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Introduction

In statistics, classical methods often heavily rely on assumptions which can
not always be met in practice. For instance, it is often assumed that the data
are generated from a specific underlying distribution. And even if the model
assumptions are distribution-free, most methods assume that the sample con-
tains independent and identically distributed observations. However, when
outliers are present such methods can perform very poorly. Robust statistics
seeks to provide methods that are not unlimitedly affected by outliers. The
goal is to learn the structure of the majority of the data, even if a minority of
observations disturbs the pattern.

In this work robustness is studied in two settings: regression and Principal
Component Analysis (PCA). Regression analysis models the relationship be-
tween a response variable and a set of explanatory variables (also called covari-
ates). Interest lies in the conditional distribution of the response, conditional on
values of the explanatory variables. One can concentrate on estimating certain
aspects of this conditional distribution, e.g. the mean, leading to least squares
regression.

However, in some applications a more detailed description beyond the
mean might be useful. Quantile regression [Koenker, 2005] aims at estimat-
ing all conditional quantiles, thus fully characterizing the conditional distribu-
tion. Assuming a linear relationship between response and covariates, linear
quantile regression can be performed using an L1 loss function [Koenker and
Bassett, 1978]. Although this is less sensitive to outlying observations than a
linear least squares method, robustness problems still appear. A more robust
approach was proposed by Rousseeuw and Hubert [1999], named deepest re-
gression. In Chapter 1 we shortly review both methods and their properties.
Next we consider the difficulties appearing when right-censoring is present.
This means that the response value is not always exactly measured for each
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2 INTRODUCTION

observation, but only a lower limit can be obtained. This frequently occurs in
medicine, for instance when patients are taken into a study but leave before the
final results are measured, and in economics, for instance in auction type sales
when the sales price is not yet known but a current bid is running. A quantile
regression algorithm dealing with such censoring was proposed by Portnoy
[2003] for the L1 estimator. In Chapter 1 we apply similar ideas for the deepest
regression estimator. We derive the new optimization criterion and propose a
grid algorithm to perform the computations. Robustness is shown in a small
simulation study and on two data examples.

The second major framework of this dissertation concerns Principal Com-
ponent Analysis (PCA). This is a technique designed to reduce the dimen-
sion of multivariate data. These days data sets sometimes contain hundreds
or thousands of variables, for instance in chemometrics, where measurements
for several samples are taken at a very large amount of different wavelenghts.
Also in genetics such high-dimensional data often appears, when information
about many genes is gathered for each patient. In such cases it is sometimes
preferable to reduce the huge number of variables. In traditional linear PCA
this reduction is obtained by a projection onto a linear lower dimensional sub-
space, spanned by the eigenvectors of the classical covariance matrix. How-
ever, these eigenvectors are again very sensitive to outlying observations in
the data. A more robust procedure called ROBPCA was proposed by Hubert
et al. [2005]. In Chapter 2 we give a short description of this method. Next
we analyze some theoretical properties of the underlying robust covariance es-
timator. We obtain its asymptotic efficiency and make a comparison to some
other robust covariance estimators. We also provide some insight in the robust-
ness of ROBPCA by calculating its influence function. The concept of influence
function was introduced by Hampel et al. [1986] and plays an important role
in Chapter 2 but also in the chapters thereafter.

Definition 1 Given a statistical functional T mapping a distribution P onto
T(P). Consider the contaminated distribution

Pε,z = (1− ε)P + ε∆z

for small enough ε. The distribution ∆z is the Dirac distribution which puts
all probability mass at the point z. Then the influence function of T at the
distribution P is defined as

IF(z; T, P) = lim
ε↓0

T(Pε,z)− T(P)
ε

.
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The influence function measures the effect on an estimator when making an in-
finitesimally small change in the distribution. Of specific interest is the supre-
mum of this function. If the influence function is unbounded, then the in-
fluence of outliers can be arbitrary large. For a robust method this function
should thus be bounded and preferably as small as possible. In Chapter 2 we
prove that the influence function of ROBPCA is indeed bounded. We also con-
sider the extension towards RSIMPLS [Hubert and Vanden Branden, 2003], a
method combining ideas from robust PCA and regression. A similar analy-
sis again shows a bounded influence function and gives some insight in the
robustness of this method.

Both Chapters 1 and 2 assume a linear underlying structure. In practice
more complicated structures can occur as well. Chapters 3, 4 and 5 fit in the
framework of kernel methods [Schölkopf and Smola, 2002, Shawe-Taylor and
Cristianini, 2004]. This is a broadly applicable methodology to transfer ideas
from linear multivariate applications to more complex situations. We will use
the following notations.

Definition 2 A function K : X×X → R is called a kernel on X if there exists a
R-Hilbert space H and a map Φ : X → H such that for all u, v ∈ X we have

K(u, v) = 〈Φ(u), Φ(v)〉 .

We call Φ the feature map and H the feature space of K.

Some well known kernels in case X ⊆ Rd are the linear kernel

K(u, v) = utv,

the polynomial kernel of degree p > 0 with offset τ > 0

K(u, v) = (utv + τ)p,

and the RBF kernel with bandwidth σ > 0

K(u, v) = e||u−v||2/σ2
,

but many more types of kernels exist.
The general idea behind kernel methods is to apply a linear method in the

feature space H rather than in the original input space X. If this linear method
in H can be formulated in terms of inner products 〈Φ(u), Φ(v)〉 only, one can
use the kernel function and evaluate K(u, v) instead. This allows data analysis
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in a potentially very high dimensional space H without having to compute or
even knowing the explicit feature maps. A typical application of kernel meth-
ods is a setting where the data consists of objects rather than numerical vectors.
In Chapter 5 the case of string analysis is considered. If we want to analyze text
strings, we have to convert them into numerical vectors first. A way to achieve
this can be to count all possible substrings. However, the size of such vectors
can easily be several billions. Defining the corresponding kernel and applying
kernel methodology on the other hand avoids the explicit computation of these
high-dimensional vectors, making such an analysis computationally possible.
Secondly kernels can be very useful in classical multivariate analysis fitting
non linear models. Using a polynomial kernel for instance, an explicit power
expansion of all variables is avoided, whereas these powers are still taken into
the analysis. Using an RBF kernel, one can even work with implicit (even un-
known!) feature vectors, modelling data in a semi-parametric way.

This kernel framework applied in a regression setting together with ideas
from convex optimization and regularization, leads to Kernel Based Regres-
sion (KBR). Christmann and Steinwart [2006] proved that the influence func-
tion of Least Squares KBR (LS-KBR) is unbounded, in contrast to KBR using a
loss function with a bounded first derivative. Suykens et al. [2002a] proposed
a reweighted LS-KBR method in order to improve the robustness of LS-KBR,
at the same time retaining the least squares methodology and its benefits. In
Chapter 3 we investigate some theoretical properties of this reweighted LS-
KBR method. We derive the influence function of k−step reweighted LS-KBR.
Under some restrictions we analyze the behavior of this series of influence
functions as we keep on reweighting in an iterative way (k → ∞). An im-
portant result states that the influence function of iteratively reweighted LS-
KBR is bounded if the kernel is bounded, and if the weight function w(r), with
r ∈ R the residual, can be written as w(r) = ψ(r)/r with ψ bounded but in-
creasing. This condition is not trivial, since it is not satisfied by some popular
weight functions, i.e. Hampel’s suggestion. We propose logistic weights as it
is a smooth weight function fitting our conditions perfectly.

Under some specific model assumptions we are also able to analyze the
convergence of this iterative reweighting showing quite fast results. We con-
clude Chapter 3 by linking the influence function to concepts of stability [Pog-
gio et al., 2004]. This way we motivate that reweighting is not only useful to
reduce effects due to outliers, but also to deal with heavy-tailed noise situa-
tions.
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In Chapter 4 we continue linking the influence function of KBR and its
reweighted version to some other concepts. We estimate the influence func-
tion based on a sample and use these results to construct pointwise confidence
intervals. Secondly, we consider the influence function as an asymptotic leave-
one-out criterion. We construct a fast and robust model selection criterion to
select some of the hyperparameters in play, i.e. the regularization parameter
and possible kernel parameters such as the bandwidth σ in case of a RBF ker-
nel.

In Chapter 5 we return to the PCA setting. Here as well kernels can be in-
corporated in order to detect more complex structures. The influence function
of Kernel PCA (KPCA, [Schölkopf et al., 1998]) is obtained. Just like in the re-
gression case, bounded kernels lead to a bounded influence function, whereas
KPCA with an unbounded kernel possibly leads to arbitrary large effects from
outliers. We propose a new method, Spherical KPCA, to perform robust KPCA
with any type of kernel. It is an extension of Spherical PCA [Locantore et al.,
1999] to a feature space H only using the kernel. Finally we construct a di-
agnostic tool based on the influence function and Spherical KPCA to detect
influential observations in a sample.
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Chapter 1

Censored depth quantiles

1.1 Introduction

Since its introduction by Koenker and Bassett [1978], quantile regression has
become more and more popular. The possibility to estimate the entire con-
ditional distribution, instead of only the conditional mean as in e.g. ordi-
nary least squares regression, has proven to be advantageous in many appli-
cations. In recent years, quantile regression has been extended to many possi-
ble settings, such as non-linear and non-parametric regression, time series, etc.
[Koenker, 2005]. In this chapter we want to focus on linear quantile regression
with right censored observations. These are observations for which the true
value of the response variable is not measured, but only a lower limit is given.
This kind of data is frequently encountered in many domains. In medicine
for example, when time until healing is measured, patients might not yet be
healed when finishing the study. In that case, the exact healing time is not ob-
served, but we do know it is at least the time the patient spent in the study.
Also in economics, censoring can be an issue. The first example we will give in
Section 1.6, considers sales prices in auction type sales. When a bid is running
on an object, but the deadline is not reached yet, this is a right censored obser-
vation. The true sales price is not known, but we do know it will be at least the
current bid.

Let us first describe the model under consideration. We want to estimate
the conditional quantiles of a real random variable Y given x ∈ Rd+1 where
we take the first component x1 = 1. However, also models through the origin

9



10 CHAPTER 1. CENSORED DEPTH QUANTILES

can be considered. We suppose throughout that these conditional quantiles
denoted by Qτ(Y|x) are linear in x. So for τ ∈ (0, 1)

Qτ(Y|x) = inf{y : P(Y ≤ y|X = x) = τ} = xtβ(τ), (1.1)

for β(τ) = (β0(τ), β1(τ), . . . , βd+1(τ))t the τth regression quantile. These as-
sumptions correspond to the problem of estimating the regression quantiles
in a linear, possible heterogeneous, regression setting with response variable
Y and covariates x. Especially in the case of heterogeneous data these quan-
tiles offer an overall view on the data as they catch much more the variability
present in the sample when τ varies over the interval (0, 1).

In Koenker and Bassett [1978], a consistent estimator β̂(τ) for β(τ) has
been defined. We will however assume that the observations can be right cen-
sored. This implies that instead of observing the true response yi, we observe
ỹi = min(yi, ci) for a set of n covariates xi ∈ Rd+1, where ci is the censoring
time. A censoring indicator ∆i = I(yi ≤ ci), with I the indicator function,
denotes whether observation i is censored (∆i = 0) or observed (∆i = 1). We
assume independence between the response variable and the censoring times,
conditionally on the covariates x. The censoring times are however allowed to
depend on the covariates, contrary to most other censored regression methods,
e.g. Honoré et al. [2002], assuming censoring at random.

In Portnoy [2003] a reweighting scheme based on the Kaplan-Meier estima-
tor has been developed for adapting Koenker and Bassetts L1-quantiles to the
censored case. In Section 1.2, we will shortly review this L1-methodology and
its extension towards censoring. A serious drawback of these estimators is the
lack of robustness. Although they are resistant to vertical outliers, i.e. observa-
tions that are outlying in y given x, L1-quantiles can be heavily influenced by
leverage points, i.e. observations outlying in x-space.

A more robust quantile estimator has been proposed in Rousseeuw and
Hubert [1999], based on the concept of regression depth. The main goal of this
chapter is to extend these depth quantiles to the framework of censored ob-
servations, using the same reweighting scheme as Portnoy [2003]. The most
important ideas are outlined in Section 1.3. A detailed description of the algo-
rithm can be found in Section 1.4. We illustrate our method with a simulation
study in Section 1.5 and with two real data examples in Section 1.6.
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1.2 L1-quantiles

A consistent estimator of the vector β(τ) was proposed in Koenker and Bassett
[1978] as the solution of

argmin
β∈Rd+1

n

∑
i=1

ρτ(yi − xt
i β), (1.2)

for a sample (xt
i , yi)t ∈ Rd+2 where i = 1, . . . , n and ρτ(u) = u(τ − I(u <

0)). When τ equals 1
2 , the function ρ 1

2
(u) reduces to the half of the absolute

value. Thus for the special case of the median, this estimator corresponds to
the L1-estimator. Therefore the solution for general τ will be denoted by L1-
quantiles further on. The asymptotic distribution of

√
n(β̂(τ)− β(τ)) has also

been derived in Koenker and Bassett [1978]. In the same article it was shown
that L1-quantiles only depend on the sign of the residuals and not on the exact
value of the response variable.

This is a very important observation when it comes to censored data. First
of all, it allows an easy start for the lowest quantiles. Remember, the exact value
yi of the response variable is unknown for a censored observation, but we do
know a lower limit ci. Thus, as long as ci lies above the τth regression quantile,
yi certainly will. Hence the residual yi − xt

i β(τ) will be positive no matter the
true value of yi. Therefore we can just use ordinary quantile regression for the
smallest quantiles.

This changes of course as τ increases. Sooner or later a censored observa-
tion will have a negative residual ci− xt

i β(τ). Then the true residual yi− xt
i β(τ)

might be either negative or positive, and there is no way of knowing the sign
for sure. We will call such observations crossed from now on. The quantile at
which the ith censored observation is crossed, will be denoted τ̂i, thus

ci − xt
i β(τ̂i) ≥ 0 and ci − xt

i β(τ) ≤ 0 for all τ > τ̂i.

The crucial idea explained in Portnoy [2003] is to estimate the probabilities of
crossed censored observations having a positive respectively negative residual,
using these estimates as weights further on. More precisely, such a crossed
censored observation is split into two new pseudo-observations, one at (xi, ci)
with weight wi(τ) ≈ P(yi − xt

i β(τ) ≤ 0) and one at (xi, ∞) with weight 1−
wi(τ). Finally it is noted that the weights wi(τ) can easily be found in quantile
regression, since the number 1− τ̂i is an estimate of the censoring probability
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P(yi > ci). Thus we can define

wi(τ) =
τ − τ̂i
1− τ̂i

τ > τ̂i. (1.3)

This leads to the following method to deal with censored observations in linear
L1-quantile regression:

• As long as no censored observations are crossed, use ordinary quantile
regression as in (1.2).

• When the ith censored observation is crossed at the τth regression quan-
tile, store this value as τ̂i = τ.

• When estimating the τth regression quantile and censored observations
have been crossed, optimize a weighted version of (1.2):

argmin
β∈Rd+1

{
∑

i∈Kc
τ

ρτ(ỹi − xt
i β)

+ ∑
i∈Kτ

[wi(τ)ρτ(ỹi − xt
i β) + (1− wi(τ))ρτ(y∗ − xt

i β)]
}

,

(1.4)

where the set Kτ represents the crossed and censored observations at τ

and Kc
τ is the complement of Kτ . The weights wi(τ) are as defined in (1.3).

The number y∗ is any value sufficiently large to exceed all {xt
i β}.

To compute the regression quantile function in practice, a sequence of
breakpoints {τ∗1 , . . . , τ∗L} is defined such that β̂(τ) is piecewise constant be-
tween these breakpoints. By simplex pivoting we can move from one break-
point to another, using the subgradients of (1.4). Luckily, the resulting gradient
conditions are linear in τ, making this linear programming approach possi-
ble. A detailed description of the algorithm can be found in Portnoy [2003],
together with some consistency results (see also Neocleous et al. [2006]).

1.3 Depth quantiles

As already mentioned before, L1-quantiles only depend on the sign of the
residual, not on the exact value of the response variable. Therefore one can
immediately see that observations with outlying y-value will not have a large
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impact on the estimates. Contrary to for example linear least squares regres-
sion, L1-quantiles can resist vertical outliers. However, L1-quantiles are sen-
sitive to data points outlying in x-space. This is among others reflected in its
breakdown value, which equals 0. Since the break down value represents the
smallest percentage of contamination needed to completely destroy the esti-
mator, this means that the slightest amount of contamination can have a dis-
astrous effect on the resulting estimates. A more robust method was proposed
in Rousseeuw and Hubert [1999], based on the concept of regression depth.

1.3.1 Definition

The regression depth of a hyperplane β with respect to a sample
Zn = {(xt

i , yi)t ∈ Rd+2} is defined as

rdepth(β, Zn) = min
λ∈Rd+1

(
#{xi : sign

(
yi − xt

i β)
) 6= sign

(
xt

i λ
)}) ,

with sign
(
u
)

= −1 if u < 0, sign
(
u
)

= 0 if u = 0 and sign
(
u
)

= 1 if u > 0.
It has a nice geometrical interpretation as it represents the smallest number of
observations one has to pass in order to turn the hyperplane β into vertical
position. As such, regression depth gives an indication of how well the data
surround the hyperplane.

The maximal depth (or deepest regression) estimator β̂( 1
2 ) is defined as

β̂(
1
2
) = argmax

β∈Rd+1
{rdepth(β, Zn)},

or equivalently

β̂(
1
2
) = argmax

β∈Rd+1
min

λ∈Rd+1

(
#{xi : sign

(
yi − xt

i β)
) 6= sign

(
xt

i λ
)}) , (1.5)

Properties of this estimator have been studied in Rousseeuw and Hubert [1999],
Van Aelst et al. [2002], Van Aelst and Rousseeuw [2000] and Bai and He [2000].
In the latter paper it is proven that deepest regression is a consistent estima-
tor of the median regression quantile β( 1

2 ). The first papers show that the
breakdown value of the deepest regression is around 33%. This means that
theoretically smaller percentages of outliers cannot completely destroy the fit.
Practical results show that the method can indeed easily resist at least up to
20% of outliers (vertical outliers as well as leverage points). Note that this is a
big difference compared to the L1-estimator, which has breakdown value 0%.
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The deepest regression estimator can be extended to the regression quan-
tile setting by introducing the idea behind the function ρτ in definition (1.2)
[Rousseeuw and Hubert, 1999]. This ρτ function can be seen as a weight func-
tion where a weight τ is given to positive residuals, and a weight 1 − τ to
negative residuals. Let Ψτ(u) = τ − I(u < 0). Then the τth regression depth
quantile β̂(τ) is defined as that value β ∈ Rd+1 for which

inf
λ∈Rd+1

n

∑
i=1

Ψτ(yi − x′i β) sign
(

x′iλ
)

is maximized. The case τ = 0.5 coincides with the conditional median as de-
fined in (1.5). In Bai and He [2000] the

√
n-consistency of β̂(τ) has been shown

and the limiting distribution of
√

n(β̂(τ)− β(τ)) has been characterized.
An extension of regression depth to the case of censored data is proposed

in Park and Hwang [2003]. Their approach however only covers the special
case τ = 0.5. We introduce a general extension to censored data for all quan-
tiles in the next section.

1.3.2 Censored depth quantiles

Similarly to the method defined above for the L1-regression quantiles, we in-
troduce the reweighting scheme for the depth quantiles. Since depth quantiles
also depend on the sign of the residuals only, the same idea can be used as in
the previous section. The only thing changing is the objective function (1.4). We
replace this expression by the corresponding depth quantile objective function,
defined as

argmax
β∈Rd+1

inf
λ∈Rd+1

{
∑

i∈Kc
τ

Ψτ(ỹi − xt
i β) sign

(
xt

i λ
)

(1.6)

+ ∑
i∈Kτ

[wi(τ)Ψτ(ỹi − xt
i β) sign

(
xt

i λ
)
+ τ(1− wi(τ)) sign

(
xt

i λ
)
]
}

,

where the set Kτ and the weights wi(τ) are as defined in (1.3) and (1.4).

1.4 Computation

Although the idea for censored depth quantiles is the same as for L1-quantiles,
the computation has to be done differently. Working with breakpoints τ∗j is
impossible, since gradient conditions cannot be obtained for depth quantiles.
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As such, the linear programming algorithm from Section 1.2 cannot be used.
We now introduce another algorithm, using a grid {tj : 0 < t1 < t2 < . . . <

tM < 1} where M is the total number of grid points. Each censored obser-
vation receives a weight wi(τ) = 1 as long as it is not crossed by β(τ), i.e.
ci − xt

i β(τ) > 0. Once the censored observation ci is crossed, say at grid point
tj, a weight wi(τ) that varies along the grid is assigned to that observation ci

and a weight 1− wi(τ) is placed at infinity. This weight wi(τ) is defined as

wi(τ) =
τ − tj

1− tj
,

for grid points τ > tj, corresponding to (1.3).

1.4.1 Algorithm

We will now in detail list all the steps of the algorithm for obtaining the cen-
sored depth quantiles. The MATLAB routine (cdq.m) is part of LIBRA, Matlab
Library for Robust Analysis [Verboven and Hubert, 2005], freely available at
http://wis.kuleuven.be/stat/robust.html.

STEP 1 Choose a set of grid points {0 < t1 < . . . < tM < 1}.
Estimate the t1th regression quantile using the regression depth quantile for
uncensored data. Crossed censored observations can be ignored since they al-
most do not contain any information, if t1 is small enough.

STEP 2 Suppose we have estimated the tlth regression quantile β̂(tl). Then
we also know the set of crossed censored observations Ktl = {(xi, ci) : ci −
xt

i β̂(tl) ≤ 0}. For each of these crossed censored observations a number τ̂i

has been given following equation (1.8) that will be explained in step 3 of the
algorithm. The according weight is

wi(τ) =
τ − τ̂i
1− τ̂i

.

http://wis.kuleuven.be/stat/robust.html�
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STEP 3 Estimate the tl+1th regression quantile using expression (1.6), which
in practice can be implemented as follows:

β̂(tl+1) = argmax
β∈Rd+1

inf
λ∈Rd+1

(
tl+1 #{ỹi /∈ Ktl : (ri(β) > 0, xt

i λ < 0)}

+ (1− tl+1) #{ỹi /∈ Ktl : (ri(β) < 0, xt
i λ > 0)}

+ tl+1 wi(tl+1) #{ỹi ∈ Ktl : (ri(β) > 0, xt
i λ < 0)}

+ (1− tl+1)wi(tl+1) #{ỹi ∈ Ktl : (ri(β) < 0, xt
i λ > 0)}

+ tl+1 (1− wi(tl+1)) #{ỹi ∈ Ktl : (xt
i λ < 0)}

)
. (1.7)

The maximization is performed on a random grid of β and λ vectors and will
be further explained in Section 1.4.2.

Consider the set Kτl+1 = {(xi, ci) : ci − xt
i β̂(tl+1) ≤ 0}.

IF Ktl+1 = Ktl ,

the current estimate β̂(tl+1) was found using the correct weights and is there-
fore a correct solution.

IF Ktl+1 6= Ktl ,

then the weights should be changed. Observations in Ktl\Ktl+1 are censored
observations that were crossed but are not anymore. These receive weight 1
again. Observations from Ktl+1\Ktl are censored observations that are crossed
just now, during the transition from tl to tl+1. We define the number

τ̂i = tl , (1.8)

for each of these observations. Their weight is then

wi(τ) =
τ − τ̂i
1− τ̂i

=
τ − tl
1− tl

.

The remaining weight 1− wi(τ) is assigned to a pseudo-observation arbitrar-
ily far away. Thus we find a new set of crossed censored observations. The
regression quantile β̂τl+1 is then recomputed with this new set of weights.

We repeat this step until we find an estimate for which the weights remain
the same, or until a predefined number of iterations is exceeded.
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STEP 4 The algorithm stops when we have dealt with the last grid point
τM, or when all observations with a positive residual are censored.

¤

Note that at any grid point tl+1, step 3 of the algorithm is repeated until a sta-
ble solution is found with Ktl = Ktl+1 . The existence of such a stable solution is
not guaranteed. However, this situation rarely occurred in our examples and
simulations. Moreover, when this happened it was always for a very restricted
area of τ values. Thus, by changing the problematic tl+1 value by a few thou-
sandths, a stable solution can usually be found.

1.4.2 Optimization

One part of the algorithm still needs some explanation, i.e. the optimization
of (1.7). We propose two methods.

A straightforward approach is to define a set of N hyperplanes at the start
of the algorithm. We take B = {β j, j = 1, . . . , N} with each β j a hyperplane
through d + 1 randomly chosen data points. This way affine equivariance of
the depth quantiles is retained. We can then maximize the objective function
in (1.7) over this finite set B:

β̂(tl+1) = argmax
β j∈B

inf
βk∈B

(
objective function

)
.

This approach was also used in Adrover et al. [2004] to compute regression
quantiles in the uncensored case. Note that it is usually not necessary to scan all
possibilities. Take for example β j ∈ B, and suppose we kept track of the current
maximum over βi ∈ B, i = 1, . . . , j− 1. Then we do not really need to compute
the infimum over all βk ∈ B. As soon as we find a βk such that the objective
function is smaller than the current maximum, the infimum will certainly be
smaller. Thus we can immediately discard β j and proceed with β j+1. As noted
in Adrover et al. [2004], this leads to roughly O(N log(N)) calculations to find
β̂(tl). Since we have M grid points, we roughly need O(MN log(N)) calcula-
tions.

We propose a faster approach, explicitly making use of the iterative char-
acter of our algorithm. Suppose we want to compute the regression quantile
at a grid point tl+1. Then we already have an estimate β̂(tl) of the regression
quantile at tl . Since tl and tl+1 will not differ a lot, we can expect β̂(tl+1) to be
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close to β̂(tl). We therefore suggest to perform the maximization in (1.7) over
a set B(β̂(tl)) of N∗ hyperplanes close to β̂(tl):

β̂(tl+1) = argmax
β j∈B(β̂(tl))

inf
βk∈B

(
objective function

)
.

The complexity of this algorithm is very roughly O(MN∗ log(N)). The gain in
speed comes from the fact that N∗ can usually be chosen much smaller than N.
The set B(β̂(tl)) of hyperplanes close to β̂(tl) can be obtained in several ways.
We take hyperplanes that have d observations in common with β̂(tl). Such a
set can be constructed very fast using updating techniques.

1.5 Simulation study

We compare three algorithms: the L1-estimator using the package crq in R [Port-
noy, 2003], the depth estimator using the basic algorithm and the depth esti-
mator using the faster updating algorithm. The setting for our simulations is
as follows: let ε be the percentage contamination and n the sample size with
m = round(nε), then we generated n−m datapoints (xi, ỹi) as follows:

• xi = (1, xi2, . . . , xip)t with each xij ∼ N(0, 1).

• yi = xi2 + ei with ei ∼ N(0, 1).

• ci = 0.8xi2 + b + fi with fi ∼ N(0, 1). We considered different values for
b, controlling the amount of censored observations in the data. All values
reported are for b = 1, corresponding to roughly 20% of censored data
points. Other percentages yielded similar results, at least up to 40%.

