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Voorwoord

Vooreerst zou ik promotor Bart De Moor willen bedanken voor de unieke
kans om dit onderzoek te voeren. Als academisch omnivoor heeft hij inder-
tijd de QIT-groep op SISTA in het leven geroepen, wat geen evidentie is,
gezien het toch wel exotische karakter van dit onderzoek binnen een ingeni-
eursdepartement (op de vraag waarom luidde zijn antwoord: “It’s poetry!”).
Het is nochtans gebleken dat alternatieve invalshoeken voor de ontginning van
een dergelijk interdisciplinair niemandsland geen windeieren oplevert (eerder
Columbus-eieren). Op dat vlak staat Barts aanpak haaks op de toenemende
fragmentarisering van wetenschappelijk onderzoek.

Ik ben copromotor Jeroen Dehaene zeer dankbaar voor zijn bijstand in raad
en daad, vooral op onderzoeks- maar ook op menselijk vlak. Begiftigd met een
merkwaardig geometrisch inzicht in de meest abstracte zaken en de gave die
ook voor anderen te verhelderen, is hij een uitstekende begeleider geweest.
Ik moet zijn geduld dikwijls op de proef gesteld hebben door mijn chaotische
inzichten onsamenhangend en met molenwiekende armen uit de doeken te doen,
maar hij bleek beter in het ontwarren van mijn gedachtenkronkels dan ikzelf.
Daarnaast is zijn kritische ingesteldheid (niet in het minst voor zijn eigen werk)
een belangrijke maatstaf voor kwaliteitsvol onderzoek. Deze thesis vormt de
kroon op een vruchtbare samenwerking.

Verder wil ik ook de andere voormalige leden van de QIT-groep danken,
Maarten Van den Nest, Frank Verstraete en Koenraad Audenaert. Hoewel het
QIT-verhaal een beetje eindigt zoals het liedje van de kleine negers (Frank ben
ik nog net op de drempel tegengekomen op zijn weg naar buiten, Koenraad was
al weg, en Jeroen en Maarten zijn uiteindelijk ook vertrokken naar de andere
kant van respectievelijk het Arenbergkasteel en de Alpen), is het me een hele eer
als hekkensluiter deel te mogen uitgemaakt hebben van deze zeer productieve
groep en Frank en Koenraad onder deze omstandigheden opnieuw te mogen
begroeten. Ik dank Maarten voor de collegialiteit en de menige diverterende
discussies omtrent wetenschap, literatuur en filosofie, maar ook over het leven
van alledag en uiteraard The Simpsons.

Dank ook aan de andere leden van de jury, Mark Fannes en Joos Vande-
walle, voor het nalezen van dit proefschrift, en prof. Berlamont voor het willen
voorzitten (tot tweemaal toe) van de doctoraatsverdediging.

Ik betuig mijn erkenning aan het Instituut voor de Aanmoediging van Inno-
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ii Voorwoord

vatie door Wetenschap en Technologie in Vlaanderen (IWT-Vlaanderen), voor
de financiering van mijn onderzoek.

I would like to acknowledge my Scottish sister-in-law Lorna Hutchinson,
who, despite being pregnant as hell (and beyond), was so kind as to subject
this text to thorough subbing. It must have been hard as a professional British
linguist trying to ignore the numerous instances of hideous American spelling.
Anyway, you did a splendid job, for which many, many thanks!

I am grateful to prof. Hans Briegel, Marc Hein and Wolfgang Dür for giving
me the opportunity to visit the IQI research group in Innsbruck twice over the
past few years. These were interesting stays during which I experienced the
fruitful interaction in this group and had many instructive discussions.

Ik ben Ida Tassens, Ilse Pardon, Péla Noé, Bart Motmans en Lut Vander
Bracht zeer erkentelijk voor hun ondersteunende rol binnen SISTA en ESAT.
De KULeuven-administratie is vaak een gevecht tegen de bierkaai, en hun werk,
onmisbaar voor ons administratieve nitwits, verdient een bloemetje.

Een doctoraat is soms een eenzame strijd. Daarentegen hing er een bijzonder
fijne sfeer tussen de collega’s op SISTA. Het was me een genoegen de werkuren
(en ook daarbuiten) te delen met zulke waardevolle en interessante mensen, in
de eerste plaats Tom en Ilse en mijn eilandgenoten Steven, Bart en Jeroen. I
would also like to mention the many pleasant walks to and lunches in alma (in
the company of a wide variety of nationalities), during which it is safe to say
we discussed pretty much everything.

Ook buiten SISTA hebben een aantal mensen onrechtstreeks een gunstige
invloed gehad, zij het in de vorm van ontspanning in de natuur, leuke babbels
op café, muzikale intermezzi of louterende zuipfestijnen. Ik denk aan de zatsel-
bijeenkomsten en citytrips met Bruno, Daan, Karel en Annelies, de fietsreisjes
en andere uitstappen met Raf, Bram, Gerry en Peter, de alcoholische uitspat-
tingen met de D&A-veteranen, de concerten met Soratea, de middeleeuwse
anachronismen met Il Nostromo del Sogno en uiteraard de muzikale én andere
evenementen met Octopus (Marieke en Kirsten, ik ben het niet vergeten). Lu-
do, merci voor het perfecte evenwicht tussen cultuur en anti-cultuur en het af
en toe mogen crashen op de sofa.

Hierbij mag ik zeker mijn familie niet nalaten te bedanken: Jan en Ivo,
voor het hart onder de riem en de vele mountainbiketochten waar we Dafke
kapotreden, Dirk, voor het weerbericht en de entertainment op tijd en stond en
het sporadisch bewusteloos-drinken, Hilde, voor de muzikale en spirituele noot
en nonkel Jan, voor het onbegrensd altrüısme en de stilte van Staleikerheide.

Tot slot wil ik mijn ouders danken voor hun onvoorwaardelijke steun. Eigen-
lijk is dankbaarheid voor je ouders een soort absurde evidentie (wat betekent
voor een boom de grond waarin hij staat?). Maar toch: bedankt, lieve ouders,
voor alles.

Erik Hostens,
Leuven, september 2007
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Distillatie van
kwantumverstrengeling in
het stabilisatorformalisme

Het onderwerp van dit proefschrift is de ontwikkeling van verstrengelingsdis-
tillatieprotocols binnen het stabilisatorformalisme. Verstrengelingsdistillatie-
protocols zijn methoden om, uitsluitend door middel van lokale operaties en
klassieke communicatie, de kwantumverstrengeling die aanwezig is in kopieën
van een gegeven kwantumtoestand te concentreren. Ze zijn zowel praktisch als
theoretisch van belang. Enerzijds zijn ze een manier om de verstrengeling te
zuiveren die nodig is voor bepaalde praktische doeleinden, wanneer enkel lokale
operaties en klassieke communicatie (LOKC) toegelaten zijn voor de beoogde
toepassing. Anderzijds kunnen ze een fundamenteler inzicht verschaffen in de
eigenschappen van verstrengeling en de fysische grenzen van de manipulatie
van verstrengeling.

Het stabilisatorformalisme is een wiskundig kader bestaande uit stabilisa-
tortoestanden en Cliffordoperaties, belangrijke specifieke klassen van kwantum-
toestanden en -operaties. We leggen de nadruk op de equivalente voorstelling
van deze toestanden en operaties, naast de gebruikelijke groeptheoretische, in
termen van binaire matrixalgebra. Dit ‘binaire beeld’ maakt een transparan-
te en efficiënte beschrijving van verstrengelingsdistillatieprotocols mogelijk en
geeft ons de gelegenheid om bestaande resultaten aanzienlijk te verbeteren. We
geven een volledig overzicht van de eigenschappen van stabilisatortoestanden
en Cliffordoperaties in het binaire beeld die relevant zijn met het oog op de
ontwikkeling van verstrengelingsdistillatieprotocols.

We behandelen de distillatie van zowel twee-partijen- als meer-partijen-
verstrengeling. Distillatie komt meestal neer op de extractie van informatie
door middel van LOKC zodat de entropie van de ingangstoestand afneemt en
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het eindresultaat een zuivere toestand is. Bij twee-partijendistillatieprotocols
onderscheiden we naast deze informatie-extractie een bijkomende afname van
de entropie die voortkomt uit de lokale metingen in het protocol. De beschrij-
ving in het binaire beeld stelt ons in staat om het onderliggend principe dat
deze entropie-reductie veroorzaakt te verklaren en dit inzicht te gebruiken om
betere protocols te ontwikkelen.

Voor meer-partijendistillatie verkrijgen we verbeteringen op twee niveaus.
Ten eerste leiden we, door uitgebreid gebruik te maken van het binaire beeld, de
meest algemene structuur af van de lokale Cliffordoperaties die worden gebruikt
in het protocol, voor verschillende klassen stabilisatortoestanden. Ten tweede
formuleren en exploiteren we bepaalde eigenschappen van de sterk-typische
verzameling, een concept uit klassieke informatietheorie.

De structuur van onze resultaten [51, 52, 53, 54, 55] is schematisch weer-
gegeven in figuur 0.1. Verstrengelingsdistillatie is belangrijk zowel voor prak-
tische doeleinden (toepassingen in kwantumcryptografie, kwantumcomputing
and kwantumcommunicatie) als voor een beter begrip van fundamentele ei-
genschappen van verstrengeling (zoals verstrengelingsmaten) in kwantumin-
formatietheorie. We onderscheiden distillatieprotocols voor twee of meerdere
partijen.

De belangrijkste wiskundige technieken die hiervoor worden aangewend zijn
klassieke informatietheorie en binaire lineaire algebra. De concepten infor-
matiewinst, entropie-reductie en typische verzameling in ons werk op twee-
partijenprotocols [53] zijn directe toepassingen van klassieke informatietheo-
rie. Naast de beschrijving van twee-partijenprotocols in termen van stabilisa-
torcodes [51] is er een sterk verband tussen entropie-reductie en het bestaan
van ontaarde codes, een belangrijk aspect van kwantumcodes zonder klassiek
equivalent. We gebruiken het concept sterk-typische verzameling in het meer-
partijengeval om de informatiewinst uit de metingen te maximaliseren [54, 55].

We beschrijven het wiskundig kader van het stabilisatorformalisme, dat oor-
spronkelijk werd ontwikkeld in de context van kwantum-foutencorrectie, volle-
dig in termen van binaire-matrixoperaties. Dit laat ons toe om de entropie-
reductie in twee-partijenprotocols uit te buiten en om de meest algemene struc-
tuur te vinden van de Cliffordoperaties in meer-partijenprotocols. Zo hebben
we bestaande protocols aanzienlijk verbeterd en de winsten op die manier ver-
kregen zijn tot op vandaag niet meer overtroffen.

Het artikel [52] maakt geen deel uit van dit proefschrift. In deze paper
beschrijven we veralgemeningen van het stabilisatorformalisme voor willekeuri-
ge dimensies (qudits). We onderzoeken een verband met modulaire wiskunde,
waarbij we ons in grote mate hebben gebaseerd op het werk voor qubits [24].
We hebben dit werk niet opgenomen in het proefschrift omdat het te ver afligt
van verstrengelingsdistillatie en de tekst onnodig zou verzwaren.
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Figuur 0.1: Structuur en samenhang van de resultaten.
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Hoofdstuk 1: Inleiding

Kwantuminformatietheorie is een tamelijk nieuw onderzoeksgebied dat elemen-
ten bevat van verschillende takken, waaronder kwantummechanica, informa-
tietheorie en computerwetenschappen. Centraal staat de studie van specifieke
eigenschappen van kwantumsystemen, en toepassingen zoals kwantumcommu-
nicatie, kwantumcryptografie en kwantumcomputers. In tegenstelling tot een
klassiek systeem, schaalt de beschrijving van de toestand van een kwantum-
systeem exponentieel op met de systeemgrootte. Daarom is het simuleren van
de evolutie van een groot kwantumsysteem op een klassieke computer, zoals
die vandaag bestaat, uiterst inefficiënt en in de praktijk onbegonnen werk. Die
vaststelling bracht de bekende natuurkundige Richard Feynman op het idee om
hiervoor ook kwantumsystemen te gebruiken [36]. Dat leidde tot het concept
van de kwantumcomputer [26], en het simuleren van andere kwantumsystemen
kan worden beschouwd als de eerste toepassing ervan. Een doorbraak kwam er
in 1994, toen Peter Shor een kwantumalgoritme ontdekte om de priemfactoren
of de discrete logaritme van een geheel getal te vinden met een tijdscomplexiteit
die slechts polynomiaal opschaalt ten opzichte van de ingangsgrootte [78], ter-
wijl nog geen polynomiaal klassiek algoritme is gevonden tot op heden. Twee
jaar later ontwikkelde Lov Grover een kwantumalgoritme om een ongesorteerde
databank te doorzoeken met een snelheid die in grootte-orde het kwadraat is
van de snelheid van het beste klassieke algoritme [44]. De qubit is de kwantum-
tegenhanger van de klassieke bit en de standaard bouwsteen van een kwantum-
computer. Het is een kwantumsysteem met twee niveaus. We beschouwen hier
geen praktische realisaties van qubits. Typische voorbeelden zijn de polarisatie
van een foton en de spin van een elektron.

De kwantumtoestand bevat de informatie die we hebben over een bepaald
kwantumsysteem. De enige manier waarop we aan die informatie kunnen ge-
raken is door de waarneming van herhaalbare experimenten en de daarmee
gepaard gaande kansen. Hoewel kansen ook bestaan in klassieke fysica, waar
ze het gevolg zijn van onvolledige kennis van een systeem, zijn ze inherent
aan de schijnbaar indeterministische aard van kwantummetingen. Een kwan-
tumtoestand is ofwel zuiver ofwel gemengd. De laatstgenoemde kan worden
gezien als een klassiek statistisch ensemble van zuivere toestanden: a.h.w. een
mengsel van kwantumtoestand-‘amplitudes’ en klassieke kansen. Een zuivere
toestand wordt wiskundig gëıdentificeerd met een éénheidsvector in een com-
plexe Hilbertruimte,1 en een gemengde toestand met een positief semi-definiete
Hermitische operator op dezelfde ruimte met spoor gelijk aan 1: de dichtheids-
operator ρ. De toestand bepaalt de uitkomstwaarschijnlijkheden van welke
meting ook op het systeem. Terzelfdertijd veroorzaakt de meting een schijn-
baar plotse verandering in de toestand van het systeem. Dit vreemde fenomeen
wordt ook wel het inklappen van de toestandsvector of de golffunctie genoemd.
De interpretatie ervan was en is nog steeds het onderwerp van menig contro-
verse [76], maar we gaan hier niet dieper op in. Op een manier ‘vernietigd’

1Voor een qubit is deze ruimte tweedimensionaal.
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een meting de informatie die in de kwantumtoestand zit. Dit gedrag is nut-
tig voor encryptie, want een afluisteraar kan geen informatie winnen uit een
verzonden kwantumboodschap noch ermee knoeien zonder dat het kan worden
opgemerkt. In tegenstelling tot klassieke cryptografie, die gefundeerd is op de
rekencomplexiteit van de oplossing van bepaalde wiskundige problemen, biedt
kwantumcryptografie de mogelijkheid van willekeurige veiligheid [11, 37].

Een andere eigenschap die in klassieke fysica tot dusver nog niet was tegen-
gekomen en die een centrale plaats in dit proefschrift inneemt, is kwantumver-
strengeling. Het manifesteert zich in het gedrag van een samengesteld systeem
als correlaties van meetuitkomsten die onverklaarbaar zijn in elke klassieke the-
orie. Een typisch voorbeeld is het experiment waarin een atoom vervalt via een
intermediaire toestand naar de grondtoestand en zo twee verstrengelde fotonen
uitstraalt: het meten van de polarisatie van één foton legt ogenblikkelijk de po-
larisatie van het andere foton vast. Albert Einstein deed verstrengeling af als
een “spookachtige werking op afstand” en gebruikte het in de beruchte EPR-
paper om de onvolledigheid van kwantummechanica aan de kaak te stellen [33].
Hij dacht dat de schijnbare niet-lokaliteit in de natuur kon verklaard worden
door middel van klassieke correlaties tussen lokale verborgen variabelen. Of-
schoon het een erg tegenintüıtief fenomeen is, haalde kwantumverstrengeling
het uiteindelijk van de lokale-verborgen-variabelen-theorieën: in 1964 –bijna
drie decennia nadat de EPR-paper verscheen–, leidde John Bell bovengrenzen
af op de correlaties die lokale verborgen variabelen vertonen, de zogenaamde
Bell-ongelijkheden [9], die wel overschreden worden in kwantummechanica. Dat
gaf de mogelijkheid om de onenigheid door middel van experiment op te lossen.
Het duurde wel nog eens twee decennia om de experimenten te realiseren, maar
ze gaven de kwantummechanica gelijk [4].

Hoewel verstrengeling geen extra parameter is, maar een intrinsieke eigen-
schap van de kwantumtoestand, is het onderzocht als een grootheid, zoals ener-
gie of informatie. Naast klassieke correlaties2 is verstrengeling de mate van
kwantum-niet-lokaliteit in de toestand die het kwantumsysteem, bestaande uit
meerdere deelsystemen, beschrijft. Dit leidt tot de vraag hoe het kan onder-
scheiden worden van klassieke correlaties, en bovendien, hoe het kan gekwan-
tificeerd worden [7]. Meestal wordt verstrengeling gedefinieerd als de negatie
van scheidbaarheid: een scheidbare toestand vertoont alleen klassieke correla-
ties [93]. Een belangrijke eigenschap van verstrengeling is dat ergens in het
verleden een kwantummechanische wisselwerking moet plaatsgevonden hebben
tussen de deelsystemen. Als de partijen die de deelsystemen sturen enkel lokale
operaties kunnen uitvoeren en enkel via klassieke kanalen mogen communiceren
(LOKC), dan kan er geen verstrengeling tot stand komen uit een scheidbare
toestand. Anderzijds kan verstrengeling gemakkelijk vernietigd worden, door
lokaal metingen uit te voeren die de toestand van het deelsysteem doen in-
klappen naar een toestand die zuiver is en dus scheidbaar van de rest van het
systeem.

2correlaties die evengoed kunnen verklaard worden door een lokale-verborgen-variabelen-
theorie
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De LOKC-voorwaarde is een beperking op de toestanden waarin een ge-
geven toestand kan worden getransformeerd, wat aanleiding geeft tot een ge-
deeltelijke ordening van toestanden. Dit houdt de notie in van een bepaalde
hoeveelheid verstrengeling: één toestand heeft minstens zoveel verstrengeling
als een ander als het in die andere toestand kan worden getransformeerd door
LOKC. Voor twee partijen bestaan er toestanden met maximale verstrenge-
ling: van deze toestanden spelen de vier Bell-toestanden een centrale rol in
kwantuminformatietheorie. Elke andere toestand van twee qubits –waaronder
de Bell-toestanden zelf– kan worden gerealiseerd door LOKC vanuit een Bell-
toestand [69, 71]. Men kan de verstrengeling in zo’n Bell-toestand beschouwen
als eenheid van verstrengeling, ook wel ebit genoemd, wat aanleiding geeft tot
natuurlijke definities van verstrengelingsmaten voor twee partijen [71]. Twee
belangrijke verstrengelingsmaten verdienen speciale aandacht, met name de
vormingsverstrengeling en de distillatieverstrengeling [14].

De vormingsverstrengeling van een gegeven twee-qubitstoestand, is de ver-
houding EF = limN→∞ M

N , met M het minimale aantal ebits dat nodig is om
N qubitparen in de gegeven toestand te verkrijgen door LOKC. De distillatie-
verstrengeling is net het omgekeerde: ED = limN→∞ m

N , met m het maximale
aantal ebits dat door LOKC kan gewonnen worden uit N qubitparen in de
gegeven toestand. Een fundamentele eigenschap van deze maten is

ED ≤ EF ,

met de gelijkheid voor zuivere toestanden. Dit volgt dadelijk uit het feit dat
verstrengeling niet kan toenemen onder LOKC en als ED groter was dan EF ,
dan zou men meer ebits en dus verstrengeling kunnen halen uit N qubitparen
in de gegeven toestand dan er nodig waren om ze te creëren.

De definitie van de distillatieverstrengeling impliceert de betekenis van ver-
strengelingsdistillatie voor twee partijen [13]: uit qubitparen in een gegeven toe-
stand willen we door LOKC zoveel mogelijk ebits halen. Het leeuwendeel van
dit proefschrift handelt over de ontwikkeling van procedures om dit optimaal
te doen: verstrengelingsdistillatieprotocols. Er zijn twee belangrijke motivaties
om distillatieprotocols te bestuderen. De eerste motivatie is praktisch: ze zijn
een manier om toestanden te bekomen die zuivere en maximaal verstrengel-
de toestanden benaderen, wat vereist is voor veel toepassingen, waaronder de
bekende voorbeelden teleportatie [12], kwantum-sleuteldistributie [35] en su-
perdichte codering [15]. De tweede motivatie is er één van meer fundamentele
aard: de winst, oftewel de fractie gewonnen ebits, van elk distillatieprotocol is
per definitie een ondergrens voor de distillatieverstrengeling. Daarom brengt
het significant verbeteren van distillatieprotocols ons dichter bij een beter be-
grip van de onomkeerbare aard van de manipulatie van verstrengeling.

In vergelijking met twee partijen is de karakterisatie van meer-partijen-
verstrengeling veel gecompliceerder, laat staan de kwantificatie ervan. Er be-
staat nu geen éénduidige definitie meer van verstrengelingsmaten, gezien er geen
maximaal verstrengelde toestanden meer zijn [8, 34, 50, 61, 87]. We kunnen
echter nog steeds de winst van een distillatieprotocol definiëren als de fractie
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gewenste toestanden dat kan worden gedistilleerd uit een aantal kopieën van
een gegeven toestand, want er zijn veel toepassingen van verstrengelde meer-
partijentoestanden [19, 21, 23, 31, 45, 47, 57]. Er is een voor de hand liggende
reden om enkel protocols te beschouwen die vertrekken van kopieën van dezelf-
de toestand: in een praktische opstelling maakt één van de partijen kopieën
van de beoogde meer-partijentoestand aan en verdeelt die over de andere par-
tijen via kwantumkanalen. We beschouwen geen specifieke implementaties van
zulke kanalen: één voorbeeld is een optische vezel, met fotonen als dragers van
kwantuminformatie. In de realiteit zijn zulke kwantumkanalen niet onfeilbaar
en de qubits die erdoor worden gestuurd zijn onderhevig aan ruis en deco-
herentie, het verlies aan kwantuminformatie door spontane interactie met de
oncontroleerbare en onwaarneembare omgeving. Het is natuurlijk om statische
en tijdsonafhankelijke kanalen te veronderstellen, zodat na verdeling de ruisige
kopieën statistisch onafhankelijk zijn en in dezelfde gemengde toestand.

In een typisch protocol voeren alle partijen lokale operaties en lokale me-
tingen uit, elk op hun deel van meerdere ruisige kopieën. De lokale operaties
resulteren in klassieke statistische afhankelijkheid tussen de kopieën. Door
lokaal een deel van de kopieën te meten en de uitkomsten via klassieke com-
municatie uit te wisselen en te vergelijken, wordt informatie gewonnen over de
toestand van de kopieën na verdeling. Hierdoor verandert de toestand van de
overblijvende kopieën in een meer verstrengelde toestand. De gemeten kopieën
zijn scheidbaar en kunnen worden weggegooid. Dit is schematisch weergegeven
in figuur 0.2. De volledige procedure vermeerdert de totale verstrengeling niet,
maar concentreert ze. Vandaar de naam ‘distillatie’.

Naast twee- versus meer-partijen, kunnen we protocols indelen volgens a-
symptotisch versus eindig. Asymptotische protocols betrekken een oneindig
aantal ruisige kopieën en moeten gezien worden als theoretische limieten. In
de praktijk kan hun winst benaderd worden door een groot aantal initiële ko-
pieën te nemen, gelijkaardig aan de mogelijkheid om data te comprimeren tot
dicht tegen de Shannon-limiet in klassieke informatietheorie [22]. In de li-
miet genereert een asymptotisch protocol kopieën van een zuivere toestand, die
rechtstreeks kunnen gebruikt worden voor de beoogde toepassing, en we defi-
niëren de asymptotische winst als de limiet van de verhouding van het aantal
gegenereerde kopieën tot het aantal initiële kopieën. Eindige protocols daaren-
tegen betrekken slechts een eindig aantal kopieën en leveren kopieën met meer
verstrengeling, maar niet voldoende zodat ze moeten herhaald worden in een
iteratieve procedure tot het resultaat bevredigend is of kan gebruikt worden
als ingang voor een ander protocol. We noemen zo’n protocol adaptief als in-
termediaire meetuitkomsten volgende acties van het protocol bepalen. In de
literatuur worden adaptieve protocols vaak aangeduid als protocols die twee-
wegscommunicatie gebruiken, omdat alle partijen moeten overeenkomen wat
die toekomstige acties zijn, en daarom moet klassieke informatie uitgewisseld
worden in twee richtingen.

Twee belangrijke distillatieprotocols voor twee-partijenverstrengeling zijn
het asymptotische hashing-protocol en het eindige recurrence-protocol [14]. Bei-
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Figuur 0.2: De algemene opstelling van een distillatieprotocol (hier starten
vier partijen met vijf kopieën van een verstrengelde toestand van vier qubits).
Qubits worden weergegeven door stippen; (ruisige) verstrengeling door (streep-
jes)lijnen; klassieke correlaties door stippellijnen; lokale operaties door recht-
hoeken rond de betrokken qubits en gemeten qubits door aangekruiste stippen.
1) De partijen A, B, C and D starten met vijf kopieën van een ruisige verstren-
gelde toestand.
2) Ze voeren lokale operaties uit, elk op zijn deel van de kopieën.
3) Dit heeft klassieke correlaties tussen de kopieën tot gevolg.
4) Lokale metingen op een aantal kopieën (in dit voorbeeld 4 en 5) verschaft
informatie over de ganse toestand, wat resulteert in meer verstrengeling tus-
sen de overblijvende kopieën (1-3). De gemeten kopieën zijn nu scheidbaar en
kunnen worden weggegooid.
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den starten met kopieën van een toestand die een statistisch ensemble is van
Bell-toestanden, een zogenaamde Bell-diagonale toestand. Zo’n toestand kan
worden beschouwd als één van de vier Bell-toestanden, elk met een bepaal-
de kans. Via deze interpretatie in termen van klassieke waarschijnlijkheden
kunnen we gebruik maken van de asymptotische-equipartitie-eigenschap [22],
volgens hetwelk een rij van κ discrete toevalsvariabelen met kans 1 − ǫ be-

hoort tot de typische verzameling A(κ)
ǫ , met ǫ → 0 voor κ → ∞. Er wordt in

het hashing-protocol verondersteld dat de toestand van alle kopieën tesamen

behoort tot A(κ)
ǫ met een verwaarloosbare foutkans ǫ. De uitkomst van elke

meting komt overeen met gemiddeld de helft van alle mogelijkheden. De an-

dere helft kan worden verwijderd uit A(κ)
ǫ . Het protocol wordt op die manier

verdergezet totdat er nog slechts één kandidaat overschiet. Deze is door de
veronderstelling de initiële zuivere toestand van de kopieën. Uiteindelijk zijn
er zoveel kopieën gemeten als de totale initiële entropie van de kopieën. Elke
meting gaat ten koste van één kopie, dat daarna scheidbaar is en kan worden
weggegooid. Bijgevolg is de hashing-winst gelijk aan nul als de entropie per
kopie groter is dan één, ook al waren de kopieën verstrengeld.

Om tegemoet te komen aan de slechte performantie van hashing op te ruisi-
ge kopieën kan het worden voorafgegaan door meerdere iteraties van recurren-
ce. Deze gecombineerde procedure heeft altijd een winst groter dan nul voor
verstrengelde Bell-diagonale toestanden, zelfs als de initiële entropie hoog is.
Recurrence vertrekt van slechts twee kopieën van een Bell-diagonale toestand,
waarvan één wordt gemeten na de lokale operaties. Afhankelijk van de uit-
komst van die meting is de overblijvende kopie ofwel in een meer verstrengelde
Bell-diagonale toestand, ofwel in een scheidbare toestand. In het laatste geval
zeggen we dat het protocol ‘mislukt’ is en de overblijvende kopie wordt weg-
gegooid. Het protocol wordt per twee toegepast op verschillende kopieën. Zo
kan de gemiddelde verstrengeling per overgebleven kopie stapsgewijs vermeer-
derd worden door de procedure te herhalen op alle overgebleven kopieën van
‘geslaagde’ protocols (een voorbeeld hiervan is weergegeven in figuur 0.3). In
tegenstelling tot hashing is deze procedure adaptief, gezien enkel kopieën die
het resultaat zijn van geslaagde protocols opnieuw gecombineerd worden in een
volgende stap, en mislukken of slagen hangt van de meetuitkomsten af.

Op een gegeven ogenblik in de zojuist beschreven procedure is het niet lan-
ger voordelig om nog een recurrence-iteratie uit te voeren vooraleer op hashing
over te stappen. Als recurrence altijd maar wordt verdergezet, is de asymp-
totische winst zelfs nul, want in elke iteratie wordt het aantal niet-gemeten
kopieën gehalveerd [14]. Op één of andere manier vullen iteratieve recurrence
en hashing mekaar aan. Een vraag die daarop volgt, is of een protocol kan
worden ontwikkeld dat de voordelen van beiden combineert, dat adaptief is en
asymptotisch, zonder die abrupte overgang van recurrence naar hashing. Een
eerste stap in die richting werd gedaan in [90], waar de hashing-winst werd
verbeterd voor alle initiële entropieën. We konden het principe achterhalen dat
aan de basis ligt van deze verbeteringen: telkens wanneer een meting wordt
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Figuur 0.3: Drie iteraties van recurrence, resulterend in één kopie met meer ver-
strengeling uit 24 initiële ruisige kopieën. In elke stap worden kopieën paarsge-
wijs samengenomen in het recurrence-protocol, met als resultaat ofwel kopieën
met meer verstrengeling ofwel scheidbare kopieën. In het eerste geval noemen
we het protocol geslaagd (S), in het tweede geval mislukt (F). Men blijft dit
herhalen met kopieën uit geslaagde protocols totdat een gewenst criterium is
bereikt of men overschakelt op hashing.

uitgevoerd, wordt de toestand geprojecteerd op de eigenruimte van de gemeten
observabele, en daardoor wordt de meting van observabelen die niet commute-
ren met de eerste onmogelijk gemaakt.3 Men zou denken dat dit hetzelfde is
als ‘vergeten’ of het ‘weggooien’ van informatie, wat altijd resulteert in hoge-
re entropie omdat entropie groter is dan voorwaardelijke entropie [22]. Maar
hier elimineert de projectie als het ware de entropie die overeenkomt met de
observabelen die niet commuteren met de eerste. Dit is sterk verwant aan het
concept van ontaarde kwantumcodes [39] in kwantum-foutencorrectie. Door dit
principe uit te buiten, gecombineerd met andere ideeën, konden we een proto-
col vinden dat alle bestaande protocols voor Bell-diagonale toestanden achter
zich laat, en tot op heden nog niet is verbeterd [53].

Voor onze zoektocht naar betere distillatieprotocols maakten we veelvuldig
gebruik van het stabilisatorformalisme [68, 72]. Dit tranparant wiskundig kader
werd oorspronkelijk ontwikkeld met het oog op het vinden van goede kwantum-
foutverbeterende codes [18, 40], technieken om de kwetsbare kwantuminformatie
te beschermen tegen decoherentie, die absoluut noodzakelijk zijn voor het suc-
cesvol realiseren van toepassingen zoals de kwantumcomputer [42]. Het stabili-
satorformalisme omvat stabilisatortoestanden en Cliffordoperaties, belangrijke
klassen van (verstrengelde) kwantumtoestanden en operaties. Naast kwantum-
foutenverbetering heeft het stabilisatorformalisme veel toepassingen [45]. Ook
het concept van de éénwegs-kwantumcomputer, een veelbelovende alternatieve
organisatie van een kwantumcomputer, bestaat uit één-qubitmetingen op een
stabilisatortoestand (clustertoestand) [75].4

3Deze observabelen kunnen wel degelijk gemeten worden, maar de uitkomsten hiervan
geven geen enkele informatie over de initiële toestand.

4Bell-toestanden, grafetoestanden en clustertoestanden zijn speciale gevallen van stabili-
satortoestanden.
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Het stabilisatorformalisme wordt meestal uitgelegd in een groepentheore-
tisch kader. De beschouwde groepen zijn homomorf met vectorruimten over
het veld GF(2). Dat laat een beschrijving toe in termen van binaire lineaire
algebra [24], dat meermaals zijn nut bewees voor de ontwikkeling van distilla-
tieprotocols, zowel voor twee als voor meer partijen [25, 51, 53, 54, 55]. Het
voordeel van dit ‘binaire beeld’ is dat het ganse mechanisme van initiële ko-
pieën, lokale operaties en metingen volledig kan worden beschreven door middel
van matrixbewerkingen over GF(2), die slechts kwadratisch opschalen in com-
plexiteit ten opzichte van de ingangsgrootte. Op die manier ontwijken we de
intrinsieke complexiteit van algemene kwantumtoestanden en -operaties. Bo-
vendien worden interpretaties in termen van klassieke informatietheorie, zoals
voor hashing, veel transparanter in het binaire beeld.

Bestaande meer-partijenvarianten van hashing en recurrence [1, 3, 19, 29, 38,
43, 58, 59, 60, 63, 67] hebben twee nadelen. Ten eerste, door informatietheorie
niet volledig uit te buiten, resulteren de hashing-varianten in teveel metingen:
om alle elementen van de typische verzameling te elimineren, wordt geëist dat
het aantal metingen bepaalde marginale entropieën overschrijdt, terwijl de ty-
pische verzameling veel sneller kan worden gereduceerd als de informatie die
uit de metingen wordt gewonnen, efficiënter gebruikt wordt. Hier werd voor
een stuk aan tegemoet gekomen in [19], maar we konden een methode opstel-
len die het aantal metingen minimaliseert [54, 55]. Daarvoor hebben we een
iets strengere versie nodig van de typische verzameling: de sterk-typische ver-

zameling T (κ)
ǫ . Ten tweede leidden we voor CSS-toestanden, een belangrijke

grote klasse van stabilisatortoestanden, de meest algemene lokale operaties af
gebruikt in het distillatieprotocol. Zo kunnen niet alleen hashing, maar ook
recurrence-achtige protocols met een hogere winst ontwikkeld worden [54]. Op
die manier is dit resultaat een veralgemening naar meer partijen van [25] voor
twee-partijenprotocols.

Hoofdstuk 2: Het stabilisatorformalisme

In dit preliminaire hoofdstuk behandelen we eigenschappen van de binaire be-
schrijving van de Pauligroep, stabilisatortoestanden en Cliffordoperaties die
relevant zijn in de context van verstrengelingsdistillatieprotocols. We beginnen
met de definitie van de Pauligroep op n qubits Gn, een groep voor de ver-
menigvuldiging die bestaat uit Kroneckerproducten van Paulimatrices met een
bijkomende complexe fase (1, i, −1 of −i). We laten zien hoe deze groep isomorf
is met de groep Z2n

2 voor de optelling als de fases niet in rekening worden ge-
bracht. Dan worden Cliffordoperaties gëıntroduceerd als unitaire operaties die
de Pauligroep op zichzelf afbeelden onder conjugatie. De werking van een Clif-
fordoperatie wordt naar het binaire beeld vertaald in een linkse vermenigvul-
diging van een binaire symplectische matrix op de vector die de Pauli-operatie
identificeert. We tonen hoe een willekeurige Cliffordoperatie kan worden opge-
bouwd uit een reeks elementaire één- en twee-qubit-Cliffordoperaties, wat van
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belang kan zijn voor de praktische realisatie van Cliffordoperaties.
We definiëren een stabilisatortoestand als de gemeenschappelijke eigenvec-

tor van de stabilisator, een maximale commutatieve deelgroep van de Pauli-
groep. De stabilisatortoestand is volledig gedetermineerd door de binaire voor-
stelling van een verzameling Pauli-operaties die de stabilisator voortbrengt. De-
ze binaire voorstellingen kunnen bijeengevoegd worden als de kolommen van
een binaire matrix. Een Cliffordoperatie die op een stabilisatortoestand in-
werkt wordt in het binaire beeld de vermenigvuldiging van de respectievelijke
voorstellingsmatrices. We wijden een apart stuk aan specifieke eigenschappen
van distillatieprotocols in het binaire beeld. Stabilisatorcodes worden kort toe-
gelicht. Het is een belangrijke klasse van kwantum-foutverbeterende codes die
eveneens efficiënt in het binaire beeld worden beschreven en op die manier sterk
gelinkt zijn aan onze distillatieprotocols

Hoofdstuk 3: Distillatie van twee-partijen-

verstrengeling

We behandelen de ontwikkeling van distillatieprotocols voor twee-partijenver-
strengeling door uitvoering gebruik te maken van het binaire beeld van het sta-
bilisatorformalisme. We leiden kort het concept van twee-partijenverstrengeling
en Bell-toestanden in, en we overlopen iets uitvoeriger de verschillende elemen-
ten van distillatieprotocols in het stabilisatorformalisme voor het specifieke
twee-partijengeval, gëıllustreerd met het bestaande recurrence-protocol. We
lichten het werkingsprincipe van asymptotische protocols (waaronder hashing)
toe. Wegens de slechte prestaties van hashing voor te ruisige ingangskopieën is
het nodig dat dergelijke protocols worden voorafgegaan door een iteratie van
eindige protocols, zoals recurrence.

