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Radial anomalous diffusion coefficients are among the largest sources of uncer-
tainty in mean-field plasma-edge codes such as SOLPS-ITER. These coefficients are
machine, scenario, and space dependent, thus hampering the predictive and inter-
pretive capability of these codes. In fact, modelers usually adjust these coefficients
manually, based on expert judgment or on large, computationally expensive, parame-
ter scans. Matching data from various diagnostics, each with their own experimental
uncertainties, additionally complicates the problem of finding a good parameter set.
In addition, standard nonlinear regression techniques have shown to become pro-
hibitive for expensive plasma edge simulations with many unknown parameters, as
gradient calculation was based on finite differences. In this paper, we apply Algorith-
mic Differentiation (AD) as an efficient and more accurate alternative for gradient
calculation in large, continuously developed codes as SOLPS-ITER. Additionally,
the lack of uncertainty information and danger of data overfitting, key limitations of
regression techniques, are overcome by combining data and uncertainties from dif-
ferent diagnostics in a Bayesian framework. We implement for the first time such a
Bayesian inference framework into SOLPS-ITER, using gradient-based optimization
with gradients obtained through tangent AD to find theMaximum a Posteriori (MAP)
values of the parameters. The recently developed � turbulence model is employed to
limit the number of unknown parameters compared to full spatial profiles of diffu-
sion coefficients. The Bayesian MAP estimation is compared to standard regression
techniques on a small-scale tokamak. We adopt fictitious experimental data obtained
from a reference SOLPS-ITER solution with artificial measurement noise.
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1 INTRODUCTION

Modeling of plasma-edge transport through mean-field codes such as SOLPS-ITER [1,2] is essential for interpretation of current
day experimental devices. To constrain the simulations, certain model inputs can be directly measured from experiment, for
example plasma density and temperature at the outer mid-plane (OMP), input power or gas puff strength. Other required inputs
instead are a consequence of modeling approximations or lack of knowledge on the real physical process, and are not related
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to a measurable quantity, thus introducing large uncertainties in modeling results. Examples of such inputs are the ad-hoc dif-
fusion coefficients for the perpendicular anomalous transport, or boundary conditions at the artificial interface between plasma
and void regions. Furthermore, these inputs differ for each device, operational regime and spatial location. It is through expert
knowledge of the modeler, and more often parameter scans, that these inputs are manually adjusted in order to match experi-
mental profiles [3–5]. Because plasma-edge simulations are expensive, these procedures easily become cumbersome. In addition,
it is the modeler’s arbitrary decision to stop the procedure when visual inspection of the agreement between simulated and
experimental profiles is satisfying.
To alleviate these problems, a nonlinear least-squares regression technique was implemented earlier in a previous version of

SOLPS, to automatically adjust spatially constant anomalous diffusion coefficients and boundary conditions to match experi-
mental data [6,7], thereby introducing an objective metric to compare simulation results and experimental data. This is already a
significant step forward compared to manual tuning of the inputs together with visual inspection of results, but the procedure
incurs three main drawbacks: first, the high computational cost of finite differences (FD) used for the gradient calculation in
Ref. 6; second, the lack of a consistent integration of uncertainties in parameters, model, and measurements in basic nonlinear
least-squares regression techniques as the one implemented in Ref.6; and third, the risk of overfitting inherent in such techniques.
Regarding the first drawback, FD computation of the full gradient comes at a cost proportional to the number of fitted param-

eters, as each has to be perturbed separately, thus limiting the application to small parameter sets. In fact, in Ref. 7 a three-fold
increase in computational time was found when two additional parameters were introduced to improve fit results. An efficient
and more accurate alternative for derivative calculation is the adjoint method, already applied in divertor design and param-
eter estimation based on edge codes [8–10], allowing gradient computation at a cost independent of the number of unknown
parameters. For complex, well established and continuously developed codes such as SOLPS-ITER, an analytical derivation
and manual implementation of the adjoint equations is unfeasible and prone to errors. Therefore, we resort to Algorithmic Dif-
ferentiation (AD) [11], allowing efficient and accurate semi-automatic gradient computation either in tangent or adjoint mode.
Applications of AD spans different domains, from aerodynamic shape optimization [12], over ice sheet modeling [13], to stellarator
coils optimization [14].
The second drawback of regression techniques, the absence of any uncertainty information, can effectively be overcome with

