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Abstract. Ab initio calculations of bulk nuclear properties (ground-state energies, root mean square charge
radii and charge density distributions) are presented for seven complete isotopic chains around calcium, from
argon to chromium. Calculations are performed within the Gorkov self-consistent Green’s function approach
at second order and make use of two state-of-the-art two- plus three-nucleon Hamiltonians, NN+3N(lnl)
and NNLOsat. An overall good agreement with available experimental data is found, in particular for
differential energies (charge radii) when the former (latter) interaction is employed. Remarkably, neutron
magic numbers N = 28, 32, 34 emerge and evolve following experimental trends. In contrast, pairing gaps
are systematically underestimated. General features of the isotopic dependence of charge radii are also
reproduced, as well as charge density distributions. A deterioration of the theoretical description is observed
for certain nuclei and ascribed to the inefficient account of (static) quadrupole correlation in the present
many-body truncation scheme. In order to resolve these limitations, we advocate the extension of the
formalism towards incorporating breaking of rotational symmetry or, alternatively, performing a stochastic
sampling of the self-energy.

1 Introduction

A leap forward in ab initio calculations of atomic nuclei
occurred about 15 years ago with the (re)introduction, in
nuclear structure theory, of so-called correlation expansion
methods [1, 2]. As opposed to virtually exact approaches,
which do not impose any formal approximation on the
solution of the many-body Schrödinger equation and scale
exponentially or factorially with the system size, corre-
lation expansion techniques achieve a polynomial scaling
at the price of an approximate, yet controlled and sys-
tematically improvable, solution. Combined with the avail-
ability of “softer” Hamiltonians, obtained via similarity
renormalisation group (SRG) transformations [3], such a
favourable scaling progressively enabled the extension of
first-principle calculations beyond the region of light nuclei
traditionally targeted by ab initio practitioners. Nowadays,
systems up to mass number A ∼ 70 can be routinely ac-
cessed [4, 5, 6, 7, 8], with a few attempts reaching out to
neutron-deficient tin (A ∼ 100) [9, 10] or even neutron-rich
tin and xenon (A ∼ 140) [11] nuclei.

Many-body theories accessing mid-mass nuclei stan-
dardly expand the exact ground-state wave function with
respect to a reference Slater determinant and can thus
efficiently access doubly closed-shell systems dominated
by dynamical, i.e. weak, correlations. However, the re-
striction to a single symmetry-restricted reference product
state is too limiting to generate a meaningful expansion

in open-shell nuclei due to the associated degeneracy with
respect to elementary particle-hole excitations. The use
of more general reference states must be contemplated
to lift the degeneracy and tackle, from the outset, strong
static correlations characterising open-shell systems. To
this purpose, three different strategies have been explored
so far. The first option relies on reference states mixing
a set of appropriately chosen Slater determinants [12, 13].
Those multi-configurational reference states can, for exam-
ple, be obtained from a prior no-core shell model calcula-
tion [14] in a small basis or under the form of a particle-
number-projected Hartree-Fock-Bogolyubov (HFB) state.
Such reference states have been successfully employed in
the multi-reference extension of the in-medium similar-
ity renormalisation group method [5, 15, 16] or within
a perturbative framework yielding multi-configurational
perturbation theory [17]. The second possibility consists
in using a doubly closed-shell nucleus as a core, and com-
puting the valence-space interaction at play on top of it
through a polynomially-scaling method. Subsequently, a
factorially-scaling diagonalisation is performed to solve the
Schrödinger equation within the valence space to a high
degree of precision [18, 19, 20]. While this method bene-
fits from the maturity of the shell-model technology, its
hybrid numerical scaling limits its applicability to nuclei
traditionally accessible by the shell model, i.e. A . 100.
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A third route, followed here, relies on the use of a
reference product state breaking one or several symmetries
of the underlying Hamiltonian. In doing so, one can trade
the degeneracy with respect to particle-hole excitations
characterising open-shell systems for a degeneracy with
respect to transformations of the associated symmetry
group. As a result, the particle-hole degeneracy is lifted and
a well-defined many-body expansion on top of a “deformed”
reference product state can be designed. This trade-off
allows one to access open-shell systems while maintaining
a polynomial cost and the intrinsic simplicity of single-
reference expansion methods. The handling of the pseudo
Goldstone mode associated with the manifold of degenerate
states, necessary to restore the broken symmetry, can be
safely postponed to a later stage [21, 22, 23].

Largely employed in the context of nuclear energy den-
sity functional [24], this approach was imported in ab
initio nuclear structure about a decade ago. First, Gorkov
self-consistent Green’s function (GSCGF) theory was de-
veloped [25]. Few years later, coupled cluster theory was
extended to the use of a Bogolyubov reference state [26].
More recently, Bogolyubov many-body perturbation theory
(BMBPT) was introduced as a generalisation of standard
Møller-Plesset theory [27, 28]. All these techniques rely
solely on the breaking of the U(1) symmetry related to
particle-number conservation and are thus designed to effi-
ciently account for static pairing correlations. In order to
deal with the other source of strong correlations in nuclei,
i.e. the quadrupole correlations typically associated with
nuclear deformation, one would need to correspondingly
break rotational SU(2) symmetry. Although work in this
direction is in progress (see e.g. [29, 30]), the latter fea-
ture is currently unavailable in nearly all state-of-the-art
implementations. As a consequence, the above methods
are preferentially applied to singly open-shell (i.e., semi-
magic) nuclei, where the role of quadrupole correlations
is not predominant. Indeed, GSCGF and BMBPT have
successfully addressed complete semi-magic isotopic chains,
e.g. oxygen, calcium or nickel [31, 32, 33, 27, 8, 28]. The
limits of applicability of U(1)-breaking, SU(2)-conserving
correlation expansion methods, however, have never been
systematically probed. Therefore, it is worthwhile to push
such calculations away from semi-magic nuclei in order to
empirically identify if and where such a strategy eventually
fails, i.e. the point beyond which an explicit breaking of
SU(2) symmetry will become mandatory.

