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Introduction

The research domain of this thesis is algebraic geometry, a branch of pure

mathematics. Algebraic geometry has a very long history; one can even

consider the geometry of the ancient Greeks as a part of it.

For nonsingular projective complex algebraic varieties, the Hodge num-

bers are well known classical invariants. Batyrev has tried to generalize

these invariants for a class of singular projective varieties (the allowed

singularities are called Gorenstein canonical) as follows. He defined a

rational function in two variables, the stringy E-function, by using data

from a resolution of singularities. He showed that this function does not

depend on the chosen resolution, and thus it is an invariant of the variety.

When this function is a polynomial, he defined the stringy Hodge num-

bers, essentially as the coefficients of this polynomial. For a nonsingular

projective variety, the stringy Hodge numbers coincide with the classical

Hodge numbers. Moreover, they have a lot of analogous properties. But

there is one problem: classical Hodge numbers are certainly nonnega-

tive, since they are dimensions of certain vector spaces, but for stringy

Hodge numbers the nonnegativity is not at all clear. It was conjectured

by Batyrev, and it is the subject of this thesis.

We have been able to prove Batyrev’s conjecture for varieties with certain

mild isolated singularities. A nice corollary is the proof for the conjec-

ture for threefolds in full generality (for surfaces the conjecture is trivially

true). Moreover, the proofs suggested that a more general question for

the power series development of not necessarily polynomial stringy E-

functions is worth further investigation. However, we found an example

that gives a negative answer to this question. In our opinion this provides

some evidence that Batyrev’s conjecture might not be true. In this thesis,
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2 Introduction

we also compute explicit formulae for the contribution of so called A-D-E

singularities to the stringy E-function.

We begin with an introductory chapter. It starts with a short overview of

classical Hodge theory, Deligne’s mixed Hodge structures and the Hodge-

Deligne polynomial. Then we are ready for the definition of Batyrev’s

stringy E-function and a discussion of Veys’ generalized stringy invari-

ants. We will use this material throughout the thesis, most of the time

without an explicit reference to this introduction. We end the introduc-

tion by a sketch of the history of the subject and by a summary of the

results of this thesis.

We use the following conventions. By an algebraic variety we mean an

integral separated scheme of finite type over an algebraically closed field

(in our case always the complex numbers), although we do not use the

scheme language (so the notion of variety of Chapter 1 of Hartshorne’s

book [Ha] suffices). In particular, a variety is always irreducible (unless

otherwise stated).

0.1 Pure and mixed Hodge structures and the

Hodge-Deligne polynomial

(0.1.1) For a smooth projective algebraic variety X of dimension d, there

is a well known direct sum decomposition of the de Rham cohomology

(isomorphic to the singular cohomology):

Hn(X,C) =
⊕

p+q=n

Hp,q,

with

Hp,q = Hq,p.

It is called the Hodge decomposition (see for example [GH, Chapter 0]).

The cohomology class of a complex valued C∞-differential form ω be-

longs to Hp,q if ω can be expressed in terms of local complex coordi-

nates (z1, . . . , zd) by means of p dz’s and q dz’s. The dimensions of

the spaces Hp,q are called the Hodge numbers of X and are denoted by

hp,q(X) := dimHp,q(X). They satisfy the following symmetry relations:

hp,q(X) = hq,p(X) = hd−p,d−q(X) = hd−q,d−p(X).
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The following definition is the abstract analogue of the Hodge decompo-

sition. For the rest of this section we follow mainly Srinivas’ text [Sr].

Definition. A pure Hodge structure of weight n ∈ Z≥0 consists of the

data V = (VQ, {V
p,q}p+q=n), where

1. VQ is a finite dimensional Q-vector space,

2. each V p,q is a linear subspace of VC := VQ ⊗ C, such that

• VC = ⊕p+q=nV
p,q (this is called the Hodge decomposition of

VC),

• V p,q = V q,p for all p, q, where for a linear subspace W ⊂ VC,

W denotes its complex conjugate (the complex conjugation is

induced by complex conjugation on the C-factor).

A morphism of type (r, s) between pure Hodge structures V and V ′ is a

linear map f : V → V ′ such that the induced map f ⊗C : VC → V ′
C maps

V p,q to V ′p+r,q+s. Another way to describe a pure Hodge structure is by

using the Hodge filtration. For a pure Hodge structure of weight n, put

F pVC := ⊕p′≥pV
p′,n−p′ ⊂ VC.

Then {F pVC} is a finite decreasing filtration by linear subspaces, such

that

(1) the natural map F pVC ⊕ Fn−p+1VC → VC induced by inclusions, is

an isomorphism,

(2) F pVC ∩ Fn−pVC = V p,n−p.

Conversely, any finite dimensional Q-vector space VQ with a finite de-

creasing filtration

VC = F 0VC ⊃ F 1VC ⊃ · · ·FnVC ⊃ Fn+1VC = {0}

on VC such that the isomorphisms (1) hold, can be made into a pure

Hodge structure of weight n by setting V p,n−p := F pVC ∩ Fn−pVC.

(0.1.2) Inspired by his previous work on the Weil conjectures, Deligne

was able to generalize the classical Hodge decomposition for smooth pro-

jective varieties to a structure theorem for the cohomology of arbitrary
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complex algebraic varieties (see [De1] and [De2]). The fundamental no-

tion is that of a mixed Hodge structure.

Definition. A mixed Hodge structure V = (VQ, {WnVQ}, {F
pVC} con-

sists of the following data:

1. a finite dimensional Q-vector space VQ,

2. a finite increasing filtration {WnVQ} on VQ by linear subspaces,

called the weight filtration,

3. a finite decreasing filtration {F pVC} on VC = VQ ⊗ C by linear

subspaces, called the Hodge filtration,

such that the Hodge filtration induces a pure Hodge structure of weight

n on the n-th graded piece

GrW
n VQ =

WnVQ

Wn−1VQ

.