Bayesian inference methods [15], which in the past decades gained more and more popularity in several research fields, from
fluid dynamics [16,17] to nuclear fusion [18–20]. In fact, Bayesian inference inherently accounts for experimental, modeling, and
numerical uncertainties, providing a detailed description in terms of probability distribution of estimated parameters and their
correlations, as well as uncertainty on simulation results, indispensable for model validation.
Moreover, the risk of overfitting, a relatively common problem for regression techniques, can also be avoided with Bayesian

analysis. In fact, it is generally found that introducing more parameters allows reducing the fitting error, even if such parameters
are physically irrelevant. To this end, Bayesian evidence provides a formal measure to compare competing models and assess
their capability in describing experimental data, automatically penalizing for model complexity.
In this paper, we apply for the first time Bayesian inference methods in plasma-edge mean field codes, for the generally

common case of estimating anomalous transport coefficients. We adopt the tangent mode of AD for an accurate gradient com-
putation. To keep the parameter set limited, we do not estimate such coefficients directly, but we employ the recently developed
�-model for interchange turbulence [21], which allows retrieving spatially-dependent transport coefficients using fewer modeling
parameters [22].
In Section 2 we describe the parameter estimation framework developed, while in Section 3 we give a brief overview of the

�-model equations. Afterwards, Section 4 provides information on the test case used for demonstrating the inference method,
whose results are then discussed in Section 5. Finally, Section 6 closes the paper with conclusions and perspective for future
work.

2 PARAMETER ESTIMATION FRAMEWORK

Parameter estimation, also known as model calibration, can be cast into an optimization problem, where a scalar performance
indicator  (�, q), referred to as cost function, is minimized. This cost function depends on the uncertain parameters �, and on
the state variables q. The uncertain parameters are a subset of the model input parameters, such as anomalous radial transport
coefficients or boundary conditions. The state variables are instead the set of plasma and neutral quantities, such as density,
temperature, and velocity, solved from the set of plasma transport equations and their boundary conditions, indicated as state
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equations B(�, q) = 0. Formally, the cost function is subject to the condition that state equations are satisfied, therefore the
problem can be formulated as a PDE-constrained optimization problem:

min
�,q

 (�, q)

s.t. B(�, q) = 0.
(1)

Since the state equations uniquely determine the state q(�) for a fixed set of uncertain parameters through the solution of the
state equations, B(�, q(�)) ≡ 0, the problem can be expressed in terms of a reduced cost functional ̂ (�) ≡  (�, q(�)). The last
expression implicitly contains the dependence on state variables, and the optimal solution is now the value of � minimizing ̂ .
Moreover, further constraints can be included in the optimization, involving conditions on state or uncertain parameters. For the
purpose of this work, only parameter constraints are relevant, for example imposing positiveness of diffusion coefficients. The
final problem is thus a bound-constraint optimization:

min
�

̂ (�)
s.t. �L ≤ � ≤ �U ,

(2)

where �L and �U are some lower and upper bounds respectively.
Gradient-based optimization algorithms with line search can solve the problem in Eq.2, converging to a local optimum [23].

The remaining missing information is therefore a proper definition of the cost function and a way of calculating its gradient with
respect to the uncertain parameters.

2.1 Regression cost function
The simplest way of defining the cost function for parameter estimation is using an L2-norm of the differences between code
results and experimental data [6,10], thus effectively performing a (weighted) least squares minimization. The reduced cost
function can therefore be written in a general form as:

̂ (�) =
∑

l

∑

q

1
Ωl ∫

Ωl

(

wl,q

q̄l2

(

q(�) − qEXP
)2

2

)

dΩ. (3)

In Eq. 3 summation over l indicates different spacial locations, for example OMP or target, while summation over q indi-
cates different state variables, for example plasma density ne or electron temperature Te. The superscript EXP indicates the
experimental measurement. Ωl is the domain over which the integration is performed and wl,q are weighting factors. Finally,
q̄l = 1∕Ωl ∫Ωl q

EXPdΩ is the average experimental value of q over domain Ωl used to normalize the terms in the cost function.