Recently, specific medium-mass doubly open-shell sys-
tems, e.g. some titanium [34] or sulfur and argon [35, 36]
isotopes, have been computed within the GSCGF approach.
In this paper, we extend these works to a systematic study
of several isotopic chains around semi-magic calcium for
which results were not available before. In particular, we
compute ground-state energies, charge radii and selected
charge density distributions for chains ranging from argon
(Z = 18) to chromium (Z = 24) and compare to avail-
able experimental data. Calculations were performed using
the recently introduced NN+3N(lnl) Hamiltonian [8]. For
charge radii and densities, additionally, the NNLOsat [37]

Hamiltonian was employed. Overall, the goals of the present
study can be summarised as follows:

1. Assess the performance of state-of-the-art ab initio cal-
culations on bulk properties of medium-mass nuclei.
In this respect, the present work follows up on the
results of Ref. [8], in which the novel NN+3N(lnl)
interaction was benchmarked on semi-magic oxygen,
calcium and nickel isotopes. Here it is shown that the
global satisfactory agreement with experimental data
found in Ref. [8] extends to doubly open-shell isotopes
around calcium. Remarkably, neutron magic numbers
N = 28, 32, 34 emerge and evolve following experimen-
tal trends. While the neutron dripline is not addressed
here, the proton dripline is found at or near the ex-
perimental one. As already remarked in Ref. [8] for
calcium, charge radii computed with NN+3N(lnl) are
too small compared to the experimental values. In con-
trast, NNLOsat provides a good overall description of
existing data. Nevertheless, even our best calculations
fail to reproduce some finer details, e.g. the steep rise
between N = 28 and N = 32 and the parabolic-like
behaviour between N = 20 and N = 28. The latter can
be in part ascribed to many-body truncations. Inter-
estingly, for both interactions, a second, smaller, kink
is observed at N = 34.

2. Analyse pairing properties in nuclei within a first-
principle description.
The ability of accessing ground-state energies of odd-
even nuclei enables the investigation of pairing effects
e.g. by considering three-point mass differences in even-
Z isotopic chains. The resulting pairing strength turns
out to be underestimated compared to experimental
observations, which possibly points to missing many-
body correlations.

3. Probe the limits of SU(2)-conserving correlation expan-
sion methods in the description of doubly open-shell
nuclei.
It is observed that the description of experimental data
deteriorates for certain sets of nuclei away from singly-
magic calcium. It is conjectured that this might signal
the onset of significant quadrupole correlations, i.e.
static deformation. A careful scrutiny indeed reveals a
correlation between the inaccuracy of the results (quan-
tified in terms of deviation from experimental data)
and an estimate of the deformation.

Developing the above points, the manuscript is organised as
follows. First, the theoretical and computational scheme is
briefly recalled in Sec. 2. Section 3 is devoted to the study of
ground-state energies, in the form of either total (Sec. 3.1)
or differential (Secs. 3.2 and 3.3) binding energies. Further,
a discussion of three-point mass differences is presented in
Sec. 3.4. The impact of (expected) nuclear deformation on
calculated ground-state energies is investigated in Sec. 3.5.
Finally, a systematic survey of nuclear radii and a selection
of representative charge density distributions are presented
in Sec. 4. Conclusions and perspectives follow in Sec. 5.
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2 Computational set-up

All calculations presented here were performed within the
Gorkov self-consistent Green’s function approach at second
order in the algebraic diagrammatic construction expan-
sion [ADC(2)] [25, 38]. An extensive study of oxygen, cal-
cium and nickel isotopes has been recently carried out in
the same computational scheme and published in Ref. [8].
Hence, only the most salient features are recalled here and
the reader is referred to [8] for more computational and
technical details.

Two different two- plus three-nucleon (2N+3N) Hamil-
tonians were employed in the present study. The first one,
labelled NN+3N(lnl), is based on the next-to-next-to-
next-to-leading order (N3LO) nucleon-nucleon potential
from Entem and Machleidt [39, 40] complemented with the
N2LO 3N interaction for which a combination of local and
nonlocal regulators is used [8]. Low-energy constants were
fitted to A = 2, 3, 4 systems. This Hamiltonian is further
SRG-evolved to a low-momentum scale of λ = 2 fm−1. The
second one, labelled NNLOsat, was introduced in Ref. [37]
with the explicit goal of providing an improved description
of saturation properties. Here, in contrast to NN+3N(lnl),
low-energy constants were simultaneously fitted to few-
body systems as well as selected ground-state energies and
radii of carbon and oxygen isotopes. This Hamiltonian is
SRG-unevolved.

Three-nucleon forces are treated following the formal-
ism developed in Ref. [41]. In practice, the three-body
Hamilton operator is self-consistently convoluted with the
correlated one-body density matrix and contributes to
one- and two-body effective interactions [42]. The contri-
butions resulting from contracting two- and many-body
density matrices were seen to be negligible for our pur-
poses [43, 44]. Note that we discard interaction-irreducible
diagrams containing three-body vertices. The formalism
needed to include these at the ADC(3) level was presented
in Ref. [45] and their contribution is estimated to be compa-
rable, in terms of both importance and required computing
resources, to ADC(5) computations with only two-nucleon
interactions. The procedure used in this paper generates
an A-dependent symmetry-conserving Hamiltonian that
can be viewed as a generalisation of the particle-number-
conserving normal-ordered two-body approximation dis-
cussed in Ref. [46].

As for (many-body) operators, they are expanded on
a one-body harmonic oscillator (HO) basis (or products
thereof) including states up to emax ≡ max (2n + l) =
13. Three-body operators are further restricted to three-
body basis states characterised by e3max = 16 < 3 emax.
For some representative isotopes, a variation of the HO
frequency ~ω was performed in order to locate the opti-
mal value for the binding energy and radius, which are
observables considered in this work. Based on this analysis,
we performed calculations using ~ω = 18 MeV for both
energies and radii for NN+3N(lnl), and ~ω = 20 MeV
and ~ω = 14 MeV for energies and radii respectively for
NNLOsat. All results presented here were obtained with
these model space parameters, unless otherwise stated.