Hoewel het operatie-stuk van zowel eindige als asymptotische protocols op
dezelfde manier worden beschreven in het binaire beeld, blijken ze op vlak van
interpretatie nogal te verschillen. Ten eerste wordt de werking van asympto-
tische protocols volledig beschreven in termen van het informatie-theoretische
concept typische verzameling, terwijl eindige protocols leiden tot een veran-
dering van de waarschijnlijkheden die de gemengde toestand definiëren. Ten
tweede laat het hashing-protocol geen incorporatie van adaptiviteit toe, waar-
door het slecht presteert voor ruisige ingangskopieën. Eindige protocols zijn
intrinsiek adaptief omdat tussenliggende meetuitkomsten het vervolg van het
protocol bepalen.

Het doel is manieren vinden om de voordelen van eindige protocols met
die van hashing te combineren. Een eerste succesvolle stap in die richting was
gedaan in [90], zij het eerder ad hoc. Door de onderliggende principes die
aan de basis liggen van de verbeteringen te analyseren, konden we protocols
construeren die deze ideeën uitbuiten, en op die manier alle bestaande protocols
overtreffen [53]. Het belangrijkste principe is de entropie-afname die gepaard
gaat met het lokale inklappen van de toestandsvector door de metingen in het
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protocol.
Tenslotte bestuderen we het limietgedrag van eindige protocols voor bijna

scheidbare Bell-diagonale toestanden.

Hoofdstuk 4: Distillatie van meer-partijen-

verstrengeling

We beschrijven asymptotische protocols voor meer-partijenverstrengelingsdis-
tillatie. We tonen hoe bestaande resultaten significant kunnen worden over-
troffen door het binaire beeld en klassieke informatietheorie uit te buiten. Ons
werk op meer-partijendistillatie verschilt van bestaande resultaten op twee ni-
veaus. Ten eerste kunnen we in het binaire beeld de meest algemene structuur
van de lokale Cliffordoperaties, die in het protocol worden aangewend, aflei-
den, voor verschillende klassen stabilisatortoestanden. Op die manier wordt
een grotere statistische afhankelijkheid van de kopieën bewerkstelligd zodat lo-
kale metingen meer informatie uit de initiële toestand kunnen halen. Bijgevolg
zijn er minder metingen nodig om de toestand te zuiveren en dus een grotere
winst.

Ten tweede maken we optimaal gebruik van bepaalde eigenschappen van de
sterk-typische verzameling. In tegenstelling tot het twee-partijengeval levert
de lokale meting van een kopie de eigenwaarde van meer dan één stabiliserende
Pauli-operatie op. Het doel van het protocol is de totale entropie van de in-
gangskopieën tot nul te brengen. In bestaande protocols vertaalt dit zich in de
vereiste dat het aantal gemeten kopieën bepaalde marginale entropieën (of in
het beste geval voorwaardelijke entropieën) moet overstijgen. Door gebruik te
maken van de afgeleide eigenschappen van de sterk-typische verzameling kun-
nen we het exact aantal gemeten kopieën berekenen dat nodig is om de initiële
totale entropie tot nul te brengen. Op die manier kunnen we de winst van
hashing aanzienlijk vergroten.





Abstract

The topic of this thesis is the development of entanglement distillation pro-
tocols within the stabilizer formalism. Entanglement distillation protocols are
methods for concentrating the quantum entanglement that is present in copies
of a given quantum state by means of local operations and classical communi-
cation only. They are both of practical and theoretical importance. On the one
hand, they are a means of purifying the entanglement necessary for practical
purposes when only local operations and classical communication (LOCC) are
allowed for the application in mind. On the other hand, they serve to give a
more fundamental insight into the properties of entanglement and the physical
boundaries of entanglement manipulation.

The stabilizer formalism is a mathematical framework comprising stabilizer
states and Clifford operations, specific important classes of quantum states and
operations. Usually formulated in a group theoretical setting, we put special
emphasis on the equivalent representation of these states and operations in
terms of binary matrix algebra. This ‘binary picture’ allows for a transparent
and efficient description of entanglement distillation protocols and gives us
the opportunity to improve existing results significantly. We give a complete
overview of the properties of stabilizer states and Clifford operations in the
binary picture that are relevant for the purpose of developing entanglement
distillation protocols.

We focus on the distillation of both bipartite as multipartite entanglement,
i.e. involving two or more than two parties respectively. Distillation mostly boils
down to the extraction of information by means of LOCC so that the entropy
of the target state decreases and the end result is a pure state. For bipartite
distillation protocols, next to this information extraction, an extra reduction
in the entropy is distinguished resulting from the local measurements in the
protocol. The description in the binary picture enables us to recognize the
underlying principle causing this entropy reduction, and to use this insight to
devise protocols that outperform existing ones.

For the multipartite case, improvements are obtained on two levels. Firstly,
by making extensive use of the binary picture, we derive, for different classes
of stabilizer states, the most general structure of the local Clifford operations
used in the protocol. Secondly, we derive and exploit particular properties of
the strongly typical set, a concept borrowed from classical information theory.
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Glossary

Mathematical notation

|ψ〉 pure state vector
〈ψ| dual of |ψ〉
ρ density matrix
Tr {ρ} trace of ρ
S(ρ) Von Neumann entropy of the state ρ
p(x) or px probability of x
H(X) Shannon entropy of the random variable X
|A| cardinality of the set A
Aj j-th column of matrix A
AT transpose of A
A† conjugate transpose of A
A−1 inverse of A
A−T short for (AT )−1

⊗ Kronecker or tensor product
⊕ direct sum
⊙ elementwise product
∼ equality up to a phase factor eiϕ

col (A) column space of A
J ⊥ orthogonal complement of vector space J
diag(A) vector equal to the diagonal of A
lows (A) strict lower triangular part of A
δij Kronecker delta
O Landau symbol “big O”

Fixed symbols

Z2 set of integer numbers modulo 2
C set of complex numbers
Zn

2 set of n-dimensional vectors over Z2

Z
m×n
2 set of m× n matrices over Z2

Hn n-qubit Hilbert space, Hn
∼= C2n

xix
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Gn Pauli group on n qubits
σx, σy, σz Pauli matrices
In n× n identity matrix (when n is omitted, dimensions match context)
e vector containing all ones (dimension matches context)
ei vector containing 1 on the i-th entry and zeros elsewhere
S stabilizer
|ψS〉 stabilizer state with stabilizer S
HS stabilizer code space with stabilizer S
|ψS,b〉 stabilizer state represented by S and b

A(κ)
ǫ typical set

T (κ)
ǫ strongly typical set

Acronyms

LOCC local operations and classical communication
CNOT controlled-NOT gate
LHS (RHS) left-hand (right-hand) side
BPM bilateral Pauli measurement
AEM appended ebit measurement
PB partial breeding
LP linear programming

Conventions

For notational convenience, we will often denote a binary vector by a string
(e.g., 1010 stands for [1 0 1 0]T ).

As we are mostly working in finite-dimensional vector spaces with a fixed basis,
we will often identify vectors with their coordinate representation and operators
with their matrix representation.
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Chapter 1

Introduction

Quantum information theory is a fairly new branch of research covering ele-
ments from various areas, including quantum mechanics, information theory
and computer science. It is the study of particular properties of quantum
systems and applications thereof, such as quantum communication, quantum
cryptography and quantum computing. Describing the state of a quantum sys-
tem, contrary to a classical system, scales exponentially with the system size.
Therefore, simulating the evolution of a large quantum system on a classical
computer, as we know it today, is highly inefficient and in practice, it quickly
becomes an infeasible task. This observation led the famous physicist Richard
Feynman to the idea of using quantum devices for this purpose instead [36]. As
such, the concept of a quantum computer was born [26], and simulating other
quantum systems can be regarded as its first conceivable application. A break-
through came in 1994 when Peter Shor discovered a quantum algorithm for find-
ing the prime factors or the discrete logarithm of an integer in polynomial time
with respect to the input size [78], whereas no polynomial classical algorithm
has been found at the time of writing. Two years later, Lov Grover developed a
quantum algorithm for searching an unsorted database with quadratic speedup
compared to classical algorithms [44]. The qubit is the quantum counterpart of
the classical bit and the standard building block of quantum computation. It
is a two-level quantum system. We do not consider practical implementations
of qubits here. Common examples are the polarization of a photon and the
spin of an electron.

The quantum state contains the information we have on a particular quan-
tum system. The only way it is accessible to us is by the observation of repeat-
able experiments and the concomitant probabilities. Though already existing
in classical physics, where they express lack of information, probabilities are
inherent in the apparent indeterministic nature of quantum measurements. A
quantum state is either pure or mixed. The latter can be regarded as a classical
statistical ensemble of pure states, and, therefore, a mixture of quantum state
‘amplitudes’ and classical probabilities. Mathematically, a pure state is iden-

1



2 Chapter 1. Introduction

tified with a unit vector |ψ〉 in a complex Hilbert space,1 a mixed state with
a positive semi-definite Hermitian operator on the same space with trace one:
the density operator ρ. The state completely determines the outcome probabil-
ities of any measurement on the system. At the same time, the measurement
causes an apparently abrupt change in the state of the measured system. This
strange phenomenon is referred to as the collapse of the state vector or wave
function. Its interpretation has been –and still is– the subject of much de-
bate [76], but we will not delve further into that issue. In a sense, measuring
‘destroys’ the information contained in the quantum state. This behavior is
exploited for encryption, as an eavesdropper cannot extract information from
a communicated quantum message nor tamper with it without being noticed.
Unlike classical cryptography, which is based on the computational complexity
of solving particular mathematical problems, quantum cryptography guarantees
unconditional security [11, 37].

Another feature thus far not encountered in classical physics, and taking a
central position in this thesis, is quantum entanglement. It manifests itself in
the behavior of a composed system as correlations of measurement outcomes
that cannot be explained in a classical theory. A typical example is the ex-
periment in which an atom decays via an intermediate state to the ground
state, thereby emitting two entangled photons: measuring the polarization of
one photon immediately pins down the polarization of the other. Albert Ein-
stein derided entanglement as a “spooky action at a distance” and used it in
the famous EPR paper to expose quantum mechanics’ incompleteness [33]. He
thought that the apparent non-locality in nature could be explained by classical
correlations between local hidden variables. Although being a highly counter-
intuitive phenomenon, quantum entanglement eventually triumphed over the
local hidden variable theories: in 1964 –almost three decades after publication
of the EPR paper–, John Bell derived upper bounds on the correlations exhib-
ited by local hidden variables, the so-called Bell inequalities [9], that can be
violated in quantum mechanics. This gave rise to the possibility of settling the
dispute by experiment. Yet, it took nearly another two decades to put these
experiments into practice, in favor of quantum mechanics [4].2

Although entanglement is not an extra defining parameter, but an intrin-
sic property of the quantum state, it has been investigated as a resource, like
energy or information. Coexisting with classical correlations,3 entanglement is
the amount of quantum non-locality in the state describing a quantum system,
consisting of multiple subsystems. This directly leads to the question of how to
distinguish it from classical correlations, and more importantly, how to quan-
tify it [7]. Usually, entanglement is defined as the negation of separability: a
separable state only displays classical correlations [93]. A key property of entan-
glement is that it requires the subsystems involved to have interacted quantum

1For a qubit, this space is two-dimensional.
2Although some loopholes are present in the original experiments, and are hard to cir-

cumvent. Nonetheless, most people do not doubt the validity of the experiments.
3correlations that can equally be explained by a local hidden variable theory
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mechanically somewhere in the past. If the parties controlling the subsys-
tems are only allowed to perform local operations and communicate classically
(LOCC), an entangled state cannot be created out of a separable state. On
the other hand, entanglement can easily be destroyed, by locally performing
measurements that cause the state of the subsystem to collapse into a state
that is pure and therefore separable from the rest of the system.

In general, the LOCC constraint imposes limits on what states a given state
can be transformed into, giving rise to a partial ordering of states. This implies
the notion of a certain quantity of entanglement: one state is said to contain at
least as much entanglement as another state if it can be transformed into the
other by LOCC. In the bipartite case, states of two qubits exist with maximal
entanglement : of these, the four Bell states play a central role in quantum
information theory. Any other state of two qubits –including the Bell states
themselves– can be realized by LOCC starting from a Bell state [69, 71]. Us-
ing the entanglement present in a Bell state as standard unit of entanglement,
often named ebit, natural definitions of bipartite entanglement measures ap-
pear [71]. Two important measures of entanglement deserve special attention
here, namely the entanglement of formation and the entanglement of distilla-
tion [14].

The entanglement of formation4 of a given two-qubit state, is the fraction
EF = limN→∞ M

N , where M is the minimal number of ebits needed to create
N qubit pairs in the given state by LOCC. The entanglement of distillation is
exactly the opposite: ED = limN→∞ m

N , where m is the maximal number of
ebits that can be extracted by LOCC out of N qubit pairs in the given state.
A fundamental property of these measures is

ED ≤ EF ,

with equality for pure states. This is a direct consequence of the fact that
entanglement cannot increase under LOCC. Indeed, if ED were larger than
EF , then one would be able to extract more ebits and thus more entanglement
out of N qubit pairs in the given state than were needed to create them.
Reminiscent of the second law in thermodynamics, this somehow reflects a
fundamental irreversibility of entanglement manipulation.

The definition of the entanglement of distillation already implies the mean-
ing of bipartite entanglement distillation [13]: out of qubit pairs in a given
state, we want to extract as many ebits as possible by means of LOCC. The
bulk of this thesis deals with the development of procedures to do this in an
optimal way: entanglement distillation protocols.5 There are two main motiva-
tions for studying distillation protocols. The first motivation is practical: they

4To be precise, what is defined here is the entanglement cost, which equals the asymptotic

entanglement of formation [71]. One believes it also equals the entanglement of formation,
although the additivity of the entanglement of formation is still an unproven conjecture.

5In the literature, these are sometimes called entanglement purification protocols, as they
mostly boil down to rendering a mixed state more pure. We prefer not to use the term
‘purification’, as it might be confused with the interpretation of a mixed state as part of a
larger pure state [56].
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are a means of obtaining states that approach pure and maximally-entangled
states, required for many applications, of which well-known examples are tele-
portation [12], quantum key distribution [35] and superdense coding [15]. The
second motivation is of a more fundamental nature: the yield, i.e. the fraction
of extracted ebits, of each distillation protocol is a lower bound for the en-
tanglement of distillation, by definition of the latter. Therefore, significantly
improving distillation protocols brings us closer to a better understanding of
the irreversible nature of entanglement manipulation.

Compared to the bipartite case, the characterization of multipartite entan-
glement, let alone its quantification, is much more complex. No straightforward
definition of an entanglement measure exists, as there is no notion of maximally-
entangled states any more [8, 34, 50, 61, 87]. Yet, we can still define the yield
of a distillation protocol as the fraction of desired states that can be distilled
out of a number of copies of a given state, as there are many applications using
multipartite entangled states [19, 21, 23, 31, 45, 47, 57]. There is an obvious
reason for considering the protocols starting from copies of the same state: in
a practical setting, one of the parties locally creates copies of the multipartite
pure state required for the application in mind and distributes it to the other
parties via quantum channels. We do not consider specific implementations
of such channels: one example is an optic fiber, if photons are the carriers
of quantum information. In reality, these quantum channels are not perfect,
and the qubits sent through are subject to noise and decoherence, which is the
loss of quantum information due to spontaneous interaction with the uncon-
trollable and unobservable environment. It is natural to assume memory-less
and time-invariant channels, such that after distribution, the noisy copies are
independent and in the same mixed state.

In a typical protocol, all parties perform local operations and local measure-
ments, each on their share of the multiple noisy copies. The local operations
result in classical statistical dependence of the copies. By locally measuring a
fraction of the copies and classically exchanging and comparing the outcomes,
information is gained on the state of the copies after distribution. This infor-
mation transforms the remaining copies into a state that is more entangled.
The measured copies are separable and can be discarded. This is schematically
depicted in figure 1.1. The overall procedure does not increase, but concentrates
the total entanglement. Hence the name ‘distillation’.

Next to bipartite versus multipartite, we categorize protocols as asymp-
totic versus finite. Asymptotic protocols involve an infinite number of noisy
copies and are to be seen as theoretical limits. In practice, their yield can be
approached by considering a large amount of initial copies, analogous to the
possibility of data compression close to the Shannon limit in classical infor-
mation theory [22]. In the limit, an asymptotic protocol outputs pure state
copies, ready to use for the application in mind, and we define the asymptotic
yield as the limit of the ratio of the number of output copies to the number of
input copies. Finite protocols on the other hand involve only a finite number
of copies and deliver copies with more entanglement, but not enough so that
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Figure 1.1: A distillation protocol in general (here with four parties starting
with five copies of a four-qubit state). Qubits are depicted as dots; (noisy)
entanglement as (dashed) lines; classical correlations as dotted lines; local op-
erations by rectangles enclosing the involved qubits and measured qubits as
crossed dots.
1) The parties A, B, C and D start with five copies of a noisy entangled state.
2) They apply local operations, each on their share of the copies.
3) This results in classical correlations between the copies.
4) Local measurements on a part of all copies (in this example 4 and 5) then
yield information on the overall state, on average resulting in more entan-
glement on the remaining copies (1-3). The measured copies have become
separable and can be discarded.
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they have to be repeated in an iterative procedure until the result is satisfy-
ing or used as input of another protocol.6 We call a protocol adaptive when
intermediate measurement outcomes determine future actions of the protocol.
In the literature, these are sometimes referred to as protocols using two-way
communication, as all parties must agree on the future actions and therefore,
classical information needs to be sent in both directions.

Two important bipartite distillation protocols are the asymptotic hashing
protocol and the finite recurrence protocol [14]. Both start, possibly after some
pre-processing step, from copies of a state that is an ensemble of Bell states,
a so-called Bell-diagonal state. Such a state can be regarded as one of the
four Bell states, each with a given probability. This interpretation in terms of
classical probabilities allows for the use of the asymptotic equipartition prop-
erty [22], which states that a sequence of κ discrete random variables is, with

probability 1− ǫ, an element of the typical set A(κ)
ǫ , where ǫ → 0 for κ → ∞.

In the hashing protocol, it is assumed that the state of all copies is contained

in A(κ)
ǫ , with vanishing error probability ǫ. On average, the outcome of each

measurement is incompatible with half of all possibilities, which can then be
eliminated. The protocol is continued in this way until only one candidate re-
mains, which, by assumption, is the initially unknown pure state of the copies.
To achieve this, the number of measurements needed equals the total entropy
of the initial state of all copies. Every measurement is at the cost of one copy,
which is separable afterwards and can be discarded. Therefore, if the entropy
per copy exceeds one, the yield of hashing is zero, even when the copies were
entangled initially.

To overcome the poor performance of hashing for too noisy copies, it can
be preceded by several iterations of recurrence. This combined procedure will
always have a nonzero yield for Bell-diagonal states with entanglement, even if
the initial entropy is high. One starts with only two copies of a Bell-diagonal
state, of which one is measured after the local operations. Depending on the
outcome of the measurement, the remaining copy is either in a more entangled
Bell-diagonal state, or in a separable state. In the latter case, we say the pro-
tocol has ‘failed’ and the remaining copy is discarded. The protocol is applied
to several pairs of copies, and the average entanglement per kept copy can be
gradually increased by repeating this procedure on all remaining copies of ‘suc-
cessful’ protocols, an example of which is illustrated in figure 1.2. Contrary to
hashing, this procedure is adaptive, as only copies of successful protocols are
combined in a next step, and failure or success depends on the measurement
outcomes.

At a certain stage in the previously-explained procedure, it is no longer
advantageous to do another recurrence iteration before switching to hashing.
In fact, if recurrence is continued, the asymptotic yield becomes zero, because
in every iteration, the number of unmeasured copies is halved [14]. Somehow,

6As such, finite protocols applied simultaneously on an infinite number of copies can also
be regarded as an asymptotic protocol.
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Figure 1.2: Three iteration steps of recurrence, producing one copy with more
entanglement out of 24 initial noisy copies. In each step, copies are paired
in the recurrence protocol, producing either copies with more entanglement if
successful (S) or separable copies otherwise (F). Resulting copies of successful
protocols are gathered and the same procedure repeated, until some criterion
is reached or the copies can be used as input of hashing.

iterative recurrence and hashing complement each other. A natural question
to ask therefore, is whether a protocol can be developed that combines the
benefits of both, which is adaptive and asymptotic, without this abrupt tran-
sition of recurrence to hashing. A first step in that direction was made in [90],
where the hashing yield was beaten over the entire range of initial entropies.
We were able to recognize the principle that lies at the basis of these improve-
ments. Whenever a measurement is performed, the state is projected onto an
eigenspace of the measured observable –the notorious collapse–, thereby pro-
hibiting the measurement of observables that do not commute with the first.7

One would expect that this is equivalent to ‘forgetting’ or ‘throwing away’ infor-
mation, which always results in higher entropy, as entropy exceeds conditional
entropy [22]. But in this case, the projection actually eliminates the entropy
associated with the observables not commuting with the first (what we mean
by that will become clear when explained in more detail in chapter 3). We
believe this is strongly related to the concept of degenerate quantum codes [39]
in quantum error correction. By exploiting this principle along with other
ideas, we created a protocol that significantly outperformed existing protocols
for Bell-diagonal states, and has not been surpassed at the time of writing [53].

In our search for better distillation protocols, we made extensive use of the
stabilizer formalism [68, 72]. This transparent mathematical framework was
originally developed for the purpose of finding good quantum error-correcting
codes [18, 40], techniques for protecting the fragile quantum information against
decoherence, that are absolutely necessary for the effective realization of appli-
cations such as quantum computation [42]. The stabilizer formalism comprises
stabilizer states and Clifford operations, important sets of (entangled) quan-

7To be precise, these observables can be measured, but the outcomes will not give any
information on the original state.
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tum states and operations. Next to quantum error correction, the stabilizer
formalism has many applications (for an overview, we refer to [45] and refer-
ences therein). Also the concept of the measurement-based quantum computer,
a promising alternative setup for quantum computation, is based on the prepa-
ration of a stabilizer (cluster) state and one-qubit measurements [75].8

The stabilizer formalism is mostly formulated in a group theoretical setting.
The considered groups are homomorphic to vector spaces over the field GF(2).
This allows for an efficient description in terms of binary, linear algebra [24],
which proved useful for the development of distillation protocols, both bipar-
tite and multipartite [25, 51, 53, 54, 55]. The advantage of this framework for
distillation, which we like to refer to as the ‘binary picture’, is that the mecha-
nism of initial copies, local operations and measurements is entirely described
in terms of matrix operations over the field GF(2), that scale only quadrati-
cally over the input size. Doing so, we have evaded the inherent complexity of
general quantum states and operations. Furthermore, interpretations in terms
of classical information theory, such as for hashing explained above, become
much more transparent in the binary picture.

Many multipartite variants of the hashing protocol and the recurrence pro-
tocol have been constructed [1, 3, 19, 29, 38, 43, 58, 59, 60, 63, 67]. Two draw-
backs exist for those protocols. Firstly, by not exploiting information theory to
a full extent, the hashing variants result in overkill: to eliminate all elements
of the typical set save one, they demand that the number of measurements
exceeds particular marginal entropies, whereas the typical set can be reduced
much faster if the information gained by the measurements is used more ef-
ficiently. This was partially met in [19] by relaxing to conditional entropies,
but we devised a method that minimizes the number of measurements [54, 55].
To this end, we need a slightly stricter version of the typical set, namely the

strongly typical set T (κ)
ǫ . Secondly, for CSS states, an important large class

of stabilizer states, we derived the most general local operations suitable for
distillation protocols in the binary language. Doing so, not only hashing, but
also recurrence-like protocols with a higher yield can be developed [54]. As
such, this result is a multipartite generalization of [25] for bipartite protocols.

8Bell states, graph states and cluster states are all special cases of stabilizer states.
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Outline

In chapter 2, we elaborate on properties of the binary description of the Pauli
group, Clifford operations and stabilizer states that are relevant in the context
of entanglement distillation protocols. We define the Pauli group consisting of
Kronecker products of Pauli matrices, and show how they are linked with binary
vectors. Clifford operations are introduced as unitary operations mapping the
Pauli group to itself under conjugation. This is translated into binary terms as
the left multiplication of a binary matrix on the vector representing the Pauli
operation. We explain how an arbitrary Clifford operation can be decomposed
in elementary one- and two-qubit Clifford operations. We define a stabilizer
state as the simultaneous eigenvector of a subgroup of the Pauli group and show
how it can be represented by a binary matrix. We focus on some particular
general properties in the binary picture of the distillation protocols for stabilizer
states that will be the topic of the following chapters. We end this chapter by
touching on the theory of stabilizer codes, which is important because of its
close relationship with distillation protocols.

In chapter 3, we discuss the development of bipartite distillation protocols
by making extensive use of the stabilizer formalism in the binary picture. Af-
ter briefly introducing the concept of bipartite entanglement and Bell states,
we recapitulate in more detail the various elements of distillation protocols in
the stabilizer formalism for the particular bipartite case, illustrated with the
existing recurrence protocol. Our goal is to find ways of combining the benefits
of finite protocols and asymptotic protocols, and develop adaptive asymptotic
protocols. We give the main lines of thought of asymptotic protocols and elabo-
rate on the basic principles on which adaptiveness can be introduced to improve
their performance. More precisely, we show how the description in binary ma-
trix algebra enables us to recognize the local collapse of the state vector and
the concomitant entropy reduction as the key principle for the improvements.
Finally, we also discuss the search for optimal finite protocols for noisy input
states.

In chapter 4, we describe asymptotic protocols for multipartite entangle-
ment distillation. We show how existing results can be significantly outper-
formed by exploiting the binary picture and classical information theory. More
precisely, we calculate, for different classes of stabilizer states, the most general
structure of the local Clifford operations used for the protocol, such that they
effect a larger statistical dependence of multiple noisy copies of the input state
and, as such, effect a higher yield. On the level of classical information theory,
we derive the particular properties of the strongly typical set that are relevant
for the purpose of minimizing the number of measurements necessary to purify
the state of the input copies.

In chapter 5, we summarize our main results in a general conclusion, and
we outline some possible roads for future research.
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Results

The structure and cohesion of our work [51, 52, 53, 54, 55] is schematically
depicted in figure 1.3. Entanglement distillation is important for both practi-
cal purposes (i.e. applications in quantum cryptography, quantum computation
and quantum communication) and for the understanding of fundamental prop-
erties of entanglement (e.g. entanglement measures) in quantum information
theory. We distinguish the distillation of bipartite entanglement and multipar-
tite entanglement.

The main mathematical techniques that are applied for this purpose are clas-
sical information theory and binary linear algebra. The concepts information
gain, entropy reduction and typical set in our work on bipartite protocols [53]
are direct applications of classical information theory. Furthermore, next to
the description of bipartite protocols in terms of stabilizer codes [51], there is
a strong connection between entropy reduction and the existence of degenerate
codes, which is an important feature of quantum codes with no classical ana-
logue. We use the concept strongly typical set in the multipartite setting for
calculating the exact minimal number of measurements needed to purify the
entanglement [54, 55].

We describe the framework of the stabilizer formalism, originally developed
in the context of quantum error-correction, entirely in terms of binary matrix
operations. This helps us to recognize and to exploit the entropy reduction
in bipartite protocols and to find the most general structure for the Clifford
operations used in multipartite protocols. Doing so, we outperform existing
protocols significantly and the yields obtained in this way have not been sur-
passed at the time of writing.

The article [52] is not included in this thesis because it falls outside the scope
of entanglement distillation. In this paper, we describe generalizations of the
stabilizer formalism concepts Pauli group, Clifford group and stabilizer states
for quantum systems of arbitrary dimensions. Such d-level systems, where d
is an arbitrary natural number greater than two, are often named qudits. We
examine a link with modular arithmetic, which yields a transparent way of
representing stabilizer states and Clifford operations with matrices over Zd. As
such, this is a generalization of the qubit stabilizer formalism [24], from binary
to modular.
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Chapter 2

Stabilizer formalism

2.1 Introduction

The stabilizer formalism is a mathematical framework describing stabilizer
states and Clifford operations, an important class of quantum states and op-
erations, in a group theoretic setting. This allows for a complete and efficient
description in terms of linear operations on binary matrices. The main topic of
this thesis is the distillation of stabilizer states using Clifford operations in this
‘binary picture’. We believe it is this binary algebraic view that gave us the
opportunity to develop entanglement distillation protocols that significantly
improved previous protocols.

In this preliminary chapter, we elaborate on properties of the binary descrip-
tion of stabilizer states and Clifford operations in the context of entanglement
distillation protocols. We start in section 2.2 with the definition the Pauli
group on n qubits Gn, a multiplicative group consisting of Kronecker products
of Pauli matrices, and show that, without taking overall phase factors into ac-
count, it is isomorphic with the vector space Z2n

2 . Next, in section 2.3, Clifford
operations are introduced as unitary operations mapping the Pauli group to
itself under conjugation. Again neglecting the action on the phase factors, a
Clifford operation on a Pauli operation is translated into binary terms as the
left multiplication of a binary matrix on the vector representing the Pauli op-
eration. We show how an arbitrary Clifford operation can be composed as a
sequence of elementary one- and two-qubit Clifford operations, which might
also be of interest for the practical realization of a Clifford operation.

In section 2.4, we define a stabilizer state as the simultaneous eigenvector of
the stabilizer, a maximal Abelian subgroup of the Pauli group. It is completely
determined by the binary representations of a set of Pauli operations generating
the stabilizer, which can be assembled as the columns of a binary matrix. We
show how Clifford operations and Pauli measurements on a stabilizer state, the
only quantum operations our distillation protocols will consist of, are described
in the binary matrix language.

13
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At that point, we have gathered enough material to focus on some particular
general properties in the binary picture of the distillation protocols for stabilizer
states that will be the topic of the following chapters. This is the content of
section 2.5. The action on the phase factors can be circumvented in the context
of distillation protocols. With this, we are able to simplify some intricate
formulas of the preceding sections. When describing distillation protocols in
later chapters, we will rely upon this section only. This allows the reader not
to spend too much attention to the details of the preceding sections.

Finally, in section 2.6, we give a short introduction on stabilizer codes, an
important class of quantum error-correcting codes. This serves as an illustra-
tion of the application of the stabilizer formalism, but is also relevant for the
development of good distillation protocols, as quantum error correction and
entanglement distillation are closely related.

The bulk of the binary linear algebra in sections 2.2 to 2.4 is mainly based on
the paper of Dehaene et al. [24]. The basic theory of the stabilizer formalism,
and more specifically of stabilizer codes, has been explained in various excellent
standard texts, such as Nielsen and Chuang [68] and Preskill [72]. Important
articles in the development of the stabilizer formalism are by Gottesman and
Preskill (extensive material can be found in [40]) and by Calderbank, Rains,
Shor and Sloane [17, 18].

2.2 Pauli group

In this section, we describe the Pauli group and its properties that are relevant
to our purposes.

We begin with the definition of the Pauli matrices

σx =

[

0 1
1 0

]

, σy =

[

0 −i
i 0

]

, σz =

[

1 0
0 −1

]

, (2.1)

that, in quantum mechanics, are well known for representing the observables
describing the spin of a spin 1

2 particle in the three spatial dimensions. By
matrix multiplication, the Pauli matrices generate the Pauli group on one qubit,
denoted by G1. This group is closely related to the algebra of quaternions. The
relations

σxσy = iσz = −σyσx,
σzσx = iσy = −σxσz ,
σyσz = iσx = −σzσy,

σ2
x = σ2

y = σ2
z = I2,

(2.2)

can easily be verified and lead to

G1 = {1, i,−1,−i}× {I2, σx, σy, σz}. (2.3)

The Pauli group on n qubits, denoted by Gn, is the n-fold Kronecker product
of G1 with itself. Elements of Gn, which we will refer to as Pauli operations,
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consist of Kronecker products of I2 and the Pauli matrices, with an overall
complex phase factor in {1, i,−1,−i}. The number of factors in the Kronecker
product that differ from the identity, is called the weight of the Pauli operation.
All Pauli operations are unitary.

The link with binary linear algebra is laid out as follows. We denote the
identity and the Pauli matrices by

σ00 = I2, σ01 = σx, σ11 = σy, σ10 = σz . (2.4)

For the sake of simplicity in the formulas below, we use the alternative with
real τ matrices, where τ00 = σ00, τ01 = σ01, τ10 = σ10, and

τ11 = iσ11 =

[

0 1
−1 0

]

. (2.5)

We use vector indices to indicate Kronecker products: let v, w ∈ Zn
2 and a =

[

v
w

]

, then we denote

τa = τv1w1 ⊗ . . .⊗ τvnwn
. (2.6)

Any Pauli operation can be represented as iδ(−1)ǫτa, where δ, ǫ ∈ Z2 and
a ∈ Z2n

2 .

Remark. In the literature, a Pauli operation, e.g. σx ⊗ σz ⊗ σy ⊗ I ⊗ σz , is
often denoted in a shorter form as XZY IZ. 3

We have the following multiplication and commutation relations for Pauli
operations:

Lemma 2.1 Let a, b ∈ Z2n
2 , then

(i) τaτb = (−1)bT Uaτa+b,

(ii) τaτb = (−1)bT Paτbτa,

with U =

[

0n In
0n 0n

]

and P = U + UT =

[

0n In
In 0n

]

.

These relations can easily be verified for n = 1 and then generalized for n > 1.
The matrix P defines a symplectic inner product bTPa = aTPb on the vector
space Z2n

2 . Note that aTPa = 0, for any a ∈ Z2n
2 .

Remark. The addition of binary objects is performed modulo 2, even in the
exponent of i. We then use the following rule for multiplying powers of i:

isit = is+t(−1)st,

where s, t ∈ Z2. 3
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Remark. τ11 is the only non-Hermitian (actually skew Hermitian) of the four
τ matrices, and multiplication with i makes it Hermitian. Therefore, iδ(−1)ǫτa
is Hermitian if and only if δ = aTUa. Indeed, aTUa counts (modulo 2) the
number of τ11 occurrences in the Kronecker product. 3

Sometimes, it is insightful to expand quantum states and operations in the
canonical basis |x〉 , for x ∈ Zn

2 , of Hn, also referred to as the computational
basis states.

Lemma 2.2 The expansion of τa, with a =

[

v
w

]

∈ Z2n
2 , in the computational

basis, is

τa =
∑

x∈Z
n
2

(−1)vT x |x〉 〈x+ w| .

The following lemma will frequently be of use in calculations with these expan-
sions:

Lemma 2.3 Let x ∈ Zn
2 , then

∑

v∈Z
n
2

(−1)vT x = 2nδx,0.

Again, these lemmas can easily be verified for n = 1 and then generalized for
larger n. Application of both lemmas and lemma 2.1 leads directly to

Corollary 2.4 Let a ∈ Z2n
2 , then Tr {τa} = 2nδa,0.

Corollary 2.5 Defining the matrix inner product <M,N >= Tr
{

M †N
}

, the

Pauli operations τa, for a ∈ Z2n
2 , form an orthogonal basis for C2n×2n

.