2.2 Bayesian MAP cost function
Bayesian analysis is a complex topic and for brevity, we introduce here only the necessary concepts needed for this work, with
a deeper analysis carried out for example in Ref. 15.
The key result of Bayesian inference is the posterior probability distribution �(�|,) over the parameter space, defined

from Bayes’ theorem as
�(�|,) =

(|�,)�(�|)
�(|)

, (4)

where � is the set of uncertain parameters as described above and  is the experimental data set available for the analysis, of
which qEXP is a specific measurement. Furthermore,  is the model considered for the analysis, which for this work is the
SOLPS-ITER physics model described in Section 4 that includes the interchange turbulence model described in Section 3. In this
expression (|�,) is called the likelihood function, �(�|) the prior distribution and �(|) the evidence. We describe
now each of them separately, omitting the symbol for simplicity.
The likelihood function (|�) is defined as the probability of observing the data given the model and parameter set. In

other words, it is a measure of how good the model  with parameters � explains the data set . The great advantage of
Bayesian analysis is that the likelihood explicitly accounts for the prediction error � due tomeasurement, modeling and numerical
uncertainties. In this work, we assume an additive error of the form

qEXP = q(�) + �. (5)
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While any error distribution is allowed in the Bayesian framework, the standard assumption for � is that of a Gaussian distribution
with mean � and standard deviation �i, where i indicates a single element of the error vector �. When considering N data
points, the likelihood takes the following notation:

(|�) = 1
√

(2�)N det Σ
exp

(

−1
2
zTΣ−1z

)

, (6)

where z = � − � and Σ is the covariance matrix. The likelihood form in Eq.6 allows to account for error correlation, in which
case off-diagonal elements of the covariance matrix will take non-zero values. In this work however, we limit ourselves to the
case of uncorrelated error, thus Σ will be a diagonal matrix with Σii = �2. Additionally, one can opt for a multiplicative error
form instead of the additive one in Eq. 5. In this case, the likelihood models a relative, instead of an absolute error, and the
diagonal elements of Σ take the form Σii = �2i = (�qEXPi )2, with � a constant standard deviation [17]. It should be noted that
the error parameters � and �i might be known in advance, for example when the only error is an experimental measurement
uncertainty that is well characterized. In case they are unknown, or if model uncertainty is expected on top of the experimental
one, these parameters should be included in the vector � and estimated in the inference procedure. Since they do not belong to
the set of model inputs, they are called nuisance parameters.
The prior distribution �(�) describes the knowledge on parameters in the absence of observed data. It therefore relies on the

researcher’s knowledge and on physical arguments, for example positiveness of diffusion coefficients. If little or no information
is available, the prior should be an uninformative uniform distribution, while if some information is available, it can take the
form of a Gaussian distribution, with a standard deviation representing the confidence in such information.
Finally, the evidence �() describes how likely a model explains the data, regardless of the parameter �. The evidence

therefore allows comparison of different competing models, the one with higher evidence being preferred. By applying the
marginalization rule on the denominator in Eq.4, we obtain an expression for the evidence, that depends on likelihood and prior:

�() = ∫ (|�)�(�)d�. (7)

It is clear that, by integrating over the entire parameter space, the evidence is simply a normalization constant in Eq.4.
Evaluation of the full posterior distribution is a complex and computationally demanding task, especially the evidence integral.

However, it can be greatly simplified if we only search for the posterior mode �̂, or maximum a posteriori (MAP), namely the
� value maximizing the posterior distribution:

�̂ = argmax
�

�(�|). (8)

Given that the evidence �() is a constant with respect to �, it can be left out of the MAP computation, which is therefore
obtained by minimizing a reduced cost function of the form

̂ (�) = − log [(|�)�(�)] , (9)

where we employ the logarithm to reduce numerical errors that may arise in the likelihood computation.
MAP estimations are effectively simple butmay be inaccurate if the posterior is multimodal. For a large number of independent

data points instead, the posterior mean tends towards a normal distribution, as stated by the central limit theorem. In this case, the
MAP is well defined and one can additionally apply the Laplace approximation to approximate the full posterior as a Gaussian
distribution around the MAP [24].

2.3 Gradient computation
Asmentioned in the introduction, AD is an efficient andmore accurate alternative to FD for computing the cost function gradient.
The main characteristics and advantages of AD are briefly introduced hereafter, while more details can be found in Ref. 11.
The starting principle of AD is that any complex function or computational model F can be split into elementary operations

fi (sum, multiplication, power, etc.), whose derivative is simple and well-known. Formulated in mathematical form, we have
the function F ∶ ℝn → ℝm, which evaluates the output vector Y ∈ ℝm from the input vector X ∈ ℝn as a composition of p
elementary operations

Y = F (X) = fp◦fp−1◦⋯◦f1(X). (10)
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It is then straightforward to evaluate the Jacobian J of F applying the chain rule

J =

⎡

⎢

⎢

⎢

⎣

)y1
)x1

⋯ )y1
)xn

⋮ ⋱ ⋮
)ym
)x1

⋯ )ym
)xn

⎤

⎥

⎥

⎥

⎦

=
[

f ′p◦fp−1◦⋯◦f1(X)
]