In Ref. [8] theoretical uncertainties associated to model-
space and many-body truncations were investigated for
calcium isotopes. For total ground-state energies, such un-
certainties were estimated to be respectively 0.5% and 2%
(1% and 3%) for NN+3N(lnl) (NNLOsat). For charge radii,
a combined (model space plus many-body) uncertainty of
0.1 fm was assumed for both interactions. A refined uncer-
tainty analysis for charge radii is presented in Sec. 4. Even
if the estimates on many-body truncation will have to be
corroborated by explicit GSCGF-ADC(3) calculations in
the future, one can suppose that the above values give
a reasonable indication also for the (doubly) open-shell
nuclei considered here.

3 Ground-state energies

3.1 Total energies

Let us start by analysing total ground-state energies along
the seven isotopic chains studied in this work, i.e. argon
(Z = 18), potassium (Z = 19), calcium (Z = 20), scan-
dium (Z = 21), titanium (Z = 22), vanadium (Z = 23)
and chromium (Z = 24). The current implementation of
GSCGF theory is based on the assumption that JΠ = 0+

for targeted ground states and is therefore well suited for
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Fig. 1. Total binding energies along Z = 18 − 24 isotopic
chains computed at the ADC(2) level with the NN+3N(lnl)
interaction (symbols joined by solid lines). For comparison,
experimental data (measured [47, 34, 48, 49, 36], full symbols
and extrapolated [47], empty symbols) are displayed. Both
calculated and experimental values are shifted by (20−Z)× 20
MeV for a better readability. For closed-shell calcium isotopes,
available ADC(3) results [8] are displayed as horizontal lines.
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even-even nuclei. The ground-state energy of odd-even
systems can be computed via [50]

EAodd-even = ẼA + ω0 , (1)

where ẼA is the ground-state energy of the odd-even nu-
cleus computed as if it had JΠ = 0+, i.e. as a fully paired
even-number-parity state forced to have the right odd num-
ber of particles on average, and ω0 is the lowest one-nucleon
separation energies in the latter calculation. Further details
can be found in Refs. [25, 38]. A more direct but similar
approach is to use the addition and separation energies
encoded in the spectral function but to recompute the
even-even isotope with the center of mass corrections for
A± 1, as done in Ref. [42]. As a result, one can access the
ground-state energy of all isotopes with even Z and that
of odd-even isotopes with odd Z. Other observables, e.g.
radii or densities, are instead available only for even-even
systems. Further developments, e.g. involving the use of
Hellmann-Feynman theorem, are needed to extend their
calculation to odd-even systems.

Computed ground-state energies are presented in Fig. 1
and compared to experimental (measured and extrapo-
lated) data. The global behaviour is well captured by the
calculated energies across all values of Z and N , although
underbinding with respect to experiment is observed for all
chains. The deviation per nucleon is roughly of the same
magnitude for all nuclei (as also visible from Fig. 8, dis-
cussed below). This points to a global effect like e.g. missing
specific many-body correlations. Indeed, ADC(3) results for
calcium isotopes [8], displayed in Fig. 1 as horizontal bars,
show that excellent agreement with experimental values
is reached once a more refined truncation schemes is used.
These findings confirm the good performance achieved by
the NN+3N(lnl) Hamiltonian for ground-state energies
in this mass region [8].

3.2 One- and two-nucleon separation energies

Systematically accessing successive nuclides along isotopic
or isotonic chains allows to investigate some of the most
fundamental properties of atomic nuclei such as the limits
of their existence as bound states or the emergence (and
evolution) of magic numbers. Such properties are best
studied by looking at total ground-state energy differences.
Two-neutron separation energies

S2n(N,Z) ≡ |E(N,Z)| − |E(N − 2, Z)| (2)

are first considered. Their values computed from the to-
tal energies of Fig. 1 are shown in Fig. 2, together with
available and extrapolated experimental data. The overall
agreement with experiment is remarkable, with computed
values following the main trends of measured data. The
two neutron magic numbers N = 20 and N = 28, associ-
ated with sudden drops of S2n, are visible in all theoretical
curves. The N = 28 gap is very well reproduced across all
isotopic chains, with the good description carrying over to
larger neutron numbers for most chains. On the contrary,
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Fig. 2. Two-neutron separation energies along Z = 18− 24 iso-
topic chains computed with the NN+3N(lnl) interaction (sym-
bols joined by solid lines), compared to experimental (measured,
full symbols and extrapolated, empty symbols) data. Both cal-
culated and experimental values are shifted by (Z − 20) × 5
MeV for a better readability.

the gap at N = 20 turns out to be overestimated, with
the comparison to experiment worsening when departing
from proton magic number Z = 20. The description deteri-
orates also in other regions, e.g. for argon isotopes between
N = 20 and N = 28 or more generally for chromium iso-
topes. In such systems both protons and neutrons have an
open-shell character. The absence of a closed shell is likely
to induce strong quadrupole correlations that are difficult
to capture in the present calculations, based on expanding
over a spherical reference state.

The neutron dripline, i.e. the position of the last bound
system in a given isotopic chain, can be also read from
two-neutron separation energies as unbound nuclei are char-
acterised by negative values of S2n. None of the computed
neutron rich isotopes shown in Fig. 2 results unbound, i.e.
the dripline is predicted to be located beyond N = 40 for
all considered chains1. The smallest S2n value are reached
for 56−57Ar and are as low as 100 keV. However, one must
remark that continuum coupling is likely to play an impor-
tant role when binding energies are so close to the neutron
emission threshold. Presently, the continuum is crudely in-
cluded via the discretised harmonic oscillator basis, which
does not ensure correct asymptotic properties. In future
studies, in order to reliably determine the position of the

1 Present calculations could not be extended beyond N = 40
due to convergence issues, see discussion in Ref. [8] for more
details.
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neutron dripline, particular care will have to be devoted
to a more proper treatment of this aspect.