In more detail, the Hodge filtration induces a filtration (also denoted by

F •) on

GrW
n VQ ⊗ C =

WnVQ ⊗ C

Wn−1VQ ⊗ C

by

F p(GrW
n VQ ⊗ C) =

(F pVC ∩ (WnVQ ⊗ C)) +Wn−1VQ ⊗ C

Wn−1VQ ⊗ C

∼=
F pVC ∩ (WnVQ ⊗ C)

F pVC ∩ (Wn−1VQ ⊗ C)
.

We will often be sloppy and speak of the mixed Hodge structure on VC

instead of on VQ. A morphism between mixed Hodge structures V and

V ′ is a linear map f : VQ → V ′
Q that is compatible with the weight

filtration (i.e. f(WnVQ) ⊂ W ′
nV

′
Q) and such that the induced map f ⊗ C

is compatible with the Hodge filtration. It is remarkable that this implies

strict compatibility (see [De1, Théorème (2.3.5)]):

f(WnVQ) = W ′
nV

′
Q and (f ⊗ C)(F pVC) = F ′pV ′

C.

This strictness implies that the functors Wn and F p from the category

of mixed Hodge structures to the category of Q- or C-vector spaces are
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exact. We denote by Hp,q the functor that maps a mixed Hodge struc-

ture V to the (p, q)-component of the pure Hodge structure GrW
p+qVQ; this

functor is exact as well.

(0.1.3) Now we come to the main theorem of [De1] and [De2].

Theorem. Let X be a complex algebraic variety (possibly reducible), Y

a closed subvariety. The singular cohomology groups Hn(X,Y,Q) can be

equipped with a functorial mixed Hodge structure; this means that for a

map of pairs f : (X,Y ) → (X ′, Y ′), the natural map

f∗ : Hn(X ′, Y ′,Q) → Hn(X,Y,Q)

is a morphism of mixed Hodge structures. Moreover,

• for a smooth projective variety X and for Y = ∅, this mixed Hodge

structure coincides with the pure Hodge structure on Hn(X, ∅,Q) =

Hn(X,Q) given by the classical Hodge decomposition,

• the boundary map in the long exact sequence for the cohomology

of the pair (X,Y ) is a morphism of mixed Hodge structures,

• for any pair (X,Y ) with dimX = d, we have for all n

W−1H
n(X,Y,Q) = 0,W2dH

n(X,Y,Q) = Hn(X,Y,Q),

F 0Hn(X,Y,C) = Hn(X,Y,C), F d+1Hn(X,Y,Q) = 0.

We have given here only a selection of some of the properties satisfied

by this mixed Hodge structure. Many more are valid, we mention two

others that we will use: for a complete, possibly singular, variety X of

dimension d, the weight filtration satisfies WdH
n(X,Q) = Hn(X,Q) and

for a smooth, possibly non-complete, variety X of dimension d, we have

Wd−1H
n(X,Q) = 0.

(0.1.4) Let X now be an arbitrary variety (not necessarily irreducible),

choose a compactification X and define ∂X := X \ X. The cohomol-

ogy group Hn(X, ∂X,A) (for any abelian coefficient group A) does not

depend on the chosen compactification. It is called the n-th cohomology

group of X with compact support and denoted Hn
c (X,A) (it can also be

defined as a direct limit over the compact subsets K of X of the spaces
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Hn(X,X \K,A) as in [GreH]). In particular, for A = Q it carries a mixed

Hodge structure. Of course, when X is compact, cohomology with com-

pact support coincides with singular cohomology. Denote the dimension

of Hp,q(Hn
c (X,C)) by hp,q(Hn

c (X,C)). The following definition is a nice

application of Deligne’s mixed Hodge theory. It was first mentioned by

Danilov and Khovanskĭı in [DK].

Definition. Let X be an arbitrary complex algebraic variety (not nec-

essarily irreducible). Define the Hodge-Deligne polynomial of X by the

formula

H(X;u, v) :=
2d∑

i=0

(−1)i
∑

p,q

hp,q(H i
c(X,C))upvq ∈ Z[u, v].

We remark that some authors insert an extra factor (−1)p+q in this defin-

ition. Note that H(X; 1, 1) is equal to the topological Euler characteristic

χ(X) of X. The Hodge-Deligne polynomial is itself a generalized Euler

characteristic; it satisfies the following properties:

• if Y is Zariski closed in X, then H(X) = H(X \ Y ) +H(Y ),

• the Hodge-Deligne polynomial H(X × Y ) of a product of two vari-

eties equals H(X) ·H(Y ).

The first property follows essentially from the long exact sequence for

compactly supported cohomology and the second from a Kunneth isomor-

phism (and the compatibility of these properties with the mixed Hodge

structure !). We conclude this section with some easy examples and ad-

ditional properties.

1. The Hodge-Deligne polynomial of projective space Pr equals (uv)r+

(uv)r−1 + · · · + 1.

2. Thus the Hodge-Deligne polynomial of affine space Ar must be

(uv)r.

3. For a smooth projective curve C of genus g, H(C) = uv−gu−gv+1.

4. If f : X → Y is a locally trivial fibration (with respect to the Zariski

topology) with fibre F , then H(X) = H(F ) ·H(Y ).
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5. The symmetry relations of the classical Hodge numbers of a smooth

projective variety X of dimension d can be expressed by

H(X;u, v) = (uv)dH(X;u−1, v−1).

0.2 Batyrev’s stringy invariants

(0.2.1) The subject of this thesis is Batyrev’s stringy E-function, defined

by him in 1997 and published in [Ba2]. Its definition is motivated from

string theory in theoretical physics. He used it in the first place to for-

mulate a topological mirror symmetry test for Calabi-Yau varieties with

singularities (for more on mirror symmetry and Calabi-Yau varieties, see

Section 0.4). For nonsingular d-dimensional Calabi-Yau varieties V and

V ∗ forming a mirror pair this test was formulated as a relation on the

Hodge numbers. Expressed with Hodge-Deligne polynomials it becomes

H(V ;u, v) = (−u)dH(V ∗;u−1, v).