×⋯ × f ′1(X) = f
′
p(Xp−1) ×⋯ × f ′1(X). (11)

In Eq.11, f ′i are Jacobian matrices of the elementary operations andXi = fi(Xi−1) are the intermediate variables obtained at the
elementary operation i. Note also that each operation × is an expensive matrix-matrix multiplication. However, if we multiply
Eq. 11 to its right by a perturbed input vector Ẋ = ej , with all zeros except for a one at element j, we obtain the directional
derivative Ẏ :

Ẏ = J × Ẋ = f ′p(Xp−1) × f ′p−1(Xp−2) ×⋯ × f ′1(X) × Ẋ =
[

)y1
)xj

)y2
)xj

⋯
)ym
)xj

]T

. (12)

Now all the × operations are cheaper matrix-vector multiplications, going from right to left, and the resulting vector Ẏ is an
entire column of the Jacobian, i.e. the sensitivity of each output with respect to the perturbed input j. This is effectively what
the tangent or forward mode of AD produces.
Alternatively, if we transpose Eq. 11 and multiply to its right by a perturbed output vector Ȳ = ej , we obtain the adjoint

directional derivative X̄:

X̄ = J T × Ȳ = f ′1(X)
T × f ′2(X)

T ×⋯ × f ′p(Xp−1)T × Ȳ =
[ )yj
)x1

)yj
)x2

⋯
)yj
)xn

]

. (13)

Again, the matrix-matrix multiplications of Eq.11 have been substituted by cheaper matrix-vector multiplications, and the result
X̄ is an entire row of the Jacobian, i.e. the sensitivity of a single output with respect to all inputs, also known as adjoint gradient.
This second mode of AD is called adjoint or reverse mode. It must be underlined that none of the above expressions provide an
analytical derivative of F , but only local values of the directional derivative at a given input vector.
Clearly, the twoADmodes have different pros and cons, the best choice depending on the application. Tangent AD is preferable

when the number of outputs m is large compared to that of the inputs n. In this case, the full Jacobian computation is performed
by repeating n-times Eq.12 , perturbing each time a different element of the input vector, thus evaluating the Jacobian column-by-
column. Since the computational cost of Eq.12 is roughly the same as of evaluating F , the total cost for the Jacobian calculation
is CPU (J )TGT ∼ n ⋅CPU (F ), scaling proportionally to the number of input parameters. This is about the same cost as required
by FD, with the major advantage that AD does not suffer from truncation errors and is exact to machine precision. A simple
example demonstrating this is shown in Table1 for the functionF (x) = cos(x)+x2 (we omit the capital letter for input and output
vectors). The first column displays a possible computational model for F (x), each row corresponding to an elementary operation
involving one or more intermediate variables. The second column shows instead the tangent AD code, starting from the input
vector perturbation ẋ0 = 1.0. By substituting the dotted variables in the last row, one obtains ẏ = − sin(x0)ẋ0 + 2x0ẋ0, which
exactly equals the analytical directional derivative. The same argument holds for adjoint AD, shown in the third column of Table
1 , which starts with the output vector perturbation and, substituting the bar variables in the last row, yields x̄0 = 2x0ȳ−sin(x0)ȳ.
In contrast, using a finite, non-zero step size ℎ to compute the derivative using forward FD introduces an approximation of the
analytical derivative F ′(x) ≈ F (x+ℎ)−F (x)

ℎ
, which suffers from a truncation error. Furthermore, it is also evident that the tangent

AD code performs roughly the same number of operations as the original code, justifying the computational cost mentioned
above.

TABLE 1 Example illustrating the use of AD to differentiate a function calculating F (x) = cos(x) + x2

Original code Tangent AD code Adjoint AD code

x0 = x ẋ0 = 1.0 ȳ = 1.0
x1 = cos(x0) ẋ1 = − sin(x0)ẋ0 x̄1 = ȳ
x2 = x20 ẋ2 = 2x0ẋ0 x̄2 = ȳ
y = x1 + x2 ẏ = ẋ1 + ẋ2 x̄0 = 2x0x̄2

