the state space observed by the agent
has a total dimension of || = 608 with all continuous variables that
are normalized between [−1, 1] to facilitate learning. The heat pump
modulation signal is discretized in 10 uniform intervals such that the
action space is  = {𝑢ℎ𝑝}, with 𝑢𝐻𝑃 ∈ {0, 0.1, 0.2,… , 1}, and || = 11.

The large state–action space requires the use of function approxi-
mations and a suitable RL algorithm for training. We use the Double
Deep Q-Network (DDQN) algorithm as proposed in [63] and in [74],
which enables a neural network as a function approximation and
offers a natural extension towards the implementation of RL-MPC, as
explained in the following section. Specifically, a double network is
implemented to avoid the overoptimism inherent to Q-learning for
large-scale problems [74]. DDQN is an off-policy algorithm that updates
network weights following a stochastic gradient descent scheme. Tuples
of the form (𝑠𝑠𝑠𝑘, 𝑎𝑎𝑎𝑘, 𝑟𝑘, 𝑠𝑠𝑠𝑘+1) are stored in a replay memory  and served
in random batches during training in order to alleviate the problem
of correlated data. We set the batches to sample one week of transition
11

i

data. A multi-layer perceptron (MLP) neural network is configured with
TensorFlow for the state–action value function. The network contains
two hidden layers of 64 neurons each and a rectified linear activation
function for the nodes.

In a first learning step, the agent is pretrained with behavior cloning
during the month of data used for system identification. Then, the
agent interacts with the simulation environment 𝐹𝐹𝐹 for one million
steps. Notice that this is still off-line learning since 𝐹𝐹𝐹 is a simulation
environment. During this learning process, 𝐹𝐹𝐹 is configured to launch
episodes of experience that last for one week and that are randomly
initialized throughout the year. The episodes never overlap the periods
that will be used for testing later on with 𝑓𝑓𝑓 , such that the boundary
ondition data used for testing is not available during training. The
gent is configured to follow an 𝜖-greedy exploration scheme with
linear schedule that goes from 10% to 1% of random exploration

robability along the learning process. The reason to limit the initial
xploration to 10% is that the prior behavior cloning forces the agent
o explore the most interesting region of the state–action space already
rom the beginning.

.5. RL-MPC implementation

The RL-MPC algorithm inherits all attributes and hyperparameters
escribed in the MPC and the RL implementations. This means that
he same control step, prediction horizon, and state estimator than the
PC is used, as well as the same pretrained 𝑞 function than the RL

gent. Since both RL and MPC have been designed with analogous
yperparameters, they are expected to be complementary in the RL-
PC implementation. The method jointly optimizes the sum of the
mmediate rewards (negated objective function increase) obtained from
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Fig. 7. Average episodic return for the DDQN agents trained with the simulation 𝐹𝐹𝐹
and the actual 𝑓𝑓𝑓 environments. Both environments expose the same observations and
control actions to the agent, but the simulation environment is configured with the RC
model, while the actual environment is configured with the BOPTEST emulator.

the MPC and the value function obtained from the RL agent. At every
time step 𝑡𝑘, the same state observer as the one used by the MPC
provides an estimate of the vector of states �̂�𝑥𝑥𝑘 to initialize the 𝐹𝐹𝐹
nvironment. Then, this environment evaluates the immediate reward
f taking every possible action. The advantage of using exhaustive
earch for the optimization of the first step in the horizon is that the
nvironment 𝐹𝐹𝐹 also delivers the expected next state 𝑠𝑠𝑠′, such that it
an directly evaluate 𝑣∗(𝑠𝑠𝑠′) and sum it to the immediate reward. This
pproach would be prohibitive for larger action spaces that would
equire a function mapping between 𝑥𝑥𝑥 and 𝑠𝑠𝑠. We prefer the exhaustive
earch approach from the convenience of having 𝐹𝐹𝐹 available.

