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ABSTRACT 

The Aha! moment‒ the sudden insight sometimes reached when solving a vexing problem‒ entails a 

different problem-solving experience than solution retrieval reached by an analytical, multistep strategy (i.e., 

non-insight). To date, the (un)conscious nature of insight remains debated. We addressed this by studying 

insight under cognitive load. If insight and non-insight problem solving rely on conscious, effortful 

processes, they should both be influenced by a concurrent cognitive load. However, if unconscious processes 

characterize insight, cognitive load might not affect it at all. Using a dual-task paradigm, young, healthy 

adults (N = 106) solved 70 word puzzles under different cognitive loads. We confirmed that insight solutions 

were more often correct and received higher solution confidence. Importantly, as cognitive load increased, 

non-insight solutions became less frequent and required more solution time, whereas insightful ones 

remained mostly unaffected. This implies that insight problem solving did not compete for limited cognitive 

resources.  
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1 INTRODUCTION 

 

The "Aha! Experience" — that moment when the solution to a vexing problem suddenly pops into 

consciousness — has mesmerized scientists and laymen alike (Bowden & Grunewald, 2018; Chein & 

Weisberg, 2014). Scientifically, this singular subjective experience is referred to as insight (Bowden & 

Grunewald, 2018). While insight is not rare, most problem-solving involves a multistep analytical strategy 

(Simon & Newell, 1970; Weisberg, 2015) through which the problem solver searches long-term memory for 

potential algorithms, schemas, analogies or factual knowledge. This process is referred to as analysis or non-

insight (e.g., Bowden, Jung-Beeman, Fleck, & Kounios, 2005; Fleck & Weisberg, 2013). It requires the 

problem solver to monitor his/her progress while maintaining the mental representation of the problem and 

avoiding being distracted by irrelevant information (see Shipstead, Harrison, & Engle, 2016; Wiley & Jarosz, 

2012, for a review). 

In contrast to insight, which feels effortless, non-insight solution-finding relies on continuous, effortful 

processing (e.g., Metcalfe & Wiebe, 1987). The difference between effortless and effortful processing also 

forms the core of dual-processing theories (Evans & Stanovich, 2013; Gilhooly, Ball, & Macchi, 2015; 

Sowden, Pringle, & Gabora, 2015). In such theories, Type 1 processes are assumed to be unconscious, 

effortless, and not limited by working memory (WM) limits. Type 2 processes, on the other hand, are taken 

to be conscious, effortful, and constrained by WM limits (Evans, 2019; Evans & Stanovich, 2013). For 

example, it has been shown that if participants have to make judgments while also performing an unrelated 

secondary task known to deplete cognitive resources, intuition-based judgments (Type 1) mainly stay 

unaffected, but deliberate-thought-based judgments are hampered (Type 2; De Neys, 2006; Howarth, 

Handley, & Walsh, 2016). This observation indicates that Type 1 processes are relatively independent of the 

cognitive resources needed to consciously manipulate information, whereas Type 2 processes depend more 

on cognitive resources (see Evans, 2019 for a review). Although it is intuitively appealing to consider insight 

resulting from Type 1 and non-insight from Type 2 processes, this is not a widely held claim (Benedek & 

Fink, 2019). For instance, Weisberg (2015) argues that insight, just like non-insight, mostly relies on the 

same effortful (Type 2) processes to retrieve a solution. 

Can the conception of Type 1 and Type 2 processes proposed in dual-processing theories be translated 

to insight and non-insight problem solving? Dual-processing theories depart from a default-interventionist 

model (Evans, 2019; but also see De Neys, 2021; Mega & Volz, 2014). Type 1 processes entail default, 

automatic intuition-based responses resulting from automated processes (e.g., locating sounds), stereotypes, 

beliefs, or automated skills (e.g., reading; Howarth et al., 2016). Therefore, these intuition-based responses 

have been regarded as heuristically driven, helping humans to navigate life efficiently (e.g., mindlessly 

driving to work; Kahneman, 2011). However, sometimes cues in the environment can erroneously trigger 

an intuition-based response (e.g., stereotype-based judgments), defying the logic of the task at hand (De 

Neys & Pennycook, 2019). In such cases, it has been found that humans tend to make wrong intuition-based 

choices by failing to override them by deliberate thought (Type 2) to solve the task (Frey, Johnson, & De 

Neys, 2018). Humans often opt for the path of least resistance and follow their error-prone intuitions by 

default, even though these can be wrong (Evans, 2019). 

At first sight, the conception that Type 1 processes lead to error-prone intuitions seems perpendicular 

to how insight solutions have been perceived. For instance, Salvi, Bricolo, Kounios, Bowden, and Jung-

Beeman (2016) showed across different types of problems that insight solutions were more often correct 

than non-insightful ones. Numerous other studies have corroborated this higher solution-accuracy effect of 

insight (e.g., Danek, Fraps, von Müller, Grothe, & Öllinger, 2014; Hedne, Norman, & Metcalfe, 2016; Webb, 

Little, & Cropper, 2016). However, the role of intuitive, yet error-prone, Type 1 processes might be different 

for different phases of the insightful solution search (Zander, Öllinger, & Volz, 2016).  



2 

 

Consistent with representational change theory on insight (Ohlsson, 1992, 2011), heuristically driven 

intuitions (Type 1) might initially mislead the problem solver to an ill-defined problem representation, 

similar to what is proposed in dual-processing theories (Zander et al., 2016). This ill-defined problem 

representation leads the problem solver astray as content activated from semantic memory will inevitably be 

insufficient to solve the problem, leading to an impasse (Öllinger & von Müller, 2017). This impasse serves 

a pivotal function as it propagates negative feedback through the information processing system, hereby 

decreasing the activation level of the ill-defined problem representation and redistributing the unconscious 

spreading of activation to more remote, yet unnoticed concepts in semantic memory (Ohlsson, 2011; Öllinger 

& von Müller, 2017). When this spread of activation converges on the vital concept needed to rectify the 

initial erroneous problem representation, the solution pops into consciousness as the complete solution path 

is revealed all at once (i.e., restructuring; Bowden, 1997; Ohlsson, 2011; Öllinger & von Müller, 2017). At 

this final stage, it is assumed that the problem solver is consciously puzzled but unaware of the unfolding 

spreading of activation through semantic memory (Ohlsson, 2011). Recently, it has been argued that the 

problem solver uses the Aha! phenomenology (i.e., positive affect, surprise, obviousness, high confidence) 

as a heuristic that signals the quality of a solution emerging from the unconscious (Laukkonen, Webb, Salvi, 

Tangen, & Schooler, 2018). For example, Laukkonen Kaveladze, Tangen, and Schooler (2020) found that 

false statements judged on their veracity are considered more true when linked with an Aha! experience than 

when judged without it (see also Laukkonen, Ingledew, Grimmer, Schooler, & Tangen, 2021). In that sense, 

Type 1 processes play a double part in insight problem-solving: although they may mislead the problem 

solver at first, in the end, they signal the quality of the solution surfacing from the unconscious via an Aha-

heuristic (Laukkonen et al., 2018; Zander et al., 2016). This idea corresponds with recent research showing 

that Type 1 processes can culminate into accurate logic-driven intuitions (Bago & De Neys, 2019, see also 

Bowers, Regehr, Balthazard, & Parker, 1990) and experts' intuitions that can be dead right (see Salas, Rosen, 

& DiazGranados, 2010, for a review). These observations indicate that the error-proneness of Type 1 

intuitions do not need to be irreconcilable with insight's high accuracy, and that Type 1 and Type 2 processes 

are useful concepts when thinking about insight and non-insight problem solving, respectively. 

However, not all insight theorists agree with these assumptions (Benedek & Fink, 2019, Weisberg, 

2015, 2018, see also Chater, 2018). Weisberg (2015) assumes that effortful Type 2 processes mainly 

dominate both insight and non-insight solution finding. Insight is assumed to arise via the problem solver's 

ability to capitalize on repeated failures to find the solution non-insightfully. The repeated failures bring 

forth new information to work with, guiding the solution search to new, promising directions that unveil ill-

held assumptions about the problem. Once these ill-held assumptions are rectified (i.e., restructuring), the 

complete solution path is revealed all at once, and the solution is found with insight. Although Weisberg 

(2015) argued that insight might also be achieved via unconscious processes, he perceived this as a rare 

phenomenon (Weisberg, 2018).  

