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ABSTRACT

Context. Line-driven winds of hot, luminous stars are intrinsically unstable due to the line-deshadowing instability (LDI). In non-
magnetic hot stars, the LDI leads to the formation of an inhomogeneous wind consisting of small-scale, spatially separated clumps
that can have great effects on observational diagnostics. However, for magnetic hot stars the LDI generated structures, wind dynamics,
and effects on observational diagnostics have not been directly investigated so far.
Aims. We investigated the non-linear development of LDI generated structures and dynamics in a magnetic line-driven wind of a
typical O-supergiant.
Methods. We employed two-dimensional axisymmetric magnetohydrodynamic (MHD) simulations of the LDI using the Smooth
Source Function approximation for evaluating the assumed one-dimensional line force. To facilitate the interpretation of these mag-
netic models, they were compared with a corresponding non-magnetic LDI simulation as well as a magnetic simulation neglecting
the LDI.
Results. A central result obtained is that the wind morphology and wind clumping properties change strongly with increasing wind-
magnetic confinement. Most notably, in magnetically confined flows, the LDI leads to large-scale, shellular sheets (‘pancakes’) that
are quite distinct from the spatially separate, small-scale clumps in non-magnetic line-driven winds. We discuss the impact of these
findings for observational diagnostic studies and stellar evolution models of magnetic hot stars.
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1. Introduction

Modern spectropolarimetric surveys employing the Zeeman
splitting in spectral lines have firmly established that hot, lu-
minous (OB) stars can harbour global surface magnetic fields.
These surface magnetic fields are mainly dipolar and have field
strengths ranging from a few 100 G to some 10 kG. Based on the
current observational detection threshold, recent surveys show
that only a modest fraction (≈7%) of Galactic single and bi-
nary OB stars harbour such surface magnetic fields (Fossati et al.
2015 (BOB); Alecian et al. 2015 (BinaMIcS); Wade et al. 2016;
Petit et al. 2019 (MiMeS)), while outside the Galaxy there is
not enough direct empirical evidence for magnetic OB stars yet
(Bagnulo et al. 2020). The origin of these surface magnetic fields
remains elusive, but the rarity of magnetic OB stars and the lack
of short-term observed evolution of their magnetic field does not
favour a dynamo mechanism as is, an example being the case
of the Sun. Instead the prevailing thought is that the magnetic
fields of magnetic OB stars are fossil fields stemming from ear-
lier stellar phases (Borra et al. 1982; Alecian et al. 2017). In par-
ticular, recent research shows that proto-stellar mergers might
offer a tentative explanation for surface magnetic fields in hot
stars (Schneider et al. 2019, 2020).

The presence of a global stellar magnetic field can have im-
portant effects in governing the stellar wind of hot stars (Shore
& Brown 1990; Babel & Montmerle 1997; Owocki & ud-Doula
2004). With the seminal work of Castor et al. (1975, hereafter
CAK), it is known that OB stars drive strong line-driven winds
due to the scattering of the stellar continuum radiation in a large
? Current address: National Solar Observatory, 22 Ohi’a Ku St.,

Makawao, HI 96768, USA

ensemble of spectral lines and it has become the de facto stan-
dard for time-dependent wind models (e.g. Blondin et al. 1990;
Cranmer & Owocki 1995; Kee et al. 2016; El Mellah & Casse
2017; Dyda & Proga 2018; Schrøder et al. 2021).

To that end, initial time-dependent two-dimensional magne-
tohydrodynamic (MHD) line-driven wind models also adopted
CAK theory. Specifically these models have shown that the out-
wards expanding stellar wind can be magnetically channelled
thereby forming a region of magnetically confined material, or, a
circumstellar magnetosphere (ud-Doula & Owocki 2002). This
kind of ‘inside-out expansion’ of the wind makes stellar mag-
netospheres fundamentally different from planetary magneto-
spheres that are due to ‘outside-in compression’ from the so-
lar wind. Moreover, with the help of the so-called magnetic
confinement–rotation diagram (Petit et al. 2013), it is possible
to classify OB star magnetospheres based on magnetic and rota-
tional properties. This leads to a distinction between fast rotat-
ing, strongly magnetic hot stars with centrifugal magnetospheres
(CM; Townsend & Owocki 2005) and slowly rotating, moder-
ately magnetic hot stars with dynamical magnetospheres (DM;
Sundqvist et al. 2012b).

The use of CAK theory together with state-of-the-art spec-
tropolarimetric observations have thus played a major role in en-
hancing the understanding of circumstellar magnetospheres of
OB stars. However, a key limitation of these models is that they
use CAK theory, which relies on the Sobolev approximation to
compute the radiative acceleration of the wind (Friend & Mac-
Gregor 1984; ud-Doula & Owocki 2002; Townsend & Owocki
2005; Townsend et al. 2007; ud-Doula et al. 2008, 2009; Bard
& Townsend 2016; Küker 2017; Daley-Yates et al. 2019). In
the Sobolev approximation it is assumed that the interaction of
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photons and spectral lines is described in a purely local fashion
(Sobolev 1960) with the important corollary that the stellar wind
remains smooth and homogeneous and only external effects can
break the smoothness (e.g. magnetic fields or rapid rotation).

In fact, it is nowadays well known that line-driven winds
of non-magnetic hot stars are intrinsically inhomogeneous. The
Doppler effect enhances small-scale velocity perturbations and
exposes a spectral line to fresh, unattenuated continuum pho-
tons thereby leading to a runaway effect, or line-deshadowing in-
stability (LDI) (MacGregor et al. 1979; Carlberg 1980; Owocki
& Rybicki 1984). The LDI, however, is triggered on small spa-
tial scales not covered within the Sobolev approximation. Time-
dependent radiation-hydrodynamic simulations of the LDI show
that once this instability is triggered a vigorous growth occurs
leading to large non-linearities. The transition from the (micro-
scopic) linear to the (macroscopic) non-linear regime is very
subtle and the LDI is subject to wave-stretching (Feldmeier &
Thomas 2017). Once in the non-linear regime the characteris-
tic wind morphology becomes that of slow, overdense, clumpy
structures embedded in a fast, rarefied medium (Owocki et al.
1988; Feldmeier 1995; Runacres & Owocki 2002; Dessart &
Owocki 2005; Sundqvist et al. 2018; Driessen et al. 2019a; La-
gae et al. 2021). The presence of such wind clumps is able to ex-
plain several observational phenomenae across the electromag-
netic spectrum (Puls et al. 2008, for a review), and, especially,
the clumps have a range of important effects on the interpreta-
tion of observational diagnostics (e.g. Puls et al. 2015).