. Simulation results

Fig. 7 shows the evolution of the average episodic return during
he off-line learning process, i.e., during the one million steps of in-
eraction with the simulation environment 𝐹𝐹𝐹 . The steady increase of
he expected episodic return indicates that DDQN can properly learn
rom experience. For the sake of benchmarking, the same algorithm is
eparately trained with the actual environment, 𝑓𝑓𝑓 , and using the same
andom seed for exploration. Although unrealistic, the latter scenario
rovides an upper performance bound for testing. The comparison of
oth learning curves in Fig. 7 reveals an overestimation of the rewards
hen the simulation environment is used for training. The reason is

he less dynamic behavior of the RC model that leads to a more gentle
esponse of the zone operative temperature to the random actions of the
gent. The agent is thus overoptimistic when trained with simulated ex-
erience and thinks that it can easily maintain the indoor temperature
ithin the comfort bounds. This effect has a catastrophic consequence
uring testing, as is clear from Fig. 8 which shows that the agent
rained in the simulation environment cannot maintain the controlled
ariable within bounds during testing. Contrarily, the agent trained in
he actual environment can successfully keep the temperature within
ounds. It is concluded that the false cues received from 𝐹𝐹𝐹 mislead the
gent leading to poor behavior during testing. A similar observation of
imulation-based RL in buildings was already pointed out in [41].

Interestingly, the MPC results of Fig. 8 reveal that MPC uses the
ontroller model more effectively than the DDQN algorithm because
t respects the constraints when using the same controller model and
n equivalent control configuration. This performance difference stems
rom the different machinery of each algorithm: MPC performs state
stimation and dynamic optimization every control step, which leads to
12
higher on-line computational intensity, but allows to decide on best
ctions based on an accurate representation of the current system state
t all times; conversely, RL only requires a function evaluation to decide
est actions on-line (which is computationally very efficient), but relies
n a parametrized value function that has been trained off-line and that
an hardly infer the current system state.

The poor constraint satisfaction of the DDQN algorithm is elimi-
ated by the implementation of RL-MPC, which incorporates a state
stimator to accurately track the state of the environment and an
ptimizer to evaluate actions during the first horizon step. The long-
erm behavior is accounted for with the same value function trained
ith the DDQN algorithm in the simulation environment. To emphasize

he effect of the value function in RL-MPC, the same algorithm using
= 0 has been implemented. This represents a controller with a one-

tep-ahead prediction horizon that disregards posterior behavior since
he value function is disabled in the objective.

It is apparent from Fig. 8 that the state estimator and the one-
tep-ahead optimizer substantially aid the RL-MPC agent to satisfy
onstraints when compared to the DDQN agent. Moreover, the value
unction positively contributes to the controller performance, which
an be seen from the comparison with RL-MPC when 𝛾 = 0. The

inability to predict beyond one time step period leads to constraint
violations with the myopic agent at occupancy setbacks. This effect is
most evident during the peak heating test because of the increased heat
demand.

The KPIs obtained with each controller at the end of the two-week
testing periods are summarized in Fig. 9. These KPIs, among others, are
directly obtained from the BOPTEST framework and have been selected
based on the designed control objective. The horizontal lines serve as
a reference of reasonable thermal discomfort levels when following the
recommended criteria for acceptable deviations of standard EN16798-
2 [75]. Particularly, these horizontal lines are obtained when using
weighting factors of 1, 2, and 3 K during the short time deviations
allowed in this standard. In our case, the temperature limits are es-
tablished by the predefined BOPTEST temperature comfort range. Note
that there exist other environmental factors that should be addressed
when providing comfort for occupants, like thermal radiation, humid-
ity, and air speed, or personal factors like activity and clothing. For the
sake of clarity, our comfort assessment is based on temperature only
since it is the main factor influencing the thermal comfort perceived
by the occupants in a building [76].

The results of the DDQN agent trained in 𝐹𝐹𝐹 are located at higher
alues and thus omitted in Fig. 9 to preserve the scale. The DDQN agent
rained in the actual environment maintains a low thermal discomfort
ut at a higher operational cost than the MPC strategy. The DDQN
lgorithm trained in 𝑓𝑓𝑓 achieves slightly lower discomfort during the
eak heating period than MPC, that penalizes thermal discomfort more
eavily than the energy cost. However, this does not hold for the
ypical heating period, where the MPC clearly outperforms DDQN, even
hen the latter has been trained in the actual environment and the

ormer only uses a simplified controller model. The use of RL-MPC
ubstantially improves the results and leads the agent to achieve similar
erformance levels as the MPC even for the deterministic setting of
his example. The importance of the value function in the objective is
nderlined by the comparison with the myopic DDQN agent with 𝛾 = 0
hat incurs substantially higher discomfort, especially during the peak
esting period.