As the above-theoretical views indicate, the debate concerning insight's (un)conscious nature is not 

settled yet. One way of debunking whether insight relies on cognitive resources is by assessing how WM 

relates to insight and non-insight problem solving (e.g., DeCaro, Van Stockum, & Wieth, 2016). WM is 

considered a central processing hub where information is shortly stored and updated to cope with ongoing 

task demands (Baddeley, 1986; Shipstead et al., 2016); executive functions associated with problem solving 

(e.g., Cooper & Marsh, 2015; De Neys, 2006). The capacity of WM is limited (Cowan, 2010).  Some have 

defined this limited capacity in terms of the number of informational chunks that can be hold in the scope of 

attention (for a review, see Cowan, 2010; Oberauer, Farrell, Jarrold, & Lewandowsky, 2016), whereas others 

have conceived it as being more closely related to the limits of attentional control processes (e.g., filtering 

efficiency; see Oberauer, 2019, for an overview). 

Thus, WM capacity imposes limits to our ability to maintain and update the mental representations of 

a problem (Shipstead et al., 2016; Wiley & Jarosz, 2012). Such limits should then clearly influence one's 
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ability to solve complex, multistep problems through non-insight. But what about insight? If insight is indeed 

associated with unconscious, Type 1 processes, it should not be bound by the limits of WM capacity (Fleck, 

2008; Gilhooly & Fioratou, 2009).  However, if it depends on conscious, effortful Type 2 processes, it should 

also be constrained by WM capacity limitations (Chein & Weisberg, 2014; Chuderski & Jastrzebski, 2018). 

One way of testing these assumptions consists of using a dual-task paradigm where participants are asked to 

perform a primary problem-solving task while concurrently executing a secondary WM task (e.g., retaining 

a series of digits; De Dreu, Nijstad, Baas, Wolsink, & Roskes, 2012). Loading WM in such a way should 

therefore decrease its capacity and hence its availability to executive functions. Thus, if the primary task also 

involves WM, then concurrently executing the WM task should hamper performance on the primary task 

(e.g., Camarda et al., 2018). In contrast, if the primary task does not tax WM, then concurrently executing a 

WM task should not impact performance (e.g., Abadie, Waroquier, & Terrier, 2013).  

A few studies have already explored the role of WM in problem solving. Lavric, Forstmeier, and Rippon 

(2000) presented participants with classical insight and non-insight problems. Single- and dual-task 

conditions were created by adding a concurrent tone-counting task for some participants but not for others. 

The insight problems were correctly solved by a comparable number of participants in both conditions. 

However, the non-insight problems were correctly solved by a larger number of participants in the single-

task conditions, as compared to the dual-task condition. This finding is consistent with the assumption that 

insight, unlike non-insight, depends on Type 1 processes.  While other studies have found similar results 

(e.g., Korovkin, Vladimirov, Chistopolskaya, & Savinova, 2018; Korovkin & Savinova, 2014), De Dreu et 

al. (2012), however, found that the number of correctly solved insight problems decreased as the concurrent 

WM load increased. The authors concluded that insight problem solving depends on WM and hence 

competes for limited WM capacity. This study and other studies (see also Lin & Lien, 2013; Wieth & Burns, 

2014 for similar results) suggests that insight, like non-insight, relies on Type 2 processes. 

The inconclusive nature of these findings might originate from their dependence on classical insight 

and non-insight problems and on the assumption that these problems reliably index insight and non-insight, 

respectively. However, these two types of problems are very different, making it difficult to draw strong 

conclusions based on their comparison (Bowden & Jung-Beeman, 2007; Webb et al., 2016). Moreover, it 

has been shown that insight problems are sometimes solved with non-insight and non-insight problems with 

insight (Danek, Wiley, & Öllinger, 2016; Webb et al., 2016). Therefore, studies using classical insight 

problems without a non-insight comparison group might have yielded confounding results (e.g., De Dreu et 

al., 2012). These findings indicate that insight and non-insight problem solving are difficult to pin down in 

a specific problem type. Therefore, some have suggested that the problem solver is the most designated 

person to decide how a solution was found because what sets insight apart from non-insight resides in the 

problem solver's phenomenology rather than the nature of the problem type (see Bowden & Grunewald, 

2018).  

To address these issues, researchers have developed problem types that have an almost equal likelihood 

of being solved with insight and non-insight, keeping the type of problems constant across both solution 

types. For example, in the compound remote associates test (CRA; Bowden & Jung-Beeman, 2003), 

participants receive three cue words (break/bean/cake) on each trial and are requested to search for a fourth 

compound solution word (coffee break/coffee bean/coffee cake). After each solved CRA trial, participants 

indicate whether they solved the problem with insight or non-insight based on their subjective, solution-

finding experience (e.g., Salvi, Simoncini, Grafman, & Jung-Beeman, 2020).  

However, this procedure to classify insight and non-insight solutions based on the participant's 

subjective report has not been without critique (Danek & Salvi, 2020; Laukkonen et al., 2021). The finding 

that insight solutions are more often correct, receive higher solution confidence, and are solved faster than 
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non-insightful ones (e.g., Hedne et al., 2016; Cranford & Moss, 2012) raises the question if those behavioral 

or phenomenological indices do not bias the retrospective insight classification. However, strong 

correspondence has been observed between participants' self-reported insights and physiological indices of 

insight (i.e., participants' squeeze strength on a dynamometer upon solving a problem; Laukkonen et al., 

2021). Moreover, subjective self-reports of insight have been associated with distinct brain-pattern activation 

(i.e., activation burst across right temporal lobe; see Kounios & Jung-Beeman, 2014), physiological 

responses (i.e., increased skin conductance, heart rate, and pupil dilation; Salvi et al., 2020; Shen et al., 

2017), and phenomenological qualia (feelings of happiness and relief; Stuyck, Aben, Cleeremans, & Van 

den Bussche, 2021). This body of research provides additional support for the validity of self-reports to study 

insight and non-insight problem solving. 

In the current study, we, therefore, used a problem type (the CRA) that can be solved with insight and 

non-insight, which was determined based on participants' self-reports. We manipulated WM load by creating 

no-load, low-load,  and high-load conditions. As non-insight problem solving is expected to be an effortful, 

conscious, Type 2 process, we predicted a detrimental influence of WM load on the performance of the 

problems solved with non-insight. If insight problem solving relies on an automatic, unconscious, Type 1 

process, it should not be influenced by WM load. However, if insight relies on WM in the same way as non-

insight, it should be impacted similarly by the WM load. 

2 METHOD 

 

2.1 Participants 

 

A convenience sample of 106 psychology undergraduates of the KU Leuven participated in this study. 

They received course credit for their participation. The data of one participant were excluded due to issues 

with data acquisition. The final sample consisted of 105 participants, of which 91 were female. The mean 

age was 18 years (SD = 0.72, range 17-23).  All participants had normal or corrected-to-normal vision. 

Ninety-eight participants had Dutch as their mother tongue, and seven were bilingual, with Dutch as their 

second language. We randomly assigned 30 participants to the no-load condition, 35 to the low-load 

condition, and 40 to the high-load condition. Before the start of the experiment, all participants provided 

written informed consent. The Social and Societal Ethics Committee of the KU Leuven approved the study 

(i.e., approval code G- 2018 10 1368).  

Given the lack of previous studies using a dual-task paradigm with the CRA to study insight and using 

generalized linear mixed models analyses, we used the average effect size found in previous dual-task studies 

on insight to make a well-informed estimate of our required sample size. In previous dual-task studies, an 

average cohen's d effect size has been reported of .68 for solution time on the secondary task and .62 for the 

number of correctly solved problems as a function of solution type and working memory load (Korovkin et 

al., 2018; Lavric et al., 2000). Regarding solution accuracy and solution confidence, we could not extract 

cohen's d effect sizes due to a lack of previous data. Therefore, we a priori assumed a cohen's d effect size 

of .4, generally considered a valid effect size in the research field of cognitive psychology (Brysbaert & 

Stevens, 2018). Given those medium-to-large effect sizes, we considered the current sample size as sufficient 

to detect effects with comparable size with a statistical power of 80%.  