We will define the singularities that are allowed by Batyrev first. By

a log resolution of a variety Y we mean a proper birational morphism

f : X → Y from a nonsingular variety X such that f is an isomorphism,

when restricted to the inverse image of the nonsingular part of Y , and

such that the inverse image of the singular locus is a divisor on X with

smooth irreducible components and only normal crossings. By Hironaka’s

celebrated work [Hi], a log resolution always exists.

Definition. A normal variety Y is called Q-Gorenstein if a multiple

rKY of its canonical divisor is Cartier for some r ∈ Z>0 (we call Y

Gorenstein if KY itself is Cartier). For a log resolution f : X → Y

with irreducible exceptional components Di, i ∈ I, we can then write

rKX −f∗(rKY ) =
∑

i biDi, with the bi ∈ Z. This is also formally written

as KX − f∗(KY ) =
∑

i aiDi, with ai = bi/r. The variety Y is called ter-

minal, canonical, log terminal or log canonical if ai > 0, ai ≥ 0, ai > −1

or ai ≥ −1, respectively, for all i (this does not depend on the chosen log

resolution). We say that Y is strictly log canonical if Y is log canonical

but not log terminal. The number ai is called the discrepancy coefficient

of Di and the difference KX − f∗(KY ) is called the discrepancy.
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This definition plays a key rôle in the Minimal Model Program. Let us

illustrate it with an example. Consider a normal affine hypersurface Y in

An given by the equation f(x1, . . . , xn) = 0. The class KY is associated

to the sheaf of rational differential forms, regular on the nonsingular part

of Y . For our hypersurface, these are generated by

dx1 ∧ . . . ∧ dxn−1

∂f/∂xn

= −
dx1 ∧ . . . ∧ dxn−2 ∧ dxn

∂f/∂xn−1
= · · · = (−1)n−1 dx2 ∧ . . . ∧ dxn

∂f/∂x1
,

and thus this sheaf is invertible and KY is Cartier (more generally, a nor-

mal irreducible divisor on a smooth variety is always Gorenstein). For f

of the form xk
1 + · · ·+ xk

n for k, n ≥ 2, one blow up in the unique singular

point suffices to construct a log resolution, and it is easy to compute that

Y is terminal for n ≥ k + 2, canonical for n ≥ k + 1, log canonical for

n ≥ k and strictly log canonical for n = k.

(0.2.2) Now we are ready to define the stringy E-function. We discuss its

properties and give the additional definitions of the stringy Euler number

and the stringy Hodge numbers. All of this is Batyrev’s work (see [Ba2]).

Definition. Let Y be a normal irreducible complex variety with at most

log terminal singularities and let f : X → Y be a log resolution. Denote

the irreducible components of the exceptional locus by Di, i ∈ I, and

write DJ for ∩i∈JDi and D◦
J for DJ \ ∪i∈I\JDi, where J is any subset of

I (D∅ is taken to be X). The stringy E-function of Y is

Est(Y ;u, v) :=
∑

J⊂I

H(D◦
J ;u, v)

∏

i∈J

uv − 1

(uv)ai+1 − 1
,

where ai is the discrepancy coefficient of Di and where the product
∏

i∈J

is 1 if J = ∅.

Batyrev proved that this definition is independent of the chosen log res-

olution ([Ba2, Theorem 3.4]). His proof uses motivic integration, a the-

ory based on an idea of Kontsevich and mainly developed by Denef and

Loeser. An overview of this theory is provided in [Ve1]. Alternatively,

one can use the Weak Factorization Theorem by Abramovich, Karu, Mat-

suki and W lodarczyk from [AKMW]. The ‘E’ in the name comes from

the Hodge-Deligne polynomials that are sometimes called E-polynomials.
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(0.2.3) Remark.

(1) Batyrev formulated his mirror symmetry test for singular Calabi-

Yau varieties V and V ∗ as the equality

Est(V ;u, v) = (−u)dEst(V
∗;u−1, v).

(2) If Y is smooth, then Est(Y ) = H(Y ) and if Y admits a crepant

resolution f : X → Y (i.e. such that the discrepancy is 0), then

Est(Y ) = H(X).

(3) If Y is Gorenstein, then all ai ∈ Z≥0 and Est(Y ) becomes a rational

function in u and v. It is then an element of Z[[u, v]] ∩ Q(u, v).

(4) The stringy Euler number of Y is defined as

lim
u,v→1

Est(Y ;u, v) =
∑

J⊂I

χ(D◦
J)

∏

j∈J

1

aj + 1
.

(5) It is easy to deduce the following alternative expression for the

stringy E-function:

Est(Y ) =
∑

J⊂I

H(DJ ;u, v)
∏

i∈J

uv − (uv)ai+1

(uv)ai+1 − 1
.

(0.2.4) Assume moreover that Y is projective of dimension d. Then

Batyrev proved the following instance of Poincaré and Serre duality ([Ba2,

Theorem 3.7]):

(i) Est(Y ;u, v) = (uv)dEst(Y ;u−1, v−1) (compare this with the last

example of (0.1.4)),

(ii) Est(Y ; 0, 0) = 1.

If Y has at worst Gorenstein canonical singularities and if Est(Y ;u, v) is

a polynomial
∑

p,q ap,qu
pvq, he defined the stringy Hodge numbers of Y

as hp,q
st (Y ) := (−1)p+qap,q. It is easy to see that

(1) they can only be nonzero for 0 ≤ p, q ≤ d,

(2) h0,0
st (Y ) = hd,d

st (Y ) = 1,
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(3) hp,q
st (Y ) = hq,p

st (Y ) = hd−p,d−q
st (Y ) = hd−q,d−p

st (Y ),

(4) if Y is smooth, the stringy Hodge numbers are equal to the usual

Hodge numbers.

There is though one desirable property that is not clear at all: nonnega-

tivity !