The coupling to the particle continuum plays a lesser
role around the proton dripline because of Coulomb repul-
sion. Given that present calculations span several neigh-
bouring chains, the proton dripline can be investigated
within this theoretical setting. Here, the key quantities are
one-proton and two-proton separation energies, defined
respectively as

S1p(N,Z) ≡ |E(N,Z)| − |E(N,Z − 1)| (3)

and

S2p(N,Z) ≡ |E(N,Z)| − |E(N,Z − 2)| . (4)

For a given element, the most proton-rich isotope for which
both S1p > 0 and S2p > 0 determines the position of the
proton dripline. In Fig. 3, measured and computed S1p

and S2p are displayed as a function of neutron number
for the isotopic chains considered in this study2. Experi-

2 For potassium only S1p can be computed, while for argon
none of the two separation energies is available in the present
calculations.
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Fig. 3. One- and two-proton separation energies displayed
as a function of neutron number for different Z. Calculations
performed with the NN+3N(lnl) interaction (symbols joined
by solid lines) are compared to existing data (measured, full
symbols and extrapolated, empty symbols, all joined by dashed
lines). The solid coloured (dashed black) arrows at the top
of each panel mark the computed (experimental) driplines. In
some cases (K, Ca, Sc, V) the theoretical dripline can not be
determined unambiguously from the calculations, hence the
two possible values are shown.
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Fig. 4. Two-proton separation energies displayed as a function
of proton number for different isotonic chains. Calculations
performed with the NN+3N(lnl) interaction (symbols joined
by solid lines) are compared to existing data (measured, full
symbols and extrapolated, empty symbols, all joined by dotted
lines).

mentally, for these elements, the proton dripline has been
determined3 up to vanadium, with the last bound isotopes
being 35K, 35Ca, 40Sc, 40Ti and 43V. For chromium, the last
known isotope is 43Cr. Theoretical curves generally follow
the experimental trends yielding an overall correct quali-
tative description of both S1p and S2p. Looking more in
detail, one observes that calculations tend to overestimate
the measured separation energies in potassium and calcium,
provide an excellent reproduction of scandium isotopes and
underestimate titanium, vanadium and chromium. As a
result, the position of the proton dripline is found at too
small N (with a difference of two or three neutrons) for
the first two elements. In scandium, as well as vanadium,
the dripline is correctly determined at N = 19 and N = 20
respectively. In titanium and chromium, it is also found re-
spectively at N = 19 and N = 20, in this case one neutron
away from what observed experimentally.

The cause of this small discrepancy can be traced
back to the poor reproduction of the Z = 20 gap by
the NN+3N(lnl) Hamiltonian, as evident in Fig. 4. Here,
two-proton separation energies are plotted as a function of
proton number for different isotonic chains. One notices
that, similarly to what observed in Fig. 2 for N = 20, the
Z = 20 gap is overestimated by at least 5 MeV in all con-
sidered isotones. The disagreement becomes more severe
for low neutron numbers, which impacts the determina-
tion of the proton dripline in lighter isotopes. In spite of
these shortcomings, this detailed analysis proves the overall
remarkable quality of present ab initio calculations, not

3 Experimentally, the dripline is typically established by
means of a void observation of one or several isotopes rather
than by determining a negative value of S1p or S2p.
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Fig. 5. Two-neutron shell gaps along Z = 18 − 24 isotopic
chains computed with the NN+3N(lnl) interaction (symbols
joined by solid lines), compared to experimental (measured,
full symbols and extrapolated, empty symbols) data. Both
theoretical and experimental values are shifted by (Z−20)×10
MeV for a better readability.

dissimilar from what emerges from the systematic study
reported in Ref. [51].

3.3 Neutron gaps

A finer insight regarding the magic character of specific
neutron numbers can be gained by looking at so-called
two-neutron shell gaps, defined as

∆2n(N,Z) ≡ S2n(N,Z)− S2n(N + 2, Z) (5)

and displayed in Fig. 5. As for the S2n, one first notices
an overall excellent agreement with experiment, with the
clear exception of the N = 20 peak and its vicinity. While
in semi-magic calcium isotopes calculations only fail to
reproduce the height of the peak, experimental data for
other isotopes show a displacement of the peak, linked to a
possible disappearance of the N = 20 magic number, which
is not reproduced by the present calculations. In contrast,
the N = 28 peak is very well reproduced up to Z = 22,
with the description only slightly deteriorating for Z = 23
and Z = 24. The emergence of the N = 32 subclosure
is nicely visible in lighter elements, as well as the one at
N = 34 in argon, potassium and calcium. When going
towards higher proton number their evolution is poorly
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Fig. 6. Two-neutron shell gaps along four isotonic chains com-
puted with the NN+3N(lnl) interaction (circles), compared to
experimental (measured, full squares, and extrapolated, empty
squares) data. Results for N = 28, 30, 32 and 34 are shown in
panels (a), (b), (c) and (d) respectively.

described starting with N = 34 in scandium and N = 32 in
vanadium. The behaviour becomes even more inconsistent
for chromium. Again, this might signal the importance of
certain ingredients (e.g. quadrupole correlations) that are
missing in the present theoretical framework.

In spite of these deficiencies, remarkably, all magic num-
bers as well as their qualitative evolution emerge “from
first principles”, i.e. starting solely from inter-nucleon in-
teractions whose coupling constants have been adjusted
only in few-body systems. Let us stress that, indeed, no
ad hoc information about the magic character of these
isotopes is inserted at any stage of the calculation. The
emergence of this feature can be better appreciated in
Fig. 6 where neutron gaps are compared to experimental
(measured and extrapolated) data along N = 28, 30, 32 and
34 isotonic chains. While there is room for improvement
in Z = 22, 23, 24 isotones for reasons discussed above, the
overall description is very reasonable. In addition, calcula-
tions of the N = 28 gaps were recently extended down to
chlorine and sulfur [36] where an excellent agreement with
novel precision mass measurement was also found.