2.3 Clifford group

2.3.1 Basic properties

A Clifford operation Q, by definition, is a unitary operation that maps the
Pauli group to itself under conjugation:

QGnQ
† = Gn. (2.7)

We call the group of all Clifford operations the Clifford group on n qubits.
Because QτaτbQ

† = QτaQ
†QτbQ†, it suffices to know the image of a generating

set of the Pauli group in order to know the image of every Pauli operation. This
defines Q up to an overall phase factor. In the binary picture, determining Q
boils down to determining the images of τbk

, for k = 1, . . . , 2n, where bk, for k =
1, . . . , 2n, form a basis of Z2n

2 . Usually one takes the canonical basis ek, for k =
1, . . . , 2n. These operations τek

correspond to single-qubit operations σx and
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σz . Let Qτek
Q† = idk(−1)hkτCk

and assemble the vectors Ck as columns in
the matrix C ∈ Z

2n×2n
2 and the scalars dk, hk in the vectors d, h ∈ Z2n

2 .

Remark. QτaQ
† is (skew) Hermitian if and only if τa is (skew) Hermitian.

Since all τek
are Hermitian, so are their images. Therefore, dk = CT

k UCk,
or equivalently d = diag(CTUC). In the following, we will always implicitly
assume d defined in this way. 3

The image of τa can be found by multiplying those operations idk(−1)hkτck

for which ak = 1. By repeated application of lemma 2.1, this yields

Theorem 2.6 Given C ∈ Z
2n×2n
2 and h ∈ Z2n

2 , representing the Clifford op-
eration Q, we have

QτaQ
† = iδ(−1)ǫτb,

with b = Ca,
δ = dT a,
ǫ = hT a+ aT lows

(

CTUC + ddT
)

a,

where lows (A) is the strict lower triangular part of the matrix A, i.e. A with
all entries in the diagonal and above set to zero.

Not all C ∈ Z
2n×2n
2 represent Clifford operations. Indeed, using lemma 2.1 and

theorem 2.6, we have

τaτb = (−1)aT Pbτbτa
⇔ QτaQ

†QτbQ† = (−1)aT PbQτbQ
†QτaQ†

⇔ τCaτCb = (−1)aT PbτCbτCa,

and τCaτCb = (−1)aT CT PCbτCbτCa,

where we omitted overall phase factors on the LHS and the RHS in the third
equation, as they cancel each other out. We see that Clifford operations pre-
serve the commutation relations between Pauli operations. The third and
fourth equation must hold simultaneously for all a, b ∈ Z2n

2 . Therefore, we
have the necessary condition

CTPC = P. (2.8)

We call a matrix C satisfying (2.8) a symplectic matrix. It is also a sufficient
condition for representing a Clifford operation. We will show this below.

To find the representation of the composition of two Clifford operations, we
apply theorem 2.6 to find the images under the second operation of the images
under the first operation of the canonical basis vectors, yielding

Corollary 2.7 Given C(1), C(2) ∈ Z
2n×2n
2 and h(1), h(2) ∈ Z

2n
2 , representing

two Clifford operations Q(1) and Q(2), the product Q(21) = Q(2)Q(1) is repre-

sented by C(21) ∈ Z
2n×2n
2 and h(21) ∈ Z2n

2 given by

C(21) = C(2)C(1),
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h(21) = h(1) + CT
(1)h(2) + diag [C(1)lows

(

CT
(2)UC(2) + d(2)d

T
(2)

)

C(1)

+d(1)d
T
(2)C(1)]

,

where diag(A) is the vector containing the diagonal of the matrix A.

It is useful to know the representation of the inverse Q† of a Clifford opera-
tion Q. With corollary 2.7 and (2.8), the following proposition can be verified.

Proposition 2.8 Given C ∈ Z
2n×2n
2 and h ∈ Z2n

2 , representing a Clifford
operation Q, the inverse Q† is represented by

C′ = C−1 = PCTP,

h′ = C−T (h+ d) + diag[C−T lows
(

CTUC + ddT
)

C−1].

Finally, using (2.6), the binary representation of the Kronecker product of
Clifford operations is straightforward:

Proposition 2.9 Let Q and Q′ be two Clifford operations represented by C, h
and C′, h′ respectively, where

C =

[

C(11) C(12)

C(21) C(22)

]

, h =

[

h(1)

h(2)

]

,

and C′ =

[

C′
(11) C′

(12)

C′
(21) C′

(22)

]

, h′ =

[

h′(1)
h′(2)

]

,

then Q⊗Q′ is represented by









C(11) 0 C(12) 0
0 C′

(11) 0 C′
(12)

C(21) 0 C(22) 0
0 C′

(21) 0 C′
(22)









and h =









h(1)

h′(1)
h(2)

h′(2)









.

(All C(ij), C
′
(ij) are ∈ Z

n×n
2 and all h(i), h

′
(i) are ∈ Zn

2 .)

Corollary 2.10 A Clifford operation represented by C, h acting on a subset
A ⊂ {1, . . . , n} of n qubits is represented by C on the rows and columns with
indices in A ∪ (A + n), embedded in the 2n× 2n identity matrix. In the same
way, h is embedded in the 2n all zeros vector.

2.3.2 Special Clifford operations

We present a selected set of special Clifford operations, of particular interest for
the decomposition of an arbitrary Clifford operation into one- and two-qubit
operations. Often, such operations are called gates, in analogy with elementary
gates in classical computational devices.
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2.3.2.1 Pauli operations

We find the representing C, h of a Pauli operation τa by considering the images
of τek

, for k = 1, . . . , 2n. From the commutation relations of Pauli operations
(lemma 2.1), it follows that τa is represented by

C = I2n,
h = Pa.

(2.9)

Note that, as for any Clifford operation, the overall phase factor of a Pauli
operation cannot be represented.

2.3.2.2 Configuration space transformations

An invertible linear transformation of the configuration space is a unitary op-
eration defined by

|x〉 → |Tx〉 , (2.10)

where |x〉, with x ∈ Zn
2 , are the computational basis states and T ∈ Z

n×n
2 is an

invertible matrix.

Proposition 2.11 The operation defined by (2.10) is a Clifford operation, rep-
resented by

C =

[

T−T 0
0 T

]

,

h = 0.

Proof: We calculate the image of τa, for an arbitrary a =

[

v
w

]

∈ Z2n
2 ,

expanded in the computational basis using lemma 2.2:

QτaQ
† =





∑

x∈Z
n
2

|Tx〉 〈x|









∑

y∈Z
n
2

(−1)vT y |y〉 〈y + w|









∑

z∈Z
n
2

|z〉 〈Tz|





=
∑

y∈Z
n
2

(−1)vT y |Ty〉 〈T (y + w)|

=
∑

y′∈Z
n
2

(−1)vT T−1y′ |y′〉 〈y′ + Tw|

= τCa.

It follows from theorem 2.6 that hTa = 0, for all a, as CTUC = U . Therefore,
h = 0. �

Example. Familiar examples of configuration space transformations are all
permutations of the n qubits, with T = Π, the permutation matrix, and the
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two-qubit CNOT gate, defined by

|x〉 |y〉 → |x〉 |x+ y〉 ⇒ C =









1 1 0 0
0 1 0 0
0 0 1 0
0 0 1 1









. (2.11)

The first qubit involved in this operation, is called the source, and the second
the target. We agree to refer to this operation as: a CNOT from source to
target. 3

2.3.2.3 Hadamard gate

The single-qubit Hadamard gate is defined as the unitary operation

H =
1√
2

[

1 1
1 −1

]

. (2.12)

Proposition 2.12 The Hadamard gate is represented by

C =

[

0 1
1 0

]

,

h = 0.

Proof: Expanding H in the computational basis, giving

H =
1√
2

∑

x,y∈Z2

(−1)xy |x〉 〈y| ,

we calculate the image of τa, for arbitrary a =

[

v
w

]

∈ Z2
2, in the same way

as for proposition 2.11:

QτaQ
† =





1√
2

∑

x,y∈Z2

(−1)xy |x〉 〈y|









∑

z∈Z2

(−1)vz |z〉 〈z + w|





×





1√
2

∑

s,t∈Z2

(−1)st |s〉 〈t|





=
1

2

∑

x,z,t∈Z2

(−1)xz+vz+zt+wt |x〉 〈t|

=
∑

x,t∈Z2





1

2

∑

z∈Z2

(−1)(x+v+t)z



 (−1)wt |x〉 〈t|
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=
∑

x∈Z2

(−1)w(x+v) |x〉 〈x+ v|

= (−1)wvτCa.

We used lemma 2.3 in the third step. By theorem 2.6 and CTUC = UT , we
have wv = hTa+ wv, for all a. Consequently, h = 0. �

2.3.2.4 Phase gate

The single-qubit phase gate is the unitary operation

F =

[

1 0
0 i

]

=
∑

x∈Z2

ix |x〉 〈x| . (2.13)

Proposition 2.13 The phase gate is represented by

C =

[

1 1
0 1

]

,

h =

[

0
1

]

.

Proof: Given a =

[

v
w

]

∈ Z2
2, we have

QτaQ
† =





∑

x∈Z2

ix |x〉 〈x|









∑

y∈Z2

(−1)vy |y〉 〈y + w|









∑

z∈Z2

(−1)ziz |z〉 〈z|





=
∑

y∈Z2

iy+(y+w)(−1)y(y+w)+vy+(y+w) |y〉 〈y + w|

=
∑

y∈Z2

iw(−1)(v+w)y+w |y〉 〈y + w|

= (−i)wτCa.

Note that one has to take care while dealing with binary objects in the exponent
of i (cf. remark on page 15). We find h with theorem 2.6 and

CTUC =

[

0 1
0 1

]

⇒ d =

[

0
1

]

.

�

2.3.3 Decomposing a Clifford operation into one- and two-
qubit operations

We show how, armed with Pauli operations, the elementary two-qubit CNOT
gate and the single-qubit hadamard and phase gate, arbitrary symplectic C and
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h can be realized. Firstly, this serves as a constructive proof for the sufficiency
of (2.8) for representing a Clifford operation. Secondly, it might be of use in
the practical realization of a Clifford operation.

We observe that the main problem is realizing C, not h. Indeed, let Q be
represented by C, h, then QτP (h+h′) = τCP (h+h′)Q is represented by C, h′, for
arbitrary h′. This can be verified using (2.9) and corollary 2.7. Therefore, we
may neglect h in the following and focus on C.

By corollary 2.10, CNOT, hadamard gate and phase gate translate on a
binary level to the following elementary row operations:

• CNOT from qubit k to qubit l results in the adding of the row l to row
k and of row n+ k to row n+ l;

• H on qubit k results in swapping rows k and n+ k;

• F on qubit k results in adding row n+ k to row k.

We show how these are applied to transform C into the identity. As I2n is
formed by left multiplication of such elementary row operations on C, a de-
composition of C then consists of the inverses of these operations in reverse
order (the inverses of CNOT, H and F are CNOT, H and τ10F respectively).

Firstly, we go through a number of steps, transforming C1 into e1, schemat-
ically depicted as follows:1

C1

1

→

























1
.
.
.
.
.
.
.

























2

→

























1
0
0
0
.
.
.
.

























3

→

























.
0
0
0
1
.
.
.

























4

→

























0
0
0
0
1
.
.
.

























5

→

























0
0
0
0
1
0
0
0

























6

→

























1
0
0
0
0
0
0
0

























1. We make sure that C11 = 1. Note that C1 must contain ones, otherwise
C is not invertible. If the upper half of C1 is zero, we apply H on qubit
k, for some k for which Cn+k,1 = 1. Then, if C11 = 0, it can be made 1
by applying CNOT from the first qubit to qubit k, where Ck1 = 1.

2. We apply CNOTs from qubits k to the first, for all k for which Ck1 = 1.
This turns the upper half of C1 into e1.

3. We apply H on the first qubit.

4. We apply F on the first qubit if C11 = 1.

5. We apply CNOTs from the first qubit to qubits k, for all k for which
Cn+k,1 = 1.

1We keep on referring to intermediate stages as C1.
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6. Finally, we apply H on the first qubit again.

Secondly, we transform Cn+1 into en+1 by a very similar procedure. We
already have that CT

1 PCn+1 = 1 because C is symplectic. As C1 = e1, this
means Cn+1,n+1 = 1. Observe that we now also need to take the action on C1

into account, as we do not want to alter it:

Cn+1 =

























.

.

.

.
1
.
.
.

























1

→

























.

.

.

.
1
0
0
0

























2

→

























0
.
.
.
1
0
0
0

























3

→

























1
.
.
.
0
0
0
0

























4

→

























1
0
0
0
0
0
0
0

























5

→

























0
0
0
0
1
0
0
0

























C1 =

























1
0
0
0
0
0
0
0

























1

→

























1
0
0
0
0
0
0
0

























2

→

























1
0
0
0
0
0
0
0

























3

→

























0
0
0
0
1
0
0
0

























4

→

























0
0
0
0
1
0
0
0

























5

→

























1
0
0
0
0
0
0
0

























1. We apply CNOTs from the first qubit to qubits k, for all k for which
Cn+k,n+1 = 1.

2. We apply F on the first qubit if C1,n+1 = 1.

3. We apply H on the first qubit.

4. We apply CNOTs from qubits k to the first, for all k for which Ck,n+1 = 1.

5. Finally, we apply H on the first qubit again.

Now columns 1 and n+1 of C are the corresponding columns of I2n. Because
C is symplectic, we find that the rows 1 and n+1 of C are also the corresponding
rows of I2n:

C =





























1 0 . . . 0 0 0 . . . 0
0 0
... C(11)

... C(12)

0 0
0 0 . . . 0 1 0 . . . 0
0 0
... C(21)

... C(22)

0 0





























.
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Leaving the first qubit out, we can repeat the same procedure for

C′ =

[

C(11) C(12)

C(21) C(22)

]

,

and so on. This recursively leads to the identity.

2.4 Stabilizer states

At this point, we have gathered enough material to define the special class of
quantum states which we will focus on in the next chapters.

A stabilizer state |ψS〉 on n qubits is the simultaneous eigenstate, with eigen-
values 1, of n commuting Hermitian Pauli operationsMj = ifj (−1)bjτSj

, for j =
1, . . . , n, where Sj ∈ Z2n

2 are linearly independent and bj, fj ∈ Z2. These Pauli
operations generate an Abelian subgroup of Gn, called the stabilizer S.

Example. The computational basis states |x〉, for x ∈ Z
n
2 , are stabilized by

(−1)xjτej
, for j = 1, . . . , n. 3

Proposition 2.14 Given a stabilizer state |ψS〉, and define ρS = |ψS〉 〈ψS |,
then

(i) M |ψS〉 = |ψS〉 , ∀M ∈ S;

(ii) |S| = 2n;

(iii) ρS = 1
2n

∑

M∈S
M .

As a consequence, S defines |ψS〉 up to an overall phase factor.

Proof:

(i) From M |ψS〉 = |ψS〉 and N |ψS〉 = |ψS〉 it follows that MN |ψS〉 = |ψS〉.

(ii) Since all Mj commute and are Hermitian, one can show that the products
∏

j∈A

Mj are different for different subsets A of {1, . . . , n}.

(iii) Let ρ be the RHS of the equation. Firstly, we prove that ρ is a pure state.
This is equivalent to Tr

{

ρ2
}

= Tr {ρ} = 1 (see appendix A). We have

ρ2 =
1

22n

∑

M∈S

∑

N∈S
MN =

1

22n

∑

M∈S

∑

N ′∈S
N ′ =

1

2n

∑

N ′∈S
N ′ = ρ.

Since all M ∈ S are Hermitian, M2 = M †M = I ∈ S. All other eiϕI
cannot be in S, as eiϕI |ψS〉 6= |ψS〉. It follows from corollary 2.4 that

Tr {ρ} =
1

2n

∑

M∈S
Tr {M} = 1.
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Secondly, we prove that Tr {ρρS} = 1.

Tr {ρρS} = 〈ψS |
1

2n

∑

M∈S
M |ψS〉 = 〈ψS |ψS〉 = 1.

�

Assembling the vectors Sj as the columns of a full rank matrix S ∈ Z
2n×n
2

and the scalars bj , fj in the vectors b, f ∈ Zn
2 , Hermiticity and commutativity

of S is reflected by

f = diag(STUS), (2.14)

STPS = 0. (2.15)

We will often denote |ψS〉 by |ψS,b〉, or by |ψb〉 if S is known from the context.
We refer to S as the generator matrix and to b as the phase vector.

The representation of S by S, b is not unique, as every other generating set
of S yields an equivalent description. Going from one generating set to another
is accomplished by multiplying an invertible R ∈ Z

n×n
2 on the right on S. By

repeated application of lemma 2.1, we arrive at a new generating set, defined
by

S′ = SR,
b′ = RT b+ diag[RT lows

(

STUS + ffT
)

R].
(2.16)

We will refer to this as a stabilizer basis change.
If a stabilizer state |ψS〉 is operated on by a Clifford operation Q, Q |ψS〉 is

a new stabilizer state with stabilizer QSQ†. Using theorem 2.6, we arrive at
the following theorem:

Theorem 2.15 Q |ψS,b〉 = |ψS′,b′〉, where

S′ = CS,

b′ = b+ STh+ diag[ST lows
(

CTUC + ddT
)

S + fdTS].

In analogy with proposition 2.9, we use (2.6) for the representation of a
tensor product of stabilizer states:

Proposition 2.16 The tensor product |ψS,b〉 ⊗ |ψS′,b′〉, where

S =

[

Sz

Sx

]

and S′ =

[

S′
z

S′
x

]

,

is a stabilizer state represented by








Sz 0
0 S′

z

Sx 0
0 S′

x









,

[

b
b′

]

.
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Finally, we arrive at the following lemma and theorem, describing the mea-
surement of a Hermitian Pauli operation on a stabilizer state,2 which is a crucial
element in the distillation protocols we will describe in the next chapters.

Lemma 2.17 Given a stabilizer S and N ∈ Gn. Then either

• N commutes with every element of S, in which case N or −N ∈ S; or

• S can be split into the subgroup S0 and coset S1 = M1S0, containing the
elements that respectively commute and anticommute with N .

Proof: Let S ∈ Z
2n×n
2 and a ∈ Z

2n
2 represent S and N respectively. N

commutes with every element of S ⇔ STPa = 0. Since STP is a full rank
n× 2n matrix, a is contained by an n-dimensional space. But col (S) is an n-
dimensional subspace of the same space, as STPS. Consequently, a ∈ col (S),
which means that ±N ∈ S.

Conversely, if ±N 6∈ S, then there exist at least one M1 ∈ S that anticom-
mutes with N . We split S into two disjoint non-empty subsets S0 and S1 as
defined above. The product of every two operations commuting with N also
commutes with N . Furthermore, M1M and N anticommute, for each M ∈ S0.
So S0 is a subgroup of S and S1 is its coset. �

Theorem 2.18 Given a stabilizer state |ψS〉 ∈ Hn and non-trivial N ∈ Gn

(i.e. N 6= ±I), then measuring the observable N on |ψS〉 has either outcome
+1 or −1. We distinguish two cases:

(i) if N or −N ∈ S, then, with certainty, the outcome is respectively +1 or
−1 and |ψS〉 is left unchanged;

(ii) if ±N 6∈ S, then, both with probability 1
2 , the outcome is +1 or −1 [=

(−1)u, with u ∈ Z2] and |ψS〉 is transformed into |ψS′〉, where S′ =
S0 ∪ (−1)uNS0 and S0 is the subgroup of S that commutes with N .

Proof: Measuring N can only yield outcomes +1 or −1. Indeed, as N2 = I,
the eigenvalues of N must square to 1. Let Pu be the projector onto the
eigenspace of N with eigenvalue (−1)u, then

Pu =
1

2
[I + (−1)uN ].

Indeed, P 2
u = Pu, NPu = (−1)uPu and P0 + P1 = I. The measurement of N

on the state ρS has outcome (−1)u with probability pu = Tr {PuρSPu} and, by
the measurement, the state is transformed into PuρSPu/pu (see appendix A).
We calculate this for both cases (i) and (ii).

(i) Assume N ∈ S (the proof is analogous for −N ∈ S). It is obvious that
P0 |ψS〉 = |ψS〉 and P1 |ψS〉 = 0. Therefore, we have outcome +1 with
certainty and the state is projected onto itself.

2When measuring a Pauli operation, we will always assume it Hermitian.
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(ii) We know from lemma 2.17 that S can be split into respectively commuting
and anticommuting S0 and S1 = M1S0. Now, using proposition 2.14 (iii)
and the given commutation relations, we calculate

PuρSPu =
1

2
[I + (−1)uN ]

(

1

2n

∑

M∈S
M

)

1

2
[I + (−1)uN ]

=
1

2n+2
[I + (−1)uN ]

(

(I +M1)
∑

M∈S0

M

)

[I + (−1)uN ]

=
1

2n+2
[I + (−1)uN ](I +M1)[I + (−1)uN ]

∑

M∈S0

M

=
1

2n+1
[I + (−1)uN ]

∑

M∈S0

M

=
1

2n+1

∑

M∈S′

M.

From corollary 2.4, it follows that Tr {PuρSPu} = 1
2 . �

In the binary picture, theorem 2.18 reads as follows:

Corollary 2.19 Measuring the non-trivial observable ia
T Uaτa on |ψS,b〉 yields

outcome (−1)u and transforms the state into |ψS′′,b′′〉, where,

(i) if STPa = 0, then ∃v : a = Sv and u = vT b + vT lows
(

STUS + ffT
)

v
and the state is left unchanged by the measurement: |ψS′′,b′′〉 = |ψS,b〉;

(ii) if STPa 6= 0, then u = 0 or 1 with equal probability. Let S′, b′ be defined
by (2.16), where the matrix R is invertible and satisfies (R−T )1 = STPa.
Then S′′

1 = a and b′′1 = u, and S′′
j = S′

j and b′′j = b′j , ∀j 6= 1.

Proof: Case (i) follows directly from lemma 2.17 and update formulas (2.16).
Case (ii): (R−T )1 = R−T e1 = STPa ⇒ (SR)TPa = e1. Therefore, S′

and b′ without the first column and entry respectively, represent a generating
set of S0. The measurement has projected the state onto the eigenspace of

ia
T Ua(−1)uτa. Consequently, S′′ and b′′ as defined above represent the state

after the measurement. �

2.5 Distillation in the stabilizer formalism

In this section, we explain how distillation protocols in the stabilizer formalism
work. Recalling the explanation of the general procedure in chapter 1, we
have n parties sharing κ copies of an entangled n-qubit mixed state ρ, each
party having control over the same qubit of all copies. In a realistic setting,
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Figure 2.1: Each of n parties performs a local Clifford operation (here depicted
as rectangles) on the corresponding qubits (here depicted as dots) of all κ
copies, each entangled over the parties.

it is natural to assume the copies in the same state, as a result of the same
preparation by one party and the same subsequent distribution via imperfect
but time-invariant and memory-less quantum channels. Each party applies a
local Clifford operation on the qubits he is in charge of. These local operations
result in statistical dependence of the copies. As such, measurements on a part
of all copies will provide information on the overall initial state. We observe
that there are two kinds of ‘locality’: firstly, the overall initial state is a tensor
product ρ⊗κ, describing κ independent states, but entangled over the n parties;
secondly, these parties perform Clifford operations that are local with respect
to parties, but non-local with respect to copies. This is illustrated in figure 2.1.

This section is organized as follows. In section 2.5.1, we show how a general
mixed state can be reduced to a state with a density matrix that is diagonal
in the basis of all stabilizer states represented by S (cf. Bell-diagonal states),
which gives the possibility of describing the entire protocol in the binary pic-
ture. Then, in section 2.5.2, we simplify two formulas of the preceding sections
that play a central role in the binary description of distillation protocols and
in section 2.5.3 we explain how the two kinds of locality in the protocol are
reflected in the binary matrices describing the states and operations. In sec-
tion 2.5.4, we investigate the limits of information extraction from a stabilizer
state by local measurements. Finally, in section 2.5.5, we focus on the prop-
erties of a number of important particular kinds of stabilizer states, for which
specialized protocols will be dealt with in the following chapters.
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2.5.1 Depolarization of mixed states

The distillation protocol starts with multiple copies of a general mixed state ρ,
distributed over all parties. In order to have a state that we can fully describe
in the binary picture, we need the pre-processing technique depolarization [3].
This reduces ρ to a state that can be interpreted as a classical ensemble of sta-
bilizer states, all represented by the same generator matrix S, or, equivalently,
as a pure stabilizer state, represented by S and some unknown b.

Lemma 2.20 The states |ψS,b〉 , ∀b ∈ Zn
2 , form a basis for Hn. We will refer

to this basis as the S-basis.

Proof: Since eigenspaces with different eigenvalues of a Hermitian operation
are orthogonal, it follows that |ψS,b〉 and |ψS,b′〉 are orthogonal if b 6= b′. �

Example. The computational basis states are |x〉 =
∣

∣ψ[I 0]T ,x

〉

. 3

Theorem 2.21 Given an arbitrary n-qubit mixed state ρ, expanded in the S-
basis as

ρ =
∑

b,b′∈Z
n
2

ρb,b′ |ψS,b〉 〈ψS,b′ | .

By subsequently performing the operation τSj
on the state with probability 1

2 , for j =
1, . . . , n, the initial state ρ is transformed into

ρ′ =
∑

b∈Z
n
2

pb |ψS,b〉 〈ψS,b| ,

where pb = ρb,b. Note that this operation can be performed locally (as Pauli op-
erations are entirely separable), but requires the use of classical communication
between the parties.

Proof: The above operation transforms ρ as follows:

ρ → 1

2
(ρ+ τSj

ρτ†Sj
)

=
∑

b,b′∈Z
n
2

ρb,b′
1

2
[1 + (−1)bj+b′j ] |ψS,b〉 〈ψS,b′ |

=
∑

b,b′∈Z
n
2

ρb,b′δbj ,b′
j
|ψS,b〉 〈ψS,b′ |

Consequently, ρ′ =
∑

b,b′∈Z
n
2

ρb,b′δb,b′ |ψS,b〉 〈ψS,b′ | =
∑

b∈Z
n
2

pb |ψS,b〉 〈ψS,b|. �

This mixed state ρ′ is equivalent to a classical ensemble of pure stabilizer
states |ψS,b〉, each with probability pb. We can also regard this state as an
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unknown pure stabilizer state, i.e. we assume the state is a pure stabilizer
state, and with probability pb it is equal to |ψS,b〉.
Remark. One might wonder whether the depolarization operation defined in
theorem 2.21 really needs to be carried out. Indeed, with probability 1

2 , we
perform the operation τSj

, for j = 1, . . . , n, but afterwards we do not know
whether it was carried out or not. In a sense, we throw away information about
what we have done, which could equally have been nothing at all. In [14], it
is argued that revealing what particular Pauli operation was carried out after
the protocol, cannot change the resulting pure output state. Therefore, the
protocol equally works if depolarization is omitted.

However, we believe this reasoning is not correct, since the output state is
not exactly pure. We investigate this more rigorously. Let ρ0 be the initial
overall state of all κ n-qubit copies, ρ the state after depolarization, P(ρ) the
result of the protocol and |D〉 the desired output state. All protocols we will
encounter, deliver a state that approach this state:

P(ρ) = (1− δ) |D〉 〈D|+ δρ′, (2.17)

where ρ′ is some density operator for which 〈D| ρ′ |D〉 = 0, and δ is the (van-
ishing) failure probability of the protocol. By theorem 2.21, the state after
depolarization equals

ρ =
∑

i

2−nκρi,

where ρi is the result of applying a particular Pauli operation on ρ as prescripted
by the depolarization procedure. Without loss of generality, we can write

P(ρ) = 2−nκ
∑

i

P(ρi) = 2−nκ
∑

i

(1− δi) |D〉 〈D|+ δiρ
′
i. (2.18)

The first equality follows from the fact that the protocol is, like any evolution,
a linear operation (see appendix A).

Combining (2.17) and (2.18), it follows that

2−nκ
∑

i

δi = δ, or δ0 ≤ 2nκδ.

Note that δ0 is the failure probability of the protocol without depolarization.
Clearly, unless δ = O(2−nκ), for κ → ∞, nothing can be said about the
asymptotic behavior of δ0. In fact, we will see later that δ = O(κ−1). 3

2.5.2 Getting rid of redundant phase information

Following the previous section, the state of each copy after depolarization is an
ensemble of pure stabilizer states with fixed generator matrix, but the phase
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vector is a random variable. Recalling the representation (2.9) of a Pauli op-
eration, used as Clifford operation, one finds τa |ψS,b〉 = |ψS,b′〉, where

b′ = b+ STPa. (2.19)

Since STP is full rank, STPa can be any element of Z
n
2 by varying a. Fur-

thermore, it is independent of b. Therefore, we can get rid of the intricate
second term in the phase update equations in (2.16) and theorem 2.15, which
are respectively function of S and R, or S, C and h, but independent of b, by
applying the appropriate extra Pauli operation to the state. Recall that this
can be done locally, as Pauli operations are entirely separable. We arrive at
the following simplified modifications of (2.16) and theorem 2.15:

• A stabilizer basis change for the stabilizer state |ψS,b〉 is described by

S′ = SR,
b′ = RT b.

(2.20)

• The action of a Clifford operation, represented by C, on a stabilizer state
|ψS,b〉, is described by

S′ = CS,
b′ = b.

(2.21)

Note that h no longer needs to be taken into account.

Both (2.20) and (2.21) hold modulo some extra Pauli operation.

2.5.3 Two kinds of locality

Since ρ can be regarded as a classical ensemble of pure stabilizer states, the
same does hold for the overall state ρ⊗κ. Consequently, the entire operation
without the measurements can be regarded as the action of n local Clifford
operations on a tensor product of κ stabilizer states, each represented by the
same generator matrix S ∈ Z

2n×n
2 but independent bk ∈ Zn

2 , for k = 1, . . . , κ.
There are as many parties n as there are qubits in the state: each party has
control over the corresponding qubits of all copies.

We observed two kinds of ‘locality’ in the general setting of a distillation
protocol: on the one hand, we have a tensor product of κ stabilizer states on
n qubits, entangled over the n parties, and on the other hand, these parties
perform Clifford operations that are local with respect to parties, but non-local
with respect to copies (cf. figure 2.1).3 We already saw propositions 2.9 and 2.16
for representing Kronecker products of Clifford operations and tensor products
of stabilizer states. However, we need to take into account these different kinds
of locality. Following proposition 2.9, we agree that we firstly order the qubits

3To be precise, the only true locality is that of the Clifford operations, because the par-
ties are spatially separated; the copies on the other hand are separable, but not spatially
separated.
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per party firstly, and then per copy. The overall Clifford operation of the
protocol is then represented by

C =

[

Ã B̃

C̃ D̃

]

=





















A1 B1

. . .
. . .

An Bn

C1 D1

. . .
. . .

Cn Dn





















, (2.22)

where Ã, B̃, C̃, D̃ are block diagonal matrices of κ×κ blocks Aj , Bj , Cj , Dj . The
representations of the local Clifford operations must satisfy the symplecticity
condition (2.8), which translates into

AT
j Cj + CT

j Aj = 0,
BT

j Dj +DT
j Bj = 0,

AT
j Dj + CT

j Bj = Iκ,







for j = 1, . . . , n. (2.23)

The overall stabilizer state is represented by

S̃ = S ⊗ Iκ and b̃, (2.24)

where b̃(j−1)n+k = (bk)j , for k = 1, . . . , κ, and for j = 1, . . . , n. Note the
difference with proposition 2.16, where the qubits are ordered per copy firstly,
and then per party.

Following the line of thought of section 2.5.1, the overall state is a pure
stabilizer state |ψS̃,b̃〉 with probability

pb̃ =
κ
∏

k=1

pbk
. (2.25)

Indeed, as the state of each copy is an independent identically-distributed en-
semble of pure stabilizer states, the overall state of all copies is an ensemble of
tensor products of these stabilizer states, with probability distribution equal to
the product of the identical distributions of the single copies.

2.5.4 Extracting information from a stabilizer state

The purpose of local Clifford operations is to spread the information on the
unknown random variable b̃ over all copies. Information on b̃ can then be
extracted by measuring a part of the copies. We investigate what information
can be revealed from a stabilizer state |ψS,b〉, where S is given but b is unknown.
This is accomplished by performing Pauli measurements on the state. However,
as the parties are separate, only local measurements are at their disposal. The
value of a non-local observable

M = M1 ⊗ . . .⊗Mn
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is determined by locally measuring M1 on the first qubit, M2 on the second
qubit, and so on, and taking the product of the outcomes.

After a Pauli measurement on a single qubit has been carried out, the
outcome of any other Pauli measurement anticommuting with the first will be
entirely random and contains no information on the original state. Indeed,
after the first measurement, the second measurement falls under case (ii) of
theorem 2.18. It follows that, once all qubits have been measured, the state is
projected onto eigenstates of these local measurements and no more information
can be retrieved from it. We then arrive at the main theorem concerning
information extraction on a stabilizer state:

Theorem 2.22 Given a ∈ Z2n
2 , we define the sets

X(a) = {j | a{j,n+j} = 01},
Y (a) = {j | a{j,n+j} = 11},
Z(a) = {j | a{j,n+j} = 10}.

Now let |ψS,b〉 ∈ Hn, where b is unknown, and letM be a partition of {1, . . . , n}
into three subsets X, Y and Z and perform τ01, iτ11 or τ10 measurements on
qubits j ∈ X, Y or Z respectively. Then from the outcomes of these measure-
ments we can calculate vT b for all v that satisfy

X(Sv) ⊂ X,
Y (Sv) ⊂ Y,
Z(Sv) ⊂ Z.

(2.26)

All v satisfying (2.26) constitute a subspace V(M) of Zn
2 . After the measure-

ments, all other information on b is no longer accessible.

Proof: The value of observable i(Sv)T USvτSv is equal to the product of the
outcomes of its non-trivial factors. This can be done for all v that satisfy
(2.26). Using corollary 2.19 (i), we then calculate vT b.

Next, we show that v1, v2 ∈ V(M) ⇒ v1 + v2 ∈ V(M). Let j ∈ X . Then
(Sv1){j,n+j} = (Sv2){j,n+j} = 00 or 01. Therefore, (S[v1 + v2]){j,n+j} = 00 or
01⇒ X(S[v1 + v2]) ⊂ X . Analogous arguments can be made for Y and Z. �

Example. By measuring τ10 = σz on the second qubit and τ01 = σx on the
first and third qubit of the stabilizer state |ψS,b〉, with

S =

















0 1 0
1 0 1
0 1 0
1 0 0
0 1 0
0 0 1

















,

we find b1 and b3 by taking the product of the outcomes of the measurements
respectively on the first and last two qubits. 3
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2.5.5 Special stabilizer states

2.5.5.1 Bell states

The four Bell states are the simplest and best known example of bipartite
quantum entanglement. They are two-qubit pure states and defined as:

|B00〉 = |Φ+〉 = 1√
2
(|00〉+ |11〉),

|B01〉 = |Ψ+〉 = 1√
2
(|01〉+ |10〉),

|B10〉 = |Φ−〉 = 1√
2
(|00〉 − |11〉),

|B11〉 = |Ψ−〉 = 1√
2
(|01〉 − |10〉).

(2.27)

With lemma 2.2, one finds that

τ0011 |B00〉 = |B00〉 , τ1100 |B00〉 = |B00〉 ,
τ0011 |B01〉 = |B01〉 , τ1100 |B01〉 = − |B01〉 ,
τ0011 |B10〉 = − |B10〉 , τ1100 |B10〉 = |B10〉 ,
τ0011 |B11〉 = − |B11〉 , τ1100 |B11〉 = − |B11〉 .

(2.28)

It follows that

|Bb〉 = |ψSB ,b〉 , where SB =









0 1
0 1
1 0
1 0









. (2.29)

Remark. The singlet state |Ψ−〉 = |B11〉 has the peculiar property of always
having anticorrelating outcomes when performing the same local measurement
with outcomes ±1 on each qubit. Equivalently, |B11〉 is an eigenstate of M ⊗
M with eigenvalue −1, where M is an arbitrary single-qubit observable with
eigenvalues ±1. Analogous results exist for the other Bell states [68]. 3

From theorem 2.22, it follows that performing the same measurement on
both sides of the Bell state |Bb〉, we learn the value of:

if the measurements are σx → b1,
σz → b2,
σy → eT b.

(2.30)

After that, the state is separable and no more information can be retrieved
from it.