(0.2.5) Conjecture (Batyrev). Stringy Hodge numbers are nonnegative.

This is the problem that we want to investigate in this thesis. Note that

it is not clear when to expect that the stringy E-function is a polynomial.

In fact we have focused on the following more general question, which is

very natural in view of our results from Chapter 1.

Question. Let Y be a d-dimensional projective variety with at most

Gorenstein canonical singularities. Write the stringy E-function of Y as

a power series
∑

i,j≥0 bi,ju
ivj . Is it true that (−1)i+jbi,j ≥ 0 for i+j ≤ d ?

Thanks to the properties of stringy Hodge numbers, a positive answer

to this question implies Batyrev’s conjecture. However, we will see in

Chapter 4 that the answer to this question is ‘no’ in general !

Example. The conjecture is true for varieties that admit a crepant res-

olution. This is the case for all canonical surface singularities, which are

exactly the two-dimensional A-D-E singularities [Re3, (4.9),(3)] (see also

Theorem (2.4.1) for m = 3).

Remark. For a complete surface X with at most log terminal singulari-

ties, Veys showed that

Est(X) =
∑

p,q∈Z

(−1)p+qhp,q
st u

pvq +
∑

r/∈Z

hr,r
st (uv)r,

with all hp,q
st and hr,r

st nonnegative [Ve2, Theorem 6.5].

0.3 Veys’ ideas for general singularities

(0.3.1) Veys has generalized Batyrev’s stringy invariants to the class of

all Q-Gorenstein varieties without strictly log canonical singularities. In a
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first paper ([Ve2]) he did this in a geometric way for surfaces. He studied

the minimal log resolution of a normal surface singularity that is not log

canonical and noted that an exceptional component with discrepancy −1

is always isomorphic to P1 and intersects at most two other components,

whose discrepancies are not −1. Let S then be a normal surface without

strictly log canonical singularities (the Q-Gorenstein condition is not nec-

essary for surfaces) and denote by Di, i ∈ I, the exceptional components

of the minimal log resolution. Let Z be the set {i ∈ I | ai = −1}. Then

Veys defined the stringy E-function of S as follows:

Est(S) :=
∑

J⊂I\Z

H(D◦
J ;u, v)

∏

i∈J

uv − 1

(uv)ai+1 − 1

+
∑

i∈Z

κi(uv − 1)2

((uv)ai1
+1 − 1)((uv)ai2

+1 − 1)
,

where for i ∈ Z we denote κi = −D2
i , and where ai1 and ai2 denote

the discrepancies of the components that intersect Di (if that is only one

component, we put ai2 = 0). The reason why this formula is ‘right’, is

nicely explained in [Ve2, (3.3)]. The formula gives the same result for any

log resolution that has the same property concerning components with

discrepancy −1 as the minimal one, and the ‘Poincaré duality’ formula

Est(S;u, v) = (uv)2Est(S;u−1, v−1)

is still valid.

About the sign of the coefficients in the case that Veys’ generalized stringy

E-function for a surface is a polynomial, nothing can be expected. In-

deed, in Chapter 1 we give an example where the coefficients have the

‘wrong’ sign. We will not use Veys’ higher dimensional generalization in

this thesis, but we include the interesting construction for completeness.

(0.3.2) In the paper [Ve3] Veys handled the higher-dimensional case, as-

suming the Minimal Model Program. For a Q-Gorenstein variety Y with-

out strictly log canonical singularities he chooses a (relative) log minimal

model. This is a proper birational morphism p : Y m → Y from a variety

Y m with the following properties:

• Y m is Q-factorial (i.e. for every Weil divisor, a positive integer

multiple is Cartier),
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• Y m has at most log terminal singularities,

• KY m + F is p-nef, where we denote by F the reduced exceptional

divisor of p (i.e. the intersection number (KY m +F ) · C ≥ 0 for all

irreducible curves on Y m for which p(C) is a point).

The existence of such an object is claimed by the Minimal Model Program

and is proved up to dimension 3. Write F =
∑

i Fi, with the Fi, i ∈ Im,

its irreducible components. Then one can look at a log resolution h :

X → Y m of the pair (Y m, F ), that is a log resolution of Y m such that

the union of the exceptional components and the strict transforms of the

Fi form a normal crossing divisor with smooth irreducible components.

Let I be the index set of all these divisors (so Im ⊂ I) and denote them

by Ei, i ∈ I. Define numbers νi and Ni by

KX − h∗(KY m + F ) =
∑

i∈I

(νi − 1)Ei,

h∗(KY m + F − p∗(KY )) =
∑

i∈I

NiEi.

The properties of Y m and the condition that Y has no strictly log canon-

ical singularities assure that νi ≥ 0 ≥ Ni and that (νi, Ni) 6= (0, 0) for all

i. Then Veys defined the following stringy invariant (in fact he defined a

more general invariant on the level of the Grothendieck ring):

Z(Y, s) :=
∑

J⊂I

H(E◦
J ;u, v)

∏

i∈J

uv − 1

(uv)νi+sNi − 1
.

So by adding the variable s, the exceptional divisors with discrepancy

−1 are no longer a problem (we have ai + 1 = νi + Ni) ! This definition

does not depend on the chosen log minimal model, nor on the chosen log

resolution. A Poincaré duality formula can be given as well. For a surface

S, Veys showed that both generalizations of Batyrev’s stringy E-function

coincide in the following sense: Est(S) = lims→1 Z(Y, s) (note that it is

not a priori clear that this limit exists). It is an intriguing open question

whether this limit exists also in the higher dimensional case and whether

a geometric construction of this limit can be given as in the surface case.