3.4 Three-point mass differences

One of the longstanding challenges in low-energy nuclear
physics relates to the microscopic description of nuclear
superfluidity [52]. The microscopic origin of nucleonic pair-
ing, i.e. how it originates in the context of a first-principle
calculation and the role played by different types of many-
body correlations, remains to be elucidated [53]. A fun-
damental, yet unresolved, question relates to how much
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Fig. 7. Three-point mass differences along Z = 18, 20, 22 and
24 isotopic chains computed with the NN+3N(lnl) interac-
tion (symbols joined by solid lines), compared to experimen-
tal (measured, full symbols and extrapolated, empty symbols)
data. Both calculated and experimental values are shifted by
(Z − 20)× 2 MeV for a better readability.

of the pairing gap in finite nuclei is accounted for at low-
est order [54, 55] and how much is due to higher-order
processes, i.e. to the induced interaction associated with
the exchange of collective medium fluctuations between
paired particles [56, 57, 58, 59]. By treating normal and
anomalous propagators consistently and at the same level
of approximation, GSCGF many-body scheme is in an ex-
cellent position to contribute to this quest. In finite nuclei,
the odd-even mass staggering is a good measure of nucle-
onic, e.g. neutron, pairing. In particular, the three-point
mass difference formula

∆(3)(N,Z) ≡ (−1)N

2
[E(N−1, Z)−2E(N,Z)+E(N+1, Z)]

(6)
successively evaluated for even and odd N closely encom-
passes the pairing gap [50, 60] as long as N does not
correspond to a shell closure4. Calculated three-point mass
differences for argon, calcium, titanium and chromium
are compared to available experimental data in Fig. 7. In

4 Note that ∆(3) corresponds to half of the energy difference
between the lowest unoccupied quasiparticle and the highest
occupied quasihole states, that is the particle-hole neutron gap
at the Fermi surface. At subshell closures, this is dominated
by the gap among different nuclear orbits. However, for open
neutron shells only the pairing contribution remains.

spite of a reasonable general trend, the pairing strength
generated in the present ab initio calculations is too low
compared to experiment. This feature is particularly visible
for N ∈ [21, 27] isotopes in all considered chains, as well as
beyond N = 34 for calcium and titanium. Keeping in mind
the possible deficiency of the currently used Hamiltonian,
this result likely points to missing higher-order correla-
tions [56, 57, 58, 59]. The ADC(2) truncation scheme used
here already includes both the lowest-order pairing term
and the induced interaction resulting from the exchange of
unperturbed particle-hole excitations. However, it does not
account for collective vibrations. The extension of GSCGF
to the ADC(3) level is envisaged in the near future, know-
ing that such a truncation does indeed seize important
features of collective fluctuations and of their effect on
superfluidity.

In titanium and chromium, theoretical and experimen-
tal three-point mass differences show further qualitative
differences. In addition to the average value of ∆(3) being
too low, the increase of its oscillation between N = 20 and
N = 28 compared to calcium isotopes along with the shell-
closure disappearances at N = 28, 32, 34 are not captured.
The oscillation of ∆(3) around its average is not related
to the anomalous part of the self-energy (i.e. the pairing
gap) but rather to its normal part (i.e. the effective mean-
field) [50, 60]. The qualitative evolution of this staggering
from calcium to titanium and chromium pointed out above
is thus a fingerprint of increased quadrupole correlations on
the normal self-energy. The absence of this evolution in our
theoretical calculation confirms the need to include these
correlations consistently in both normal and anomalous
channels. While extending GSCGF to the ADC(3) level
should help better describing the staggering of ∆(3), an
explicit treatment of deformation will probably be the most
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Fig. 8. Relative errors (theory - experiment) on total binding
energies per nucleon along Z = 18, 20, 22 and 24 isotopic chains.
Both calculations and experimental data are taken from Fig. 1.
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Fig. 9. Relative errors on total binding energies per nucleon for Z = 18, 20, 22 and 24 isotopes (full symbols and solid lines, taken
from Fig. 8) and corresponding deformation parameter β computed via HFB calculations with the Skyrme SLy4 interaction [61]
(empty symbols and dashed lines).

efficient way to reach a quantitative agreement whenever
quadrupole fluctuations become truly collective, i.e. as one
moves significantly away from semi-magic systems.

3.5 Effects of deformation

For several of the quantities discussed above, the poorer
agreement with theoretical data when departing from semi-
magic calcium has been ascribed to an inefficient descrip-
tion of quadrupole correlations. To substantiate this ob-
servation, differences between computed and experimental
ground-state energies per nucleon are displayed in Fig. 8
for four isotopic chains. Unsurprisingly, the best agreement
with experimental values is found for calcium isotopes.
For this chain, the error is dominated by the many-body
truncation at ADC(2) and by possible flaws of the adopted
nuclear Hamiltonian. Other chains perform generally worse,
with the quality of the description deteriorating in partic-
ular for neutron-rich argon and chromium isotopes. In all
cases a clear minimum is visible at N = 20 and a maxi-
mum around N = 24, which suggests a correlation with
the closed- or open-shell character of the neutrons and the
associated absence or presence of static deformation.

This hypothesis is examined in Fig. 9, where the four
curves of Fig. 8 are plotted separately and compared to
the deformation parameter β obtained in (single-reference)
energy density functional calculations [61]. The correla-
tion between the two quantities is striking for all chains.
This observation supports the intuition that the collective
quadrupole correlations arising in doubly-open shell sys-
tems can hardly be captured by present SU(2)-conserving
calculations.

Even if in principle all correlations can be accounted
for in the current theoretical scheme, one would need to
include very high orders in the expansion in order to grasp
such quadrupole static correlations. Indeed, these are typi-
cally associated with the coherent superposition of many
particle-many hole excitations that are not included in
the low-order many-body truncation schemes currently at
reach. Extending beyond the ADC(3) approximation in-
volves a factorial increase in the numbers of diagrams and

would need a shift of paradigm in which all contributions
are dealt with at once through stochastic sampling [62].
An alternative solution is the extension of existing expan-
sion methods towards SU(2)-breaking schemes that will
enable an efficient description of static deformation from
the outset.