. Discussion

There are two main ways to merge MPC and RL: truncating the
bjective function or using the MPC as the function approximator of
he learning agent. The former is the approach adopted by RL-MPC
nd described in this work, and the latter is the approach proposed by
ther recently developed algorithms, namely Differentiable MPC and
ts associated Gnu-RL. RL-MPC constrains the actions explicitly (using
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Fig. 8. Simulation results for all controllers in each of the BOPTEST testing periods for the envisaged building. The plots at the top show the pricing signal, the comfort constraints,
and the evolution of the zone operative temperature 𝑇𝑧 for each control strategy. The plots at the bottom show the main system disturbances, namely the ambient temperature
and the direct solar irradiation.
Fig. 9. KPIs for each controller and the two testing periods as obtained from the BOPTEST framework. Each of the testing periods lasts for two weeks. The horizontal lines serve
as a reference of reasonable thermal discomfort levels when following the recommended criteria for acceptable deviations of standard EN16798-2 [75].
the controller model) during the first control step, and implicitly (using
the value function) along the rest of the prediction horizon. Differ-
entiable MPC constrains the actions explicitly throughout the whole
prediction horizon and uses the rewards to tune the weights of the
13
objective function. These are just two ways of constraining the agent
to improve operational safety and it is still an open question which
approach is preferred over the other. Probably, Differentiable MPC is
more conservative as it imposes the system constraints throughout the
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prediction horizon. This may lead to safer operation but offers less
degrees of freedom to learn from the environment. Both approaches
should be compared in BOPTEST to find out which one is preferred for
the application in building climate control.

It is also important to note that, although BOPTEST is a simula-
tion framework, it uses high-fidelity emulator building models. Un-
certainties (e.g. related to weather predictions, measurements, model
mismatch) are not yet included, but the provided emulators constitute
a detailed representation of the system dynamics and only expose a
realistic set of measurements and setpoint variables. Therefore, it is
expected that the results obtained in the BOPTEST framework are
representative of what would be obtained in real implementations.

In this work, the implementation of RL-MPC in BOPTEST has clearly
outperformed classical RL. RL-MPC has also shown similar performance
to the MPC in a deterministic setting, but RL-MPC incorporates the
important advantage of learning as in a classical RL approach: RL-
MPC learns the value function from rewards that are directly retrieved
from the environment, and an analytical form is therefore not required.
This opens the path towards learning perceived comfort from occu-
pants e.g. through an App where people could indicate their thermal
sensation from different levels as defined by ANSI/ASHRAE Standard
55-2010, or towards accounting long-term dynamics that cannot be
captured by the typical MPC horizons e.g. in thermal systems with very
large thermal inertia like geothermal borefields. Moreover, RL-MPC
is expected to excel in uncertain environments where the uncertainty
distribution could be learned by the agent and accounted for dur-
ing operation. Confirmation of this hypothesis is a topic for future
research.

This paper has focused on the definition and empirical demonstra-
tion of RL-MPC, but the current implementation of this new algorithm
can be further improved. A major challenge for the implementation of
RL-MPC relates to setting up an optimization framework comprising
the software dependencies required for both: MPC and RL. Dedicated
frameworks exist for either one or the other, but, to the best of our
knowledge, there is no unified framework facilitating the configura-
tion and implementation of both algorithms together. Moreover, the
truncation of the RL-MPC algorithm’s prediction horizon requires es-
timating the next state and its associated value (expected return) at
each iteration of the optimization. Therefore, another major challenge
is posed in the implementation of RL-MPC to incorporate the value
function in the MPC optimization. The current implementation uses
exhaustive search: the controller model simulates every possible action
from the state vector obtained with the state observer. The simulation
environment is used for this, such that the expected reward and the
next expected state are returned from the simulation of each action.
The sum of the immediate reward and the value of the expected next
state is evaluated for each possible action to decide the action that
leads to the highest expected value of this sum. This is obviously not
computationally efficient. The most efficient way of implementing RL-
MPC would be to extend the controller model with the equations that
define the value function. Both could be optimized together using more
effective optimization techniques.

8. Conclusion and future work

Buildings require advanced control algorithms for the efficient use
of their energy systems. The control theory and machine learning com-
munities are both working on solutions using MPC and RL, respectively,
and prior literature has expressed interest in merging both methods.
The complementarity is underlined from a conceptual reflection on
their principal aspects like their approach, optimality, or computational
complexity. This paper presents and assesses reinforced model predic-
tive control RL-MPC, an algorithm that effectively combines elements
from RL and MPC like state estimation, dynamic optimization, and
learning. The BOPTEST framework is a standardized environment for
the assessment and benchmarking of control algorithms in buildings.
14
This simulation environment allows consistent and repeatable testing
for the same building and boundary conditions. The results for one
test case building of the BOPTEST framework reveal that MPC makes
effective use of the controller model while RL incurs severe constraint
violations using an equivalent formulation of the control problem.
Both implementations are combined in the RL-MPC algorithm, which
can satisfactorily meet the constraints. The new algorithm obtains
performance results similar to the MPC in a deterministic setting even
when using an imperfect value function. It also enables learning as in
a classical RL approach which allows to naturally deal with uncertain
environments or complex rewards without requiring their analytical
form. Future research should compare RL-MPC with other methods
merging MPC and RL like Differentiable MPC. Additionally, the current
implementation of RL-MPC may be further improved by extending the
controller model with the equations that define the value function
to use efficient optimization techniques and enable scalability of the
algorithm. An unified and open-source framework for optimal control
may facilitate this task.