For magnetic line-driven winds the effects of the LDI are
poorly understood both from a theoretical and observational
point-of-view. To date the only attempt to theoretically study the
LDI in a magnetic line-driven wind is Driessen et al. (2020),
who performed a three-dimensional linear stability analysis of
magneto-radiative waves in a magnetic line-driven wind. A key
insight from this study is that scattered photons provide a strong
damping mechanism for short-wavelength, radially propagating
magnetic waves in the wind. The exact effects of this damping on
the non-linear wind dynamics and its potential observational sig-
nature remain to be investigated and necessarily require multi-
dimensional radiation-MHD simulations.

In this paper we present the first effort in performing two-
dimensional radiation-MHD simulations of the LDI. In par-
ticular, Sect. 2 presents the underlying computational details
we have employed in our modelling. Our results regarding
wind morphology and statistical properties are discussed within
Sect. 3. We also briefly discuss the potential observational sig-
natures of the LDI in a magnetic line-driven wind and frame our
results with respect to stellar evolution models of magnetic hot
stars (Sect. 4). Finally, Sect. 5 summarises our findings and sug-
gests directions for further research. To gain further insight, Ap-
pendix B briefly compares our magnetic LDI wind models with
previous wind models employing the CAK line-force parametri-
sation for the radiative acceleration.

2. Modelling of magnetic line-driven winds

2.1. Magnetic characterisation and adopted models

The important competition between the stellar wind and the
magnetic field can be conveniently described by comparing their
energies, that is wind kinetic energy vs. magnetic energy, and is
quantified with a dimensionless quantity

η? =
B2
?R2

?

ṀB=03∞
, (1)

called the wind-magnetic confinement parameter (ud-Doula &
Owocki 2002). In terms of this parameter, η? � 1 means a dom-
inating magnetic field over the wind flow at the stellar surface
and η? � 1 vice versa. It is set by the stellar magnetic field
strength in the equator B? = Bp/2 in terms of the polar magnetic
field strength Bp and the wind terminal momentum given by a
mass-feeding rate ṀB=0 (assumed to be the mass-loss rate of an
equivalent non-magnetic star) at terminal wind speed 3∞.

If confinement occurs this is over a constricted spatial ex-
tent since the magnetic energy always falls off faster than the
wind energy (e.g. for observed dipole fields B ∝ 1/r3, Grunhut
et al. 2017). For a prototypical line-driven wind the spatial point
where the wind starts to dominate is about

RA/R? ≈ 1 + (0.25 + η?)1/4 − 0.251/4, (2)

also known as the Alfvén radius (ud-Doula & Owocki 2002).
Because we do not consider rotation (see below), the Alfvén ra-
dius is the only characteristic magnetosphere scale in the present
work. This means that the magnetospheres here are Dynamical
Magnetospheres (DM). Consulting the magnetic confinement–
rotation diagram these are intrinsic to slowly rotating magnetic
O-stars (Petit et al. 2013). Therefore, for our modelling we adopt
stellar and wind parameters typical to a O-supergiant in the
Galaxy as collected in Table 1.

Since the present work is concerned with a first study of a
more complete description of the radiation line force in a mag-
netic line-driven wind this warrants some simplifications for
other physics. We assume an isothermal wind fixed at the stel-
lar effective temperature, that is heating from shocks is radiated
away in an unresolved small cooling layer (Feldmeier et al. 1997;
Lagae et al. 2021). Similarly, we do not consider additional ef-
fects such as (rapid) stellar rotation (ud-Doula et al. 2006, 2008),
or an oblique dipolar magnetic field topology (Daley-Yates et al.
2019) that necessarily require a three-dimensional model.

2.2. Magnetohydrodynamics

The employed conservative single-fluid, ideal magnetohydrody-
namic (MHD) equations solve for the mass density ρ, velocity
field v, and magnetic field B

∂ρ

∂t
+ ∇ · (ρv) = 0, (3)

∂(ρv)
∂t

+ ∇ ·

[
ρvv +

(
p +

B · B
2

)
I − BB

]
= ρgeff + ρgline, (4)

∂B
∂t

+ ∇ · (vB − Bv) = 0. (5)

These are complemented with the divergence-free constraint

∇ · B = 0, (6)

and isothermal closure relation for the gas pressure

p = a2ρ, a =
√

kBT/m, (7)

with a the isothermal speed of sound defined from the stellar
effective temperature, namely from assuming Twind = Teff , and
Boltzmann’s constant kB for a gas with mean atomic weight m.
We point out that in this formulation of the (dimensionless) equa-
tions the magnetic field is defined such that the magnetic perme-
ability is µ0 = 1.
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Additional source terms are included in the momentum equa-
tion to account for stellar gravity and the radiation force con-
sisting of continuum and line interactions. In hot star winds the
continuum force is primarily due to electron scattering, which
effectively lowers gravity, such that it is customary to formulate
both quantities together into an effective stellar gravity

geff = −
GM?(1 − Γe)

r2 êr, (8)

with Γe ≡ κeL?/(4πGM?c) the Eddington factor for constant
electron scattering with opacity κe = 0.34 cm2 g−1 (assuming full
ionisation at solar abundances). The force due to lines, gline, is
the important quantity in modelling a line-driven wind and will
be detailed next.

2.3. Radiation line force

A key difference with previous work on magnetic line-driven
winds is that we depart from the line force description gline
within the Sobolev approximation (CAK, but see Appendix B
for a comparison). However, with the added complexity of the
line force description we still opt to treat the radiation transport
by calculating it along an isolated one-dimensional ray within
each colatitudinal cone of the simulation domain. In that respect
our approach is the magnetic equivalent of the hydrodynamic
models performed by Dessart & Owocki (2003).

The total line force (per unit mass) consists of direct and
diffuse contributions due to photon absorption and scattering:
gline ≡ gdir + gdiff . In driving the wind many lines participate
and the cumulative contribution of all lines is described by an
ensemble power-law distribution (CAK) in line strength q (Gay-
ley 1995) with an additional exponential cut-off (Owocki et al.
1988) limiting the distribution to a line with maximum strength
Qmax: N(q) ∝ qα−2 exp (−q/Qmax), with α the power-law index
of the assumed line distribution.

Within the non-Sobolev, Smooth Source Function approach
(SSF, Owocki & Puls 1996) the ensemble-integrated direct and
diffuse forces evaluate to

gdir(r) = gthin

∫ 1

0
b+(µy, r) dy, (9)

gdiff(r) = gthin
S (r)
I?

(
r

R?

)2 ∫ 1

0

(
b−(µy, r) − b+(µy, r)

)
dy, (10)

with optically thin line force and optically thin source function

gthin ≡
Q̄κeL?
4πr2c

, S (r) ≡ I?
(1 − µ?)