x̄0 = x̄0 − sin(x0)x̄1
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On the other hand, adjoint AD is more efficient whenmany inputs and few outputs are present, n ≫ m. In fact, the full Jacobian
can be evaluated row-by-row by performing Eq.13 m-times, each one perturbing a different element of the output vector. The
computational cost of Eq.13 depends on the AD tool, and partially on the complexity of F and user choices, ranging typically
from 3 to 10 times the cost of F . Therefore the full Jacobian is retrieved at a cost CPU (J )ADJ ∼ 3 − 10 ⋅ m ⋅ CPU (F ), and is
roughly independent of the number of input parameters.
In the context of optimization, the number of outputs is essentially one, namely the cost functional, and for the present work

only few uncertain parameters will be considered, see Section 4 below. Therefore, tangent AD mode is still more efficient than
adjoint AD for calculating the gradient. To do so, we employ the open source AD tool TAPENADE [25], whose applicability on
SOLPS-ITER was recently proven [26].

3 INTERCHANGE TURBULENCE MODEL

The interchange turbulence model derived in Ref. 21 has been adapted for SOLPS-ITER by time and Favre averaging of the
Braginskii equations. The full derivation of the model equations for SOLPS-ITER is not within the scope of this work and can
be found in these proceedings [27]. Here, we only give a brief overview.
The model foresees a new PDE, describing the rate of change of the turbulent kinetic energy �, solved together with the other

plasma transport equations:
)ni�
)t

+ ∇ ⋅ (�� −D�∇�) = G� − S�,L. (14)

The transport of � is due to both convection with the mean-field particle flux � and turbulent transport, assumed diffusive
and driven by � gradients, with diffusion coefficient D� = CD�

niD⟂ (ni is the ion density, D⟂ is the radial particle diffusion
coefficient andCD�

is a multiplier). We also assume a diffusive anomalous flux in the mean-field particle flux � = nV∥b−D⟂∇n,
where D⟂ is made of two components, one related to turbulent transport DE×B and the other acting as a lower limit set by
classical transport Dmin:

D⟂ = DE×B +Dmin = CD�L
√

�
mi
+Dmin. (15)

In the expression above we already made use of the same relationship as adopted in Ref. 22, which linksDE×B to the local value
of �, automatically retrieving spatially dependent diffusion coefficients. The remaining factors are the global gyro radius �L (set
to the OMP separatrix value), the ion mass mi and a constant multiplier CD.
The source terms on the right hand side of Eq. 14 describe turbulence interchange production G� and turbulence (linear)

dissipation S�,L:

G� =
[

(Ti + Te)DE×B∇ni +
2
3
ne�e,E×B∇Te +

2
3
ni�i,E×B∇Ti

]

⋅ ∇(ln(B2)), (16)

S�,L = CLni�
cs

Lconn
. (17)

In the expressions above cs is the plasma sound speed, Lconn is the connection length and CL is a constant multiplier. More-
over, the anomalous electron and ion heat diffusivities are assumed proportional to the turbulent particle diffusion coefficient
�e∕i,E×B = C�,e∕iDE×B , where C�,e∕i are constant multipliers [28]. The production term in Eq. 16 inherently accounts for self-
saturation and ballooning, typical of plasma turbulence, as recently shown for COMPASS [22]. In contrast to the model used in
Ref. 22 however, we now have additionally included anisothermal effects in the interchange drive based on recent progress in
the �-model development using the TOKAM2D turbulence model [28]. The dissipation term is unchanged compared to Ref. 22.
However, in Ref. 27 the modeling of this sink term is further refined by reformulation as a fast parallel transport term of �, which
improves consistency with observations from 3D turbulence simulations.
Additionally, in this work we cut-off at zero the lower limit of range of values of the net sourceG� −S�,L. While theoretically

the net source should be allowed to become negative, we found that this leads to large residuals in the high field side (HFS)
region, where � is reduced to extremely low values, and convergence cannot be guaranteed. We argue that such behavior can
be overcome when the sink term, always negative for this setup, is reformulated as parallel transport term, becoming positive
at the HFS [27]. With the imposed cut-off, solutions up to machine precision are obtained, with some exceptions detailed in the
results Section 5.
In summary, this model self-consistently accounts for the effect of plasma interchange turbulence on radial transport, employ-

ing only a limited set of new parameters, CD, CL, CD�
, C�,e∕i, and the solution of an additional PDE, to retrieve 2D distributions
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of diffusion coefficients. In contrast, the standard approach requires full specification of radial profiles, that is, several space
coordinate-coefficient pairs, together with ballooning parameters. In terms of degrees of freedom, the new �-model is clearly
advantageous.