CRediT authorship contribution statement

Javier Arroyo: Conceptualization, Methodology, Software, For-
mal analysis, Data Curation, Writing – original draft, Writing – re-
view & editing, Visualization, Funding acquisition. Carlo Manna:
Methodology, Writing – original draft, Writing – review & editing.
Fred Spiessens: Conceptualization, Methodology, Writing – original
draft, Writing – review & editing, Supervision, Funding acquisition.
Lieve Helsen: Conceptualization, Methodology, Writing – original
draft, Writing – review & editing, Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

This work emerged from the IBPSA Project 1, an international
project conducted under the umbrella of the International Building
Performance Simulation Association (IBPSA). Project 1 will develop
and demonstrate a BIM/GIS and Modelica Framework for building and
community energy system design and operation. The work of Javier
Arroyo is financed by VITO, Belgium through a PhD Fellowship (grant
number 1710754). Finally, the authors wish to thank to Brida V.
Mbuwir, Ján Drgoňa, and Iago Cupeiro Figueroa for kindly reviewing
the paper.

References

[1] IEA, GlobalABC, UN Environmental Programme. Global status report for build-
ings and construction: Towards a zero-emissions, efficient and resilient buildings
and construction sector. 2020, https://wedocs.unep.org/handle/20.500.11822/
34572.

[2] De Coninck R, Helsen L. Quantification of flexibility in buildings by cost curves
– Methodology and application. Appl Energy 2016;162:653–65.

[3] Arroyo J, Gowri S, De Ridder F, Helsen L. Flexibility quantification in the context
of flexible heat and power for buildings. 2018, Proceedings of the Federation
of European Heating, Ventilation and Air Conditioning associations conference,
Brussels, Belgium,

[4] Mbuwir BV, Geysen D, Spiessens F, Deconinck G. Reinforcement learning for
control of flexibility providers in a residential microgrid. IET Smart Grid
2019;3(1):1–11.

[5] Schwarm AT, Nikolaou M. Chance-constrained model predictive control. AIChE
J 1999;45(8):1743–52.

[6] Bemporad A, Morari M. Robust model predictive control: A survey. In: Garulli A,
Tesi A, editors. Robustness in identification and control. Lecture notes in control
and information sciences, vol. 245, London: Springer; 1999, p. 207–26.

[7] Bacci E, Parker D. Probabilistic guarantees for safe deep reinforcement learning.
2020, arXiv, https://arXiv.org/abs/2005.07073.

https://wedocs.unep.org/handle/20.500.11822/34572
https://wedocs.unep.org/handle/20.500.11822/34572
https://wedocs.unep.org/handle/20.500.11822/34572
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb2
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb2
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb2
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb3
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb3
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb3
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb3
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb3
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb3
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb3
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb4
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb4
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb4
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb4
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb4
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb5
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb5
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb5
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb6
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb6
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb6
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb6
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb6
https://arXiv.org/abs/2005.07073


Applied Energy 309 (2022) 118346J. Arroyo et al.
[8] Koller T, Berkenkamp F, Turchetta M, Boedecker J, Krause A. Learning-based
model predictive control for safe exploration and reinforcement learning. 2019,
arXiv, https://arxiv.org/abs/1906.12189.

[9] Ernst D, Glavic M, Capitanescu F, Wehenkel L. Reinforcement learning versus
model predictive control: A comparison on a power system problem. IEEE Trans
Syst Man Cybern B 2009;39(2):517–29.

[10] Negenborn RR, De Schutter B, Wiering MA, Hellendoorn H. Learning-based
model predictive control for Markov decision processes. In: IFAC Proceedings
volumes of the 16th IFAC world congress, vol. 38, (1):2005, p. 354–9.

[11] Recht B. A tour of reinforcement learning: The view from continuous control.
2018, arXiv, http://arxiv.org/abs/1806.09460.