Using (2.24), a tensor product of κ Bell states is given by

∣

∣Bb̃

〉

=
∣

∣

∣ψSB⊗Iκ,b̃

〉

. (2.31)

Example. |B010 011〉 = |B00〉 ⊗ |B11〉 ⊗ |B01〉. 3
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2.5.5.2 Graph states

Graph states are a special kind of stabilizer states, which in recent years have re-
ceived much attention in the literature (we refer to [45] and references therein).
Every n-qubit graph state is identified with an undirected graph on n vertices.
An edge connecting two qubits symbolizes a two-qubit interaction that has
taken place between these qubits. Graph states are mainly interesting for two
reasons. Firstly, any stabilizer state is local Clifford equivalent to some graph
state.4 Therefore, the study of entanglement in general stabilizer states, includ-
ing distillation, can be restricted to graph states. Secondly, many operations
on graph states can be translated into graph transformations. This yields a
very insightful description of quantum states, and interesting links between the
mathematics of graphs and important problems in quantum information and
computation theory have already been laid [84, 85, 86]. For most proofs in this
section, we will refer to specialized literature, as they are beyond the scope of
this thesis.

A graph state is a stabilizer state with generator matrix

S =

[

Γ
I

]

, (2.32)

where Γ ∈ Z
n×n
2 is a zero-diagonal symmetric matrix. This graph state is

identified with the graph with adjacency matrix Γ.

Remark. A graph state is said to be k-colorable if one is able to label the
vertices of the corresponding graph in minimally k different colors such that
no vertices with the same color are connected. 3

Example. The 5-qubit ring state is identified with the graph in figure 2.2.
This graph has adjacency matrix

Γ =













0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0













.

It is a 3-colorable graph state. 3

The next lemma and proposition show that an edge in the identifying graph
symbolizes a real physical interaction between the qubits involved.

Lemma 2.23 Analogous to the CNOT gate, the controlled-Z gate is the sym-
metric Clifford operation |x〉 |y〉 → (−1)xy |x〉 |y〉 and is represented by

C =

[

I2 P2

0 I2

]

.

4Local Clifford equivalence of two states means that by one-qubit Clifford operations, they
can be transformed into one another.
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Figure 2.2: Graph of the 5-qubit ring state.

Proof: We calculate the image of τa, where a =

[

v
w

]

∈ Z4
2, expanded in the

computational basis using lemma 2.2:

∑

x∈Z
2
2

(−1)vT x |x〉 〈x+ w| →
∑

x∈Z
2
2

(−1)vT x+xT Ux+(x+w)T U(x+w) |x〉 〈x+ w|

=
∑

x∈Z
2
2

(−1)vT x+wT Px+wT Uw |x〉 〈x+ w|

∼
∑

x∈Z
2
2

(−1)(v+Pw)T x |x〉 〈x+ w|

= τCa.

�

Proposition 2.24 Let |+〉 = 1√
2
(|0〉 + |1〉), and perform a controlled-Z on

every two qubits of |+〉⊗n
connected by an edge in a given graph with n vertices.

Then the result is a graph state identified with that graph.

Proof: It is easily verified that |+〉⊗n
is a stabilizer state with generator matrix

[

0
In

]

. By induction, the rest then follows from: C

[

0
I2

]

=

[

P2

I2

]

. �

Theorem 2.25 Any stabilizer state is local Clifford equivalent to some graph
state.

This theorem is of major importance for stabilizer state distillation, since this
allows us to focus on the distillation of graph states only. For proof, we refer
to [80, 82].
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Figure 2.3: Local complementation at the central vertex.

It is conjectured that local unitary equivalence implies local Clifford equiv-
alence for stabilizer states. This means that if two stabilizer states can be
transformed into one another by local unitary operations, there exist local Clif-
ford operations that achieve the same goal. This conjecture is already proven
for a large class of graph states [83, 95], but until now, no general proof has
been found. Local equivalence of stabilizer states and graph states is studied
in detail in [80].

Finally, the following theorem gives a criterion to determine whether two
given graph states are local Clifford equivalent. A proof is given in [80, 81].
This is important for distillation, since this allows us to always take the best
protocol for an entire equivalence class. We only need to transform one state
into the other by local Clifford operations before and after the protocol. Firstly,
we define the graph transformation of local complementation. The neighborhood
of a vertex j in a given graph is defined as the set of vertices that are connected
to vertex j. Then local complementation at vertex j, by definition, yields
the same graph, but with complemented neighborhood of vertex j, i.e. in the
subgraph on the neighborhood of vertex j, all edges are removed and edges are
drawn where there were none before. This is illustrated with an example in
figure 2.3.

Theorem 2.26 Two graph states are local Clifford equivalent if and only if
their identifying graphs can be transformed into one another by the (possibly
multiple) application of local complementation.

Example. By performing a local Hadamard on every qubit, the computational
basis states are transformed into graph states identified with a graph with only
vertices and no edges. 3

Example. By performing a local Hadamard on one of the qubits of a Bell
state, we get a graph state, identified with two connected vertices. 3
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Example. It can be shown (by exhaustive application of local complementa-
tion) that no k-colorable graph state, where k ≤ 2, is local Clifford equivalent
to the 5-qubit ring state of figure 2.2. 3

2.5.5.3 CSS states

CSS states, short for Calderbank-Shor-Steane states, are stabilizer states that
have a generator matrix, up to a linear transformation on the right (2.20), of
the form:

S =

[

Sz 0
0 Sx

]

, (2.33)

where Sz ∈ Z
n×nz

2 and Sx ∈ Z
n×nx

2 . Since the generator matrix is full rank,
so are Sz and Sx, and nz + nx = n. The constraint of commutativity (2.15)
translates into ST

z Sx = 0. Therefore, once Sz (or Sx) is known, col (S) is
entirely defined.

Example. The Bell states are CSS states with Sz = Sx =

[

1
1

]

. 3

Example. The so-called cat state, often referred to as GHZ state, is defined
as 1√

2
(|00 . . . 0〉+ |11 . . . 1〉). It is a CSS state with

Sx = e and Sz =

[

I
eT

]

. (2.34)

3

Proposition 2.27 Any two-colorable graph state is local Hadamard equivalent
to a CSS state and vice versa.

Proof: A two-colorable graph state is identified with a graph with adjacency
matrix of the form

Γ =

[

0 θT

θ 0

]

.

With proposition 2.12, local Hadamards on qubits j = 1, . . . , nz, yield the
transformation

S =









0 θT

θ 0
Inz

0
0 Inx









→









Inz
0

θ 0
0 θT

0 Inx









. (2.35)

Applying the same local Hadamards once again yields the inverse transforma-
tion. We now prove that any CSS state generator matrix S can be brought
in the form of the RHS of (2.35) by multiplying an invertible R on the right
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of S and possibly permuting some qubits. Since Sz is full rank, there exists a
permutation Π ∈ Z

n×n
2 and invertible Rz ∈ Z

nz×nz

2 such that

ΠSzRz =

[

Inz

θ

]

.

The permutation has transformed Sx into

ΠSx =

[

A
B

]

,

where A ∈ Z
nz×nx

2 and B ∈ Z
nx×nx

2 . Since ST
z Sx = 0, we have A = θTB. It

follows thatB is invertible. Indeed, ifB would not be full rank, then there exists
an invertible Rx ∈ Z

nx×nx

2 such that BRx = [B′ 0], but then A = θTB = [A′ 0],
yielding a contradiction, since Sx is full rank. Let Rx be the inverse of B. Then
S is transformed as follows:

S →
[

Π 0
0 Π

] [

Sz 0
0 Sx

] [

Rz 0
0 Rx

]

=









Inz
0

θ 0
0 θT

0 Inx









.

�

2.6 Stabilizer codes

Fighting decoherence –the uncontrollable influence of the environment– plays
a central role in quantum information and computation theory. Since deco-
herence is extremely hard to prevent, we have to find ways for protecting the
fragile quantum state. Therefore, quantum error-correcting codes are an in-
dispensable tool in the road towards effective applications such as quantum
computation, quantum communication and quantum cryptography. Similarly
as in classical coding, the quantum information of k qubits is spread out over n
qubits, adding structured redundancy which makes it more robust to noise and
decoherence. However, a major difference with classical coding is that the error
correction process should not reveal any information on the state, as this would
equally destroy its coherence. For the same reasons, the quantum information
in qubits, contrary to classical bits, cannot be copied as a consequence of the
linearity of quantum mechanical evolution (the no-cloning theorem [28, 94]).

Because of its transparent structure, the stabilizer formalism lends itself very
well to the task of finding good quantum error-correcting codes. Moreover,
stabilizer codes are equivalent to classical linear codes over GF(4) with the
additional constraint that the codes must be self-dual [18]. As a consequence,
many techniques have been borrowed from an area that was already known
and thoroughly investigated long before quantum applications were suggested.



40 Chapter 2. Stabilizer formalism

The general evolution (including decoherence) of a quantum state ρ is math-
ematically described by (see appendix A)

ρ → E(ρ) =
∑

i

EiρE
†
i , (2.36)

where the operations Ei satisfy
∑

iE
†
iEi = I in order to have a trace-preserving

map. A common interpretation of (2.36) is: ρ is mapped to ρi = EiρE
†
i with

probability Tr {ρi}. Recovery is possible, if we are able to find a map R such
that R[E(ρ)] = ρ.

In complete analogy with stabilizer states, a stabilizer code HS on n qubits
is the simultaneous eigenspace, with eigenvalues 1, of the stabilizer S generated
by n − k commuting Hermitian Pauli operations Mj = ifj (−1)bjτSj

, for j =
1, . . . , n− k, where Sj ∈ Z2n

2 are linearly independent. The stabilizer code is

completely determined by S ∈ Z
2n×(n−k)
2 and b ∈ Z

n−k
2 . We fix the following

notation:

• C = col (S), the binary counterpart of S, and

• N = (PC)⊥, the binary counterpart of the normalizer of S, as τ†aSτa =
S, ∀a ∈ N . Note that C ⊆ N .

Proposition 2.28 The stabilizer code HS as defined above is a subspace of
Hn of dimension 2k.

Proof: We can always extend S to a full rank matrix S̄ that satisfies S̄TPS̄ =
0, where S̄k+j = Sj , for j = 1, . . . , n− k, . Indeed, since S is full rank,
the subspace N of Z

2n
2 containing all x satisfying STPx = 0, has dimension

2n − (n − k) = n + k. The set N\C contains 2n+k − 2n−k vectors. We pick
one and add it as a column to the left of S. Next, we can do the same for this
extended matrix, and so on. Then, analogously to S̄, we define

b̄ =

[

b′

b

]

∈ Z
n
2 .

By lemma 2.20, the set of states
∣

∣ψS̄,b̄

〉

, with fixed b but variable b′ ∈ Zk
2 , are

a basis of the space HS . It follows that the dimension of HS is 2k. �

Fixing a basis {
∣

∣ψS̄,b̄

〉

}b′∈Z
k
2

for the code space HS , we can encode k logical

qubits by associating each computational basis state |x〉 ∈ Hk to a stabilizer
code basis state

∣

∣ψS̄,b̄

〉

. The unitary operation mapping |x̄〉, where x̄T = [x 0] ∈
Zn

2 , to
∣

∣ψS̄,b̄

〉

is called an encoding operation for this stabilizer code. Its inverse
is called a decoding operation.

Proposition 2.29 Any Clifford operation represented by C ∈ Z
2n×2n
2 and h ∈

Z2n
2 , where

Ck+1,...,n = S and hk+1,...,n = b,

is an encoding operation for the stabilizer code represented by S and b.



2.6. Stabilizer codes 41

Proof: Using theorem 2.15, one can verify that the Clifford operation repre-
sented by C and h, where

C1,...,n = S̄ and h1,...,n = b̄+ x̄,

maps |x̄〉 =
∣

∣ψ[I 0]T ,x̄

〉

to
∣

∣ψS̄,b̄

〉

. �

The stabilizer code basis, determined by S′ and b′, should be chosen in such a
way that realizing the encoding or decoding operation is most efficient [20].

The next question is what errors (2.36) can be corrected if they have oc-
curred on an encoded state |ψ〉 ∈ HS . We saw that, with a certain probability,
|ψ〉 is transformed into Ei |ψ〉. Firstly, we focus on the case where Ei is a Pauli
operation.

Theorem 2.30 All errors Ei ∼ τa on |ψ〉 ∈ HS , where a ∈ ES ⊂ Z2n
2 , can be

corrected if all a, b ∈ ES satisfy

a+ b 6∈ N\C.

Equivalently, either STP (a+ b) 6= 0 or a+ b ∈ C must hold, ∀a, b ∈ ES .

Proof: Since two Pauli operations either commute or anticommute, we have
EiMj = (−1)mjMjEi. The scalars mj are assembled in vector m ∈ Z

n−k
2 ,

which is called the syndrome of Ei. It is determined by measuring Mj, for j =
1, . . . , n− k on the afflicted state Ei |ψ〉, with outcomes (−1)mj . Indeed,

MjEi |ψ〉 = (−1)mjEiMj |ψ〉 = (−1)mjEi |ψ〉 .

Let Ei ∼ τa. Then the measurements revealm = STPa. Applying τb to Ei |ψ〉,
where b ∈ ES and STPb = m, yields |ψ〉 up to a phase factor, so the error is
corrected. Indeed, since a ∈ ES by assumption, and STP (a+b) = m+m = 0, it
must hold that a+b ∈ C, or equivalently τbτa ∼M for some M ∈ S. Therefore,
τbEi |ψ〉 ∼ |ψ〉. �

When Ei is not a Pauli operation, by corollary 2.5, we can always expand
it as a weighted sum of Pauli operations:

Ei =
∑

a

ωaτa, where ωa ∈ C. (2.37)

Corollary 2.31 All errors Ei, expanded as in (2.37), on |ψ〉 ∈ HS , can be
corrected if all a in the expansion are in ES .

Proof: Since the measurements project onto the eigenspace corresponding to
the syndrome m, all τa |ψ〉 with a different syndrome are projected onto zero.
Therefore, the state after the measurements is expanded as (2.37), where all
a ∈ ES and STPa = m. Again, we apply τb, where b ∈ ES and STPb = m,
and we get: τbEi |ψ〉 =

∑

a
ωaτbτa |ψ〉 =

∑

a
ωae

iϕa |ψ〉 ∼ |ψ〉. �
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Analogously to classical codes, we define the distance of a stabilizer code
HS to be the minimal weight Pauli operation τa for which a ∈ N\C. From the
above, it is clear that all Pauli errors of weight ≤ d−1 can be detected, and all
Pauli errors of weight ≤

⌊

d−1
2

⌋

can be corrected. In general, a quantum error-
correcting code, using n qubits to encode k logical qubits and with distance d,
is referred to as an [[n, k, d]] code.

Remark. An n-qubit stabilizer state is an [[n, 0, d]] stabilizer code. 3

Example. The 5-qubit code is a [[5, 1, 3]] stabilizer code with stabilizer gener-
ated by the Pauli operations:

XZZXI, IXZZX,XIXZZ,ZXIXZ.

The Pauli operations that correspond to a ∈ N\C are, up to phase factors:

IIXYX IIZXZ IIY ZY IXIY Y IXXIZ IXYXI
IZIXX IZXZI IZZIY IY IZZ IY ZY I IY Y IX
XIIXY XIZIX XIY Y I XXIZI XXXXX XXZYZ
XZIIZ XZXY Y XZY ZX XYXII XY ZZY XY Y XZ
ZIIZX ZIXXI ZIY IZ ZXXZY ZXZII ZXY YX
ZZIY I ZZZZZ ZZYXY ZY IIY ZY XY Z ZY ZXX
Y IIY Z Y IXIY Y IZZI Y XIIX YXZXY Y XY ZZ
Y ZXXZ Y ZZYX Y ZY II Y Y IXI Y Y XZX Y Y Y Y Y

This code detects 2 errors and corrects 1 error. 3

2.7 Conclusion

In this chapter, we have considered the stabilizer formalism, and the way it
is efficiently described in terms of binary linear algebra. We have defined the
elementary concepts of Pauli and Clifford operations and stabilizer states. A
separate section was devoted to a number of particular properties that are
relevant in the domain of entanglement distillation protocols. In the following
chapters, we will mainly rely upon this part of this chapter. Finally, we briefly
touched on the theory of stabilizer codes, a major application of the stabilizer
formalism.



Chapter 3

Bipartite entanglement
distillation

3.1 Introduction

In this chapter, we describe protocols for distilling bipartite entanglement in the
binary picture. We discern two major families of protocols. On the one hand,
there are the asymptotic protocols, that involve an infinite number of qubits
pairs and output an infinite number of pure Bell state pairs. Their performance
is expressed by the asymptotic yield, which is the proportion of distilled Bell
pairs to the number of input qubit pairs. The best known of this family is
the hashing protocol, which is equivalent to the breeding protocol [13, 14]. On
the other hand, there are the recurrence protocol and variants thereof, which
we call finite protocols, that involve only a finite number of qubit pairs [14,
25, 27, 63, 64, 65]. These protocols are mostly used in an iterative procedure
for gradually increasing the available entanglement and are usually followed by
the hashing protocol, since the asymptotic yield of iteratively applying finite
protocols can be shown to be zero.

Although the operational part of both finite and asymptotic protocols have
the same description in the binary picture, they turn out to be quite different
when it comes to interpretation. Firstly, the action of asymptotic protocols
is entirely described in terms of the information-theoretical concept typical
set, whereas finite protocols result in a change of the probabilities defining the
mixed state. Secondly, the hashing protocol as it is leaves no room for incor-
porating adaptiveness, causing it to perform rather poorly on noisy states. An
iteration of finite protocols is intrinsically adaptive, as intermediate outcomes
influence future actions, albeit that for most procedures, the adaptiveness is
restricted to merely discarding the result for certain outcomes. The protocols
of [2] take a step further, but despite violating all kinds of one-way commu-
nication quantum error correction bounds, they still have an asymptotic yield

43
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not exceeding that of hashing.

Our goal is to find ways of introducing the benefits of finite protocols into
the hashing protocol. A first successful attempt in that direction was made in
[90]. Yet, the strategy that is used there is rather ad hoc, in the sense that
suggested generalizations consist of exhaustive searches over a rather unclear
decision space. By recognizing the underlying principles that are at the basis
of the improvements, we were able to create protocols that, by exploiting these
ideas, outperform all existing schemes significantly [53].

This chapter is organized as follows. In section 3.2, we give a few basic char-
acterizations of bipartite entanglement, particularly those that are relevant in
the context of distillation. We briefly explain the concepts entanglement versus
separability, the pure state entanglement measure entropy of entanglement, the
mixed state entanglement measures entanglement of formation and entangle-
ment of distillation, and the process of teleportation. We also argue why we
only consider distillation of states that have a diagonal density matrix in the
Bell state basis. This section is rather concise, as there are numerous excellent
standard texts on entanglement, of which we only cite [50, 71, 87], but this is
far from an exhaustive list.

In section 3.3, we recapitulate the contents of section 2.5 on techniques of
distillation in the stabilizer formalism, this time applied to the particular case
of Bell states. Firstly, we give two main theorems describing the actions of the
protocols and illustrate them with the recurrence protocol. Secondly, we show
that two different interpretations of the protocols are, in fact, equivalent [51].
This equivalence allows us to combine the advantages of both approaches, which
will prove useful in the following sections. Thirdly, we elaborate on two ways of
extracting information by measurements on the initial state. These two meth-
ods turn out to be equivalent for measurements involving an infinite number of
qubit pairs, which is the reason why hashing and breeding are equivalent. Yet,
this no longer holds for measurements on a finite number of qubit pairs, which
led to the recognition of the major principle giving rise to the improvements of
[53, 90].

In section 3.4, we briefly explain the hashing/breeding protocol and the
asymptotic equipartition property on which it is based. Then, we are ready
to explain in detail the key principles of our adaptive variants of breeding in
section 3.5. This section is the main part of this chapter. Most of it was
the content of [53]. Although the best variant that we can come up with in
that section is fit for distilling even very noisy Bell-diagonal states, in the
neighborhood of separable states, we argue that it is, in fact, equivalent to a
number of recurrence iterations, producing states that are less noisy, followed
by this variant. Therefore, it is useful to analyze finite protocols for very noisy
entangled states, in the limit approaching separable states, which is done in
the final section 3.6.
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3.2 Basic characterizations of bipartite entan-
glement

Usually, entanglement is defined as the negation of separability. In the bipartite
case, a state ρAB is said to be separable with respect to parties A and B if it
can be written in the form [93]:

ρAB =
∑

i

pi ρ
(i)
A ⊗ ρ

(i)
B , (3.1)

where pi is a probability distribution and all ρ
(i)
A , ρ

(i)
B are density matrices for

the systems A,B respectively. All correlations between measurement outcomes
on the A-side and the B-side of (3.1) can be explained in a local hidden variable
model. From the positivity of density matrices, the necessary positive partial
transpose (PPT) condition for separability immediately follows [70]:

ρAB is a separable state ⇒ ρTA

AB > 0,

where the LHS of the inequality is the partial transpose of ρAB with respect to
subsystem A. This condition is not sufficient for separability,1 but it is sufficient
for non-distillability, giving rise to the concept of bound entanglement, which
cannot be distilled [49].

The entanglement of a pure state |ψ〉 is quantified by its entropy of entan-
glement [10], defined as:

E(|ψ〉) = S(ρA) = S(ρB), (3.2)

where S(ρ) = −Tr {ρ log2 ρ} is the Von Neumann entropy and ρA = TrB{|ψ〉 〈ψ|}
the reduced density matrix of subsystem A, obtained by taking the partial trace
with respect to subsystem B (vice versa for ρB). Without any reference to sub-
system B, the state of subsystem A is given by ρA. As the Von Neumann en-
tropy is a measure for mixedness, (3.2) quantitatively characterizes pure state
entanglement as the degree of coherence of two entangled quantum systems,
i.e. the extent in which their states cannot be accurately described separately.
The entropy of entanglement cannot increase under the action of LOCC, and
it is invariant under local unitary operations. It is zero for a separable state
and one for Bell states (ebits). An asymptotic number κ of copies of a pure
state with entanglement equal to E can be transformed reversibly in the limit
into κE Bell states (with some separable ancilla) by local operations, a process
known as entanglement concentration [10].

For mixed states, the distinction between various levels of entanglement be-
comes less clear, let alone its quantification. Considering transformations of
states by local operations and classical communication, the definition of two
important entanglement measures arises, which we introduced in chapter 1:

1Although it is sufficient for two-qubit states.
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the entanglement of formation EF and the entanglement of distillation ED.
Both measures are defined in terms of LOCC equivalence to Bell states. This
is natural, because Bell states are maximally-entangled and therefore their en-
tanglement has been given the role of standard unit of entanglement. But their
main importance lies in the fact that if one is able to establish qubit pairs in
the Bell state between remote parties, any non-local state can be prepared, or
equally, any non-local operation can be carried out. Indeed, by the process of
teleportation [12], using only local operations and classical communication, any
single-qubit state (possibly part of some larger state) can be reliably transmit-
ted to a remote party if both parties already shared a Bell state pair. This also
emphasizes the importance of Bell state distillation: arbitrary qubit states can
be perfectly communicated by means of a noisy quantum channel and (fault-
less) classical communication by distributing noisy Bell states via the channel
firstly, distilling them into perfect ebits and using them for teleporting the
states under consideration.

In this thesis, we focus on two-qubit states that are diagonal in the Bell
state basis:

ρ = p00 |B00〉 〈B00|+ p01 |B01〉 〈B01|+ p10 |B10〉 〈B10|+ p11 |B11〉 〈B11| , (3.3)

for the following reasons. Firstly, as explained in the previous sections, a
Bell-diagonal state can be interpreted as a classical ensemble of the four Bell
states. Since Bell states are stabilizer states, and the protocols we consider use
Clifford operations and Pauli measurements only, we can describe the protocols
entirely in the transparent binary picture. Secondly, we showed in chapter 2
that, by performing depolarization, any density matrix can be reduced to a
state that is diagonal in the Bell state basis, while maintaining the values of
its diagonal entries. Yet, depolarization in a sense throws away information on
the initial state, so one could expect that this is accompanied with some loss
of entanglement as well. In [88], an optimal two-qubit LOCC filtering method
is devised, which, if successful, returns a state, which is Bell-diagonal, with the
highest entanglement of formation achievable in this way,2 thereby providing
an alternative for depolarization and an extra argument in favor of exclusively
considering Bell-diagonal states.

In our search for good distillation protocols, it is useful to have some clue
on their performance by comparing the yields with bounds for ED for Bell-
diagonal states. From the fundamental property that entanglement cannot
increase on average under LOCC, we have that ED is upper bounded by EF .
For a Bell-diagonal state ρ, EF is a one-to-one function (plotted in figure 3.1)
of the fully entangled fraction or fidelity F , which is the largest overlap 〈e| ρ |e〉
with a maximally-entangled two-qubit state |e〉, i.e. a state that is local unitary
equivalent to the Bell states [14]. For Bell-diagonal states, F is simply the
largest diagonal entry. We observe in figure 3.1 that all Bell-diagonal states

2However, this method might not be optimal when the success probability is taken into
account [87].
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Figure 3.1: The entanglement of formation EF of a Bell-diagonal state and
bounds for ED of a Werner state, as a function of the fidelity F . The lower
bound H is the yield of the hashing protocol and the upper bound D2 is the en-
tanglement of distillation for rank two Bell-diagonal states and the asymptotic
relative entropy of entanglement.

with F ≤ 1
2 are separable. States for which F > 1

2 are known to be entangled
and distillable [48].

Interesting particular cases of Bell-diagonal states are on the one hand rank
two Bell-diagonal states, with two zeros on the diagonal of ρ, and, on the other
hand, Werner states or isotropic states, with F = p00 and p01 = p10 = p11 =
1−F

3 . They are the result of sending one qubit of a perfect ebit through a bit flip,
phase flip or bit-phase flip channel and a depolarizing channel [68] respectively.
In a sense, Werner states can be considered most distant to rank two states.3 In
[5, 74], the following lower and upper bound for the entanglement of distillation
of Werner states, with fidelity F , were calculated:

1 + F log2 F + (1− F ) log2

1− F
3
≤ ED ≤ 1 + F log2 F + (1− F ) log2(1 − F ).

Both bounds are also plotted in figure 3.1. Note that the upper bound is
already significantly below EF , which is an expression of the irreversible nature

3In fact, within the set of Bell-diagonal states, the minimal trace distance [68] or the
minimal quantum Chernoff bound [6] to any rank two state, is maximal for Werner states.
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of entanglement manipulation of mixed states. We will show in section 3.4 that
the LHS is the yield of the hashing protocol, and the RHS is the hashing yield
for the rank two Bell-diagonal state with the same fidelity, which is proven to be
its entanglement of distillation [73]. It is also the asymptotic relative entropy
of entanglement for Werner states [5]. Since the problem of distillation is
completely solved for rank two Bell-diagonal states, we will primarily compare
distillation protocols on their performance for Werner states.

3.3 Protocols for Bell-diagonal states

The protocol starts with multiple copies of a Bell-diagonal state (3.3) shared
by two parties, Alice and Bob. Recalling the content of section 2.5.1, we regard
the overall state of the κ copies as a pure tensor product of Bell states, binary
identified with SB ⊗ Iκ and b̃ according to (2.31), where b̃ is a random variable
with probability distribution pb̃. Both Alice and Bob locally apply a Clifford

operation in order that the information contained in b̃ is permuted. How this
is accomplished is the content of the following theorem [25]:

Theorem 3.1 When Alice and Bob respectively perform the same Clifford op-
eration, represented by a symplectic C ∈ Z

2κ×2κ
2 , then b̃ is transformed as:

b̃→ Cb̃.

As C is invertible, this transformation is a permutation of Z2κ
2 .

Proof: Let

C =

[

A1 B1

C1 D1

]

,

then, with (2.22) and (2.21), SB ⊗ Iκ is transformed into









A1 B1

A1 B1

C1 D1

C1 D1

















0 I
0 I
I 0
I 0









=









B1 A1

B1 A1

D1 C1

D1 C1









.

As C satisfies (2.23), one can verify that multiplication on the right by CT

yields SB ⊗ Iκ again. By (2.20), it follows that b̃ is transformed into Cb̃. �

Next, by local measurements, Alice and Bob extract information on b̃: they
both measure σz on the last mκ copies, yielding u = CT

(4)b̃ according to (2.30),
where we define

C =











CT
(1)

CT
(2)

CT
(3)

CT
(4)











, where

{

C(1), C(3) ∈ Z
2κ×(1−m)κ
2

C(2), C(4) ∈ Z
2κ×mκ
2

, and C̄ =

[

CT
(1)

CT
(3)

]

.
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Afterwards, the measured copies are discarded. The state of the remaining
copies is given by the following theorem [25, 51]:

Theorem 3.2 Defining C = col
(

PC(4)

)

and N = (PC)⊥, then the remain-
ing copies after the protocol are an ensemble of states |Bw〉, each with new
probability

p′w =
p(C + v)

p(N + v)
,

where v satisfies C̄v = w and CT
(4)v = u.

Proof: Firstly, the numerator equals the total probability of all elements b̃ that
are mapped to w and correspond to the observed measurement results: CT

(4)b̃ =

u. Indeed, because CT is symplectic [from CTP (CPCT ) = (CTPC)PCT =
PPCT = CT follows CPCT = P ] and full rank, C is the space of all t satisfying
C̄t = 0 and CT

(4)t = 0.
Secondly, the denominator is a normalizing factor equal to the total prob-

ability of all elements that correspond to the observed measurement results.
Similarly as for the numerator, N is the space of all t satisfying CT

(4)t = 0. The
condition on v selects the right cosets of C and N . �

The choice of notation for the spaces C andN will become clear in section 3.3.2.

3.3.1 Recurrence

We illustrate this procedure with the simplest bipartite distillation protocol,
that takes two copies of a Bell-diagonal qubit pair as an input and, if successful,
outputs one Bell-diagonal pair with more entanglement. The recurrence pro-
tocol was originally presented in [13], and further improved in [27, 65], where
it was also named the ‘IBM protocol’ or the ‘Oxford protocol’.

We choose one qubit pair as source, and the other one as target. Both
parties apply a CNOT on their qubits from source to target. Afterwards, both
measure σz on the target qubit. The protocol has succeeded when the outcomes
are the same (CT

(4)b̃ = 0), and failed otherwise. In the latter case, the remaining

qubit pair is separable and can be discarded. By theorem 3.1, b̃ is transformed
into Cb̃, where C is given by (2.11). From theorem 3.2, we can calculate the
probability of success

pS = p(N )

= p0000 + p0011 + p0100 + p0111 + p1000 + p1011 + p1100 + p1111

= p2
00 + p2

01 + p00p10 + p01p11 + p10p00 + p11p01 + p2
10 + p2

11

= (p00 + p10)
2 + (p01 + p11)

2,

and the resulting probabilities of the remaining state

p′00 = (p2
00 + p2

10)/pS,
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Figure 3.2: The success probability pS and resulting fidelity F ′ as a function
of the initial fidelity F for the recurrence protocol applied to two copies of a
Werner state. Note that for F > 1

2 , we have F ′ > F . For F ≤ 1
2 , the initial

state is separable, resulting in F ′ ≤ 1
2 as well.

p′01 = (p2
01 + p2

11)/pS,

p′10 = 2p00p10/pS,

p′11 = 2p01p11/pS.

In the event of failure, it can be verified that the resulting probabilities satisfy
p′′00 = p′′01 and p′′10 = p′′11. Thus, the remaining state has fidelity ≤ 1

2 and is
therefore separable.

The success probability pS and resulting fidelity F ′ are plotted in figure 3.2
for an entangled Werner state with fidelity F . In the original scheme of [13], one
considers multiple iterations of recurrence on successful pairs, with a random
bilateral rotation or ‘twirl ’ between each two iterations. This operation, similar
to depolarization, next to setting all off-diagonal entries in the density matrix
(with respect to the Bell state basis) to zero, leaves the fidelity invariant but
equalizes the other diagonal entries (maintaining their sum). From figure 3.2,
it is clear that this iterative procedure results in always increasing fidelity, in
the limit going to the pure Bell state |B00〉.

However, like depolarization, twirling in a sense throws away information,
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and therefore diminishes the available entanglement. Yet, doing nothing at
all causes the procedure to converge to a separable state. In [27], the twirl is
replaced by a fixed reordering of the diagonal entries, which causes no loss of
information and significantly improves the F → F ′ update. In [65], further
improvement is achieved by an adaptive reordering of the diagonal entries.
Note that, by theorem 3.1, such reordering can always be done by applying the
same one-qubit Clifford operation on both qubits.

When operations of the protocol are noisy, it is interesting to consider also
assembling non-identical pairs in the protocol, but we do not go deeper into
that issue. For a detailed overview of such investigations, we refer to [30].

Remark. Note that the overall procedure approaches zero yield in the limit
for high output fidelity, as in each step on average only pS/2 pairs are kept,
and an infinite number of iterations is needed to deliver copies in a state that
approaches a pure Bell state. 3

3.3.2 Permutation-based versus code-based approach

We have introduced distillation protocols as starting from multiple copies of
a Bell-diagonal state, performing local Clifford operations that, according to
theorem 3.1, permute all possible b̃ ∈ Z2κ

2 , and local measurements. This we
call the permutation-based approach [25]. However, the state of these copies
can equivalently be interpreted as being initially pure Bell states |B00〉 pre-
pared by Alice and of which the second qubits are transmitted to Bob via
a quantum channel. Leaving the specific physical implementation aside, this
quantum channel is generally described by an evolution (2.36), possibly intro-
ducing errors. For one copy, a single-qubit Pauli error (on the second qubit
only) transforms |B00〉 as follows:

(I ⊗X) |B00〉 = |B01〉 ,
(I ⊗ Y ) |B00〉 = |B11〉 ,
(I ⊗ Z) |B00〉 = |B10〉 ,

which is trivial from (2.1) and (2.27). This gives rise to a state that is diagonal
in the Bell state basis.

Given a stabilizer code represented by S (f) and b. Referring back to sec-
tion 2.6, the qubits sent to Bob have undergone some error Ei. By performing
the same stabilizer code measurements Mj = ifj (−1)bjτSj

on Alice’s side and
on Bob’s side, and performing the error correction on Bob’s qubits correspond-
ing to the ‘syndrome’ m = mA +mB + f , one is able to correct all errors Ei

that satisfy theorem 2.30. Indeed, following (2.29), (2.31) and (2.16), the state
|B00〉⊗κ = |B0〉 is stabilized by

τa ⊗ τa, ∀a ∈ Z
2κ
2 .

Now Mj ⊗Mj (anti)commutes with I ⊗ Ei if and only if Mj (anti)commutes
with Ei. After the error correction step, both Alice and Bob apply a decoding
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Figure 3.3: Information on b̃ is extracted by determination of the inner product
rT b̃. This is the same as determining the parity (binary sum) of the bits of b̃
on positions i where ri = 1 (shaded in this example).

operation for the stabilizer code. Note that, with theorem 3.1, encoding before
transmission leaves the initial state |B0〉 invariant and can therefore be omitted.
We call this the code-based approach [2, 64].

We show that both approaches are equivalent [51]. The local Pauli mea-
surements Mj for determining the syndrome can be realized as follows. Firstly,
one applies a decoding operation for the stabilizer code, which transforms the
stabilizer code basis states to the computational basis states. By proposi-
tion 2.29, the decoding operation is a Clifford operation. Interpreting this
action in terms of the stabilizer [41], the stabilizer of the code is transformed
to the stabilizer of the computational basis states, which is generated by σz

on qubits (1−m)κ, . . . , κ. Therefore, measuring Mj is measuring σz after the
decoding operation on qubits (1−m)κ, . . . , κ. The encoding operation, needed
to transform computational basis states back to stabilizer code basis states, is
canceled by the final decoding operation in the code-based approach.

Remark. One can verify that the spaces C and N defined in theorem 3.2 of
the permutation-based approach are the same as the spaces C and N defined
by the stabilizer code (cf. section 2.6) of the code-based approach [51]. 3

Example. The stabilizer of the code corresponding to recurrence is generated
by ZZ. 3

3.3.3 Two kinds of parity checks

Information on the initial overall stabilizer state
∣

∣Bb̃

〉

is extracted under the

form of an inner product rT b̃, where r is an arbitrary nonzero 2κ-bit vector.
This is illustrated in figure 3.3. We call this action a parity check, and its value
rT b̃ the parity. This can be done in two ways:

1) As explained above, local Clifford operations transform
∣

∣Bb̃

〉

into
∣

∣BCb̃

〉

.