2
, (11)

and Q̄ is a line-strength normalisation describing the ratio of the
total line force to the force due to electron scattering if all lines
were to be optically thin (Gayley 1995).

Formally the angle quadrature in Eq. (9) is to be computed
over a bundle of radiation rays that intercept the stellar disc at
√

yR? (thereby covering the full stellar disc) with direction co-
sine µy =

√
1 − y(R?/r)2 relative to the local direction at ra-

dius r. Such an approach is, however, computationally expen-
sive and, instead, we only apply radial radiation rays within each
separate latitudinal cell. Nonetheless, this single-ray quadrature
is not truly radial since each ray is additionally weighted with
y = 0.5 to mimic the finite extent of the stellar disc (Sundqvist &
Owocki 2013).1 To avoid further computational complexity, the
1 The weight also introduces a fiducial tilt for the (still) radially solved
rays to ensure that the wind has not infinitely many critical points which
does happen for pure radial rays (CAK).

Table 1. Overview of parameters used in this work.

Name Parameter Value
Stellar luminosity L? 8 × 105 L�
Stellar mass M? 50 M�
Stellar radius R? 20 R�
Stellar effective temperature Teff 40 000 K
Eddington factor Γe 0.42
Initial mass-feeding rate ṀB=0 2 × 10−6 M� yr−1

Initial terminal wind speed 3∞ 1880 km s−1

Stellar boundary density ρ0 1.2 × 10−11 g cm−3

CAK exponent α 0.65
Line-strength normalisation Q̄ 2000
Line-strength cut-off Qmax 0.004Q̄
Thermal to sound speed ratio 3th/a 0.28a

Isothermal sound speed a 23.3 km s−1

Wind-magnetic confinement η? 0, 0.15b , 15c

Notes. (a) Poe et al. (1990). For fixed stellar and wind parameters the
corresponding polar magnetic field strength is (b) Bp ≈ 100 G and
(c) Bp ≈ 1000 G by using the definition of η?.

single-ray quadrature is also assumed for the diffuse radiation,
Eq. (10), in a two-stream approximation for outward (‘+’) and
inward (‘−’) directed radiation.

Along the ray the line-force components are computed using
an ensemble-escape probability

b±(µy, r) = Γ(α)1/(1−α)
∫ +∞

0
dx

φ
(
x − µy3(r)/3th

)
(
Q̄t±(x, r) + Q̄/Qmax

)α (12)

that takes into account the accumulated optical depth

qt+(x, r) =

∫ r

R?
κρ(r′)φ

(
x − µy3(r′)/3th

)
dr′,

qt−(x, r) =

∫ +∞

r
κρ(r′)φ

(
x − µy3(r′)/3th

)
dr′, (13)

with Γ(α) the Gamma function, κ a frequency-integrated line
opacity, and φ a Gaussian line-profile function at observer’s
frame frequency x ≡ (ν/ν0 − 1)c/3th. With this definition, Q̄t±
in Eq. (12) denotes the optical depth of a line with strength Q̄.
To capture the resonance zones in the wind acceleration region
these optical depth integrals are solved by analytic integration
between discrete grid points using linear interpolation in density
and velocity (see Feldmeier & Thomas 2017, their Eqs. 7-8 for
a similar approach).

2.4. Numerical specifications

To perform non-linear simulations of magnetic LDI winds
we use the open-source2, parallel, grid-adaptive astrophysical
(M)HD code mpi-amrvac (Xia et al. 2018; Keppens et al. 2021).
Specifically, Eqs. (3)–(6) are solved in an unsplit fashion using a
HLL Riemann solver (Harten et al. 1983) complemented with a
parabolic spatial reconstruction scheme (PPM, Colella & Wood-
ward 1984) and third-order accurate total-variation-diminishing
Runge–Kutta temporal discretisation (Gottlieb & Shu 1998). For
stability the time step is taken as the minimum of a fixed Courant
time set to be 0.3 and an additionally computed time step due to
the radiation and gravity force in Eq. (4) (see Eq. (8) in Lagae
et al. 2021).

2 http://amrvac.org/; version 2.2 (Nov. 2019) in this work.
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2.4.1. Simulation grid

The simulation spans the two-dimensional meridional (r, θ)
plane and covers a radial extent r ∈ [R?, 6R?] and colatitudinal
extent θ ∈ [0, π]. To resolve the steep wind acceleration region
near the stellar surface, we stretch the radial grid away from the
stellar surface with a factor ∆ri+1/∆ri = 1.002 between subse-
quent radial zones i and i + 1. In colatitude we assume uniform
spacing ∆θ j.

This grid choice ensures that the Alfvén radius is suffi-
ciently far from the outer boundary while the stretching allows
us to resolve the barometric scale height of the photosphere,
a2R2

?/(GM?(1−Γe)) ≈ 0.002R?, and the small spatial scales over
which the instability operates. The latter implies resolving the ra-
dial Sobolev length LSob,r ≡ 3th/(d3r/ dr) ≈ (3th/3)r ≈ 0.01R?,
for which we adopt nr = 1000 radial zones. Similarly, we also
resolve a characteristic lateral Sobolev length, LSob,θ = r3th/3r ≈
0.5◦, by using nθ = 384 zones in colatitude. As demonstrated
by linear stability analysis, the flow should be stable on scales
smaller than the lateral Sobolev length (Driessen et al. 2020).

2.4.2. Initial and boundary conditions

We initialise the line-driven wind model by starting from a re-
laxed one-dimensional spherically symmetric CAK wind that
is distributed over the meridional plane. The poloidal velocity
3θ(r, θ) = 0 initially. The magnetic field is taken to be a pure
dipole with polar field strength Bp,

Br(r, θ) = Bp

(R?

r

)3

cos θ, Bθ(r, θ) =
Bp

2

(R?

r

)3

sin θ. (14)

The outer (supersonic, super-Alfvénic) radial boundary as-
sumes that all hydrodynamic variables are continuous. At the
lower boundary (stellar surface) the density ρ0 is fixed at five
times the sonic point density in order to have a subsonic flow
with a typical one-dimensional non-magnetic CAK mass flux.
The radial velocity 3r is extrapolated into the first ghost cell, al-
lowing the wind to dynamically adjust while the remaining ghost
cell values of 3r are set equal to the first ghost cell. The radial
magnetic field Br is fixed in the interior to enforce a dipolar field
at the surface. The poloidal magnetic field Bθ is extrapolated into
the ghost cells and the flow is forced along the magnetic field
by fixing 3θ. While the simulation adapts to its steady-state base
outflow, we also prohibit the velocity to become supersonic at
the lower boundary. We refer the reader to Appendix A for an
extended account on the adopted boundary conditions.