[12] Görges D. Relations between model predictive control and reinforcement learn-
ing. IFAC-PapersOnLine 2017;50(1):4920–8. http://dx.doi.org/10.1016/j.ifacol.
2017.08.747, 20th IFAC World Congress.

[13] Dulac-Arnold G, Mankowitz D, Hester T. Challenges of real-world reinforcement
learning. 2019, arXiv, https://arxiv.org/abs/1904.12901.

[14] Ojand K, Dagdougui H. Q-learning-based model predictive control for energy
management in residential aggregator. IEEE Trans Autom Sci Eng 2021;1–12.

[15] Chen B, Cai Z, Bergés M. Gnu-RL: A precocial reinforcement learning solution
for building HVAC control using a differentiable MPC policy. In: Proceedings of
the 6th ACM international conference on systems for energy-efficient buildings,
cities, and transportation. New York, New York, USA; 2019. p. 316–325.

[16] Blum D, Arroyo J, Huang S, Drgoňa J, Jorissen F, Taxt Walnum H, et al. Building
optimization testing framework (BOPTEST) for simulation-based benchmarking
of control strategies in buildings. J Build Perform Simul 2021 14(5):586–610.

[17] Arroyo J, Manna C, Spiessens F, Helsen L. An OpenAI-Gym environment for
the Building Optimization Testing (BOPTEST) framework. In: Proceedings of the
17th IBPSA Conference. Bruges, Belgium. September 2021.

[18] Sturzenegger D, Gyalistras D, Morari M, Smith RS. Model predictive climate
control of a Swiss office building: Implementation, results, and cost-benefit
analysis. IEEE Trans Control Syst Technol 2016;24:1–12.

[19] Mason K, Grijalva S. A review of reinforcement learning for autonomous building
energy management. Comput Electr Eng 2019;78:300–12.

[20] Drgoňa J, Arroyo J, Cupeiro Figueroa I, Blum D, Arendt K, Kim D, et al. All
you need to know about model predictive control for buildings. Annu Rev
Control 2020;50:190–232, Published on-line https://doi.org/10.1016/j.arcontrol.
2020.09.001.

[21] Drgoňa J, Klaučo M, Kvasnica M. MPC-based reference governors for thermostati-
cally controlled residential buildings. In: Proceedings of the 54th IEEE conference
on decision and control. Osaka, Japan; 2015. p. 1334–9. http://dx.doi.org/10.
1109/CDC.2015.7402396.

[22] Jorissen F, Boydens W, Helsen L. TACO, an automated toolchain for model
predictive control of building systems: Implementation and verification. J Build
Perfor Simul 2018;12(2):180–92.

[23] Wetter M, Zuo W, Nouidui T, Pang X. Modelica buildings library. J Build Perfor
Simul 2014;7(4):253–70.

[24] Jorissen F, Reynders G, Baetens R, Picard D, Saelens D, Helsen L. Implementation
and verification of the IDEAS building energy simulation library. J Build Perfor
Simul 2018;11(6):669–88.

[25] Müller D, Lauster M, Constantin A, Fuchs M, Remmen P. AixLib – An open-source
modelica library within the IEA-EBC annex 60 framework. In: Proceedings of the
BauSIM IBPSA conference. Dresden, Germany; 2016. p. 3–9.

[26] Nytsch-Geusen C, Banhardt C, Inderfurth A, Mucha K, Möckel J, Rädler J, et
al. Buildingsystems - Eine modular hierarchische Modell-Bibliothek zur ener-
getischen Gebäude und Anlagensimulation. In: Proceedings of the BauSIM IBPSA
conference. Dresden, Germany; 2016. p. 473–480.

[27] Coninck RD, Magnusson F, Åkesson J, Helsen L. Toolbox for development and
validation of grey-box building models for forecasting and control. J Buil Perform
Simul 2016;9(3):288–303.

[28] Atam E, Helsen L. Control-oriented thermal modeling of multizone buildings:
Methods and issues: Intelligent control of a building system. IEEE Control Syst
Mag 2016;36(3):86–111.

[29] Arroyo J, Spiessens F, Helsen L. Identification of multi-zone grey-box build-
ing models for use in model predictive control. J Build Perform Simul
2020;13(4):472–86.

[30] Mnih V, Kavukcuoglu K, Silver D, Rusu A, Veness J, Bellemare M,
et al. Human-level control through deep reinforcement learning. Nature
2015;518:529–33.

[31] Vázquez-Canteli JR, Nagy Z. Reinforcement learning for demand response: A
review of algorithms and modeling techniques. Appl Energy 2019;235:1072–89.

