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Abstract 19 

Recent years have witnessed an accelerating amount of atomic resolution structures of 20 

disease-associated amyloids. These studies have confirmed the polymorphic nature of 21 

amyloids but also the association of specific polymorphs to particular proteinopathies. These 22 

observations are strengthening the view that amyloid polymorphism is a marker for specific 23 

pathological subtypes (e.g. in tauopathies or synucleinopathies). The nature of this 24 

association and how it relates to the selective cellular vulnerability of amyloid nucleation, 25 

propagation and toxicity is still unclear. Here we provide an overview of the mechanistic 26 

insights provided by recent patient-derived amyloid structures. We discuss the framework 27 

organisation of amyloid polymorphism and how heterotypic amyloid interactions with the 28 

physiological environment could modify the solubility and assembly of amyloidogenic 29 

proteins. We conclude by hypothesizing how such interactions could contribute to selective 30 

cellular vulnerability.  31 

  32 
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Introduction 33 

Protein aggregation is associated to debilitating diseases that are steadily affecting 34 

more and more people worldwide. From major neurodegenerative disorders, such as 35 

Alzheimer’s and Parkinson’s, to type 2 diabetes mellitus and systemic forms, this group of 36 

pathological conditions is characterized by the aberrant deposition of proteinaceous ordered 37 

fibrillar aggregates, known as amyloids [1-3]. Amyloid fibrils are typically formed by 38 

homotypic polymerization of single proteins into intermolecular b-rich assemblies. However, 39 

despite being considered as the major hallmark of these diseases, the formation of amyloid 40 

fibril aggregates alone does not suffice to explain the apparent complexity behind their 41 

toxicity, progression and selectivity [4] nor their ability to form conformationally variable 42 

amyloid structures, known as amyloid polymorphs or strains, upon given conditions [5,6]. 43 

Combined to lessons learned from spatial transcriptomic and proteomic approaches [7,8], 44 

heterocomplex assemblies from functional and pathological amyloids [9*] and accumulated 45 

experimental data on the role of cofactors [10], it is becoming evident that the inter-46 

communication of amyloids with other molecules has a pivotal effect in their overall 47 

structure, function and derived pathology. 48 

Here, we review current advances in our understanding of amyloid structure and 49 

polymorphism. We review how specific interaction interfaces of amyloids can be associated 50 

to cross-interplay with other biomolecules and discuss the structural effects of the latter in 51 

amyloid polymorphism and conformational diseases. Finally, we describe recently proposed 52 

mechanisms suggested to promote amyloid-protein cross-interactions and explore their 53 

potential impact in explaining complex disease phenotypes such as selective vulnerability and 54 

amyloid disease progression. 55 

 56 

Framework amyloid polymorphism: a role for structural frustration and heterotypic 57 

interactions in polymorphism? 58 

The structure of amyloid cores contains at least one and often multiple short sequence 59 

segments of about 5 to 10 residues that are essential for amyloid assembly [11-16]. These 60 

aggregation-prone regions (APRs) are kinetic hot spots that drive amyloid assembly by virtue 61 
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of their high cross-b propensity, which results from their sequence composition favouring a 62 

combination of high b-sheet propensity, hydrophobicity and side chain H-bond potential 63 

[17,18], whereas recent efforts have uncoupled sequence aggregation propensity from 64 

solubility [19]. Confirming the essential role of APRs for amyloid assembly, single point 65 

mutations neutralizing their cross-b propensity completely abolishes protein 66 

amyloidogenicity [20-22]. APRs can also form amyloid fibrils as isolated peptides [23,24]. 67 

Before the recent advent of full-length amyloid core structures and their polymorphs, X-ray 68 

structures of APR peptides provided the first insights both into the atomic structure of 69 

amyloid fibrils as well as the potential of APRs to contribute to structural polymorphism [25]. 70 