2.2 Material 

 

This study used the Dutch version of the compound remote associates test (see https://osf.io/snb3k/ for 

the Dutch CRA and selection procedure; Stuyck et al., 2021). The CRA consists of word puzzles that can be 

solved both with insight and non-insight. On each trial, participants are presented with three cue words (e.g., 

https://osf.io/snb3k/
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artist, hatch, route) for which they have to find a fourth compound solution word that they can attach to each 

of these three cue words (e.g., escape artist, escape hatch, escape route). Participants received 75 CRA trials, 

of which five were practice trials. The three cue words of the CRA and a question mark were always shown 

in vertical alignment at the center of a black screen (i.e., the upper word was placed at 25% of the screen's 

y-axis, each other word and finally the question mark were spaced with an additional 15% on that same axis). 

They were presented in white, in "Courier New" font with point size 18 and in bold typeface. 

In the low-load and high-load conditions, participants additionally had to perform a WM task while 

solving the word puzzles. Similar to De Dreu et al. (2012), we asked participants to retain two digits in the 

low-load (e.g., 24) and four digits in the high-load (e.g., 9861) condition. Each two- or four-digit combination 

was unique and selected randomly. These digit combinations never contained zero or a duplication of a digit 

(e.g., 33 or 1244). Participants had to recall the digits in any order. In the high-load condition, performance 

on the WM task was deemed accurate if three-out-of-four digits were recalled correctly. The digits were 

always presented sequentially, in white at the center of a black screen, in "Courier New" font with point size 

25 and in bold typeface. 

2.3 Equipment 

 

We tested participants in groups of maximum 12. They were seated at an individual computer in a quiet, 

daylight illuminated computer room. Sufficient space was created between participants so that they could 

not see each other's screen. The experiment was programmed with E-prime 2.0 (Psychology Software Tools; 

Schneider, Eschman, & Zuccolotto, 2002). For more technical information about the equipment, see 

https://osf.io/sc5n7/; www.pstnet.com.   

2.4 Procedure  

 

Figure 1 depicts an example of a CRA trial in the low-load condition. Participants initiated each trial 

by pressing the spacebar. In the no-load condition, a fixation cross appeared at the center of the screen for 

2s. Subsequently, the CRA word puzzle was presented for a maximum of 25s. In the right upper corner of 

the screen, a countdown timer was presented. If the participants found the answer, they were instructed to 

press the spacebar as quickly as possible. They then received a screen prompting them to type in their 

solution. There was a time limit of 10s to type in their answer. After providing their answer, participants had 

to indicate their solution confidence (i.e., "please indicate on the scale below how confident you are in your 

solution?") by selecting a position on a horizontal visual analog scale with the cursor of their mouse within 

a time limit of 30s. This scale gradually changed from red (i.e., low confidence = 0) to green (i.e., high 

confidence = 100). The cursor of the mouse always started at the center of the scale. Next, participants had 

to indicate whether they had found the solution with insight, with non-insight or with another strategy by 

typing the number one, two, or three, respectively, without a time limit. During the instructions, participants 

had received the definition of each solution type based on previous studies on insight to ensure that 

participants clearly understood what each solution type entailed (see Appendix A; Danek et al., 2014; Hedne 

et al.,  2016; Jung-Beeman et al., 2004). Moreover, instructions regarding the solution confidence rating were 

decoupled from the instructions of solution type (see Hedne et al., 2016, for a similar procedure) to reduce 

the likelihood that participants used solution confidence as a criterion to make the insight/non-insight 

classification. Participants of the no-load condition automatically continued to the next trial after indicating 

the solution type. If participants could not solve the CRA word puzzle within the allotted time, they 

automatically proceeded to the next trial. We presented the participants with five practice trials and 70 

experimental trials, both in random order. After solving half of the experimental trials, a break was provided.  

In the dual-task conditions, the procedure was identical, except for the following additions. Before each 

trial, participants were reminded that they first had to perform the WM task. This WM task's digits were then 

https://osf.io/sc5n7/
http://www.pstnet.com/
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presented sequentially at a pace of 1.5s per digit (i.e., low-load = two digits; high-load = four digits). After 

solving a word puzzle, participants were prompted to type in the digits that had to be remembered on that 

trial. There was no time limit to perform the WM task.   
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Figure 1. Example of a CRA trial for the low-load condition. In the high-load condition, participants received 

four digits instead of two. In the no-load condition, there was no WM task. The solution to this word puzzle 

is "clock". 

2.5 Statistical analysis 

 

For the statistical analysis, we only used the word puzzles that were solved with insight or non-insight. 

The third option, "another strategy", was excluded because it did not contain any information concerning the 

solution types. This omission led to the exclusion of 276 word puzzles out of the 4780 solved word puzzles. 

Furthermore, we only included solved CRA trials where the performance on the WM task was correct. This 

to ensure that participants were jointly performing both tasks adequately. Consequently, 315 solved CRA 

trials in the low-load and 431 in the high-load condition were excluded. The hypotheses and statistical 

analyses of this experiment were preregistered on the OSF platform (https://osf.io/2v9yz). Deviations from 

this preregistration can be found in Table 1 of Appendix B. All data and program code (R code and E-prime) 

were placed on the OSF platform (https://osf.io/sc5n7/). 

To analyze the data, we used three (generalized) linear mixed models (i.e., [G]LMM) and one 

generalized linear model (GLM) with solution type (within-subject variable with two levels: insight and non-

insight), WM load (between-subject variable with three levels: no-load, low-load and high-load) and their 

interaction term as fixed effects. A first LMM contained the log-transformed solution time (to accommodate 

the non-normality) of the correctly solved word puzzles as a continuous outcome variable (Gaussian error 

distribution; Baayen & Milin, 2010). A second GLMM contained solution accuracy (i.e., 0 = incorrect and 

 

https://osf.io/2v9yz
https://osf.io/sc5n7/
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1 = correct) as a binary outcome variable (Binomial error distribution; Sommet & Morselli, 2017). A third 

GLMM contained solution confidence of the correctly solved word puzzles as a bounded outcome variable 

(i.e., transformed range .0050 to .9950; see Smithson & Verkuilen, 2006; Verkuilen & Smithson, 2012; Xu, 

Samtani, Yuan, & Nandy, 2014 for an in-depth explanation). To analyze the number of correctly solved 

word puzzles, the data were aggregated per participant into one observation for insight and one for non-

insight per participant. This aggregated data had no trial-by-trial variation, contrary to the previous outcome 

variables. Hence, a GLMM with a complex random structure was unsupported (see Bates, Kliegl, Vasishth, 

& Baayen, 2018; Matuschek, Kliegl, Vasishth, Baayen, & Bates, 2017) and a generalized linear model 

(GLM) was used containing the number of correctly solved word puzzles as a count outcome variable 

(Negative Binomial error distribution; Gardner, Mulvey, & Shaw, 1995). To account for the non-

independence of the data (i.e., two observations clustered within each participant), robust standard errors 

were used (for an in-depth explanation, see Zeileis, Köll, & Graham, 2020). The statistical significance of 

the fixed effects for the LMM was obtained by using the Satterthwaite approximation method. The Wald 

test assessed the statistical significance of the fixed effects of the GLMMs and the GLM. 

The advantage of using (G)LMM is that participants and word puzzles can be treated as crossed random 

effects, thereby taking by-participant and by-word puzzle variations into account (Baayen, Davidson, & 

Bates, 2008). We included random intercepts for participants and word puzzles in all the (G)LMMs. 

Furthermore, using (G)LMMs, the data analysis can be performed at the observational level without the need 

to aggregate outcome variables by-participants or by-word puzzles (e.g., Judd, Westfall, & Kenny, 2012). 

All estimated models (i.e., the(G)LMMs and GLM) are provided in Appendix C. 

 The predictor variables solution type and WM load consist of discrete levels, namely two and three 

levels. Therefore we applied sum coding to set the contrasts for each estimated model (i.e., orthogonal 

contrasts; see Schad, Vasishth, Hohenstein, & Kliegl, 2020 for an in-depth explanation). Using sum coding 

to set the contrasts, it is possible to assess each estimated model's main effects and interaction effects in the 

same vein as is done in an ANOVA (see Levy, 2018, for an in-depth explanation). We examined the main 

effects and the interaction effect for each estimated model by comparing the full model, including all fixed 

effects, to three reduced models. Each reduced model excluded either one of the main effects (e.g., solution 

type or WM load) or the interaction effect. Subsequently, a likelihood ratio test for the (G)LMM (ꭓ²) and a 

Wald test for the GLM (ꭓ²) were used to measure if the full model explains more residual variance than the 

reduced models. Hence, finding a statistically significant effect implied a main effect or an interaction effect 

(Levy, 2018; Zeileis & Hothorn, 2002).  