Measuring σz on both qubits of one of the pairs yields rT b̃, where rT

is the corresponding row of the lower half of C. Afterwards, the state
of the remaining pairs is

∣

∣BC̄b̃

〉

, where C̄ is C without this row and the
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corresponding row in the upper half. As this procedure is equivalent to
performing the same Pauli measurement on both sides (cf. the previous
section), we call this a bilateral Pauli measurement (BPM).

2) Let b̃ =

[

b̃1
b̃2

]

and r =

[

r1
r2

]

. Appending an ebit (out of some pool

of predistilled qubit pairs) in the state |B00〉 yields the state
∣

∣Bb̃10b̃20

〉

.
Applying on both sides the Clifford operation represented by
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leaves
∣

∣Bb̃

〉

unchanged but transforms the ebit into |B0,rT b̃〉. Measuring

σz on both sides of the ebit then yields rT b̃. We call this an appended
ebit measurement (AEM).

It is clear that after an AEM, any other parity check yielding sT b̃ can be
done, as the AEM only affects the ebit. However, this does not hold for a
BPM. After a BPM, the only information on

∣

∣Bb̃

〉

left for us to extract is the

information we can extract from the resulting state
∣

∣BC̄b̃

〉

. Clearly, we can

perform parity checks yielding tT C̄b̃, ∀t ∈ Z
2(κ−1)
2 . This is equivalent to the

possibility of determining sT b̃ for all s ∈ Z2κ
2 that satisfy sTPr = 0. Indeed, as

C is symplectic, all such s are in the column space of
[

C̄T r
]

⇒ s = C̄T t+αr,

for some t ∈ Z
2(κ−1)
2 and α ∈ Z2. Since rT b̃ was already determined, we know

sT b̃ = tT C̄b̃ + αrT b̃ by determining tT C̄b̃ from
∣

∣BC̄b̃

〉

. In general, every time

we determine rT b̃ of
∣

∣Bb̃

〉

by a BPM, afterwards we have only access to sT b̃
where sTPr = 0, whatever method we use. This should not come as a surprise,
because when sTPr = 1, the corresponding Pauli observables anticommute, so
their values cannot both be determined.

In practice, after a BPM, we should continue working with the transformed
state represented by C̄b̃. But this requires knowledge of the entire matrix C,
while the parity check is specified only by r. As explained in the previous
paragraph, we can describe all future actions in terms of b̃: we only need
to know which BPM have been done. This yields a much more transparent
description of the protocol.
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3.4 Asymptotic protocols

3.4.1 Asymptotic equipartition property

Let (X1, . . . , Xκ) be a sequence of independent identically-distributed discrete
random variables, each having event set Ω with probability distribution

p : Ω→ [0, 1] : x→ p(x).

In the following, we assume that κ is a large number, in the limit approaching
infinity, and that ǫ is a small number, in the limit approaching zero. The typical

set A(κ)
ǫ with respect to p(x) is defined as the set of sequences (x1, . . . , xκ) ∈ Ωκ

with the following property:

∣

∣

∣

∣

− log2 p(x1, . . . , xκ)

κ
−H(X)

∣

∣

∣

∣

≤ ǫ, (3.4)

where
H(X) = −E[log2 p(X)] = −

∑

x∈Ω

p(x) log2 p(x)

is the entropy of the random variable X .

Proposition 3.3 p(A(κ)
ǫ ) ≥ 1− δ, where δ = O(κ−1ǫ−2).

Proof: The random variable −
κ
∑

i=1

log2 p(Xi)/κ has mean H(X) and variance

Var[− log2 p(X)]/κ. By Chebyshev’s inequality [91], we then have

P (

∣

∣

∣

∣

− log2 p(X1, . . . , Xκ)

κ
−H(X)

∣

∣

∣

∣

≥ ǫ) ≤ Var[− log2 p(X)]

κǫ2
.

It follows that p(A(κ)
ǫ ) ≥ 1− δ, where δ = O(κ−1ǫ−2). �

This proposition states that, when considering a vast number of independent
identically-distributed discrete random variables, the joint random variable will
almost certainly have a typical probability. This property is referred to as the
asymptotic equipartition property, which is often stated informally as: almost
all events are almost equally surprising.

We can calculate the cardinality of A(κ)
ǫ dividing p(A(κ)

ǫ ) by p(x1, . . . , xκ),
which, by (3.4), is close to 2−κH(X):

Corollary 3.4 |A(κ)
ǫ | = 2κ[H(X)+O(ǫ)].

3.4.2 Hashing and breeding

The hashing protocol takes κ copies of a Bell-diagonal state (3.3) as an input.
As explained in chapter 2, we interpret the state of the copies as an unknown
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pure tensor product of κ Bell states, |Bũ〉, where ũ ∈ Z2κ
2 . The goal now is

to determine ũ. According to proposition 3.3, ũ is an element of A(κ)
ǫ with

probability 1− p1, where p1 = O(κ−1ǫ−2), for κ→∞ and for ǫ→ 0.
Then, the protocol consists of BPM unveiling rT ũ, where the r defining

each BPM is randomly chosen from Z2κ
2 with uniform probability. After each

BPM, we rule out every b̃ ∈ A(κ)
ǫ that is not compatible with the outcome:

rT b̃ 6= rT ũ⇒ rT ∆b̃ = 1, where ∆b̃ = b̃ + ũ. We calculate an upper bound for
the probability p2 that any b̃ 6= ũ is not eliminated after mκ BPM. Firstly, it
is clear that, for fixed ∆b̃ 6= 0, the linear map Z2κ

2 → Z2 : r→ rT ∆b̃ splits Z2κ
2

in half. Since r is randomly chosen with uniform probability, the probability of
rT ∆b̃ = 1 equals 1

2 . After mκ BPM, the probability of not being eliminated is

2−mκ. Consequently, the probability that any b̃ ∈ A(κ)
ǫ different from ũ is not

eliminated after all BPM, equals p2 ≤ |A(κ)
ǫ |2−mκ = 2κ[S(ρ)−m+O(ǫ)] following

corollary 3.4, where

S(ρ) = −p00 log2 p00 − p01 log2 p01 − p10 log2 p10 − p11 log2 p11

is the Von Neumann entropy of ρ, which is also the entropy associated with
the ensemble of Bell states |Bb〉.

The total failure probability of the protocol is the probability p1 + p2 that

the initial assumption ũ ∈ A(κ)
ǫ is wrong or that not every b̃ 6= ũ is eliminated

after all BPM. If we choose for instance m = S(ρ)+O(
√
ǫ), and ǫ = O(κ−1/4),

it follows that the failure probability p1 + p2 vanishes for κ → ∞. After all
BPM, we are left with mκ measured separable pairs and (1 −m)κ pure ebits.
The yield 1 −m of the protocol approaches 1− S(ρ). We already plotted the
hashing yield for rank two Bell diagonal states (D2) and Werner states (H) as
a function of the fidelity F in figure 3.1 on page 47.

Remark. To be precise, the r, s defining different BPM in the sequence should
satisfy rTPs = 0, as we showed in section 3.3.3. Consequently, subsequent
r cannot be chosen from Z2κ

2 with a uniform probability. However, this does
not corrupt the validity of the given calculation of the elimination probability.
Indeed, after each BPM, we can equivalently define the following BPM on the

resulting C̄b̃ being uniformly chosen from Z
2(κ−1)
2 , and so on, also resulting in

1
2 elimination probability for each BPM.

We have calculated an upper bound for p2. One could wonder whether the
elimination of all b̃ 6= ũ does not, in fact, proceed faster than predicted. Indeed,
a BPM unveils the value of rT ũ, i.e. one bit, and destroys one copy, leaving the
remaining copies identified by C̄ũ, which has two bits less than ũ. So we learn
one bit, but at the same time another is lost and is of no further importance.
Because of that, it is possible that different b̃, b̃′ are both compatible with the
outcome, which means rT b̃ = rT b̃′, and are mapped to the same C̄b̃ = C̄b̃′.
This could cause the number of candidates to drop faster than halving with
each BPM. We will show later that this is not the case for hashing, but we will
actually exploit this phenomenon to improve the hashing protocol. 3
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Figure 3.4: The yield of the combined iterative recurrence and hashing for
Werner states as a function of the fidelity F . We applied 0, 1, 2, . . . recurrence
iterations (with optimal reordering in between [65]) before switching to hashing,
which gives rise to the multiple lines. The overall yield is the maximum of these.
We observe that more recurrence iterations are needed for low initial F .

The breeding protocol works in the same way as the hashing protocol, ex-
cept for using AEM instead of BPM. Although this requires an initial pool of
predistilled ebits, the net output of ebits is the same as for hashing. Similarly
as for hashing, we find that we need to apply approximately κS(ρ) AEM, at the
cost of as many ebits. After these, the initial κ pairs are transformed to pure
ebits, since no measurements were performed on them. The yield is therefore
equal to

#(output ebits)−#(input ebits)

#(input pairs)
=
κ− κS(ρ)

κ
= 1− S(ρ).

As one can see in figure 3.1, the hashing yield is zero for Werner states
with fidelity F < 0.8107, although ED is nonzero as soon as F > 1

2 . Since
the hashing protocol performs so poorly for noisy states, a common solution
is to have hashing preceded by a number of recurrence steps. Using the opti-
mal reordering strategy of [65], and doing another recurrence iteration if this
increases the yield, we arrive at the yield plotted in figure 3.4.

Remark. The hashing/breeding protocol can be carried out with the use of
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only one-way classical communication. Indeed, Alice and Bob need to agree on
the random parity checks they apply, and their outcomes should be compared
in order to know ũ at the end of the protocol. But since intermediate outcomes
do not alter future actions, it suffices that Alice solely decides which random
parity checks (of which the number is fixed) will be applied and transmits this
information together with the outcomes she observed to Bob. By applying
the same operations as Alice, and comparing his results with Alice’s, he can
determine ũ. Bob then transforms the state |Bũ〉 to |B0〉 by applying the
correct Pauli operation (cf. section 2.5.2). 3

3.5 Adaptive asymptotic protocols

The hashing/breeding protocol has a nice information-theoretical interpreta-
tion: for every measurement, we gain one bit of information, which is the
maximal amount we can extract since the measurement outcomes either cor-
relate or anticorrelate.4 This information gain causes an equal decrease of one
bit of the entropy of the state. When this entropy is reduced to zero, the state
has become a pure tensor product of Bell states. In the following, we choose to
start from breeding instead of hashing, for convenience. All derivations equally
hold if we start from hashing.

In section 3.5.1, we show that breeding can be divided into successive stages
of partial information extraction, yielding an equivalent protocol. In a first ap-
proach, at every stage we replace measurements on ebits by measurements on
a finite number of copies, whenever correlating and anticorrelating outcomes
are equiprobable. It can be verified that the entropy of the global state is
then reduced by more than one bit. This is because whenever an observ-
able is measured, the state is projected onto the eigenspace of the observable,
thereby eliminating the entropy associated with observables not commuting
with the one measured. This is the content of section 3.5.2. We will explain
in sections 3.5.3 and 3.5.4 how our protocol is organized as to have as many
replacements as possible. This is illustrated with the explicit calculation of the
yield for Werner states, in section 3.5.5. Then, two variants of this first scheme
are discussed, in sections 3.5.6 and 3.5.7. The results of this last section were
not included in the original paper [53].

3.5.1 Partial breeding

We show how the breeding protocol can be divided into successive stages of par-
tial information extraction. Partial information on ũ is extracted by restricting

4In fact, there are four possible outcomes, i.e. two on each side, but only by comparing

these, can we obtain information on the state. This is because we are restricted to local

measurements, whereas the state itself is non-local.
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to parity checks rT ũ, where r is of the form

r =

[

r′ ⊗ s(1)
r′ ⊗ s(2)

]

, where s =

[

s(1)
s(2)

]

∈ Z
2λ
2

is fixed (with finite λ) and random r′ ∈ Z
2 κ

λ

2 take over the role of r. We will call
this technique partial breeding. Note that it is completely specified by fixing
s. Therefore we will refer to it by PB s. We illustrate how partial breeding
works with an example. Let s = 1100, and divide ũ into vectors of 2λ = 4 bits
(i.e. λ = 2 pairs). Every such 2λ-bit vector g is either an element of 0(s), if
sT g = 0, or of 1(s), if sT g = 1. For this example, we have

0(s) = {0000, 0001, 0010, 0011, 1100, 1101, 1110, 1111},
1(s) = {0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011}.

We have for instance

ũ = 10 11 0101 00 10 11 10 10 1011 01 01 00

⇒ g : 1010 1110 0110 0111 0001 1001 1100

∈ 1(s) 0(s) 1(s) 1(s) 0(s) 1(s) 0(s) .

In the same way as for breeding, a typical set can be associated with the

distribution of 0(s) and 1(s). This set has ≈ 2
κ
λ

h(0(s),1(s)) elements, where

h(p, 1− p) = −p log2 p− (1 − p) log2(1− p) (3.5)

is the binary entropy function. Therefore, we need ≈ κ
λh(0

(s), 1(s)) AEM to
determine sT g for all 2λ-bit vectors g constituting ũ, with probability close to
1. For this example, we have

p0(s) = p0000 + p0001 + . . .+ p1111,

p1(s) = p0100 + p0101 + . . .+ p1011.

We have considered partial information extraction on a sequence of inde-
pendent identically-distributed random variables over the set {00, 01, 10, 11}.
But the same idea can also be applied to the sets 0(s) and 1(s). Once we have
carried out the previous PB step, we know for every 4-bit vector g (determin-
ing 2 pairs) whether it is in 0(s) or in 1(s). If we bring all g ∈ 0(s) together,
again we have i.i.d. random variables over 0(s), and again we could perform
partial breeding, this time, for instance, PB t0 = 0011. Combining this with,
for instance, PB t1 = 1000 for 1(s), we get to know for every g in which of the
following sets it is:

S1 = 0(s) ∩ 0(t0) = {0000, 0011, 1100, 1111},
S2 = 0(s) ∩ 1(t0) = {0001, 0010, 1101, 1110},
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S3 = 1(s) ∩ 0(t1) = {0100, 0101, 0110, 0111},
S4 = 1(s) ∩ 1(t1) = {1000, 1001, 1010, 1011}.

It can be verified that the total number of AEM needed in the first and second
PB step of this example is equal to

−κ
2

(pS1 log2 pS1 + pS2 log2 pS2 + pS3 log2 pS3 + pS4 log2 pS4) ,

which is exactly the entropy that is associated with the partition into S1, S2,
S3, S4 times the number of 4-bit vectors g in ũ. This is a consequence of the
fact that

H(C) = (−pA log2 pA − pB log2 pB) + pAH(A) + pBH(B),

where {A,B} is a partition of the set C [22]. So no matter how a certain
situation is attained, the number of AEM (= the cost in ebits) always equals
the total information gain. We can continue performing PB steps in this way
until all sets considered are singletons. We then have determined ũ completely,
at the cost of κS(ρ) ebits.

Of course, there is no point in dividing the breeding protocol in successive
stages of partial breeding. In [90], 0(s) states are further purified by breeding,
but the 1(s) states are treated differently: on the first pair of every 1(s) state, a
BPM 10 is performed, yielding the value of parity check 10 of this pair. As the
pair is measured, it is lost, but the measurement also provides information on
the second pair. This one is in {10, 11} if the parity was 0 and in {00, 01} if the
parity was 1. So in both cases, we end up with a rank two Bell-diagonal state,
for which it has been proved that hashing/breeding is optimal [73]. The yield
of this protocol was calculated in [90], and turns out to be larger than that
of breeding. But the reason why this should necessarily be the case, remained
unclear. We shed light on this issue in the next section.

3.5.2 Entropy reduction

The reason why the protocol of [90] outperforms the breeding protocol, lies
in the difference between an AEM and a BPM. If a parity check is performed
on a finite number λ of pairs, represented by an ensemble of vectors g ∈ Z

2λ
2 ,

the resulting state will have lower entropy by a BPM than by an AEM. Next
to extracting information under the form of the parity, a BPM results in the
mapping of different vectors to the same new vector, resulting in an extra
entropy reduction.

To see this, we recall from section 3.3.3 that a BPM for the parity check sT g
results in a new state (with one pair less) represented by C̄g, where the last
row of C is sT . By the measurement, we learn sT g, but we also lose tT g, where
tT is the last row of the upper half of C. This loss causes all g with the same
result C̄g and parity sT g to be mapped to the same vector C̄g. Note that the
parities should be equal as well, otherwise one of the two is ruled out. From the
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symplecticity of C, it follows that g and g + Ps are mapped to the same C̄g.
Indeed, C̄Ps = 0 and sTPs = 0. Consequently, the new state is represented
by the ensemble of vectors C̄g, with probabilities pg + pg+Ps. This addition of
probabilities results in the extra entropy reduction. We see a similarity with
degenerate quantum codes [39], where different errors yield the same syndrome
and have the same effect on the encoded state. It is a feature of quantum codes
with no classical equivalent.

Let us illustrate this with an example. We have two pairs represented by an
ensemble of 4-bit vectors and we perform a BPM 1111. We are left with only
one pair represented by an ensemble of 2-bit vectors. The probabilities are

p0000+p1111

p
0(s)

, p0011+p1100

p
0(s)

, p0101+p1010

p
0(s)

, p0110+p1001

p
0(s)

,

if the parity is 0, and

p0001+p1110

p
1(s)

, p0010+p1101

p
1(s)

, p0100+p1011

p
1(s)

, p0111+p1000

p
1(s)

,

if the parity is 1. Note that we do not identify these probabilities with the
two-bit vectors C̄g: all future actions are described entirely in terms of the
original vectors g, as explained in section 3.3.3. If we had used an AEM, then
we would still have two pairs, but represented only by 8 vectors instead of 16,
with probabilities

p0000

p
0(s)

, p1111

p
0(s)

, p0011

p
0(s)

, p1100

p
0(s)

, p0101

p
0(s)

, p1010

p
0(s)

, p0110

p
0(s)

, p1001

p
0(s)

,

if the parity is 0, and

p0001

p
1(s)

, p1110

p
1(s)

, p0010

p
1(s)

, p1101

p
1(s)

, p0100

p
1(s)

, p1011

p
1(s)

, p0111

p
1(s)

, p1000

p
1(s)

,

if the parity is 1. The average difference in entropy is equal to

[−p0000 log2 p0000 − p1111 log2 p1111 − . . .− p0111 log2 p0111 − p1000 log2 p1000]
+ [(p0000 + p1111) log2(p0000 + p1111) + . . .+ (p0111 + p1000) log2(p0111 + p1000)]

and is always positive. Indeed, for all x, y ≥ 0, we have:

[−x log2 x− y log2 y] + [(x + y) log2(x+ y)] = (x+ y)h(
x

x+ y
,

y

x+ y
), (3.6)

where h(p, 1− p) was defined in (3.5), and plotted in figure 3.5.
This plot shows that the entropy reduction, given by the RHS of (3.6), grows

larger in line with the equiprobability of the colliding vectors g and g + Ps,
averaged over all g. If one probability relative to the other becomes small, the
entropy reduction vanishes. That is the reason why the hashing protocol, where
parity checks are BPM instead of AEM, has the same yield as the breeding
protocol:5 again, we use the fact that almost all weight comes from vectors

5This gives an answer to the question posed in the remark on page 55.
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Figure 3.5: The binary entropy function h(p, 1− p).
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b̃ ∈ A(κ)
ǫ . Since the r are uniformly distributed, so are b̃ + Pr. Therefore,

the probabilities ≈ (p00p01p10p11)
κ/4 of b̃ + Pr are vanishing (as κ is large)

compared to the probabilities ≈ 2−κS(ρ) of b̃. A variant of hashing presented
in [79], where some of the BPM are on a finite number of copies resulting in a
nonzero entropy reduction, performs slightly better than hashing.

It is clear that we should focus on BPM on small numbers of copies, because
there lies the benefit of the entropy reduction. However, up until now, we have
only spoken of the information gain, but we also have to take the cost into
account. PB requires AEM, each at the cost of one ebit, whereas a BPM is
at the cost of one of the copies. But as all unmeasured copies will ultimately
be pure Bell states, this will not make any difference. By construction, every
AEM in PB has equiprobable values, and therefore yields one bit of information.
The same does hold for a BPM if r has infinite length and is random. Indeed,
hashing is equivalent to breeding. But if we are to perform small, non-random
parity checks, their values are not necessarily equiprobable and therefore yield
less than one bit of information. If the parities are equiprobable, improvement
is guaranteed. Note that the BPM 10 on the first pair of two 1(s) pairs does have
equiprobable values, which explains the improvement of [90] over breeding. So
in some way, we should try to spot as many finite equiprobable parity checks
as possible and carry them out by BPM.

3.5.3 Decoupling

Learning the parity of a number of qubit pairs by partial breeding or BPM
causes statistical dependence of the pairs involved, which makes the continua-
tion of the protocol very complicated. However, this statistical dependence can
be undone in some cases, which we refer to as decoupling. The idea of decou-
pling is best explained by an example. Suppose by PB 1111, we learn for two
copies of a Bell-diagonal qubit pair their state α(1111). Where the states of the
copies were independent before, this obviously no longer holds afterwards. But
if we then perform PB 11 on all first pairs, yielding the state β(11) of the first of
the two copies under consideration, we now have two independent pairs β(11)

and (α+ β)(11). Indeed, we have learned the parities 1111→ α and 1010→ β,
which is equivalent to knowing 1010→ β and 0101→ α + β, thus 11 for both
pairs. So where the first PB coupled the ensembles of the two pairs, the second
decoupled them again.

The same applies to PB 1111 → α followed by BPM 11 → β on the first
pair. This is equivalent to BPM 11→ β on the first pair and PB 11→ α+β on
the second pair. And it can be verified that BPM 1111→ α followed by BPM
11 → β on the first pair is equivalent to BPM 11 → β on the first pair and
BPM 11→ α+β on the second pair. Indeed, this equivalence is a consequence
of choosing another code basis when using the code-based interpretation. The
same idea was used in the adaptive stabilizer code formalism of [2].

However, no decoupling rule holds for BPM followed by PB. Once we have
carried out a BPM on a number of qubit pairs, we have statistical dependence
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not only by the knowledge of the overall parity, but also by the mapping to-
gether of vectors as explained in section 3.5.2. To highlight this dependence,
we will denote the resulting state of BPM s with parity α by [α(s)]. Although
the knowledge on the parities decouples by PB, the mapping does not. As
an example, let BPM 1111 followed by PB 1010 on two particular pairs have
parities 0 and 1 respectively. The resulting state of the pairs is [1(11)1(11)] and
has probabilities:

p2
01+p2

10

(p01+p10)2 and 2p01p10

(p01+p10)2 .

Therefore, once a BPM is carried out on a number of qubit pairs, we have to
take it into account until it is later decoupled by a BPM on some of the qubit
pairs.

We summarize all scenarios. Let

s =









s(1)
s(2)
s(3)
s(4)









, t1 =

[

s(1)
s(3)

]

, t2 =

[

s(2)
s(4)

]

,

and we perform the parity check t1 on the corresponding part of state α(s).
Then the following update rules apply:

state parity for t1 resulting state

PB 0(s) → 0 : 0(t1)0(t2)

→ 1 : 1(t1)1(t2)

1(s) → 0 : 0(t1)1(t2)

→ 1 : 1(t1)0(t2)

BPM 0(s) → 0 : [0(t1)]0(t2)

→ 1 : [1(t1)]1(t2)

1(s) → 0 : [0(t1)]1(t2)

→ 1 : [1(t1)]0(t2)

(3.7)

If the considered state was connected to others by previous BPM, like in
[x α(s) y], the state transforms as follows:

state parity for t1 resulting state

PB [x 0(s) y] → 0 : [x 0(t1)0(t2) y]

→ 1 : [x 1(t1)1(t2) y]
[x 1(s) y] → 0 : [x 0(t1)1(t2) y]

→ 1 : [x 1(t1)0(t2) y]

BPM [x 0(s) y] → 0 : [0(t1)][x 0(t2) y]

→ 1 : [1(t1)][x 1(t2) y]
[x 1(s) y] → 0 : [0(t1)][x 1(t2) y]

→ 1 : [1(t1)][x 0(t2) y]

(3.8)

Note that decoupling is nothing more than linearity of parity checks. When-
ever we have performed a number of parity checks, these generate a space of
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parity checks. Any generating set of this space is equivalent to the original set
of parity checks. For example, {0101, 1010} is equivalent to {1010, 1111}. We
will use decoupling parity checks because otherwise, the protocol becomes very
complicated and unclear.

3.5.4 Forcing equiprobable parity checks

In section 3.3.3, we showed that once we have performed a BPM, we have to
make sure that all following parity checks commute with it. There is a way in
which this is automatically achieved. All vectors of the form 11 ⊗ x commute
(we could also have taken 01 or 10). Indeed, for all x, y ∈ Zκ

2 , it holds:

([

1
1

]

⊗ x
)T

P

([

1
1

]

⊗ y
)

=

([

1
1

]

⊗ x
)T ([

0 1
1 0

]

⊗ Iκ
)([

1
1

]

⊗ y
)

= 0⊗ xT y = 0.

Therefore, if we stick to parity checks of this form, we do not have to care about
commutability anymore. In this way, for every qubit pair we eventually find
out whether it is 0(11) or 1(11). For now, let us assume that we go up to this
point but not further: we want to find an optimal way of reaching the point
where every pair is determined as 0(11) or as 1(11). In the following, we will
denote the all-zeros and all-ones λ-bit vectors by 0λ and 1λ respectively, and
1(11⊗1λ) simply by 1(λ).

Whenever we spot equiprobable parity checks, we should perform it by
BPM. We will now explain how we can force such parity checks. Suppose we
have 2λ qubit pairs, determined as 1(2λ) by a previous parity check. Then the
parity check 11⊗ 1λ0λ has equiprobable values. Indeed, it holds that

1(2λ) =

{

0(λ)1(λ)

1(λ)0(λ) .

Clearly, both possibilities have the same initial probability p0(λ)p1(λ) , which is
1
2 after normalization. Therefore, performing the parity check 11 ⊗ 1λ on the
left half yields the parities of both halves and this information equals one bit.
By performing a BPM, we have the extra entropy reduction. Furthermore, this
BPM decouples the two halves of the state.

However, if the 2λ pairs are

0(2λ) =

{

0(λ)0(λ)

1(λ)1(λ) ,

we do not have equiprobable possibilities. With a little trick, we are still able
to force an equiprobable parity check. Two states of this kind can be written
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as

0(2λ)0(2λ) =















0(λ)0(λ) 1(λ)1(λ)

1(λ)1(λ) 0(λ)0(λ)

0(λ)0(λ) 0(λ)0(λ)

1(λ)1(λ) 1(λ)1(λ)

.

By performing an extra PB 11 ⊗ 0λ12λ0λ, we can distinguish the first two
possibilities from the last two (as indicated by the line). If its value is 1, again
we have two equiprobable possibilities 0(λ)0(λ)1(λ)1(λ) and 1(λ)1(λ)0(λ)0(λ), that
are separated by a BPM 11⊗ 1λ on one of the four α(λ) constituting the state.
If its value is 0, the possibilities are not equiprobable, but again we can bring
two of these results together, with possibilities















0(λ)0(λ)0(λ)0(λ) 1(λ)1(λ)1(λ)1(λ)

1(λ)1(λ)1(λ)1(λ) 0(λ)0(λ)0(λ)0(λ)

0(λ)0(λ)0(λ)0(λ) 0(λ)0(λ)0(λ)0(λ)

1(λ)1(λ)1(λ)1(λ) 1(λ)1(λ)1(λ)1(λ)

,

and performing PB 11⊗ 03λ12λ03λ separating the possibilities as indicated by
the line, and so forth. Clearly, this trick can be repeated endlessly.

We calculate the average fraction η(0(2λ)) of 0(2λ) on half of which a BPM
is performed, resulting in [0(λ)]0(λ) or in [1(λ)]1(λ) with equal probability [note
that η(1(2λ)) = 1]. The procedure explained in the previous paragraph is
recursive: at each step, we combine two random variables with two possible
values x and y (px + py = 1). The variables of the next step are xx and yy,
and so on. Therefore, it is possible to calculate η(0(2λ)) in a recursive way. Let
ξ be the probability to reach the situation under consideration and k the total
number of 0(2λ) involved in the present step. Initially, we have

ξ = 1,

px =
p2
0(λ)

p2
0(λ) + p2

1(λ)

,

py =
p2
1(λ)

p2
0(λ) + p2

1(λ)

,

k = 2.

From the procedure explained in the previous paragraph, we have the following
recursion relation:

ξ ← ξ(p2
x + p2

y),

px ← p2
x

p2
x + p2

y

,

py ←
p2

y

p2
x + p2

y

,
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k ← 2k.

At each step, we have a probability 2pxpy that half of one of the 0(2λ) involved
is determined by BPM. So each step yields another fraction 2ξpxpy/k of 0(2λ)

on half of which a BPM is performed. It can be verified that the total sum of
these fractions over all steps is equal to

η(0(2λ)) =
∞
∑

i=0

(vw)2
i

2i
i

Q

j=0

(v2j
+w2j

)

,

where v =
p2

0(λ)

p2

0(λ)
+p2

1(λ)

=
p2

0(λ)

p
0(2λ)

and w =
p2

1(λ)

p2

0(λ)
+p2

1(λ)

=
p2

1(λ)

p
0(2λ)

.

(3.9)

In practice, it suffices to truncate the procedure after a few steps, since the
terms in the summation of (3.9) decrease exponentially fast.

3.5.5 Numerical calculation of the yield

The protocol starts with PB 11 ⊗ 12q . The next step is an iteration of the
procedure explained in the previous section, for λ = 2q−1, 2q−2, . . . , 1, where
we use the update rules (3.7) and (3.8). For now, we will treat all 0(2λ) in the
same way, i.e. we do not favor particular states being parity checked by BPM.
As a consequence, every 0(2λ) has the same probability η(0(2λ)) of undergoing a
BPM 11⊗ 1λ0λ. We find that, from one step to the next, the states transform
as follows:

state transforms to with probability

0(2λ) → [0(λ)]0(λ) η(0(2λ))
2

→ [1(λ)]1(λ) η(0(2λ))
2

→ 0(λ)0(λ) p2

0(λ)

p
0(2λ)

− η(0(2λ))
2

→ 1(λ)1(λ) p2

1(λ)

p
0(2λ)

− η(0(2λ))
2

1(2λ) → [0(λ)]1(λ) 1
2

→ [1(λ)]0(λ) 1
2

(3.10)

With these rules, we are able to calculate the frequencies (i.e. the expected
number of occurrences per 2q initial qubit pairs) of all possibilities from one
step to the next. After the last step, we are left only with 0(1) and 1(1) pairs,
in various combinations of BPM (denoted by square brackets). Within square
brackets, permutations of pairs yield equivalent states. Therefore, we do not
have to calculate the frequencies of all possibilities, but only up to a permuta-

tion of the pairs: between square brackets, only the number n
(λ)
0 of 0(λ) and

n
(λ)
1 of 1(λ) matter. We denote this by [n

(λ)
0 , n

(λ)
1 ] and we abbreviate [n

(1)
0 , n

(1)
1 ]
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to [n0, n1]. The possibilities in the end are then:

0(1), 1(1),
[1, 0], [0, 1],
[2, 0], [1, 1], [0, 2],

...
[2q−1, 0], [2q−1 − 1, 1], . . . , [0, 2q−1],

(3.11)

with frequencies f(0(1)), f(1(1)), f([1, 0]), . . . , f([0, 2q−1]). Note that these must
satisfy

∑

A

n0(A)f(A) = 2qp0(1) and
∑

A

n1(A)f(A) = 2qp1(1) , (3.12)

where we define n0(0
(1)) = 1, n1(0

(1)) = 0 and n0(1
(1)) = 0, n1(1

(1)) = 1. By
partial breeding alone, κh(p0(1) , p1(1)) ebits would have been sacrificed. Now,
for every BPM, we have one ebit less that has been measured. Therefore, the
total cost of ebits per qubit pair up to this point equals

h(p0(1) , p1(1))− 1

2q

∑

[n0,n1]

f([n0, n1]). (3.13)

But the protocol is not finished yet: as mentioned earlier we have purified
the state up to the point were the parity of 11 for each pair is determined as
0 or as 1. Now we continue. Breeding is optimal for the pairs that have never
been involved in some BPM, as they are independent rank two Bell diagonal
states [73]. We show that breeding is optimal for all remaining pairs. Although
equiprobable parity checks can still be found, they will no longer result in an
entropy reduction if carried out by a BPM. Indeed, all further parity checks a
must be of the form 01 ⊗ a′ or of the form 10 ⊗ a′, because for every pair we
already know the parity of 11. Therefore, Pa too is of this form. Since every
pair is either 0(1) = {00, 11} or 1(1) = {01, 10}, the mapping of vectors vanishes:
one of the two vectors mapped to the same new vector has already been ruled
out by the parity checks, because 0(1) + 01 = 0(1) + 10 = 1(1). Deprived of
the benefit of entropy reduction by BPM, the best thing left is to gain one bit
of information for every measurement. The number of ebits needed per qubit
pair equals the entropy per pair

1

2q

∑

A

f(A)H(A) (3.14)

left in the overall state. It can be verified that

H(0(1)) = h(q00, q11),

H(1(1)) = h(q01, q10), (3.15)
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H([n0, n1]) = −1

2

n0
∑

i=0

n1
∑

j=0

(

n0

i

)(

n1

j

)

Qij log2Qij ,

where q00 = p00

p00+p11
, q11 = p11

p00+p11
, q01 = p01

p01+p10
, q10 = p10

p01+p10
,

Qij = qi
00q

n0−i
11 qj

01q
n1−j
10 + qn0−i

00 qi
11q

n1−j
01 qj

10.

Now all unmeasured qubit pairs are pure ebits. The fraction of unmeasured
pairs equals

1− 1

2q

∑

[n0,n1]

f([n0, n1]). (3.16)

If we subtract the total fraction of measured ebits, which is the sum of (3.13)
and (3.14), from this value (3.16), we get the yield of the protocol:

1− h(p0(1) , p1(1))− 1

2q

∑

A

f(A)H(A). (3.17)

We have numerically calculated (3.17) for Werner states as a function of the
fidelity, for q = 1, . . . , 6. This is plotted in figure 3.6. We have truncated the
procedure for forcing equiprobable parity checks (see the end of section 3.5.4)
after 10 steps. We see that with increasing q, the yields of the protocols increase
but converge. This is because incrementing q results only in more BPM on
large numbers of pairs, and the entropy reduction of a BPM decreases (and
eventually vanishes) with an increasing number of involved pairs. Indeed, since
the improvement with respect to hashing only comes from entropy reduction,
we calculate the total entropy reduction

1

2q

∑

A

f(A)R(A),

where R(A) is the entropy reduction of A, by subtracting the hashing yield

1− S(ρ) = 1− h(p0(1) , p1(1))− p0(1)h(q00, q11)− p1(1)h(q01, q10)

from the yield of the adaptive protocol (3.17). Making use of (3.12), if follows
that

R(A) = n0(A)h(q00, q11) + n1(A)h(q01, q10)−H(A). (3.18)

Clearly, R(0(1)) = R(1(1)) = 0. For Werner states, we have q01 = q10 = 1
2 , and

using (3.15), one can simplify (3.18) to

R([n0, n1]) = n0h(q00, q11) +
1

2

n0
∑

i=0

(

n0

i

)

Qi log2Qi,

independent of n1, where q00 = 3F
2F+1 , q11 = 1−F

2F+1 andQi = qi
00q

n0−i
11 +qn0−i

00 qi
11.

We have plotted R([n0, n1]) for Werner states in figure 3.7, as a function of F
and for increasing n0.
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Figure 3.6: The yields of the proposed protocol (solid lines), for q =
1, 2, 3, 4, 5, 6 (in the order as indicated by the arrow), compared to the yield of
hashing/breeding (dotted line), for Werner states as a function of F . The yield
increases with increasing q and converges for large q (note that the yields for
q = 5 and q = 6 almost coincide).
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Figure 3.7: The entropy reduction R([n0, n1]) for Werner states as a function
of the fidelity F, for n0 = 0, . . . , 20. We observe that, for large n0, the entropy
reduction vanishes.
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3.5.6 Favoring BPM on a small number of pairs

Since the entropy reduction R[n0, n1] decreases with increasing n0, we should
try to increase the number of possibilities [n0, n1] with small n0. In the first
version of our protocol, we did not make use of this: all 0(2λ) were treated
equally. So there is still room for improvement. A first ad hoc strategy is the
following.