• ỹi = min(ci, yi).

Note that the censoring ci depends on the covariates and on the response vari-
able. In other methods this is often not allowed, but the regression quantile
approach only assumes conditional independence of ci and yi, given xi.

• We considered 2 cases: we took the m outliers all coinciding in (x0, y0)
(point contamination), but we also distributed the m outliers around
(x0, y0). Since there was no big difference in results, we only report
the case of point contamination. The outlier location was taken equal to
((1,−5, 0, . . . , 0)t, 10)t. This is motivated by Adrover et al. [2002], where
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this setup appeared as the worst case scenario in a very similar simula-
tion study for robust (but uncensored) quantile regression.

Each simulation consists of 50 replications. We report the median of the
squared errors (||β̂(τ) − β(τ)||2) in the grid points 0.1, 0.2, . . . , 0.8. We con-
sidered sample sizes n = 50, 100, dimensions d = 2, 5, 10 and percentages of
contamination ε = 0, 0.05, 0.1, 0.2. We took M = 20 equally spaced grid points,
although even M =

√
n is probably sufficient, as already proposed in Portnoy

[2003]. In the basic algorithm, we took N = 500. In the updating algorithm we
chose N = 500 and N∗ = 100.

Results for n = 100 are summarized in Figure 1.1. At the left side of the
figure, we compare L1-quantiles (thick lines) to depth quantiles (thin lines), for
τ = 0.1, . . . , 0.8. Solid lines correspond to the case ε = 0, dotted lines to ε =
0.05 and dashed lines to ε = 0.1. Plot A1 shows results in 2 dimensions, B1 in
5 and C1 in 10 dimensions. It is clear that L1-quantiles are superior when there
is no contamination. The medians of squared errors are uniformly smaller.
Especially for lower and higher quantiles the difference can be quite significant.

When contamination is added, the situation changes. With 5% of contam-
ination, depth quantiles are more efficient from the 0.4-quantile on. At the
0.6-quantile, L1 even breaks down, as it is completely attracted towards the
outliers. In case of 10% of outliers, breakdown occurs already at the 0.4 quan-
tile. Depth quantiles on the other hand, suffer very little from outliers. Their
efficiencies remain about the same, no matter the value of ε ≤ 0.1, showing the
robustness of our method.

At the right side of Figure 1.1, we compare the basic algorithm (thick lines)
with the updating algorithm (thin lines). Otherwise the setting is the same as
previously, with solid/dotted/dashed lines corresponding to ε = 0/0.05/0.1
and A2, B2, C2 plots for d = 2, d = 5 and d = 10 respectively. The difference
between both algorithms is not too big. In lower dimensions, the naive ap-
proach is slightly better. In higher dimensions, the updating algorithm some-
times even improves on the basic algorithm. In any event, the updating al-
gorithm is certainly not much worse than the basic approach. Note however
that it only took about half as much time. In the updating algorithm we con-
structed sets of 100 hyperplanes having d point in common. We also tried this
with hyperplanes having d− 1 points in common. The results were however
almost the same, whereas the computation time slightly increased. Therefore
we propose to stick to the algorithm replacing only one point at a time.
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Figure 1.1 Summary of simulation results: median of squared errors for differ-
ent quantiles and amounts of contamination. Left side plots: L1 (thick) versus
depth (thin lines, updating algorithm U). Right side: updating (U) versus basic
(B) algorithm. Upper: d = 2, middle: d = 5, lower: d = 10. Solid lines: ε = 0,
dotted: ε = 0.05, dashed: ε = 0.1.
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The effective computation time of the algorithm of course highly depends
on the choice of parameters. Setting the parameters as in our simulations and
examples, i.e. N = 500, N∗ = 100 and 20 grid points, the matlab routine
takes about 15 seconds on average, running Matlab 6.1 on a 2.4Ghz pc. For
moderate-sized data sets decent results can thus be obtained in feasible time.
However, the L1-quantiles are obviously much faster: a similar analysis took
us 0.02 seconds with the crq implementation for R 2.4.1.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

TSI

S
al

es
 p

ric
e

Hattrick data

0.9 

0.75 

0.5 

0.25 

0.1 

0.1 

0.25 
0.5 

0.75 
0.9 

Figure 1.2 Hattrick data. Censored observations are shown as stars, uncen-
sored ones as dots. One data point at (37.5 ∗ 104, 3, 38 ∗ 106) (not visible on
plot) destroys L1-quantiles (dashed lines), but is resisted by the depth quan-
tiles (solid lines).

1.6 Examples

1.6.1 Hattrick data

Hattrick is a free online soccer game at www.hattrick.org, played by over half
a million of people worldwide. Each participant owns one team, consisting of
virtual soccer players, fans, money etc. Just like in real soccer, all teams are put
into divisions and play weekly competition games. The winner can promote to
a higher division. The ultimate goal is to become one of the top teams of your
country.
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An important and interesting aspect of Hattrick is its economy. Players
can be sold and bought on the transfer market. The transfer system works as
follows. A team can put a player on the transfer list with a starting price and a
certain deadline. Other teams can make a bid; the highest bid at the deadline
buys the player. All bids are publicly available to all users.

In our study, we followed 90 players that were on the transfer list on May
15, 2005. On May 17, 2005, we stopped our study. At that point, 55 players
were sold, so we know their true sales price. For 14 players, at least one bid
was already made, but the deadline was not yet reached. These are censored
observations: we do not know the true sales price, but we do know it will be
at least the current highest bid. The remaining 21 players did not recieve a bid
higher than their starting price, and thus were of no use in our study. This
way, we obtained a data set of 69 observations, of which 14 are censored. As a
covariate, we took the Total Skill Index (TSI) of each player, an in-game statistic
measuring the quality of a player.

Our data contains one outlier: a player with a TSI of 374 600. Note that its
sales price is relatively low: 3 381 000 euros. This is explained by the players’
wage, which is closely related to their TSI. Moderate players with TSI around
5000 earn 4000 euro a week, better players with TSI around 20000 make about
15000. Since a team in the game typically has a budget of a few million euros,
this difference is negligible. Our outlying player on the other hand has a wage
of 299 496 euro a week. Although this player makes your team perform much
better on the (virtual) pitch, his high wage becomes disadvantageous from an
economical viewpoint. Therefore, the linear structure between TSI and market
value is violated for these extremely good players.

The data is plotted in Figure 1.2. The outlier is not visible for aesthetic
purposes, but was taken into account in our analysis. The dashed lines are the
0.1, 0.25, 0.5, 0.75 and 0.9 regression quantiles, estimated by crq, the method
from Portnoy [2003] using the L1-quantiles. As one can see, the outlier has a
huge effect. The estimates clearly make no sense.

The depth quantiles are plotted as solid lines. They provide quite a nice
view of the linear and heteroscedastic nature of the data. The effect of the
outlier is minimal, showing the robustness of our approach. Also note that
the outlier is not outlying in y direction. Furthermore, its L1-residual is not
outlying compared to the other residuals, since the L1-quantiles are completely
tilted towards the outlier. Thus our extremely good player can only be detected
in x-space. In simple regression as in this example, this is of course very easy.
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Figure 1.3 Boxplots of conditional distribution of sales price given TSI= 2000,
5000, 10000 and 20000.

However, in a higher dimensional x-space, outlier detection might be far from
trivial. In that case, depth quantiles provide a way out.

An interesting feature of quantile regression is that one can visualize the
entire conditional distribution at a certain point in x−space. This is shown in
Figure 1.3 by means of boxplots at four different values of TSI: 2000, 5000, 10000
and 20000. Note the evolution from right skewed to left skewed as the value
of TSI increases. This might reflect that people are more careful when dealing
with more money. When a team with a budget of a few million euros wants to
buy a player worth around 30 000, he might easily pay 50 000. When buying
one worth around 3 000 000, he will probably make more effort to search for a
relative good buy.

As a final note we should mention that the proposed model is probably
not very optimal. Due to the rightskewness of both variables, a log transform
would be a logical option. In that case the effect of the outlier is reduced, mak-
ing the difference between L1-quantiles and depth quantiles rather small.

1.6.2 Granule data

Our second example concerns a process in pharmacy called fluidized bed gran-
ulation. The data was taken from Rambali et al. [2003]. In an experimental
design, they studied the granulation process on a fluidized bed in a semi-full
scale (30 kg batch). There are 30 observations of which 8 are censored, because
the process conditions were too bad to determine the granule size correctly.

In an empirical model they consider four variables: airflow rate, inlet air
temperature, scaled spray rate and inlet air humidity. Their final proposal
yields a 9 dimensional model including these four standardized variables and
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some interaction terms as independent variables. The response variable of in-
terest is the observed granule size. Rambali et al. [2003] estimated the con-
ditional median in two steps. First they obtained estimates for the value of
the response variable for the censored observations. Then they used ordinary
deepest regression on this completed data set.

We will now compare these results to the ones obtained by our algorithm.
The right column of Table 1.1 shows the original results from Rambali et al.
[2003]. The middle column shows the results from our censored depth quan-
tiles. Note that the results are pretty similar. We also performed ordinary deep-
est regression on the data set without the censored observations (see the first
column in Table 1.1). Some estimates are completely different, eg. the coeffi-
cients of A2, S and AS. This shows that deleting censored observations can lead
to severely biased estimates. It is absolutely necessary to use specific methods
dealing with censored observations.

Also note that it would be nice to have some inference tools about the esti-
mates, especially when comparing different methods like here. Portnoy [2003]
uses a fast bootstrap scheme for the L1-quantiles based on He and Hu [2002].
Unfortunately the discrete nature of the deepest regression objective function
hampers extending this approach. Moreover bootstrap procedures themselves
can suffer robustness problems, even when the underlying method is robust,
see for instance Salibian-Barrera and Zamar [2002].

Censoring ignored CDQ Rambali et al.

intercept 537.00 520.75 536.2
airflow rate (A) −221.37 −309.32 −326.1

inlet air temperature (T) −231.34 −166.50 −184.6
spray rate (S) 134.28 215.25 226.5

inlet air humidity (H) 35.90 28.40 30.60
A2 52.63 197.60 164.4
T2 172.34 123.75 145.4
AT 135.60 118.50 123.3
AS 4.47 −118.39 −110.7

Table 1.1 Granule data: parameter estimates of the conditional median.
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1.7 Conclusion

We extended the idea of regression depth quantiles to data sets where censored
observations are present. A grid algorithm was used and we introduced a rela-
tively fast way of optimizing the objective function over this grid. A simulation
study showed that this updating algorithm is particularly useful in higher di-
mensions, when similar efficiency as the naive approach is reached twice as
fast. The simulation study revealed a loss in efficiency compared to the L1-
quantiles for normally distributed data, especially at lower and higher values
of τ. When contamination was added on the other hand, depth quantiles per-
formed better. They appear to have excellent robustness properties whereas
L1-quantiles break down.



26 CHAPTER 1. CENSORED DEPTH QUANTILES



Chapter 2

The influence function of
Stahel-Donoho type
estimators of covariance and
PCA

2.1 Introduction

A very popular technique for analyzing multivariate data is principal compo-
nent analysis (PCA). It consists of finding orthogonal directions which maxi-
mize the variance captured in the data. These directions can be computed as
the eigenvectors of an estimate of the covariance matrix. Classical PCA uses
the classical sample covariance matrix to do so. However, when outliers are
present in the data, they can heavily influence the resulting eigenvectors. Thus,
there is a need for robust estimators of the covariance matrix.

The Stahel-Donoho [Stahel, 1981, Donoho, 1982] estimator was the first in-
troduced high-breakdown and affine equivariant estimator of multivariate lo-
cation and scatter. It is based on the outlyingness of data points, which is
obtained by projecting the observation on univariate directions. The original
Stahel-Donoho estimator then computes a weighted mean and covariance ma-
trix, with weights inverse proportional to the outlyingness. In this chapter we
denote this approach as the ‘weighted outlyingness’ Stahel-Donoho estimator

27
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(SDwo). Alternatively, we can consider the mean and covariance matrix of the
(1 − α)n observations (with 0 < α < 1/2) with smallest outlyingness, de-
noted as SDso. Both estimators are introduced and discussed in Section 2.2.
In Section 2.3 we describe how SDso leads to a robust method for PCA, called
ROBPCA [Hubert et al., 2005]. This PCA method yields fast, accurate and ro-
bust results, even in high dimensions, as illustrated in [Hubert and Engelen,
2004, Engelen et al., 2005]. A short sketch of this method is provided, as well
as a real data example.

Next we investigate the robustness of SDso and ROBPCA by means of their
influence function. For SDwo this has been established in Gervini [2002]. In
Section 2.4 we first derive the influence function of SDso. The result leads to
several important applications. First of all the influence function gives us ad-
ditional insight in the robustness of these methods, for example by examining
the gross error sensitivities. Secondly, asymptotic efficiencies are computed
and compared to those of SDwo and the MCD estimator [Rousseeuw, 1984]. In
Section 2.5 we derive the influence function of the ROBPCA eigenvectors and
eigenvalues. Finally we consider an application of ROBPCA, namely robust
Partial Least Squares Regression [Hubert and Vanden Branden, 2003] of which
the influence function is obtained in Section 2.6. All proofs are collected in
Section 2.8.

2.2 Stahel-Donoho type estimators of covariance

Consider a d-dimensional sample X = (x1, . . . , xn)t of size n. Stahel [Stahel,
1981] and Donoho [Donoho, 1982] introduced the outlyingness r(xi, X), de-
fined as follows:

r(xi, X) = sup
a∈Rd

∣∣∣∣
atxi −m(atX)

s(atX)

∣∣∣∣ (2.1)

where m(.) and s(.) are affine equivariant univariate robust estimators of loca-
tion and scale. Popular options for m(.) and s(.) are the median and the median
absolute deviation (denoted mad), univariate M-estimators [Gervini, 2002] and
univariate MCD-estimators [Hubert et al., 2005].

Equation (2.1) can be interpreted as follows: for every univariate direction
a ∈ Rd we consider the standardized distance of the projection atxi of obser-
vation xi to the robust center of all the projected data points. Thus suppose
r(xi, X) is large, then there exists a direction in which the projection of xi lies
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far away from the bulk of the other projections. As such, one might suspect xi

of being an outlier. Thus, in order to obtain a robust estimator, we want to con-
centrate on the observations xi with small outlyingness r(xi; X). We consider
two possibilities to do so.

A first approach consists of downweighting all observations according to
their outlyingness, as in the original proposal of Stahel and Donoho. In this
case, we need a non-negative weighting function w(.), which gives a smaller
weight to observations with a large outlyingness. Several functions have been
proposed, for example Huber type weights in Maronna and Yohai [1995],
Gaussian weights in Gervini [2002], and exponential weights in Zuo et al.
[2004]. The corresponding estimators of location and covariance, SDwo =
(Two(X), Vwo(X)), are then weighted versions of the classical sample mean and
sample covariance matrix:

Two(X) = ∑n
i=1 w(r2(xi; X)) xi

∑n
i=1 w(r2(xi; X))

Vwo(X) = cw
∑n

i=1 w(r2(xi; X))(xi − Two(X))(xi − Two(X))t

∑n
i=1 w(r2(xi; X))

. (2.2)

The constant cw ensures consistency at the specified model. This estimator be-
longs to the class of depth weighted scatter estimators, is asymptotically nor-
mal distributed (under mild conditions on the weight function, the location
m(.) and the scale estimator s(.)) and achieves high asymptotic efficiencies if
an appropriate weight function is chosen [Zuo and Cui, 2005]. As the under-
lying distribution function typically is unknown, it can be difficult to define
a good weight function and more specifically to determine in advance from
which cutoff value on the weight function should decrease.

To circumvent this problem, a second approach was proposed in Hubert
et al. [2005]. A proportion 0 < α < 1/2 is chosen and only the (1− α)n obser-
vations with smallest outlyingness are used in the estimation. We will call this
the Stahel-Donoho estimator with smallest outlyingness (SDso) from now on.
The corresponding estimators of location and covariance, Tso(X) and Vso(X),
are defined as

Tso(X) =
∑i∈Iα

xi

nI

Vso(X) = cα
∑i∈Iα

(xi − Tso(X))(xi − Tso(X))t

nI − 1
(2.3)

where Iα denotes the set containing the nI = [(1− α)n] data points with small-
est outlyingness. The constant cα ensures consistency at the specified model.
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2.3 ROBPCA

2.3.1 Algorithm

Classical Principal Component Analysis (PCA) performs a dimension reduc-
tion by replacing the d variables in the sample X with k ¿ d principal com-
ponents. These are computed as the eigenvectors of the classical sample co-
variance matrix. However, if the sample X contains some outliers, the effect on
the resulting principal components can be devastating. In order to resist these
outliers, robust PCA techniques have been developed in recent years. In this
paper we focus on the ROBPCA algorithm [Hubert et al., 2005], which consists
of the following four major steps:

1. Choose 0 < α < 1/2.

2. Calculate the outlyingness of every data point xi as in (2.1), using univari-
ate MCD estimators in [Rousseeuw, 1984] for m(.) and s(.) with break-
down value α. Compute the SDso = (Tso, Vso) estimator (2.3) as the mean
and covariance matrix of the [(1− α)n] observations with smallest outly-
ingness.

3. Reduce the dimension by projecting all data on the k-dimensional sub-
space spanned by the first k eigenvectors of the robust covariance estima-
tor Vso, obtained in step 2. The choice of k can for example be made using
a scree plot of the eigenvalues, or by a robust PRESS algorithm [Hubert
and Engelen, 2007].

4. In this k-dimensional subspace, a robust center and covariance matrix
are recomputed by applying the reweighted MCD estimator [Rousseeuw
and Van Driessen, 1999] to the projected data. The final principal compo-
nents are the eigenvectors of this robust covariance matrix.

For a detailed explanation including computational and practical aspects, we
refer to Hubert et al. [2005]. We conclude this section by giving an example
of ROBPCA on a real data set, showing its robustness and its usefulness in
outlier detection. Applications of ROBPCA in bioinformatics, multivariate cal-
ibration and classification can be found in Hubert and Engelen [2004], Hubert
and Verboven [2003], Hubert and Vanden Branden [2003], Vanden Branden and
Hubert [2005].
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Figure 2.1 Outlier maps for the Singh data, obtained with (a) ROBPCA on
the training data; (b) classical PCA on the training data; (c) ROBPCA on the
training and the test data; (d) classical PCA on the training and the test data.

2.3.2 Prostate cancer data set

We consider the prostate cancer data from Singh et al. [2002]. The full data
set consists of gene expression profiles that were obtained from 52 prostate
tumors and 50 non tumor prostate samples from patients undergoing surgery.
Moreover a test set of 25 tumor and 9 normal samples was obtained from a
different experiment. The number of gene expression levels is 12600. Here,
we will only consider the normal samples, which means that our data consists
of 59 observations (50 from the training and 9 from the test set) and 12600
variables.

First, we estimated the PCA subspace only using the training data and de-
cided to retain two principal components, based on a scree plot of the eigen-
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values. Applying ROBPCA with α = 0.25 or classical PCA did not really make
a difference as can be seen from Figures 2.1(a) and (b) which look very simi-
lar. These so called outlier maps plot the orthogonal distances versus the score
distances. For each observation, the y-axis shows the orthogonal distance be-
tween the original data point in the 12600-dimensional space and the projected
data point in the two-dimensional PCA subspace. The score distance on the x-
axis is a robust distance of the projected observations (or scores). When using
ROBPCA these distances are based on the MCD estimates derived in step 4 of
the algorithm, whereas for classical PCA they coincide with the Mahalanobis
distances (thus based on the sample mean and covariance) of the scores. The
vertical and horizontal lines define cutoff lines which can be used to separate
the regular observations from the outliers (see Hubert et al. [2005] for all de-
tails).

The outlier map in Figures 2.1(a) and (b) show the orthogonal and score
distances of the training data in the lower left corner, and also those of the test
data (which are not used to produce the estimates!) in the upper right corner.
We immediately see that the test set is very different from the training set, and
should not be used to validate the results.

Assume now that we would ignore the difference between the training and
test data and that we would use the complete data set to find an appropriate
PCA subspace. Figure 2.1(c) shows the resulting diagnostic plot for ROBPCA
(with α = 0.25), whereas Figure 2.1(d) is the plot for classical PCA. As ROBPCA
looks for the [(1− α)n] least outlying data points, most of the 50 training obser-
vations determine the robust principal components. The influence of the 9 test
cases on the other hand is small. As a result, we get about the same diagnostic
plot as in Figure 2.1(a), where the test data was not used at all. In classical PCA
however, the 9 observations from the test set have a huge effect. The principal
components are tilted towards them and the diagnostic plot is totally different
from what we observed in Figure 2.1(b). Only observations 54 and 58 are now
clearly above the horizontal cut-off line, indicating that they lie far from the
PCA subspace. Furthermore, observations 29 and 42 are closer to the test set
than to the training set which they really belong to.

This illustrates that small subgroups in the data do not have a large effect
on ROBPCA, and often even can be detected using this robust PCA method.
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2.4 Influence functions

2.4.1 Definitions and setup

In this section we will derive the influence function (Definition 1) of the SDso

estimator. This function gives useful information about the behavior of a sta-
tistical functional when outliers are present. For the classical covariance matrix
we denote the corresponding functional C as

C(F) =
∫

(x−EF(X))(x−EF(X))tdF(x).

The notation EF denotes the expectation with respect to the distribution F, so
EF(X) =

∫
xdF(x). Straightforward computations show that

IF(z; C, F) = (z−EF(X))(z−EF(X))t − C(F). (2.4)

We see that the influence function of the classical covariance matrix enlarges
quickly as z is chosen away from the mean of the distribution F, and is un-
bounded. This means that an infinitesimally small amount of outliers can have
an arbitrary large effect on the result. So the classical covariance matrix is any-
thing but robust. For any robust estimator of covariance, a minimal require-
ment should be to have a bounded influence function.

Let us now consider the Stahel-Donoho type estimators. The weighted
Stahel-Donoho estimator SDwo has bounded influence function, see Gervini
[2002] and Zuo and Cui [2005]. Here, we concentrate on SDso. We define the
outlyingness r(x; F) of a point x ∈ Rd as

r(x; F) = sup
a∈Rd

∣∣∣∣
atx−m(Fa)

s(Fa)

∣∣∣∣

with m(.) and s(.) affine equivariant univariate estimators of location and scale
and Fa = L(atX), X ∼ F. Due to the affine equivariance of m and s, we can as-
sume from now on that ‖a‖ = 1. Note that this definition is equivalent to (2.1)
when replacing the theoretical distribution F by the empirical distribution Fn.

In a similar way, definitions (2.2) and (2.3) can be extended from the sample
case to the functional case leading to:

Two(F) =
EF(w(r2(X; F))X)
EF(w(r2(X; F)))

Vwo(F) = cw
EF(w(r2(X; F))(X− Two(F))(X− Two(F))t)

EF(w(r2(X; F)))
(2.5)
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with w a non-negative weighting function and

Tso(F) =
1

1− α

∫

A(F)
x dF(x)

Vso(F) =
cα

1− α

∫

A(F)
(x− Tso(F))(x− Tso(F))tdF(x) (2.6)

with A(F) = {y ∈ Rd : r2(y, F) 6 qrα(F)} and qrα(F) the (1− α) quantile of
the r2, i.e. the smallest value such that D(r2(y, F) 6 qrα(F)) = 1− α. The factor
cα is chosen in order to ensure Fisher consistency at the specified model.

We will assume that F belongs to the class of d-dimensional elliptical sym-
metric distributions around µ. This means that its density exists and that it is
of the form

f (x) = |Σ|−1/2g((x− µ)tΣ−1(x− µ))

with g a monotone decreasing function and Σ a symmetric positive-definite
matrix. Further we assume that m(.) is Fisher consistent, which means that
m(Fa) = atµ. To obtain Fisher consistency for Vso, we then take cα in (2.6) such
that Vso(F) = Σ. Due to the affine equivariance of SDso, we can set µ = 0 and
Σ = I. The distribution F then becomes spherical, Fa := F1 is identical for
every a on the unit sphere in Rd and satisfies m(Fa) = 0 and s(Fa) = s0 ∈ R.
We will denote qα as the 1− α quantile of the distribution of XtX with X ∼ F.

2.4.2 Main result

First we need to know how the outlyingness r(x; F) behaves when contamina-
tion is added to F.

Lemma 2.1 Denote Fε,z = (1− ε)F + ε∆z. Assume that the influence function
of m exists, and that the function (ε, z) → s ((1− ε)F + ε∆z) is twice differen-
tiable at (0, z). Then, for each x, z ∈ Rd, x 6= 0

∂r2(x, Fε,z)
∂ε

|ε=0 = −2
‖x‖
s2

0
IF(x̃tz; m, F1)− 2

‖x‖2

s3
0

IF(x̃tz; s, F1)

where x̃ = x/‖x‖ and F1 is the one-dimensional marginal distribution of F.

Note that this is a slight extension of Theorem 2 in Gervini [2002], where the
case of m(.) and s(.) being M-estimators was covered. Our main condition
basically states that the influence function of the scale estimator is continuous
and differentiable. This is the case for a suitable M-estimator of scale and for
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the Qn-estimator [Rousseeuw and Croux, 1993] for instance. Whether this con-
dition is really necessary is still an open problem. Gervini [2002] mentions that
his expressions are still valid for the mad, although the influence function of
the mad is not differentiable everywhere. For a univariate MCD estimator of
scale, the differentiability condition is not satisfied either, and we were unable
to proof the existence of the influence function in that case. To keep close to the
original implementation in Hubert et al. [2005], we still use univariate MCD-
estimators in the next results.

We can now derive the influence function of Vso at a spherical distribu-
tion F.

Theorem 2.2 The influence function of the Vso estimator of scatter at a spheri-
cal distribution F is given by

IF(z; Vso, F) = w1(‖z‖)zzt + w2(‖z‖)I

where

w1(‖z‖) =
cα

1− α
11(‖z‖2 ≤ qα)− cα

1− α
g(qα)

d3

2‖z‖2

w2(‖z‖) =
cα

1− α

(
qα

d

(
1− α− 11(‖z‖2 ≤ qα)

)
+ g(qα)

(
qαd1

2d
− d2

2(d− 1)

))
− 1

with

d1 =
2π

d−1
2

Γ( d−1
2 )

∫ √
qα

−√qα

h(x1, z)(qα − x2
1)

d−3
2 dx1

d2 =
2π

d−1
2

Γ( d−1
2 )

∫ √
qα

−√qα

h(x1, z)(qα − x2
1)

d−1
2 dx1

d3 =
2π

d−1
2

Γ( d−1
2 )

∫ √
qα

−√qα

h(x1, z)
px2

1 − qα

d− 1
(qα − x2

1)
d−3

2 dx1

and

h(x1, z) = −2
√

qα

s2
0

IF(
x1‖z‖√

qα
, m, F1)− 2qα

s3
0

IF(
x1‖z‖√

qα
, s, F1).