Since the simulated meridional plane contains both polar
axes (θ = 0 and θ = π) we employ π–boundary conditions in θ.
Essentially this enforces that the fluid quantities are translated an
amount π around the (singular) pole and vector quantities trans-
form accordingly to allow for flow across the pole. This avoids
numerical problems related to ill-defined geometric factors in di-
vergence computations.

2.4.3. Treating the magnetic field and the monopole condition

The interaction of the LDI with the magnetic field can result
in strong spatial gradients in the wind due to shock-dominated
interactions. This often leads to numerical difficulties in solv-
ing the MHD equations, especially if the total magnetic field is
solved for as the dependent variable. In order to circumvent such
problems, we follow the method of Tanaka (1994), available in
mpi-amrvac, and split the total dipole magnetic field B = B0 + δB
in an intrinsic background dipole field B0 and a deviating field

δB. This splitting off the total magnetic field B and only solving
for the deviated field δB is more accurate and robust in regions of
strong spatial gradients. Notice that here the background field is
also potential-free (∇ ×B0 = 0) and time-independent (although
the method also works for time-dependent B0).

To make the magnetic field satisfy the divergence-free con-
dition, Eq. (6), we apply the eight-wave scheme (Powell et al.
1999). Within this method any magnetic monopoles that arise in
the simulation are advected away at the fluid velocity.

3. MHD simulation results

3.1. General wind properties

To gain insight in the non-linear evolution of the LDI with in-
creasing magnetic confinement it is of interest to consider the
wind density. In Fig. 1 we contrast a non-magnetic LDI model
with weakly and strongly confined LDI models over several sub-
sequent wind evolutionary times (t = 0, 50, 150, 300 ks).

Starting from a steady-state CAK wind, the non-magnetic
LDI model develops a rather coherent wind structure initially
(t < 50 ks). However, the outwardly accelerating wind structure
starts to become progressively disrupted due to Rayleigh–Taylor
and thin-shell instabilities (Dessart & Owocki 2003) leading to
the formation of spatially separated wind clumps. It is worth not-
ing that in this non-magnetic wind model the lateral scale up to
which LDI structure forms remains unclear. The fragmentation
might result in large lateral scales due to lateral line drag acting
on the flow (Rybicki et al. 1990; Driessen et al. 2020) or extend
down to smaller lateral scales if, for example, the photosphere
consists of many turbulent bubbles that leave their imprint in
the wind. Within the one-dimensional SSF this break-up tends
to happen up to the lateral Sobolev length such that a near com-
plete lateral incoherence results in the wind. The resulting wind
structure shows the typical characteristic slow, overdense clumps
separated by a fast, rarefied interclump medium once settled in a
‘steady-state’ (Dessart & Owocki 2003; Sundqvist et al. 2018).

Furthermore since we assume a uniformly bright stellar disc
and no photospheric perturbation (e.g. Sundqvist & Owocki
2013; Krtička & Feldmeier 2021) all LDI structure seen in our
simulations is self-excited. It arises from the back-scattering of
photons from the outer wind structure that seeds perturbations
closer to the stellar surface which are subsequently amplified by
the LDI (Dessart & Owocki 2003).

When introducing a weak magnetic field (i.e. weak confine-
ment, η? = 0.15) the overall picture is not significantly changed.
Once sufficiently developed, however, the wind stretches the
magnetic field into a nearly radial configuration that is reminis-
cent of a ‘split-monopole’. Along with this topology the forma-
tion of a current sheet occurs in the magnetic equatorial plane
with a corresponding modest density enhancement. The mor-
phology of the wind clumps remains also similar to the non-
magnetic case showing that a weak magnetic field has a small
effect on the clump dynamics.

The strongly confined LDI wind (η? = 15) undergoes a
markedly different dynamical evolution compared to the non-
magnetic and weakly confined LDI wind. An important differ-
ence with respect to the other displayed models is the lack of
lateral fragmentation and incoherence of the wind contrary to
the standard non-magnetic LDI wind models hitherto performed
(Dessart & Owocki 2003, 2005; Sundqvist et al. 2018). This hap-
pens particularly in the open field regions where the LDI gener-
ated structures manifest themselves as large-scale, wavy shellu-
lar sheets that advect outward at the local wind velocity. This
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Fig. 1. Logarithmic wind density displaying the evolution in time for our adopted LDI models: (top) non-magnetic wind with η? = 0, (middle)
moderately confined wind with η? = 0.15, and (bottom) strongly confined wind with η? = 15. The overplotted white lines in the magnetic wind
models represent streamlines to illustrate the magnetic field topology.
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Fig. 2. Lateral averages of statistically computed wind velocity and wind density (dashed lines). Lateral averages are taken in a wedge near the
pole (θ = 0 − 45◦, to not have magnetosphere contamination) at simulation termination. Superimposed is a radial cut of wind velocity and density
at an arbitrarily chosen colatitude θ within this wedge (solid lines).

suggests that the presence of a strong enough magnetic field
makes the LDI unable to fragment into ‘wind clumps’ in this re-
gion, but rather transforms it into overdense ‘wind sheets’, still
separated by a fast, very rarefied medium. It appears thus that
the magnetic field stabilises against lateral plasma motions and
forces all LDI structure along the magnetic field line (‘frozen-
in flow’). Although the physical reasons for the underlying gas
motions are different, this situation is quite similar to plasma
flow in a sunspot where a strong vertical magnetic field inside
the sunspot prohibits convective blobs from fragmenting into the
lateral directions.

Additionally, after a long enough time, part of the wind
plasma is guided along the magnetic field lines and confined over
a small range in latitude by closed magnetic loops. The resulting
circumstellar magnetosphere is akin to what has been found in
previous magnetic wind studies using the CAK line force (ud-
Doula & Owocki 2002, see also Appendix B). Indeed, plasma
at higher latitudes is channelled towards the magnetic equator
where collisions from opposite magnetic footprints happen and
the resulting plasma compression leads to a rather slow, dense
outflow. Most notably there are no signatures of the character-
istic LDI structures within the circumstellar magnetosphere, al-
though the wind is radiatively unstable in this region. The appar-
ent absence of LDI-like structures in the magnetosphere might
be due to a misalignment between local flow and magnetic field
vectors that induces a growth restriction or the fact that higher
density material falls back onto the star and dominates the LDI.