At each step, we have 0(2λ) and 1(2λ), distributed over all possibilities. We
carry out BPM 11 ⊗ 1λ0λ on each 1(2λ), so there the situation remains the
same. For the 0(2λ), first of all we take the ones that are linked by BPM
(i.e. in square brackets) to a small number of pairs: this tends to result in

more [n
(λ)
0 , n

(λ)
1 ] with small n

(λ)
0 . Every 0(2λ) is part of some possibility A,

where n
(2λ)
0 is nonzero. We now order all possibilities [n

(2λ)
0 , n

(2λ)
1 ] according

to increasing n
(2λ)
0 + n

(2λ)
1 and on a second level according to increasing n

(2λ)
0 .

So for example [5, 3] < [6, 2] < [4, 5]. We favor small n
(2λ)
0 on a second level

because all 1(2λ) will certainly be reduced, on average resulting in smaller n0

in the end. We also define that all [n
(2λ)
0 , n

(2λ)
1 ] < 0(2λ). Probably better

orderings can be found, but this would presumably complicate things further
without much benefit. We define

L(A) =

∑

B<A

n
(2λ)
0 (B)f(B)

p0(2λ)2q−1/λ
and U(A) =

∑

B≤A

n
(2λ)
0 (B)f(B)

p0(2λ)2q−1/λ
.

L(A) and U(A) are the fractions of all 0(2λ) that are part of some B < A and
≤ A respectively. Note that L([1, 0]) = 0 and U(0(2m)) = 1. We combine the
0(2λ) for the procedure explained in section 3.5.4 as follows: firstly, we partition
all 0(2λ) (in total p0(2λ)κ/(2λ) elements) in two equally large sets: every 0(2λ)

of the first set is part of some A ≤ B, where all 0(2λ) that are part of B are
in the second set. Now every 0(2λ) of the first set is combined with one of
the second set and PB 11 ⊗ 0λ12λ0λ is performed. Whenever the parity is 1
(the probability of which is calculated in the same way as in section 3.5.4), a
BPM 11 ⊗ 1λ0λ is performed on the first 0(2λ). All 0(2λ)0(2λ) with parity 0
are again divided in two halves, according to the ordering of every first 0(2λ).
By continuing in this way, the fraction η(0(2λ)|A) of 0(2λ), part of some A, on
which a BPM 11⊗ 1λ0λ is performed, can be calculated, and equals

η(0(2λ)|A) =

u(A)−1
∑

i=1

zi +

l(A)
∑

i=u(A)

2−i − L(A)

U(A)− L(A)
zi (3.19)

where l(A) = ⌊− log2 L(A)⌋, v =
p2

0(λ)

p
0(2λ)

,

u(A) = ⌈− log2 U(A)⌉, w =
p2

1(λ)

p
0(2λ)

,

zi = 2(vw)2
(i−1)

i−1
Q

j=0

(v2j
+w2j

)

.
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Figure 3.8: The yield of the protocol for Werner states with fidelity F , in
the modified version of section 3.5.6 (solid line), compared to the yield of the
original (dotted line), with q = 6.

As in (3.9), the terms in the second summation in (3.19) decrease exponentially
fast. Therefore, when l(A) is large, the procedure may be truncated after a
number of steps. In the update rules (3.10), η(0(2λ)) must be replaced by
η(0(2λ)|A). Note that we have different update rules for different possibilities
A. With this, we end up with the same possibilities (3.11) but with different
frequencies f(0(1)), f(1(1)), f([1, 0]), . . . , f([0, 2q−1]). To calculate the yield, we
still use (3.15) and (3.17). We have plotted this in figure 3.8 for Werner states as
a function of F , for q = 6. The difference with the first version is negligible (and
even smaller for q < 6). Furthermore, this strategy is much more complicated
than the original. Therefore, we have not further investigated this path.

3.5.7 Greedy variant

For Werner states, the yield of our best protocol is zero when F < 0.7424. This
is better than the original breeding protocol (0.8107), but in order to distill
states with lower fidelity, we must perform a number of recurrence iterations
firstly, until it is no longer advantageous to do another iteration. The result
of that is plotted in figure 3.9. One might think that the benefit of recurrence
is due to some other phenomenon than information extraction and entropy
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reduction, because whenever the protocol fails, the remaining separable qubit
pair is discarded. Although discarding is not present in any of the asymptotic
protocols, one can interpret the discarding of the remaining pair in recurrence
as a BPM with equiprobable values. Indeed, recurrence consists of a BPM
1100. If the parity is 1, the parity check 1000 is equiprobable, and should
therefore be carried out by a BPM. But then two BPM have been carried out
on the two qubit pairs involved, so there are no remaining unmeasured pairs.

Therefore, the recurrence iterations before our protocol only improve it by
the fact that also non-equiprobable parity checks are carried out by BPM. The
non-maximal nature of the information gain is more than compensated for by
the entropy reduction for low-fidelity states. So we need a more complex crite-
rion for BPM than merely equiprobable parity checks. A natural alternative is
a greedy approach: we perform a BPM whenever the sum of information gain
and entropy reduction is larger than 1. However, this strategy is somewhat
shortsighted, since it might be possible that performing a BPM will only be-
come advantageous in future stages of parity checks, even if the information
gain and entropy reduction of this particular BPM is smaller than 1. Indeed,
performing a BPM will definitely produce more [n0, n1] with small n0, giving
rise to a larger overall entropy reduction in the end.

A better greedy method is the following: instead of just looking at the
immediate information gain and entropy reduction, we choose to perform PB or
BPM according to what gives us the largest total information gain and entropy
reduction, or equivalently, the largest expected number of distilled Bell pairs.
To this end, we somehow reverse the order of the subsequent stages: we do not

calculate the frequencies f(0(λ)), f(1(λ)) and f([n
(λ)
0 , n

(λ)
1 ]) from the frequencies

f(0(2λ)), f(1(2λ)) and f([n
(2λ)
0 , n

(2λ)
1 ]) of the previous stage, but we calculate

the yields, i.e. the expected net fraction of ebits that can be distilled, γ(0(2λ)),

γ(1(2λ)) and γ([n
(2λ)
0 , n

(2λ)
1 ]), from the yields γ(0(λ)), γ(1(λ)) and γ([n

(λ)
0 , n

(λ)
1 ]).

This is done as follows. Firstly, it is clear that, for the first stage λ = 1,

γ(0(1)) = 1− h(q00, q11),
γ(1(1)) = 1− h(q01, q10),

γ([n0, n1]) = n0 + n1 − 1−H([n0, n1]).

The next question is what to do with 0(2λ), 1(2λ) and [n
(2λ)
0 , n

(2λ)
1 ]. Equiprob-

able parity checks should still be carried out by BPM, so the situation remains
the same for all 1(2λ). For the 0(2λ), we can either apply the procedure of
section 3.5.4, or directly apply a BPM 11⊗ 1λ0λ. We treat all 0(2λ) in a single

possibility [n
(2λ)
0 , n

(2λ)
1 ] in the same way, for the same intuitive reason we gave

in section 3.5.6: a BPM becomes more interesting, i.e. a larger entropy reduc-
tion, if fewer pairs are involved. Therefore, if one 0(2λ) in a single possibility is
split by BPM, automatically fewer pairs are involved and we have a cascading
effect.

So, for all 0(2λ) in a single possibility, we choose between two actions:
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Figure 3.9: The yield of our original adaptive protocol (lower solid line) com-
bined with recurrence iterations and the yield of the greedy variant (upper solid
line), for Werner states with fidelity F , in comparison to the yield of hashing
with recurrence iterations (dotted line).
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Figure 3.10: The relative difference between the yield of the greedy method and
the yield of hashing with recurrence iterations, for Werner states with fidelity
F .
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1) either we apply the original procedure of section 3.5.4, with update rule
given by (3.10),

2) or we perform a BPM 11⊗ 1λ0λ, with the following update rule:

state transforms to with probability

0(2λ) → [0(λ)]0(λ) p2

0(λ)

p
0(2λ)

→ [1(λ)]1(λ) p2

1(λ)

p
0(2λ)

.

For both cases, we subsequently calculate the resulting fractions of [n
(λ)
0 , n

(λ)
1 ]

from a single possibility [n
(2λ)
0 , n

(2λ)
1 ]. The yield is the sum of the products

of these fractions with the corresponding yields γ([0(λ), 1(λ)]) calculated in the
previous stage, minus the number of used-up ebits. One can verify that this
number of used-up ebits is

n
(2λ)
0

(

h(
p2
0(λ)

p0(2λ)

,
p2
1(λ)

p0(2λ)

)− η(02λ)

)

for case (1) and zero for case (2). Now, by choosing the action with the highest
yield (greedy), we arrive at the yield γ([0(2λ), 1(2λ)]). The yield of the protocol
is then

max
{

p0(2q)γ(0(2q)) + p1(2q)γ(1(2q))− h(p0(2q) , p1(2q)) ,

p0(2q)γ([0(2q)]) + p1(2q)γ([1(2q)])
}

/2q,

since for the parity check 11 ⊗ 12q in the final stage on 2q pairs, the best is
taken of either PB or BPM, although not much difference between the two is
expected, as we already pointed out in section 3.5.5.

Remark. Note that, since we reverse the stages and take the best of two
paths for every next stage, we do not know in advance what possibilities will
eventually be present in the protocol. Therefore, we need to calculate γ for all
possibilities, causing some overhead in the numerical calculation of the yield.
However, this drawback is of no importance, as we are not concerned with the
computational complexity of the calculation of the yield. The complexity of
the protocol itself does not increase. 3

This greedy protocol has zero yield for low initial fidelity, so we still need
to do recurrence iterations firstly. In order to overcome this weakness, we
introduce the following ‘back door’ in the greedy procedure. Since the state
[0(2)] is the state of the resulting qubit pair of a successful recurrence step, we
do not submit it to the greedy choice explained above, but use it as an input
of the entire protocol, with a possible reordering firstly, and calculate its γ
as the yield of the protocol for this (improved) qubit pair. We do not have to
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repeat this recursive procedure infinitely, as the fraction of such reinserted pairs
decreases exponentially fast with respect to the number of recursions. This new
procedure now fully covers the initial recurrence iterations. Indeed, at worst
we always performed BPM and no PB, leaving us with only [0(2)], which are
reinserted, and [1(2)], on which BPM are applied, equivalent to discarding.

Remark. Recall that we judge our protocols based on their performance for
Werner states, since of all Bell-diagonal states, they are most differing with
rank two Bell-diagonal states, for which the problem of distillation is completely
solved. For Werner states, it does not matter whether the parity checks are
of the form 01 ⊗ 1λ, 10 ⊗ 1λ or of the form 11⊗ 1λ, as p01 = p10 = p11. But
with preceding recurrence iterations or reinserting [0(2)] in the protocol, this
no longer holds, and we already mentioned that this requires a reordering like
in between multiple recurrence iterations. By numerical simulation, it appears
that the same reordering as for multiple recurrence iteration gives the highest
yield, but it is hard to verify this analytically. 3

The yield for Werner states of this final protocol is plotted in figure 3.9, and
we see a slight improvement with respect to the combination of the original
protocol with recurrence iterations. Although it seems that the greedy proto-
col does not really outperform the combination of hashing and recurrence for
noisy states, since the yield for low fidelity is still very close to zero, we can
only appreciate this by looking at the relative difference of the yields (i.e. the
difference with respect to the yield itself). This is plotted in figure 3.10. We
observe that the course of the relative difference, although strongly fluctuat-
ing, on average remains more or less constant in the low-fidelity region, which
indicates that the improvement is mainly situated in the high-fidelity region.
Indeed, the same improvement equally holds in the low-fidelity region because
there the greedy protocol boils down to multiple recurrence iterations.

A final suggestion which could be taken into consideration, is the following.
Instead of exclusively performing parity checks of the form 11⊗ x and only in
the end allowing parity checks 01 ⊗ x or 10 ⊗ x, we could already introduce
these in an earlier stage of the protocol. Commutativity of parity checks could
then for instance be guaranteed by taking 1111 ⊗ x and 1100 ⊗ x. However,
we can no longer apply the decoupling rules. As a consequence, to trace all
possibilities becomes extremely difficult, let alone deriving a criterion for the
choice between BPM and PB. Nevertheless, we have tried this to some extent,
resulting in a yield below that of the greedy protocol. Therefore, we have
omitted the details here.

3.6 Finite protocols for low-fidelity states

We argued in the previous section that our asymptotic adaptive variants of
hashing/breeding only work for high-fidelity states, which is passed on to low-
fidelity states by recurrence iterations that boost the fidelity. In this section, we
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search for variants of recurrence that perform this task in an optimal way. We
recall from section 3.3 that the protocols we consider consist of the same local
Clifford operation on both sides followed by σz measurements on a number
of qubit pairs. By theorem 3.2, the posterior probabilities of the unmeasured
pairs are

p(C + v)

p(N + v)
, (3.20)

where all v satisfy CT
(4)v = u. These probabilities are completely determined

by u and a generating set of C, as N is the dual space of C. In the code-based
interpretation, C is the binary representation of the stabilizer of the code. We
focus on protocols that output only one qubit pair. The output fidelity F ′ is
the maximum of (3.20) over all v that satisfy the above condition.

The protocol takes low-fidelity Werner states as an input. We now consider
F = 1

2 + ǫ, where ǫ is infinitesimal. We conjecture that in this region,6 the
resulting state is separable, i.e. F ′ < 1

2 , whenever u 6= 0 (depending on the
measurement outcome), provided that there was no decoupling.7 We have
numerically verified this for many codes, but we were unable to find a proof. By
theorem 3.2, the probability that u = 0 is p(N ), in which case F ′ = p(C)/p(N ).
In first order of ǫ, this output fidelity equals F ′ = 1

2 +αǫ, where α > 1. We now
prove this and calculate α for given C. The weight enumerator of C is defined
as the polynomial

WC(x, y) =

κ
∑

i=0

Aix
κ−iyi

where Ai is the number of elements of weight i in C. The weight enumerator
of N is then given by the generalized MacWilliams identity [18, 62, 77]:

WN (x, y) =
1

|C|WC(x+ 3y, x− y) (3.21)

For a Werner state with fidelity F = 1
2 + ǫ, we have:

F ′ =
WC(F, 1−F

3 )

WN (F, 1−F
3 )

=
2κ−1WC(F, 1−F

3 )

WC(1, 4F−1
3 )

=

2κ−1
κ
∑

i=0

Ai(
1
2 + ǫ)κ−i(1

6 − 1
3ǫ)

i

κ
∑

i=0

Ai(
1
3 + 4

3ǫ)
i

6We found counterexamples for higher F , but where F ′ < F , which means there is still
entanglement, but it has decreased.

7Otherwise, it is possible that the code actually consists of two separate codes, for one of
which u = 0.
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=

2κ−1
κ
∑

i=0

Ai(− 1
3 )i

(

κ−i
∑

j=0

(

κ−i
j

)

(1
2 )κ−i−jǫj

)(

i
∑

j=0

(

i
j

)

(− 1
2 )i−jǫj

)

κ
∑

i=0

Ai(
4
3 )i

(

i
∑

j=0

(

i
j

)

(1
4 )i−jǫj

)

=

(

1
2

κ
∑

i=0

Ai(
1
3 )i

)

+

(

κ
∑

i=0

Ai(
1
3 )i(κ− 2i)

)

ǫ+O(ǫ2)

(

κ
∑

i=0

Ai(
1
3 )i

)

+

(

κ
∑

i=0

Ai(
1
3 )i4i

)

ǫ+O(ǫ2)

=
1

2
+ αǫ+O(ǫ2),

where

α =

κ
∑

i=0

Ai(
1
3 )i(κ− 4i)

κ
∑

i=0

Ai(
1
3 )i

. (3.22)

With q iterations of the protocol, ǫ has scaled by a factor αq. We find for the
recurrence protocol: A0 = 1, A1 = 0, A2 = 1 ⇒ α = 6/5, which is the best
possible value for κ = 2. We have calculated the α value for numerous random
stabilizers, of which the best are given in table 3.1. An efficient algorithm for
generating random stabilizers is described in appendix B. The given codes
are not unique, as many codes have the same weight distribution. Indeed,
a permutation of the κ factors in the stabilizer elements already yields an
equivalent code. We observe that applying the best κ = 4 protocol for Werner
states (marked with an asterisk in table 3.1), with α = 2, yields a larger fidelity
increase than applying recurrence twice, for which α2 = 1.44 < 2. This is to
be expected, because two successful recurrence iterations can be regarded as
a single iteration of one particular κ = 4 protocol, as schematically depicted
in figure 3.11. Moreover, in between the two recurrence iterations, twirling is
applied, causing some loss of entanglement.

Remark. This no longer holds when one of the recurrence executions is not
successful (u 6= 0), in which case the resulting pair is discarded. We will come
back to this later. 3

This approach has two major drawbacks:

1. Although a code with high α yields a high fidelity increase, this effect
could very well be nullified by a corresponding low success probability
p(N ). We will need a characteristic that somehow combines both.

2. It is implicitly assumed that between each two iterations, twirling is ap-
plied, leaving the fidelity invariant but equalizing the other probabilities,
since α only gives the fidelity increase for Werner states as an input. How-
ever, recalling section 3.3.1, it is better to replace twirling by a reordering
of the probabilities, but then α is no longer valid.
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Figure 3.11: Two successful recurrence iterations (1) are a special case of a
single successful κ = 4 protocol (2).
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To meet the first drawback, the joint performance ξ was defined in [16] as the
fraction of remaining pairs after doubling ǫ, or equivalently, let F ′ = 1

2 + 2tǫ
after a number of iterations, then we are left with ξt pairs. It is clear that
2t = αq and ξt = [p(N )/κ]q, where q is the number of iterations, necessary for
reaching F ′. Recall that p(N ) = 21−κD + O(ǫ), where D is the denominator
of (3.22). It follows that

log2 ξ =
log2D + 1− κ− log2 κ

log2 α
. (3.23)

After calculating ξ for multiple random stabilizers, we observe that, fixing κ,
a large ξ corresponds to a large α (the optimal values found for ξ and α are
given in table 3.1). This means that it is best to boost the fidelity as much
as possible in one iteration, and α is, in that respect, a good characteristic
after all. However, with increasing κ, initially ξ increases, but then decreases,
reaching a maximum in κ = 5. Apparently, when the number of involved pairs
becomes too large, the gain of α is nullified by the exponentially decreasing
success probability and the larger loss of pairs in case of failure.

To overcome the second drawback, we should also take other Bell-diagonal
states than Werner states into account. Let p0 = p00, px = p01, py = p11 and
pz = p10. Between each two iterations of the protocol, we perform local single-
qubit Clifford operations on the resulting state reordering the probabilities such
that px ≥ py ≥ pz. Since we are still dealing with low-fidelity states, we define
p0 = 1

2 + ǫ and p∗ = (1
2 − ǫ)β∗, where ∗ stands for x, y, or z. It follows that

∑

∗ β∗ = 1 and βx ≥ βy ≥ βz. We assume that after a number of iterations,
the β∗ will converge.8 We now calculate the α∞ and ξ∞ that correspond to
this asymptotic behavior. The complete weight enumerator of C is defined as
the polynomial

WC(w, x, y, z) =
∑

i

Aiw
i0xixyiyziz

where Ai is the number of elements in C with composition9 i = (i0, ix, iy, iz).
Note that i0 + ix + iy + iz = κ. To calculate the resulting fidelity p′0, we use
the MacWilliams identity for complete weight enumerators [62]:

WN (w, x, y, z) =
1

|C|WC(w+x+y+z, w+x−y−z, w−x+y−z, w−x−y+z).

(3.24)
In the same way as α, we calculate α∞:

p′0 =
WC(p0, px, py, pz)

WN (p0, px, py, pz)

=
2κ−1

∑

i Ai(
1
2 + ǫ)i0(1

2 − ǫ)ix+iy+izβix
x β

iy
y βiz

z
∑

i Ai[βx + 2(1− βx)ǫ]ix [βy + 2(1− βy)ǫ]iy [βz + 2(1− βz)ǫ]iz

8In rare cases, they do not converge, but for these codes the asymptotic behavior can still
be examined and they appear to perform worse than the ones listed below.

9the respective number of I, X, Y and Z in the codeword
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=
1

2
+ α∞ǫ+O(ǫ2),

where

α∞ =

∑

iAiβ
ix
x β

iy
y βiz

z (i0 − ix

βx
− iy

βy
− iz

βz
)

∑

i Aiβ
ix
x β

iy
y β

iz
z

. (3.25)

Let D∞ be the denominator of (3.25). Analogous to (3.23), we have

log2 ξ∞ =
log2D∞ + 1− κ− log2 κ

log2 α∞
. (3.26)

It remains for us to determine the limits of the converging β∗. The new prob-
abilities p′x, p′y and p′z are given by p(C + v)/p(N ), sorted in descending order,
where C + v are the three cosets of C in N . There is no concise formula for
the weight distribution of the cosets, given that of C. Let A∗

i be the weight
distribution corresponding to the coset giving rise to p′∗, then it follows:

β∗ =

∑

iA
∗
i β

ix
x β

iy
y βiz

z

N
+O(ǫ),

where N is a normalizing factor such that
∑

∗ β∗ = 1. The best ξ∞ and
corresponding other characteristics are given in table 3.1. Apparently, good
asymptotic behavior is compatible with good performance for Werner states as
well, except for κ = 4. Surprisingly, the optimal κ = 4 protocol is equivalent to
iterating recurrence twice. One can also verify that the optimal κ = 3 protocol
is equivalent to initially applying recurrence on the first two pairs, and then on
the reordered resulting pair and the third pair.

We observe that the best ξ∞ is reached for the original κ = 2 recurrence
protocol. This is because by considering larger κ, the resulting protocols are
in a sense less adaptive. Indeed, as we already mentioned in the remark on
page 77, two recurrence iterations are no longer a special case of a single κ = 4
protocol as soon as one of both outcomes in the first iteration yields u 6= 0:
for recurrence, whenever u 6= 0, the resulting (separable) pair is discarded,
whereas for κ = 4, it is always combined with another, for which possibly
u = 0. This can be circumvented by incorporating the possibility of choosing
a different measurement when the outcome does not yield u = 0. A number of
bounds for codes using only one-way communication are shown to be violated
by such adaptive stabilizer codes [2]. However, for κ = 4, the best possible pro-
tocol already consists of two recurrence iterations. Therefore, no fully adaptive
κ = 4 protocol will do better than recurrence. In general, comparing different
adaptive protocols becomes difficult, since there is no longer a simple scalar
characterizing their behavior. Before, whenever u 6= 0 we discarded the result,
whereas now, the protocol just takes a different course. This gives rise to an
exponentially expanding tree, of which every leaf corresponds to a different re-
sulting state, with a particular probability. Numerically, we could circumvent
having to take an exponential growing number of states into account by mixing
states. A drawback is that this, like twirling, causes loss of entanglement.



3.6. Finite protocols for low-fidelity states 81

κ ξ α ξ∞ α∞ βx βy βz

2 0.0077 1.2 0.0705 1.414 0.469 0.282 0.249
3 0.0191 1.5 0.0467 1.707 0.469 0.282 0.249
4∗ 0.0370 2 0.0370 2 1/3 1/3 1/3
4 0.0264 1.846 0.0374 2 0.469 0.282 0.249
5 0.0413 2.5 0.0413 2.5 1/3 1/3 1/3
6 0.0269 2.6 0.0269 2.6 1/3 1/3 1/3
7 0.0230 2.932 0.0233 2.942 0.359 0.325 0.316
8 0.0185 3.176 0.0188 3.190 0.349 0.326 0.325

Table 3.1: The best values of ξ∞ for κ = 2, . . . , 8, and the corresponding other
characteristics. The (mostly non-unique) stabilizers are generated by:

(κ = 2) ZZ
(κ = 3) ZZI,XY Z
(κ = 4)∗ ZZZZ,XXXX, IXYZ
(κ = 4) ZZII, IIZZ,XYXY
(κ = 5) ZYXY I,XXIYX,XZZXI, Y IZY Y
(κ = 6) IZXXIX, Y IZXY Z, IXY Y Y Z,XZY Y XI,XIY ZY X
(κ = 7) Y XY Y IZZ, IZY ZIY X, IY XXZIY, IY Y Y XXZ

ZIY XXZI,XY IZY XI
(κ = 8) IY IZXYXY, Y IIXY IY Z, Y XYXZXYX, IIZZIY IY

XZZXZZXY, YY IY IIXZ,XXY IZIZX
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Yet, before much more delving into devising intricate performance criteria,
we should ask ourselves firstly whether there is a good physical reason for
considering infinitesimally small deviations from F = 1

2 , except for being a
helpful approximation to simplify the low-fidelity case. In my opinion, the
answer to that question is: no. The fidelity of the channel used to establish
the qubit pairs can really be anything between 0 and 1. For the classical case,
F = 1

2 is the worst possible situation and information can still be transmitted
as long as F 6= 1

2 , so considering infinitesimal deviations does make sense.
Entanglement distillation, on the other hand, becomes impossible as soon as
F ≤ 1

2 , and this threshold is passed without any peculiarity.
Finally, we might consider larger values of F . We can still use (3.20) and

the MacWilliams identities for calculating the posterior probabilities, but the
higher order terms in ǫ can no longer be neglected. This, and the fact that
after only a few steps it is already better to switch to a variant of hashing,
makes an analytic approach rather difficult. A rule of thumb is: good codes,
i.e. with a high distance d, tend to yield good protocols. Indeed, for large
fidelity F = 1− ǫ, it is easy to see that

F ′ =
p(C)
p(N )

=
1

1 + p(N\C)/p(C) =
1

1 +O(ǫd)
= 1−O(ǫd).

The only thing left for us is numerical simulation, but attempts in that direction
were unsuccessful, and we considered it not worthy of putting much more effort
into it.

3.7 Conclusion

In this chapter, we have discussed the development of bipartite distillation
protocols by making extensive use of the stabilizer formalism. After briefly
introducing the concept of bipartite entanglement and Bell states, we have
recapitulated in more detail the various elements of distillation protocols in
the stabilizer formalism for the particular bipartite case, illustrated with the
existing recurrence protocol. We have given the main lines of thought of the
asymptotic protocols hashing and breeding and elaborated on the basic prin-
ciples (partial breeding, entropy reduction, decoupling) on which adaptiveness
can be introduced to improve the performance of these protocols. The binary
picture allowed us to give a natural explanation of how local measurements give
rise to entropy reduction, next to information extraction, which was their initial
purpose. This was illustrated by explicitly calculating the yield of a number of
variants for Werner states. Finally, we discussed the search for optimal finite
protocols for noisy (and almost separable) input states.



Chapter 4

Multipartite entanglement
distillation

4.1 Introduction

In this chapter, we describe asymptotic protocols for multipartite entangle-
ment distillation. Compared to the bipartite case, multipartite entanglement
is a much more intricate concept. While there is only one form of bipartite
pure state entanglement, this definitely no longer applies to the multipartite
case. Therefore, the characterization of multipartite entanglement, even when
restricted to stabilizer states only, is a complicated matter and we do not delve
further into it, but refer to [8, 34, 45, 46, 50, 61, 87, 89] for an extensive account.
Multipartite entangled states over distant parties have important applications,
especially in quantum cryptography. We cite [19, 21, 23, 31, 47, 57], but this
is far from an exhaustive list.

In a sense, for practical purposes, multipartite entanglement distillation is
rendered superfluous by bipartite entanglement distillation, because as soon as
we are able to establish pure ebit pairs, these can be used as a resource for
teleporting multipartite states. However, since we are dealing with distillation,
we are concerned with entanglement as a state characteristic: given copies of a
particular mixed state, how many pure state copies can we extract from these,
by LOCC only. It will become clear that multipartite distillation protocols do
make a difference when it comes to this task.

Many generalizations of bipartite distillation protocols to a multipartite
setting have been found. They can be categorized according to asymptotic
(hashing/breeding) [3, 19, 63, 59, 60] versus finite protocols [1, 3, 19, 29, 38, 43,
58, 59, 60, 63, 66, 67], to whether they take noise in the recovering operations
into account [3, 29, 58, 59, 60] or to the kind of quantum states they are
designed for. The cited references are only suited for CSS states or states that
are locally equivalent to CSS states (e.g. two-colorable graph states), except

83
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[66] (for the three-qubit W state1) and [38, 58, 60] (for arbitrary stabilizer
states). Our work on multipartite distillation differs from the results in these
references, and outperforms them, for two reasons. On the one hand, by making
extensive use of the binary matrix framework of chapter 2, we are able to
derive, for different classes of stabilizer states, the most general structure of
the local Clifford operations used for the protocol, such that they effect a
larger statistical dependence of multiple noisy copies of the input state, which
is crucial for distillation. On the other hand, we derive and exploit particular
properties of the so-called strongly typical set, a concept borrowed from classical
information theory. We explain both ways in more detail.

Firstly, recall from chapter 2 that in order to extract information on the
overall state of multiple copies of a given mixed state ρ, the copies that are sac-
rificed for local measurements should contain information on the overall state.
To this end, local unitary operations are applied such that the copies become
statistically dependent (cf. figure 1.1 on page 5). In order to stay in the binary
picture, we restrict ourselves to local Clifford operations. Since we want the
output of the protocol to be copies of a stabilizer state with generator matrix S,
we demand that the local Clifford operations map the set of all tensor products
of such states onto itself.2 We derive the most general structure of such local
Clifford operations by considering particular classes of states, identified by the
structure of S. Intuitively, when S has a more general structure, the constraints
on the local Clifford operations become stricter. This was recognized in [38], in
a code-based approach, where it was specified what classes of stabilizer codes
are fit for the distillation of different classes of stabilizer states: arbitrary sta-
bilizer codes for CSS-H states3, CSS codes for CSS states and CSS-H codes for
arbitrary stabilizer states. There is a large similarity with our own work and
this result of [38], except for the fact that for particular CSS states, we find
more general local Clifford operations than those giving rise to CSS codes.

Secondly, by local measurements on a stabilizer state we simultaneously
learn the eigenvalue of more than one stabilizing Pauli operation. For exam-
ple, by locally measuring σz on all qubits of a CSS state, by theorem 2.22 we
learn the value of bi, for i = 1, . . . , nz. This feature is new with respect to the
situation for Bell states. The goal of the protocol is to reduce the total en-
tropy of all copies. In all references given above, the number of measurements
according to a particular tripartition M is required to exceed the marginal
entropies of each random variable bi that is revealed by such a measurement.
Yet, in most cases, these random variables are dependent. Therefore, the above
requirement is too strict and results in too many measurements, or equally, a
lower yield. In [19], this drawback was partially met by relaxing to conditional

1For three qubits, there are two local unitary equivalence classes of states [32]. Repre-
sentatives of both classes are respectively the cat state 1√

2
(|000〉 + |111〉) and the W state

1√
3
(|001〉 + |010〉 + |100〉).
2Actually, the copies to be measured do not need to be in this set, but this would com-

plicate things too much.
3CSS-H states and codes are special subclasses of respectively CSS states and codes.
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entropies, but it still gives rise to an overestimation of the necessary number of
copies to be measured. The information-theoretical interpretation of multipar-
tite hashing/breeding is very similar to the bipartite case. Again, we regard the

overall state as an unknown pure state |ψS̃,ũ〉. It is assumed that ũ ∈ T (κ)
ǫ , the

strongly typical set, with a vanishing probability that this assumption is false.
By local Clifford operations and measurements, parity checks are performed
on ũ, revealing its identity. By demanding that at the end of the protocol,

all b̃ ∈ T (κ)
ǫ that differ from ũ are eliminated with approximate certainty, we

are able to exactly calculate the minimal number of copies to be measured
to achieve this goal. This minimum is the solution of a linear programming
problem.

This chapter is organized as follows. In section 4.2, we define the information-
theoretical concept strongly typical set. It is a stricter version of the typical set
we encountered in chapter 3, yet asymptotically, they are almost identical. We
will derive a particular property that is crucial for calculating the minimum
number of copies that need to be measured in order to eliminate all elements of

T (κ)
ǫ save ũ. In section 4.3, we outline the general procedure of the protocols,

since there are many elements in common. In sections 4.4 and 4.5, we apply
this procedure to the particular case of CSS states and graph states respec-
tively. Finally, we formulate a conclusion in section 4.6. The results of this
chapter were published in [54, 55].

4.2 Strongly typical set

In the context of multipartite distillation protocols, we will need a stricter
version of the asymptotic equipartition property. The sequences that are con-
tained by the strongly typical set are not only typical concerning their indi-
vidual probabilities, but all individual sample frequencies have to be within
‘typical’ boundaries [22]. This is formally stated as follows.

Let X̃ = (X1, . . . , Xκ) be a sequence of independent identically-distributed
discrete random variables, each having event set Ω with probability function

p : Ω→ [0, 1] : x→ p(x).

The strongly typical set T (κ)
ǫ is defined as the set of sequences x̃ = (x1, . . . , xκ) ∈

Ωκ for which the sample frequencies

fx(x̃) =
|{xi | xi = x}|

κ

are close to the true values p(x):

T (κ)
ǫ = {x̃ ∈ Ωκ : |fx(x̃)− p(x)| < ǫ, ∀x ∈ Ω}. (4.1)

In the following of this chapter, we will always assume κ → ∞ and ǫ → 0.
The next proposition shows that asymptotically, the strongly typical set is
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almost equal to the typical set. As a consequence, the main relevant properties

of A(κ)
ǫ also hold for T (κ)

ǫ .

Proposition 4.1 (i) p(T (κ)
ǫ ) ≥ 1−O(κ−1ǫ−2);

(ii) T (κ)
ǫ ⊂ A(κ)

O(ǫ).

Proof:

(i) It can be verified that fx(X̃) has mean p(x) and variance p(x)[1−p(x)]/κ.
By Chebyshev’s inequality [91], we then have

P (|fx(X̃)− p(x)| ≥ ǫ) ≤ p(x)[1− p(x)]
κǫ2

.

It follows that p(T (κ)
ǫ ) ≥ 1−O(κ−1ǫ−2).

(ii) Let x̃ ∈ T (κ)
ǫ , then

log2 p(x̃) = log2

∏

x∈Ω

p(x)κfx(x̃)

= log2

∏

x∈Ω

p(x)κ[p(x)+O(ǫ)]

= κ
∑

x∈Ω

[p(x) +O(ǫ)] log2 p(x)

= −κ[H(X) +O(ǫ)].

It follows that x̃ ∈ A(κ)
O(ǫ).

�

We define the function y : Ω→ {1, . . . , t} : x→ y(x). It defines a partition
of Ω into subsets Ωj , for j = 1, . . . , t. The following theorem is of central
importance for asymptotic multipartite distillation protocols:

Theorem 4.2 Given some ũ ∈ T (κ)
ǫ , and the set

Yũ = {ṽ ∈ T (κ)
ǫ | y(vi) = y(ui), for i = 1, . . . , κ}.

Then we have

log2 |Yũ|
κ

= H(X)−H(Y ) +O(ǫ) +O(κ−1 log κ),

where

H(Y ) = −
t
∑

j=1

p(Ωj) log2 p(Ωj)

is the entropy of the random variable Y = y(X).
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Proof: We define

fΩj
(x̃) =

∑

x∈Ωj

fx(x̃).

By definition, for all ṽ ∈ Yũ and for j = 1, . . . , t, it holds

fΩj
(ṽ) = fΩj

(ũ).

For all x ∈ Ω, let f∗
x be some fixed value, where κf∗

x ∈ N, that satisfies

|f∗
x − p(x)| < ǫ, ∀x ∈ Ω (4.2)

f∗
Ωj

=
∑

x∈Ωj

f∗
x = fΩj

(ũ), for j = 1, . . . , t. (4.3)

We defineNf∗ as the set of elements ṽ ∈ Yũ with these exact sample frequencies
f∗

x . Then elementary combinatorics tells us

|Nf∗ | =
t
∏

j=1

[f∗
Ωj
κ]!

∏

x∈Ωj

[f∗
xκ]!

.

Using Stirling’s approximation [92]:

log κ! = κ log κ− κ+O(log κ), for κ→∞,

and (4.3), we find

log2 |Nf∗ | = κ

t
∑

j=1



f∗
Ωj

log2 f
∗
Ωj
−
∑

x∈Ωj

f∗
x log2 f

∗
x



+O(log κ).