In Figure 2.2 the influence functions of (a) the first diagonal element and (b)
the non-diagonal element are shown at a two-dimensional spherical Gaussian
distribution, using univariate MCD estimators for m(.) and s(.) with break-
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down value α whose influence function equals

IF(z; mMCD, F) =
( −2

1− α

∫ √
qα1

−√qα1

t2g′(t2)dt
)−1 z

1− α
11(|z| ≤ √

qα1)

IF(z; sMCD, F) =
(∫ √

qα1

−√qα1

t2dF(t)
)−1

{11(|z| ≤ qα1)(z2 − qα1) + (1− α)qα1} − 1

with qα1 = F−1(1− α
2 ) [Croux and Rousseeuw, 1992, Butler et al., 1993]. The

parameter α was chosen to be 0.25. We see that the influence function is rather
small around zero, the mean of the distribution. Away from the mean the in-
fluence function in-/decreases rapidly inside the circle ‖z‖2 6 qα = χ2

2,0.75, the
0.75-quantile of a χ2-distribution with 2 degrees of freedom. Outside this cir-
cle however, the influence function drops again to remain small and bounded.
This reflects that contamination placed outside this circle will be part of the
25% probability mass with highest outlyingness. Therefore, it will not be used
in calculating the covariance matrix Vso and thus its effect will be small.
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Figure 2.2 Influence function of Vso (a) of the first diagonal element and (b) of
the non-diagonal element, at a two dimensional spherical Gaussian distribu-
tion using univariate MCD estimators for m(.) and s(.), with α = 0.25

For distributions in more than 2 dimensions we can not plot the influence
function anymore, but we can look at the function w1 as defined in Theo-
rem 2.2. This function is depicted in Figure 2.3, at a 30-dimensional Gaussian
distribution for several values of α. It is clearly decreasing, with a jump at

√
qα.

Behind the jump, w1 ∼ 1/‖z‖2 and hence it becomes very small and decreases
to zero. Therefore the influence function will also be small for outliers having
a large norm.
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Figure 2.3 Function w1 appearing in the formula of IF(z; Vso, F), for α = 0.1
(dashed-dotted line), α = 0.25 (dashed line) and α = 0.5 (solid line), at a 30-
dimensional Gaussian distribution.

Theorem 2.2 thus shows that Vso is B-robust, meaning its influence function
is bounded [Hampel et al., 1986]. Nevertheless, the influence function might
locally attain high peaks. A useful measure of robustness in this respect is the
gross error sensitivity

γ(F) = sup
z∈Rd

‖IF(z; Vso, F)‖Fr (2.7)

where ‖.‖Fr is the Frobenius norm, which is the square root of the sum of all
squared matrix elements. We compare the gross error sensitivities of Vso, Vwo

and the MCD estimator at a Gaussian distribution. For Vwo we consider two
weighting schemes: a truncated exponential weight function

we(t2) = min{1, e5(1−t2/c)}

and a Gaussian weight function

wg(t2) =
φ(t2/c)

φ(1)

with cut-off value c = χ2
d,1−α [Gervini, 2002].

Figure 2.4 shows the gross error sensitivities as a function of α, for d = 3
and d = 30. The estimator Vso is clearly situated in between MCD and Vwo.
In higher dimensions it tends more and more towards the MCD. Nevertheless
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Figure 2.4 Gross error sensitivities of Vso (solid line) compared to MCD
(dashed-dotted line) and weighted Stahel-Donoho (exponential weights:
dashed line, Gaussian weights: dotted line), for (a) d = 3 and (b) d = 30.

Vso is uniformly better, since its gross error sensitivity is always smaller than
that of the MCD estimator. On the other hand, Vso is uniformly worse than
weighted Stahel-Donoho with respect to gross error sensitivities.

Remark The influence function of the location part Tso can be computed in
a similar way. We provide the result in the following theorem, with proof in
Section 2.8. In the remainder of the paper we will however restrict ourselves to
the covariance estimator Vso.

Theorem 2.3 The influence function of the SDso estimator of location at a
spherical distribution F is given by

IF(z; Tso, F) =
1

1− α
11(‖z‖2 ≤ qα)− 2π

d−1
2

Γ( d−1
2 )

g(qα)
∫ √

qα

0
h(x1, z)x1(qα − x2

1)
d−3

2

using the same notations as in Theorem 2.2.

2.4.3 Asymptotic efficiency

Influence functions also allow us to compute asymptotic efficiencies of estima-
tors. More precisely, assuming asymptotic normality and Fréchet differentia-
bility of the Vso estimator, asymptotic variances can be computed by

ASV(Vso(F)ij) =
∫

Rd
IF2(z; Vso, F)ijdF(z)
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for 1 6 i, j 6 d. Note that for the Stahel-Donoho estimator, asymptotic normal-
ity has been proven for location [Zuo et al., 2004] and for scatter [Zuo and Cui,
2005]. These asymptotic variances are used to compute relative asymptotic ef-
ficiencies by

Eff(Vso(F)ij, F) =
ASV(Cij, F)

ASV(Vso(F)ij, F)

where ASV(Cij, F) is the asymptotic variance of the classical covariance ma-
trix (2.4) elements. In case of a Gaussian distribution Φ,

ASV(Cii, Φ) = 2 and ASV(Cij, Φ) = 1 for i 6= j.

Table 2.1 shows asymptotic efficiencies of the diagonal resp. off-diagonal
elements of the Vso estimator, compared to the weighted Stahel-Donoho esti-
mator Vwo with Gaussian weights and to the MCD estimator, at a Gaussian dis-
tribution. Remember that computing Stahel-Donoho type estimators requires
the choice of univariate robust measures m(.) and s(.) of location and spread.
For Vwo we take m(.) the median and s(.) the median absolute deviation (mad),
whereas for Vso we additionally consider m(.) and s(.) the univariate MCD es-
timators of location and spread.

For Vso no large differences in efficiency are seen for the two choices of m
and s. The deviations are especially small in higher dimensions (e.g. d = 30
in Table 2.1). In lower dimensions, Vso(MCD) is slighter more efficient than
Vso(med/mad) when α = 0.25, whereas the inverse holds for α = 0.5. This is
not surprising, as the univariate MCD with α = 0.25 is more efficient than the
median, but not in case α = 0.5. Further we see that the performance of Vso is
better than that of the multivariate MCD at the normal model, but the weighted
Stahel-Donoho estimator Vwo clearly attains a much higher efficiency.

Based on our previous analysis of the influence function, gross error sensi-
tivities and relative asymptotic efficiencies, we can conclude that Vso is a wor-
thy alternative to other robust covariance estimators. It performs a bit better
than MCD and slightly worse than weighted Stahel-Donoho. Note however
that Vso has big computational advantages compared to the others, especially
when working in high dimensions. When the number of cases n is smaller than
the dimension d, the MCD cannot be computed anymore. Moreover, Vso does
not require the choice of a weight function or cut-off value.
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d = 2 d = 3 d = 5 d = 10 d = 30

diag α = 0.25 Vso (med/mad) 0.419 0.437 0.481 0.546 0.627
Vso (MCD) 0.455 0.462 0.496 0.553 0.629

MCD 0.262 0.300 0.366 0.459 0.577

α = 0.5 Vso (med/mad) 0.281 0.288 0.313 0.354 0.408
Vso (MCD) 0.252 0.266 0.299 0.347 0.406

MCD 0.062 0.089 0.134 0.205 0.310

c = χ2
d,0.95 Vwo 0.650 0.723 0.782 0.813 0.785

off α = 0.25 Vso (med/mad) 0.306 0.366 0.441 0.533 0.647
diag Vso (MCD) 0.354 0.392 0.457 0.543 0.654

MCD 0.163 0.233 0.324 0.438 0.570

α = 0.5 Vso (med/mad) 0.221 0.243 0.283 0.338 0.406
Vso (MCD) 0.205 0.219 0.270 0.332 0.404

MCD 0.033 0.063 0.113 0.191 0.304

c = χ2
d,0.95 Vwo 0.783 0.851 0.906 0.949 0.978

Table 2.1 Relative asymptotic efficiencies for a Gaussian distribution. Com-
parison between Vso, Vwo and MCD. Upper half: diagonal element. Lower half:
off-diagonal element.

2.4.4 Finite sample comparison

To put our theoretical results in some perspective, we conclude this section
by a small finite sample simulation study. We compare the SDwo estimator
with Gaussian weights (c = χ2

d,0.95) and the SDso estimator. We computed the
outlyingness of each data point by maximizing over directions through d ran-
domly chosen observations. The number of directions needed to get good re-
sults turned out to be quite small. In fact, with 1000 directions the outcome was
almost the same as with 250 directions. The data was generated from a multi-
variate standard normal distribution, a multivariate Student distribution with
5 degrees of freedom and a normal distribution with 10% of outliers. These
outliers were chosen slightly scattered around the point (20, 0, 0, . . . , 0). We
did the analysis with n = 150 and n = 500 observations, each time with d = 5,
d = 10 and d = 30 variables. Each simulation consisted of m = 300 runs.

For the diagonal elements, we use the standardized variance as a measure
of comparison (see for example Croux and Haesbroeck [1999]). Denote Σ̂k

ii the
ith diagonal element of the covariance estimator of the kth sample. Then the
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standardized variance is defined as

StVar(Σ̂ii) =
n varm(Σ̂ii)
(avem(Σ̂ii))2

where avem(Σ̂ii) and varm(Σ̂ii) are the average and variance over the sequence
of m replicates Σk

ii. For the off-diagonal elements, we use the mean squared
error

MSE(Σij) =
n
m

m

∑
k=1

(Σ̂k
ij)

2.

Then the number aved(StVar(Σii)) is a measure of the error when estimating
the diagonal elements. These numbers are reported in Table 2.2. For the off-
diagonal elements we report the average MSE(Σij) over all 1 ≤ i 6= j ≤ d.

We can see that the finite sample errors of Vwo are much smaller at a normal
distribution than that of Vso, confirming our theoretical findings. At the t5

distribution however, the difference becomes a lot smaller, especially for d =
30. This indicates that Vso is less vulnerable to the heavy tails of the Student
distribution. This is confirmed when we look at the normal distribution with
contamination. The errors for the Vso estimator are about the same as in the
case without the outliers. The finite sample errors for weighted Stahel-Donoho
Vwo on the other hand are clearly larger, even drastically increasing in higher
dimensions (d = 30).

2.5 Influence function of ROBPCA

An important application of covariance estimators is dimension reduction by
PCA, in which the eigenvectors play an important role. In this section we con-
centrate on the ROBPCA algorithm as briefly explained in Section 2.3. The first
step of ROBPCA consists of determining the covariance estimator Vso, which
was analyzed in Section 2.4. The algorithm then proceeds by projecting all the
data onto the subspace spanned by the first k eigenvectors of Vso. In this sub-
space, the MCD method is applied. In this section we will derive the influence
function of the resulting eigenvectors and eigenvalues. To this end, we need to
introduce some notations as follows.

• Let F be a d-dimensional elliptical distribution with zero mean and co-
variance matrix Σ = diag(λ1, . . . , λd) with λi 6= λj for every i 6= j. As-
suming Σ a diagonal matrix can be done without loss of generalization,
since ROBPCA is orthogonally equivariant.
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SDso SDwo

d = 5 10 30 d = 5 10 30

N(0, Id) diag n = 500 3.92 3.51 3.06 2.27 2.05 1.99
n = 150 4.16 3.47 3.01 2.43 2.13 2.02

off-diag n = 500 2.14 1.83 1.65 1.07 1.04 1.05
n = 150 2.31 1.96 1.62 1.10 1.06 1.02

t5 diag n = 500 5.31 5.32 5.73 3.89 3.72 4.99
n = 150 5.43 5.08 5.65 3.93 3.74 4.34

off-diag n = 500 2.44 2.33 2.60 1.81 1.73 2.03
n = 150 2.42 2.36 2.51 1.79 1.79 1.96

N(0, Id) diag n = 500 3.49 3.31 3.12 2.41 2.22 6.19
+ n = 150 3.70 3.31 2.98 2.54 2.24 6.33

10% off-diag n = 500 2.40 2.12 1.72 1.18 1.26 1.57
outliers n = 150 2.48 1.96 1.73 1.20 1.18 1.53

Table 2.2 Finite sample comparison between SDwo and SDso at the normal
distribution, Student distribution and normal distribution with contamination.

• Fk denotes the k-dimensional distribution of the projection of F onto the
first k eigenvectors of Vso(F). These k eigenvectors are collected in the
k× d matrix Pk(F).

• Vrobpca(F) is the MCD estimator of scatter of Fk. Its eigenvalues (in
decreasing order) and its corresponding eigenvectors (backtransformed
from the k- to the original d-dimensional space) are denoted as
(λrobpca,j(F), vrobpca,j(F)).

Then we obtain the following results.

Theorem 2.4 For j = 1, . . . , k, the influence function of λrobpca,j(F) at the dis-
tribution F is given by

IF(z; λrobpca,j, F) = IF(Pk(F)z; MCD, Fk)jj.

Thus we can see that the first step of the ROBPCA algorithm has no effect on
the influence function of the eigenvalues. Only the MCD estimation in the
second step plays a role.

Theorem 2.5 For j = 1, . . . , k, the influence function of vrobpca,j(F) at F is given
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Figure 2.5 IF([z1, z2, 0]; vrobpca,1, F)2 at a three dimensional Gaussian distribu-
tion, with α = 0.25. (a) Three dimensional view and (b) two dimensional view
from above. Grey scale indicates the height of the influence function: from
black for the smallest values over grey for values around zero to white for the
largest values.

by

IF(z; vrobpca,j, F)j = 0

IF(z; vrobpca,j, F)i = IF(Pk(F)z, vMCD,j, Fk)i −
w1(‖Σ−1/2z‖)zizj(λi + λj)

(λj − λi)2 , i 6= j

with w1 defined as in Theorem 2.2 (see also Figure 2.3).

We clearly see both steps of the algorithm appearing in the formula above.
The first term is due to the MCD-step of the algorithm, while the second term
depends on the function w1, reflecting the influence of the first step of the algo-
rithm. Figure 2.5 shows an example with d = 3 and k = 2. The influence func-
tion of the second component of vrobpca,1 is plotted for all points in the plane
z3 = 0, for a Gaussian distribution with covariance matrix Σ = diag(2, 1, 0.5).
Part (a) of Figure 2.5 is the three dimensional view, whereas part (b) is the
same plot seen from above, with a greyscale indicating the value of the influ-
ence function. Values around zero are grey. White on the other hand means
a very large positive effect. Large negative values are depicted in black. One
can clearly distinguish two ellipses, which reflect the two estimators in play:
the three-dimensional Vso estimator of which the first two eigenvectors pro-
vide a dimension reduction to a two-dimensional subspace, and then the two-
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dimensional MCD estimator applied in this subspace. Moreover the influence
function is clearly bounded, with large outliers outside the ellipses having min-
imal effect.

2.6 Influence function of RSIMPLS

As a second application of the Vso estimator and the resulting ROBPCA method,
we consider robust Partial Least Squares regression. PLSR is a widely used
technique in various fields, including chemometrics and econometrics. It tries
to link two sets of variables by means of a linear model. The first set of vari-
ables contains the d covariates or predictor variables, denoted by X1, . . . , Xd.
The second set consists of q response variables Y1, . . . , Yq. PLSR assumes the
following linear model:

Yi = β0 + Bxi + ei

with i.i.d. errors satisfying E(ei) = 0 and cov(ei) = Σe. When q > 1 the in-
tercept term β0 is a vector, and the slope B is a q × d matrix. Estimates for
β0, B and Σe can be obtained via classical multiple linear regression (MLR).
However, this leads to estimates with large variance when the covariates are
highly correlated, which typically occurs in high dimensional data applica-
tions. PLSR tries to solve these inconveniences by applying MLR to k < d la-
tent uncorrelated variables T1, . . . , Tk. Several algorithms have been proposed
to extract these latent variables from the data. We consider the SIMPLS algo-
rithm [de Jong, 1993] and its robust version RSIMPLS [Vanden Branden and
Hubert, 2004].

In the SIMPLS algorithm, weight vectors ri and qi (for i = 1, . . . , k) are ob-
tained as the vectors that maximize the covariance between X and Y compo-
nents

max
‖ri‖=1,‖qi‖=1

cov(X̃ri, Ỹri) = max
‖ri‖=1,‖qi‖=1

rt
i Sxyqi (2.8)

under the additional restrictions that the components Ti = X̃ri be uncor-
related. In (2.8) X̃ and Ỹ represent the mean-centered data matrices and
Sxy = X̃tỸ/(n − 1) is the empirical cross-covariance matrix between the X-
and Y-variables.

In practice, the key step of the algorithm is to determine eigenvectors from
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estimators of the covariance matrix Σ of the joint Z = [X, Y] variables, so

Σ = E(Z− µ)(Z− µ)t =

(
Σx Σxy

Σyx Σy

)

where µ is the center of the [X, Y]. The SIMPLS algorithm estimates Σ by the
empirical covariance matrix. As explained in the previous sections, outliers can
have a devastating effect on the results. Therefore, one can also use a robust
estimator of covariance. This was done in Vanden Branden and Hubert [2004],
where the MCD method and ROBPCA were proposed as alternatives. The
latter approach was named RSIMPLS. The resulting estimator for the slope can
be expressed as

B̂ = Rk(Rt
kΣ̂xRk)−1Rt

kΣ̂xy

with Rk the matrix of weight vectors ri.

In Vanden Branden and Hubert [2004] the influence function of B̂ was de-
rived (see Theorem A.4) and it was shown that this influence function depends
on the influence function of the weight vectors which for their part depend on
Σ̂. Results were derived for Σ̂ the MCD estimator of scatter.

Using theorem 2.2 we can now derive analogously the influence function
of B̂ when Σ̂ is the Stahel-Donoho scatter estimate with smallest outlyingness
Vso (For ROBPCA the computations would become very complicated). Similar
to Theorem 1 in Vanden Branden and Hubert [2004], we obtain the following
theorem.

Theorem 2.6 Denote Rk the matrix of weight vectors ri as in (2.8). Denote
A = (RtΣxRk)−1Rt

kΣxy. The influence function of the slope B̂ at an elliptical
distribution F of the joint [X, Y] variables in a point z = (x, y), x ∈ Rd, y ∈ Rq

equals

IF(z; B̂, F) = IF(z; Rk, F)A− Rk(Rt
kΣxRk)−1{IF(z; Rk, F)ΣxB

+ Rt
kΣx IF(z; Rk, F)A− IF(z; Rt

k, F)Σxy})
+ w1(d(z))Rk(Rt

kΣxRk)−1Rt
k(x− µx){y− µy)t − (x− µx)tB}

with w1 defined as in Theorem 2.2.

The influence function of the weight vectors IF(z; Rk, F) can be obtained anal-
ogously to Theorem A.4 in Vanden Branden and Hubert [2004].
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We illustrate the results by means of a simple example. We take q = 1 and

d = 2. For F a Gaussian distribution with mean 0 and Σ =




5 1
2 3

1
2 2 1

3
3 1

3 2


, we

compute the norm of IF(z; r1, F), i.e. the influence function of the first RSIM-
PLS weight vector.
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Figure 2.6 Norm of the influence function of the RSIMPLS weight vector r1,
(a) using MCD and (b) using Stahel-Donoho with smallest outlyingness, both
with α = 0.25.

The result is shown in Figure 2.6. Part (a) shows the result using the MCD
estimator and part (b) when using the Stahel-Donoho estimator with smallest
outlyingness, both with α = 0.25. In both plots an ellipse is visible containing
75% of the probability mass. Inside this ellipse the influence function increases,
reaching its maximum at the border of the ellipse. Outside this ellipse however
both influence functions become very small. This indicates that far outliers
do not have a big effect, showing the robustness of these methods. Note that
the influence function with MCD becomes 0 immediately outside the ellipse,
since the corresponding data points are not used at all. For the Stahel-Donoho
estimator, these points are neither used in computing the covariance matrix,
but they do influence the calculation of the outlyingness (see also Figure 2.2).
Therefore, small effects can still be seen for large values of the covariate vari-
ables.

Figure 2.7 shows the norm of the influence function of the slope vector, (a)
using MCD and (b) using SDso. Again it is clear that the influence functions
are bounded, with a smaller maximum obtained by SDso. As the slope has two
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Figure 2.7 Norm of the influence function of the slope vector, (a) using MCD
and (b) using Stahel-Donoho with smallest outlyingness, both with α = 0.25.

components, two ’regions’ with lower influence become visible.

2.7 Conclusion

We investigated the influence function of the Stahel-Donoho estimator of co-
variance based on smallest outlyingness. An explicit expression was found
from which it follows that the influence function is bounded, allowing us to
say that the estimator is B-robust. We calculated gross error sensitivities and
asymptotic efficiencies. They show that Stahel-Donoho with smallest outly-
ingness is a worthy alternative to other robust covariance estimators such as
MCD and weighted Stahel-Donoho. Moreover the difficult task of choosing an
appropriate weight function is not needed. Instead we can choose a number α,
which has a clear interpretation as the fraction of most outlying observations.

Next, we considered two applications of these covariance estimators in the
context of robust PCA and robust PLSR. Again we derived explicit expressions
for the influence functions of ROBPCA and RSIMPLS and showed that they are
bounded. This yields a theoretical justification of the robustness of ROBPCA
and RSIMPLS.
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2.8 Proofs

Proof of Lemma 2.1.

The proof is similar to the proof of Theorem 2 in Gervini [2002]. Take x ∈ Rd.
By definition

r2(x; Fε,z) = max
a∈Rd

(
atx−m(Fa

ε,z)
s(Fa

ε,z)

)2

Assume this maximum is reached at a = a(ε) with ‖a(ε)‖ = 1. If s(Fε,z) is
twice differentiable at (0, z), then a(ε is differentiable as well. Moreover

∂

∂ε
r2(x; Fε,z)|ε=0 = 2

a(0)tx−m(Fa(0)
0 )

s(Fa(0)
0 )

×
(

∂
∂ε a(ε)t|ε=0 x− ∂

∂ε m(Fa(ε)
ε,z )|ε=0

s(Fa(0)
0 )

− a(0)tx−m(Fa(0)
0 )

s(Fa(0)
0 )2

∂

∂ε
s(Fa(ε)

ε,z )|ε=0

)
.

(2.9)

Furthermore
∂

∂ε
m(Fa(ε)

ε,z )|ε=0 =
∂

∂ε
m(Fa(0)

ε,z )|ε=0 +
∂

∂ε
m(Fa(ε)

0 )|ε=0.

The second term is zero because of the Fisher consistency of m, whereas the
first term is equal to IF(a(0)tz, m, F1). Similarly

∂

∂ε
s(Fa(ε)

ε,z )|ε=0 = IF(a(0)tz; s, F1).

Finally, we use that a(0) = ±x/‖x‖ [Gervini, 2002] and that a′(0)ta(0) = 0 (as
a(ε)ta(ε) = 1).

¤

Proof of Theorem 2.2.

Consider the contaminated distribution Fε,z = (1− ε)F + ε∆z. Then

Vso(Fε,z) = cα

(∫
A(Fε,z) xxtdFε,z(x)

1− α
− T(Fε,z)T(Fε,z)t

)

= cα

(
1− ε

1− α

∫

A(Fε,z)
xxtdF(x) +

ε

1− α

∫

A(Fε,z)
xxtd∆z(x)− T(Fε,z)T(Fε,z)t

)

= cα

(
1− ε

1− α

∫

A(Fε,z)
xxtdF(x) +

ε

1− α
11(z ∈ A(Fε,z))zzt − T(Fε,z)T(Fε,z)t

)
.
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To find the influence function, we derive the latter expression to ε and evaluate
at ε = 0.

IF(z; Vso, F) = − cα

1− α

∫

A(F)
xxtdF(x) +

cα

1− α

∂

∂ε

∫

A(Fε,z)
xxtdF(x)|ε=0

+
cα

1− α
11(z ∈ A(F))zzt

or

IF(z; Vso, F) = −I +
cα

1− α

∂

∂ε

∫

A(Fε,z)
xxtdF(x)|ε=0 +

cα

1− α
11(‖z‖2 ≤ qα)zzt.

(2.10)

To further evaluate the second term, we assume z lying on the x1-axis. Then

cα

1− α

∂

∂ε

∫

A(Fε,z)
xxtdF(x)|ε=0 (2.11)

=
cα

1− α

∂

∂ε

∫ x2(ε)

x1(ε)
dx1

∫

C(ε,x1)
dx2 . . . dxd




x1
...

xd




(
x1 . . . xd

)
g(‖x‖2)|ε=0

(2.12)

for certain x1(ε) and x2(ε). Because of symmetry, C(Fε,z, x1) is a (d − 1)-
dimensional ball. Denote its radius with r =

√
qα(Fε,z, x1) and transform to

polar coordinates as follows:




x2
...

xd


 −→ re(θ). Denote the Jacobian of this

transformation as J(θ, r). Then the right-hand size of (2.12) can be written as

cα

1− α

∫ √
qα

−√qα

dx1
∂

∂ε

∫ √qα(Fε,z ,x1)

0
dr

∫

Θ
dθ J(θ, r)

(
x1

re(θ)

) (
x1 re(θ)t

)
g(x2

1 + r2)|ε=0

which by Leibniz’ rule equals

cα

1− α

∫ √
qα

−√qα

dx1
∂

∂ε

√
qα(Fε,z, x1)|ε=0

∫

Θ
dθ J(θ,

√
qα(F, x1))× (2.13)

(
x1√

qα(F, x1)e(θ)

) (
x1

√
qα(F, x1)e(θ)t

)
g(x2

1 + qα(F, x1)).
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We thus need to evaluate ∂
∂ε

√
qα(Fε,z, x1)|ε=0. By definition of A(Fε,z) we have

∫

A(Fε,z)
dFε,z(x) = 1− α.

Deriving both sides of this equality we find after some calculations that

−
∫

A(F)
dF(x) + 11(z ∈ A(F))

+
∫ √

qα

−√qα

dx1
∂

∂ε

√
qα(Fε,z, x1)|ε=0

∫

Θ
dθ J(θ,

√
qα(F, x1) g(qα) = 0

(2.14)

Now take a point x(ε) on the boundary of A(Fε,z) with first coordinate x1. Then

qα(Fε,z) = r2(x(ε), Fε,z).

This yields

∂

∂ε
qα(Fε,z)|ε=0 =

∂

∂ε
r2(x(0), Fε,z)|ε=0 +

∂

∂ε
r2(x(ε), F0,z)|ε=0

=
∂

∂ε
r2(x(0), Fε,z)|ε=0 +

∂

∂ε
‖x(ε)‖2|ε=0

=
∂

∂ε
r2(x(0), Fε,z)|ε=0 +

∂

∂ε
qα(Fε,z, x1)|ε=0 (2.15)

and so we find

∂

∂ε

√
qα(Fε,z, x1)|ε=0 =

∂
∂ε qα(Fε,z)|ε=0 − ∂

∂ε r2(x(0), Fε,z)|ε=0

2
√

qα(F, x1)
.