The appearance of wind sheets instead of wind clumps
also suggests that the wind clumping and porosity properties
(Owocki & Sundqvist 2018) in the open field regions of these
magnetic LDI winds might be much different from their non-

magnetic counterparts (e.g. Feldmeier et al. 2003; Sundqvist
et al. 2012a, that consider LDI-like ‘shells’ and porosity in con-
text of effects upon absorption of X-rays). What the exact effect
of these large-scale shellular wind sheets is on observations re-
mains to be investigated in detail. However, we discuss some
first aspects of their presence in Sect. 4.

3.2. Statistical properties

To further analyse the LDI structures in our models we con-
sider statistical averages (here temporal averages) of hydrody-
namic quantities. These statistics are computed from every nu-
merical iteration beginning significantly after the simulation has
developed its characteristic wind structure as set by the dynam-
ical timescale τdyn = R?/3∞ ≈ 10 ks. All computations start at
tstat = 200 ks ≈ 20τdyn for each model such that statistical quan-
tities span ≈ 100 ks ≈ 10τdyn within the simulations.

To emphasise similarities between our two-dimensional sim-
ulations and previous one-dimensional simulations (all treating
the LDI line force in a one-dimensional fashion) we display in
Fig. 2 a radial cut of wind velocity and density taken at an arbi-
trarily chosen colatitude θ away from the magnetosphere. In such
an isolated colatitudinal cone the wind properties show the char-
acteristic one-dimensional features of slow, overdense clumps
(or shells) that are separated by a fast, nearly-void medium.
However, with increasing magnetic confinement the radial ve-
locity and density variations appear less strong. Since all param-
eters in the models are fixed, except for the polar magnetic field
strength, this suggests that the increasing magnetic field strength
reduces the strength of the LDI in a relative sense, and as can be
seen, also the position at which it sets in.
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Although the discussion so far applies to a single radial wind
slice, these typical LDI features occur over a large portion of the
wind. To illustrate this we take averages over latitude to recover
a corresponding one-dimensional smooth velocity and density
profile. In order to have a meaningful average in latitude the
simulation domain is constrained to a 45◦ wedge near the pole
to avoid material inside the spatial extent of the magnetosphere
in the η? = 15 case. For direct comparison this wedge is then
adopted for each model discussed here. As displayed in Fig. 2
the corresponding smooth mean one-dimensional wind velocity
and density describes well the variations in a randomly chosen
radial cut. Hence, all radial cuts within the wedge display similar
velocity and density variations around this mean and as such are
prototypes of a corresponding one-dimensional LDI wind.

We also point out that under strong confinements the wind
becomes faster. This effect is due to the faster-than-radial expan-
sion of the field that results in higher velocities near the magnetic
pole (Owocki & ud-Doula 2004). Since our wedge is defined
near the pole region to leave out any magnetosphere contribu-
tions this effect manifests itself inherently in Fig. 2.

The reduction in LDI strength for increasing magnetic con-
finement is also seen when considering the velocity dispersion
(Fig. 3) averaged over the wedge

3disp =

√
〈〈32〉t〉θ − 〈〈3〉

2
t 〉θ, (15)

which is a good proxy for the reverse shock speed due to the LDI.
Since the velocity dispersion relates to the velocity jumps due
to shocks this shows that with increasing magnetic confinement
the shocks become less strong, resulting in weaker wind density
compressions, and to less overdense wind clumps (c.f. Fig. 2).

In Fig. 4 we elaborate further on the η? = 15 model and
show first the wind clumping factor

fcl =
〈ρ2〉t

〈ρ〉2t
. (16)

In non-magnetic hot stars wind clumping can seriously affect ob-
servational diagnostics depending on ρ2-processes and leads to
an overestimate of inferred mass-loss rates with a factor

√
fcl.

Corrections for fcl in non-magnetic hot stars can be obtained via
multi-wavelength diagnostics or complex, time-dependent nu-
merical simulations of the LDI. In particular, the optical diag-
nostic line Hα formed at r ≤ 2R? is often used as a mass-loss
rate tracer for non-magnetic hot star winds and a typical wind
clumping factor is fcl ≈ 10 − 20 (Puls et al. 2006; Najarro et al.
2011; Hawcroft et al. 2021; Rubio-Díez et al. 2021).

For magnetic hot stars, constraints on fcl are presently not
well established. To that end in Fig. 4 we display the wind
clumping cut off to a maximum of fcl = 10 (typical non-
magnetic adopted Hα clumping factor) and wind clumping with-
out cut off. Within the magnetosphere density enhancements pro-
vide regions with wind clumping fcl ≥ 10 due to fall-back of
dense material from the magnetic equatorial plane. Outside the
magnetosphere any wind clumping is due to the LDI which is
comparatively lower in large portions of the unconfined wind.

Considering wind clumping in the magnetosphere is of in-
terest for wind line-diagnostics such as Hα (more discussion in
Sect. 4). The wind clumping displayed in Fig. 4 is calculated
from a temporal average, and when further averaging this over
the spatial extent of the magnetosphere, we find a modest wind
clumping of fcl ≈ 4 inside the magnetosphere. It is likely that
such temporal averaging underestimates density enhancements

Fig. 3. Radial velocity dispersion laterally averaged over the wedge near
the pole (θ = 0 − 45◦).

over long times (several hundred thousand iterations in our sim-
ulation). In a two-dimensional model there is only one azimuthal
slice over which the average is continuously taken leading to
a smooth density structure. In three-dimensional simulations,
however, at any instant density structures will be arbitrarily dis-
tributed along the azimuth in time (ud-Doula et al. 2013; Daley-
Yates et al. 2019). Therefore, we compute from fifty arbitrar-
ily chosen snapshots a spatial average of wind clumping. Doing
so results in magnetospheric wind clumping values of fcl ≈ 40
that is in good agreement with earlier attempts from magnetic
line-driven wind models neglecting the LDI (Owocki et al. 2016;
Driessen et al. 2019b).

Alongside fcl we also display in Fig. 4 the average radial
and poloidal wind velocity. The radial velocity contours demon-
strate that outside the magnetosphere the wind accelerates and
averages out to a smooth wind with 3r ≈ 2500 km s−1 with a
faster flow near the pole (Owocki & ud-Doula 2004). Within
the magnetosphere on average most material falls back onto the
star while only a fraction of it escapes in the magnetic equato-
rial plane. Similarly, the poloidal velocities show that inside the
magnetosphere material from opposite footprints is channelled
towards the equatorial plane with 3θ ≈ 700−800 km s−1. Outside
the magnetosphere this poloidal velocity gradually decreases to-
wards the pole as magnetic field lines become progressively ra-
dially stretched. These velocity contours reinforce that simply
assuming a monotonic velocity profile in line-diagnostic studies
leads to erroneous wind parameter estimates (e.g. Howarth et al.
2007; Martins et al. 2015a).