As isolated peptides, APRs form cross-b sheets that pack against each other to form 71 

homotypic steric zippers. The observation of alternative homotypic steric zipper 72 

arrangements for the same sequence immediately suggested the possibility of “packing 73 

polymorphisms” whereas the presence of several APRs in one amyloidogenic protein 74 

suggested additional opportunities for “segmental polymorphism” whereby alternative 75 

amyloid fibrils can be formed by incorporating different APRs [26,27] (Fig. 1). Combining these 76 

structures with NMR constraints suggested that APRs can also form heterotypic steric zippers 77 

between different APRs suggesting a third mechanism of “combinatorial polymorphism” (Fig. 78 

1) [28]. The ability of short peptides to adopt amyloid-like structural conformations does not 79 

necessarily imply that they participate in a similar cross-beta architecture within the context 80 

of a full-length protein sequence.  However, similar evidence supporting a model of 81 

segmental polymorphism was recently derived also from analysis of full-length proteins. For 82 

example, it has been demonstrated that Pmel17, which participates in the formation of 83 

functional amyloid, can form fibril polymorphs in which different segments shape the fibril 84 

core [29], whereas the low-complexity domain of FUS has been shown to form fibrils with 85 

different core-forming segments, depending on which construct is used [30].  86 

The structures of full-length amyloid cores confirmed the packing promiscuity of APRs 87 

[31,32-33*,34-36,37*]. It also showed that the majority of steric interfaces involving APRs are 88 

constituted by heterotypic zippers between different APRs but also between APRs and non-89 

APR segments (Fig. 1). Importantly, amyloid core structures also revealed that APRs 90 

constitute only about one third of the protein sequence incorporated into the amyloid core. 91 

Given that only APRs have a high propensity to form cross-b assemblies, this raises the 92 
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question as to how the other two-thirds of the residues within the amyloid core contribute 93 

to amyloid fibril stability and whether and how this feeds into amyloid polymorphism and 94 

polymorphic bias in disease [38]. A thermodynamic analysis of amyloid polymorphs, using 95 

FoldX [39], revealed that despite their sometimes very different tertiary packing, distinct 96 

polymorphs share common sequence segments of high stability, namely those constituting 97 

the APRs [40] (Fig. 1). Thus, APRs are (1) essential for amyloid assembly, (2) contribute most 98 

to the stability and (3) constitute the primary stable regions independent of polymorphism. 99 

This is confirmed by structural inspection. First, the local RMSD is the lowest between APR 100 

segments of different polymorphs. Second, main-chain cross-b H-bonds between amyloid 101 

rungs adopt ideal geometries within APR segments while this is not the case elsewhere. This 102 

is reflected by the generally more unfavourable energetic profile assigned by force field 103 

calculations to residues outside APRs suggesting that these regions are often structurally 104 

frustrated in the amyloid conformation and require additional modes of stabilisation to be 105 

incorporated in the amyloid core [40]. For instance, aS fibril formation was recently proposed 106 

to progress through gradual segmental folding driven by APRs, but was shown to require 107 

stabilisation by phospholipids, a cross talk that was proposed to transfer from monomer to 108 

fibrils [41*]. 109 

The observation that the same segments of high cross-b structural propensity 110 

dominate the stability of different polymorphs suggests a framework model [42] for 111 

polymorphism (Fig. 1) in which intrinsically favourable cross-b segments drive amyloid 112 

assembly and whereby less favourable sequence segments around and between these drivers 113 

need to be accommodated to the cross-b conformation by additional stabilizing interactions. 114 

This suggests that stabilizing modifications or additional interactions within these regions of 115 

lower cross-b propensity (including elements of the fuzzy coat around the amyloid core) 116 

potentially play an important role in steering polymorphism [43]. This is in agreement with 117 

the observation that in vitro polymorphic propagation in simple aqueous buffers is not robust 118 

and likely not representative of pathology. Supporting this notion, Strohäker et al. recently 119 

showed that de novo formation of in vitro-prepared aS fibrils results in morphologically 120 

differentiated fibrils compared to in vitro fibrils seeded with brain extracts derived from PD 121 

and MSA patients [33*], with similar results shown for AA fibril preparations [44*], while tau 122 

fibrils grown in vitro using additives such as heparin result in polymorphic conformations that 123 
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are not related to those found in patients [32]. In addition, in vitro propagated amyloid fibrils 124 

from patient seeds do not necessarily conserve the original polymorphic conformation, e.g. 125 