To explain the significant main and interaction effects of the estimated models, we used post-hoc tests. 

The post-hoc tests derive the estimated marginal means from each estimated model.  In the case of a main 

effect, a pairwise contrast is made for either solution type (insight vs. non-insight) or WM load (all possible 

pairwise combinations) based on the estimated marginal means. If an estimated model contained an 

interaction effect, pairwise contrasts of the estimated marginal means for the three levels of WM load were 

made conditional on the solution types (i.e., no-load vs. low-load; no-load vs. high-load; low-load vs. high-

load within insight and non-insight). The Tukey method was used to adjust for multiple comparisons. 

Cohen's d effect sizes are reported for significant pairwise contrasts. We interpreted the cohen’s d effect size 

as follows: 0-0.09 = negligible, 0.10-0.30 = small, 0.31-0.39 = small-to-medium, 0.40-0.60 = medium, 0.61-

0.69 = medium-to-large, and above 0.70 = large (see Pliatsikas et al., 2019 for a similar procedure). 

We used the open-source R language and environment to perform statistical analysis (R Core Team, 

2020). The (G)LMMs on solution time and solution accuracy were built with the lme4 package (Bates, 

Mächler, Bolker, & Walker, 2015). The GLMM on solution confidence was built with the glmmTMB 

package (Brooks et al., 2017). The GLM on the number of correctly solved word puzzles was built with the 
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MASS package (Venables & Ripley, 2002), and its robust standard errors were obtained with the Sandwich 

package (Zeileis et al., 2020). Post-hoc tests were performed with the emmeans package (Lenth, 2020). 

2.6 Secondary analysis 

 

A concern related to self-reports for the insight/non-insight classification is that participants might 

report having solved a word puzzle with insight because they found the solution quickly. It has been argued 

that such solutions result from immediate recognition of the solution rather than a problem-solving process 

(Cranford & Moss, 2012). Therefore, we performed a secondary analysis. In this secondary analysis, we 

reran the estimated models with the responses provided within the two first seconds excluded (see Salvi et 

al., 2020, for a similar procedure). This exclusion criterium led to the additional omission of 56 observations, 

of which 50 were correctly solved word puzzles. Under the assumption that participant's self-reported insight 

solutions are independent of these immediately recognized solutions, we expected to find a similar pattern 

of results for all estimated models when responses provided within the first two seconds are excluded. These 

results are presented in Appendix D. 

3 RESULTS   

 

After excluding word puzzles solved with "another strategy" (N = 276), with an incorrect solution of 

the WM task (low-load = 315 and high-load 431), and with an incorrect CRA solution (N = 664), the final 

sample of correctly solved word puzzles was 3094. Based on this final sample, the average number of 

correctly solved word puzzles with insight was 18 (SD = 9, range 1-40) and 12 with non-insight (SD = 9, 

range 1-39)1.  The descriptive statistics of the outcome variables and the total number of solved word puzzles 

are depicted in Table 1.  

 

1 The participant sample was not balanced for biological sex with 91 females and 14 males. To exclude any 

influence of biological sex on our results, we reconducted all statistical analysis with biological sex as covariate 

included in each estimated model. The pattern of results remained similar as well as the direction of the effects. 

For solution time, only a main effect of solution type (p < .001) was found and a trend towards an interaction 
effect (p = .06). For solution accuracy and solution confidence there only was a main effect of solution type (p < 

.001 and p < .001, respectively). For the number of correctly solved word puzzles, there was a main effect of 

solution type (p < .001), WM load (p = .001) and a significant interaction effect (p = .006). Therefore, we contend 

that the effect of biological sex is likely to be minimal (see also Wieth & Burns, 2006). 
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Table 1. The descriptive statistics of the outcome variables and the number of solved word puzzles 

 No-Load Low-Load High-Load 

 M(SD) range M(SD) range M(SD) range 

Insight solution time 3.80(0.26) 3.13-4.40 3.78(0.28) 3.11-4.39 3.77(0.25) 3.13-4.40 

confidence .81(.19) .16-.995 .80(.19) .005-.995 .76(.19) .005-.995 

#solved  18(8) 3-34 17(9) 2-39 19(9) 1-40 

accuracy 88% 91% 90% 

#correct 528 600 772 

#(in)correct 600 662 862 

Non-Insight solution time 3.84(0.27) 3.21-4.40 3.82(0.27) 3.14-4.39 3.84(0.26) 3.26-4.39 

confidence .65(0.26) .005-.995 .69(.27) .005-.995 .63(.25) .005-.995 

#solved 16(9) 2-39 12(10) 1-37 8(7) 1-29 

accuracy 71% 79% 67% 

#correct 474 421 299 

#(in)correct 664 534 436 

Note. Solution time is log-transformed with base 10; confidence = solution confidence; solution confidence is rescaled to range from 

0.005 = low solution confidence to 0.995 = high solution confidence; #solved = the average number of correctly solved word puzzles; 

accuracy = the mean percentage of correctly solved word puzzles; #correct = the total number of correctly solved word puzzles across all 

participants; #(in)correct = the total number of solved word puzzles regardless of correctness across all participants.  
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3.1 Solution time 

 

An LMM was constructed with the (log-transformed) solution time of the correctly solved word puzzles 

as the outcome variable and solution type (two levels: insight and non-insight), WM load (three levels: no-

load, low-load, and high-load) and their interaction term as fixed effects (see Table 1 in Appendix C for an 

overview). There was a significant main effect of solution type, ꭓ²(1) = 15.25, p < .001. Word puzzles solved 

with insight (M = 3.82) were solved significantly faster than those solved with non-insight (M = 3.86),  

t(2935) = -3.91, p < .001, Cohen’s d = 0.17 (95% CI [0.08, 0.25). There was also a trend towards an 

interaction effect, ꭓ²(2) = 5.82, p = .055. Post-hoc tests showed no significant differences between the three 

levels of WM load for insight (no-load vs. low-load, p = .889 ; no-load vs. high-load, p = .523 and low-load 

vs. high load, p = .802 ). A similar pattern of results was found for non-insight (no-load vs. low-load, p = 

.791; no-load vs. high-load, p = .677 and low-load vs. high load, p = .303). To clarify the interaction effect, 

pairwise comparisons were performed for the solution types conditional on the three levels of WM load. 

These post-hoc tests showed that only in the high-load condition, word puzzles solved with insight were 

solved significantly faster than word puzzles solved with non-insight (M = 3.80 versus M = 3.88), t(2897) = 

-4.10 p < .001, Cohen’s d = 0.32 (95% CI [0.16, 0.47]). This was not the case in the no- and low-load 

conditions (p = .131 and p = .261). 

 

 

Figure 2. The interaction between solution type and WM load for solution time. Bars represent the 95% 

confidence intervals. Solution time was log-transformed with base 10.  

3.2 Solution accuracy 

 

Likewise, a GLMM was constructed with solution accuracy as a binary outcome variable (see Table 

2 in Appendix C for an overview). There was a significant main effect of solution type, ꭓ²(1) = 197.13, p < 

.001. Word puzzles solved with insight had a significantly higher probability of being correct than word 

puzzles solved with non-insight (M = 94% versus M = 77%), Z = 13.47, p < .001, Cohen's d = -1.57 (95% 
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CI [-1.8, -1.34]). The main effect of WM load and the interaction effect were not significant, p = .146 and p 

= .337, respectively.  

3.3 Solution confidence 

 

Similarly, a GLMM was constructed with solution confidence of the correctly solved word puzzles 

as a bounded outcome variable (range .005-.995; see Table 3 in Appendix C for an overview). There was a 

significant main effect of solution type, ꭓ²(1) = 243.82, p < .001. The word puzzles solved with insight 

received significantly higher solution confidence than word puzzles solved with non-insight (M = .79 versus 

M = .66), t(3085) = 15.96, p <.001, Cohen’s d = -0.15 (95% CI [-0.17, -0.13]). The main effect of WM load 

and the interaction effect were not significant, p = .085 and p = .605, respectively. 