3.3. Global mass-loss rate

For stars with magnetospheres the concept of ‘mass-loss rate’ re-
quires attention because the magnetic channelling makes a sig-
nificant fraction of material unable to escape the star. Therefore,
the mass launched from the stellar surface is really a ‘mass-
feeding rate’ ṀB=0, which, here, is assumed to be the same mass
loss a non-magnetic star undergoes. This quantity, however, can
differ significantly from the actual, global mass-loss rate of the
star ṀB. To first order both mass-loss rate quantities can be re-
lated to each other (ud-Doula et al. 2008) by taking into account
the area the magnetosphere covers such that the fraction of open
magnetic field lines amounts to

fB = 1 −

√
1 −

R?

Rc
, Rc ≈ R? + 0.7(RA − R?) (17)
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Fig. 4. Statistical contours (from left to right) of wind clumping restricted to a maximum of ten, full wind clumping, radial wind velocity, and
poloidal wind velocity for a magnetically confined LDI wind with η? = 15.

and the global mass-loss rate ṀB scales as

ṀB ≈ fBṀB=0. (18)

To verify this result, we compute global mass-loss rates from
our simulations by considering how much mass is lost through
the outer radial boundary. This means we compute in our sim-
ulation a mass flux 〈ρ3〉t, weighted by sin θ, to average out the
variability from the advection of the large-scale wind sheets.

Figure 5 collects the computed global mass-loss rates and
compares them with Eq. (18). Overall there is good agreement
between the prediction of ud-Doula et al. (2008) and our nu-
merical LDI simulations. Such an outcome demonstrates that the
LDI force description, when averaged over long enough advec-
tion times, resembles well the ‘steady-state’ wind structures also
appearing in magnetic CAK models to which ud-Doula et al.
(2008) calibrated Eq. (18).

3.4. Spatial coherence of wind clumps

To better illustrate the wind morphology in Fig. 6 we display
a similar wind density state but now normalised as ρ/〈ρ〉t = 2
for the non-magnetic and strongly confined LDI wind. Since the
attained density contrasts can become quite large in a shocked
LDI wind, the panels in Fig. 1 tend to underestimate the amount
of structure in the wind (since they are shown at the same den-
sity scale). To that end a normalisation with respect to the mean
wind density of each LDI model is more appropriate because
wind variations occur with respect to this mean. Within this nor-
malisation then the extended shellular-like nature of the wind
clumps in the strongly confined LDI wind becomes more appar-
ent showing that these wind sheets (‘pancakes’) can cover half
a hemisphere of the star. On the contrary, the non-magnetic LDI
wind still shows small-scale spatially separated wind clumps that

Fig. 5. Modulation of the global mass-loss rate ṀB with wind magnetic
confinement

√
η? ∝ Bp for each simulated LDI wind model (solid cir-

cles) with the prediction of ud-Doula et al. (2008) (dashed line).

tend to elongate at the outer radial boundary due to the spherical
divergence.

4. Discussion on observational signatures and
stellar evolution

We discuss here some possibilities to disentangle the signatures
of the wind sheets as found within the numerical simulations. We
also comment on any effects of the predicted mass-loss rates and
stellar evolution modelling of magnetic hot stars. The discussion
focuses on the η? = 15 LDI model since this is a reasonably
realistic wind confinement for magnetic O-stars in the Galaxy.
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Fig. 6. Density contrast with respect to the average wind density for the
non-magnetic and strongly confined LDI wind model.

4.1. Spectroscopy

Over the past decade it has been extensively demonstrated that
the circumstellar magnetosphere is an excellent probe to infer
several wind and magnetospheric parameters of magnetic hot
stars using X-rays (Nazé et al. 2010, 2012, 2016), resonance
UV lines (Marcolino et al. 2013; Nazé et al. 2015; David-Uraz
et al. 2019a; Erba et al. 2021), and optical recombination lines
(Sundqvist et al. 2012b; Wade et al. 2012; ud-Doula et al. 2013;
Wade et al. 2015; Owocki et al. 2016; Shultz et al. 2020). These
prime diagnostic domains can be complemented with the in-
frared (Eikenberry et al. 2014; Oksala et al. 2015) and radio do-
main (Trigilio et al. 2004; Das et al. 2020).

The LDI generates strong reverse shocks that leads to X-ray
emission in line-driven winds. In particular, magnetic O-stars are
strong sources of soft X-ray emission (Nazé et al. 2014) that
can naturally result from the wind sheets outside the magneto-
sphere. Nonetheless, it is worth noting that so far in all numer-
ical models LDI generated shocks underestimate the amount of
soft X-ray emission in non-magnetic line-driven winds (Feld-
meier et al. 1997). Therefore, within the current modelling at-
tempts, it is questionable whether the magnetic LDI models can
correctly estimate the amount of soft X-ray emission for mag-
netic hot stars. On the other hand, it seems unlikely that the LDI
contributes significantly to the generation of hard X-rays that are
understood to emerge from shocks resulting from the collision of
magnetically channelled flow (Babel & Montmerle 1997; Gagné
et al. 2005).

The UV line column-mass dependency could provide in-
sights into the advective motion of the wind sheets. This could
appear quite similar, for example, to the discrete absorption com-
ponents (DACs) that are seen in absorption troughs of UV P-
Cygni profiles of (magnetic) hot stars (Howarth & Prinja 1989;
Kaper et al. 1996; Martins et al. 2015b; Sudnik & Henrichs 2016;
David-Uraz et al. 2017). However, it is important to point out
that such DACs are believed to be modulated by stellar rotation,
whereas here we would expect variation on a dynamical advec-

tion timescale, which thus should be different. For stars viewed
near their magnetic pole, the advective motion of the wind sheets
can manifest itself in the absorption trough of such P-Cygni pro-
files. Since the sheets typically traverse one stellar radius in a few
hours this does require high-cadence and high-resolution spec-
troscopy assuming observational noise does not hide the signa-
ture. Further insights into this hypothesis, however, can be ob-
tained using synthetic observations of UV resonance lines us-
ing state-of-the-art radiative transfer codes (e.g. Hennicker et al.
2020).