0.4 Sketch of the historical context

(0.4.1) The paper [Ba2] that contains Conjecture (0.2.5) is a kind of end

product of a long process by Batyrev and others towards a good definition
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of stringy invariants; namely one that can be applied in a mirror symme-

try test (from the mathematical point of view, Veys’ generalizations from

the previous section show that a lot more can be done). In string theory in

theoretical physics, one studies the physics of one-dimensional extended

objects (strings). As they propagate, strings sweep out a 2-dimensional

‘worldsheet’ Σ in a spacetime manifold M . Physicists associate a so called

quantum field theory to Σ. Explaining what this is, is beyond the scope of

this thesis, but an excellent informal introduction for mathematicians to

this notion and to mirror symmetry is provided by [GP1]. An introduc-

tion that asks more knowledge of physics is [GO]. For physical reasons,

the quantum field theory associated to Σ should be conformally invariant

and supersymmetric. This leads to severe restrictions on the spacetime

M . It must typically be a compact complex Kähler manifold with trivial

canonical line bundle (the preferred complex dimension for string theory

is 3). Such a manifold is called Calabi-Yau.

Sometimes another spacetime M̃ gives rise to the same quantum field

theory (modulo a natural involution). In that case one shows that the

Hodge numbers of M and M̃ satisfy

hp,q(M) = hd−p,q(M̃), (∗)

where d is the dimension of M and M̃ . So the Hodge diamond of M

and M̃ are related by a reflection about a diagonal axis; for this reason

M and M̃ are called mirror manifolds. Relation (∗) is called the mirror

symmetry test. One believes that a mirror dual of M always exists, but

at this point one must allow singular Calabi-Yau’s (and probably also

other generalizations of Calabi-Yau manifolds, see for instance [BB2]).

For example, Greene and Plesser gave a mirror construction for Calabi-

Yau hypersurfaces M of Fermat type in a weighted projective space of

dimension 4. The mirror M̃ is then given by a quotient of M under the

action of a certain group G and is thus in general singular (see [GP1,

Section 3] and [GP2]). In this case, a crepant resolution N of M̃ exists

and is still Calabi-Yau; one has to apply the mirror symmetry test to

M and N . In general, such a crepant resolution might not exist and for

other resolutions of singularities N the mirror symmetry test for M and

N fails. This shows the need for a definition of stringy Hodge numbers

hp,q
st for M and M̃ such that

hp,q
st (M) = hd−p,q

st (M̃).
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An even more demanding task would be to define an underlying stringy

cohomology theory, equipped with a pure Hodge structure.

(0.4.2) A first attempt to define stringy Hodge numbers was undertaken

by Batyrev and Dais in [BD] for varieties with at most Gorenstein toroidal

or quotient singularities. Finally, in the paper [Ba2], Batyrev moves the

accent from stringy Hodge numbers towards the stringy E-function. It

allowed him to formulate a general mirror symmetry test for Calabi-Yau

varieties with arbitrary Gorenstein canonical singularities. He only de-

fines stringy Hodge numbers for varieties with a polynomial stringy E-

function. Borisov and Mavlyutov show that both definitions of stringy

Hodge numbers do not always coincide and they give reasons why the

definition via the stringy E-function should be considered as the best one

(see [BM, Section 2]). In the same paper they give several conjectural

constructions for the stringy cohomology for special classes of varieties.

Moreover, they show that these constructions coincide with the orbifold

cohomology of Chen and Ruan from [CR] under the relevant assumptions.

Related work by Borisov and Libgober can be found in [BL]. In this paper

they define an elliptic genus for log terminal complex projective varieties

and they show that it is connected with Batyrev’s stringy E-function. De

Fernex, Lupercio, Nevins and Uribe constructed in [dFLNU] a theory of

stringy Chern classes for log terminal varieties, also related to Batyrev’s

stringy invariants. Aluffi defined these stringy Chern classes indepen-

dently in [Al]. Finally, we remark that there are generalized versions

for most of these notions (including Batyrev’s) to pairs (X,D) with D a

Q-divisor on X and with a log terminality condition.
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Summary of results

This thesis consists of four chapters. In Chapter 1 we obtain a positive

answer to Batyrev’s conjecture, and even to Question (0.2.5), for a class

of mild isolated singularities. The singularities that are allowed depend

on the dimension of the variety. For this we use recent results by de

Cataldo and Migliorini in a crucial way. A nice corollary is the proof of

Batyrev’s conjecture for threefolds in full generality. We also give an ex-

plicit description of the stringy Hodge numbers in these cases, essentially

in terms of the cohomology of our singular variety Y . Moreover, we show

that stringy Hodge numbers satisfy the relation hp,q
st (Y ) ≤ hp+1,q+1

st (Y ),

for p, q ≤ d − 1 and p + q ≤ d − 2, where d is the dimension of Y . This

relation is well known for classical Hodge numbers of smooth projective

varieties.

In Chapter 2 we compute the contribution of a so called A-D-E singu-

larity to the stringy E-function in arbitrary dimension. This was already

done by Dais and Roczen in [DR] for 3-dimensional varieties, but their

computation of the D and E cases contains an error. We correct this er-

ror and simplify their formulae for the A case considerably; in fact all the

formulae that we have computed are rather simple. The used method is

explicitly computing a log resolution. The main theorem of Chapter 1 im-

plies then a positive answer to Question (0.2.5) for varieties with at most

A-D-E singularities. Moreover, the obtained formulae enable us to say in

which cases the stringy E-function becomes polynomial for such varieties.

In Chapter 3 we present another way to compute the stringy E-function

of canonical affine hypersurface singularities, non-degenerate with respect

to their Newton polyhedron. The stringy E-function can in that case be

seen as a ‘residue’ of the Hodge zeta function, a specialization of Denef and

Loeser’s motivic zeta function. For non-degenerate hypersurfaces there

exists an algorithm to compute the motivic zeta function from the New-

ton polyhedron, published by Artal, Cassou-Noguès, Luengo and Melle

and based on work by Denef and Hoornaert. This method can be used to

check the formulae for the A-D-E singularities from Chapter 2, and we

do this for one example.

In the final chapter, we show by example that the answer to Question
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(0.2.5) is ‘no’ in general. This is somewhat surprising and it gives some

evidence that Batyrev’s conjecture might not be true. The example con-

sists of a 6-dimensional variety with isolated terminal singularities. The

computation with the Newton polyhedron is a lot easier then the compu-

tation of an explicit log resolution in this case.