4 PARAMETER ESTIMATION CASE STUDY

To prove the working principle of the developed framework, we take a reference SOLPS-ITER solution obtained with the �-
model and a fluid neutral approximation, which we use to produce fictitious experimental data. We then verify how well the
estimation procedure is able to match these data and retrieve the reference parameters.
The SOLPS-ITER version employed in this study features the recently implemented unstructured solver, which allows flexible

vessel geometry description and grids extending up to the first wall [29]. This version inherently accounts for grid misalignment,
an important requirement to obtain reliable fluid neutral simulations [30]. Furthermore, the most up-to-date Advanced Fluid
Neutral (AFN) models available [31] are employed here, which provide similar accuracy as computationally expensive Monte
Carlo kinetic neutrals in highly collisional regimes, without the need for additional parameters in contrast to other fluid models,
and avoiding statistical noise which hampers gradient accuracy.
The reference solution is obtained on a COMPASS single-null configuration on a 48 × 24 grid, with pure deuterium plasma

and without drifts, similarly to Ref. 22. At the core, we impose a fixed density boundary condition (BC) forD+ (ni = 3.25×1019
m−3) and zero particle flux for D0; additionally, we fix the ion and electron power (Pi = Pe = 172 kW), the turbulent kinetic
energy value (� = 1.84 eV), and zero parallel velocity. At the targets, a standard Bohm-Chodura BC is applied, while at the last
flux surface and private flux region leakage BCs are applied with factor 3 × 10−3 for D+ and �, 1 × 10−2 for D0 and 1.5 × 10−2
for heat, together with zero-gradient BC for parallel velocity. Surfaces are assumed 100% recycling apart from a 1% absorption
set at the private flux boundary to account for pumping. Additional parameters of the �-model take the following values, similar
to the COMPASS application of Ref. 22: CD = 0.1, CL = 1.6, C�,e = C�,i = 10, CD�

= Dmin = 0.01. Note that for simplicity
we employ in this work a single parameter CL for the whole domain, without distinguishing between closed and open field line
regions as was instead done in the COMPASS study [22].
We compare the regression and MAP cost functions for a varying number of available measurement pointsN, and different

levels of measurement noise �ref . These fictitious data points are obtained from the OMP plasma density profile of the reference
solution, to which we add Gaussian noise in an absolute way  (0, �ref ). Five levels of absolute noise are envisaged with
�ref = [0.4, 0.8, 1.6, 3.2, 6.4] 1018m−3. For each �ref , five different numbers of data points are usedN = [5, 10, 20, 40, 80], for
a total of 25 cases.
The optimization is then carried out for each of these cases considering the set of uncertain parameters � = [�core, CL, CD, �]T ,

where �core is the turbulent kinetic energy value imposed at the core boundary. The initial guess for the optimization is arbitrarily
chosen �0 = [3, 3, 0.8, 0.1]T , while the lower bound �L = [0.1, 0.1, 0.05, 0.01]T and the upper bound �U = [5, 5, 1, 2]T are
educated guesses for the parameter ranges. Note that only for the MAP estimation we consider the nuisance parameter �, which
is modeled as an additive error. For all parameters we suppose a uniform prior within the imposed range.
For the optimization we employ the BFGS algorithm from the PETSc/TAO library [32–34], setting tolerance 10−4 for the

gradient norm (||∇̂ ||), gradient relative norm (||∇̂ ||∖|̂ |) and gradient reduction (||∇̂ ||∖||∇̂0||) stopping criteria. Addi-
tionally, we limit the iterations to a maximum of 50, after which the optimization is terminated. Note that each time the optimizer
computes the cost function and/or its gradient, it will converge the SOLPS-ITER solution for 3000 iterations. While this was
sufficient to decrease the residuals of the reference case to ∼ 10−3, it may not be the most efficient or accurate solution. An alter-
native we foresee to implement in the future is the possibility to impose a threshold for the residuals, which can be gradually
decreased during the optimization.