4 Radii

Among the basic nuclear properties addressed by ab initio
calculations in the past few years, the size of medium-mass
nuclei has typically represented (and, to a good extent,
still represents) one of the main challenges. The first sets
of calculations that successfully reproduced ground-state
energies of oxygen isotopes failed to provide, at the same
time, a good description of charge radii [33]. The NNLOsat

Hamiltonian, specifically introduced to cure this issue [37],
very much improved the description of radii although dis-
crepancies for neutron-rich systems have been shown to
persist [33, 63]. An unsatisfactory account of nuclear sizes
remains for several Hamiltonians that are currently em-
ployed in state-of-the-art calculations [64, 8]. Very recently,
new generations of chiral interactions have been proposed
and shown to provide promising results for charge radii of
closed-shell [65] as well as some open-shell [30] medium-
mass nuclei. The behaviour along isotopic chains around
calcium remains however to be investigated. In Ref. [8]
charge radii of oxygen, calcium and nickel isotopes have
been systematically investigated with the NN+3N(lnl)
and NNLOsat Hamiltonians. The study confirmed the good
performance of NNLOsat up to the nickel chains. Here, in
addition to a more refined analysis of calcium isotopes,
charge radii along argon, titanium and chromium chains
are presented.

Mean square (m.s.) charge radii are computed starting
from m.s. point-proton radii 〈r2p〉 as follows

〈r2ch〉 = 〈r2p〉+ 〈R2
p〉+

N

Z
〈R2

n〉+
3~2

4m2
pc

2
. (7)

The last term corresponds to the relativistic Darwin-Foldy
correction [66] amounting to 0.033 fm2. 〈R2

p〉 and 〈R2
n〉
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Fig. 10. (a) Absolute root mean square charge radii of calcium
isotopes and (b) differential ones relative to 48Ca computed with
the NN+3N(lnl) and NNLOsat interactions. Available experi-
mental data from Refs. [67, 63, 71] are displayed. Dark (light)
symbols were obtained using a value 〈R2

p〉 = 0.6905 fm2 [72]
(〈R2

p〉 = 0.770 fm2 [68]) in Eq. (7). Error bars account for the
uncertainty associated to model space truncation (see text for
details).

represent the m.s. charge radius of the proton and the
neutron respectively. While the latter is relatively well es-
tablished, 〈R2

n〉 = −0.1149(27) fm2 [67], the determination
of the former has been debated and revised in the past few
years. In the past, the value of 〈R2

p〉 ' 0.77 fm2 inferred
from electron scattering experiments was commonly used
and included in the CODATA compilation [68]. Recent
experiments, including electronic and muonic hydrogen
Lamb shift measurements, favour a lower m.s. radius of
〈R2

p〉 ' 0.70 fm2 [69]. As a result, the CODATA value was

updated to 〈R2
p〉 ' 0.7079 fm2 [70]. This value is adopted

in the present work and used in Eq. (7), unless specified
otherwise. Given the large variation of 〈R2

p〉 found in the
literature, however, it is worth investigating its impact on
computed charge radii, specially in comparison with other
sources of theoretical error in the calculation.

Figure 10 shows root m.s. (r.m.s.) charge radii along
calcium isotopes computed with the NN+3N(lnl) and
NNLOsat Hamiltonians, either as absolute, panel (a), or rel-
ative to 48Ca, panel (b). For each interaction, the two sets
of points (dark and light symbols) were obtained with two
different values of the proton radius in Eq. (7), respectively
〈R2

p〉 = 0.6905 fm2 [72] and 〈R2
p〉 = 0.770 fm2 [68]. The two

values are representative of the two sets of experimental
results discussed above. For each set of points, error bars

conservatively account for the uncertainty coming from
truncation of the one-body basis in the calculation. Specif-
ically, they are obtained from the variation associated to
different values of the HO frequency ~ω around the optimal
value (itself determined as the closest point to the inter-
section of the different emax curves, see Fig. 5 of Ref. [8]).
While such variation is sizeable for NNLOsat, it is generally
smaller than the size of the points for NN+3N(lnl). In
Ref. [8] the effects of higher-order (specifically, ADC(3))
correlations on charge radii was also assessed for selected
doubly-closed isotopes. For both interactions, the associ-
ated uncertainties were of the order of 1%, i.e. they are
comparable to the ones coming from model-space trunca-
tion in the case of NNLOsat. Hence, one should virtually
add such error bars also to the NN+3N(lnl) results. For
the latter, another possible source of error comes from ne-
glecting many-body radius operators induced by the SRG
evolution. However, recent calculations performed with a
similar interaction have shown that the consistent inclu-
sion of such operators does not impact significantly the
final result [73]. In conclusion, for absolute r.m.s. charge
radii, the chosen value of 〈R2

p〉 can lead to a 0.5% variation,
whereas uncertainties associated to model-space and many-
body truncations are each of the order of 1%, with the
caveat that many-body truncations have been estimated
only on closed-shell (not deformed) isotopes. The situation
is even more favourable for differential radii, as visible in
Fig. 10(b). Here most of the errors cancel out and one is
left with some sizeable model-space truncation uncertainty
only for the most neutron-rich isotopes. These improved
calculations do not present significant differences with re-
spect to the ones discussed in Ref. [8]. Results obtained
with NN+3N(lnl) underestimate the experimental values
by about 5% throughout the calcium chain. Although the
main experimental trend is roughly captured by the theo-
retical curves (see also Fig. 12 and associated discussion),
two of its peculiar features, namely the parabolic behaviour
between 40Ca and 48Ca and the steep rise beyond 48Ca,
are missing.