We end the thesis by some conclusory remarks. The most important is

the following. If Batyrev’s conjecture is true after all, its proof must use

the polynomial condition in a crucial way, but it is not clear how this

condition can be exploited.



Chapter 1

Nonnegativity of stringy

Hodge numbers for a class

of mild isolated singularities

and for threefolds

Abstract

We give a positive answer to Question (0.2.5) for projective varieties with certain

isolated singularities in arbitrary dimension (the allowed singularities depend on the

dimension) and for projective threefolds in full generality. Furthermore, we give explicit

descriptions of the stringy Hodge numbers in these cases and we prove inequalities for

them, analogous to well known inequalities for classical Hodge numbers of smooth

projective varieties. For all of this, we use recent results by de Cataldo and Migliorini.

About the sign of the coefficients of Veys’ generalized stringy E-function, nothing can

be expected. Indeed, in the end we show by example that they can have the ‘wrong’

sign.1

1.1 Preliminaries

(1.1.1) Let Y be a projective variety of dimension n with at most isolated

singularities. Let f : X → Y be a resolution of singularities with X pro-

jective, such that f : f−1(Yns) → Yns is an isomorphism, where Yns is the

1This chapter corresponds roughly to [SV]; the results are stated more generally

and are extended (also in joint work with W. Veys).

17
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nonsingular part of Y , and such that f−1(y) is a divisor for every singular

point y ∈ Y . Denote by D the total inverse image of the singular points.

We will use the following result of de Cataldo and Migliorini in a crucial

way. The proof of this theorem for n = 3 and for one singular point is

given in [dCM2, Theorem 2.3.4]. From this proof it is clear that the same

argument works for any dimension and any number of singular points.

For completeness and because we need the same construction later, we

include it anyway. By H•( · ) we always mean singular cohomology with

coefficients in C.

Theorem. The map H i(X) → H i(D), induced by inclusion, is surjective

for i ≥ n.

Proof. We embed Y in a projective space Pr and we take a generic hyper-

plane section Ys (so this hyperplane section is smooth and does not con-

tain any singular point of Y ). Consider the inverse image Xs := f−1(Ys)

and denote Y \Ys by Y0 and X\Xs by X0. Because Y0 is affine, H i(Y0) = 0

for i > n (this was probably first proved by Kaup in [Ka]). The sheaves

Rkf∗CX0 are skyscraper sheaves above the singular points for k > 0, so

they are flasque and Hj(Y0, R
kf∗CX0) = 0 for k, j > 0. The Leray spec-

tral sequence for f : X0 → Y0 (given by Ep,q
2 = Hp(Y0, R

qf∗CX0) and

abutting to H•(X0,C)) gives then an isomorphism H i(X0) ∼= H i(D) for

i > n, because E0,i
2 = E0,i

∞ = H i(D) and because Ep,q
2 = Ep,q

∞ = 0 for

p > 0 and p + q = i. There is also a surjection Hn(X0) → Hn(D) be-

cause E0,n
2 = E0,n

∞ = Hn(D). Proposition (8.2.6) from [De2] states that

the image of H i(X) in H i(D) is equal to the image of H i(X0) in H i(D),

whence the result follows. �

The following corollary is immediate from the theorem; it is stated in

[dCM1, Corollary 2.1.11] as a corollary of far more deep results and it

was already proved by Steenbrink in [St2, Corollary (1.12)] for the case

where D is a divisor with smooth components and normal crossings.

Corollary. The a priori mixed Hodge structure on H i(D) is pure for

i ≥ n.

(1.1.2) For threefolds and fourfolds, de Cataldo and Migliorini also make

the following construction in [dCM2], that can again be generalized im-
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mediately to any dimension (it also follows from the results of [dCM1],

see example 2.4 in that paper). Their starting point is the long exact

sequence for cohomology with compact support (notation as in the proof

of Theorem (1.1.1), assume n ≥ 3)

H0
c (X0) → H0(X) → H0(Xs) → H1

c (X0) → · · · → Hn−1(X)

→ Hn−1(Xs) → Hn
c (X0) → Hn(X) → Hn(Xs) → · · · .

Thanks to Poincaré duality, the vector spaces H i
c(X0) can be replaced

by H2n−i(X0), which are by the proof above isomorphic to H2n−i(D)

for i < n. Moreover, the dualized version of the theorem states that

H2n−i(D) maps injectively to H2n−i(X), and the latter is isomorphic to

H i(X). These maps are all compatible, so the above long exact sequence

splits in short exact sequences (note also that H0
c (X0) ∼= H2n(D) = 0 and

H1
c (X0) ∼= H2n−1(D) = 0)

0 → H0(X) → H0(Xs) → 0,

0 → H1(X) → H1(Xs) → 0,

0 → H2n−2(D) → H2(X) → H2(Xs) → 0,

...

0 → Hn+2(D) → Hn−2(X) → Hn−2(Xs) → 0,

0 → Hn+1(D) → Hn−1(X) → Hn−1(Xs) → Hn
c (X0) → · · · .

Let us denote ker(H i(X) → H i(D)) by Ki. We deduce the following iso-

morphisms from the first sequence (the middle one is the dual statement

of the first sequence, the other ones are Poincaré duality)

H2n−2(Xs) ∼= H0(Xs) ∼= H0(X) ∼= H2n(X).

Analogously, we get

H2n−3(Xs) ∼= H2n−1(X), H2n−4(Xs) ∼= K2n−2, . . . , Hn(Xs) ∼= Kn+2,

and a surjection

Hn−1(Xs) → Kn+1.