5 RESULTS AND DISCUSSION

Before comparing in detail nonlinear regression and MAP estimation results, we give a brief overview of the optimization
process. We notice that in general nonlinear regression convergence is faster than MAP, probably due to the increased parameter
set of the latter. Indeed, as a verification test, we also performed a MAP estimation adopting a fixed value of � together with
uniform priors and no error correlation in the covariance matrix, effectively performing a least-squares optimization. If we
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compare this with nonlinear regression the results are very close to each other, the small remaining difference being due to the
volume-weight in Eq.3 and the different scaling of terms in the cost function and gradient.
Moreover, in some cases both nonlinear regression and MAP estimation failed in the line search, despite providing a good

match in the density profile. This can sometimes be attributed to the semi-smooth nature of the simulation code combined with
enforcing strong Wolfe conditions for the line search, which we plan to relax to only using the Armijo condition of sufficient
decrease [23]. These line search failures are most of the times accompanied by numerical instabilities of the �-model, with
large residuals in the HFS region or close to the X-point, linked to larger values of the parameter CD (this despite the already
imposed cut-off for the net � source). While the solution at the OMP is not affected by these instabilities, they can nevertheless
compromise the gradient computation and point towards a reduction of upper bound �U for CD or limits of the �-model itself.
Cases in which the line search failed are discarded, thus less than 25 cases are available for both the analysis of the nonlinear
regression and MAP.
Finally, in a few cases the optimization was trapped in a clearly unsatisfactory local optimum from the point of view of the

OMP density profile. In such cases, selecting a different initial point �0 = [1, 3, 0.3, 0.1]T and upper bound �U = [3, 5, 0.5, 2]T
with smaller values for �core and CD, in line with the argument above, was sufficient to avoid such trivial local optimum.
The results of the estimation process carried out are shown for a few selected cases in Fig.1 . In the figure, plots on the same

row have equal number of data pointsN and different level of noise �ref , and plots on the same column have thus equal level
of noise and different number of data points. It can be noticed that both regression and MAP estimation provide a reasonable fit
of the data points available, the two profiles being close to each other for the different cases.
An important difference between MAP estimation and regression analysis is underlined by the green shaded area, indicating

the ±2� uncertainty region estimated by the MAP, which captures almost all data points. Regression analysis does not give any
information on the general goodness-of-fit apart from the mean squared error, while the MAP provides a quantitative measure,
essential for model validation purposes. However, the prediction error information is available only for the plasma density profile,
without distinguishing between modeling and experimental uncertainty. To assess the uncertainty on other plasma quantities, we
should first evaluate the posterior distribution of the model parameters and then propagate their uncertainties, namely perform a
backward and forward uncertainty quantification. As explained in Section 2.2, the Laplace approximation can be employed for
this purpose and we plan to apply this methodology in future work.
Interesting insights can be drawn from the scatter plots of the estimated parameters shown in Fig. 2 , in which each point

corresponds to an estimation with a specific noise level and number of data points.
From these plots, it is clear that there is no unique solution to the estimation procedure, as very similar OMP density profiles

are obtained with different combinations of parameters. This is logical, as we include in the cost function only the OMP density
profile and, to retrieve the same radial gradient, one needs the same diffusion coefficient. Given that for our model DE×B ∼
CD

√

� in Eq.15, it is straightforward to see that the same diffusion coefficient can be obtained in infinitely many combinations
of CD and �, neglecting the dependency on Larmor radius �L and Dmin. The same argument explains also the evident CD ∼
1∕
√

�core correlation in Fig.2 (a). Two clear outliers from the expected trend are also visible, possibly due to a locally optimal
solution.
Less straightforward is the role played by the parameter CL in the dissipation term S�,L, see Eq. 17. We would expect that

a larger source of � imposed at the core requires more dissipation to attain the same turbulent kinetic energy profile, namely
a larger CL. However, the estimation results in Fig.2 (b) show that CL is lower for high �core values. This behavior is caused
again by correlations among parameters, which can be derived by assuming a local balance between turbulence production and
dissipation G� = S�,L. Since the production term scales with the turbulent diffusion coefficient DE×B , see Eq. 16, it follows
from our argument above that it should be almost constant. In this case also the dissipation term in Eq.17 is constant, so that
CL ∼ 1∕�core. However, as can be seen from the trendline in Fig.2 (b), the dependence is much stronger than 1∕�core, possibly
due to non perfect local balance among turbulence production and dissipation or additional nonlinear effects. For the same reason
the correlation among CD −CL observed from the data in Fig.2 (c) also deviates from the theoretical CD ∼

√

CL, obtained by
combining CD ∼ 1∕

√

� and CL ∼ 1∕�, again in the assumption of perfect local balance of �.
These strong correlations among parameters with non-unique solutions indicate an ill-conditioned, multi-modal optimization

problem, showing the need to reduce the degrees of parametrization. Similar parameter correlations in a simplified version of
the � and � − � models were also encountered in Ref. 19 when using insufficient data in the cost functions (the enstrophy � is a
quantity related to viscous dissipation of turbulent kinetic energy). There it was shown that the ambiguity could be resolved by
adding also measurements of � and � in the cost function for parameter estimation, which would unambiguously determine not
only the value of DE×B , but also those of the underlying turbulence characteristics. A similar approach could be used here by
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FIGURE 1 Optimized plasma density profile at the OMP using regression (blue dashed line) and MAP (green solid line) cost
functions. The shaded green area indicates the 2� range estimated with the MAP while fictitious experimental data points are
indicated with red circles. Plots on the same row have equal number of data points N while plots on the same column have
equal level of noise �ref .