[32] Vázquez-Canteli JR, Ulyanin S, Kämpf J, Nagy Z. Fusing TensorFlow with
building energy simulation for intelligent energy management in smart cities.
Sustainable Cities Soc 2019;45:243–57.

[33] Nagai T. Dynamic optimization technique for control of HVAC system utiliz-
ing building thermal storage. In: Proceedings of the 6th building simulation
conference, vol. I. Kyoto, Japan; 1999. p. 1311–7.

[34] Peirelinck T, Ruelens F, Decnoninck G. Using reinforcement learning for opti-
mizing heat pump control in a building model in modelica. In: Proceedings of
the IEEE international energy conference, ENERGYCON. 2018, p. 1–6.
15
[35] An energy-efficient predictive control for HVAC systems applied to tertiary
buildings based on regression techniques. Energy Build 2017;152:409–17.

[36] Nagy A, Kazmi H, Cheaib F, Driesen J. Deep reinforcement learning for optimal
control of space heating. 2018, arXiv, https://arxiv.org/abs/1805.03777.

[37] Mbuwir BV, Spiessens F, Deconinck G. Benchmarking regression methods for
function approximation in reinforcement learning: Heat pump control. In: Pro-
ceedings of the IEEE PES innovative smart grid technologies Europe. Bucharest,
Romania; 2019. p. 1–5.

[38] Patyn C, Ruelens F, Deconinck G. Comparing neural architectures for demand
response through model-free reinforcement learning for heat pump control. In:
Proceedings of the IEEE international energy conference. Limassol, Cyprus; 2018.
p. 1–6. http://dx.doi.org/10.1109/ENERGYCON.2018.8398836.

[39] Picard D, Drgoňa J, Kvasnica M, Helsen L. Impact of the controller model
complexity on model predictive control performance for buildings. Energy Build
2017;152:739–51.

[40] Zhang Z, Lam K. Practical implementation and evaluation of deep reinforcement
learning control for a radiant heating system. In: Proceedings of the 5th ACM
international conference on systems for energy-efficient buildings, cities, and
transportation. Shenzen, China; 2018. p. 148–157. http://dx.doi.org/10.1145/
3276774.3276775.

[41] Liu S, Henze GP. Experimental analysis of simulated reinforcement learning
control for active and passive building thermal storage inventory: Part 2: Results
and analysis. Energy Build 2006;38(2):148–61.

[42] Scharnhorst P, Schubnel B, Fernández Bandera C, Salom J, Taddeo P, Boegli M,
et al. Energym: A building model library for controller benchmarking. Appl Sci
2021;11(8). http://dx.doi.org/10.3390/app11083518.

[43] Vázquez-Canteli JR, Kämpf J, Henze G, Nagy Z. CityLearn v1.0: An OpenAI
gym environment for demand response with deep reinforcement learning. In:
Proceedings of the 6th ACM international conference on systems for energy-
efficient buildings, cities, and transportation. New York, New York, USA; 2019.
p. 356–7. http://dx.doi.org/10.1145/3360322.3360998.

[44] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow:
Large-scale machine learning on heterogeneous systems. Software available from
tensorflow.org. 2015, arXiv, https://arXiv.org/abs/1603.04467v2.

[45] Hewing L, Wabersich KP, Menner M, Zeilinger MN. Learning-based model
predictive control: Toward safe learning in control. Annu Rev Control Robot
Auton Syst 2020;3(1):269–96.

[46] Liu S, Henze GP. Experimental analysis of simulated reinforcement learning
control for active and passive building thermal storage inventory: Part 1.
Theoretical foundation. Energy Build 2006;38(2):142–7.

[47] Amos B, Rodriguez IDJ, Sacks J, Boots B, Kolter JZ. Differentiable MPC for
end-to-end planning and control. 2019, arXiv, arXiv:1810.13400.

[48] Drgoňa J, Tuor A, Skomski E, Vasisht S, Vrabie D. Deep learning explicit
differentiable predictive control laws for buildings. 2021, arXiv, arXiv:abs/2107.
11843v1.

[49] Gros S, Zanon M. Data-driven economic NMPC using reinforcement learning.
IEEE Trans Automat Control 2020;65(2):636–48.

[50] Gros S, Zanon M. Reinforcement learning for mixed-integer problems based on
MPC. 2020, arXiv, arXiv:2004.01430.

[51] Gros S, Zanon M. Reinforcement learning based on MPC and the stochastic policy
gradient method. In: 2021 American control conference. 2021, p. 1947–52.