The point is that the Hard Lefschetz Theorem holds on H•(Xs), and thus

there are isomorphisms H i(Xs) → H2n−2−i(Xs) for i ≤ n− 1. This gives
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rise to the following list of isomorphisms, essentially given by the cup

product with the fundamental class ηs ∈ H2(X) of Xs:

(∪ηs)
n : H0(X) → H2n(X),

(∪ηs)
n−1 : H1(X) → H2n−1(X),

(∪ηs)
n−2 :

H2(X)

H2n−2(D)
→ K2n−2,

...

(∪ηs)
2 :

Hn−2(X)

Hn+2(D)
→ Kn+2.

The map

∪ηs :
Hn−1(X)

Hn+1(D)
→ Kn+1

decomposes via Hn−1(Xs) as a composition of a surjection and an injec-

tion. De Cataldo and Migliorini show that the Hodge-Riemann bilinear

relations on Hn−1(Xs) ensure that ∪ηs is an isomorphism as well. Their

results can be summarized in the following theorem (see also the begin-

ning of Section 2.4 of [dCM2]).

Theorem. The spaces

H0(X), H1(X),
H2(X)

H2n−2(D)
, . . . ,

Hn−1(X)

Hn+1(D)
, Hn(X),

Kn+1, . . . ,K2n−2, H2n−1(X), H2n(X)

satisfy the Hard Lefschetz Theorem with respect to ∪ηs.

Remark. The choice of the space Hn(X) in this sequence is somewhat

arbitrary, Hn(X) is certainly ‘big enough’. It can in fact be replaced by

Kn = ker(Hn(X) → Hn(D)). To prove this, it suffices to show that

Hn−2(X)

∪ηs

−→ Hn(X) → Hn(D)

forms a complex. If we dualize, this means that

Hn(D) → Hn(X) → Hn−2(X)
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should be a complex as well, where Hn(X) → Hn−2(X) corresponds to

intersecting with Xs. And this is clear.

From the theorem and this remark we deduce the following corollary.

Corollary. For 0 ≤ i ≤ n − 2, the maps ∪ηs : Kn+i → Kn+i+2 are

surjective.

(1.1.3) We also need the construction of the mixed Hodge structure on

the cohomology of an algebraic set D with smooth projective irreducible

components and normal crossings. This can be found in [GS, Section 4]

and [KK, p.149-156]. The construction is as follows. Denote the irre-

ducible components of D by Di, i ∈ I = {1, . . . , α} and put for j ≥ 0

D(j) :=
∐

J⊂I
|J |=j+1

DJ ,

where DJ = ∩i∈JDi. So all D(k) are smooth and projective, and we

write Ai(D(k)) for the C∞-differential i-forms with values in C on D(k).

The inclusion map D(k) ↪→ D(k−1) defined by mapping Di1 ∩ . . . ∩Dik+1

into Di1 ∩ · · · ∩ Dil−1
∩ Dil+1

∩ . . . ∩ Dik+1
is denoted by δ

(k)
l . There

exists a spectral sequence {Er, dr}, abutting to H•(D) and degenerating

at the E2 level, with Ep,q
0 = Aq(D(p)) and d0 : Ep,q

0 → Ep,q+1
0 given by

differentiation of forms. Then Ep,q
1 is Hq(D(p)); and d1 : Ep,q

1 → Ep+1,q
1

is defined by
∑p+2

l=1 (−1)l(δ
(p+1)
l )∗. There is a pure Hodge structure of

weight q on Ep,q
1 , and d1 is a morphism of Hodge structures, so Ep,q

2

inherits a pure Hodge structure and this provides H•(D) with a mixed

Hodge structure.

1.2 Main results and corollaries

(1.2.1) Definition. Let Y be a d-dimensional normal variety with d ≥ 2.

We say that Y satisfies condition (∗) if

• Y has at most isolated Gorenstein singularities,

• for a log resolution f : X → Y with irreducible exceptional com-

ponents Di, i = 1, . . . , α, the discrepancy coefficients ai of Di are

strictly greater than b d−4
2 c for all i.
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Thus this definition includes the canonical surface singularities, isolated

Gorenstein canonical threefold singularities and isolated Gorenstein ter-

minal fourfold and fivefold singularities. Note that the second condition

does not depend on the chosen log resolution. This can be seen as follows

(this is in fact a copy of the proof that the notions ‘terminal’, ‘canonical’,

etc. do not depend on the chosen resolution). Suppose that we are given

two log resolutions f : X → Y and f ′ : X ′ → Y of Y , such that the

discrepancy coefficients of the irreducible components of the exceptional

locus of f are > bd−4
2 c. Then we have a birational map X 99K X ′, and we

can resolve its indeterminacies by subsequent blow-ups in centers lying

inside the exceptional locus of f until we get a smooth variety Z with

morphisms g : Z → X and g′ : Z → X ′ such that f ◦ g = f ′ ◦ g′. By

performing even more blow-ups, we may assume that f ◦ g is still a log

resolution of Y . The discrepancy coefficients of the exceptional compo-

nents of g for the map f ◦ g must certainly be > b d−4
2 c, by [GH, p.605].

So whatever components are contracted by g′, all discrepancy coefficients

of f ′ remain > bd−4
2 c.

(1.2.2) Theorem. Assume that Y is projective and satisfies condition

(∗). Then the answer to Question (0.2.5) is ‘yes’ for Y .

Proof. For d = 2 there is nothing to prove in view of Example (0.2.5).