3.4 The number of correctly solved word puzzles  

 

Lastly, a GLM was built with the number of correctly solved word puzzles as a count outcome variable 

(see Table 4 in Appendix C for an overview)2. There was a significant main effect of solution type, ꭓ²(3) = 

27.29, p < .001. Correctly solved word puzzles were more frequent for insight than non-insight (M = 18.0 

versus M = 11.4), Z = 5.04, p < .001, Cohen's d = -0.43 (95% CI [-0.60, -0.26]). Also, a main effect of WM 

load was observed, ꭓ²(4) = 18.10, p = .001. Post-hoc tests demonstrated that correctly solved word puzzles 

were more frequent in the no-load than in the high-load condition (M = 16.7 versus M = 12.3), Z = -2.73, p 

= .018, Cohen's d = 0.29 (95% CI [0.08, 0.50]). The comparison between the no- and low-load condition and 

between the low- and high-load condition were not significant (p = .378 and p = .327, respectively). More 

importantly, there was a significant interaction effect, ꭓ²(2) = 10.09, p = .007. The post-hoc tests illustrated 

that, for insight, there were no significant differences between the three levels of  WM load (no-load vs. low-

load, p = .985; no-load vs. high-load, p = .817 and low-load vs. high load, p = .696). However, for non-

insight, the number of correctly solved word puzzles were more frequent in the no- than high-load condition 

(M = 15.8 versus M = 7.9), Z = -4.33, p < .001, Cohen's d = 0.66 (95% CI [0.36, 0.97]),  and more frequent 

in the low- than high-load condition (M = 12.0 versus M = 7.9), Z = -2.71, p = .019, Cohen's d = 0.40 (95% 

CI [0.11, 0.70]). The comparison between the no- and low-load condition was not significant (p = .205). 

Thus, as WM load increased the number of correctly solved word puzzles decreased for non-insight but 

remained unaffected for insight. This interaction is illustrated in Figure 33. 

 

2 As the total number of correctly solved word puzzles varied among participants, we took this into account by 

including an offset in the GLM of the number of correctly solved word puzzles. Including this offset transforms 

the outcome variable to a rate (i.e., log(number solved correctly/total number solved correctly)) to estimate the 

model's parameters (see Hutchinson & Holtman, 2005). The results of this adjusted GLM remained similar to 

the initial analysis. Namely, a main effect of solution type (p < .001), a main effect of WM load (p < .001), and 

an interaction effect between solution type and WM load (p = .008). The direction of the effects remained 

similar to the initial analysis.  

3 The above-depicted results are based on the observations for which participants had three-out-of-four correct 

recalled digits in the high load condition. The statistical analysis was also performed for the observations where 

participants had four-out-of-four correct recalled digits in the high-load condition. Even under these more 
strenuous working memory load manipulations, the pattern of the results remained similar. The results of this 

exploratory analysis are presented in Appendix E.  
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Figure 3. The interaction between solution type and WM load for the number of correctly solved word 

puzzles. Bars represent the 95% confidence intervals. The number of solved word puzzles refers to those 

solved correctly. 

3.5 Secondary analysis 

 

To assess whether the participant's self-reported insight solutions were independent of fast solutions, 

which were likely retrieved via immediate recognition, all estimated models described above were rerun, 

with the responses provided within the first two seconds excluded (see Appendix D). The pattern of results 

remained similar when compared to those obtained with the responses provided within the first two seconds 

included (see Appendix C). Namely, for solution time, a main effect of solution type (ꭓ²(1) = 14.54, p < .001) 

and an interaction effect between solution type and WM load (ꭓ²(2) = 5.84, p = .054) were observed. For 

solution accuracy and solution confidence only a main effect of solution type was found (ꭓ²(1) = 193.46, p 

< .001 and ꭓ²(1) = 240.56, p < .001, respectively). For the number of correctly solved word puzzles, main 

effects of solution type (ꭓ²(3) = 27.52, p < .001) and WM load (ꭓ²(4) = 18.88, p < .001) and an interaction 

effect between solution type and WM load (ꭓ²(2) = 10.08, p = .007) were observed.  All effects showed the 

same direction as the effects reported for the analyses, including the fast responses. 

4 DISCUSSION 

 

In the current study, we aimed to elucidate whether insight problem solving, as non-insight problem 

solving, relies on WM capacity (i.e., Type 2 process) or whether it is based on an unconscious process that 

does not tax cognitive resources (i.e., Type 1 process). To that end, we conducted a CRA experiment where 

participants solved word puzzles while concurrently executing a WM task.  

Our results showed that the solution types were differentially influenced by limiting the available WM 

resources. Although correctly solved word puzzles with non-insight became less frequent with increasing 

WM loads, the number of correctly solved word puzzles with insight remained unaffected. Furthermore, in 

the high-load condition, solution time was longer for non-insight than insight solutions. These findings 
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support the dual-processing theory's topology for each solution type. Specifically, the observation that 

insight problem solving largely remained stable under dual-task conditions may indicate that insights' 

underlying processes operate outside awareness without taxing cognitive resources (Type 1 process). On the 

contrary, non-insight problem solving was impacted under dual-task conditions, which corroborates non-

insights' dependence on WM resources (Type 2 process).  

The exploratory analysis using a more extreme four-out-of-four correct criterium in the high-load 

condition further substantiated these findings. Even under these strenuous WM loads, the pattern of results 

remained similar to the initial analysis with a three-out-of-four correct criterium. This finding further 

strengthens the conception that insight depends on Type 1 processes more than non-insight does. 

Notwithstanding these findings, it is not unthinkable that even insight might have its limits as the intrinsic 

nature of problem solving entails some form of conscious processing at least. Recent insight theorists 

(Bowden & Grunewald, 2018; Weisberg, 2015) have argued that each solution type involves both processes 

(Type 1 and 2) albeit differentially so (see also Korovkin et al., 2018). Therefore, it would be interesting to 

identify under which exact circumstances insight can also be hampered. Of note, the exploratory analysis 

led to a large exclusion of data in the high-load condition. Although this confirms the extreme nature of the 

imposed load, the results should be approached cautiously given the high and unbalanced data exclusion.  

To our knowledge, this is the first dual-task study on insight that addresses methodological issues of 

previous studies by only using one problem type (CRA) that can be solved both with insight and non-insight. 

Our results show that we succeeded in adequately capturing the two distinct solution types: insight solutions 

were more often correct, received higher solution confidence, and were solved more frequently than non-

insightful ones. This closely mimics other findings typecasting insight problem solving (see Danek & Salvi, 

2018; Danek & Wiley, 2017; Salvi et al., 2016; Webb et al., 2016). Moreover, we showed that using self-

reports to classify word puzzles as solved with insight was not biased by fast responses via immediate 

recognition (see Cranford & Moss, 2012). Our secondary analysis where such fast responses were excluded 

displayed a similar pattern of results than the results where they were included. This finding shows that it 

was not just the fast responses that were identified as solved with insight. This is further supported by the 

data with the fast responses included, illustrating that in the no- and low-load conditions, there was no 

difference in the time needed to solve word puzzles with insight and non-insight. Therefore, we argue that 

our method provided a more reliable investigation of how insight and non-insight are (differentially) reliant 

on WM resources. This method should be used in future studies in more heterogeneous samples balanced 

for biological sex to increase the generalizability of the current findings. We observed some inter-individual 

differences in the propensity to solve the CRA puzzles either with insight or non-insight. Although most 

participants showed a balance between puzzles solved with insight and non-insight, some participants had a 

low rate of insight or non-insight solutions accompanied by a higher rate of the other solution type. Although 

we maximally accounted for these inter-individual differences in the estimated models, this observation 

poses an interesting avenue for further research to expose whether certain people indeed show a propensity 

to use a certain solution type. This would require a longitudinal approach where the robustness of the use of 

both strategies can be assessed across time. 