Substituting this in (2.14), we find an expression for ∂
∂ε qα(Fε,z)|ε=0. Using

equality (2.15), we find after some calculations that

∂

∂ε
qα(Fε,z, x1)|ε=0 =

1− α− 11(‖z‖2 ≤ qα)
∫ √qα
−√qα

dx1
√

qα(F,x1)
d−3

2

∫
Θ dθ Jθ(θ) g(qα)

(2.16)

+

∫ √qα

−√qα
dx1

∂
∂ε r2(x(0), Fε,z)|ε=0

√
qα(F, x1)

d−3

∫ √qα

−√qα
dx1

√
qα(F, x1)

d−3 − ∂

∂ε
r2(x(0), Fε,z)|ε=0

from which ∂
∂ε

√
qα(Fε,z, x1)|ε=0 can be computed. Plugging in this expression

in (2.13) and simplifying the integrals (thereby using Lemma 2.1), finally gives
us following expression for the second term in (2.10):

cα

1− α

qα

d

(
1− α− 11(‖z‖2 ≤ qα)

)
I +

cα

1− α
g(qα)

(
qαd1

2d

)
I

− cα

1− α
g(qα)

d2

2(d− 1)
I − cα

1− α
g(qα)

d3

2z2
1

(
z2

1 01,d−1

0d−1,1 0d−1,d−1

)
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Thus if z lies on the x1-axis we obtain

IF(z; Vso, F) = −I +
cα

1− α
11(‖z‖2 ≤ qα)

(
z2

1 01,d−1

0d−1,1 0d−1,d−1

)

+
cα

1− α

qα

d

(
1− α− 11(‖z‖2 ≤ qα)

)
I +

cα

1− α
g(qα)

(
qαd1

2d

)
I

− cα

1− α
g(qα)

d2

2(d− 1)
I − cα

1− α
g(qα)

d3

2z2
1

(
z2

1 01,d−1

0d−1,1 0d−1,d−1.

)

The affine equivariance of Vso then leads to the result in Theorem 2.2 for gen-
eral z.

¤

Proof of Theorem 2.3

In a completely analogue way as in the previous proof, one can show that

IF(z; Tso, F) = − 1
1− α

∫

A(0)
xdF(x) +

1
1− α

∂

∂ε

∫

A(Fε,z)
xdF(x)|ε=0

+
1

1− α
11(z ∈ A(F))z.

The first term is zero due to Fisher-consistency, while the second term equals

1
1− α

∫ √
qα

−√qα

dx1
∂
∂ε

√
qα(Fε,z, x1)|ε=0

∫
Θ dθ J(θ,

√
qα(F, x1))x1g(x2

1 + qα(F, x1))

using the same notation as in (2.13). The derivative ∂
∂ε

√
qα(Fε,z, x1)|ε=0 was

already obtained in (2.16). Substituting and using the symmetry of F, one finds
after some calculations the result in Theorem 2.3.

¤

Proof of Theorems 2.4 and 2.5

Assume F a d-dimensional elliptical distribution with center 0 and covariance
matrix Σ = diag(λ1, . . . , λd). Let us first derive ∂

∂ε Vrobpca(Fε,z)|ε=0. So first we
project the contaminated distribution Fε,z onto a k-dimensional subspace. The
distribution of this projection is then given by

Fproj
ε,z = (1− ε)Fε + ε∆Pk(Fε,z)z
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where Fε is a k-dimensional elliptical distribution with covariance matrix
Pk(Fε,z)ΣPk(Fε,z)t. Now Vrobpca(Fε,z) is nothing but the MCD estimator of co-

variance applied to Fproj
ε,z and thus one can write (with Vr = Vrobpca):

Vr(Fε,z) = cα{ 1
1− α

∫

B(Fε,z)
xxtdFε,z(x)− Tr(ε)Tr(ε)t}

= cα{ 1− ε

1− α

∫

B(Fε,z)
xxtdFε(x) +

ε

1− α
11 (Pk(Fε,z)z ∈ B(Fε,z)) Pk(Fε,z)zztPk(Fε,z)t

− Tr(ε)Tr(ε)t}

with Tr(ε) the MCD estimator of location of Fproj
ε,z and B(Fε,z) = {x ∈ Rd :

(x− Tr(ε))tVr(Fε,z)−1(x− Tr(ε)) ≤ qα(ε)} for a certain positive number qα(ε).
From the above expression, one can proceed similarly to the proof of Theorem 1
in Croux and Haesbroeck [1999]. After some calculations one then finds

IF(z; Vr, F) = IF(Pk(F)z; MCD, F) +
∂

∂ε
(Pk(Fε,z)ΣPk(Fε,z))|ε=0 (2.17)

Denote λr,j(F) and vr,j(F) the jth eigenvalue and eigenvector. Then

IF(z; λr,j, F) = IF(z; Vr, F)jj

IF(z; vr,j, F)i =
IF(z; Vr, F)ij

λj − λi
,

see for example [Croux and Haesbroeck, 2000].
Combining (2.17) with Theorem 2.2 to calculate ∂

∂ε (Pk(Fε,z)) yields

IF(z; λr,j, F) = IF(Pk(F)z; MCD, Fk)jj

IF(z; vr,j, F)j = 0

IF(z; vr,j, F)i = IF(Pk(F)z, vMCD,j, Fk)i −
w1(‖Σ−1/2z‖)zizj(λj + λi)

(λj − λi)2 for i 6= j

leading to the expressions for λrobpca and vrobpca as in Theorems 2.4 and 2.5.



Chapter 3

Robustness and stability of
reweighted kernel based
regression

3.1 Introduction

Kernel Based Regression (KBR) is a popular method belonging to modern ma-
chine learning and is based on convex risk minimization. An objective func-
tion is optimized consisting of the sum of a data term and a complexity term.
The data term represents the loss at the given data points. Recently the ro-
bustness of these methods was investigated with respect to outlying observa-
tions [Christmann and Steinwart, 2006]. It was found that KBR with a loss func-
tion with unbounded first derivative can be heavily affected by the smallest
amount of outliers. As such a least squares loss is not a good choice from a ro-
bustness point of view, contrary to e.g. an L1 loss or Vapnik’s ε-insensitive loss
function. From a computational point of view on the other hand, a least squares
loss leads to faster algorithms solving a linear system of equations [Wahba,
1990, Evgeniou et al., 2000, Suykens et al., 2002b], whereas an L1 loss involves
solving a quadratic programming problem. In this chapter we investigate the
possibility of stepwise reweighting Least Squares KBR (LS-KBR) in order to im-
prove its robustness. This is already proposed in Suykens et al. [2002a], where
data experiments show how reweighting steps reduce the effect of outliers,

53
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whereas the algorithm still only requires solving linear systems of equations.

Reweighting ideas are very common in traditional linear regression mod-
els. A theoretical analysis of the robustness of reweighted linear least squares
regression is provided by Dollinger and Staudte [1991], where the influence
functions of successive steps are calculated. A short summary of their results
is given in Section 3.2.

Section 3.3 contains some explanation about KBR. Section 3.4 contains the
main results of this chapter:

• We introduce the weighted regularized risk and show a representer the-
orem for its minimizer (Theorem 3.6).

• We calculate the influence function of one-step reweighted KBR (Theo-
rem 3.7).

• Theorem 3.7 shows that the influence function after performing a reweight-
ing step depends on a certain operator evaluated at the influence func-
tion before the reweighting step. Since our goal is to reduce the influence
function (thereby improving robustness), it is important that the norm of
this operator is smaller than one. Assuming a signal plus noise distri-
bution, we are able to determine conditions on the weight function such
that an operator norm smaller than one is guaranteed. This provides
some practical guidelines on how to choose the weights.

• If the weight function is well chosen, it is shown that reweighted KBR
with a bounded kernel converges to an estimator with a bounded influ-
ence function, even if the initial estimator is LS-KBR, which is not ro-
bust. This is an important difference compared to linear reweighted LS
regression, which converges to an estimator with an unbounded influ-
ence function.

Throughout the chapter the influence function is used as a tool to assess the
robustness of the methods under consideration. It reflects how an estimator
changes when a tiny amount of contamination is added to the original dis-
tribution. As such it can also be seen as a measure of stability at continuous
distributions: it shows how the result changes when the distribution changes
slightly. This is very similar to some stability measures that were recently de-
fined. Poggio et al. [2004] for example show that it is very important for a
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method not to change too much when an additional point is added to a sam-
ple. However, these stability measures typically add a point which is gener-
ated i.i.d. from the same distribution as the other points. In robust statistics
the added contamination can be any possible outcome, even a very unlikely
one under the generating distribution. Thus in a way robustness is a stronger
requirement than stability. A robust method should give stable results when
adding any possible point, even an extremely unlikely one.

In Section 3.5 we explore these links and differences between robustness
and stability a little bit further. We show how the influence function can be
used to approximate traditional stability measures by evaluating it at sample
points. A smaller influence function leads to methods that are more stable.
Therefore, since reweighting steps reduce the influence function, they also im-
prove the stability of the initial LS-KBR estimator. When the error distribution
is Gaussian, this effect is rather small. At heavy tailed distributions on the
other hand the stability can improve quite drastically.

In Section 3.6 we discuss some practical consequences of our theoretical
results. Some weight functions traditionally used in linear regression are ex-
amined. It is shown that some weight functions, e.g. Hampel weights, do not
satisfy the necessary conditions. We construct an example showing that this
can indeed lead to bad results in practice, in contrast to e.g. a logistic weight
function satisfying all conditions.

In the same section we provide some results on the convergence speed. As
explained the influence function is reduced at each step. An upper bound for
this reduction factor is found. Unfortunately this factor depends on the error
distribution, such that this upper bound is not distribution free. In Table 3.3
results are shown for several error distributions. Again logistic weights give
good results in the most common cases.

Finally we analyze some specific data sets. The robustness of reweighted
KBR is demonstrated on a data example from astronomy. A small simulation
study demonstrates that reweighting leads to better stability at heavy tailed
distributions.

3.2 Linear least squares regression

In this section we gather some results concerning linear regression. Consider n
observations (xi, yi) ∈ Rd ×R, i = 1, . . . , n. We assume a linear relationship



56
CHAPTER 3. ROBUSTNESS AND STABILITY OF REWEIGHTED KERNEL BASED

REGRESSION

between the d-dimensional covariates and the 1-dimensional response vari-
able:

yi = vt
0xi + ei (3.1)

with independent errors ei. The unknown parameter v0 ∈ Rd can be estimated
in numerous ways. The most traditional way is least squares regression, which
minimizes the sum of the squared residuals. Thus, define ri(v) = yi − vtxi,
then the least squares estimator is obtained as

argmin
v

1
n

n

∑
i=1

ri(v)2. (3.2)

It is however well known that this estimator is very sensitive to deviations from
the model. This is also reflected in its influence function (cfr. Definition 1).
Given a (d + 1)−dimensional distribution P, we can define the functional Tl as

Tl(P) = argmin
v

EP(Y− vtX)2 (3.3)

with (X, Y) a pair of random variables with joint distribution P. Plugging in a
finite sample distribution Pn, this indeed reduces to (3.2). The influence func-
tion of Tl at the point z = (zx, zy) ∈ Rd ×R equals (Cook and Weisberg [1982],
Hinkley [1977])

IF(z; Tl , P) = (EP(XXt))−1(zy − Tl(P)tzx)zx. (3.4)

This expression is clearly unbounded, meaning that an infinitesimal amount
of outliers can have an arbitrarily large effect. The influence function increases
both with the component in x-space, zx, as with the residual zy − Tl(P)tzx,
showing that linear least squares regression is sensitive to vertical outliers as
well as leverage points.

In an attempt to correct this bad behavior in the presence of contamination,
reweighted regression can be considered. The idea is to downweight observa-
tions that have a high residual with respect to an initial estimator T0

l . Then the
one step reweighted least squares estimator T1

l is defined as

T1
l (P) = argmin

v
EP[w(X, Y− T0

l (P)X)(Y− vtX)2] (3.5)

with w(., .) : (Rd, R) → R a properly chosen weight function. The influence
function of this estimator was proven to be [Dollinger and Staudte, 1991]

IF(z; T1
l , P) = Σ−1

w w(zx, zy − vt
0zx)(zy − vt

0zx)zx + Σ−1
w Cw IF(z; T0

l , P) (3.6)
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with

Σw = EP[w(X, Y− vtX)XXt] and Cw = −EP[(Y− vtX)
∂w
∂r

(X, Y− vtX)XXt]

where ∂w
∂r denotes the derivative of w(., .) with respect to its second argu-

ment. In equation (3.6) the influence of the initial estimator T0
l is still present.

However, iteratively repeating the reweighting process, convergence is shown
in Dollinger and Staudte [1991] under appropriate conditions. Their final result
yields

IF(z; T∞
l , P) = (Σw − Cw)−1w(zx, zy − vt

0zx)(zy − vt
0zx)zx. (3.7)

In order to obtain a bounded influence function in (3.7), the weight function
w(., .) should decrease in both its arguments:

‖w(x, r)xr‖ bounded for all (x, r) ∈ Rd ×R. (3.8)

Thus commonly used reweighting schemes based on the residuals only, are
not sufficient to bound the influence function. It is absolutely necessary to
downweight observations outlying in x-space as well, which can be quite hard
in high dimensions d → ∞ due to the curse of dimensionality.

Moreover, even when condition (3.8) is satisfied, it is well known that the
resulting estimator has a low breakdown point, meaning that it can only re-
sist small fractions of outliers. This led to the insight that reweighted linear
least squares regression is insufficiently robust. A vast list of robust regres-
sion methods was proposed ever since, combining bounded influence func-
tions with high break down values, e.g. Least Median of Squares [Rousseeuw,
1984], Least Trimmed Squares [Rousseeuw and Leroy, 1987], S-estimators of
regression [Rousseeuw and Yohai, 1984], MM-estimators [Yohai, 1987] and τ-
estimators [Yohai and Zamar, 1988].

3.3 Kernel based regression

The goal of this chapter is to extend the results of Dollinger and Staudte
[1991] from the previous section to the case of kernel based regression (KBR).
These methods estimate a functional relationship between a covariate ran-
dom variable X and a response variable Y, using a sample of n observations
(xi, yi) ∈ X× Y ⊆ Rd ×R with joint distribution P.
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Let L : Y×R → [0, ∞) be a function which is convex with respect to its
second argument. Then KBR methods minimize the empirical regularized risk

f̂n,λ := argmin
f∈H

1
n

n

∑
i=1

L(yi, f (xi)) + λ‖ f ‖2
H (3.9)

where λ is a regularization parameter and H is the reproducing kernel Hilbert
space of a kernel K as in Definition 2, see for example Wahba [1990] or Evgeniou
et al. [2000].

Results about the form of the solution of KBR methods are known as rep-
resenter theorems. A well known result in the literature of statistical learning
shows that

f̂n,λ =
n

∑
i=1

αiΦ(xi). (3.10)

The form of the coefficients αi however strongly depends on the loss func-
tion. For the squared loss L(y, t) = (y − t)2, Tikhonov and Arsenin [1977]
already characterized the coefficients αi as solutions of a system of linear equa-
tions. For arbitrary convex differentiable loss functions, like the logistic loss
L(y, t) = − log(4) + |r| + 2 log(1 + e−|r|), the αi are the solution of a system
of algebraic equations (Girosi [1998], Wahba [1999], Schölkopf et al. [2001]).
For arbitrary convex, but possibly non differentiable loss functions, extensions
were obtained by Steinwart [2003] and DeVito et al. [2004].

In practice the variational problem (3.9) and its representation (3.10) are closely
related to the methodology of Support Vector Machines. This method formu-
lates a primal optimization problem and solves it via a corresponding dual
formulation. Vapnik [1995] extended this approach to the regression setting
introducing Support Vector Regression (SVR) using the ε-insensitive loss func-
tion. A dual problem similar to (3.10) is solved, where the coefficients αi are ob-
tained from a quadratic programming problem. A least squares loss function
however leads to a linear system of equations, generally easier to solve (see e.g.
Suykens et al. [2002b], where primal-dual problems are formulated, including
a bias term as well). On the other hand, real data examples showed that Least
Squares Support Vector Regression is more affected by outlying observations.
Suykens et al. [2002a] therefore introduced a reweighting step, trying to down-
weight malicious effects outliers can have.
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In this chapter we want to investigate the theoretical properties of such reweight-
ing steps by means of the theoretical regularized risk, an extension of (3.9) for
continuous distributions. We introduce a reweighted version of this theoret-
ical regularized risk and analyze convergence and robustness properties. An
important aspect is the choice of the weights. We find some conditions that
need to be satisfied in order to obtain good robustness. Some data examples
show that these conditions should also be kept in mind when modelling data
with reweighted LS-SVR.

3.4 Robustness

First we recall some results about ordinary unweighted KBR.

3.4.1 Unweighted KBR

For our theoretical results we will look at the minimization of the theoretical
regularized risk

fP,λ := argmin
f∈H

EPL(Y, f (X)) + λ‖ f ‖2
H. (3.11)

It is clear that the empirical regularized risk (3.9) is a stochastic approximation
of the theoretical regularized risk.

Before we give some theoretical results, we need two definitions. Firstly we
describe the growth behavior of the loss function [Christmann and Steinwart,
2006].

Definition 3.1 Let L : Y×R → [0, ∞) be a loss function, a : Y → [0, ∞) be a
measurable function and p ∈ [0, ∞). We say that L is a loss function of type
(a, p) if there exists a constant c > 0 such that

L(y, t) ≤ c (a(y) + |t|p + 1)

for all y ∈ Y and all t ∈ R. Furthermore we say that L is of strong type (a, p)
if the first two partial derivatives L′ := ∂2L and L′′ := ∂22L of L with repect to
the second argument of L exist and L, L′ and L′′ are of (a, p)-type.

Secondly we recall the notion of subdifferentials (see e.g. Phelps [1986]).
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Definition 3.2 Let H be a Hilbert space, F : H → R∪{∞} be a convex function
and g ∈ H with F(g) 6= ∞. Then the subdifferential of F at g is defined by

∂F(g) := {g∗ ∈ H : 〈g∗, u− g∗〉 ≤ F(u)− F(g) for all u ∈ H}.

Furthermore, if L is a convex loss function, we denote the subdifferential of L
with respect to the second variable by ∂2L.

Finally we also need the following definition about the distribution P.

Definition 3.3 Let P be a distribution on X × Y with total variation |P| and
a : Y → [0, ∞) be a measurable function. Then we write

|P|a :=
∫

X×Y
a(y)dP(x, y).

In DeVito et al. [2004] the following representation of the theoretical regular-
ized risk was proven.

Proposition 3.4 Let p ≥ 1, L be a convex loss function of type (a, p), and P
be a distribution on X× Y with |P|a < ∞. Let H be the RKHS of a bounded,
continuous kernel K over X, and Φ : X → H be the feature map of H. Then
there exists an h ∈ Lp′(P) such that h(x, y) ∈ ∂2L(y, fP,λ(x)) for all (x, y) ∈
X× Y and

fP,λ = − 1
2λ

EP [hΦ] . (3.12)

Note that the notion of subdifferential reduces to the derivative if the loss func-
tion is differentiable. Moreover the least squares loss function is of type (y2, 2)
and thus the previous proposition basically simplifies to

fP,λ =
1
λ

EP [(Y− fP,λ(X))Φ(X)] (3.13)

for all distributions P with finite second moment.
Now consider the map T which assigns to every distribution P on a given

set Z, the function T(P) = fP,λ ∈ H. Then the following expression for the
influence function of T was proven in Christmann and Steinwart [2006].

Proposition 3.5 Let H be a RKHS of a bounded continuous kernel K on X with
feature map Φ : X → H, and L : Y×R → [0, ∞) be a convex loss function
of some strong type (a, p). Furthermore, let P be a distribution on X× Y with
|P|a < ∞. Then the influence function of T exists for all z := (zx, zy) ∈ X× Y
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and we have

IF(z; T, P) = S−1 (
EP[L′(Y, fP,λ(X))Φ(X)]

)− L′(zy, fP,λ(zx))S−1Φ(zx)

where S : H → H is defined by

S( f ) = 2λ f + EP
[
L′′(Y, fP,λ(X))〈Φ(X), f 〉Φ(X)

]
.

Note that the influence function only depends on z through the term

−L′(zy, fP,λ(zx))S−1Φ(zx).

From a robustness point of view it is important to bound the influence function.
The previous proposition shows that this can be achieved using a bounded
kernel, e.g. the Gaussian RBF kernel, and a loss function with bounded first
derivative, e.g. the logistic loss. The least squares loss function on the other
hand leads to an unbounded influence function, meaning that an infinitesimal
amount of contamination can totally ruin the estimator.

However, reweighting might improve the robustness of LS-KBR. In the next
section we will extend the previous results to the case of reweighted KBR.

Remark: For the special case of the least squares loss function, we provide a
slight extension of Proposition 3.5, including an intercept term. For reasons
of simplicity we will however not include this intercept term anymore further
on and continue working with the functional part only, as in Christmann and
Steinwart [2006].

3.4.2 Reweighted KBR

Let f (0)
P,λ ∈ H be an initial fit, e.g. obtained by ordinary unweighted LS-KBR.

Let w(x, y− f (0)
P,λ(x)) : Rd ×R → [0, 1] be a weight function, depending on the

covariate x and the residual y− f (0)
P,λ(x) with respect to the initial fit. We will

make the following assumptions about w from now on:

(w1) w(x, r) a non-negative bounded Borel measurable function on Rd ×R.

(w2) w an even function of r.

(w3) w continuous and differentiable with respect to its second argument r,

denoting this derivative by
∂

∂r
w.
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Then we can minimize the weighted regularized risk, a weighted version
of (3.11).

f (1)
P,λ := argmin

f∈H

EP

[
w(X, Y− f (0)

P,λ(X))L(Y, f (X))
]
+ λ‖ f ‖2

H. (3.14)

The following theorem can be derived from Proposition 3.4 (for full proofs we
refer to Section 3.8).

Theorem 3.6 Let p ≥ 1, L be a convex loss function of type (a, p), and P be
a distribution on X × Y with |P|a < ∞. Let H be the RKHS of a bounded,
continuous kernel K on X, and Φ : X → H be the feature map of H. Then there
exists an h ∈ Lp′(P) such that h(x, y) ∈ ∂2L(y, f (1)

P,λ(x)) for all (x, y) ∈ X× Y

and

f (1)
P,λ = − 1

2λ
EP

[
w(X, Y− f (0)

P,λ(X))hΦ
]

. (3.15)

Using this representation we can now calculate the influence function of one
step reweighted KBR. Denote by T1 the map T1(P) = f (1)

P,λ.

Theorem 3.7 Denote T0 the map T0(P) = f (0)
P,λ ∈ H with H a RKHS of a

bounded continuous kernel K on X with feature map Φ : X → H, and
L : Y×R → [0, ∞) be a convex loss function of some strong type (a, p). Fur-
thermore, let P be a distribution on X× Y with |P|a < ∞ and

∫
X×Y w(x, y −

f (0)
P,λ(x))dP(x, y) > 0. Then the influence function of T1 exists for all z :=

(zx, zy) ∈ X× Y and we have

IF(z; T1, P) = S−1
w (EPw(X, Y− f (0)

P,λ(X))L′(Y, f (1)
P,λ(X))Φ(X))

+ S−1
w (Cw(IF(z; T0, P)))− w(zx, zy − f (0)

P,λ(zx))L′(zy, f (1)
P,λ(zx))S−1

w (Φ(zx)).

with Sw : H → H,

Sw( f ) = 2λ f + EP[w(X, Y− f (0)
P,λ(X))L′′(Y, f (1)

P,λ(X))〈 f , Φ(X)〉Φ(X)]

and Cw : H → H,

Cw( f ) = −EP[
∂

∂r
w(X, Y− f (0)

P,λ(X))L′(Y, f (1)
P,λ(X))〈 f , Φ(X)〉Φ(X)].

Note that the expression for IF(z; T1, P) consists of three terms. The first one is
a constant function independent of z, i.e. it does not depend on the position z
where we plug in the contamination. The second term (S−1

w ◦ Cw)(IF(z; T0, P))
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reflects the influence of the initial KBR estimate. Since Sw and Cw are operators
independent of z, this term can be unbounded if the influence function of the
initial estimator is unbounded, which is the case for e.g. LS-KBR. However, it
is possible that this influence of the initial fit is reduced because the operator
S−1

w ◦ Cw is applied on it. In that case, the second term might vanish if we keep
reweighting until convergence. To investigate this iterative reweighting, we
will however make some simplifying assumptions. First of all we will restrict
ourselves to the case of a least squares loss function, taking L(y, t) = (y− t)2,
y, t ∈ R. Next we examine three cases. In a first case we assume that the
regularization parameter λ = 0 and we investigate the effect of the kernel on
the reweighting. Secondly we will consider the case λ > 0, but only for special
distributions P. Nevertheless this gives us good insight in the effect of the
regularization on the reweighting. Finally we spend some time discussing the
general case λ ≥ 0 for arbitrary distributions P.

Case 1: λ = 0

In this section we assume that the distribution P follows a classical regression
setting. This means that (i) a function fP ∈ H exists such that the conditional
mean EP(Y|x) of the response Y given x ∈ Rd equals fP(x), (ii) the error
e = Y − f (X) is independent of X and (iii) the distribution Pe of these errors
is symmetric about 0 with finite second moment. For such distributions P, it is
easy to see that LS-KBR with λ = 0 is Fisher consistent, meaning that fP,0 = fP

with (see equation (3.11))

fP,0 = argmin
f∈H

EP(Y− f (X))2.

Moreover one step reweighted LS-KBR is also Fisher consistent (see Section 3.8
for proof):

f (1)
P,0 = argmin

f∈H

EP[w(X, Y− fP,0(X))(Y− f (X))2] = fP. (3.16)

Now we can define k + 1-step reweighted LS-KBR:

f (k+1)
P,0 = argmin

f∈H

EP

[
w(X, Y− f (k)

P,0(X))(Y− f (X))2
]

which is Fisher consistent as well for every k ∈ N, thus we have that f (k)
P,0 = fP

for every k ∈ N. Then we have the following theorem.
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Theorem 3.8 Denote T0 the map T0(P) = fP,0 ∈ H and Tk+1(P) the map
Tk+1(P) = f (k+1)

P,0 ∈ H with H a RKHS of a bounded continuous kernel K
on X with feature map Φ : X → H. Then the influence function of Tk+1 exists
for all z := (zx, zy) ∈ X×Y and we have

IF(z; Tk+1, P) = S−1
w (Cw(IF(z; Tk, P)))

+ w(zx, zy − fP(zx))(zy − fP(zx))S−1
w (Φ(zx))

with

Sw : H → H, Sw( f ) = EP[w(X, Y− fP(X))〈 f , Φ(X)〉Φ(X)]

and

Cw : H → H, Cw( f ) = −EP[
∂

∂r
w(X, Y− fP(X))(Y− fP(X))〈 f , Φ(X)〉Φ(X)].

Theorem 3.8 gives a first order recursive relationship between IF(z; Tk+1, P)
and IF(z; Tk, P), which is easy to solve. Denote h(z) the second part of the
expression for IF(z; Tk+1, P) in Theorem 3.8, independent of IF(z; Tk, P). Thus

h(z) := w(zx, zy − fP(zx))(zy − fP(zx))S−1
w (Φ(zx)).