Let us now move to results for argon, titanium and
chromium isotopes, displayed in Fig. 11. Globally, the be-
haviour is similar to the one observed in the calcium chain,
with NNLOsat calculations very close to experimental data
and NN+3N(lnl) underestimating experiment by about 5
to 10%. In argon, see Fig. 11 (a), charge radii computed
with NNLOsat reproduce very well existing data, with
the notable exception of the most neutron-rich isotope
available, 46Ar. The trend presents a kink at this nucleus,
after which a steady increase with neutron number is ob-
served until N = 34 where a second kink appears. Results
obtained with NN+3N(lnl) follow a similar behaviour
past 46Ar, as one can appreciate by looking at relative
charge radii displayed in Fig. 11 (d). Below N = 28, how-
ever, the NN+3N(lnl) slope is somehow different from
NNLOsat and experimental data. Experimental points are
more scarce for titanium and chromium, with essentially
only stable or long-lived isotopes available. In titanium,
Fig. 11 (b) and (e), isotopes with N = 22 − 26 are well
reproduced by NNLOsat, while 50Ti is overestimated, simi-
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Fig. 11. Root mean square charge radii of (a) argon, (b) titanium and (c) chromium isotopes computed with the NN+3N(lnl)
and NNLOsat interactions. Experimental data are taken from Ref. [67]. Panels (d), (e) and (f) show corresponding differential
radii relative to 36Ar, 46Ti and 52Cr respectively.

larly to 46Ar. NN+3N(lnl) follows the same relative trend
around stability, with slightly different slopes in the proton-
and neutron-rich regions. Analogous behaviour is observed
for chromium, shown in Fig. 11 (c) and (f). Also in this case
the radius of the N = 28 isotope, 52Cr, is overestimated by
NNLOsat calculations, which instead give an excellent re-
production of neighbouring 50Cr and 54Cr. Curves obtained
with NN+3N(lnl) present the same general features as in
the titanium chain.

To better gauge the overall quality of the theoretical
description, m.s. charge radii along all four isotopic chains
are shown in Fig. 12. By examining available experimental
data, one can identify three distinct regions5:

a) Below N = 20, a steady increase with mild odd-even
staggering is observed for calcium and argon.

b) Between N = 20 and N = 28, the slope of the experi-
mental trend changes noticeably, going from positive
(argon) to null (calcium) and negative (titanium and
chromium). Moreover, this is superposed with an in-
verse parabolic behaviour characterised by a marked
odd-even staggering. The parabolic trend is weak in
argon and titanium, but pronounced in calcium.

c) Above N = 28, one finds a steep increase with small
or even absent signs of odd-even staggering and shell
closures.

Computed charge radii do reproduce some but not all of
these experimental trends. Below N = 20, the steady be-
haviour is captured by the calculations, although a slight
shift is present for calcium. In the central region, the change

5 Notice that this differentiation also applies to odd-Z chains
around calcium and extends up to iron, see Ref. [74].
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Fig. 12. Mean square charge radii of argon, calcium, titanium
and chromium isotopes computed with the NNLOsat interac-
tion (coloured symbols and solid lines) compared to available
experimental data [67, 63, 71] (dark grey symbols and dashed
lines).
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Fig. 13. Changes in m.s. charge radii for argon, calcium, tita-
nium and chromium relative to N = 28. Results obtained with
the NNLOsat Hamiltonian (coloured symbols and solid lines)
are compared to existing experimental data [67, 63, 71] (grey
symbols and dashed lines). In the inset, changes in m.s. charge
radii relative to N = 34 are shown for argon and chromium
isotopes.

in slope from argon to chromium is qualitatively repro-
duced. In contrast, the parabolic behaviour is basically
absent in all calculated curves. We note that the charge
radii for calcium between N = 20−28 have been explained
in terms of coupling to collective modes in Ref. [75] and
excitations across the sd and pf orbits using the shell
model approach [76]. In both cases, quadrupole excitations
to (possibly deformed) states are involved. The particle-
vibration coupling at the origin of this mechanism is en-
coded in the ADC(3) many-body truncation and in its twin
approach, the Faddeev Random phase approximation [77],
which is slightly more sophisticated for collective modes.
Thus, ADC(3) stands out as the minimum requirement to
be able to reproduce the inverted bell behaviour of radii in
the central region. However, the above early studies were
based on phenomenological interactions. For ab initio appli-
cations, it is not clear a priori to what extent the ADC(3)
will be sufficient to resolve the low-energy quadrupole
deformations with current soft chiral Hamiltonians.

For all isotopes, the theoretical charge radius at N = 28
is systematically larger than the measured one. This also
affects the slope beyond this point, which results less steep
than what observed in experimental data. This inability
to reproduce the pronounced kink at N = 28 is common
to other ab initio calculations as initially discussed in
Ref. [63]. In order to analyse this feature in more details,
Fig. 13 shows measured and computed m.s. charge radii
relative to N = 28. The two experimental curves extending
beyond N = 28 do indeed present the same rise towards
N = 30. Manganese (Z = 25) and iron (Z = 26), for
which experimental data are available, also follow this
trend. The same behaviour, with a kink followed by a
steep rise essentially independent of Z, is found at the
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𝜌 c
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50Cr (× 0.8)
52Cr
54Cr (× 1.2)

Fig. 14. Charge density distributions of three chromium iso-
topes. NNLOsat calculations are compared to density profiles
determined via electron scattering [80]. Curves relative to 50Cr
and 54Cr have been rescaled for better readability.

N = 50 and N = 82 magic numbers [74]. Remarkably, the
theoretical curves capture this basic feature, yielding radii
that increase almost independently of Z beyond N = 28.
As already remarked, however, the slope is less steep than
the experimental one, which represents a challenge for most
of nuclear structure calculations. Interestingly, a second,
less pronounced kink is visible at N = 34 (see inset of
Fig. 13), suggesting the presence of a weak shell closure.
A similar feature is observed in the charge radii computed
with the NN+3N(lnl) Hamiltonian, see Figs. 10 and 11.
For both interactions, the angle of the kink decreases
smoothly with Z, which is consistent with the evolution
of the N = 34 neutron gaps computed with NN+3N(lnl)
and reported in Fig. 6(d).