Our findings align with several strands of research evidencing the unconscious nature of insight. For 

instance, studies using nearness-to-solution ratings while participants solve problems have shown that before 

finding a solution with insight, participants cannot indicate the nearness-to-solution, although, for non-

insight, they can (Kizilirmak et al., 2018; Laukkonen et al., 2021; Metcalfe & Wiebe, 1987). Also, studies 

presenting subliminal solution cues during the solution search showed that this increased the insightful 

problem-solving performance, indicating that unconscious information affects insight (Bowden, 1997; Grant 

& Spivey, 2003; Hattori, Sloman, & Orita, 2013; also see Cristofori, Salvi, Jung-Beeman, & Grafman, 2018, 

for a subliminal reward priming study). Neuro-imaging and psychophysiological studies have likewise 

corroborated the unconscious nature of insight. For example, it has been found that there is a sudden burst 
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of gamma waves over the right temporal lobe at roughly the moment of insight. This burst of activation is 

assumably linked to the sudden convergence and integration of solution information as it surfaces 

consciousness (see Kounios & Jung-Beeman, 2014 for a review). On a similar note, Salvi et al.  (2020) 

showed that immediately preceding solutions found with insight, but not with non-insight, there was a sudden 

increase in pupil dilation, marking the switch into awareness of the insightful solution.  

However, insight might have been preceded by hunches, intuitions, or subtle experiences of cognitive 

conflict, steering the problem-solving process to the insight moment consciously (Schooler, Ohlsson, & 

Brooks, 1993; Schooler, 2011; Stuyck et al., 2021; Winkielman & Schooler, 2011; Zander et al., 2016). It 

has been argued that such ineffable phenomenological experiences are, like unconscious processes, relatively 

independent of cognitive resources (Schooler, 2011; Winkielman & Schooler, 2011). Therefore, our results 

might reflect such ineffable processing rather than true unconscious processing. However, what makes such 

experiences hard to put down in words (i.e., the ineffable part), is that they represent the felt component of 

tacit problem-related information present at the border of consciousness (Norman, Price & Duff, 2010; see 

also Bowers et al., 1990). Thus, even these ineffable processes, although having a link with a conscious 

experience, still represent implicit processing. In that sense, they do not necessarily negate insight's 

unconscious nature but perhaps instead refer to the involvement of unconscious processes to a different 

degree (i.e., gradual accumulation of intuitions leading to insight; Bowers et al., 1990, Zhang, Lei, & Li, 

2016). Still, recent studies on nearness-to-solution ratings demonstrated a discontinuous pattern of these 

ratings for insight and a gradual one for non-insight, especially in the case of CRA (e.g., Kizilirmak et al., 

2018; Laukkonen et al., 2021). If intuitions would play a prominent role in CRA insight solutions, one would 

also expect to find graduality in the nearness-to-solution ratings tapping into the insight. One could argue 

that the relatively short solving times observed for CRA puzzles prohibit the reliance on gradual intuitions. 

In more complex problem-solving settings, intermittently working on the problem might provide a better 

context for intuitions to develop as well as to act upon them (see Sio & Ormerod, 2009, for a review on 

incubation as a period where no attention is devoted to the problem).   

Furthermore, if both solution types rely differentially on Type 1 and Type 2 processes (i.e., insight more 

on the former and non-insight more on the latter), it should be possible to doubly dissociate them. This would 

additionally involve assessing how insightful and non-insightful problem-solving performance are hampered 

differentially when a secondary task depletes the unconscious resources (i.e., Type 1). To our knowledge, 

only one attempt has been made so far to achieve this. Lebed and Korovkin (2017) used an implicit learning 

task (i.e., a classification task based on a hidden rule) as a secondary task next to a problem-solving task 

where participants solved an insight problem versus a non-insight problem. Their results showed that this 

secondary task only interfered with the insightful solution search. However, they did not assess the 

participant's awareness of the underlying principle of the implicit learning task. Therefore, it remains unclear 

whether the performance on the implicit learning task resulted from an unconscious or conscious 

comprehension of its underlying principles. Although it is an interesting study, we argue that it is exactly 

this awareness manipulation check of the secondary task that is crucial to be able to unambiguously 

dissociate the reliance of insight and non-insight on Type 1 and Type 2 processes, but which poses a 

challenge that is difficult to surmount (see Newell & Shanks, 2014 and Peters, Kentridge, Phillips, & Block, 

2017, for a discussion). Moreover, they used two distinct problem types to tax insight and non-insight 

problem solving, making an unambiguous comparison difficult as these problem types are very different in 

nature. Nevertheless, a double dissociation is an exciting avenue to further corroborate that insight depends 

more on Type 1 processes than non-insight. However, such a study would entail theoretical and 

methodological pitfalls that are difficult to address.  

Unexpectedly, solution accuracy and solution confidence of insight versus non-insight solutions were 

not differentially affected by WM load. Furthermore, the observed discrepancy regarding solution time only 

showed a trend towards an interaction effect and had a small effect size. One could argue that the WM load 

manipulation we used was insufficient to elicit stronger effects across all dependent measures. However, it 
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is noteworthy that even using a seemingly lenient three-out-of-four recalled digits as a criterium to indicate 

the accuracy of the WM task in the high load condition, participants experienced considerable difficulty 

recalling the digits. As a result, this three-out-of-four correctly recalled digits criterium already led to a 

substantial exclusion of the data (25%). This indicates that our WM load manipulation was sufficiently 

difficult. Still, we conducted an additional exploratory analysis (see Appendix E) using a four-out-of-four 

correctly recalled digits criterium to further increase the WM demands in the high load condition. Although 

this led to an additional reduction of the data of 25% in the high load condition (highlighting the difficulty 

of achieving this criterium), the pattern of results for solution accuracy and solution confidence remained 

similar. This indicates that solution accuracy and solution confidence, even under a more strenuous WM 

load condition, remained largely unaffected. The observation that solution accuracy remained unaffected 

under a more strenuous WM load condition strengthens the finding that the non-insight solution rate 

deteriorated as WM load increased. This is reflected in the fact that, in all analyses, non-insight solution 

accuracy was unaffected by WM load, whereas the number of correctly solved word puzzles with non-insight 

decreased over the WM load conditions. This implies that the amount of incorrectly solved word puzzles 

decreased proportionally to the amount of correctly solved word puzzles with increasing WM load. This 

provides further evidence that the overall rate of non-insight solutions dropped, regardless of how accurate 

they were.   

Alternatively, the lack of a main effect of WM load on solution accuracy (see also Wieth & Burns, 

2014) might not be due to a weak WM load manipulation, but rather to participants' strategy to safeguard 

performance effectiveness (i.e., solution accuracy) at the expense of processing efficiency (i.e., the effort 

needed to maintain a particular performance effectiveness, often defined as reaction or solution times; 

Derakshan & Eysenck, 2009). For insight, safeguarding performance effectiveness may be effortless. 

However, for non-insight, maintaining performance effectiveness under increased WM load might become 

challenging. As such, this increased effort to maintain a certain level of solution accuracy might lead to 

increased solution times under high-load, which indeed was the case in both the initial, secondary, and 

exploratory analyses.  

In conclusion, dual-processing theories provide a useful framework to approach insight and non-insight 

problem-solving and their reliance on cognitive resources. We showed that insight's driving mechanisms are 

less dependent on WM resources than those of non-insight. Because we circumvented several 

methodological issues from previous dual-task studies on insight, this study provides more convincing 

evidence that the underlying processes of insight are more reminiscent of unconscious, Type 1 processes, 

whereas non-insight depends more on conscious, effortful Type 2 processes.  
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Appendix A. Instructions given to participants about the solution types (translated from Dutch and 

Dutch example word puzzle replaced by an English puzzle) 

Thank you for participating in this experiment. 

During the experiment, you will be presented with three words. The goal is to find a word that you 

can attach to each of these three words so that three new meaningful words are created. For 

example: "cane/daddy /plum" is connected by the word "sugar", because with the word "sugar" the 

compound words "sugarcane/ sugar daddy/sugarplum" can be formed. For every word puzzle, the 

solution is always a word that you can only add either to the front or to the back of the three 

words.  

Try to answer as quickly and accurately as possible. You have 25 s to find a solution. Once you 

have found the solution, press the space bar and enter your answer. 

After you have solved a word puzzle, indicate your confidence in your solution. You can do this by using 

the cursor of the mouse to choose a position on a horizontal scale between "low confidence" and "high 

confidence". 

Finally, you must indicate whether you have solved this word puzzle "with Aha!" or "without 

Aha!". 

With Aha!: with an Aha! experience you become aware of the solution suddenly and clearly. This 

can be accompanied by a sense of revelation and relief. 