Then we see that

IF(z; Tk+1, P) =
k

∑
i=0

(S−1
w ◦ Cw)ih(z) + (S−1

w ◦ Cw)k+1 IF(z; T0, P).

If the operator norm of (S−1
w ◦ Cw) is smaller then one, the second term will

vanish as k → ∞. The first term will converge to (1− (S−1
w ◦ Cw))−1(h(z)) =

(Sw − Cw)−1Sw(h(z)). This leads to the following Corollary.

Corollary 3.9 Let P, H, Tk, Sw and Cw be as in Theorem 3.8. Denote T∞ =
limk→∞ Tk. Then, if ‖S−1

w ◦ Cw‖ < 1, the influence function of T∞ at P exists
and equals

IF(z; T∞, P) = (Sw − Cw)−1(w(zx, zy − fP(zx))(zy − fP(zx))Φ(zx)).

A first important conclusion concerns the boundedness of this expression.
Since the operators Sw and Cw are independent of the contamination z, the
influence function IF(z; T∞, P) is bounded if

‖w(x, r)rΦ(x)‖H is bounded ∀(x, r) ∈ Rd ×R. (3.17)
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If we take Φ the feature map of a linear kernel, this corresponds to condi-
tion (3.8) for ordinary linear least squares regression. In that case, the weight
function should decrease with the residual r as well as with x, to obtain a
bounded influence.

This is also true for other unbounded kernels, e.g. polynomial, but not for
non-linear function estimation using a bounded kernel, like the popular RBF
kernel for instance. The latter only requires downweighting the residual, as the
influence in x-space is controlled by the kernel. This shows that LS-KBR with a
bounded kernel is much more suited for iterative reweighting than linear least
squares regression, see also Theorem 4 in Christmann and Steinwart [2004]
for classification and Corollary 19 in Christmann and Steinwart [2006] for the
regression case.

Let us now restrict ourselves to a weight function independent of x.

w(x, r) =
ψ(r)

r
with ψ : R → R a bounded, real, odd function.

From Corollary 3.9 we know that this is sufficient to bound the influence func-
tion of iteratively reweighted LS-KBR with a bounded kernel, if convergence
takes place, that is if ‖S−1

w ◦ Cw‖ < 1.
From its definition in Theorem 3.8, we know that

Sw = EP[w(X, Y− fP(X))〈., Φ(X)〉Φ(X)].

Using the assumed regression structure of P, we can decompose P in the error
distribution Pe of the errors e = Y − fp(X) and the distribution PX of X such
that dP = dPXdPe. This yields

Sw = EP[
ψ(e)

e
〈., Φ(X)〉Φ(X)].

Defining d := EPe
ψ(e)

e we have that

Sw = d EPX [〈., Φ(X)〉Φ(X)].

Note that d always exists since we assumed errors with finite second moment.
Some analogous calculations give a similar result for the operator Cw.

Cw = c EPX 〈., Φ(X)〉Φ(X) with c := d− EPe ψ′(e).

Thus, denoting idH the identity operator in H such that idH( f ) = f for all
f ∈ H, we obtain

S−1
w ◦ Cw =

c
d

idH (3.18)
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showing that the condition ‖S−1
w ◦ Cw‖ < 1 is satisfied if c < d, meaning that

EPe ψ′(e) > 0.

Since this condition depends on the error distribution Pe, a stronger but distri-
bution free assumption might be useful, for example taking ψ a strictly increas-
ing function, as is often used in the context of M-estimates in linear regression.

Summarizing the previous results we can state: in case of distributions P
with a regression structure as defined in the beginning of this section, the in-
fluence function of iteratively reweighted LS-KBR with bounded kernel, λ = 0
and weight function w(x, r) = ψ(r)

r converges to a bounded function if

(c1) ψ : R → R is a measurable, real, odd function.

(c2) ψ is continuous and differentiable.

(c3) ψ is bounded. (3.19)

(c4) EPe ψ′(e) > 0. (c4′) ψ is strictly increasing.

When using unbounded kernels such as linear or polynomial, this is not suffi-
cient: the weight function w(x, r) should also decrease with x.

Case 2: fP = 0

The previous results were obtained for LS-KBR with λ = 0. In general LS-KBR
with λ > 0 is not necessarily Fisher-consistent and therefore the theorems from
the previous section are hard to extend. Nevertheless, to gain some insight
into these methods with λ > 0, we will have a look at the situation where
fP ≡ 0. For such distributions, we also have that f (k)

P,λ = fP for every k. Through
similar calculations as in the previous section, one can see that Theorem 3.8 and
Corollary 3.9 are still valid, if we define Sw as follows:

Sw : H → H, Sw( f ) = λ idH + EP[w(X, Y)〈 f , Φ(X)〉Φ(X)].

Comparing with Theorem 3.8 in the case λ = 0, we see that a term λ idH comes
into play. Due to this term, equation (3.18) is not valid anymore. However, after
a non-trivial calculation using a spectral theorem (see Section 3.8), the operator
norm of S−1

w ◦ Cw is found to be equal to

‖S−1
w ◦ Cw‖ =

c
d + λ

(3.20)
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where c and d are the same constants as in (3.18). Since λ is positive, we see
that this norm is smaller than 1 if c < d, which is exactly the condition found in
the case λ = 0. Now we observe that taking λ > 0 only relaxes this condition,
at least to c ≤ d. We can thus relax condition (c4) from (3.19) as well.

(c4) EPe ψ′(e) > −λ (c4′′) ψ is increasing. (3.21)

We conclude that a positive generalization parameter λ improves the conver-
gence of iteratively reweighted LS-KBR. This is plausible, since higher values
of λ will lead to smoother fits. Then the method will be less attracted towards
an outlier in y-direction, indeed leading to better robustness.

General case

Consider an arbitrary distribution P and λ ≥ 0 satisfying all conditions in
Theorem 3.7. From Theorem 3.7 it follows that

IF(z; Tk+1, P) = S−1
w,k(EPw(X, Y− f (k)

P,λ(X))L′(Y, f (k+1)
P,λ (X))Φ(X))

+ S−1
w,k(Cw,k(IF(z; T0, P)))− w(zx, zy − f (k)

P,λ(zx))L′(zy, f (k+1)
P,λ (zx))S−1

w,kΦ(zx)

with Sw,k : H → H,

Sw,k( f ) = 2λ f + EP[w(X, Y− f (k)
P,λ(X))L′′(Y, f (k+1)

P,λ (X))〈 f , Φ(X)〉Φ(X)]

and Cw,k : H → H,

Cw,k( f ) = −EP[
∂

∂r
w(X, Y− f (k)

P,λ(X))L′(Y, f (k+1)
P,λ (X))〈 f , Φ(X)〉Φ(X)].

Note that the operators Sw,k and Cw,k depend on the subscript k. Thus the op-
erator S−1

w,k ◦ Cw,k that acts on the influence function of the initial estimator can
be different in each step. In the previous sections we were able to get rid of this
subscript due to our assumptions, and more specifically because in those cases
f (k)
P,λ was constant over k. In general this is not the case. We can however as-

sume that f (k)
P,λ converges to a certain function f (∞)

P,λ . If this assumption does not
hold, it means that the reweighted KBR does not converge at the uncontami-
nated distribution P. Hence there is not much scope for convergence results at
contaminated distributions. If the series f (k)

P,λ indeed converges, then the series
of operators S−1

w,k ◦ Cw,k also converges as k goes to infinity. For k large enough
results such as (3.20) extend for S−1

w,k ◦ Cw,k. Thus, in the first few reweighting
steps, one might see a behavior that contradicts the results from the previous
sections. After enough reweighting steps however they should remain valid.
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3.5 Stability

Several measures of stability were recently proposed in the literature. The
leave-one-out error often plays a vital role, for example in hypothesis stabil-
ity [Bousquet and Elisseeff, 2001], partial stability [Kutin and Niyogi, 2002] and
CVloo-stability [Poggio et al., 2004]. The basic idea is that the result of a learning
map T on a full sample should not be very different from the result obtained
when removing only one observation. More precisely, denote Pn the empiri-
cal distribution associated with a sample Zn = {zj = (xj, yj) ∈ Rd ×R, j =
1, . . . , n} of size n, then one can consider

Di = |L(yi, T(Pn)(xi))− L(yi, T(Pi
n)(xi))|

with Pi
n the empirical distribution of the sample Zn without the ith observation

zi. Poggio et al. [2004] call the map T CVloo-stable if

sup
i=1,...,n

Di → 0 (3.22)

for n → ∞. They show under mild conditions that CVloo-stability is required
to achieve generalization, meaning that the empirical error of the estimate con-
verges to the expected error [Poggio et al., 2004].

The influence function actually measures something very similar. Recall
that this function is defined as

IF(z; T, P) = lim
ε↓0

T(Pε,z)− T(P)
ε

.

It measures how the result of a learning map changes as the original distribu-
tion P is changed by adding a small amount of contamination at the point z.
In robust statistics it is important to bound the influence function over all pos-
sible points z in the support of P. This is a major difference with stability, where
the supremum is taken over n points sampled i.i.d. from the distribution P (as
in (3.22)).

This however suggests a possible approach to analyze stability using the in-
fluence function: by evaluating it at n sample points only. For an easy heuristic
argument, take z = zi, P = Pi

n and ε = 1/n in the definition of the influence
function above. Then for large n we have that

IF(zi; T, P) ≈ T(Pn)− T(Pi
n)

1/n
.
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Then it is easy to see that

|L(yi, T(Pn)(xi)− L(yi, T(Pi
n)(xi))| ≈ |L′(yi, T(P)(xi))| |IF(zi; T, P)|

n
. (3.23)

As such the influence function can be used in a first order approximation to
the quantity Di which is so important in the concept of CVloo-stability. The
influence function evaluated at the sample point zi should be small for every i in
order to obtain stability. Assume that the loss has a bounded first derivative.
From equation (3.23) one might define a new stability criterion, in the spirit
of (3.22) but based on the influence function, as follows:

sup
i∈{1,...,n}

|IF(zi; T, P)|
n

→ 0. (3.24)

If a method is robust, then its influence function is bounded over all possible
points z in the support of P and thus (3.24) is obviously satisfied. As such ro-
bustness is in a sense a strictly stronger requirement than stability. Robustness
can be interpreted as adding any point, even points that are very unlikely under
the sampling distribution P.

Consider for example unweighted KBR. Recall from Proposition 3.5 that for
any z = (zx, zy)

IF(z; T, P) = S−1 (
EP[L′(Y, fP,λ(X))Φ(X)]

)− L′(zy, fP,λ(zx))S−1Φ(zx).

If the first derivative of the loss function L is bounded, this influence function is
bounded as well and KBR is then automatically stable as well. For KBR with a
squared loss, the influence function is unbounded. Despite this lack of robust-
ness, LS-KBR is stable as long as the distribution P is not too heavy tailed. For
example in case of a signal plus noise distribution with Gaussian distributed
noise, supi=1,...,n(yi− T(P)(xi)) converges to ∞ as n grows larger. For Gaussian
distributed noise however, this convergence will only be at logarithmic speed.
Thus the convergence of (3.24) is of the order O( log(n)

n ) and (3.24) obviously
still holds. For a more heavy tailed noise distribution on the other hand, the
rate of stability might be much slower than O( log(n)

n ).
Since reweighted KBR has a bounded influence function, its rate of stability

is always O( 1
n ). Reweighting steps are thus not only helpful when outliers are

present in the data. They also lead to a more stable method, especially at heavy
tailed distributions.

Table 3.1 links some of these concepts from robustness and stability. The
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Influence function Leave-one-out

Robustness supz |IF(z; T, P)| bounded supi{supz Dz
i } → 0

⇓ ⇓
Stability supzi

|IF(zi; T, P)|/n → 0 supi Di → 0

Table 3.1 Overview of some robustness and stability concepts

influence function originated in robust statistics as a tool to assess the robust-
ness of statistical methods (upper left cell of Table 3.1). The leave-one-out error
on the other hand is often used in statistical learning to assess the stability of
a learning map (lower right cell of Table 3.1). In equation (3.24) we combined
both ideas using the influence function to assess stability (lower left cell of the
table). In order to complete the table, the question raises whether a leave-one-
out criterion can be formulated to assess robustness. Define Pz,i

n the sample Pn

where the point zi is replaced by z and

Dz
i = |L(yi, T(Pz,i

n )(xi))− L(yi, T(Pi
n)(xi))|.

Then of course Dzi
i = Di, since taking z = zi returns the original sample Pn.

Thus CVloo stability (3.22) can be written as

sup
i=1,...,n

Dzi
i → 0.

Now since robustness is concerned with the effect of adding any point z, not
only sample points, a possible definition of robustness is

sup
i=1,...,n

{sup
z

Dz
i } → 0.

This could be a sample counterpart for the classical approach of ‘bounding
the influence function’ in robust statistics, completing Table 3.1 with the upper
right cell.

In this chapter we restricted ourselves to the first column of Table 3.1 where
it is clear that small influence functions lead to more stable methods. We
showed that reweighting steps bound the influence function of LS-KBR and
as a consequence the stability is improved as well.
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Huber logistic Hampel

1 if |r| < b1

w(r)
1 if |r| < β tanh(r)

r
b2−|r|
b2−b1

if b1 ≤ |r| ≤ b2β
|r| if |r| ≥ β

0 if |r| > b2

ψ(r)

r2 if |r| < b1

L(r)
r2 if |r| < β

r tanh(r) b2r2−|r3|
b2−b1

if b1 ≤ |r| ≤ b2
β|r| if |r| ≥ β

0 if |r| > b2

Table 3.2 Definitions for Huber, logistic and Hampel weight functions. Only
the logistic weight function satisfies all conditions (c1)-(c4).

3.6 Examples

3.6.1 Weight functions

Many weight functions have been described in the literature, especially for
linear regression. We show three of them in Table 3.2, with corresponding
functions w(r), ψ(r) and loss function L(r). Note that only the logistic weight
function satisfies all conditions (c1)− (c4) in (3.19). Huber’s weight function
does not satisfy (c4) as ψ is not strictly increasing. Simpson et al. [1992] show
that this can lead to unstable behavior of M-estimators in linear models. It
does however satisfy condition (c4′′) in (3.21). The third weight function in
Table 3.2 is Hampel’s suggestion for linear least squares. These weights were
also used in the context of least squares support vector regression by Suykens
et al. [2002a]. In this case ψ satisfies condition (c4′) nor (c4′′), but condition
(c4) is valid for common error distributions, i.e. normally distributed errors.
Also note that the resulting loss function is not convex anymore for these Ham-
pel weights. Although this still leads to satisfactory results in many examples,
bad fits may occur occasionally. In Figure 3.1 some data points were simulated
including three outliers. Ordinary LS-SVR (dashed curve) is clearly affected by
the outlying observations. Reweighting using a logistic weight function (solid
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unweighted LS−SVR

Figure 3.1 Simulated data example. Dashed curve: original LS-SVR. Dotted
curve: wLS-SVR using Hampel weights. Solid curve: wLS-SVR using logistic
weights.

curve) improves the fit remarkably well. Using Hampel’s weight function (dot-
ted curve) however does not improve the original estimate in this example. In
that case all points in the region x ∈ [2.5, 4.2] receive a weight exactly equal to
zero. Thus, locally the outliers do not have a smaller weight than the neigh-
boring “good” data. With logistic weights, all these good data points with
x ∈ [2.5, 4.2] receive a small weight as well, but the outliers get an even smaller
weight. Therefore they are also locally recognized as outliers and thus wLS-
SVR with logistic weights performs a lot better in this example. This example
clearly shows that it is not trivial to choose a good weight function. Conditions
(c1)-(c4) are not just technical. They should be kept in mind in practice as well.

3.6.2 Convergence

In equations (3.18) and (3.20), an upper bound is established on the reduc-
tion of the influence function at each step. In Table 3.2 we calculated this up-
per bound at a normal distribution, a Student distribution with five degrees
of freedom and at a Student distribution with three degrees of freedom. We
compare Huber’s weight function with several cutoff values β, as well as lo-
gistic weights. Note that the convergence of the influence functions is pretty
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N(0, 1) t5 Cauchy
c d c

d c d c
d c d c

d
Huber β = 0.5 0.32 0.71 0.46 0.31 0.67 0.46 0.28 0.63 0.47

β = 1 0.22 0.91 0.25 0.23 0.87 0.27 0.22 0.78 0.28
β = 1.5 0.11 0.97 0.11 0.14 0.94 0.15 0.16 0.89 0.18
β = 2 0.04 0.99 0.04 0.08 0.98 0.08 0.10 0.94 0.11

Logistic 0.22 0.82 0.26 0.22 0.79 0.28 0.22 0.73 0.30

Table 3.3 Values of the constants c, d and c
d for the Huber weight function with

cutoff β = 0.5, 1, 1.5, 2 and for the logistic weight function, at a standard nor-
mal distribution, Student distribution with 5 degrees of freedom, and Student
distribution with 3 degrees of freedom. The values of c/d (bold) represent an
upper bound for the reduction of the influence function at each step.

fast, even at heavy tailed distributions. For Huber weights, the convergence
rate (3.20) decreases rapidly as β increases. This is quite expected, since the
larger β is, the less points are downweighted. Also note that the upper bound
on the convergence rate approaches 1 as β goes to 0. The Huber loss function
converges to an L1 loss as β convergence to 0. Thus when reweighting LS-KBR
to obtain L1-KBR no fast convergence is guaranteed by our results, since the
upper bound on the reduction factor approaches 1. When β is exactly 0, no
results can be given at all, because then the ψ function is discontinuous.

Logistic weights are doing quite well. Even at heavy tailed noise distribu-
tions such as a t3, the influence function is reduced to 0.30 of the value at the
previous step. This means for example that after k steps, at most 0.30k is left of
the influence of the initial estimator, so fast convergence can be expected.

3.6.3 Star data

Variable stars are stars whose brightness periodically changes over time. Such
a variable star was analyzed in Oh et al. [2004]. A plot of its brightness versus
its phase (with period 0.8764, as found in Oh et al. [2004]) is shown in Fig-
ure 3.2(a). It concerns an eclipsing binary star, with both stars orbiting each
other in the plane of the earth. Therefore, if one member of the pair eclipses
the other, the combined brightness decreases. This explains the two peaks that
are clearly present in the picture. Our goal is now to estimate the light curve,
i.e. the functional relationship between brightness and phase, which is useful
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Figure 3.2 Star data. (a) Brightness (expressed in stellar magnitude R) of the
binary star versus the phase (with a period of 0.8764 days). The two outliers
in the data are circled. (b) Plot of the fit in the region: phase ∈ [0, 0.4]. Initial
LS-SVR fit (dashed line), wLS-SVR with Huber weights and one reweighting
step (solid line). The fit after four reweighting steps is practically coinciding
with the solid line.

for classification of stars. In this case for example, the light curve is flat in be-
tween two peaks. This feature is associated with the detached type of eclipsing
stars.

From Figure 3.2(a) it is obvious that two outliers are part of the data. When
using classical LS-SVR to fit the light curve, these two data points have quite
an impact on the result. In Figure 3.2(b) (dashed line) the LS-SVR fit shows
an extra bump at phases in [0.15, 0.25]. The solid line represents the one step
reweighted LS-SVR with Hubers weight function (b=1.5). The effect of the out-
liers is reduced, leading to quite a nice fit. The two step reweighted LS-SVR is
plotted as well (dotted line), but the difference with the one step reweighting
is practically invisible. After six steps, all residuals were the same as after five
steps up to 0.001, showing the fast convergence properties of weighted LS-SVR.

3.6.4 Artificial data

This part presents the results of a small simulation study. We consider three
well known settings.

• Sinc curve (d = 1): y(x) = sin(x)/x.

• Friedman 1 (d = 10): y(x) = 10 sin(πx1x2) + 20(x3 − 1/2)2 + 10x4 +
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5x5 + ∑10
i=6 0.xi.

• Friedman 2 (d = 4): y(x) = (x2
1 + (x2x3 − 1/x2x4)2))1/2.

In each replication 100 data points were generated. For the sinc curve, the
inputs were taken uniformly on [−5, 5]. For the Friedman data sets [Friedman,
1991] inputs were generated uniformly from the unit hypercube. Noise was
added to y(x) from two distributions: first, Gaussian with unit variance and
second, Student with 2 degrees of freedom.

For each data set, unweighted LS-SVR with RBF kernel was performed. The
hyperparameters λ and σ were obtained by 10-fold cross validation using the
Mean Squared Error (MSE) as cost criterion. Reweighted LS-SVR with RBF
kernel and logistic weights was performed as well, using the same hyperpa-
rameters as found in the unweighted case. To compare both methods, the MSE
was calculated over 200 noisefree test points. This procedure was repeated in
100 replications. Figure 3.3 shows boxplots of these 100 MSE’s for the six cases.

First consider the left panel of Figure 3.3 containing the results with Gaus-
sian noise. In that case the difference between reweighting or not is rather
small. For Friedman 1, the median MSE is slightly smaller in the case of
reweighting, whereas the sinc curve and Friedman 2 give slightly bigger me-
dian MSE’s.

At the right panel of Figure 3.3 boxplots are shown for Student distributed
noise. In that case reweighting clearly offers an improvement of the results.
Not only is the median MSE smaller in all three settings. Also the right skew-
ness of the MSE’s clearly diminishes after reweighting, indicating that the
method is more stable. This is exactly what we concluded in our theoretical
analysis from Section 3.5, where it was demonstrated that reweighting im-
proves stability at heavy tailed distributions.

Here we see in practice that reweighting leads to improved results at heavy
tailed error distributions but retains the quality of unweighted LS-KBR at oth-
ers such as the Gaussian distribution. Also note that we kept the hyperparam-
eters fixed at their optimal value in the unweighted case, since we also treat the
hyperparameters fixed in our theoretical results. Nevertheless, re-optimizing
them at each reweighting step might possibly lead to even better results.
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Figure 3.3 Simulation results for three data sets (sinc, Friedman 1 and Fried-
man 2). On the left: Gaussian errors. On the right: Student with 2 degrees of
freedom. Each time boxplots of 100 MSE’s are shown for unweighted LS-SVR
and reweighted LS-SVR with logistic weights. For Gaussian errors no clear
winner can be seen between unweighted versus reweighted. For Student er-
rors reweighting leads to improvement.
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3.7 Conclusion

We analyzed the series of influence functions of reweighted LS-KBR. It was
found that a weight function w(r) = ψ(r)/r with ψ increasing and bounded
guarantees convergence to a bounded influence function if the kernel is bounded.
This means for example that reweighted LS-KBR with logistic weights using a
RBF-kernel is a robust estimator, even if the initial estimator is obtained by
ordinary (non-robust) LS-KBR.

An upper bound for the convergence rate at each step shows that the con-
vergence is generally quite fast. It is also interesting to note that this upper
bound scales as 1/λ.

The good robustness properties of reweighted LS-KBR depend on the ker-
nel. If the kernel is not bounded, e.g. the linear kernel, then the previous
weight functions do not lead to robust estimators. One can however normalize
kernels. For the linear kernel one can take

K(x, z) =
xtz

||x||2||z||2 .

Then all nice robustness properties hold, since the normalization obviously
makes the linear kernel bounded. Further research exploiting normalized ker-
nels could therefore be very interesting from a robustness point of view.

Finally it is important to notice that reweighting does not only improve
robustness against outliers or gross errors. It also improves the stability of LS-
KBR, especially at heavy-tailed distributions.

3.8 Proofs

Remark on Proposition 3.5 for least squares

As in the empirical case (3.10), it is also possible to include an intercept term
bP,λ ∈ R in the theoretical expressions, next to the functional part fP,λ. For any
distribution P and λ > 0 we denote

T(P) = ( fP,λ, bP,λ) ∈ H×R

minimizing the regularized risk:

( fP,λ, bP,λ) = min
( f ,b)∈H×R

(
EPL(Y, f (X) + b) + λ|| f ||H

)
.
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The solution of this minimization problem is characterized in DeVito et al.
[2004] (main theorem pp. 1369). If the loss function L is the least squares loss
function, then this theorem provides us the following equations:

fP,λ =
1
λ

EP[(Y− fP,λ(X)− bP,λ)Φ(X)] (3.25)

bP,λ = EP(Y− fP,λ(X)). (3.26)

Now we consider the contaminated distribution Pε,z = (1− ε)P + ε∆z with ∆z

a Dirac distribution with all probability mass located at the point z. Then by
definition the influence function of the intercept term at z ∈ X× Y equals

IF(z; b, P) = lim
ε↓0

bPε,z,λ − bP,λ

ε
.

Using equation (3.26) for both bPε,z,λ and bP,λ yields

IF(z; b, P) = lim
ε↓0

EPε,z(Y− fPε,z,λ(X))−EP(Y− fP,λ(X))
ε

= lim
ε↓0

(1− ε)EP(Y− fPε,z ,λ(X)) + ε(zy − fPε,z ,λ(zx))−EP(Y− fP,λ(X))
ε

.

Rearranging terms in the nominator we have

IF(z; b, P) = lim
ε↓0

EP(Y− fPε,z ,λ(X))−EP(Y− fP,λ(X))
ε

− lim
ε↓0

εEP(Y− fPε,z ,λ(X)) + ε(zy − fPε,z ,λ(zx))
ε

= lim
ε↓0

EP( fP,λ(X)− fPε,z ,λ(X))
ε

−EP(Y− fP,λ(X)) + (zy − fP,λ(zx)).

Thus for the intercept term we obtain the following expression.

IF(z; b, P) = −EP IF(z; f , P)−EP(Y− fP,λ(X)) + (zy − fP,λ(zx)). (3.27)

For fP,λ we have

IF(z; b, P) = lim
ε↓0

fPε,z,λ − fP,λ

ε
.

Plugging in equation (3.25) for both fPε,z,λ and fP,λ, it is clear that

λIF(z; f , P) + EP[IF(z; f , P)(X)Φ(X)] + EP[IF(z; b, P)(X)Φ(X)]

= −EP(Y− fP,λ(X)− bP,λ)Φ(X) + (zy − fP,λ(zx)− bP,λ)Φ(zx). (3.28)
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Thus, combining (3.27) and (3.28) in matrix notation, we have
(

λidH + EP[〈., Φ(X)〉Φ(X)] EPΦ(X)
EP〈., Φ(X)〉 1

) (
IF(z; f , P)
IF(z; b, P)

)

=

(
−EP[(Y− fP,λ(X)− bP,λ)Φ(X)] + (zy − fP,λ(zx)− bP,λ)Φ(zx)

−EP(Y− fP,λ(X)− bP,λ) + (zy − fP,λ(zx)− bP,λ)

)
.

(3.29)

When not considering the intercept term, the previous expression indeed
corresponds to the one already obtained by Christmann and Steinwart [2006].
Also note the similarities to the results obtained in classification [Christmann
and Steinwart, 2004]. However, since this intercept term is not essential in
explaining the robustness principles of kernel based regression, we will not in-
clude it anymore furtheron.

Proof of Theorem 3.6

Let P be a distribution on X× Y with |P|a < ∞ and define ξ =
∫
X×Y w(x, y−

f (0)
P,λ(x))dP(x, y). Assume ξ > 0. Then we can define a distribution Pw by

dPw(x, y) = ξ−1w(x, y− f (0)
P,λ(x))dP(x, y) for all (x, y) ∈ X× Y. Since ξ > 0 and

w is continuous, Pw is well defined and one can easily see that f (1)
P,λ = fPw ,λ/ξ .