[52] Zanon M, Gros S. Safe reinforcement learning using robust MPC. IEEE Trans
Automat Control 2021;66(8):3638–52.

[53] Gros S, Zanon M. Safe reinforcement learning with stability & safety guarantees
using robust MPC. 2020, arXiv, arXiv:2012.07369.

[54] Kamthe S, Deisenroth MP. Data-efficient reinforcement learning with probabilis-
tic model predictive control. CoRR 2017;abs/1706.06491.

[55] Zhang H, Li S, Zheng Y. Q-learning-based model predictive control for nonlinear
continuous-time systems. Ind Eng Chem Res 2020;59(40):17987–99.

[56] Buşoniu L. BR. Approximate dynamic programming and reinforcement learning.
Technical report. In: Interactive collaborative information systems. Studies in
computational intelligence, vol. 281, Berlin, Heidelberg: Springer; 2010.

[57] Drgoňa J, Picard D, Kvasnica M, Helsen L. Approximate model predictive
building control via machine learning. Appl Energy 2018;218:199–216.

[58] Kelly MP. Transcription methods for trajectory optimization: A beginners tutorial.
2017, arXiv, https://arxiv.org/abs/1707.00284.

[59] Fletcher R. Practical methods of optimization. 2nd ed.. Wiley-Interscience; 1987,
https://dl.acm.org/doi/book/10.5555/39857.

[60] Ernst D, Geurts P, Wehenkel L. Iteratively extending time horizon reinforcement
learning. In: Lavrač N, Gamberger D, Blockeel H, Todorovski L, editors. Proceed-
ings of the 14th European conference on machine learning. Dubrovnik, Croatia;
2003. p. 96–107.

[61] Chua K, Calandra R, McAllister R, Levine S. Deep reinforcement learning in
a handful of trials using probabilistic dynamics models. 2018, arXiv, http:
//arxiv.org/abs/1805.12114.

[62] Bhardwaj M, Handa A, Fox D, Boots B. Information theoretic model predictive
Q-learning. 2020, arXiv, https://arXiv.org/abs/2001.02153.

[63] Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, et al.
Playing atari with deep reinforcement learning. 2013, arXiv, http://arxiv.org/
abs/1312.5602.

https://arxiv.org/abs/1906.12189
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb9
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb9
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb9
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb9
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb9
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb10
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb10
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb10
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb10
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb10
http://arxiv.org/abs/1806.09460
http://dx.doi.org/10.1016/j.ifacol.2017.08.747
http://dx.doi.org/10.1016/j.ifacol.2017.08.747
http://dx.doi.org/10.1016/j.ifacol.2017.08.747
https://arxiv.org/abs/1904.12901
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb14
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb14
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb14
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb16
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb16
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb16
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb16
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb16
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb18
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb18
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb18
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb18
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb18
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb19
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb19
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb19
https://doi.org/10.1016/j.arcontrol.2020.09.001
https://doi.org/10.1016/j.arcontrol.2020.09.001
https://doi.org/10.1016/j.arcontrol.2020.09.001
http://dx.doi.org/10.1109/CDC.2015.7402396
http://dx.doi.org/10.1109/CDC.2015.7402396
http://dx.doi.org/10.1109/CDC.2015.7402396
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb22
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb22
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb22
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb22
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb22
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb23
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb23
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb23
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb24
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb24
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb24
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb24
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb24
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb27
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb27
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb27
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb27
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb27
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb28
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb28
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb28
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb28
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb28
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb29
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb29
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb29
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb29
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb29
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb30
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb30
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb30
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb30
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb30
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb31
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb31
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb31
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb32
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb32
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb32
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb32
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb32
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb34
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb34
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb34
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb34
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb34
https://arxiv.org/abs/1805.03777
http://dx.doi.org/10.1109/ENERGYCON.2018.8398836
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb39
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb39
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb39
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb39
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb39
http://dx.doi.org/10.1145/3276774.3276775
http://dx.doi.org/10.1145/3276774.3276775
http://dx.doi.org/10.1145/3276774.3276775
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb41
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb41
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb41
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb41
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb41
http://dx.doi.org/10.3390/app11083518
http://dx.doi.org/10.1145/3360322.3360998
https://arXiv.org/abs/1603.04467v2
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb45
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb45
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb45
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb45
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb45
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb46
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb46
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb46
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb46
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb46
http://arxiv.org/abs/1810.13400
http://arxiv.org/abs/2107.11843v1
http://arxiv.org/abs/2107.11843v1
http://arxiv.org/abs/2107.11843v1
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb49
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb49
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb49
http://arxiv.org/abs/2004.01430
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb51
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb51
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb51
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb52
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb52
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb52
http://arxiv.org/abs/2012.07369
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb54
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb54
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb54
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb55
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb55
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb55
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb56
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb56
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb56
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb56
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb56
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb57
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb57
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb57
https://arxiv.org/abs/1707.00284
https://dl.acm.org/doi/book/10.5555/39857
http://arxiv.org/abs/1805.12114
http://arxiv.org/abs/1805.12114
http://arxiv.org/abs/1805.12114
https://arXiv.org/abs/2001.02153
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602