Without Aha!: Unlike an Aha! feeling, finding a solution with analysis is characterized by a step-

by-step search process. 

Imagine a dark room that is suddenly lit up (with Aha!) or slowly lit with a dimmer switch 

(without Aha!). We ask you to indicate after each word puzzle if you have solved it "with Aha!" or 

"without Aha!". 

Before you start solving the word puzzle, we will show you two numbers. The goal is that you try to retain 

these two numbers. The order is not important. 

Immediately after that, you will have the opportunity to solve the word puzzle. 

After you have solved the word puzzle, indicated your confidence in the solution, and whether you have 

solved this word puzzle "with Aha!" or "without Aha!", we will ask you to enter these two numbers. 

Before the experiment starts, you can practice. 

If something is still not clear, please call the experiment leader. Once all instructions are clear, press the 

spacebar to continue. 

 

 

Of note, these instructions are an example of those presented in the low-load condition (i.e., with two digits). 

For the high-load condition, the number of digits to recall was four. In the no-load condition, no instructions 

were given with regards to the memory task. 
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Appendix B. Deviations from preregistration 

Table 1 Deviations from preregistration (https://osf.io/2v9yz) 

Preregistration Adjustment 

Only participants were to be included who had an 80% 

accuracy on the WM tasks to ensure that participants jointly 

performed the CRA and WM tasks adequately.  

Because this inclusion criterium led to a substantial omission of 

participants in the load-conditions (N=14 in the low-load and N=19 

in the high-load condition), we adjusted this criterium so that we 

were able to include all participants, but only those CRA trials for 

which their WM task performance was correct.  

We specified a secondary analysis to account for the 

influence of solutions found by immediate recognition on 

the pattern of results (see Cranford & Moss, 2012). To 

identify those types of solutions, we proposed a cut-off of 

7470 ms. 

The descriptive statistics of solution time demonstrated that the 

proposed cut-off was too lenient because the average CRA solution 

time was 7682 ms (SD = 5035). Hence, this proposed cut-off would 

not have reliably identified immediate recognitions and likely 

would also have included solutions found after an actual solution 

search. Therefore, we used a different exclusion criterium to 

account for the immediate recognition solutions by omitting all 

solutions found within the first 2000 ms (see Salvi et al., 2020). 

An additional exploratory analysis was performed that was 

not included in the preregistration. 

Initially, a three-out-of-four correctly recalled digits criterium was 

used to index accuracy on the WM task in the high-load condition. 

However, to assess the pattern of results under more strenuous WM 

demands, we increased this criterium in the high-load condition to 

a four-out-of-four correctly recalled digits criterium. Based on this 

altered criterium all statistical analyses were reconducted. 

An additional exploratory analysis was performed that was 

not included in the preregistration. 

The participant sample was not balanced for biological sex with 91 

females and 14 males. Therefore, we reconducted the statistical 

analysis with biological sex as a covariate in each estimated model 

to assess the influence of biological sex on the obtained results. 

An additional exploratory analysis was performed that was 

not included in the preregistration 

The total number of correctly solved word puzzles varied among 

participants. To take this into account we reconducted the analysis 

of the number of correctly solved word puzzles with an offset 

included. Including this offset transforms the outcome variable to 

a rate (i.e., log(number solved correctly/total number solved 

correctly)) to estimate the model's parameters, after which the 

outcome variable is back-transformed to represent counts again 

(see Hutchinson & Holtman, 2005). 
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Appendix C. Estimated models 

Table 1. Linear mixed model on solution time of the CRA 

 β(SE) CI 95% t-value p 

Intercept (grand mean) 3.84(0.01) 3.81, 3.87 269.78 <.001 

solution type 0.04(0.01) 0.02, 0.06 3.91 <.001 

Load1  -0.01(0.03) -0.06, 0.04 -0.41 .686 

Load2 0.007(0.03) -0.04, 0.06 0.29 .773 

solution type*load1 0.03(0.03) -0.03, 0.09 1.05 .294 

solution type*load2 0.07(0.03) 0.01, 0.12 2.41 .016 

Note. Load1 = no vs. low; Load2 = low vs. high; p-values were obtained using the Satterthwaite 

approximation method; Boldface = significant results; CI = confidence interval. This linear mixed 

model is based on only the correctly solved word puzzles.  

 

Table 2. Generalized linear mixed model on solution accuracy of the CRA 

 β(SE) OR CI 95% Z-value p 

Intercept (grand mean) 1.99(0.16) 7.32 5.34, 10.24 12.22 <.001 

solution type -1.56(0.12) 0.21 0.16, 0.26 -13.47 <.001 

Load1  0.25(0.31) 1.28 0.69, 2.38 0.79 .429 

Load2 -0.36(0.29) 0.70 0.39, 1.26 -1.21 .228 

solution type*load1 -0.10(0.31) 0.90 0.49, 1.67 -0.33 .738 

solution type*load2 -0.46(0.31) 0.63 0.34, 1.18 -1.46 .144 

Note. Beta coefficients are on the logit scale; OR = odds ratio; An OR of one represents a chance-level 

classification of correct and incorrectly solved word puzzles. An OR above/below one represents the 

magnitude of increase/decrease in the chance of classifying word puzzles as solved correctly; Load1 = 

no vs. low; Load2 = low vs. high; Boldface = significant results; CI = confidence interval. This 

generalized linear mixed model is based on the correct and incorrectly solved word puzzles. 

 

Table 3. Generalized linear mixed model on solution confidence of the CRA 

 β(SE) CI 95% Z-value p 

Intercept (grand mean) 0.97(0.09) 0.81, 1.14 11.31 <.001 

solution type -0.65(0.04) -0.74, -0.57 -15.95 <.001 

Load1  -0.22(0.18) -0.58, 0.14 -1.18 .236 

Load2 -0.39(0.17) -0.72, -0.05 -2.24 .025 

solution type*load1 -0.02(0.11) -0.24, 0.20 -0.19 .852 

solution type*load2 -0.11(0.12) -0.34, 0.12 -0.95 .343 

Note. Beta coefficients are on the logit scale; Load1 = no vs. low; Load2 = low vs. high; Boldface = 

significant results; CI = confidence interval. This generalized linear mixed model is based on only the 

correctly solved word puzzles. 

 

Table 4. Generalized Linear model on the number of correctly solved word puzzles of the CRA 

 β(SE) CI 95% Z-value p 

Intercept (grand mean) 2.66(0.03) 2.60, 2.73 78.34 <.001 

solution type -0.45(0.11) -0.66, -0.25 -4.30 <.001 

Load1  -0.30(0.08) -0.46, -0.14 -3.66 <.001 

Load2 -0.30(0.11) -0.51, -0.10 -2.85 .004 

solution type*load1 -0.69(0.29) -1.26, -0.13 -2.39 .017 

solution type*load2 -0.89(0.30) -1.48, -0.30 -2.96 .003 

Note. Beta coefficients are on the log scale; Load1 = no vs. low; Load2 = low vs. high; Boldface = 

significant results; CI, confidence interval. Robust standard errors were computed to account for the non-

independence of the observations. This generalized linear model is only based on the correctly solved 

word puzzles. 
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Appendix D. Estimated models with responses within the two first seconds excluded 

Table 1. Linear mixed model on solution time of the CRA 

 β(SE) CI 95% t-value p 

Intercept (grand mean) 3.84(0.01) 3.82, 3.87 286.93 <.001 

solution type 0.04(0.01) 0.02, 0.06 3.82 <.001 

Load1  -0.01(0.03) -0.06, 0.05 -0.27 .785 

Load2 0.003(0.02) -0.05, 0.05 0.12 .909 

solution type*load1 0.02(0.03) -0.04, 0.08 0.80 .422 

solution type*load2 0.07(0.03) 0.01, 0.13 2.38 .018 

Note. Load1 = no vs. low; Load2 = low vs. high; p-values were obtained using the Satterthwaite 

approximation method; Boldface = significant results; CI = confidence interval. This linear mixed model 

is based on only the correctly solved word puzzles.   