As f∗ satisfies (4.2), we have f∗
x = p(x) +O(ǫ), ∀x ∈ Ω. Therefore,

log2 |Nf∗ | = κ[H(X)−H(Y ) +O(ǫ)] +O(log κ).

It is clear that |Nf∗ | ≤ |Yũ|, as Nf∗ ⊆ Yũ. Since there is a total ≤ (2ǫκ)t

of f∗ that satisfy (4.2), an upper bound for |Yũ| is

(2ǫκ)t max
f∗
|Nf∗ |,

where the maximum is taken over all f∗ that satisfy (4.2)-(4.3). It follows that

log2 |Yũ| = κ[H(X)−H(Y ) +O(ǫ)] +O(log κ).

�
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4.3 General procedure of multipartite stabilizer
state hashing/breeding

In this section, we explain the main lines of thought of multipartite stabilizer
state hashing or breeding, without assuming particular properties of the states
under consideration. For each protocol, we distinguish between an operation
section and an information section. Recalling the general setting of a distilla-
tion protocol (bipartite as well as multipartite) in section 2.5, we start with κ
copies of a mixed n-qubit state that is diagonal in the S-basis, where S is the
generator matrix of the pure stabilizer state we want to distill. The protocol
consists of local Clifford operations, represented by (2.22), followed by measure-
ments on a number of copies (or for breeding: on appended predistilled states).
Determining which freedom we have in choosing these local Clifford operations
constitutes the operation section. Next, taking these limitations into account,
we show how to calculate the minimal number of copies that have to be mea-
sured in order to purify the remaining copies. This is the information section.
Both are explained in detail in sections 4.3.1 and 4.3.2.

4.3.1 Operation section

The local Clifford operations, represented by C ∈ Z
2nκ×2nκ
2 defined in (2.22),

transform the overall generator matrix S̃ ∈ Z
2nκ×nκ
2 , defined in (2.24), into

CS̃. We will only allow local Clifford operations that transform the original
unknown state |ψS̃,ũ〉 into a state that is represented by the same generator

matrix S̃. As such, these local Clifford operations constitute a group and map
the set of tensor products of states represented by S onto itself. In order to
satisfy this constraint, there must exist some R ∈ Z

nκ×nκ
2 such that

CS̃R = S̃. (4.4)

Clearly, the more we restrict the structure of S, the more freedom we have in
the structure of C. That is why we separately solve this problem for different
types of stabilizer states in the next sections. Applying the local Cliffords to the
state |ψS̃,ũ〉, by (2.20) and (2.21), the i-th copy is transformed into |ψS,R̄T ũ〉,
where the columns of R̄ ∈ Z

nκ×n
2 are columns i, κ + i, . . . , (n − 1)κ + i of R.

We will show later that all R̄ resulting from (4.4) constitute a vector space R.

Remark. To be precise, the set of all possible R̄ only approximates a vector
space. Indeed, since R is invertible, the columns of R̄ are independent, so for
instance R̄ = 0 is not allowed. However, we will show that the possibility that
an element of R is not allowed, is negligible.

Nonetheless, a problem might arise because we will see that particular lin-
ear constraints linking different columns of R̄ (resulting from simplecticity con-
straints), are not incorporated into the definition of R. However, we will cir-
cumvent this problem by showing that either



4.3. General procedure of multipartite stabilizer state hashing/breeding 89

Figure 4.1: Because all operations are local, the protocol applied on multiple
copies of a separable state is effectively two distinct protocols on the respective
separable parts.

• not all columns of R̄ are relevant at the same time (section 4.4); or

• only a fixed part of each column of R̄ is relevant (section 4.5).

3

Two things should be pointed out concerning the solution of (4.4). Firstly,
we will demand that the state we want to distill is fully entangled. This means
that there is no dichotomy of the qubits of the state such that the state is
separable with respect to this dichotomy. Otherwise, since all operations are
local, no entanglement can be created between the two parts, and the overall
protocol then really consists of two distinct protocols, as illustrated in figure 4.1.
This is an unnecessary complication. Moreover, the yield of these protocols
combined is the minimum of the respective yields.

Secondly, in some cases it is useful to consider two equivalent views of the
protocol, for reasons that will become clear later. Since the local Clifford
operations satisfying (4.4) form a group, subsequently applying such Clifford
operations locally on unmeasured qubits followed by measuring one qubit is
equivalent to applying a single Clifford operation, followed by all measurements.
Both views are illustrated in figure 4.2.

4.3.2 Information section

After the local Clifford operations, we apply measurements on mκ copies to
extract information on the unknown ũ. For each type of measurement, specified
by the tripartitionM as defined in theorem 2.22, we derive lower bounds on the
fractions m(M) of each type of measurement M that are necessary to purify

the state. Indeed, next to the possibility of our initial assumption ũ ∈ T (κ)
ǫ
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Figure 4.2: Two equivalent views of the protocol. Subsequent Clifford op-
erations (C1, C2, C3) performed on unmeasured qubits, each followed by the
measurement of a single qubit, are equivalent to performing a single Clifford
operation (C = C3C2C1) and the same measurements.

being wrong, with vanishing probability

p1 = O(κ−1ǫ−2), (4.5)

the protocol fails if some b̃ 6= ũ in T (κ)
ǫ survives the elimination process. The

lower bounds on the m(M) guarantee that the probability p2 of this event
vanishes. For both hashing and breeding, it is clear that the yield then equals
1 − m, where m is the minimal

∑

Mm(M) over all m(M) satisfying these
lower bounds.

To derive these, firstly we calculate the probability that a particular b̃ is not
eliminated by the measurement of a single copy according a given tripartition
M, which occurs when b̃ is compatible with the observed measurement outcome
(which is, by assumption, compatible with ũ). According to theorem 2.22, the
measurement of the i-th copy |ψS,R̄T ũ〉 yields vT R̄T ũ, ∀v ∈ V(M), which is a

subspace of Zn
2 . Therefore, b̃ is not eliminated when V (M)T R̄T ∆b̃ = 0, where

∆b̃ = b̃ + ũ and col[V (M)] = V(M). Fixing ∆b̃ and M thus yields a linear
function

φ : R → Z
n(M)
2 : R̄→ φ(R̄) = V (M)T R̄T ∆b̃,

where n(M) = dim[V(M)] ≤ n. We define

d(M,∆b̃) = dim[φ(R)],

the dimension of the range of φ. It follows that d(M, b̃) ≤ n(M). The best
we can do is randomly choose R̄ from R with uniform probability: then φ(M)
is uniformly distributed too, yielding maximal information. Indeed, all cosets
in R of the kernel φ have the same number of elements. Consequently, the
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probability that b̃ is not eliminated by a measurement according to M equals

2−d(M,∆b̃), which is the inverse of the number of possible values of φ(R̄).
Secondly, we calculate the probability that a particular b̃ is not eliminated

by all measurements. It is easily verified that this probability equals

∏

M

[

2−d(M,∆b̃)
]m(M)κ

= 2−κ
P

M
m(M)d(M,∆b̃),

where the product in the LHS (and sum in the RHS) runs over all possible
tripartitionsM of {1, . . . , n}.

Thirdly, we calculate an upper bound for the probability p2 that some b̃ 6= ũ
survives the entire procedure. This probability p2 is at most

∑

f 6≡0

N∗
f 2

−κ
P

M

m(M)f(M)
, (4.6)

where the sum runs over all functions f : f(M) ∈ {0, . . . , n(M)} that are not

identical to zero. N∗
f is the number of b̃ ∈ T (κ)

ǫ for which d(M,∆b̃) = f(M).

Let Nf be the number of b̃ ∈ T (κ)
ǫ for which d(M,∆b̃) ≤ f(M).

Lemma 4.3 Given natural numbers Ni that scale exponentially with κ, for i =
1, . . . , t, where t is independent of κ. Then

log2

(

t
∑

i=1

Ni

)

κ
= max

i

log2Ni

κ
+O(κ−1), for κ→∞.

Proof: We have

max
i
Ni ≤

t
∑

i=1

Ni ≤ tmax
i
Ni.

Then there exists some r such that

t
∑

i=1

Ni = rmax
i
Ni,

where 1 ≤ r ≤ t, therefore r = O(1), and lemma 4.3 follows. �

Proposition 4.4 p2 = O(2−κ1−η

) and therefore vanishes for κ → ∞ if the
following inequalities hold:

∑

M
m(M)f(M) ≥ log2Nf

κ
+O(κ−η), ∀f 6≡ 0, (4.7)

for some η < 1.
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Proof: It can be verified that the upper bound (4.6) is O(2−κ1−η

) if:

∑

M
m(M)f(M) ≥

log2N
∗
f

κ
+O(κ−η), ∀f 6≡ 0, (4.8)

and η < 1. We now prove that the inequalities (4.7) are equivalent to (4.8).
Evidently,

Nf =
∑

f ′≤f

N∗
f ′ ,

where f ′ ≤ f stands for: f ′(M) ≤ f(M), ∀M. With lemma 4.3, we have

log2Nf

κ
= max

f ′≤f

log2N
∗
f ′

κ
+O(κ−1) ≥

log2N
∗
f

κ
+O(κ−1),

so (4.7) implies (4.8). Let f ′′ = argmax
f ′≤f

N∗
f ′ . Then it follows from (4.8) that

∑

M
m(M)f(M) ≥

∑

M
m(M)f ′′(M)

≥
log2N

∗
f ′′

κ
+O(κ−η)

=
log2Nf

κ
−O(κ−1) +O(κ−η)

=
log2Nf

κ
+O(κ−η).

�

Fourthly, we calculate
log2 Nf

κ . To this end, we use the following proposition:

Proposition 4.5 Given a particular subspace J of Zn
2 , we define the set

L(J ) = {b̃ ∈ T (κ)
ǫ | ∆b̃ ∈ J ⊥ ⊗ Z

κ
2}.

Then it follows that

log2 |L(J )|
κ

= G(J ⊥) +O(ǫ) +O(κ−1 log κ),

where we define the function

G(J ⊥) = −
∑

b∈Z
n
2

p(b) log2

p(b)

p(b+ J⊥)
.

Note that G(J ⊥) equals the relative entropy H(p||q), where the probability
distribution q is defined by q(b) = p(b+ J ⊥).
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Proof: ∆b̃ ∈ J⊥ ⊗ Zκ
2 ⇔ vT ∆bi = 0, for i = 1, . . . , κ and ∀v ∈ J ⇔ bi

and ui are in the same coset of J ⊥, for i = 1, . . . , κ. Let Ωj , for j =
1, . . . , t = 2dimJ , be the cosets of J⊥ in Zn

2 . From theorem 4.2, it follows
that

log2 |L(J )|
κ

= −
∑

b∈Z
n
2

p(b) log2 p(b) +
t
∑

j=1

p(Ωj) log2 p(Ωj) + O(ǫ)
+ O(κ−1 log κ)

= −
∑

b∈Z
n
2

p(b) log2

p(b)

p(b+ J ⊥)
+O(ǫ) +O(κ−1 log κ).

�

Recall that Nf is the number of b̃ ∈ T (κ)
ǫ for which d(M,∆b̃) ≤ f(M). Let

Wf (M) be a subspace of dimension n(M)− f(M) of V(M). GivenM, we see

that d(M,∆b̃) ≤ f(M) for all ∆b̃ ∈ Znκ
2 that satisfy (R̄w)T ∆b̃ = 0, ∀R̄ ∈ R

and ∀w ∈ Wf (M). We will show in the next sections that these ∆b̃ constitute
a space J [Wf (M)]⊥⊗Zκ

2 , where J [Wf (M)] is a subspace of Zn
2 and function

of Wf (M). It follows that

Nf =

∣

∣

∣

∣

∣

∣

⋃

Wf

L
(

∑

M
J [Wf (M)]

)

∣

∣

∣

∣

∣

∣

where the union runs through all combinations of subspacesWf (M) of dimen-
sion n(M)− f(M) of V(M). The number of such subspaces is independent of
κ. Therefore, similar to lemma 4.3, we have

log2Nf

κ
=

log2 max
Wf

∣

∣

∣

∣

L
(

∑

M
J [Wf (M)]

)∣

∣

∣

∣

κ
+O(κ−1).

By proposition 4.5, it follows that

log2Nf

κ
= max

Wf

G





[

∑

M
J [Wf (M)]

]⊥

+O(ǫ) +O(κ−1 log κ). (4.9)

Finally, let for instance ǫ = O(κ−1/3) and η = 1
4 , then it follows from (4.5),

(4.9) and proposition 4.4 that

p1 = O(κ−1/3),

p2 = O(2−3κ/4),

and the total failure probability p1+p2 of the protocol vanishes for κ→∞. The
yield 1 −m is maximized by minimizing the total number of measured copies
mκ. Combining (4.9) with proposition 4.4 and neglecting vanishing terms, we
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arrive at the following linear programming (LP) problem for calculating the
optimal m:

minimize m =
∑

M
m(M)

subject to
∑

M
m(M)f(M) ≥ max

Wf

G

(

[

∑

M
J [Wf (M)]

]⊥)

, for all f 6≡ 0,

(4.10)
where, given the function f :M→ f(M), the maximum in the RHS is taken
over all combinations of subspaces Wf (M) of dimension n(M) − f(M) of
V(M).

4.4 CSS state hashing

In this section, we focus on the hashing protocol for CSS states. Although
CSS state mixtures can also be distilled by protocols for arbitrary stabilizer
states, like the stabilizer state breeding protocol of the next section, higher
yields can be achieved when exploiting the particular structure of stabilizer
states. Indeed, as already explained in the previous section, a more restricted
structure of the stabilizer generator matrix S results in more freedom in the
local Clifford operations by the constraint (4.4). In section 4.4.1, we will derive
the exact constraints on C that result from (4.4) and the corresponding space
R. Then, in section 4.4.2, we calculate the space J [Wf (M)] ⊗ Zκ

2 of states

∆b̃ that satisfy (R̄w)T ∆b̃ = 0, ∀R̄ ∈ R and ∀w ∈ Wf (M) for the particular
case of CSS states, necessary to derive the LP problem to find the yield of the
protocol. Finally, in section 4.4.3, we illustrate this with two examples.

4.4.1 Operation section

The stabilizer generator matrix of a CSS state is of the form (2.33). To check
whether it represents a fully entangled state, as required from section 4.3.1, we
have the following proposition:

Proposition 4.6 A CSS state with generator matrix given by (2.33) is sep-
arable if and only if there exists some permutation matrix Π ∈ Z

n×n
2 and an

invertible matrix R ∈ Z
nz×nz

2 such that

ΠSzR =

[

S′
z 0
0 S′′

z

]

,

where S′
z ∈ Z

n′×n′

z

2 , S′′
z ∈ Z

n′′×n′′

z

2 and 0 < n′
z < nz. This also holds when using

Sx instead of Sz.

Proof: Recall that the CSS state is already entirely defined by Sz, as ST
z Sx =

0. Since Sz is full rank, also S′
z and S′′

z are full rank, and it is possible to find
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S′
x ∈ Z

n′×(n′−n′

z)
2 and S′′

x ∈ Z
n′′×(n′′−n′′

z )
2 such that S′

z
T
S′

x = 0 and S′′
z

T
S′′

x = 0.
The stabilizer that results from the qubit permutation Π is represented by









S′
z 0 0 0

0 0 S′′
z 0

0 S′
x 0 0

0 0 0 S′′
x









,

and is thus separable by proposition 2.16. �

By proposition 2.27, the CSS state under consideration is represented by

Sz =

[

Inz

θ

]

and Sx =

[

θT

Inx

]

, (4.11)

up to a permutation of the n qubits. Let

Ãz =







A1

. . .

Anz






, Ãx =







Anz+1

. . .

An






.

Using analogous definitions for B̃z, B̃x, C̃z, C̃x, D̃z and D̃x, we arrive at the
following theorem:

Theorem 4.7 Local Clifford operations represented by C, given by (2.22), sat-
isfy (4.4) when applied on a CSS state, if and only if

A1 = · · · = An, i.e. Ã = In ⊗A1, (4.12)

D1 = · · · = Dn, i.e. D̃ = In ⊗D1, (4.13)

(

[

θ Inx

LT
θT 0

]

⊗ Iκ)







B1

...
Bn






= 0, (4.14)

(

[

Inz
θT

0 LT
θ

]

⊗ Iκ)







C1

...
Cn






= 0. (4.15)

where the nx-bit columns of Lθ are θi ⊙ θj ∀i, j : 1 ≤ i < j ≤ nz, and an
analogous definition holds for LθT .

We distinguish two cases:

(i) θ is orthogonal:

Then col (Sz) = col (Sx), and (4.14)-(4.15) is equivalent to:

B1 = · · · = Bn, i.e. B̃ = In ⊗B1,

C1 = · · · = Cn, i.e. C̃ = In ⊗ C1.
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(ii) θ is not orthogonal:

Then, for all solutions to (4.12)-(4.15), Bi = 0, ∀i ∈ ZB, and Ci =
0, ∀i ∈ ZC, where ZB, ZC ⊆ {1, . . . , n} and ZB ∪ ZC = {1, . . . , n}.
Furthermore, D1 = A−T

1 , and AT
1 Ci and A−1

1 Bi are symmetric, for i =
1, . . . , n.

Proof: With (4.11), the LHS of (4.4) becomes









Ãz 0 B̃z 0

0 Ãx 0 B̃x

C̃z 0 D̃z 0

0 C̃x 0 D̃x

















Inz
⊗ Iκ 0

θ ⊗ Iκ 0
0 θT ⊗ Iκ
0 Inx

⊗ Iκ









R =









Ãz B̃z(θ
T ⊗ Iκ)

Ãx(θ ⊗ Iκ) B̃x

C̃z D̃z(θ
T ⊗ Iκ)

C̃x(θ ⊗ Iκ) D̃x









R.

We can write this as two separate equations:

[

Ãz B̃z(θ
T ⊗ Iκ)

C̃x(θ ⊗ Iκ) D̃x

]

R = Inκ (4.16)

[

C̃z D̃z(θ
T ⊗ Iκ)

Ãx(θ ⊗ Iκ) B̃x

]

R =

[

0 θT ⊗ Iκ
θ ⊗ Iκ 0

]

.

Eliminating R, we arrive at

[

0 θT ⊗ Iκ
θ ⊗ Iκ 0

] [

Ãz B̃z(θ
T ⊗ Iκ)

C̃x(θ ⊗ Iκ) D̃x

]

=

[

C̃z D̃z(θ
T ⊗ Iκ)

Ãx(θ ⊗ Iκ) B̃x

]

,

which is a necessary and sufficient condition for the existence of an R such that
(4.4) holds. Blockwise comparison of both sides yields the following equations

(θ ⊗ Iκ)Ãz = Ãx(θ ⊗ Iκ), (4.17)

(θT ⊗ Iκ)D̃x = D̃z(θ
T ⊗ Iκ), (4.18)

(θ ⊗ Iκ)B̃z(θ
T ⊗ Iκ) = B̃x, (4.19)

(θT ⊗ Iκ)C̃x(θ ⊗ Iκ) = C̃z . (4.20)

We show that (4.12) follows from (4.17). Comparing each corresponding
block on both sides of (4.17) yields:

Aj = Anz+i if θij = 1, for i = 1, . . . , nx and for j = 1, . . . , nz.
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From this, it is clear that all Ai, for i = 1, . . . , n, must be equal. If not, it is
possible to divide {1, . . . , n} into two disjunct non-empty subsets ω1 and ω2 for
which θij = 0 if nz + i ∈ ω1 and j ∈ ω2 or vice versa. We could permute rows
and columns of θ such that the resulting θ′ = ΠrθΠc has all rows i1 for which
nz + i1 ∈ ω1 above rows i2 for which nz + i2 ∈ ω2, and all columns j1 for which
j1 ∈ ω1 on the left of columns j2 for which j2 ∈ ω2. We then have

[

ΠT
c 0
0 Πr

] [

I
θ

]

Πc =

[

I
θ′

]

=









I 0
0 I
· 0
0 ·









.

By proposition 4.6, this represents a separable CSS state, which we excluded
from the beginning. An analogous proof holds for (4.13).

One can verify that (4.19) is equivalent to

(ST
x ⊗ Iκ)B̃(Sx ⊗ Iκ) = 0.

Since B̃ is block diagonal, we can rewrite this as the linear constraints

(

LT
x ⊗ Iκ

)







B1

...
Bn






= 0,

where the n-bit columns of Lx are (Sx)i ⊙ (Sx)j ∀i, j : 1 ≤ i ≤ j ≤ nz. These
constraints are equivalent to (4.14). An analogous proof holds for (4.15). As
the constraints (4.19)-(4.20) are independent, all solutions B̃ must be consistent
with all solutions C̃. From (4.19)-(4.20), it follows that

(θ ⊗ Iκ)B̃zC̃z = (θ ⊗ Iκ)B̃z(θ
T ⊗ Iκ)C̃x(θ ⊗ Iκ)

= B̃xC̃x(θ ⊗ Iκ).

In the same way as (4.12) follows from (4.17), this implies B1C1 = · · · = BnCn.
If BiCi = 0, then Bi = 0 or Ci = 0. Indeed, given a particular i, suppose

Bi 6= 0. Then ei 6∈ col (Lx). Consequently, there exists some solution u ∈ Zn
2

to LT
x u = 0 with ui = 1. Note that u ⊗ Iκ is a solution to (4.14). It follows

that BiCi = IκCi = 0. From the simplecticity constraint (2.23) it then follows
that D1 = A−T

1 , and AT
1 Ci and A−1

1 Bi are symmetric, for i = 1, . . . , n.
On the other hand, if BiCi 6= 0, for all i, then there exists a solution u

to LT
x u = 0 with ui = uj = 1, for any pair i, j. Indeed, there are solutions

u, v ∈ Zn
2 with ui = 1 and vj = 1, so if uj = vi = 0, then u+v is a solution with

(u+ v)i = (u+ v)j = 1. Thus, for every i and j, we have a solution B̃ to (4.14)

with Bi = Bj = Iκ that must be consistent with all solutions C̃. Therefore,
C1 = · · · = Cn. The same applies to the Bi.

It remains for us to prove that BiCi 6= 0 only if col (Sz) = col (Sx). From
B1 = · · · = Bn, it follows that the space col (Lx) consists of all vectors of even
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weight. It cannot contain any vector of odd weight, otherwise it would be the
entire space Zn

2 and consequently Ci = 0. The same holds for col (Lz), and both
spaces are equal. So all (Sx)i⊙ (Sx)j and (Sz)i⊙ (Sz)j must have even weight.
With (4.11), it can be verified that this only holds if θT

i θj = (θT )T
i (θT )j = δij .

This is equivalent to θT θ = θθT = I. Consequently, Sz = Sxθ and col (Sz) =
col (Sx). �

In the following, we agree that Sz and Sx are of the form (4.11), except when
θ is orthogonal. Then we take Sx = Sz instead. Since such states are invariant
under the simultaneous application of a local Hadamard on every qubit, they
are occasionally referred to as CSS-H states [38].

Corollary 4.8 (i) For orthogonal θ:

R =

[

In/2 ⊗DT
1 In/2 ⊗BT

1

In/2 ⊗ CT
1 In/2 ⊗AT

1

]

.

(ii) For non-orthogonal θ:

R =

[

Inz
⊗A−1

1 B̃T
z (θT ⊗ Iκ)

C̃T
x (θ ⊗ Iκ) Inx

⊗AT
1

]

.

Proof: Case (i) follows from (4.4) and the simplecticity constraints (2.23).
Case (ii) can be verified by substituting R in (4.16) and using (4.19)-(4.20). �

We show that all possible R̄ ∈ Z
nκ×n
2 , of which the columns are columns

i, κ + i, . . . , (n − 1)κ + i of R, constitute a vector space R, as claimed in sec-
tion 4.3.1. For case (i), R̄ is of the form

[

In/2 ⊗ d In/2 ⊗ b
In/2 ⊗ c In/2 ⊗ a

]

, (4.21)

where a, b, c, d ∈ Zκ
2 . Clearly, the sum of matrices of this form is again of this

form. For case (ii), one can verify that R̄ is of the form

[

Inz
⊗ d (θT ⊗ e)⊙ (beT )

(θ ⊗ e)⊙ (ceT ) Inz
⊗ a

]

, (4.22)

where a, d ∈ Zκ
2 , the all-ones vectors e have the appropriate dimensions, and

b, c ∈ Z
nκ
2 satisfy:

(LT
θT ⊗ Iκ)b = 0,

(LT
θ ⊗ Iκ)c = 0,

so the b and c respectively constitute a vector space. Therefore, the sum of
matrices of this form is again of this form. One could object that a, d are
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columns of invertible matrices, and therefore cannot be zero, but the effect of
this possibility is negligible (cf. the remark in section 4.3.1).

Remark. This reasoning certainly holds when considering the measurement
of only one copy. One can see that it also applies to more measurements, when
interpreting the protocol as in the left of figure 4.2 (cf. section 4.3.1). After t

measurements, we consider R̄ ∈ Z
n(κ−t)×n
2 for the next measurement. This is

the same situation as in the beginning, but on κ − t copies instead of κ, and
the R̄ still constitute a vector space. 3

4.4.2 Information section

For the particular case of a CSS state, by theorem 2.22, measuring σz on
every qubit of the state |ψS,b〉 yields bi for i = 1, . . . , nz and measuring σx

on every qubit yields bi for i = nz + 1, . . . , n. Although there are definitely
other tripartitions M along which information on the state can be extracted,
we will restrict ourselves to exclusively σz or σx measurements, since these are
expected to have the highest information gain, i.e. nz and nx bits respectively.
Note that these correspond to tripartitionsM:

X = ∅, Y = ∅, Z = {1, . . . , n} , or
X = {1, . . . , n} , Y = ∅, Z = ∅,

respectively. In the following, we reason in terms of σz measurements, but the
same derivation also applies to σx measurements. We use the subscript ‘z’ and
omit ‘M’.

4.4.2.1 Non-orthogonal θ

Local σz measurements on one copy yield R̄z∆b̃, where R̄z is the leftmost n×nz

part of R̄. It is easily verified from (4.22) that

R̄zw =

[

w ⊗ d
(θw ⊗ e)⊙ c

]

.

If (R̄zw)T ∆b̃ = 0 for all possible R̄z and w ∈ Wfz
, an (nz − fz)-dimensional

subspace of Z
nz

2 , then dz(∆b̃) ≤ fz. As d and c are independent, this is equiv-
alent to

(

[

w 0
0 θw ⊙ v

]T

⊗ Iκ
)

∆b̃ = 0, ∀v ∈ col (Lθ)
⊥

and ∀w ∈ Wfz
.

Defining matrices Wfz
and Mθ such that col (Wfz

) = Wfz
and col (Mθ) =

col (Lθ)
⊥

, it follows that ∆b̃ ∈ J (Wfz
)⊥ ⊗ Zκ

2 , where

J (Wfz
) = col

([

Wfz
0

0
(

θWfz
⊗ eT

)

⊙
(

eT ⊗Mθ

)

])

. (4.23)
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Note that (U ⊗ eT ) ⊙ (eT ⊗ V ) for matrices U and V is just a tricky way to
express the matrix with columns Ui ⊙ Vj , ∀i, j. Similarly, we have

J (Wfx
) = col

([

0
(

θTWfx
⊗ eT

)

⊙
(

eT ⊗MθT

)

Wfx
0

])

. (4.24)

Now these spaces are defined, we can solve the LP problem (4.10) to find the
yield of the protocol.

4.4.2.2 Orthogonal θ (CSS-H states)

For orthogonal θ, the derivation is much easier, and one can verify from (4.21)
that

J (Wfz
) =Wfz

⊕Wfz
and J (Wfx

) =Wfx
⊕Wfx

. (4.25)

Since the RHS of (4.10) is a function of J (Wfz
) +J (Wfx

), which remains the
same if Wfz

and Wfx
are switched, it follows that there is always a solution

to the LP problem for which mz = mx. Indeed, for each constraint there is
a constraint with the same RHS and the coefficients of mz and mx switched.
The constraints of the LP problem become

(fz + fx)
m

2
≥ max

W⊥

fz
,W⊥

fx

G
[(

W⊥
fz
∩W⊥

fx

)

⊕
(

W⊥
fz
∩W⊥

fx

)]

,

whereW⊥
fz

andW⊥
fx

are respectively fz- and fx-dimensional subspaces of Z
n/2
2 .

From the definition of G in proposition 4.5, it is clear that G(K1) ≤ G(K2)
if K1 ⊆ K2. Therefore, given fz and fx, the maximal G(·) will be reached
for W⊥

fz
⊆ W⊥

fx
or W⊥

fx
⊆ W⊥

fz
. Since the largest of the two spaces does not

influence this maximum, only the constraints for which fz = fx can be active.
Consequently, the LP problem for CSS-H states becomes a simple equation,
and the yield of the protocol is

1− max
K6={0}

G (K ⊕K)

dim(K)
, (4.26)

where the maximum is taken over all nonzero subspaces K of Z
n/2
2 .

4.4.2.3 Constant elimination probability

To derive an upper bound for p2 in section 4.3.2, firstly we calculated the
probability that b̃ is not eliminated by the measurement on a single copy, which

is 2−d(M,∆b̃). We then assumed the same probability for all next measurements
of the same kind. However, for every next measurement, we cannot choose just
any R̄ from R because of the simplecticity constraints (2.23). Although (2.23)
are constraints on the columns of A1, B1, Ci and Di, for i = 1, . . . , n, one can
verify that from the simplecticity of C−1 = PCTP , it follows that

CiD
T
1 = D1C

T
i ,



4.4. CSS state hashing 101

BiA
T
1 = A1B

T
i , (4.27)

D1A
T
1 + CiB

T
i = Iκ,

which are constraints on the rows of A1, B1, Ci and Di, and therefore on R̄.
This is the problem addressed in the remark in section 4.3.1.

Apparently, this reasoning only holds when taking the second of two equiv-
alent views of the protocol, as explained in section 4.3.1 (i.e. the right of fig-
ure 4.2). Yet, the problem remains in the first view. Indeed, the measurement
of one copy only partially reveals R̄∆ũ and the other part is lost.4 It is pos-
sible that because of this loss, the resulting R′T b̃, representing the state of
the remaining κ − 1 copies, satisfies dz(R

′T b̃) < dz(b̃) or dx(R′T b̃) < dx(b̃),

where R′ ∈ Z
nκ×n(κ−1)
2 is R without the columns of R̄. As a consequence, the

probability that b̃ is not eliminated after the protocol has ended, is larger than

2−κ[mzdz(∆b̃)+mxdx(∆b̃)].

But, when taking a closer look at the constraints (4.27), we can interpret
them as restricting corresponding columns of either Rz or Rx. Indeed, we have
for instance (CT

i )T
j (DT

1 )k = (CT
i )T

k (DT
1 )j , so for fixed (CT

i )j and (DT
1 )j , we

can always randomly choose (CT
i )k and choose (DT

1 )k such that the constraint
holds, and vice versa. (CT

i )k and (DT
1 )k are part of Rz and Rx respectively,

and either one of those is relevant for the measurement under consideration.
Therefore, the elimination probability does remain constant throughout the
entire protocol.

4.4.3 Illustration with cat states and a CSS-H state

4.4.3.1 Cat state distillation

In section 2.5.5, we found that the cat state

1√
2
(|00 . . .0〉+ |11 . . .1〉)

is the CSS state that is represented by (2.34), which corresponds to non-
orthogonal θ = eT , and b = 0. It is symmetric over all qubits and by applying
local Hadamards on all qubits save one, we arrive at the two-colorable graph
state of which the graph, for four qubits, is shown in figure 4.3.5

We find

col (Lθ) = Z
1
2 and col (LθT ) = {0n−1},

4This is a manifestation of the ‘impossibility’ of measuring those observables that do not
commute with the ones already measured.

5Although this graph is not symmetric over all vertices, one can verify that local comple-
mentation at the central vertex, which is physically achieved by applying the inverse phase
gate on this qubit and the phase gate on the others, results in the fully-connected graph,
which is symmetric.
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Figure 4.3: This graph represents the graph state we obtain by applying lo-
cal Hadamards on all qubits of the four-qubit cat state except the one that
corresponds to the central vertex.

where 0n−1 denotes the all-zeros vector of length n− 1. Consequently, Mθ = 0
and MθT = In−1. The linear constraints (4.14)-(4.15) become

B1 +B2 + · · ·+Bn = 0,
C1 = C2 = · · · = Cn = 0,

so the representation of local Clifford operations that satisfy (4.4) is of the form






























A1 B1

. . .
. . .

A1 Bn−1

A1

∑n−1
i=1 Bi

A−T
1

. . .

A−T
1

A−T
1































(4.28)

and R is of the form












A−1
1 BT

1

. . .
...

A−1
1 BT

n−1

AT
1













, (4.29)

according to corollary 4.8.
We formulate the LP problem to calculate the yield of the protocol. Initially,

the four parties share κ copies of the state

ρ =
∑

b∈Z
n
2

p(b) |ψb〉 〈ψb| ,
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where |ψb〉 = 1√
2
(|b1〉 . . . |bn−1〉 |0〉 + (−1)bn |1 + b1〉 . . . |1 + bn−1〉 |1〉). Using

(4.23), one can verify that

J (Wfz
) =Wfz

⊕ {0}.

Since nx = 1, fx is either 0 or 1, for which the corresponding spaces can be only
Wfx

= Z2 andWfx
= {0} respectively. From (4.24), it follows that J (Z2) = Zn

2

and J ({0}) = {0n}. Consequently, if fx = 0, then
∑

M J [Wf (M)] = Z
n
2 , for

all fz, and the RHS of the corresponding inequalities in (4.10) is zero, yielding
the inequality

mz ≥ 0. (4.30)

On the other hand, if fx = 1, then J =
∑

M J [Wf (M)] =Wfz
⊕ {0}, and it

follows that J⊥ =W⊥
fz
⊕ Z2. The inequalities of (4.10) become

fzmz +mx ≥ max
W⊥

fz



−
∑

b∈Z
n
2

p(b) log2

p(b)

p(b+W⊥
fz
⊕ Z2)



 , (4.31)

where the maximum is taken over all different fz-dimensional subspaces W⊥
fz

of Z
n−1
2 . For fz = 0 and fz = n− 1, these inequalities can be simplified to

mx ≥ −
∑

b∈Z
n
2

p(b) log2

p(b)

p(b) + p(b+ en)
, (4.32)

(n− 1)mz +mx ≥ −
∑

b∈Z
n
2

p(b) log2 p(b). (4.33)

The LP problem is thus minimizing mz +mx subject to the constraints (4.30),
(4.31) for fz 6= 0 or n− 1, (4.32) and (4.33), and the yield is 1−mz −mx.

In comparison, protocols requiring that the fraction of measured copies
exceeds the respective marginal entropies [3, 63], have yield

1− max
j=1,...,n−1

[H(bj)]−H(bn). (4.34)

When these marginal entropies are relaxed to conditional entropies [19], the
yield is

max
{

1− max
j=1,...,n−1

[H(bj)]−H(bn|b1, . . . , bn−1),

1− max
j=1,...,n−1

[H(bj |bn)]−H(bn)
}

.

(4.35)

Let us take a typical situation for numerically verifying that our protocol has
a higher yield than (4.34) or (4.35). We start with copies of the four-qubit cat
state |ψ0〉, prepared by one party. It does not matter which party this is, since
the state is symmetric. Let us take the first. The second, third and fourth
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qubit of each copy is sent through identical depolarizing channels with fidelity
F to the corresponding parties. The action of each channel is

ρ → Fρ+
1− F

3
(σxρσx + σyρσy + σzρσz).

It can be verified that this yields a mixture with probabilities
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Note that for calculating the RHS of constraint (4.31) for fz = 1 or 2, we have
to maximize over seven subspaces. The yield of our protocol for this example
is plotted as a function of the fidelity F of the channels in figure 4.4, compared
with (4.34) and (4.35).

Remark. One can observe that this yield is lower than the yield of bipartite
hashing for Werner states (H in figure 3.1 on page 47). A just criticism to
the given example would be that it is better to use the channels to distribute
and distill ebits between the first party and all others, and subsequently tele-
porting the respective qubits of each copy from the first party to the others.
However, in our treatment, we consider the yield to be a state characteristic,
since we are dealing with distillation, i.e. the extraction of pure state copies
by LOCC out of copies of a given mixed state (e.g. after distribution), and
not necessarily the best way to organize the overall procedure of distribution
and distillation of these copies. Surely, the latter is also of importance (for
practical purposes), but would lead us into a completely different (and much
more heuristic) analysis [59], and we decided not to pursue this track.