for a-syn from MSA patient [45*]. It is noteworthy, however, that the latter fibril species were 126 

produced by somewhat inefficient seeding reactions, as indicated by long lag phases during 127 

the kinetics experiments, which potentially puts into question the extent to which the 128 

resulting fibrils represent initial morphologies found in the patient-derived material or those 129 

produced by spontaneous in vitro aggregation. Understanding polymorphic bias in disease 130 

therefore requires understanding the context-dependent covalent modifications and 131 

interactions associated to each polymorph. Both post-translational modifications [46*] and 132 

familial disease mutations [47] associated to specific neurodegenerative pathologies have 133 

also been found to favour specific polymorphs. In addition a plethora of undetermined 134 

density islands in cryo-EM structures clearly indicate amyloids interact with a varied host of 135 

molecules, including protein fragments and non-proteinaceous ligands and co-factors ([48] 136 

and references therein).  137 

 138 

Sequence specificity of lateral versus axial amyloid interactions 139 

Amyloids fibrils are anisomorphic structures having a cross-section of about 70-120Å 140 

and lengths up to several µm. While amyloid elongation occurs at the extremities of amyloid 141 

fibrils [49], lateral interactions have been shown to provide for surface-assisted catalysis of 142 

amyloid nucleation [50], demonstrating that self-interaction and assembly can be mediated 143 

both by axial as well as lateral amyloid interactions. In the same manner both axial and lateral 144 

amyloid interfaces can engage in heterotypic interactions, however the nature (and therefore 145 

sequence-specificity) as well as the dimensions (and therefore the availability) of both types 146 

of interaction surfaces is expected to be very different. The axial interaction interface at 147 

growing extremities presents a fibril cross-section consisting of the entire amyloid core 148 

sequence (Fig. 2). Templated amyloid elongation favours incorporation of identical sequences 149 

likely because registered side-chain stacking maximizes cross-b H-bond saturation between 150 

amyloid rungs. The design of structure-based inhibitors exploits these structural properties 151 

[51] and has allowed the development of inhibiting peptides and peptidomimetics against tau 152 

[52], aS [53], Ab [54], IAPP [55] and TTR aggregates [56]. Such inhibitors generally consist of 153 
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modified scaffolds embedding a homologous sequence containing point mutations that still 154 

allow to dock against the fibril tip but inhibit further growth [57-59]. These examples also 155 

highlight a certain degree of tolerance for mutations as single inhibitors targeting Ab APRs 156 

were also found to interfere with tau and IAPP aggregation simultaneously [60,61*]. By the 157 

same token, amyloid cross-seeding and co-assembly is also found to be favoured by sequence 158 

homology [9]. A series of recent biophysical studies have recapitulated the importance of axial 159 

interactions for several amyloid-forming proteins [62-64]. Determined three-dimensional 160 

structures of amyloid heteromeric fibrils, such as in the case of the RIP1/RIP3 and Ab40/Ab42 161 

heterocomplexes [65,66**], as well as structural analyses of synthetic co-assembled 162 

nanofibers [67] further validate axial heterotypic assembly. A systematic thermodynamic 163 

exploration of amyloid assembly confirmed the sequence-specificity of amyloid tip 164 

interactions but also revealed context-dependent structural rules for mutational tolerance 165 

showing how these interactions can affect amyloid protein solubility, the kinetics of amyloid 166 

aggregation and amyloid morphology [68,69]. This suggests that amyloid propensity and 167 

conformation can be shaped by amyloid tip-mediated heterotypic interactions with its 168 

surrounding proteome, a notion that was experimentally verified in terms of tau and Ab 169 

aggregation [68,69].  170 

While they provide sequence-specific modes of interaction, the ratio of axial versus 171 

lateral interaction surface decreases rapidly with fibril growth. Therefore, axial interactions 172 

are probably more important at early stages of amyloid nucleation and assembly, while lateral 173 

interactions probably dominate once larger fibrils are formed. Lateral surfaces do not provide 174 

the sequence information displayed at amyloid tips. They are formed by the external surface 175 

of the fibril, forming homogeneous longitudinal grooves and ridges along the fibril axis the 176 

periodicity of which is determined by the helical pitch of the fibril (Fig. 2). This periodic layout 177 

of shape, charge and hydrophobicity mediates protofibrillar assembly and provides the 178 

substrate for interaction with various dyes reporting amyloid structure [70]. Lateral surfaces 179 

also allow stabilizing the amyloid fibril by interaction with polyanionic molecules such as 180 

heparin or polyphosphates [71]. In addition, it has been proposed that small structural 181 

imperfections along the length of the fibril might provide additional interaction points [72]. 182 