Applied Energy 309 (2022) 118346J. Arroyo et al.
[64] Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A, et al. Mastering
Chess and Shogi by self-play with a general reinforcement learning algorithm.
2017, arXiv, http://arxiv.org/abs/1712.01815.

[65] Weber T, Racanière S, Reichert DP, Buesing L, Guez A, Rezende DJ, et al.
Imagination-augmented agents for deep reinforcement learning. 2017, arXiv,
http://arxiv.org/abs/1707.06203.

[66] Cupeiro Figueroa I, Drgoňa J, Helsen L. State estimators applied to a linear
white-box geothermal borefield controller model. In: Proceedings of the 16th
international conference of IBPSA. 2019.

[67] Vande Cavey M, Bonvini M, Helsen L. Comparison and application of different
state estimation techniques for control in buildings. In: Workshop on optimal
control of thermal systems in buildings using modelica. Freiburg, Germany; 2015.

[68] Åkesson J, Årzén KE, Gäfvert M, Bergdahl T, Tummescheit H. Modeling and
optimization with optimica and JModelica.org-Languages and tools for solving
large-scale dynamic optimization problems. Comput Chem Eng 2010;34:1737–49.

[69] Axelsson M, Magnusson F, Henningsson T. A framework for nonlinear model
predictive control in JModelica.org. In: Proceedings of the 11th international
modelica conference, vol. 118. Versailles, France. 2015. p. 301–10.

[70] Andersson J, Gillis J, Horn G, Rawlings J, Diehl M. CasADi – A software
framework for nonlinear optimization and optimal control. Math Program
Comput 2019;11(1):1–36.
16
[71] Sun F, Li G, Wang J. Unscented Kalman filter using augmented state in the
presence of additive noise. In: Proceedings of the IITA international conference
on control, automation and systems engineering. Zhangjiajie, China; 2009, p.
379–82.

[72] Wan EA, Merwe RVD. The unscented Kalman filter for nonlinear estimation. In:
Proceedings of the IEEE adaptive systems for signal processing, communications,
and control symposium. Alberta, Canada; 2000. p. 153–158.

[73] Brockman G, Cheung V, Pettersson L, Schneider J, Schulman J, Tang J, et al.
OpenAI Gym. 2016, arXiv, http://arxiv.org/abs/1606.01540.

[74] van Hasselt H, Guez A, Silver D. Deep reinforcement learning with double
Q-learning. 2015, arXiv, http://arxiv.org/abs/1509.06461.

[75] Technical Committee CENTC 156 ‘‘Ventilation for Buildings’’. EN16798. Energy
performance of buildings - Ventilation for buildings - Part 2: Interpretation of the
requirements in EN 16798-1 - Guideline for using indoor environmental input
parameters for the design and assessment of energy performance of buildings.
London, BSI: BSI; 2019.

[76] Barbato A, Bolchini C, Geronazzo A, Quintarelli E, Palamarciuc A, Pitì A, et
al. Energy optimization and management of demand response interactions in a
smart campus. Energies 2016;9:398.

http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1707.06203
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb68
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb68
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb68
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb68
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb68
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb70
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb70
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb70
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb70
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb70
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb71
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb71
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb71
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb71
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb71
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb71
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb71
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1509.06461
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb75
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb75
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb75
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb75
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb75
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb75
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb75
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb75
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb75
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb76
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb76
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb76
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb76
http://refhub.elsevier.com/S0306-2619(21)01593-2/sb76

	Reinforced model predictive control (RL-MPC) for building energy management
	Introduction
	Related work
	Disentangling the differences between MPC and RL
	Approach
	Terminology
	Solution method
	Optimality
	Computational effort
	Prediction horizon
	Use of models
	Partial observability

	Reinforced model predictive control (RL-MPC)
	Intuitive description 
	Formal description 

	Implementation
	The control problem in BOPTEST
	System identification
	MPC implementation
	RL implementation
	RL-MPC implementation

	Simulation results
	Discussion 
	Conclusion and future work 
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References