Finally, the Hα line-profile variability in magnetic hot stars
stems naturally from the density structure within the magneto-
sphere (e.g. Sundqvist et al. 2012b). Since Hα is a recombina-
tion line the inference of mass-feeding rates crucially depends
on the amount of wind clumping taken into account. For ex-
ample, in non-magnetic hot stars the commonly adopted value
is fcl = 10, but as seen in Fig. 4 such wind clumping factors
can be much higher in the magnetically confined region. A typ-
ical spatial average of wind clumping inside the magnetosphere
amounts to fcl ≈ 40 (but see discussion in Sect. 3.2). This vividly
illustrates that applying typical wind clumping factors used for
non-magnetic hot stars may provide erroneous estimates of the
amount and effect of wind clumping. Consequently the mass-
feeding rate of such magnetic hot stars may also be more reduced
when compared with a non-magnetic counterpart. This reduction
in mass-feeding rate can also have important effects on the stellar
evolution and final fate of magnetic hot stars (see below).

4.2. Photometry and polarimetry

Current photometric data has shown to be another alternative
to diagnose hot star magnetospheres (David-Uraz et al. 2019b;
Munoz et al. 2020). Such photometric signatures might be harder
to relate to an inhomogeneous wind, however, since other pro-
cesses can disturb the signal (e.g. stellar pulsations or rotational
modulations). For example, the wind sheet overdensities near the
star can potentially be seen as semi-regular photometric variabil-
ity. We expect this effect to be most pronounced near the mag-
netic pole of the star where the wind flow is mainly radial and
does not suffer from magnetospheric contamination. Any pos-
sible photometric signatures would then quasi-periodically ap-
pear in the photometric data within a time span of several hours
needed to advect outwards.

Due to the high degree of ionisation in line-driven winds
measurements of continuum polarisation can provide another
window for probing the existence of wind sheets. Indeed, the
linearly polarised light due to electron scattering in these hot at-
mospheres can provide a clue into the geometrical distribution
of the wind sheets, that is deviations from spherical symmetry.

4.3. Evolutionary modelling of magnetic hot stars

Determination of the mass-feeding rates versus the mass-loss
rates of magnetic hot stars is of interest due to their potentially
different evolutionary pathways compared to non-magnetic hot
stars. Particularly, it has been shown that magnetic OB stars
quench a large amount of their mass flux and could become pro-
genitors of heavy stellar-mass black holes nowadays linked with
gravitational wave detections (Petit et al. 2017).

In these stellar evolution models of magnetic hot stars the
assumed mass-loss rate (i.e. the mass-feeding rate ṀB=0) has
been taken from corresponding non-magnetic OB star predic-
tions (Vink et al. 2001). This ṀB=0 is then linked via Eq. (18)
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to the global mass-loss rate ṀB in such evolution models. How-
ever, it is worth noting that the recent line-driven wind models
of Sundqvist et al. (2019) and Björklund et al. (2021) predict
a factor three lower ṀB=0 than Vink et al. (2001) in the O-star
regime. Therefore, using these new O-star mass loss rate pre-
dictions would also reduce ṀB by a factor of three compared to
what is currently employed in magnetic OB star evolution mod-
elling (Petit et al. 2017; Georgy et al. 2017; Keszthelyi et al.
2019, 2020). Given the strong interdependence of mass loss rate
and evolution for hot stars (Meynet & Maeder 2000), further
studies are required to test the effects of this further reduction
in mass-loss for magnetic OB stars.

It is important to recall that the inclusion of the LDI does not
alter either the global mass-feeding rate as predicted from line-
driven wind theory, nor the mass-loss rate predicted from magne-
tospheric confinement (see discussion surrounding Fig. 5). How-
ever, for observational modelling, constraints on wind clumping
(inside and outside of the magnetosphere) are necessary to fur-
ther understand and constrain both the mass-feeding and mass-
loss rate of the star. For example, as discussed above, the valid-
ity of using non-magnetic mass-feeding rates in stellar evolution
modelling is a priori not guaranteed due to the additional (un-
known) complexities the magnetic field can exert on the mass
flux. However, first empirical constraints from Hα line-profile
modelling within the circumstellar magnetosphere, taking into
account wind clumping corrections a posteriori, provide a ten-
tative back-up for these non-magnetic mass-feeding rate adapta-
tions (Driessen et al. 2019b). In particular, these authors demon-
strated that for a selected sample of Galactic magnetic OB stars
the adaptation of the Vink et al. (2001) mass-loss rates is justifi-
able if the global mass-loss rate ṀB is scaled down accordingly
with a factor of fcl ≈ 50, which in light of the present study,
aligns well with the results discussed in Sect. 3.2. Future ex-
tensions to this study in light of the wind clumping outside the
magnetosphere found here could, however, test this finding with
additional diagnostics.

5. Conclusions and future work

In this paper we have presented a first theoretical investiga-
tion into the wind ‘clumping’ properties of magnetic O-stars
due to the line-deshadowing instability (LDI). In particular we
have employed two-dimensional magnetohydrodynamic simula-
tions whereby the radiation line force is still computed using the
one-dimensional Smooth Source Function (SSF) approximation
(Owocki & Puls 1996).

Our main result is that increasing the wind-magnetic con-
finement to values typically expected for magnetic O-stars, that
is magnetically confined flows, leads to a two-state wind mor-
phology; (i) in accordance with previous magnetic CAK wind
models inside the circumstellar magnetosphere the flow is con-
fined with regular wind flow fall-back towards the star, and (ii)
outside the magnetosphere large-scale coherent, shellular ‘wind
sheets’ separated by a rarefied medium advect outwards contrary
to previous magnetic CAK and non-magnetic LDI wind models.

We are currently extending our radiation-MHD models to
take into account a proper (although spatially restricted) descrip-
tion of the two-dimensional SSF radiation transport (Sundqvist
et al. 2018). This allows us to further study the influence of
strong magnetic fields and the fragmentation of LDI-like struc-
tures with the inclusion of non-radial line forces.

Among several proposed potential observational signatures,
we are also investigating the effects of UV line-profile vari-
ability from LDI generated wind sheets using a state-of-the-

art three-dimensional radiative transfer code (Hennicker et al.
2020). Since UV lines are column-mass diagnostics the advec-
tion of overdense wind sheets near the pole might be seen within
the absorption trough of a P-Cygni profile. Whether such effect
are observable, that is not dominated by noise, remains to be in-
vestigated. Results of these works will be reported in the future.

Overall the main conclusion of the present study is that LDI
generated wind structure in a magnetically confined line-driven
wind can differ significantly with non-magnetic LDI wind mod-
els, as well as with magnetic line-driven wind models that apply
CAK theory for the description of the radiation line force (i.e. the
intrinsic appearance of wind sheets due to the LDI not seen in the
other models). With future research we intend to further inves-
tigate theoretical and observational aspects to test the signatures
predicted from the present simulations and assess its predictive
power and validity.
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Appendix A: Boundary condition specifications

We here further describe the adopted boundary conditions at the
lower radial boundary (stellar surface) in our simulations. In this
near star region the flow is inherently sub-magnetosonic leading
to a non-linear MHD interaction with information propagation
between the numerical grid (stellar wind) and the boundary (stel-
lar surface) such that there is a priori no guarantee that the wind
can relax into an asymptotic state.