Moreover |Pw|a < ∞ if |P|a < ∞ and Proposition 3.4 yields

f (1)
P,λ = fPw ,λ/c = − ξ

2λ
EPw hΦ = − 1

2λ
EPw(X, Y− f (0)

P,λ(X))hΦ.

For the least squares loss function we obtain

f (1)
P,λ =

1
λ

EPw(X, Y− f (0)
P,λ(X))(Y− fP,λ(X))Φ(X).

If ξ = 0 then EP[w(X, Y− f (0)
P,λ(X))L(X, Y− f (X))] = 0. Thus

f (1)
P,λ = argmin

f∈H

λ|| f ||H = 0.

But if ξ = 0 we also have that 1
2λ EPw(X, Y − f (0)

P,λ(X))hΦ = 0 and therefore
Theorem 1 still holds.

Proof of Theorem 3.7
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We can use the representation from Theorem 3.6 to calculate the influence func-
tion in a point z ∈ X×Y

IF(z; T1, P) =
∂

∂ε
T1(Pε,z)|ε=0

= − 1
2λ

∂

∂ε
EPε,z w(Y, Y− f (0)

Pε,z ,λ(X))L′(Y, f (1)
Pε,z,λ(X))Φ(X)|ε=0

=
1

2λ
EPw(Y, Y− f (0)

P,λ(X))L′(Y, f (1)
P,λ)Φ(X)

− 1
2λ

w(zx, zy − f (0)
P,λ(zx))L′(Y, f (1)

P,λ(X))Φ(zx)

− 1
2λ

∂

∂ε
EP[w(X, Y− f (0)

Pε,z,λ(X))L′(Y, f (1)
Pε,z ,λ(X))Φ(X)]|ε=0.

The last term equals

1
2λ

EP[IF(z; T0, P)
∂

∂r
w(X, Y− f (0)

P,λ(X))L′(Y, f (1)
P,λ(X))]

− 1
2λ

EP[w(X, Y− f (0)
P,λ(X))IF(z; T1, P)L′′(Y, f (1)

P,λ(X))].

Thus defining Sw and Cw as in Theorem 3.7, we have

Sw(IF(z;T1, P)) = EPw(X, Y− f (0)
P,λ(X))L′(Y, f (1)

P,λ(X))Φ(X)

+ Cw(IF(z; f (0)
P,λ, P))− w(zx, zy − f (0)

P,λ(zx))L′(zy, f (1)
P,λ(zx))Φ(zx).

Now it suffices to show that Sw is invertible. In Christmann and Steinwart
[2006] this was already proven for the operator S as defined in Proposition 3.5.
However, we can again consider the distribution Pw such that dPw(x, y) =
ξ−1w(x, y − f (0)

P,λ(x))dP(x, y) for all (x, y) ∈ Rd ×R, with ξ =
∫

X×Y w(x, y −
f (0)
P,λ(x))dP(x, y) > 0. Then the operator Sw using distribution P and general-

ization factor λ is equivalent to the operator S using the distribution Pw and
generalization factor λ/ξ. Thus, using Christmann and Steinwart [2006] (more
specific their proof of Theorem 18), we see that Sw is invertible.

Proof of equation (3.16)

Denote Pw the distribution such that dPw(x, y) = w(x, y − fP(x))dP(x, y) for
any (x, y) ∈ X× Y. Then

argmin
f∈H

EP

[
w(X, Y− fP(x))(Y− f (x))2

]
= argmin

f∈H

EPw(Y− f (x))2 = EPw(Y|x)
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since unweighted least squares KBR is Fisher consistent if λ = 0. Now

EPw(Y|x) = EPw(Y− fP(X) + fP(X)|x) = EPw(Y− fP(X)|x) + fP(x)

and the first term of this sum equals zero because the weight function w is
even in its second argument and the errors are independent of x and symmet-
ric around zero.

Proof of equation (3.20)

We need two propositions from operator theory in Hilbert spaces.

Proposition 3.10 (Spectral Theorem)
Let T be a compact and self-adjoint operator on a Hilbert space H. Then H

has an orthonormal basis (en) consisting of eigenvectors for T. If H is infinite
dimensional, the corresponding eigenvalues (different from 0) (γn) can be ar-
ranged in a decreasing sequence |γ1| ≥ |γ2| ≥ . . . where γn → 0 for n → ∞,
and for x ∈ H

T(x) = ∑
n

γn〈x, en〉en.

Proposition 3.11 (Fredholm Alternative)
Let T be a compact and self-adjoint operator on a Hilbert space H, and consider
the equation

(T − γ idH)x = y.

If γ is not an eigenvalue of T, then the equation has a unique solution x =
(T − γidH)−1y.

Recall that we assumed that the distribution P could be decomposed in an error
distribution Pe and a distribution in x-space Px such that dP = dPedPx. Using
this regression structure of P we can write

Sw = λ idH + EPe

ψ(e)
e

EPX 〈., Φ(X)〉Φ(X).

Denote T = EPX 〈., Φ(X)〉Φ(X), then

Sw = λ idH + d T

with the constant d = EPe
ψ(e)

e . In the same way we find

Cw = cT
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with c = d− EPe ψ′(e).
Now we know T is compact (proven in Christmann and Steinwart [2006])
and self-adjoint. Moreover, T is positive and thus its eigenvalues are posi-
tive. As such, − λ

d cannot be an eigenvalue, and by the Fredholm alternative,
T − (− λ

d )idH is invertible. Thus for any g ∈ H the equation

(
T − (−λ

d
)idH

)
( f ) =

c
d

T(g)

has a unique solution in terms of f ∈ H. Moreover, from the spectral theorem
we know that T has an orthonormal basis ( fi) with corresponding eigenvalues
λi and we can write our equation as

(
T − (−λ

d
)idH

)
( f ) =

∞

∑
i=1

(λi +
λ

d
)〈 f , fi〉 fi =

∞

∑
i=1

c
d

λi〈g, fi〉 fi

Thus we see that
〈 f , fi〉 = (λi +

λ

d
)−1λi

c
d
〈g, fi〉

and so we find

(S−1
w ◦ Cw)(g) = f =

∞

∑
i=1

(λi +
λ

d
)−1λi

c
d
〈g, fi〉 fi

Since the operator norm of a compact operator equals the supremum of its
eigenvalues, we have that

‖S−1
w ◦ Cw‖ = sup

i

λi
c
d

λi + λ
d

=
c
d

1
1 + λ

d

,

proving equation (3.20). Since c = d− EPe ψ′(e),

c
d

1
1 + λ

d

< 1 ⇔ 1− EPe ψ′(e)
d

< 1 +
λ

d

or

EPe ψ′(e) > −λ.



Chapter 4

Robust model selection for
kernel based regression using
the influence function

4.1 Introduction

In the previous chapter we considered the influence function of reweighted
kernel based regression. We obtained some conditions on the weight function
in order to bound the influence function, thus preventing unlimited effects of
outliers. However, apart from this outlier interpretation coming from robust
statistics, analyzing small distributional changes on the resulting estimator is
a crucial analysis on many levels. A simple example is leave-one-out which
changes the sample distribution slightly by deleting one observation. In Sec-
tion 3.5 we discussed the concept of stability using such leave-one-out idea
to assess the generalization capacity. In this chapter we further explore some
heuristic links between the influence function and other concepts in Section 4.2.
Emphasis in this section lies on exploration rather than formal proofs.

In its original form the influence function works on continuous distribu-
tions. If we want to use some of the stability- and other links in practice, we
have to approximate these influence functions at the sample distribution. This
can be done fairly easy and some expressions are obtained in Section 4.3.

All analysis from Chapter 3 considered the case where both λ and the ker-

83
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nel K with its possible kernel parameters are fixed and chosen independently
from P. In practice this is of course not true. Both the regularization parameter
λ and for example the bandwidth of a Gaussian RBF kernel are chosen in a data
driven way, e.g. by leave-one-out or 10-fold-cross validation, or a model selec-
tion criterion such as Generalized Cross Validation or Akaike’s AIC. However,
these criteria themselves can be affected by outliers. Although reweighting can
provide a robust estimation procedure, this does not automatically guarantee
robust hyperparameter selection. In this chapter we investigate a criterion that
is not as affected by outliers as some of the classical procedures. The idea is to
use finite sample influence function as an approximation of the leave-one-out
error. This is done in Section 4.4. Some examples are shown in Section 4.5.

4.2 Asymptotic variance and generalization

4.2.1 Asymptotic variance

A classical way [Hampel et al., 1986, Huber, 1981] to relate the influence func-
tion to the performance of an estimator T is through the concept of asymptotic
variance.

If T is sufficiently regular, it can be linearized near P in terms of the influ-
ence function. If the distribution P̃ is near P, then the leading terms of a Taylor
expansion are

T(P̃) = T(P) +
∫

IF(z; T, P)[P̃(dz)− P(dz)] + . . . . (4.1)

For example, taking P̃ = Pε,z we have that

T(Pε,z) = T(P) + ε
∫

IF(z; T, P) + . . .

which is also immediately clear from Definition 4. Now one can also take P̃ =
Pn the sample distribution. Since

∫
IF(z; T, P)P(dx) = 0

we obtain that

T(Pn)− T(P) =
∫

IF(z; T, P)Pn(dz) + . . .

=
1
n

n

∑
i=1

IF(zi; T, P) + . . . . (4.2)
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If the remaining terms are asymptotically negligible, the central limit theo-
rem immediately shows that

√
n(T(Pn)− T(P)) is asymptotically normal with

mean 0 and variance

ASV(T, P) =
∫

IF2(z; T, P)P(dz). (4.3)

Again note that the influence function should not attain too large values at
points z where the density of P is not too small. This is very similar to the stability
in (3.24). In the context of kernel methods we can apply these concepts to
obtain pointwise asymptotic variances. If we fix a point x ∈ X, then we can
define the operator fλ,x : P → fP,λ(x) with the same notation as (3.11). The
influence function of fλ,x is easily obtained by evaluating the expression from
Proposition 3.5 (which is an element of H) in the point x. For the reweighted
case this is of course completely similar using Lemma 3.7. In the next section
we will show how to evaluate these variances on a specific sample Pn, but
for now it is interesting to compare again the unweighted to the reweighted
estimator.

Assume for example a regression setting where most of the uncertainty is
captured in the distribution of the errors. For the unweighted least squares
kernel estimator, the influence function in Proposition 3.5 is unbounded as it
depends on the residual zy − fP,λ(zx). For the asymptotic variance we will
have to average the square of the influence function over all z coming from
P and thus this means that the second moment of the error distribution is the
main factor determining the variance. At a Gaussian error distribution, there
is again no problem and a least squares method is an excellent choice. But
at a heavy-tailed distribution the asymptotic variance can be very high and
even infinity if the second moment of the errors does not exist. For estimators
with a bounded influence function this problem does not occur, since obvi-
ously ASV < sup{IF(z; T, P)}2 which is always finite in that case. Thus a
reweighted least squares estimator guarantees a finite asymptotic variance for
any distribution P.

4.2.2 Generalization

In the previous paragraphs we analyzed the variance of the kernel estimator at
a fixed point x ∈ X. Usually one is however rather interested in the average
performance of the estimator with respect to a certain loss function L. Define
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for any two distributions Q and P.

G(P, Q) = EPL(Y− f (k)
Q,λ(X)).

The following lemma holds.

Lemma 4.1 Denote G(P, .) the functional that maps any distribution Q onto
G(P, Q). Then for any z ∈ X× Y

IF(z; G(P, .), P) = EP[L′(Y− f (k)
P,λ(X))IF(z; f (k)

P,λ)(X)].

Proof. By definition we have for any distribution Q

IF(z; G(P, .), Q) = lim
ε↓0

EP[L(Y− f (k)
Qε,z ,λ(X))]−EP[L(Y− f (k)

Q,λ(X))]

ε
.

Since the loss function L is differentiable, assuming that limit and integral can
be switched gives

IF(z; G(P, .), Q) = −EP[L′(Y− f (k)
Q,λ(X)) lim

ε↓0

f (k)
Qε,z,λ(X)− f (k)

Q,λ(X)

ε
]

= −EP[L′(Y− f (k)
Q,λ(X))]IF(z; f (k)

Q,λ)(X).

Now take Q = P to obtain the result.

¤

The quantity G(P, Pn) equals the generalization error and is very important,
since this is what one often wants to minimize. Cucker and Smale [2002] dis-
cuss a bias-variance tradeoff formulation to the generalization error starting
from

G(P, Pn) ≤ |G(P, Pn)− G(P, P)|+ |G(P, P)|.

Via (4.2) we get that for n large enough

G(P, Pn) ≤ |
n

∑
i=1

IF(zi; G(P, .), P)
n

|+ |G(P, P)|.

and by Theorem 4.1 we find

G(P, Pn) ≤ |EP[L′(Y− f (k)
P,λ(X))

n

∑
i=1

IF(zi; f (k)
λ , P)(X)
n

]|+ |G(P, P)|.
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Once more it becomes clear that the influence function at points zi sampled
from the distribution P, should not be too large in order not to blow up the
variance term. One should however be aware that it is of course easy to ob-
tain a small influence function. E.g. taking λ extremely large will lead to an
influence function that is almost 0 everywhere, and thus a very small variance.
However, the bias term |G(P, P)|will be almost maximal in that case. Thus the
key for regularized methods is to find an estimator with both a small influence
function and a small bias.

4.3 Estimating influence functions from the data

4.3.1 Unweighted case

In the previous sections we discussed some interesting links that suggest an
important role of the influence function with respect to the stability of an esti-
mator. So far however all results were formulated for continuous distributions
P. In order to make practical use of the influence function, it is of course im-
portant to have specific expressions estimating these quantities from the data.

First consider the expression for unweighted least squares in Proposition 3.5.
The influence function there is an element of the Reproducing Kernel Hilbert
Space H. We now approximate this function in the n sample points x1, . . . , xn.
First consider the operator S : H → H defined by

S( f ) = λ f + EP [〈Φ(X), f 〉Φ(X)]

for any f ∈ H. According to this definition an approximating n× n matrix Sn

should satisfy for any f ∈ H that

Sn




f (x1)
...

f (xn)


 = λ




f (x1)
...

f (xn)


 +

1
n




K(x1, x1) . . . K(x1, xn)
...

K(xn, x1) K(xn, xn)







f (x1)
...

f (xn)




which means that

Sn = λIn +
Ω
n

with In the identity matrix and Ω the kernel matrix Ωij = K(xi, xj). Thus one
can calculate a finite sample version of the influence function in the n sample
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points as




IF(z; fλ, Pn)(x1)
...

IF(z; fλ, Pn)(xn)


 = S−1

n

(
(zy − fPn ,λ(zx))




K(zx, x1)
...

K(zx, xn)




− λ




fPn ,λ(x1)
...

fPn,λ(xn)




)
. (4.4)

The value of fPn ,λ at a point x ∈ X is given by

fPn ,λ(x) =
1
n

n

∑
i=1

αiK(xi, x) with




α1
...

αn


 = S−1

n




y1
...

yn




which is a classical result going back to Tikhonov and Arsenin [1977].

4.3.2 Reweighted case

Now assume again that we have a weight function w : R → R+ satisfying con-
ditions (3.19). For the one step reweighted estimator we can perform similar
calculations. Define the n× n weight matrix W as Wii = w(yi − fPn ,λ(xi)) and
Wij = 0 for i 6= j. Define the n × n matrix C as Cii = w′(yi − fPn ,λ(xi))(yi −
f (1)
P,λ(xi)) and Cij = 0 for i 6= j. Then




IF(z; f (1)
λ , Pn)(x1)

...

IF(z; f (1)
λ , Pn)(xn)


 = (λIn +

ΩW
n

)−1
(

ψ(zy − f (1)
Pn,λ(zx))




K(zx, x1)
...

K(zx, xn)




−ΩC




IF(z; fλ, Pn)(x1)
...

IF(z; fλ, Pn)(xn)


− λ




fPn,λ(x1)
...

fPn,λ(xn)




)
.

For k + 1-steps one can proceed recursively. Define the n × n weight matrix
W(k) as W(k)

ii = w(yi − f (k)
Pn,λ(xi)) and W(k)

ij = 0 for i 6= j. Define the n × n

matrix C(k) as C(k)
ii = w′(yi − f (k)

Pn,λ(xi))(yi − f (k+1)
P,λ (xi)) and C(k)

ij = 0 for i 6= j.
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Then



IF(z; f (k+1)
λ , Pn)(x1)

...

IF(z; f (k+1)
λ , Pn)(xn)


 =

(
λIn +

ΩW(k)

n

)−1

(
ψ(zy − f (k+1)

Pn ,λ (zx))




K(zx, x1)
...

K(zx, xn)




−ΩC(k)




IF(z; f (k)
λ , Pn)(x1)

...

IF(z; f (k)
λ , Pn)(xn)


− λ




f (k)
Pn ,λ(x1)

...

f (k)
Pn ,λ(xn)




)
. (4.5)

Here the value of f (k)
Pn,λ at a point x ∈ X is given by

1
n

n

∑
i=1

α
(k)
i K(xi, x), with




α
(k)
1
...

α
(k)
n


 = W(k)

(
λIn +

ΩW(k)

n

)−1



y1
...

yn


 .

(4.6)

With these formulas the influence function can be evaluated in any point z ∈
X× Y. In Sections 3.5 and 4.2 we argued that the influence function is also very
useful when it comes to stability and variance, if we evaluate the influence
function at the data points themselves. To this end we introduce the following
definition.

Definition 4.2 Let Pn be the empirical distributions of n observations {zi =
(xi, yi)}. Then the influence matrix [IFM](k) of the k-step reweighted kernel
estimator at Pn is defined as

[IFM](k)
i,j = [IF(zi; f (k)

λ , Pn)(xj)]2

These entries of [IFM](k) can be calculated from (4.5) taking z = zi.

4.3.3 Estimating variance

Now fix a datapoint xj. A straightforward finite sample approximation of the
asymptotic variance at the point xj consists of (compare to (4.3))

V(k)
n (xj) =

1
n

n

∑
i=1

[IF(zi; f (k)
λ , Pn)(xj)]2
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which is the average of the elements in the jth column of the influence matrix
[IFM](k). Denote f (k)

λ,xj
: P → f (k)

P,λ(xj). Applying (4.2) and (4.3) to f (k)
λ,xj

gives that

f (k)
Pn,λ(xj)− f (k)

P,λ(xj) −→n→∞ N(0, ASV( f (k)
λ,xj

, P)/n)

Estimating ASV( f (k)
λ,xj

, P) by V(k)
n (xj) we can produce the following confidence

bands for the k-step reweighted estimator.

Corollary 4.3 Denote zα/2 the (1− α
2 )-quantile of a standard normal distribu-

tion. Then

Prob
(

f (k)
P,λ(xj) ∈

[
f (k)
Pn,λ(xj)− zα/2

√
V(k)

n (xj)/n, f (k)
Pn ,λ(xj) + zα/2

√
V(k)

n (xj)/n
])

converges to 1− α as n → ∞.

Note that these confidence bands are constructed around f (k)
P,λ(xj), which is the

theoretical estimate given λ and K. They give information about the variance
that occurs when estimating f (k)

P,λ(xj) by f (k)
P,λ(xj). The bias however is not taken

into account. For example as λ → ∞ these bands become more and more tight,
but around an estimator that is severely biased. In the next section we provide
the main definition providing a bias-variance trade-off using the influence ma-
trix defined in the previous paragraphs.

4.4 Model selection

4.4.1 Main definition

Define the sample P−i
n as the sample Pn minus the ith observation. We start

from the weighted leave-one-out criterion ∑n
i=1 wi (yi − f (k)

P−i
n ,λ

(xi))2/n. We can
rewrite this expression as

n

∑
i=1

wi

(
yi − f (k)

Pn ,λ(xi) + f (k)
Pn,λ(xi)− f (k)

P−i
n ,λ

(xi)
)2/

n (4.7)

where it becomes clear that one looks for a small training error (yi − f (k)
Pn,λ(xi))

and good stability (small value for f (k)
Pn ,λ(xi)− f (k)

P−i
n ,λ

(xi)).
By definition the influence function measures the change of the estimator

when some probability mass of size ε at z is added. Now take ε = −1/(n− 1)
and z = zi in Definition 1. Since

P−i
n = (1− (− 1

n− 1
))Pn + (− 1

n− 1
))∆zi
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we have that

f (k)
P−i

n ,λ
− f (k)

Pn,λ ≈ − 1
n− 1

IF(zi; f (k)
Pn ,λ, Pn).

Thus we get

n

∑
i=1

wi

(
yi − f (k)

Pn,λ(xi) +
1

n− 1
IF(zi; f (k)

Pn,λ, Pn)(xi)
)2/

n

Evaluating the square gives

n

∑
i=1

wi

((
yi − f (k)

Pn ,λ(xi)
)2 +

( 1
n− 1

IF(zi; f (k)
Pn,λ, Pn)(xi)

)2

+
2

n− 1
(yi − f (k)

Pn,λ(xi))IF(zi; f (k)
Pn,λ, Pn)(xi)

)/
n

Using the expression for the influence function from 4.5 we define the follow-
ing criterion.

Definition 4.4 Given a sample Pn and a weight function w satisfying all con-
ditions (3.19). Let f (k)

Pn,λ be as in (4.6). Define w(k)
i = w(yi − f (k−1)

Pn ,λ (xi)). Denote

W(k) the weight matrix containing the weights w(k)
i on its diagonal elements

and Ω the kernel matrix. Denote [IFM](k) the influence function matrix as in
Definition 4.2. Given a kernel K and regularization parameter λ, define the
function C(k)

IFM as

C(k)
IFM(λ, K) =

1
n

n

∑
i=1

w(k)
i (yi − f (k)

Pn ,λ(xi))2(1 +
2

n− 1
w(k)

i ((λIn +
ΩW(k)

n
)−1Ω)i,i)

+
1
n

trace(W(k) [IFM](k)

(n− 1)2 ).

4.4.2 Link with GCV

In the unweighted case Generalized Cross Validation is given by

GCV(λ, K) =
1
n

n

∑
i=1

(yi − fPn ,λ(xi))2

(1− 1
n trace((λIn + Ω

n )−1Ω))2
.

If the diagonal elements of S−1
n Ω are small, then we can use the approximation

(1− x)−2 ≈ 1 + 2x to get

GCV(λ, K) =
1
n

n

∑
i=1

(yi − fPn ,λ(xi))2
(

1 +
2
n

trace((λIn +
Ω
n

)−1Ω)
)2
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which is very similar to the first term in C(0)
IFM(λ, K). If the trace of S−1

n Ω
tends to n then the previous approximation does not hold at all. This hap-
pens in case of overfitting, for example when λ and the bandwidth σ in case
of a Gaussian kernel are chosen too small. Then the residuals of the training
data tend to zero. For the GCV criterion this is penalized since this training
error that tends to zero is multiplied by a factor 1

(1− 1
n trace(S−1

n Ω))2 that tends

to infinity. For C(0)
IFM(λ, K) the residuals are multiplied by a bounded factor

(1 + 2
n−1 wi(S−1

w,nΩ)i,i) and thus the first term tends to zero as overfitting oc-
curs. In this case however the second term comes in to play. As this is a sum of
squared influences it represents the amount of variance. When there is overfit-
ting, this term will thus become larger and penalize too small choices for λ and
the kernel parameters.

4.4.3 Link with Mallows’ Cp

Assume data is generated from a model g(xi) + ei with ’true regression func-
tion g and i.i.d. errors ei independent from xi and with constant variance γ2.
Then Mallows’ Cp criterion corresponds to

1
n

n

∑
i=1

(yi − fPn ,λ(xi))2 +
1
n

γ̂2trace((λIn +
Ω
n

)−1Ω))2

where γ̂ is an estimate of γ. If one would use γ̂ = 1
n ∑n

i=1(yi − fPn ,λ(xi))2 we
again find something very similar to the first term of C(0)

IFM(λ, K). It is however
obvious that this choice of γ̂ is bad. There is no problem as long as λ and
K are chosen such that fPn ,λ(xi) approximates the true regression g well. But
in case of overfitting γ̂ decreases to zero and is a bad estimate of γ. In the
C(0)

IFM(λ, K) criterion however, this is compensated for by the second term. If λ

and K are chosen such that γ̂ is too small, then this is penalized by a variance
term consisting of a sum of squared influences.

4.4.4 Correction for small data sets

Since we make an asymptotic approximation of the leave-one-out error by the
influence function, we implicitly assume that n is large enough. Unfortunately
we often encounter problems for small samples and higher dimensional sam-
ples when calculating C(k)

IFM(λ, K) at small values of λ and σ. In such a sit-
uation we calculate an explicit leave-one-out version of our criterion, mean-
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Figure 4.1 On the left the basic criterion CIFM(0 : 001; σ), on the right the cross
validated correction, both for different sample sizes.

ing that we use IF(zi; fλ, P−i
n )(xi) on the diagonal of the influence matrix in-

stead of IF(zi; fλ, Pn)(xi). In Figure 1 we show this for a simple sine function
yi = sin(xi) + ei with the errors ei normally distributed. In the left the original
criterion is used to calculate C(k)

IFM(λ, σ) as a function of σ. Note that the result
is quite bad for small σ and small n, especially n = 20. The crossvalidated cri-
terion on the right performs much better, but of course the computational cost
is much higher. However we see that even at n = 20 a local minimum occurs
in the region around σ = 2. Our strategy is thus to find the local minima of
C(k)

IFM(λ, σ). If many occur, we select the best among these minima using the
crossvalidated criterion.

4.5 Empirical results

4.5.1 Toy example

As a toy example 100 data points were generated with xi uniformly distributed
on the interval [−5, 5] and yi = sin(xi) + ei with ei Gaussian distributed noise
with standard deviation 0.2. To illustrate robustness of the proposed criterion,
an (extreme) outlier was added at position (−2, 20) (not visible on the plot).
The dotted curve in Figure 4.2 is the result when an ordinary least squares
method is used with fixed λ = 0.005 and a RBF kernel with bandwidth σ = 1.4.
The outlier clearly has a huge effect around x = −2. If we now perform one-
step reweighting with a logistic weight function (w(r) = tanh(r)/r), then the
solid curve is the result. This confirms the theoretical results in Chapter 3:
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Figure 4.2 Sine curve toy example. Dotted: least squares kernel based regres-
sion, solid: one step reweighted estimator, both with the same a priori chosen
λ and σ. The reweighted estimator is more robust. However, if λ and σ are
chosen by an ordinary leave-one-out criterion, a completely wrong choice is
made for λ and σ, even with the reweighted estimator (dashed).

for a least squares method the effect of 1 outlier can be arbitrary large. With
reweighting this is not the case. Next we chose λ and σ in a data driven way.
We used a leave-one-out criterion with the reweighted kernel estimator. Then
the optimal values were around λ = 0.0004 and σ = 0.05 resulting in the
dashed curve in Figure 4.2. Clearly there is severe overfitting. The presence of
the outlier has completely distorted the choice of the optimal hyperparameters.
This illustrates that the effect of contamination should be neutralized not only
in the estimation procedure, but also in the model selection step.