To conclude the present section, some examples of
charge density distributions in chromium isotopes are
shown in Fig. 14. Theoretically, the charge distribution is
computed starting from the point-proton distribution and
folding it with the charge distribution of the proton, as
detailed in Ref. [78]. Corrections associated with the center
of mass motion in the HO basis are seen to be negligible
for masses above A = 16 [79]. In Fig. 14 distributions
of 50,52,54Cr computed with NNLOsat are compared to
charge profiles determined from electron scattering cross
sections [80]. Theoretical distributions follow closely the
experimental curves in the region around and above rch.
In contrast, for all three isotopes the behaviour differ in
the nuclear interior, with the calculations displaying a
dip around 1.5 fm that is not present, or not probed, in
the experimental distributions. One does not observe a
qualitatively different behaviour for 52Cr, whose value of
rch slightly departs from experiment. A similar level of
agreement between SCGF calculations and experiment was
recently found for argon and calcium isotopes [35] and for
132Sn, although theoretical error bars were lager for the
latter case [11] .
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5 Conclusions

Correlation expansion methods represent a promising long-
term option to simulate the majority, if not all, of atomic
nuclei from first principles. To this purpose, the choice
of the reference state, including the use of deformed ba-
sis states and the possibility of breaking symmetries, is
crucial, notably to account for essential static correlations
from the outset. So far, ab initio approaches have mainly
exploited the breaking of U(1) symmetry associated to
particle number conservation to account for static pairing
correlations. In the past few years, this strategy has en-
abled computations of semi-magic, i.e. singly open-shell
nuclei, where quadrupole correlations associated to nu-
clear deformation are typically weak, i.e. predominantly
dynamical. In the present work such U(1)-breaking, SU(2)-
conserving calculations are pushed away from semi-magic
nuclei in a systematic fashion for the first time. Results
are overall encouraging, with many general experimental
features captured by the ab initio simulations. At the same
time, a degradation of the description for certain groups of
nuclei signals the inefficient account of (static) quadrupole
correlations and calls for a SU(2)-breaking extension of
the present theoretical framework.

Specifically, bulk nuclear properties (ground-state en-
ergies, charge radii and density distributions) were com-
puted along seven isotopic chains around calcium, from
argon to chromium. Calculations were performed within
the Gorkov self-consistent Green’s function approach at
second order and employed two state-of-the-art two- plus
three-nucleon Hamiltonians, NN+3N(lnl) and NNLOsat.
NN+3N(lnl) results provide a good global description of
ground-state energies. Total energies are slightly underesti-
mated, consistently with missing higher-order correlations
as discussed in detail in Ref. [8]. Differential energies, i.e.
one- and two-nucleon separation energies as well as two-
neutron shell gaps, are generally in excellent agreement
with experiment. In particular, neutron magic numbers
N = 28, 32, 34 emerge and evolve following experimental
trends. The largest discrepancy with experimental data is
found for the N,Z = 20 gaps, both overestimated by the
calculations. This impacts the description of the proton
dripline, which however remains reasonably reproduced.
In contrast, three-point mass differences along the vari-
ous isotopic chains evidence that present calculations do
not provide sufficient pairing strength. The future inclu-
sion of higher-order, e.g. ADC(3), corrections accounting
for collective fluctuations might result instrumental for a
more accurate description of pairing properties. While such
computations are routine in Dyson-SCGF (i.e., for closed
shells), they become computationally challenging in the
Gorkov formalism due to the increase in the number of Bo-
golyubov mean-field orbits resulting from SU(1)-breaking.
A full Gorkov-ADC(3) will require improved algorithms,
such as importance truncation, but it is within reach and
can be implemented in the foreseeable future.

As remarked in Ref. [8], NN+3N(lnl) calculations yield
charge radii that underestimate the experimental measure-
ments by about 5 to 10% throughout all considered chains.
Still, relative trends are generally good, which points to

some small systematic deficiencies in the Hamiltonian. In
contrast, NNLOsat provides an overall good reproduction
of both absolute and relative charge radii. The main experi-
mental trends below N = 20, between N = 20 and N = 28
and above N = 28 are qualitatively described. The largest
discrepancy with data is detected for N = 28 isotopes,
whose radius is overestimated in all considered elements.
As a consequence, the steep rise past N = 28 observed
in calcium and chromium is not reproduced to a full ex-
tent by the present calculations. The inability to correctly
describe the charge radius difference between 48Ca and
52Ca is common to nearly all existing nuclear structure
calculations (with the notable exception of Ref. [81]) and
currently represents a challenge in particular for ab initio
approaches.

For some of the doubly open-shell nuclei considered
in this study, strong (i.e. static) quadrupole correlations
are expected to play an important role and lead to the
onset of deformation. Indeed, a careful comparison be-
tween computed and experimental ground-state energies
reveals a remarkable correlation between the error with
respect to experiment and the expected degree of defor-
mation (quantified through the deformation parameter
β obtained via EDF calculations [61]). Such correlations
are likely to impact the calculated observables but can
be hardly accounted for in the current scheme that uses
(rotational) symmetry-conserving reference states and in-
cremental extensions of the formalism. In fact, any increase
in the ADC(n) order beyond n = 3 would be impractical
due to the factorial increase in diagrams and degrees of
freedom. Besides, such a truncation scheme is unlikely to
resolve deformation degrees of freedom until several orders
beyond the current capabilities. To break through these
limitations different approaches could be envisaged, such
as the stochastic sampling of the self-energy or a SU(2)-
breaking scheme. In the first case, one would still work
in a standard (spherical or partially deformed) basis but
diagrams are summed to very high orders using bold dia-
grammatic Monte Carlo techniques [62]. This approach is
particularly suited to address correlations at medium ener-
gies that have been identified as key ingredients to devise
ab initio nucleon-nucleus optical potentials [82]. In the sec-
ond path, the extension towards a SU(2)-breaking scheme
would impose nuclear deformation already at the level of
the reference state and allow many-body truncations at
low ADC(n) orders, still requiring a final projection on
good angular momentum. Both approaches will involve
sophisticated extensions of the SCGF formalism and will
be long-term developments.
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