Finally, CryoEM structures often display unresolved densities at their surfaces, further 183 

illustrating their propensity to interact with their environment [48]. Although the relative 184 
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importance of axial versus lateral interactions is far from resolved, evidence therefore suggest 185 

that lateral interactions are probably more promiscuous. Diverse structural polymorphs, 186 

formed by different protein precursors, were shown to commonly cross-interact with several 187 

proteins found in biological fluids, in contrast to less ordered or amorphous aggregates 188 

[73**]. While Ab fibril surfaces mediate secondary self-nucleation, it also facilitates 189 

templating of S100A9 amyloid formation [74], whereas a similar sensing mechanism has been 190 

proposed to modulate YAP activity upon conversion of PMEL functional amyloids to 191 

melanoma disease [75]. Blocking such surface interactions has also been used as a strategy 192 

to interfere with secondary nucleation of aggregating proteins. An engineered b-wrapin 193 

construct was shown to bind and inhibit the secondary nucleation of a-synuclein [53]. TTR 194 

[76] and BRICHOS [77] cross-interactions, as well as surface lateral arrangements between 195 

variant protofibrils [78] inhibit secondary nucleation of Ab. However, TTR has also been linked 196 

to primary nucleation inhibition [76], indicating that despite recent progress, the overlapping 197 

importance of these different amyloid binding modes remains unclear. 198 

 199 

Amyloid interactions and co-aggregation in the cell 200 

Single-cell transcriptomics and mass spectrometry studies are starting to provide 201 

insights towards the molecular context in which amyloid aggregation occurs in cells and 202 

tissues and with what proteins they interact and/or co-aggregate [79*,80**]. These findings 203 

suggest several non-exclusive mechanisms that could contribute to selective cellular 204 

vulnerability. First, context could be provided by an association-by-function mechanism for 205 

co-aggregation (Fig. 3A), whereby proteins that directly interact with the amyloidogenic 206 

protein have a higher probability to be entrapped in fibrillar inclusions. Ab-cross-reactive 207 

amyloidogenic proteins linked to positive regulation of AD progression have been extensively 208 

documented as major components of amyloid plaque deposits [81]. Such a mechanism was 209 

also proposed for food amyloids in the case of hen egg-white proteins [82]. A particular case 210 

of co-aggregation by proximity consists in the association of elements of the proteostatic 211 

machinery with protein inclusions, including chaperones but also ribosomal and proteasomal 212 

components [83], although the heterotypic activity of the latter with amyloids has also been 213 

related to the generation of toxic oligomeric species [84]. The association of chaperones to 214 
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amyloids can be a protective mechanism [85] but has also been associated to inducing 215 

proteostatic collapse of metastable proteins (Fig. 3B) [86]. The proteomes of neurons and 216 

other brain cell populations seem to be enriched in proteins that are meta-stable, meaning 217 

that their physiological expression levels exceed their intrinsic solubility [87*]. Their native 218 

state is therefore less stable than the amyloid state and needs to be kinetically controlled. 219 

Chaperones are crucial for this process and their depletion e.g. by aggregation of an 220 

amyoidogenic protein could therefore result in the collapse of metastable sub-proteomes, 221 

thereby contributing to selective vulnerability in ALS and AD [88,89].  222 

Heterotypic interactions are also considered a major force of the “stickers and 223 

spacers” and “scaffold-client” models proposed to drive liquid-liquid phase separation, (LLPS) 224 

as such intermolecular interactions can mediate the structural and dynamical properties of 225 

biomolecular condensates [90]. Droplet conversion was also shown to be promoted by 226 

heterotypic interactions induced by amyloidogenic peptide additives [91]. In a turn of events, 227 

however, phase separation has also been proposed to facilitate heterotypic sequestration of 228 

amyloidogenic proteins, although this mechanism could also potentially explain the molecular 229 

entrapment of co-interactors in amyloid deposits (Fig. 3C) [92,93*]. An in-depth analysis using 230 

network-free stochastic modeling indicated that the balance of heterotypic multicomponent 231 