Next we calculated the finite sample influence function at the outlier through
expressions (4.4) and (4.5) taking z = (−2, 20) and plotted this function in Fig-
ure 4.3(a). This means that we see the effect of adding a small amount of prob-
ability mass at the place (−2, 20). We see that this effect is the largest around
the region x = −2, where a large positive value is obtained (indicating that the
estimator will increase at these points when adding probability mass). Further
away from −2, the effect rapidly decreases, which is of course due to the local
nature of the RBF kernel. The influence function also depends on the regular-
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Figure 4.3 Finite sample approximations of the influence function at the out-
lier (−2, 20): (a) unweighted case for several values of λ, σ2. (b) unweighted
versus reweighted, both with λ = 0.003 and σ2 =

ization constant λ and the RBF kernel bandwidth σ. For large values of λ and
σ, the height of the peak rapidly decreases, indicating that the stability of the
estimator increases as one expects. A good choice of λ and σ should result in a
good balance between a small training error and a smooth influence function
(good stability).

Next we can calculate pointwise confidence bands as in Corollary 4.3. These
are depicted in Figure 4.4. With α = 0.05 these error bands are plotted as
dashed lines in Figure 4.4. Again the outlier has a big effect. Not only around
the outlier at x = −2, but also in other areas the variances of the reweighted
estimator is much lower. Consider for example the region around x = 0.5
where the reweighted estimator has a narrow error band, while the ordinary
least squares still suffers from the outlier effects.

Instead of estimating Vn(xj) pointwise at every xj, it is also instructive to
look at an averaged variance over the entire sample. In Figure 4.5 we plot
1
n ∑n

j=1

√
Vn(xj) as a function of the bandwidth in 4 different situations: the

one-step reweighted and unweighted estimator on the example data set with
and without the outlier. If we exclude the outlier then both the weighted and
unweighted estimators give more or less the same curve. Note that the data
was generated with Gaussian errors with standard deviation 0.2. This value of
0.2 is indeed what we estimate for 1

n ∑n
j=1

√
Vn(xj) if we choose the bandwidth

for which the variance is the lowest (σ2 between 1 and 3). If we keep the out-
lier in the data set then the curve for the weighted estimator remains similar,
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Figure 4.4 Least squares estimator (solid black) and reweighted estimator
(solid gray) with 95% confidence bands (dashed) based on the influence func-
tion matrix.

although the least varying σ2 would be chosen slightly smaller (between 1 and
1.5) albeit still in an acceptable region. In the unweighted case however we
get a completely different curve. First the variance is blown up by the outlier.
Second, the shape of the curve changes completely as well. It indicates that the
best stability would be obtained either at very big or very small bandwidths
which does not make sense.

For fixed λ it might thus be possible to choose a good bandwidth based on
these variance-curves. However, variance is obviously not the only considera-
tion. As a function of λ for example 1

n ∑n
j=1

√
Vn(xj) would be monotonically

decreasing, since estimates are more and more stable as the regularization is
stronger. It is of course important to the consider the bias as well, which was
done in the main criterion from Definition 4.4

Figure 4.6 visualizes the resulting curves with one reweighting step as a
function of σ for 4 different values of λ. From this plot a value of σ = 2 and
λ = 0.004 would be chosen. This is also more or less the choice one would
make with GCV or cross-validation if the outlier were discarded, but not if the
outlier is part of the data set (compare to Figure 4.2).
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Figure 4.5 Average asymptotic variance as a function of σ2 for the
weighted/unweighted estimator with/without the outlier.
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Figure 4.6 Sine example. The minimum of C(1)
IFM(λ, σ) is around (0.004,2).
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Data GCV C(1)
IFM

Friedman 1 (Gaussian) 2.93 (0.46) 3.10 (0.69)
Friedman 1 (Student) 4.45 (1.86) 4.31 (2.10)

Friedman 2 (Gaussian) 4090 (1242) 4267 (1681)
Friedman 2(Student) 8111 (7158) 7934 (10321)

Boston Housing 14.45 (5.86) 17.32 (5.81)
Contaminated Boston Housing 80.12 (78.76) 19.76 (6.13)

Table 4.1 MSE’s (standard deviations) for several data sets.

4.5.2 Other examples

This part presents the results of a small simulation study. We consider three
well known settings.

• Friedman 1 (d = 10): y(x) = 10 sin(πx1x2) + 20(x3 − 1/2)2 + 10x4 +
5x5 + ∑10

i=6 0.xi.

• Friedman 2 (d = 4): y(x) = (x2
1 + (x2x3 − 1/x2x4)2))1/2.

• Boston Housing Data from the UCI machine learning depository with
506 instances and 13 covariates.

In each replication 200 data points were generated. For the Friedman data
sets [Friedman, 1991] inputs were generated uniformly from the unit hyper-
cube. Noise was added to y(x) from two distributions: first, Gaussian with
unit variance and second, Student with 2 degrees of freedom. MSE’s were cal-
culated at 200 noisefree test points. The Boston Housing data set was split in
450 training points and 56 test points. A final data set was constructed from the
Boston Housing data by randomly permuting the 13 variables for 10 training
points, making these 10 points outliers. The average MSE’s over 10 replicates
are summarized in Table 1. In the first column we searched the optimal pa-
rameters with the GCV criterion and then performed least squares kernel re-
gression with these parameters. The values in the second column were found
by applying the one-step C(1)

IFM(λ, σ) criterion with logistic weight function
w(r) = tanh(r)/r. For both criteria we used a grid search over the parameter
space. For GCV we took the global minimum. For our criterion we often en-
countered that the global minimum was not meaningful. Therefore we selected
one of the local minimum with the corrected leave-one-out criterion (see Sec-
tion 4.4.4). Then reweighted kernel regression with the same weight function
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was performed. It is clear that our criterion performs slightly worse than GCV
at the original Boston Housing and both Friedman data sets with Gaussian er-
rors. However for the Friedman data with Student errors reweighting has a
positive effect. For the contaminated Boston Housing data the reweighted es-
timator performs a lot better. This illustrates again that the proposed method
is robust against outliers, contrary to classical methods.

4.6 Conclusion

The influence function is a mathematical tool from robust statistics assessing
the robustness of a method. In this chapter several links were studied with con-
cepts of stability and variance. We defined the influence matrix. Its columns
are closely related to asymptotic variance. We proposed a GCV type criterion
using the trace of this influence matrix, in order to perform model selection for
reweighted kernel regression estimators. The main advantage over the GCV
criterion is the robustness of our proposal. If a small percentage of outliers
is present in the data, this does not affect the choice of hyperparameters too
much. A disadvantage on the other hand is the bad behavior when the hyper-
parameters λ and σ are small. In such areas a local minimum can be selected
with a leave-one-out corrected criterion.
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Chapter 5

Spherical Kernel PCA

5.1 Introduction

In Chapter 2 we considered Principal Component Analysis (PCA) as a tech-
nique designed to reduce the dimension of a data set by projecting onto a lower
dimensional subspace. In this chapter we study Kernel PCA [Schölkopf et al.,
1998], which is an extension of PCA using the same kernel based framework
from Chapters 3 and 4 for regression. The data are first mapped into a high
dimensional feature space. Then ordinary PCA is performed in this feature
space. A remarkable aspect is that the explicit feature vectors are not needed to
compute the resulting scores. Only the inner products between feature vectors
are required. This makes it possible to apply the kernel trick: one replaces all
inner products by a kernel function that is chosen beforehand. A more detailed
description of Kernel PCA is provided in Section 5.2.

In particular this chapter addresses some questions about influential obser-
vations in Kernel PCA. In Chapter 2 we noticed that linear PCA is not robust.
It is possible that one or a small fraction of observations in the data set almost
fully determines the principal components. Sometimes this is not desirable,
since then the structure of the majority of the data is not learned anymore.

In Section 5.3 we make an analysis of these effects for Kernel PCA with
an arbitrary kernel. We show that the influence function of Kernel PCA is
bounded if the kernel itself is bounded. For unbounded kernels the influence
function can be arbitrary large.

The influence function is a functional analytic tool working at continuous

101
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distributions. In practice one deals of course with samples. An idea to as-
sess the influence of individual observations in a sample, would be to simply
plug in the sample Kernel PCA estimates into the expression for the influence
functions. It is important to realize that this approach sometimes completely
fails. Observations can be so influential that the resulting fits and diagnos-
tics become unreliable, not revealing the true influences. In the field of robust
statistics, this is known as the masking effect. We explain this effect at the end
of Section 5.3 with a small example.

To overcome this problem robust methods should be used. These methods
are constructed in such a way that no small group of observations can over-
rule the majority. For linear PCA many robust algorithms have been proposed,
for instance ROBPCA from Chapter 2 but also in Hubert et al. [2002], Croux
and Ruiz-Gazen [2005], Maronna [2005]. A robustification of Kernel PCA was
presented by Alzate and Suykens [2005], but their approach mainly focuses on
bounded kernels. Here we present Spherical Kernel PCA as a robust alterna-
tive to Kernel PCA for any type of kernel. It is a generalization of the linear
method from Locantore et al. [1999]. The first step is a robust centering of the
data, which is explained in Section 5.4. The Spherical KPCA procedure is given
in Section 5.5.

To assess the influence of observations in a sample on the results of ordi-
nary KPCA, we plug in the robust estimates from Spherical KPCA into the
influence functions obtained for ordinary Kernel PCA. For linear PCA such an
idea proved successful in Pison and Van Aelst [2004]. In Section 5.6 we show
how to construct this diagnostic tool for KPCA. Section 5.7 illustrates every-
thing on some examples.

5.2 Kernel PCA

Assume that we have a sample of n observations in some non-empty set X:
xi ∈ X, i = 1, . . . , n. Suppose a kernel K is fixed with corresponding feature
space H as in Definition 2. Then Kernel PCA basically performs linear PCA in
this feature space H instead of the original space X. Schölkopf et al. [1998] show
that the solution of this problem can be obtained only in terms of the inner
products between feature vectors. The score function fk : X → R associated to
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the kth principal component can be found as follows:

fk(x) =
n

∑
i=1

αi

(
〈Φ(xi), Φ(x)〉 − 1

n

n

∑
k=1
〈Φ(xi), Φ(x)〉

)
.

The vector α = (α1, . . . , αn) is the eigenvector belonging to the kth largest
eigenvalue λk of the n× n matrix with entry i, j equal to

〈(
Φ(xi)− 1

n

n

∑
k=1

Φ(xk)

)
,

(
Φ(xj)− 1

n

n

∑
k=1

Φ(xk)

)〉

and ||αk||2 = 1/λk. Now the so-called kernel trick can be applied. This means
that all inner products 〈Φ(u), Φ(v)〉 are replaced by K(u, v), cfr. Definition 2.
Making this substitution the kth score function of kernel PCA can be computed
as

fk(x) =
n

∑
i=1

αi

(
K(xi, x)− 1

n

n

∑
k=1

K(xk, x)

)
(5.1)

with α the eigenvector belonging to the kth largest eigenvalue λk of the mean
centered kernel matrix ΩL2

c . Entry i, j of this matrix equals

(
ΩL2

c

)
i,j

:=

(
K(xi, xj)− 1

n

n

∑
k=1

K(xk, xj)− 1
n

n

∑
k=1

K(xk, xi) +
1
n2

n

∑
k=1

n

∑
l=1

K(xk, xl)

)
.

(5.2)

Retaining the m ∈ N0 scores corresponding to the m largest eigenvalues one
finds a new set of m variables describing the data. These m scores can then be
used to proceed the analysis, for instance by applying regression, classification,
clustering etc. The idea is that for a well chosen kernel and m, these m scores
contain all essential information, whereas all unimportant information is fil-
tered out. In this spirit it is no surprise that image analysis is an area where
KPCA is particularly popular. Images can sometimes be quite blurry. Using
KPCA to filter out the noise often results in a much clearer image. A typical
example is the data set with handwritten digits [Schölkopf and Smola, 2002]

5.3 Characterizing influential observations

Suppose that we have a distribution P on the input space X. Define the opera-
tor

CP : H → H : f → CP( f ) = EP f (X)Φ(X)−EP f (X)EPΦ(X).
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If EP||Φ(X)||2 < ∞, then the operator CP is a well-defined, compact, positive
and self-adjoint Hilbert-Schmidt operator [Blanchard et al., 2007]. Therefore it
has a countable spectrum of positive eigenvalues λP,1 > λP,2 > . . . with an
associated orthonormal basis of eigenfunctions {eP,i}. Thus for any function
f ∈ H we have that

f =
∞

∑
i=1
〈 f , eP,i〉eP,i and CP( f ) =

∞

∑
i=1

λP,i〈 f , eP,i〉eP,i.

Note that plugging in the empirical distribution Pn returns the eigenvalues
λPn,i and eigenfunctions ePn,i corresponding to the eigenvalues and scores of
KPCA discussed in the previous section. Convergence results for n → ∞
were obtained by Blanchard et al. [2007], Shawe-Taylor et al. [2002]. In this
section we work with continuous distributions rather then empirical distribu-
tions since we would like to assess properties of the corresponding statistical
functionals through the concept of the influence function. The following defi-
nition introduces the necessary tools.

Definition 5.1 Given a distribution P with EP||Φ(X)||2 < ∞, then the statisti-
cal functionals C, λi resp. ei map P onto C(P) = CP, λi(P) = λP,i ∈ H resp.
ei(P) = eP,i ∈ H.

We prove the following theorem for KPCA.

Theorem 5.2 With the notation of Definition 5.1, the influence functions of λi

and ei equal

IF(z; λi, P) = 〈eP,i, Φ(z)〉2 − λi.

IF(z; ei, P) = 〈eP,i, Φ(z)〉
∞

∑
j=1,j 6=i

〈eP,j, Φ(z)〉
λi − λj

ej.

Proof

By definition we have that

〈ei(Pε,z), ei(Pε,z)〉 = 1.

Taking the derivative with respect to ε on both sides yields

〈IF(z; ei, P), ei〉 = 0.
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Denote H⊥,i the subspace of H orthogonal to the ith component. Then the
previous equation means that IF(z; ei, P) ∈ H⊥,i. Furthermore we have that

λi(Pε,z)ei(Pε,z) = EPε,z〈ei(Pε,z), Φ(X)〉Φ(X)

= (1− ε)EP〈ei(Pε,z), Φ(X)〉Φ(X) + ε〈ei(Pε,z), Φ(z)〉Φ(z).

Taking the derivative with respect to ε yields

IF(z; λi, P)ei(P) + λi(P)IF(z; ei, P) (5.3)

= −EP〈ei(P), Φ(X)〉Φ(X) + EP〈IF(z; e1, P), Φ(X)〉Φ(X) + 〈ei(P), Φ(z)〉Φ(z)

Now take the inner product of both sides with respect to ei(P). Then

IF(z; λi, P) = −λi + 〈eP,i, Φ(z)〉2

proving the first statement. Using this result (5.3) can be rewritten as

(CP − λiidH)(IF(z; ei, P)) = 〈ei(P), Φ(z)〉2ei(P)− 〈ei(P), Φ(z)〉Φ(z).

The operator (CP − λiidH) does not have an eigenvalue equal to λi in H⊥,i.
Thus the Fredholm alternative (Proposition 3.11)) shows that this operator is
invertible and

IF(z; ei, P) = (CP − λiidH)−1
(
〈ei(P), Φ(z)〉2ei(P)− 〈ei(P), Φ(z)〉Φ(z)

)
.

(5.4)

Moreover we have that

(λj − λi)〈IF(z; ei, P), ej(P)〉 = 〈ei(P), Φ(z)〉〈ej(P), Φ(z)〉

for any j 6= i. Thus

IF(z; ei, P) = 〈eP,i, Φ(z)〉
∞

∑
j=1,j 6=i

〈eP,j, Φ(z)〉
λi − λj

ej.

proving the second statement.

¤

This theorem reveals two interesting properties. First we see that estimating
an eigenfunction is very sensitive to small distributional changes when other
eigenvalues are very close to its corresponding eigenvalue. This is well known
for instance in linear PCA. As a limit case consider a spherical distribution.
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Then a first principal component is not well defined, since all directions give
raise to the same projected variance. This changes of course if an arbitrary
small amount of Dirac probability mass is put at any point z except for the
center of the distribution. Then the direction through z and the center of the
distribution will be the first principal component. In this case, an infinitesi-
mally small amount of probability mass fully determines the first component,
which is reflected in an infinitesimally large influence function.

Now suppose again that all eigenvalues are different. An important ques-
tion is whether the influence function can become arbitrary large in such a case
as well. Theorem 5.2 tells us exactly how to choose z in order to achieve this:
both the score with respect to its own component and the sum of the scores
with respect to the other components should be large. Figure 5.1 shows a clas-
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Figure 5.1 The influence of a single observation on the mean and on the first
principal component of linear PCA can be arbitrary large.

sical example of a very influential point (denoted as observation 11) having a
large influence on the components of a two-dimensional Gaussian distribution,
in case of a linear kernel.

For a bounded kernel however this is different. From the previous theorem
upper bounds on the influence function in terms of bounds on the kernel can
be derived.

Theorem 5.3 With the notation of Definition 5.1 and a feature map with bounded
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norm, i.e. there exists M > 0 such that ||Φ(z)|| ≤ M, the following bounds
hold:

|IF(z; λi, P)| ≤ M2 + λi.

||IF(z; ei, P)|| ≤ 2M2

minj |λi − λj| .

Proof

The Cauchy-Schwarz theorem guarantees that

|〈eP,i, Φ(z)〉|2 ≤ ||eP,i||2||Φ(z)||2 = ||Φ(z)||2 < M2

for any i ∈ N. Together with Theorem 5.2 this immediately gives the upper
bound for the influence function of the eigenvalues. For the eigenfunctions
equation (5.4) shows that

||IF(z; ei, P)|| ≤ ||(CP − λiidH)−1|| ||〈ei(P), Φ(z)〉2ei(P)− 〈ei(P), Φ(z)〉Φ(z)||.

The norm of the operator in the first term is bounded by its largest eigenvalue
which equals

(
minj |λj − λi|

)−1. Cauchy-Schwarz bounds the second term by
2M2.

¤

This indicates a crucial difference between bounded and unbounded ker-
nels in terms of robustness of kernel PCA. Similar conclusions were obtained
for classification [Christmann and Steinwart, 2004] and regression (Christmann
and Steinwart [2006] and Chapter 3, see the discussion of Proposition 3.5, p.60
and Corollary 3.9, p.64). For an RBF kernel for example, we can take M = 1
showing a bounded influence. On the other hand the spacings between eigen-
values play an important role as well. For instance as the bandwidth σ of the
RBF kernel reaches infinity, the kernel matrix converges to the matrix with all
entries equal to 1. Thus all eigenvalues converge to the same value and the up-
per bound becomes arbitrary large as σ → ∞. This is quite expected, since an
RBF kernel with large σ approaches linear PCA for which the influence func-
tion is indeed unbounded. Therefore observations might still be rather influ-
ential even for an RBF, especially if the parameter σ is chosen in a data-driven
way. Theorem 5.3 shows however that the worst cases appear for unbounded
kernels.
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The main problem with unbounded kernels is that the effect of one or few
observations can be so big that their influence is not easily detected anymore.
One could for instance think about plugging in the sample eigenvalues and
scores from Kernel PCA in the expressions for the influence function. Taking
the norm of the resulting influence vector gives a data based diagnostic tool
assessing the influence of each observation in the sample. In Figure 5.2 (a) one
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Figure 5.2 Estimated influences based on (a) classical linear PCA, (b) robust
linear PCA.

sees however that such an approach completely fails even for the simple ex-
ample from Figure 5.1. If one point would be considered an outlier, it would
be observation 1 for which the influence is the highest. The really influen-
tial observation 11 is only considered moderately influential. Looking back to
Figure 5.1 one understands why. According to Theorem 5.2 influential points
are characterized by the product of the first and second principal component
scores. For observation 1 both terms are rather large leading to a large product.
For observation 11 the first score is very large, but the second score is small giv-
ing only a moderately large product. In robust statistics such a phenomenon
is called the masking effect: the influence of point 11 is so huge that it affects
estimates and diagnostics so heavily that its influence is actually hidden!

One way around this problem is to use a robust method. Then the prin-
cipal components are constructed in a such a way that a small fraction of the
data can never demolish an entire fit. In Figure 5.1 the spherical PCA method
of Locantore et al. [1999] was used to find the dashed line as first principal
component. When we plug in these results into Theorem 5.2, we get Figure 5.2
(b) as resulting diagnostic plot. This provides clearly a much better graphical
display of the influence of each observation, revealing the huge domination of
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point 11 over the others. In this paper we propose Spherical KPCA as a general
robust KPCA method that can be used for any kernel. It is an extension of the
ideas from Locantore et al. [1999] for linear PCA to KPCA in a kernel-induced
feature space.

5.4 Robust centering

5.4.1 Spatial median

The first step of PCA consists of centering the data, usually around the mean.
However, the mean is not a robust measure of the center. Again one observa-
tion can have an arbitrary large influence. In Figure 5.1 for example the mean
(pictured as a star) is clearly influenced a lot by observation 11. A first logical
step in a robust PCA procedure consists of a more robust centering. In this
section we propose to use the L1 M-estimate of location, which is a multivari-
ate extension of the univariate median and which has been around for a long
time (see for instance Huber [1981] and Haldane [1948]). This location mea-
sure is also known as the spatial median. It has a nice geometrical interpreta-
tion [Small, 1990]: take a point θ in Rd and project all observation onto a sphere
around the center θ. If the mean of these projection equals θ, then θ equals the
spatial median. Figure 5.3 shows this for the previous two-dimensional ex-
ample. The mean of the data projected on the sphere (these projections are
pictured as crosses) around the asterisk does not equal the asterisk at all. The
asterisk is a bad estimator of location indeed. The mean of the data projected
on the sphere around the triangle does equal the triangle itself. Thus the trian-
gle indicates the position of the spatial median. Note how the sphering reduces
the influence of observation 11, such that it does not affect the spatial median
more than any of the other observations.

Definition 5.4 Given a sample of inputs xi ∈ Rd, i = 1, . . . , n, the spatial me-
dian θ is defined as the solution of

n

∑
i=1

xi − θ

||xi − θ|| = 0.

For the computation of this center, the following simple iterative algorithm
exists [Gower, 1974, Huber, 1981]. Given an initial guess θ(0) ∈ Rd, iteratively
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Figure 5.3 When projecting all data on a sphere around the star, the mean of
these projection (depicted as crosses) does not equal the center of the sphere.
For the triangle, it does. By definition, the triangle equals the spatial median.
Note the moderate influence of observation 11.

define

θ(k) = ∑n
i=1 wixi

∑n
i=1 wi

where

wi =
1

||xi − θ(k−1)|| .

Other algorithms exist as well, see for example Hössjer and Croux [1995], but
we stick to the former since it allows an extension to a kernelized version.

5.4.2 Spatial median in feature space

Assume again that the inputs xi are mapped into a high- (possibly infinite)
dimensional feature space H. Applying Definition 5.4 in feature space means
that we want to find θ ∈ H such that

n

∑
i=1

Φ(xi)− θ

||Φ(xi)− θ|| = 0.
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This is equivalent to demanding that
∥∥∥∥∥

n

∑
i=1

Φ(xi)− θ

||Φ(xi)− θ||

∥∥∥∥∥
2

= 0

or if we write out the norms as inner products

n

∑
i=1

n

∑
j=1

〈
Φ(xi)− θ

||Φ(xi)− θ|| ,
Φ(xj)− θ

||Φ(xj)− θ||

〉
= 0

which is equivalent to

n

∑
i=1

n

∑
j=1

〈Φ(xi), Φ(xj)〉 − 〈θ, Φ(xj)〉 − 〈θ, Φ(xi)〉+ 〈θ, θ〉
√

Ai

√
Aj

= 0. (5.5)

with the notation

Ai = 〈Φ(xi), Φ(xi)〉 − 2〈Φ(xi), θ〉+ 〈θ, θ〉.
If the mapping Φ is explicitly known, one could use this equation to find the
center θ. In most kernel applications however, this is of course not the case.
The following lemma provides a way out.

Lemma 5.5 The spatial median in feature space can always be written as a lin-
ear combination of the n observations in feature space: θ = ∑n

k=1 γkΦ(xk).

This is simply because the spatial median naturally lies in the space spanned
by the n inputs, and any point in this min(n, d)-dimensional space can be
parametrized as a linear combinations of the inputs.

Using this representation in (5.5) we find

n

∑
i=1

n

∑
j=1

{ 〈Φ(xi), Φ(xj)〉 −∑n
k=1 γk〈Φ(xk), Φ(xj)〉√

Ai

√
Aj

(5.6)

− ∑n
k=1 γk〈Φ(xk), Φ(xi)〉+ ∑n

k=1 ∑n
l=1 γkγl〈Φ(xk), Φ(xl)〉√

Ai

√
Aj

}
= 0

with

Ai = 〈Φ(xi), Φ(xi)〉 − 2
n

∑
k=1

γk〈Φ(xi), Φ(xk)〉+
n

∑
k=1

n

∑
l=1

γkγl〈Φ(xk), Φ(xl)〉.

In this representation the spatial median can be expressed in terms of inner
products only. Therefore this center can be just as well defined in a kernel-
induced feature space, using the same kernel trick as in kernel PCA replacing
〈Φ(u), Φ(v)〉 by K(u, v).
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Definition 5.6 Given a sample of inputs xi ∈ X, i = 1, . . . , n and a kernel
function K : X× X → R : (u, v) → K(u, v). Define the n× n kernel matrix as
Ωi,j = K(xi, xj). Denote Ω.,j as the jth column of this matrix. Then the vector
of coefficients γ ∈ Rn determining the spatial median in the kernel induced
features space is defined by

n

∑
i=1

n

∑
j=1

Ωi,j − γtΩ.,j − γtΩ.,i + γtΩγ
√

Ωi,i − 2γtΩ.,i + γtΩγ
√

Ωj,j − 2γtΩ.,j + γtΩγ
= 0.

To compute the vector γ the iterative algorithm in Section 5.4.1 can easily
be modified to be computed in a kernel-induced feature space, only using the
kernel inner product.

Given an initial guess γ(0) ∈ Rn, iteratively define

γ(k) =
w

∑n
i=1 wi

where w ∈ Rn has components

wi =
1√

Ωi,i − 2γtΩ.,i + γtΩγ
.

For the starting point we take the coefficients corresponding to the mean:
γ(0) = (1/n, . . . , 1/n) ∈ Rn. In any data set we tried, the algorithm took 20 or
less step to converge to the solution giving 0 in the expression of Definition 5.4,
indicating similar good behavior as the original algorithm.