 

Table 2. Generalized Linear mixed model on solution accuracy of the CRA 

 β(SE) OR CI 95% Z-value p 

Intercept (grand mean) 1.99(0.16) 7.32 5.34, 10.26 12.20 <.001 

solution type -1.56(0.12) 0.21 0.17, 0.26 -13.35 <.001 

Load1  0.25(0.31) 1.28 0.69, 2.39 0.80 .423 

Load2 -0.34(0.29) 0.71 0.39, 1.28 -1.17 .243 

solution type*load1 -0.10(0.31) 0.91 0.49, 1.68 -0.31 .756 

solution type*load2 -0.50(0.31) 0.61 0.32, 1.13 -1.61 .108 

Note. Beta coefficients are on the logit scale; OR = odds ratio; An OR of one represents a chance-level 

classification of correct and incorrectly solved word puzzles. An OR above/below one represents the 

magnitude of increase/decrease in the chance of classifying word puzzles as solved correctly; Load1 = 

no vs. low; Load2 = low vs. high; Boldface = significant results; CI = confidence interval. This 

generalized linear mixed model is based on the correct and incorrectly solved word puzzles. 

 

Table 3. Generalized Linear mixed model on solution confidence of the CRA 

 β(SE) CI 95% Z-value p 

Intercept (grand mean) 0.97(0.09) 0.80, 1.14 11.26 <.001 

solution type -0.65(0.04) -0.74, -0.57 -15.84 <.001 

Load1  -0.22(0.18) -0.58, 0.14 -1.18 .238 

Load2 -0.39(0.17) -0.72, -0.05 -2.23 .026 

solution type*load1 0.0004(0.11) -0.22, 0.22 0.004 .997 

solution type*load2 -0.10(0.12) -0.33, 0.13 -0.88 .378 

Note. Beta coefficients are on the logit scale; Load1 = no vs. low; Load2 = low vs. high; Boldface = 

significant results; CI = confidence interval. This generalized linear mixed model is based on only the 

correctly solved word puzzles. 

 

Table 4. Generalized Linear model on the number of correctly solved word puzzles of the CRA 

 β(SE) CI 95% Z-value p 

Intercept (grand mean) 2.65(0.03) 2.58, 2.71 78.03 <.001 

solution type -0.45(0.10) -0.65, -0.24 -4.30 <.001 

Load1  -0.31(0.08) -0.47, -0.15 -3.80 <.001 

Load2 -0.30(0.11) -0.50, -0.09 -2.79 .005 

solution type*load1 -0.68(0.29) -1.24, -0.12 -2.37 .018 

solution type*load2 -0.88(0.30) -1.46, -0.30 -2.97 .003 

Note. Beta coefficients are on the log scale; Load1 = no vs. low; Load2 = low vs. high; Boldface = 

significant results; CI, confidence interval. Robust standard errors were computed to account for the non-

independence of the observations. This generalized linear model is based on only the correctly solved 

word puzzles. 
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Appendix E. The statistical analysis with the four-out-of-four correctly recalled digits criterium 

Solution time 

An LMM was constructed with the (log-transformed) solution time of the correctly solved word puzzles 

as the outcome variable and solution type (two levels: Insight and non-insight), WM load (three levels: no-

load, low-load, and high-load) and their interaction term as fixed effects. There was a significant main effect 

of solution type, ꭓ²(1) = 14.82, p < .001. Word puzzles solved with insight (M = 3.81) were solved 

significantly faster than those solved with non-insight (M = 3.86),  t(2684) = -3.85, p < .001, Cohen’s d = 

0.18 (95% CI [0.09, 0.27). There also was a significant interaction effect, ꭓ²(2) = 5.99, p = .049. Post-hoc 

tests showed that there were no significant differences between load conditions for insight (no load vs. low 

load, p = .878; no load vs. high load, p = .338; and low load vs. high load, p = .609) nor non-insight (no load 

vs. low load, p = .793; no load vs. high load, p = .748; and low load vs. high load, p = .382). To further 

clarify the significant interaction effect, a pairwise contrast was made of solution type (insight vs. non-

insight) conditional on three levels of WM load. These pairwise comparisons showed that only in the high-

load condition, word puzzles solved with insight were solved significantly faster than word puzzles solved 

with non-insight (M = 3.79 versus M = 3.88), t(2616) = -3.83, p < .001, Cohen’s d = 0.34 (95% CI [0.17, 

0.52]). This was not the case in the no- and low-load conditions (p = .146 and p = .265). The main effect of 

WM load was not significant, p = .809. This result is depicted in Figure 1. 

 

 

Figure 1. The interaction between solution type and WM load for solution time. Bars represent the 95% 

confidence intervals. Solution time was log-transformed with base 10.  

 

Solution accuracy 

Likewise, a GLMM was constructed with solution accuracy as a binary outcome variable. There was a 

significant main effect of solution type, ꭓ²(1) = 161.9, p < .001. Word puzzles solved with insight had a 

significantly higher probability of being correct than word puzzles solved with non-insight (M = 94% versus 

M = 78%), Z = 12.28, p < .001, Cohen's d = -1.52 (95% CI [-1.76, -1.27]). The main effect of WM load and 

the interaction effect were not significant, p = .184 and p = .724, respectively.   
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Solution confidence 

Similarly, a GLMM was constructed with solution confidence of the correctly solved word puzzles as 

a bounded outcome variable (range .005-.995). There was a significant main effect of solution type, ꭓ²(1) = 

194.63, p < .001. The word puzzles solved with insight received significantly higher solution confidence 

than word puzzles solved with non-insight (M = .78 versus M = .66), t(2825) = 14.23, p <.001, Cohen’s d = 

-0.14 (95% CI [-0.16, -0.12]). The main effect of WM load and the interaction effect were not significant, p 

= .125 and p = .927, respectively. 

 

The number of correctly solved word puzzles 

Lastly, a GLM was built with the number of correctly solved word puzzles as a count outcome variable4. 

There was a significant main effect of solution type, ꭓ²(3) = 23.73, p < .001. Correctly solved word puzzles 

were more frequent for insight than non-insight (M = 16.4 versus M = 10.5), Z = 4.89, p < .001, Cohen's d = 

-0.43 (95% CI [-0.61, -0.25]). Also, a main effect of WM load was observed, ꭓ²(4) = 36.64, p < .001. Post-

hoc tests demonstrated that correctly solved word puzzles were more frequent in the no- than high-load 

condition (M = 16.7 versus M = 9.4), Z =  -5.00, p < .001, Cohen's d = 0.55 (95% CI [0.33, 0.77]) and more 

frequent in the low- than high load condition (M = 14.4 versus M = 9.4), Z =  -3.82, p < .001, Cohen's d = 

0.40 (95% CI [0.19, 0.61]). The comparison between the no- and low-load condition was not significant (p 

= .389). More importantly, there was a significant interaction effect, ꭓ²(2) = 9.03, p = .011. The post-hoc 

tests illustrated that for insight, there were no significant differences between the three levels of WM load 

(no-load vs. low-load, p = .985; no-load vs. high-load, p = .480 and low-load vs. high load, p = .560). 

However, for non-insight correctly solved word puzzles were more frequent in the no- than high-load 

condition (M = 15.8 versus M = 6.0, Z = -5.76, p < .001, Cohen's d = 0.92 (95% CI [0.59, 1.25]), and more 

frequent in the low- than high-load condition (M = 12.0 versus M = 6.0, Z = -4.24, p < .001, Cohen's d = 

0.66 (95% CI [0.35, 0.97]).  The comparison between the no- and low-load condition was not significant (p 

= .214). Thus, while the number of correctly solved word puzzles decreased with increasing WM loads for 

non-insight, the number of correctly solved word puzzles with insight remained unaffected.  This result is 

illustrated in Figure 2. 

 

 

 

 

4 As the total number of correctly solved word puzzles varied among participants, we took this into account by 

including an offset in the GLM of the number of correctly solved word puzzles. Including this offset transforms 

the outcome variable to a rate (i.e., log(number solved correctly/total number solved correctly)) to estimate the 

model's parameters (see Hutchinson & Holtman, 2005). The results of this adjusted GLM remained similar to 

the initial analysis. Namely, a main effect of solution type (p < .001), a main effect of WM load (p < .001), and 

an interaction effect between solution type and WM load (p = .008). The direction of the effects remained 

similar to the initial analysis. 
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Figure 2. The interaction between solution type and WM load for the number of correctly solved word 

puzzles. Bars represent the 95% confidence intervals. The number of solved word puzzles refers to those 

solved correctly. 
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