LLPS condensates and their transition to growing large aggregates can be described in large 232 

by thresholds set by a solubility product constant [94]. 233 

A major driver of the initiation of age-related amyloid diseases is believed to be the 234 

waning of proteostatic control especially the ability of cells to degrade (misfolded) proteins 235 

with age [95]. Once susceptible proteins start to aggregate the above-mentioned mechanism 236 

likely all contribute to the selective cellular propagation and toxicity of amyloids. But can 237 

interacting and co-aggregating molecules also contribute to the selective susceptibility of 238 

amyloid initiation? And can sequence-specific amyloid interactions affect the intrinsic 239 

propensity of amyloidogenic proteins to assemble into amyloids? Recently it was shown that 240 

Sup35 prion variants utilize heterotypic interactions as a conformational mechanism to 241 

regulate species-specific transmissibility barriers [96**]. Similarly, IAPP is now considered a 242 

co-trigger factor in AD due to its homology to Ab [97], whereas the ability of the otherwise 243 

functional CsgA subunit to accelerate aS amyloid formation implies a role for the gut 244 

microbiome in Parkinson’s disease progression [98]. Perhaps what is the most representative 245 
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example of targeted heterotypic interactions, however, is the case of the evolutionary shaped 246 

co-aggregating signaling necrosome complex (Fig. 3D) [65]. This amyloid-complex driven 247 

pathway has even been re-purposed by sequence-dependent viral counterparts in an effort 248 

to promote viral infectivity (Fig. 3D) [99**]. Utilizing a similar sequence-driven mechanism, 249 

we showed that the sequence promiscuity of APRs from major amyloidogenic proteins, such 250 

as Ab and tau, increase cellular vulnerability to aggregation spreading by supporting 251 

heterotypic interactions with homologous sequence hotspots found in proteins with pivotal 252 

roles in AD progression (Fig. 3E) [68,69]. Together, the above indicate that heterotypic 253 

interactions contribute both to cause and effect of amyloid aggregation. Sequence-specific 254 

amyloid interactions can both influence the solubility and the kinetics of amyloid assembly as 255 

well as being co-precipitated by the aggregation process itself. Finally, heterotypic amyloid 256 

interaction can affect the structure of mature amyloid fibrils [68,69]. 257 

Conclusions 258 

The increasing amount of disease-associated amyloid structures has provided 259 

molecular detail to the structural principles determining amyloid polymorphism and has 260 

confirmed polymorphic bias in different tau and a-synucleinopathies, but also in other 261 

amyloid diseases. Although much still needs to be learned on the role of polymorphism and 262 

to what extent it is a cause or an effect in disease, it nevertheless remains that polymorphs 263 

are the result of their interaction with their environment. Structural inspection of amyloid 264 

structures reveals that amyloid cores are not uniformly stable but that they consist of 265 

segments with high cross-b propensity interspersed with segments that need to be 266 

accommodated to the cross-b backbone by additional stabilising interactions. This can be 267 

achieved by a variety of factors such as post-translational modifications, familial disease 268 

mutations, binding to other proteins or cofactors that can all contribute to polymorphic 269 

selection. Heterotypic interactions can occur both at the amyloid extremities as well as on 270 

their lateral surfaces and can be both amyloid sequence-specific or sterically determined. 271 

These interactions have been shown to affect the solubility of amyloid proteins, the rate and 272 

mechanism of amyloid assembly as well as amyloid structure. The fact that those contextual 273 

elements are absent in vitro probably explains the inability of in vitro seeding to accurately 274 

perpetuate disease polymorphs but also the less efficient seeding potential of seeds 275 

generated in simple aqueous buffers. Conversely it could be hypothesized that cell- and 276 
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context-specific interactions of amyloids in vivo could not only direct polymorphic bias but 277 

also that once formed propagated seeds would be entropically primed to interact more 278 

efficiently with specific cellular factors in successive vulnerable cells. It also implies that, in 279 

order to maintain polymorphic bias, these interactions need to be present in successive cells 280 