5.4.3 Centering the kernel matrix around the spatial median

The resulting center in the kernel feature space can of course not be com-
puted. We do find the n coefficients γk such that the spatial median equals

∑n
k=1 γkΦ(xk), but the feature map Φ is unknown. However, operations in-

volving distances and inner products between feature vectors and the center
often can be computed. A well known operation is for instance centering of
the data. Suppose we want to center the data in feature space around the spa-
tial median. We define a new feature map as

Φ̃(x) = Φ(x)−
n

∑
i=1

γiΦ(xi).
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The corresponding centered kernel function Kc becomes

Kc(x, z) = 〈Φ̃(x), Φ̃(z)〉

= 〈Φ(x)−
n

∑
i=1

γiΦ(xi), Φ(z)−
n

∑
i=1

γiΦ(zi)〉

= K(x, z)−
n

∑
i=1

γiK(x, xi)−
n

∑
i=1

γiK(z, xi) +
n

∑
i=1

n

∑
j=1

γiγjK(xi, xj)

or expressed in terms of matrix operations on the kernel matrix:

ΩL1
c = Ω− γ1t

nΩ−Ω1nγt + γtΩγ1n1′n (5.7)

where 1n is a vector containing 1 in its n entries.
Thus first computing γ as in Definition 5.4 with the algorithm from the

previous paragraph and then computing (5.7), gives a robustly centered kernel
matrix centered around the spatial median instead of the mean.

5.5 Spherical KPCA

5.5.1 Spherical PCA

Once the data is centered in an appropriate robust way, we can continue es-
timating the kernel principal components. We use the idea first mentioned
in Locantore et al. [1999]. Basically they project the data on a sphere around
the L1 median. Then the traditional components are computed for these pro-
jected data. Scores are computed by projecting the original, unsphered data on
the principal directions. Figure 5.4 shows the algorithm in practice. Due to the
sphering the influence of the outlier is obviously heavily reduced leading to
principal components capturing the structure of the majority of the data much
better. Marden [1999] shows that these spherical principal components are ex-
actly equal to the original ones at population level for a rather large class of
distributions.

5.5.2 Spherical PCA in feature space

Assume that γ ∈ Rn is the vector of coefficients determining the spatial median
in feature space ∑n

k=1 γkΦ(xk). In the first step we project all feature vectors
onto the unit sphere around the spatial median, giving us new feature vectors

Φ∗(xi) =
Φ(xi)−∑n

k=1 γkΦ(xk)
||Φ(xi)−∑n

k=1 γkΦ(xk)||
. (5.8)
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Figure 5.4 Spherical PCA in a simple 2-dimensional example.

This means that

〈Φ∗(xi), Φ∗(xj)〉 =

〈
Φ(xi)−∑n

k=1 γkΦ(xk)
||Φ(xi)−∑n

k=1 γkΦ(xk)||
,

Φ(xj)−∑n
k=1 γkΦ(xk)

||Φ(xj)−∑n
k=1 γkΦ(xk)||

〉
.

In terms of the original and uncentered kernel matrix Ω, this leads to a new
kernel matrix Ω∗ with entries

Ω∗
i,j := 〈Φ∗(xi), Φ∗(xj)〉

=
Ωi,j − γtΩ.,j − γtΩ.,i + γtΩγ

√
Ωi,i − 2γtΩ.,i + γtΩγ

√
Ωj,j − 2γtΩ.,j + γtΩγ

. (5.9)

Thus once the spatial median is found, it is easy to compute the new kernel
matrix Ω∗ belonging to the sphered data based on the kernel matrix Ω of the
original data.

In the second step, ordinary KPCA is applied to the sphered data. This
means that we compute the eigenvectors and eigenvalues of Ω∗ which we de-
note by α∗k resp. λ∗k where λ∗1 > λ∗2 > . . . and ||α∗k ||2 = 1/λ∗k .

Thirdly the score f ∗k (x) of any point x for the kth component is computed
by

f ∗k (x) =
n

∑
i=1

(α∗k )iΦ∗(xi)t

(
Φ(x)−

n

∑
k=1

γkΦ(xk)

)
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or equivalently

f ∗k (x) =
n

∑
i=1

(α∗k )iK∗(xi, x)

(
K(x, x)− 2

n

∑
k=1

γkK(xk, x) +
n

∑
k=1

n

∑
l=1

γkγlK(xk, xl)

)
.

(5.10)

These are the Spherical KPCA scores that provide a robust alternative to the
classical KPCA scores from (5.1).

5.6 Finding influential observations

The spherical KPCA scores themselves can be useful in many applications. The
example in Figure 5.1 shows for instance that spherical KPCA with a linear
kernel (dashed line) produces scores that capture the structure of the majority
of the data much better than ordinary KPCA (solid line). However, in high
dimensions it is more difficult to visualize the difference between both meth-
ods. In this section we propose a simple graphical display to assess the influ-
ence of observations with respect to ordinary KPCA. Our strategy is to use the
spherical KPCA estimates in the expressions for the influence function in The-
orem 5.2. For linear PCA this idea was applied by Pison and Van Aelst [2004].
We use the score function f ∗k (x) as a sample estimate of eP,k. However, as ex-
plained by Marden [1999], the spherical eigenvalues λ∗k are not always good
estimates of λP,k. But since λP,k equals the variance of the score function, we
can re-estimate these eigenvalues by a measure of spread of the scores at the
data points. Of course this measure of spread should not be influenced too
much by individual observations either, so taking the variance would not be
such a good idea. We use the more robust Median Absolute Deviation (MAD)
to define

λ∗∗k = (median(| f ∗k (xi)−median(xi)|))2 . (5.11)

Other robust scale estimators, such as the Qn-estimator [Rousseeuw and Croux,
1993], are possible as well. Now observe from Theorem 5.2 that

||IF(z; ek, P)|| = |〈eP,k, Φ(z)〉|
√√√√

∞

∑
j=1,j 6=k

〈eP,j, Φ(z)〉2
(λk − λj)2
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which gives us the following sample based influence diagnostic equal to the
norm of the empirical influence function at z of the kth component:

||EIFk(z)|| = | f ∗k (z)|
√√√√ n

∑
j=1,j 6=k

f ∗j (z)2

(λ∗∗k − λ∗∗j )2 . (5.12)

To obtain the influence of an observation xi, just take z = xi. A bar plot of these
values for all 11 observations in the sample from the example in Figure 5.1 is
shown in Figure 5.2 (b), for a linear kernel and the first component (k = 1).
Again note how using the classical PCA scores fails to provide an accurate
description of the data (Figure 5.2 (a)). For linear PCA other robust methods
would be able to give good results as well. Our method however can deal with
any type of kernel. In the next section we show some examples where spherical
KPCA is able to detect influential observations in more general kernel based
frameworks.

5.7 Examples

5.7.1 Toy example

We explained the methodology on a toy example for the linear kernel (see Fig-
ure 5.1). Consider now a second toy example where the underlying structure
of the data is not linear, but generated from the model x2 = x2

1/4 with ran-
dom Gaussian noise with standard deviation 0.1. In Figure 5.5 we generated
20 data points showing a quadratic curvature, together with 1 outlier at (−5, 5)
(not visible on the plot). If we construct the score-contours corresponding to
the first principal component of ordinary KPCA with a polynomial kernel of
degree 2, we get Figure 5.5(a). Clearly the quadratic structure is lost com-
pletely due to the single outlier. For Spherical KPCA, Figure 5.5(b) depicts the
corresponding score-contours. Now the quadratic structure of the majority of
observations is learned, despite the outlier. Also note how the influence of out-
lying observation 21 on ordinary KPCA is not detected using ordinary KPCA
itself (diagnostic plot Figure 5.5 (c)), whereas Spherical KPCA easily spots it
(Figure 5.5 (d)).
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Figure 5.5 Score-contours and estimated influences for (a) − (c): classical
KPCA, (b)− (d): spherical KPCA.
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5.7.2 String kernel

Consider a situation where the inputs are no vectors, but strings. Then many
kernels exist that can be used to identify patterns in this set of strings. Here we
concentrate on one example, i.e. the all-subsequence kernel. Then the strings
are represented by feature vectors of which each component represents a pos-
sible substring. For the three strings ”gca”, ”cag” and ”ggc” for instance the
corresponding feature vectors are:

∅ a c g ag ca cg ga gc gg gca cag ggc

gca 1 1 1 1 0 1 0 1 1 0 1 0 0
cag 1 1 1 1 1 1 1 0 0 0 0 1 0
ggc 1 0 1 2 0 0 0 0 1 1 0 0 1

So in this case every string can be represented as a vector with 13 components,
and thus analysis could proceed in a 13-dimensional space. However, this ex-
ample is extremely simple, since there are only three possible characters (a,c,g)
and only strings of size three are considered. Unfortunately the dimension
of the feature space increases exponentially with the size of the strings. For
longer strings the explicit computation of the feature vectors thus becomes in-
feasible. However, when using a kernel method these explicit representations
are not necessary. All we need are the inner products between any two fea-
ture vectors. For the all-subsequence kernel the kernel matrix containing these
inner products can be computed with fast recursive algorithms [Shawe-Taylor
and Cristianini, 2004]. Since spherical KPCA does not require explicit feature
vectors either, but only the kernel matrix, applying the methodology from the
previous sections is straightforward.

As an example take the first 20 DNA sequences in the ’Primate splice-
junction gene sequences’ database from the UCI machine learning database.
This gives us 20 observations, all strings of size 60 composed out of 4 charac-
ters (A,C,G,T). The first 3 elements are shown below.

’CCAGCTGCATCACAGGAGGCCAGCGAGCAGGTCTGTTCCAAGGGCCTTCGAGCCAGTCTG’,

’AGACCCGCCGGGAGGCGGAGGACCTGCAGGGTGAGCCCCACCGCCCCTCCGTGCCCCCGC’,

’GAGGTGAAGGACGTCCTTCCCCAGGAGCCGGTGAGAAGCGCAGTCGGGGGCACGGGGATG’.

As an example we add one strange string to the data set, observation 21, which
is the following sequence:
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’CCCCCCCCCCCCCCCAAAAAAAAAAAAAATTTTTTTTTTTTTTGGGGGGGGGGGGGGGGG’.

Although the length of this string and the number of A’s,C’s,G’s and T’s are
both similar as for the other strings, this new observation 21 is clearly different
due to the specific order of the characters. Next we perform KPCA and spher-
ical KPCA on this data set with the all-subsequence kernel. For each string
we compute its influence measure as in (5.12) with respect to the first princi-
pal component. Figure 5.6(a) shows the result if we use the original KPCA
scores and eigenvalues. String number 2 comes out as the most influential ob-
servation. Nevertheless it does not look extremely dominating and one would
probably not suspect big problems. One would certainly not detect that ob-
servation 21 is an exceptional string, since its influence measure is very small.
The results using spherical KPCA are depicted in Figure 5.6(b). Then it is im-
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Figure 5.6 Estimated influences based on (a) KPCA, (b) spherical KPCA.

mediately clear that we have the same effect we discussed for the simple toy
example in Figures 5.1 and 5.2. Observation 21 is in reality extremely influen-
tial, dominating the estimation of the ordinary first kernel principal component
completely. This first principal component is completely attracted by string 21.
Therefore using this component results in a misleading plot of the influences.
Only by using the spherical kernel principal components a correct assessment
can be made about observations deviating from the mainstream. Also note that
robust linear PCA methods cannot be used. They require the explicit feature
vectors corresponding to the strings. However, according to Shawe-Taylor and
Cristianini [2004], the dimension of these feature vectors would be likely to
exceed 430 in this example, which is obviously infeasible.
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5.7.3 Octane data

The next example is the octane data set described in Esbensen et al. [1994].
It contains near-infrared (NIR) absorbance spectra over 226 wavelengths of
n = 39 gasoline samples with certain octane numbers. It is known that six
of the samples (25, 26, 36− 39) contain added alcohol. The data set was also
analyzed in Hubert et al. [2005], where it was shown that the robust linear PCA
method ROBPCA was able to detect the six outlying samples in contrast to or-
dinary linear PCA. Now suppose that we increase the difficulty of the problem
by using a polynomial kernel of degree 2. In theory the corresponding fea-
ture vectors could be computed by taking appropriately weighted squares and
cross-products for all 226 variables. In practice the resulting dimension of these
feature vectors will again be way too high. Explicitly calculating quadratic
forms and then applying a robust method such as ROBPCA in feature space is
thus infeasible.

Using a kernel method avoids this problem. All we need is the 39 × 39
dimensional kernel matrix, both for ordinary as spherical kernel PCA. The re-
sulting diagnostic plots are shown in Figure 5.7. Part (a) of this plot depicts
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Figure 5.7 Octane data: estimated influences based on (a) KPCA, (b) spherical
KPCA.

the results using ordinary KPCA. Of course some points seem more influen-
tial than others, but no dramatic effects would be detected. Part (b) shows the
influence measures using spherical KPCA. Now we see what is really happen-
ing: six observations are extremely influential, dominating all others. These six
observations are exactly the outlying samples that contain alcohol.



5.8 CONCLUSION 121

5.8 Conclusion

This chapter characterized the influence of data points on the results of Kernel
PCA by calculating the influence function. It turns out that this depends on
the spacings between eigenvalues, the kernel and the scores themselves. For
bounded kernels we provided a bound on the influence function.

Secondly, for any type of kernel, Spherical KPCA was introduced as an al-
ternative to ordinary KPCA spreading the influence more evenly over every
observation.

Thirdly, the results from Spherical KPCA were used as plug-in estimates in
the expression for the influence function. As such an easy graphical display
was obtained to detect influential observations. Some examples demonstrated
that this approach can produce good results where ordinary KPCA fails.
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Conclusion

In this dissertation robustness was discussed in several settings. In Chapter 1
an algorithm was proposed to perform robust quantile regression dealing with
right censored observations. Compared to L1-quantiles our deepest regression
based method is more time-consuming and less efficient at traditional regres-
sion setups, especially at higher dimensions and quantiles closer to the bound-
aries 0 and 1. In return however, much better protection against malicious
outlier effects is obtained.

In Chapter 2 some theoretical results were obtained about the covariance
estimator called Stahel-Donoho with smallest outlyingness. It was shown
that this estimator has a bounded influence function (Theorem 2.2). Gross er-
ror sensitivities and asymptotic efficiencies were computed (Table 2.1), show-
ing robustness and performance in between the weighted Stahel-Donoho es-
timator and the MCD estimator. Next we considered influence functions of
ROBPCA (Theorem 2.5) and RSIMPLS (Theorem 2.6). Again these functions
are bounded, showing robustness indeed.

From linear PCA and regression analysis we turned to kernel methods. In
Chapter 3 we discussed reweighted KBR. An expression for the influence func-
tion of stepwise reweighted KBR was obtained at every step. In order to bound
the influence function of the iteratively reweighted estimator until conver-
gence, some sufficient conditions on the weight function were obtained (3.19).
Not all frequently used weight functions satisfy these terms, i.e. Hampel’s sug-
gestion. In Figure 3.1 we were able to construct a data example where Hampel
weights fail indeed. We put logistic weights in the spotlight since they obey all
conditions, provide good results and fast convergence.

Up to that point, the influence function was mainly used as a tool to assess
the theoretical robustness of an estimator looking at worst case scenarios. More
generally one can see the influence function as a way to analyze the effects of

123
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small changes in a distribution. Some links with stability and variance were
explained. In Section 3.5 we shortly reviewed the concept of stability and used
it to motivate that reweighting also improves results when heavy-tailed noise
occurs.

Chapter 4 continued discussing some heuristic links between influence
function and stability, variance and the leave-one-out error. More specifically
we tried to use the influence function as an asymptotic approximation of the
leave-one-out error. A fast model selection criterion was obtained to select
both regularization and kernel parameters. Since the same reweighting scheme
from Chapter 4 is applied, the resulting model selection criterion is more robust
than traditional methods. However, we also noted that the asymptotic approx-
imation can become problematic for small values of the hyperparameters as
well as in high dimensions. Several local minima occur, and thus it is neces-
sary to complement this criterion with explicitly performing cross-validation,
in order to select the correct local minimum.

Chapter 5 concerned Kernel PCA. The influence function was derived (The-
orem 5.2). We bounded this function in case the kernel is bounded. For un-
bounded kernels the influence function can be unbounded. Therefore we pro-
posed Spherical Kernel PCA as a more robust Kernel PCA method. Finally we
proposed a simple graphical display to assess the influence of observations in
a sample on the ordinary Kernel PCA components. Some examples in string-
analysis and chemometrics show the relevance of this method.

Challenges for future work are omnipresent. One could wonder whether
it is possible to kernelize results from the first Chapter. Takeuchi et al. [2006]
already introduced kernel based quantile regression. Possibly an extension
dealing with right-censored observations along the lines of Chapter 1 can be
obtained as well.

In Chapter 2 we obtained expressions for the influence function of robust
covariance and PCA estimators. It would be nice to make use of these formu-
las. To select the number of principal components to be retained, a leave-one-
out criterion is often used. The influence function could provide a fast approx-
imation. Some preliminary results show that this is true to a certain extent, but
that this approximation is not always very reliable in high dimensions. Since
PCA is obviously most useful specifically for such high-dimensional data, this
approach needs some extra investigation.

In Chapters 3 and 4 some properties of reweighted Kernel Based Regres-
sion were examined. An obvious question is whether similar results can be ob-
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tained in other settings. Reweighting could be useful in classification or PCA
as well. It would be interesting to investigate what types of weight functions
are to be preferred in these situations. Furthermore the main focus was put on
bounding the influence function, essentially preventing the effects of infinitely
small amounts of contamination. Of course, other robustness criteria exist as
well. The breakdown value for example measures how much contamination a
method can resist. In the ROBPCA method from Chapter 2 for instance, this
breakdown value is explicitly controlled by the value of α. However, for kernel
methods no results in this direction have been established so far.

In Chapter 5 we proposed Spherical KPCA. On a theoretical level, it would
be interesting to calculate the influence function for this method as well. On
the practical side, KPCA often is the first step in a data analysis. One could
use the resulting scores for instance in clustering or classification. An analysis
of the robustness in such combined situations could be potential research. An
extension towards Kernel PLS regression is worth investigating too. Finally
the spatial median based centering of the kernel matrix could be useful itself
outside a PCA framework, for example in classification.
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In J. Franke, W. Härdle, and R.D. Martin, editors, Robust and Nonlinear Time
Series Analysis, pages 256–272, New York, 1984. Lecture Notes in Statistics
No. 26, Springer-Verlag.

M. Salibian-Barrera and R.H. Zamar. Bootstrapping robust estimates of regres-
sion. The Annals of Statistics, 30:556–582, 2002.

B. Schölkopf, R. Herbrich, and A. Smola. A generalized representer theorem. In
D. Helmblod and B. Williamson, editors, Neural Networks and Computational
Learning Theory, pages 416–426, Berlin, 2001. Springer.



132 BIBLIOGRAPHY

B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, Cambridge, MA,
2002.

B. Schölkopf, A. Smola, and K-R. Müller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1998.

J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis. Cam-
bridge university press, Cambridge, 2004.

J. Shawe-Taylor, C. Williams, N. Cristianini, and J. Kandola. Eigenspectrum of
the gram matrix and its relationship to the operator eigenspectrum. In Algo-
rithmic learning theory: 13th international conference, ALT2002 of lecture notes in
computer science, volume 2533, pages 23–40. Springer-Verlag, 2002.

D.G. Simpson, D. Ruppert, and R.J. Carroll. On one-step GM-estimates and
stability of inferences in linear regression. Journal of the American Statistical
Association, 87:439–450, 1992.

D. Singh, P.G. Febbo, K. Ross, D.G. Jackson, J. Manola, C. Ladd, P. Tamayo,
A.A. Renshaw, A.V. D’Amico, J.P. Richie, E.S. Lander, M. Loda, P.W. Kantoff,
T.R. Golub, and W.R. Sellers. Gene expression correlates of clinical prostate
cancer behavior. Cancer Cell, 1:203–209, 2002.

C.G. Small. A survey of multidimensional medians. International Statistical
Review, 58:263–277, 1990.

W.A. Stahel. Robuste Schätzungen: infinitesimale Optimalität und Schätzungen von
Kovarianzmatrizen. PhD thesis, ETH Zürich, 1981.
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Klassieke statistische methodes steunen vaak op aannames die in de praktijk
niet altijd correct zijn. Zo wordt regelmatig verondersteld dat de gegevens
een welbepaalde verdeling volgen. Zelfs indien deze onderliggende verdeling
niet gespecifieerd wordt, gaat men meestal uit van een steekproef van onder-
ling onafhankelijke en identiek verdeelde observaties. Zulke methodes kun-
nen echter zeer matig presteren indien uitschieters aanwezig zijn in de data
set. Robuuste statistiek bestudeert methodes die niet willekeurig beı̈nvloed
kunnen worden door uitschieters. Het doel is om de structuur te leren van
de meerderheid van de data punten, zelfs als een minderheid dit patroon ver-
stoort.

Deze thesis bestudeert robuustheid in twee verschillende contexten: re-
gressie en Principaal Component Analyse (PCA). Regressie analyse modelleert
het verband tussen een respons variabele en een aantal onafhankelijke vari-
abelen (ook wel covariaten genoemd). Doorgaans is men geı̈nteresseerd in de
voorwaardelijke verdeling van de respons gegeven een waarde voor de co-
variaten. Men kan zich concentreren op bepaalde kenmerken van deze voor-
waardelijke verdeling, bvb. het gemiddelde wat leidt tot kleinste kwadraten
regressie.

In sommige toepassingen is een meer gedetailleerd beeld wenselijk. Kwantiel-
regressie [Koenker, 2005] schat alle voorwaardelijke kwantielen, waardoor de
voorwaardelijke verdeling volledig gekarakteriseerd wordt. Uitgaande van
een lineair model kan men kwantielregressie uitvoeren met behulp van een
L1 kostfunctie [Koenker and Bassett, 1978]. Hoewel dat minder uitschieter-
gevoelig is dan kleinste kwadraten regressie, kunnen robuustheidsproblemen
nog steeds voorkomen. Een robuustere aanpak met de naam ‘deepest regres-
sion’ wordt beschreven door Rousseeuw and Hubert [1999]. In Hoofdstuk 1
hernemen we kort beide methodes met hun relevante eigenschappen. Vervol-
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gens beschouwen we het geval waar de steekproef rechts-gecensureerde ob-
servaties bevat. Dit betekent dat de respons waarde niet exact gemeten werd
voor elke observatie, maar enkel een ondergrens. Dergelijke data komen fre-
quent voor in geneeskunde, bijvoorbeeld wanneer een patiënt de deelname
aan een studie vroegtijdig beëindigt, vooraleer de eindresultaten gemeten kun-
nen worden. Een methode om met zo’n data kwantielregressie te kunnen uit-
voeren, werd voorgesteld door Portnoy [2003] voor de L1 schatter. In Hoofd-
stuk 1 passen we een gelijkaardig idee toe op de deepest regression methode.
We leiden het bijhorend optimisatiecriterium af en stellen een grid-algoritme
voor om de berekeningen uit te voeren. Robuustheid wordt aangetoond in een
kleine simulatiestudie en in twee toepassingen.

Het tweede onderwerp van deze thesis betreft Principaal Component Anal-
yse (PCA). Deze techniek reduceert de dimensie van multivariate data. Tra-
ditionele lineaire PCA bekomt zo’n reductie door projectie op een lager di-
mensionale lineaire deelruimte, opgespannen door de eigenvectoren van de
klassieke covariantiematrix. Deze eigenvectoren zijn echter zeer gevoelig aan
de aanwezigheid van uitschieters. Een meer robuuste methode met de naam
ROBPCA werd voorgesteld door Hubert et al. [2005]. In Hoofdstuk 2 bestud-
eren we enkele theoretische eigenschappen van de onderliggende covariantie-
schatter. We berekenen de asymptotische efficiëntie en vergelijken met een
aantal andere robuuste schatters. Bovendien berekenen we de invloedsfunctie
waardoor we de effecten van uitschieters wiskundig kunnen analyseren. We
tonen aan dat de invloedsfunctie van ROBCPA begrensd is, wat een belangrijke
eis is voor robuuste methodes.

Zowel hoofstukken 1 and 2 gaan uit van een lineaire onderliggende struc-
tuur. In de praktijk komen ook meer gecompliceerde situaties voor. Hoofd-
stukken 3, 4 and 5 passen in het onderzoeksgebied rond kernel methodes. Al-
gemeen geformuleerd passen kernel methodes lineaire methodes toe in een
zogenaamde feature ruimte H, in plaats van in de originele ruimte. Indien
deze methode in H enkel geformuleerd kan worden in termen van scalaire
producten 〈Φ(u), Φ(v)〉, kan men een kernel functie K gebruiken en K(u, v)
evalueren. Dit laat data analyse toe in een mogelijk zeer hoog dimensionale
feature ruimte H, zonder de expliciete features te berekenen of zelfs te kennen.

Dergelijke kernels in een regressie context, samen met ideeën uit opti-
misatie en regularisatie, vormen de kern tot Kernel Based Regression (KBR).
Christmann and Steinwart [2006] bewezen dat de invloedsfunctie van Least
Squares KBR (LS-KBR) onbegrensd is, in tegenstelling tot KBR met kostfuncties
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met begrensde eerste afgeleide. Suykens et al. [2002a] stelden een herwogen
versie van LS-KBR voor ter verbetering van de robuustheid van LS-KBR, met
behoud van de kleinste kwadraten methodologie en bijhorende voordelen. In
hoofdstuk 3 onderzoeken we een aantal eigenschappen van deze herwogen
LS-KBR methode. We berekenen de invloedsfunctie van de k−stap gewogen
schatter. Onder enkele voorwaarden analyseren we het gedrag van de rij in-
vloedsfuncties als men iteratief blijft herwegen (k → ∞). Een belangrijk re-
sultaat stelt dat de invloedsfunctie van iteratief herwogen LS-KBR begrensd
is indien de kernel begrensd is en indien de gewichtsfunctie van de vorm is
w(r) = ψ(r)/r met r het residu en ψ een begrensde en stijgende functie. Deze
voorwaarde is niet triviaal. Hampel gewichten bijvoorbeeld voldoen niet.

We besluiten hoofdstuk 3 door de invloedsfunctie te linken aan concepten
van stabiliteit Poggio et al. [2004]. Op deze manier wordt beargumenteerd dat
herweging niet alleen nuttig is om uitschieters te neutraliseren, maar ook in
het geval van zwaarstaartige ruis. In hoofdstuk 4 bestuderen we de invloeds-
functie verder. Een modelselectiecriterium wordt voorgesteld waarmee goede
waardes kunnen bekomen worden voor de modelparameters, zoals de regu-
larisatieparameter en de bandbreedte in het geval van een RBF-kernel.

In hoofdstuk 5 keren we terug naar PCA analyse. Ook hier kunnen kernels
geı̈ncorporeerd worden om complexere structuren te ontdekken. De invloeds-
functie van Kernel PCA Schölkopf et al. [1998] wordt afgeleid. Net als in het re-
gressiegeval leidt een begrensde kernel tot een begrensde invloedsfunctie. Met
een onbegrensde kernel kunnen uitschieters echter een willekeurig grote in-
vloed uitoefenen. Een nieuwe techniek wordt voorgesteld met de naam Spher-
ical KPCA, waarmee robuustere scores kunnen bekomen worden. Tenslotte
construeren we een diagnostische plot waar de invloed van punten in een
steekproef gevisualiseerd wordt, zodat invloedrijke punten gedetecteerd kun-
nen worden.