An often used method to assign mathematically consistent
boundary conditions to a problem is by using knowledge of the
flow characteristics (Hedstrom 1979; Thompson 1987). Since
for a (magnetic) radiation-driven flow such characteristics-based
boundary conditions remain undeveloped, we choose a more
approximate method of fixing a number of MHD variables
(ρ, 3r, 3θ, Br, Bθ) in the ghost cells equal to the number of inward
propagating MHD characteristics.3 Imposing the same number
of constraints on MHD variables as there are incoming charac-
teristics ensures that the MHD equations are neither under-, nor
over-specified.

The lower boundary density is fixed using information from
the sonic point density. In this work we choose a lower bound-
ary density ρ0 a factor five larger than the sonic point density
(Owocki et al. 1988). The radial velocity 3r is extrapolated into
the first ghost cell i of the lower boundary, allowing the wind to
dynamically adjust, using a second-order constant extrapolation

3
i
r =

1
3

(
43i+1

r − 3i+2
r

)
(A.1)

and kept constant in the n ghost cells below: 3nr = 3ir,∀n < i..
Following this method allows the wind to dynamically adjust
during the simulation to the overlying wind conditions.

The poloidal component of the velocity 3θ is fixed to en-
force flow along a magnetic field line in the boundary. However,
we have found it beneficial to make a distinction based on the
magnetic confinement η?. For cases of no magnetic confinement
η? ≤ 1 we impose the condition 3iθ = 0 in all ghost cells. In case
of magnetic confinement, η? > 1, a distinction is made between
a ‘wind zone’ and ‘dead zone’ (Mestel 1968), that is a transi-
tion happens at the colatitude where the last closed loop of the
magnetosphere occurs:

3
i
θ =

3irBi
θ/Bi

r if |π/2 − θ| > arcsin
(√

R?/RA

)
,

0 elsewhere.
(A.2)

This distinction ensures that in the wind zone near the poles,
where Bθ can undergo significant deviations due to the wind out-
flow, the flow is still parallel to the magnetic field based on the
constraints from the MHD induction equation. Within the mag-
netosphere we fix the poloidal velocity simply at zero.

The radial magnetic field component δBr = Btot,r − Bdip,r

is fixed using r−2 d(r2Btot,r)/ dr = 0 to ensure a dipole field is
introduced at the lower boundary

δBi
r = B?

(R?

ri

)2

+ δB?,r − Bi
dip,r, with B? = Bp cos θ, (A.3)

while δB?,r is computed in the code from solving the MHD equa-
tions with Tanaka’s method and Bi

dip,r follows from Eq. (14).

3 Namely the number of wave velocities from 3r, 3r±aslow, 3r±3Alf , 3r±
afast that are greater than zero.

Lastly, the poloidal magnetic field component δBθ is also ex-
trapolated into the lower boundary using a second-order accurate
constant extrapolation

δBi
θ =

1
3

(
4δBi+1

θ − δBi+2
θ

)
. (A.4)

With these conditions adopted for the magnetic field we also en-
sure that the divergence-free constraint, Eq. (6), is satisfied out-
side the physical boundary of our problem.

Appendix B: Comparison to MHD models of CAK
winds

Appendix B.1: Radiation force modification and setup

We compare the dynamical and morphological wind structures
arising in our magnetic LDI models with those that assume a
CAK line-force parametrisation. So far, in multi-dimensional
numerical radiation-MHD simulations of line-driven winds the
CAK line force gCAK has been taken as purely radial and spher-
ically symmetric (e.g. ud-Doula & Owocki 2002; Küker 2017;
Daley-Yates et al. 2019). As a result we run simulations with the
line force contribution to the total radiation force in Eq. (4) given
by gline = gCAKêr for which

gCAK =
fd(r)

1 − α
(κeQ̄)1−αL?

4πr2cα+1

(
1
ρ

d3
dr

)α
, (B.1)

with fd(r) the one-dimensional finite-disc correction factor
(Friend & Abbott 1986; Pauldrach et al. 1986) to account for
radiation coming from the full stellar disc. The other quantities
appearing have the same meaning as in Sect. 2.

In performing simulations for a magnetic CAK wind, we em-
ploy the same basic simulation setup as described in Sect. 2.
Here, however, we lower the amount of radial zones to nr = 280
(with ∆ri+1/∆ri = 1.02) and colateral zones to nθ = 120 because
in the Sobolev approximation it is not computationally neces-
sary to resolve small spatial scales. We also discuss here only a
η? = 15 model that has a confinement similar to several obser-
vations of magnetic O-stars (Petit et al. 2013).

Appendix B.2: Comparison

In analogy with Sect. 3.1 we make a direct comparison in
Fig. B.1 between a non-magnetic CAK model, a strong η? = 15
CAK model, and the η? = 15 LDI model discussed above. As
in Fig. 1 the wind density evolution is shown at the same times-
tamps.

The non-magnetic CAK wind (η? = 0) starts from a beta-
velocity law

3r(r) = 3∞

(
1 −

R?

r

)β
, (B.2)

with β = 0.8 appropriate for accounting for the finite stellar
disk and 3∞ the CAK terminal wind speed. When introducing
a strong magnetic confinement, η? = 15, in this CAK wind, the
magnetic field lines at low latitudes remain closed thereby con-
fining the wind flow (ud-Doula & Owocki 2002; Küker 2017).
Part of this confined flow falls back towards the star, but some
mass-leakage of overdense material occurs in the magnetic equa-
torial plane due to the compression of matter of colliding wind
material from opposite footprints. Outside the magnetosphere,
magnetic field lines with footprints at higher latitudes are pro-
gressively unable to counteract the wind flow and stretch into a
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Fig. B.1. Logarithmic wind density (in CGS units) displaying the evolution in time for the CAK and LDI models: (top) non-magnetic CAK wind
with η? = 0, (middle) strongly confined magnetic CAK wind with η? = 15, and (bottom) strongly confined magnetic LDI wind with η? = 15. The
overplotted white lines in the magnetic wind models denote streamlines to illustrate the magnetic field topology.
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near radial configuration. Within these regions the wind remains
smooth and steady in close analogy with the non-magnetic CAK
wind. However, this wind morphology is quite in contrast with
what is seen in the strongly confined LDI wind, that is smooth
flow vs. wind sheets outside the magnetosphere. The occurrence
of such wind sheets might then potentially also be found in ob-
servational signatures as discussed in Sec. 4.
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