(Fig. 4). Together this could explain the disease-specific tropism of different polymorphs, as 281 

well as cellular vulnerability patterns [31-37].  282 
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 626 

Figure Legends 627 

Figure 1. Proposed models for amyloid polymorphism and the role of heterotypic 628 

interactions in each process. Packing and segmental polymorphism were based on the early 629 

findings on structural polymorphism produced by a single (e.g. the polymorphic KLVFFA APR 630 

from Ab) or multiple APRs derived from a single amyloid protein (e.g. multiple TDP43-derived 631 

APRs form distinct polymorphs). Different conditions (pH, temperature etc) or stabilising 632 
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cofactor heterocomplexes (for instance metals, structural waters, poly-ions etc) could 633 

contribute to the derived polymorphic layouts. In combinatorial polymorphism, despite the 634 

role of cofactors, it was suggested that different APRs may also form heterotypic steric zipper 635 

interfaces that promote polymorphism, a notion that can be seen in isolated structural 636 

segments of full-length amyloid fibrils. During framework polymorphism, APRs act as 637 

stabilising nuclei that promote the amyloid fold, whereas surrounding frustrated regions steer 638 

polymorph formation based on heterotypic stability with cofactors. Identified cavities or 639 

unidentified EM densities in the periphery of cryoEM amyloid structures support the 640 

structural and stabilising importance of amyloid-cofactor heterocomplexes. 641 

Figure 2. Levels of specificity of potential amyloid interfaces. Lateral interaction sites formed 642 

along the surface of amyloid fibrils as fragmentation sites, or as grooves and ridges shaped by 643 

the pitch of the filament, can promote promiscuous coupling to other biomolecules. On the 644 

contrary, interactions that take place at the tip of amyloids are considered to be limited by 645 

the higher specificity required and imposed by stacking and packing interactions with the 646 

entire amyloid core sequence. 647 

Figure 3. Proposed model mechanisms of heterotypic amyloid assembly and their variable 648 

specificity. (A) Proximity-induced co-assembly has been proposed as a loss-of-function 649 

mechanism of co-aggregation. This includes proteins that are physiologically related in 650 

function to amyloid proteins (e.g. co-aggregation of Ab to Reelin [100]), as well as a collapse 651 

of the cellular proteostatic quality control machinery (PQC). (B) PQC deterioration has also 652 

been linked with a shift in the delicate equilibrium of supersaturated proteins that can induce 653 

massive aggregation by widespread collapse. (C) The formation of multicomponent 654 

condensates has been proposed as a precursor step to amyloid aggregation, but also as a 655 

mechanism of heterotypic buffering against aggregation prone cellular components. (D) 656 

Sequence-specific mechanism of programmed necrosis involves the formation of heterotypic 657 

RIPK1/RIPK3 amyloid complexes. Homologous viral counterparts have been evolutionarily 658 

shaped to override necrosome formation, thus ensuring host and viral survival. (E) Cell-659 

specific protein components that harbour sequence stretches with high sequence homology 660 

to APRs of amyloid proteins can co-aggregate and promote cellular susceptibility to amyloid 661 

spreading. 662 
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Figure 4. Polymorphic bias as a mechanism promoting cellular susceptibility. The templating 663 

bias that structural polymorphs exhibit explains how certain cellular types sharing similar 664 

intrinsic polymorphic components are particularly vulnerable to amyloid spreading of 665 

entropically primed seeds (left and right column) and why particular polymorphs are tethered 666 

to certain forms of disease (seeding A to pathology A, seeding B to pathology B). This also 667 

precludes that the polymorphic content of cells may also potentially capture and shape 668 

unspecific early oligomeric forms to promote an additional layer of biased spreading that 669 

further enhances cellular vulnerability and distinct pathologies (middle column) at a second 670 

level. 671 

 672 
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