adding synthetic data on � to the cost function, and is left for future work. A more general solution is to obtain information on
such parameters or the level of turbulent kinetic energy either from turbulence codes or from data fluctuations in experiments.
Finally, Fig.2 (d) shows the estimated absolute standard deviation � for different number of data points and level of noise.

As can be seen, the reference value is very well captured by the MAP estimation, with improving accuracy if more data points
are included in the procedure, as expected. Note that the reference noise levels do not correspond exactly to the five levels
�ref = [0.4, 0.8, 1.6, 3.2, 6.4] 1018m−3 mentioned in Section 4, as the actual data points are randomly generated. In fact, the
plotted reference noise level is an effective standard deviation of the generated data with respect to the reference solution.

6 CONCLUSIONS

We developed a new parameter estimation framework in SOLPS-ITER, relying on gradient-based optimization to minimize a
cost function, which provides an objective metric to compare simulation results and experimental data. The gradient information
required for the optimization is obtained through tangent AD with the TAPENADE tool. Depending on the specific estimation
case, AD provides machine-precision accurate sensitivities more efficiently with its tangent mode (few uncertain parameters)
or adjoint mode (many uncertain parameters). This already improves a previously developed estimation framework employing
nonlinear regression, in which gradient information was based on finite differences, suffering from truncation errors. In addi-
tion, we employed the principles of Bayesian inference to implement a MAP estimation accounting for numerical, modeling,
and experimental uncertainties, which regression techniques do not consider. The new estimation framework has been tested
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FIGURE 2 Scatter plots of the parameters estimated with regression (blue circles) and MAP (red squares) cost functions. The
parameters adopted in the reference simulation are indicated with a black star. The solid black lines indicate the fitting curve
defined by the equation in each plot.

on a simple case adopting fictitious OMP plasma density profile measurements obtained from a reference SOLPS-ITER sim-
ulation using the recently implemented � turbulence model. We then compared nonlinear regression and MAP estimation for
different number of data points available and introducing different levels of measurement noise. Both estimation methods gave
similar results adopting an absolute prediction error in the likelihood, with the additional MAP-estimated uncertainty correctly
encompassing the noisy fictitious data. The three �-model parameters assumed as unknowns in the estimation showed strong
correlations among each other and non-unique solutions for the same density profile were obtained. This is likely because the
cost functions used in this study insufficiently constrains the �-model, and points towards the need of including also information
on turbulence levels in the parameter estimation procedure to correctly determine the model constants.
We plan on resolving the non-uniqueness of the solutions by additional constraints in the optimization, introducing information

on the turbulent kinetic energy level coming from experimentally measured fluctuations or turbulence code results. This can be
beneficial for the �-model itself, avoiding numerical instabilities encountered with certain parameter values.
Regarding the optimization method, several paths are open for future investigations to improve convergence. We will explore

the impact of the choice of optimization algorithm on speed and robustness of convergence. In this perspective, we will also
assess the effect of employing the Armijo instead of the strong Wolfe condition in the line search methods, but also consider
alternatives such as trust-region or interior-point methods. On the longer term we will resort to one-shot methods, which have
proven faster convergence for PDE-constrained optimizations [8].
Furthermore, we are in the process of deploying adjoint AD in SOLPS-ITER, allowing estimations on more complex and

realistic cases with several uncertain parameters, and the extension of the developed optimization framework to divertor design
studies.
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We also foresee to expand the Bayesian setting implemented in this work, both in terms of improvement and application. Con-
sidering the first, spatial error correlation should be included in the covariance matrix of the likelihood function, together with
possible additional correlations among different diagnostics, for which close collaboration with diagnosticians is of foremost
importance. Concerning application, we plan on performing an extended estimation study on real experimental cases, together
with full uncertainty quantification exploiting the Laplace approximation [17,24]. This will also allow to formally and quantita-
tively compare the two competing models for the radial turbulent transport in SOLPS-ITER, namely the standard model with
ad-hoc anomalous diffusion coefficients, against the newly developed �-model.
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