Still, one might suggest distilling ebits out of the copies of the given mixed
state, and using those for teleportation. For this cat state example, the best
option is measuring σx on the third and fourth qubit of a copy, yielding a
Bell-diagonal state ρ12 between the first and second party. The same can be
done between the first and the third party, and between the first and the fourth
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Figure 4.4: The yield of our protocol (solid line) for the given cat state example
as a function of the channel fidelity F , compared with (4.34) (dotted line) and
(4.35) (dashed line).
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party, on other copies. The copies of ρ12, ρ13 and ρ14 obtained in this way, are
subsequently distilled into ebits. Then, the first party creates more pure cat
state copies and teleports the respective qubits to the others. Note that the
yield of this procedure is at most one third of the best bipartite protocol for ρ12,
since three ebits are needed for teleporting a pure cat state copy. Therefore, at
least for F > 0.9, this suggestion is worse than direct distillation of the mixed
state copies. 3

Remark. One could wonder whether we actually gain anything by using local
Clifford operations of the general form (4.28) instead of local Clifford operations
built only of CNOTs. For the particular case of cat states (and cat states only),
in fact, we do not. We prove this for the general n-qubit case. When using
only CNOTs, the matrix R is, contrary to (4.29), of the form













A−1
1

. . .

A−1
1

AT
1













.

It follows that for all fz, the J (Wfz
) remain the same. For fx = 1, we still

have J (Wfx
) = {0n}, but for fx = 0, we now have J (Wfx

) = col (en) instead
of Z

n
2 . As a consequence, the inequalities (4.30) are to be replaced by

fzmz ≥ max
W⊥

fz



−
∑

b∈Z
n
2

p(b) log2

p(b)

p(b+W⊥
fz
⊕ {0})



 , (4.36)

for fz = 1, . . . , n− 1. The inequalities (4.31) remain the same. We now show
that the inequalities (4.30)-(4.31) imply (4.36), such that the solution to the LP
problem, and consequently the yield, is unaltered. To this end, it is a crucial
observation from the geometry of the LP problem (shown in figure 4.5) that
there is always a solution for which the inequality (4.32) is an active constraint.6

By subtracting the RHS of (4.32) from the RHS of (4.31), we arrive at

fzmz ≥ max
W⊥

fz



−
∑

b∈Z
n
2

p(b) log2

p(b) + p(b+ en)

p(b +W⊥
fz
⊕ Z2)



 .

This inequality implies (4.36) if the argument of the maximum in the RHS
is larger than the argument of the maximum in the RHS of (4.36), for all
appropriate spaces W⊥

fz
. Subtracting the latter from the former gives

−
∑

b∈Z
n
2

p(b) log2

p(b+W⊥
fz
⊕ {0})

p(b+W⊥
fz
⊕ Z2)

+
∑

b∈Z
n
2

p(b) log2

p(b)

p(b) + p(b+ en)
= T1 − T2.

6This means that the constraint is tight for this solution.
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Figure 4.5: All constraints are of the form fzmz + fxmx ≥ ∗, where fz ≥ 0 and
0 ≤ fx ≤ 1. Therefore, except (4.32), which has a horizontal boundary, there
is no constraint of which the boundary (solid lines) has a slope higher than −1.
Since the lines of constant objective function mz +mx (dashed line) have slope
−1, there must be a solution (circle) that lies on the boundary of (4.32).
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We prove that T1 ≥ T2. We define Ωj , for j = 1, . . . , t, as the cosets ofW⊥
fz
⊕{0}

in Z
n−1
2 ⊕ {0} and the functions q(b) = p(b) + p(b+ en) and p′(b) = p(b)/q(b).

We then have

T1 = −
t
∑

j=1

p(Ωj) log2

p(Ωj)

q(Ωj)
+ p(Ωj + en) log2

p(Ωj + en)

q(Ωj)

=
t
∑

j=1

q(Ωj)
(

− p′(Ωj) log2 p
′(Ωj)− [1− p′(Ωj)] log2[1− p′(Ωj)]

)

=

t
∑

j=1

q(Ωj)h
(

p′(Ωj), 1− p′(Ωj)
)

=

t
∑

j=1

q(Ωj)h

(
∑

b∈Ωj
q(b)p′(b)

∑

b∈Ωj
q(b)

, 1−
∑

b∈Ωj
q(b)p′(b)

∑

b∈Ωj
q(b)

)

≥
t
∑

j=1

q(Ωj)

∑

b∈Ωj
q(b)h

(

p′(b), 1− p′(b)
)

∑

b∈Ωj
q(b)

=

t
∑

j=1

∑

b∈Ωj

q(b)h
(

p′(b), 1− p′(b)
)

=
∑

b∈Z
n−1
2 ⊕{0}

q(b)
(

− p′(b) log2 p
′(b)− [1− p′(b)] log2[1− p′(b)]

)

= −
∑

b∈Z
n
2

p(b) log2 p
′(b) = T2,

where h(p, 1−p) is the binary entropy function, defined by (3.5). The inequality
on the fifth line follows from the concavity7 of h(p, 1− p), which can be clearly
seen in figure 3.5 on page 61.

Note that the above arguing only holds because the coefficient of mx in the
LP constraints can be only 0 or 1. One can verify that the cat state (and all
states local Clifford equivalent with it) is the only fully entangled CSS state
with this property. In the next section, we give an example of a state for which
using the most general local Clifford operations does give a higher yield. 3

4.4.3.2 CSS-H state distillation

Recall from section 4.4.1 that CSS-H states can be written in the form (4.11)
with an orthogonal θ. These states only exist on an even number of qubits.
The Bell states are an example of CSS-H states, and one can verify that the

7A function f is concave if f(
P

i
pixi) ≥

P

i
pif(xi), ∀xi ∈ dom(f) and ∀pi ≥ 0 that

satisfy
P

i
pi = 1.
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Figure 4.6: The graph corresponding to the cube state that is local Hadamard
equivalent to the eight-qubit CSS-H state.

next CSS-H state that is not a tensor product of Bell states (and the only one
on eight qubits), is the state corresponding to

θ =









0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0









.

This CSS-H state is local Hadamard equivalent to the graph state that corre-
sponds to the graph of figure 4.6. For obvious reasons, we will refer to this
graph state as the cube state.

We show that for this state it is better that all parties respectively perform
the same random Clifford operation, as allowed by theorem 4.7, instead of a
local Clifford operation built only of CNOTs. In the former case, the yield is
given by (4.26). For the latter case, we have

J (Wfz
) =Wfz

⊕ {0n/2} and J (Wfx
) = {0n/2} ⊕Wfx

,

instead of (4.25), and the LP problem is

minimize m = mz +mx

subject to fzmz + fxmx ≥ max
W⊥

fz
,W⊥

fx

G
(

W⊥
fz
⊕W⊥

fx

)

, for all f 6≡ 0,

where the maximum is respectively taken over all fz- and fx-dimensional sub-

spaces W⊥
fz

and W⊥
fx

of Z
n/2
2 .

We consider the following situation. The first party prepares pure copies
of the cube state, and sends qubits 2, . . . , 8, of each copy to parties 2, . . . , 8,
respectively. The qubits are sent via identical quantum channels that cause a
phase flip with probability 1− F . The action of each channel is

ρ → Fρ+ (1 − F )σzρσz.
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Figure 4.7: The yield of our protocol (solid line) for the given cube state
example as a function of the channel fidelity F , compared with the yield when
using only CNOTs (dashed line).

Equivalently, the parties share the eight-qubit CSS-H state that has undergone
σz on the qubits of which the vertices are not connected to the first, and σx

on the other qubits, each with probability 1− F . The yield of the distillation
protocol, compared to the yield when using only CNOTs, is plotted in figure 4.7.

4.5 Graph state breeding

In this section, we consider the distillation of arbitrary graph states. Recall
from section 2.5.5 that any stabilizer state is local Clifford equivalent to some
graph state. Therefore, our protocol is applicable to copies of any stabilizer
state. Contrary to CSS states, the general structure of an arbitrary graph
state does not allow for much freedom in the choice of local Clifford operations
satisfying (4.4). Therefore, in the operation section 4.5.1, we will not so much
be concerned with the derivation of their most general structure, as this will be
rather simple compared to the CSS state case, but with ways for guaranteeing
the randomness of the parity checks, despite the severe constraints on the
structure of the local Clifford operations. For this reason, we have chosen a
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breeding-like approach instead of hashing. The information section 4.5.2, on
the other hand, is straightforward. In section 4.5.3, we illustrate this for the
five-qubit ring state.

4.5.1 Operation section

We consider κ copies of a graph state, corresponding to the graph with ad-
jacency matrix Γ ∈ Z

n×n
2 . According to (2.24) and (2.32), the copies are

represented by
[

Γ
In

]

⊗ Iκ.

Since arbitrary graph states include CSS states, up to local Hadamards, the lo-
cal Clifford operations satisfying (4.4) will certainly also satisfy the constraints
of theorem 4.7. Therefore, it holds that

A1 = · · · = An,
B1 = · · · = Bn = 0,
C1 = · · · = Cn = 0,

D1 = · · · = Dn = A−T
1 .

The generator matrix of the copies is transformed into

[

Γ⊗A1

In ⊗A−T
1

]

.

From (4.4), it follows that (Γ ⊗ A1)R = Γ ⊗ Iκ and (In ⊗ A−T
1 )R = In ⊗ Iκ.

Consequently, A1 must be orthogonal and R = In ⊗AT
1 .

Remark. For particular graph states, more general local Clifford operations
may exist that satisfy (4.4). However, even if so, it is unlikely that they give
rise to better yields (cf. the cat state case). 3

Remark. Note that it is no longer necessary to restrict ourselves to graph
states. Indeed, for an arbitrary stabilizer state with stabilizer matrix S, we
have

C(S ⊗ Iκ)R =

[

In ⊗A1

In ⊗A1

] [

Sz ⊗ Iκ
Sx ⊗ Iκ

]

(In ⊗AT
1 ) = S ⊗ Iκ.

3

The orthogonality of A1 puts a severe constraint on its rows and columns,
jeopardizing the possibility of creating true randomness in the parity checks
that constitute the distillation protocol (cf. the remark in section 4.3.1). This
problem can be circumvented by demanding that only a part of the columns of
A1 need to be random. This is the case when we use a breeding-like approach,
where no information is to be extracted from appended (predistilled) pure state
copies, on which the measurements are performed. Let Q be a random full
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rank matrix in Z
κ×mκ
2 . We prove that one can always construct an orthogonal

A1 ∈ Z
(1+m)κ×(1+m)κ
2 with lower left part Q′T , where Q′ is either equal to Q or

equivalent to Q for the protocol. To this end, we need the following theorems:

Theorem 4.9 Any symmetric matrix W ∈ Z
n×n
2 of rank r can be factorized

as follows:

W = RDRT ,

where R is invertible and

(i) D =





Ir/2 ⊗
[

0 1
1 0

]

0



 if diag(W ) = 0,

(ii) D =

[

Ir
0

]

if diag(W ) 6= 0.

Proof: We prove that if the theorem is true for all n ≤ N , it also holds for
n = N + 1. Note that the theorem is trivial for zero matrices, as 0 = R0RT ,
and matrices of zero dimension.

(i) Without loss of generality, we may consider (nonzero) W ∈ Z
(N+1)×(N+1)
2

of the following form:

W =





0 1 aT

1 0 bT

a b W2



 ,

where a, b,W2 have appropriate dimensions and diag(W2) = 0. Indeed,
note that identical permutations of rows and columns of W are for free,
as they can be absorbed into R as follows:

ΠWΠT = RDRT ⇒W = (ΠTR)D(ΠTR)T .

Since W2 + abT + baT has zero diagonal and is an (N − 1) × (N − 1)
matrix, we can write

W2 + abT + baT = R2D2R
T
2 .

It follows that

W = RDRT =





1 0 0
0 1 0
b a R2









0 1 0
1 0 0
0 0 D2









1 0 bT

0 1 aT

0 0 RT
2



 .

By construction, R is invertible because so is R2.
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(ii) Again, without loss of generality, we may consider W of the form:

W =

[

1 aT

a W2

]

.

We can write
W2 + aaT = R2D2R

T
2 ,

where D2 is either (i) or (ii). It follows that

W = RDRT =

[

1 0
a R2

] [

1 0
0 D2

] [

1 aT

0 RT
2

]

.

If D2 is of the form (i), it can be brought to (ii), by using the identity





1 0 0
0 0 1
0 1 0



 = V V T , with V =





1 1 1
1 1 0
1 0 1



 .

�

Corollary 4.10 If and only if a given symmetric matrix W ∈ Z
n×n
2 is not

both full rank and zero-diagonal, we can find square M such that W = MTM .

Proof: Using theorem 4.9, we have W = RDRT . If D is of the form (ii), we
take M equal to RT with the rightmost n − r columns set to zero. If D is of
the form (i) and not full rank, we can find U such that D = UTU , by using
the identity





0 1 0
1 0 0
0 0 0



 = V TV, with V =





1 0 0
1 1 0
0 1 0



 .

Then take M equal to URT with the rightmost n− r columns set to zero.
Finally, we show that if W is full rank and zero-diagonal, there is no M

satisfying MTM = W . An equivalent statement is that there exists no square
M such that

MTM = D = I ⊗
[

0 1
1 0

]

.

Suppose there was. As xTDx = 0 for all x, MTM = D implies that yT y = 0
for all y = Mx. Consequently, M cannot be full rank. But then MTM = D
cannot be true, as D is full rank. �

Theorem 4.11 A matrix W ∈ Z
n×r
2 can be extended to an orthogonal matrix

W̄ ∈ Z
n×n
2 by adding columns, if and only if

• WTW = Ir,
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• e 6∈ col (W ).

Proof: Define a full rank matrix Y ∈ Z
n×(n−r)
2 such that WTY = 0. By

theorem 4.9, we can find R and D such that Y TY = RDRT . For now, we
assume that Y TY is full rank. As e 6∈ col (W ), we know that D = In−r.
Otherwise diag(Y TY ) = 0 ⇒ Y T

i Yi = 0, ∀i. Equivalently, we have yT
i e =

0, ∀i ⇒ Y T e = 0, which contradicts e 6∈ col (W ). Let Z = Y R−T , then
W̄ = [W Z] is orthogonal. Indeed, ZTW = R−1Y TW = 0 and ZTZ =
R−1Y TY R−T = D = I.

It remains for us to prove that Y TY is full rank. If not, then there exists
some x 6= 0 that satisfies Y TY x = 0. By definition of Y , it follows that
Y x ∈ col (W ) ⇒ Y x = Wz for some z 6= 0. But then WTWz = WTY x = 0,
which contradicts WTW = I. �

We now show, for a given full rank κ×mκ matrix Q, how to construct an
orthogonal (1 +m)κ × (1 +m)κ matrix A1 with lower left part equal to Q′T ,
where Q′ is either equal to Q or equivalent to Q for the protocol. We apply
the following procedure:

1) find square matrix M such that MTM = I +QTQ;

2) create orthogonal AT
1 by adding columns to the left of

W =

[

Q
M

]

.

By corollary 4.10, step (1) is possible provided that I +QTQ is not both full
rank and zero diagonal. In that case, this can be solved by adding just one
column to Q, as the resulting matrix Q′ then has an odd number of columns.
Consequently, we will have one extra copy measured, but as κ is large, this will
not influence the yield.

By theorem 4.11, step (2) is possible provided that e 6∈ col (W ). If e ∈
col (W ), then there exists some x 6= 0 that satisfies Qx = e and Mx = e.
Without loss of generality, we may assume that x1 = 1. We define Q′ =
Q(I + e2e

T
1 ), and repeat step (1) yielding M ′. Now e will be no longer in

col (W ′). This is shown as follows. Suppose e ∈ col (W ′), then there exists some
y satisfying Q′y = e and M ′y = e. From the definition of Q′ and the fact that
Q is full rank, we have y = (I+ e2e

T
1 )x. Consequently, yT y = xTx+x1 6= xTx.

However, this is contradicted by

xTx+ yT y = xT Ix+ yT Iy

= xT (MTM +QTQ)x+ yT (M ′TM ′ +Q′TQ′)y

= (xTMTMx+ yTM ′TM ′y) + (xTQTQx+ yTQ′TQ′y)

= (eT e+ eT e) + (eT e+ eT e) = 0.

Therefore, e 6∈ col (W ′). Finally, note that Q′ = Q(I + e2e
T
1 ) is equivalent to

Q for the protocol, as col (Q) = col (Q′).
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4.5.2 Information section

Since we are considering a breeding-like approach, the given copies, in state
|ψS̃,ũ〉, are appended with copies of the pure state |ψS,0〉. Let q be the first
column of Q, which is distributed uniformly over Zκ

2 . The local Clifford oper-
ations, represented by In ⊗A1, transform the state of the first appended copy
into

∣

∣ψS,R̄ũ

〉

, where R̄ = In ⊗ q. Using similar derivations as in section 4.4.2,
we find that

J [Wf (M)] =Wf (M).

With this, the LP problem (4.10) becomes

minimize m =
∑

M
m(M)

subject to
∑

M
m(M)f(M) ≥ max

Wf

G

(

[

∑

M
Wf (M)

]⊥)

, for all f 6≡ 0,

(4.37)
where, given the function f : M → f(M), the maximum is taken over all
combinations of subspaces Wf (M) of dimension n(M)− f(M) of V(M).

4.5.3 Illustration with the five-qubit ring state

Recall that the five-qubit ring state (cf. page 36) is a three-colorable graph
state that is not local Clifford equivalent to some CSS state. As such, it is not
covered by the protocols in the previous sections. We calculate the yield for
the following mixture:

ρ = p0 |ψ0〉 〈ψ0|+
1− p0

25 − 1

∑

b∈Z
5
2\{0}

|ψb〉 〈ψb| ,

where |ψb〉 is the stabilizer state represented by S and b, and

S =

[

Γ
I5

]

, with Γ =













0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0













.

We will only consider the following tripartitions:

M1 : Z = {3, 4, 5}, X = {1, 2}, Y = ∅ ⇒ V(M1) = col ([e1 e2]) ;
M2 : Z = {1, 4, 5}, X = {2, 3}, Y = ∅ ⇒ V(M2) = col ([e2 e3]) ;
M3 : Z = {1, 2, 5}, X = {3, 4}, Y = ∅ ⇒ V(M3) = col ([e3 e4]) ;
M4 : Z = {1, 2, 3}, X = {4, 5}, Y = ∅ ⇒ V(M4) = col ([e4 e5]) ;
M5 : Z = {2, 3, 4}, X = {1, 5}, Y = ∅ ⇒ V(M5) = col ([e5 e1]) .

By restricting to these tripartitions, we risk finding a suboptimal solution.
However, we will show below that the solution found is, in fact, optimal.
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Intuitively, G(J ⊥) grows larger in line with the size of J ⊥. Since for this
example all b 6= 0 have the same probability, G(J ⊥) is a function of |J ⊥| =
2dim(J⊥) only. Let d = dim(J⊥), then it can be verified that

G(J ⊥) = g(d) = −p0 log2
31p0

31p0+(2d−1)(1−p0)
+ 32−2d

31 (1− p0)d

− 2d−1
31 (1− p0) log2

1−p0

31p0+(2d−1)(1−p0) .

Note that g(5) = S(ρ) = the total entropy of the state. For symmetry reasons,
we may assume that the optimalm(Mi) will be equal for allMi, thusm(Mi) =
m/5, and the inequalities of the LP problem become

(

10−
5
∑

i=1

dim[Wf (Mi)]

)

m

5
≥ g

(

5− dim

[

5
∑

i=1

Wf (Mi)

])

.

For a fixed LHS, the RHS is maximal and consequently yields an active con-
straint when the spaces Wf (Mi) overlap as much as possible. Therefore, for
f(M1) = 1, we do not consider Wf (M1) = col (e1 + e2) as this will def-
initely decrease the RHS if e1 or e2 were not already in

∑

iWf (Mi), and
similarly for i = 2, . . . , 5. Thus

∑

iWf (Mi) is generated by ei, for all i in
some subset of {1, . . . , 5}. For a fixed RHS, the inequality is an active con-
straint when the coefficient of m in the LHS is minimal, which is the case
if dim[Wf (Mi)] are as large as possible, for all i. One can see that in that
case

∑

i dim[Wf (Mi)] = 2 dim [
∑

iWf (Mi)]. It follows that the yield of the
protocol equals

= 1− 5

2
max

d

g(d)

d
. (4.38)

Numerical calculation shows that the maximum is found for d = 5. Conse-
quently, (4.38) equals 1− S(ρ)

2 . We could not have done better. Indeed, it can
be verified that there is no tripartitionM for which n(M) > 2, and a measure-
ment according to the tripartitionM yields at most n(M) bits of information.
We have plotted the yield of the protocol as a function of p0 in figure 4.8.

4.6 Conclusion

We have described a generalization of the hashing/breeding protocol from bi-
partite to multipartite. For particular classes of stabilizer states, i.e. CSS-H
states, CSS states and arbitrary graph states respectively, we have derived the
most general structure of local Clifford operations that transform the set of
tensor products of stabilizer states with generator matrix S onto itself (opera-
tion section). This is important as it allows us to increase the randomness in
the parity checks performed on the overall state of the copies. Consequently,
the information gain of each measurement is increased, such that we need less
measurements to purify the overall state. In order to calculate the exact num-
ber of copies that need to be measured to this end, we made use of properties of
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Figure 4.8: The yield of the protocol for the state ρ = p0 |ψ0〉 〈ψ0| +
1−p0

31

∑

b6=0

|ψb〉 〈ψb| as a function of p0.
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the information-theoretical concept strongly typical set (information section).
Both operation section and information section enabled us to improve the yields
of existing generalizations of hashing/breeding.



Chapter 5

Conclusion

In this thesis, we have treated the development of entanglement distillation
protocols within the framework of the stabilizer formalism. After introducing
the concept of quantum entanglement and entanglement distillation, we have
shown how the entire setup of the distillation protocols under consideration is
transparently described in terms of binary matrix algebra (the ‘binary picture’
of the stabilizer formalism). This description enabled us to improve existing
distillation protocols, in a bipartite setting as well as in a multipartite setting.

Our main contribution for the bipartite case was the recognition of the un-
derlying principle that explains why local measurements involving a finite and
preferably small number of qubit pairs result in an extra reduction of the state
entropy, next to the decrease of entropy that equals the information extracted
by the measurements. Using this insight, we devised adaptive variants of ex-
isting asymptotic protocols and improved the best yield of all protocols for
Bell-diagonal states, which serves as a lower bound for the important entangle-
ment measure entanglement of distillation. This yield has not been surpassed
at the time of writing.

For multipartite stabilizer states, we improved existing protocols on two
levels. Firstly, for particular classes of stabilizer states (i.e. CSS-H states, CSS
states and graph states1), we derived the general structure of the binary repre-
sentation of local Clifford operations that transform the set of tensor products
of such pure states onto itself. As such, applying these most general local Clif-
ford operations results in a higher statistical dependence between the input
copies of the protocol, increasing the information that can be retrieved from
local measurements. Secondly, we generalized the idea of bipartite hashing
where the initial state of the input copies is regarded as an unknown pure state
that is contained in the typical set. We gave a method to calculate the mini-
mal number of measurements necessary to eliminate all other states from this
(strongly) typical set as the solution of a linear programming problem. We
have shown, for various examples, that on both levels the yield of the protocols

1and all local unitary equivalent states

119
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is increased.
A number of interesting open problems remain. We summarize a few pos-

sible directions from where our work has ended, of practical and of more fun-
damental nature.

• A next and important step towards entanglement distillation in a realistic
setting, is taking noise in the local operations of the protocol into account.
Some attempts in that direction have already been made (for an overview,
we refer to [30]), yet many of them are rather ad hoc and encompass a
heuristic numerical optimization. Therefore, we have chosen not to deal
with it here.

For theoretical purposes, this step is of minor importance, because when
local noise is incorporated, we are no longer dealing with a state charac-
teristic and as such, the yield of the resulting protocol is no longer repre-
sentative for the entanglement that is present in a given state. However, if
some fundamental threshold concerning this local noise is found, it could
give a clue towards the possibility of realizing practical applications.

• In the multipartite setting, we could look for optimal ways of obtain-
ing copies of a desired pure state. Such ways are studied in [59] and
compared with one another with respect to the quantum communication
cost, which is the total number of qubits that have been sent through a
quantum channel during the entire procedure. As such, all methods can
be compared with one another (e.g. bipartite with multipartite distilla-
tion) on an equal footing and the yield of the method is now a channel
characteristic.

• For our protocols, we only considered local operations that map the set
of tensor products of a given stabilizer state to itself. As already men-
tioned in footnote in chapter 4, the state of the copies to be measured
does not necessarily have to be of this kind, but could for instance be a
tensor product of different states, or even be entangled over the copies.
It remains unclear whether this could increase the yield of the protocol.
Because of this and for the sake of manageability, we decided not to delve
further into this issue.

• One could generalize the idea of entropy reduction to multipartite dis-
tillation. However, protocols that operate in this way will very likely no
longer be as clear-cut as for the bipartite case, where the original hash-
ing protocol was much simpler than its multipartite generalizations. We
have explored this path to some extent, but were unable to produce any
satisfying results.

• Investigating the LP problem for finding the multipartite hashing yield
could give a more fundamental insight into multipartite entanglement
manipulation. It resembles the problem of calculating the entanglement
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measure asymptotic relative entropy of entanglement, which is a distance
measure to the convex set of all separable (or PPT) states: the LP prob-
lem is also convex and involves particular relative entropies.

• For bipartite protocols, we saw that local measurements decrease the
overall input state entropy by two mechanisms. On the one hand, infor-
mation on the state is extracted from the outcomes of the measurements
(information gain IG), on the other hand, the local collapse of the state
vector results in an extra entropy reduction ER. Doing so, we unified
asymptotic protocols and finite protocols in a single interpretation, and
we gave methods to increase IG+ER.

What could be asked next is whether there exists a fundamental upper
bound for IG+ER. Clearly, both IG and ER are smaller than 1 for a single
parity check. Consequently, an absolute upper bound for the yield of bi-
partite protocols is 1−S(ρ)/2, but this is a meaningless upper bound since
it exceeds the asymptotic relative entropy of entanglement [5], which in its
turn is an upper bound for the entanglement of distillation (cf. page 47).
In our treatment of finding optimal protocols, we encountered a sort of
trade-off between IG and ER. Indeed, on the one hand, maximal IG is
guaranteed for parity checks involving an infinite number of qubit pairs,
but then we have zero ER, which gives rise to the hashing yield 1−S(ρ).
On the other hand, attempts to increase ER are often accompanied by a
decrease of IG.

Somehow, this trade-off has its origin in the linear nature of the parity
checks. Indeed, for a parity check rT ũ, only those b̃ that correspond to
the observed value are kept (IG), and each vector b̃ ‘collides’ with b̃+Pr,
giving rise to ER. The magnitude of IG and ER are both dependent on
the choice of r. Yet, investigating methods for maximizing IG+ER or
even finding a useful upper bound is a difficult task, since they both are
expectation values of nonlinear entropy-like functions. Furthermore, one
actually needs to take all parity checks into account and maximize (or
upper bound) the total IG+ER. But then adaptiveness comes into play
and we are left with an optimization problem in a very large decision
space.

Finding better lower bounds for the entanglement of distillation in this
way boils down to a mathematical hard problem. Furthermore, since we
restrict ourselves to local Clifford operations only, it is not clear in how
far the best yield of such protocols is a tight lower bound for the entan-
glement of distillation (of Bell-diagonal states). Nevertheless, we believe
the behavior of IG and ER and their connection does give a fundamental
insight into the nature of entanglement distillation.





Appendix A

Elementary rules of
quantum mechanics

We touch on some basics of quantum mechanics. This appendix is not intended
as an introduction to quantum mechanics, but should be seen as a concise
summary of notations and conventions in this thesis, as those are not always
commonplace in this vast area. We have mainly based ourselves on the excellent
standard texts [68, 72] on quantum information theory.

We adopt the Dirac notation, using a ‘ket’ |·〉 to denote a pure state vector
and a ‘bra’ 〈·| for its dual. The advantage of this notation is the independence
of any coordinate basis. We only consider finite-dimensional systems. A pure
state |ψ〉 of an n-qubit system is a unit vector in a 2n-dimensional Hilbert space
Hn = C2n

. For a single qubit, it is mostly agreed that |0〉 and |1〉 denote the
eigenstates of the Pauli matrix σz (defined on page 14). In matrix notation,
this reads

|0〉 =
[

1
0

]

and |1〉 =
[

0
1

]

.

They form a basis for H1. Any superposition a |0〉 + b |1〉, where a, b ∈ C and
|a|2 + |b|2 = 1 is a valid pure state vector. Tensor products of |0〉 and |1〉 are
often abbreviated, e.g. |010010〉 is short for |0〉 ⊗ |1〉 ⊗ |0〉 ⊗ |0〉 ⊗ |1〉 ⊗ |0〉.

The time evolution of a closed quantum system is governed by the Schrödinger
equation

i~
d |ψ〉
dt

= H |ψ〉 ,

where ~ is known as Planck’s constant and the Hamiltonian of the system H is
a Hermitian operator: H = H†. Integrated over time, |ψ〉 is transformed into
|ψ′〉, and the Schrödinger equation takes the form

|ψ′〉 = U |ψ〉 ,

where U is a unitary operator: UU † = I.
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A projective measurement is identified with a Hermitian operator M , called
observable, with spectral decomposition

M =
∑

i

λiPi,

where Pi is the projector onto the eigenspace of M with eigenvalue λi. The
indices i refer to the possible measurement outcomes. If the state immediately
before the measurement is |ψ〉, then the probability that outcome i occurs
equals

pi = 〈ψ|Pi |ψ〉 ,
and the state immediately after the measurement with this outcome is

Pi |ψ〉√
pi

.

Note that (
∑

i Pi)(
∑

j Pj) =
∑

i

∑

j δijPi =
∑

i Pi ⇒
∑

i Pi = I such that
∑

i pi = 1 is ensured.

Example. Measuring the observable σz on a qubit boils down to projecting
its state |ψ〉 onto |0〉 or |1〉, as σz = |0〉 〈0| − |1〉 〈1|. The probabilities of the
outcomes are p0 = |〈ψ| 0〉|2 and p1 = |〈ψ| 1〉|2. 3

When we do not have maximal knowledge on a system, the concept of a
mixed state is introduced. It is described by a positive semi-definite Hermitian
density operator ρ with trace one: Tr {ρ} = 1. When written in the form

ρ =
∑

i

pi |ψi〉 〈ψi| ,

we can regard the mixed state as a statistical ensemble of pure states {pi, |ψi〉}.
Given ρ, such ensembles are not unique but physically indistinguishable from
one another. Note that for a pure state ρ = |ψ〉 〈ψ| we have Tr

{

ρ2
}

= 1.
The evolution postulate now reads

ρ→ ρ′ = UρU †.

The probability of outcome i when measuring the observable M defined above
now equals

pi = Tr {Piρ} = Tr {PiρPi} ,
and the state after the measurement with this outcome is

PiρPi

pi
.

A mixed state appears naturally as the state of a subsystem of a composite
quantum system (that is possibly in a pure state). Let ρAB be the state of the
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composite system AB, then the state of subsystem A is given by the reduced
density matrix

ρA = TrB {ρAB} ,
where ‘TrB’ stands for the partial trace over subsystem B. This definition
ensures that if there is no information on subsystem B (e.g. retrieved by mea-
surements), the behavior of subsystem A is completely determined by ρA. In
quantum information theory, B often represents the unobservable and uncon-
trollable environment of A. The most general evolution of a system A is given
by

ρA → ρ′A = TrB

{

UρABU
†} =

∑

i

MiρM
†
i ,

where the Mi satisfy
∑

i M
†
i Mi = I.





Appendix B

An efficient algorithm for
generating random
stabilizers

We describe an efficient algorithm for generating a random stabilizer S, which
is useful in the search for good stabilizer codes and distillation protocols. Gen-
erating the stabilizer of a random n-qubit stabilizer state with this algorithm
has a time complexity of O(n3). Let n be the number of qubits involved and
n− k the number of generating Pauli operations. Firstly, we observe that the

difficulty lies only in finding a generator matrix S ∈ Z
2n×(n−k)
2 , since it needs

to be full rank and satisfy STPS = 0. Any b ∈ Z
n−k
2 fixing the phase factors

of the generating Pauli operations, will do.
A straightforward strategy is iteratively generating random columns Sj ∈

Z
2n
2 , for j = 1, . . . , n− k, and for each next column checking whether the cor-

responding Pauli operation is independent of and commutes with the Pauli
operations represented by the previous columns. However, the constraint of
commutability excludes a lot: the probability that a random Sj satisfies this
constraint scales roughly as 2−j+1. The requirement of independence does not
change this behavior. So, before we arrive at the random stabilizer genera-
tor matrix S, the expected total number of randomly-generated columns is
O(2n−k), which is of course unfeasible when n− k becomes large.

Instead, we propose the following iterative algorithm. Initially, we pick
random nonzero columns S1, T1 ∈ Z2n

2 , where ST
1 PT1 = 1. The probability

that a random column Tj satisfies the linear constraint ST
j PTj = 1, where

Sj is nonzero, is exactly 1
2 , and ST

j PSj = T T
j PTj = 0 always holds. At the

beginning of each step j of the iteration, we have matrices S, T ∈ Z
2n×(j−1)
2

that satisfy

1) STPT = I,
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2) STPS = 0,

3) T TPT = 0.

We now add columns Sj and Tj respectively such that the resulting S′, T ′ ∈
Z

2n×j
2 still satisfy constraints (1), (2) and (3), as follows. Let x be a random

element of Z2n
2 . We define

Sj = (I + TSTP + ST TP )x (B.1)

and we repeat trying random x until we arrive at a nonzero Sj . We then
have: STPSj = STPx + STPTSTPx + STPST TPx = STPx + STPx = 0,
and similarly, T TPSj = 0. Furthermore, this Sj is independent of the joined
columns of S and T , or equivalently:

Sj = 0⇔ Sj ∈ col ([S T ]) . (B.2)

Indeed, let Sj ∈ col ([S T ]), or Sj = Ss+ T t. It follows, using constraints (1),
(2) and (3), that STPSj = t and T TPSj = s, which we already proved to
be zero. The implication from left to right is trivial. The probability that a
random x gives rise to nonzero Sj is therefore equal to 1 − 22(j−1−n). In fact,
this probability also applies to the initial step j = 1.

Next, we generate a random y ∈ Z2n
2 that satisfies ST

j Py = 1, and we define

Tj = (I + TSTP + ST TP )y. (B.3)

It follows that ST
j PTj = ST

j Py = 1 and STPTj = T TPTj = 0. Therefore,
the extended matrices S′ and T ′ still satisfy constraints (1), (2) and (3). This
algorithm can also be used to generate a random symplectic matrix C = [S T ],

for k = 0. One can verify that, for generating S, T ∈ Z
2n×(n−k)
2 satisfying

the constraints, the expected total number of random columns that needs to
be generated scales roughly as 3(n − k) (i.e. 1 for each column of S and 2
for each column of T ). For each generated random column, we only need to
perform a fixed number of matrix-column multiplications with time complexity
O[n(n− k)], since independence is guaranteed by construction.

Finally, we show that the resulting matrix S generates a truly random self-
dual space C = col (S). By adding a nonzero column Sj to S, the column
space C is expanded to C′ = C + Sj . This space is self-dual if and only if
Sj ∈ N , the dual space of C. Let C ∈ Z

2n×2n
2 be a symplectic matrix of the

form C = [S U T V ]. Such matrix always exists, albeit constructed in the way
we have just described. From the simplecticity constraint (2.8), it follows that
N = col ([S U V ]). So Sj needs to be of the form Sj = Ss+Uu+V v, but this
yields the same space C′ as Sj = Uu + V v. Since C is invertible, there exists
some w ∈ Z2n

2 for which x = Cw. As this is a one-to-one relation, w acquires
the full randomness of x. Equivalently, we have x = Ss+Uu+T t+V v, where
s, u, t, v are random. Plugging this into (B.1), and using (2.8), we arrive at
Sj = Uu+ V v.
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