Let us first handle the case where d ≥ 4. Take a log resolution f :

X → Y ; we use the same notations for the irreducible components of the

exceptional locus and their discrepancies as in the definition above. Put

I := {1, . . . , α}. Denote the total exceptional locus by D. Consider the

alternative formula (0.2.3) (5) for the stringy E-function:

Est(Y ) =
∑

J⊂I

H(DJ ;u, v)
∏

i∈J

uv − (uv)ai+1

(uv)ai+1 − 1
,

and write this as a power series
∑

i,j≥0 bi,ju
ivj . It suffices to prove that

(−1)i+jbi,j ≥ 0 for i ≥ j and i + j ≤ d. We denote the Hodge-Deligne

polynomial of X by
∑

i,j ai,ju
ivj and for J ⊂ I, J 6= ∅ we denote the

Hodge-Deligne polynomial of DJ by
∑

i,j a
J
i,ju

ivj . The power series de-

velopment of uv−(uv)ai+1

(uv)ai+1−1
for ai > 0 is equal to

(uv − (uv)ai+1)(−1 − (uv)ai+1 − (uv)2ai+2 − (uv)3ai+3 − · · · )

= −uv + (uv)ai+1 − (uv)ai+2 + (uv)2ai+2 − (uv)2ai+3 + · · · .
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Since we assume condition (∗), we can write bi,j for i + j ≤ d and i ≥ j

as

bi,j = ai,j +

j∑

k=1

(−1)k
∑

J⊂I
|J |=k

aJ
i−k,j−k +R,

where

R =





∑
l=1,...,α

al=d/2−1

a
{l}
0,0 if d even, i = j = d/2,

∑
l=1,...,α

al=(d−3)/2

a
{l}
1,0 if d odd, i = (d+ 1)/2, j = (d− 1)/2,

0 otherwise.

In any case, R has got the right sign, so it suffices to study the rest of

the formula for bi,j . We rewrite it as follows, using the symmetry of usual

Hodge numbers:

ad−i,d−j +

j∑

k=1

(−1)k
∑

J⊂I
|J |=k

aJ
d−i,d−j .

Set q = 2d− i− j and look at the {Ep,q
1 , d1}-term of the spectral sequence

from (1.1.3), for all p. This gives a complex:

Hq(D(0)) → Hq(D(1)) → · · · → Hq(D(i−1)) → 0.

Here Hq(D(i)) = 0 since D(i) has dimension d − i − 1. The cohomology

of this complex is given by E0,q
2 to Ei−1,q

2 , but because of the purity of

Hr(D) for r > q (Corollary (1.1.1)), E1,q
2 up to Ei−1,q

2 must be zero ! This

means that the complex is exact. The purity of Hq(D) itself implies that

Hq(D) = ker(Hq(D(0)) → Hq(D(1))). So we get an exact sequence where

all arrows are morphisms of pure Hodge structures:

0 → Hq(D) → Hq(D(0)) → · · · → Hq(D(i−1)) → 0.

We apply the exact functor Hd−i,d−j and note that Hd−i,d−j(Hq(D(s))) =

0 for s = j, . . . , i − 1 since D(s) has dimension d − s − 1. Counting the

dimensions of the resulting exact sequence of vector spaces gives

dimHd−i,d−j(Hq(D)) =

j∑

k=1

(−1)k+1
∑

J⊂I
|J |=k

(−1)2d−i−jaJ
d−i,d−j .
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The surjectivity of the morphism of Hodge structures Hq(X) → Hq(D)

from Theorem (1.1.1) translates by applying Hd−i,d−j to

(−1)2d−i−jad−i,d−j ≥

j∑

k=1

(−1)k+1
∑

J⊂I
|J |=k

(−1)2d−i−jaJ
d−i,d−j ,

and thus (−1)2d−i−jbi,j = (−1)i+jbi,j ≥ 0.

For d = 3 it can happen that some ai are zero. We can express the bi,j
as follows:





b0,0 = a0,0 = 1 ≥ 0,

b1,0 = a1,0 ≤ 0,

b2,0 = a2,0 ≥ 0,

b3,0 = a3,0 ≤ 0,

b1,1 = a1,1 −
∑

k=1,...,α
ak 6=0

a
{k}
0,0 = a2,2 −

∑
k=1,...,α

ak 6=0
a
{k}
2,2 ,

b2,1 = a2,1 −
∑

k=1,...,α
ak 6=0

a
{k}
1,0 = a2,1 −

∑
k=1,...,α

ak 6=0
a
{k}
2,1 .

An analogous reasoning as above gives here that H4(D) = ⊕α
k=1H

4(Dk)

and H3(D) = ⊕α
k=1H

3(Dk). Using the surjectivity of H i(X) → H i(D)

for i = 3, 4 and applying the functors H2,2, respectively H2,1, immedi-

ately gives that b1,1 ≥ 0 and b2,1 ≤ 0. �

(1.2.3) Corollary. The answer to Question (0.2.5) is ‘yes’ for all three-

folds Z with Gorenstein canonical singularities.

Proof. The main theorem of [Re2] states that there exists a projective va-

riety Y with terminal singularities and a projective birational morphism

g : Y → Z that is crepant. It follows then from [Ba2, Theorem 3.12] that

Est(Y ) = Est(Z). Since terminal singularities in dimension 3 are isolated

(see for example [Ma, Corollary 4-6-6]), the corollary follows immediately

from Theorem (1.2.2). �

(1.2.4) It is not true in general that (−1)i+jbi,j ≥ 0 for 0 ≤ i, j ≤ d, as is

shown by the following example (same notation as in the theorem above).

Consider the variety Z ′ = {x3
1x5 + x4

2 + x2
3x

2
5 + x2

4x
2
5 = 0} ⊂ P4. The sin-

gular locus of Z ′ consists of the line {x1 = x2 = x5 = 0} and an E6 singu-

larity at the point P = {(0, 0, 0, 0, 1)}. We can resolve the singular line by
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four blow-ups (first in the singular line itself, then in a surface isomorphic

to P2 and afterwards consecutively in two curves isomorphic to P1). We

are then left with a variety Z which has a unique E6 singularity at P . The

stringy E-function of Z can be written as H(Z \{P};u, v)+ (contribution

of the singular point). For the second term we refer to Theorem (2.4.1)

from Chapter 2, it is equal to 1 + (uv)2(2(uv)6−2(uv)5+(uv)4−(uv)2+2uv−2)
(uv)7−1

.

The first term can be computed to be (uv)3 + 7(uv)2 + 7uv. As a power

series, Est(Z) = 1 + 7uv + 9(uv)2 − (uv)3 + (uv)4 − (uv)6 + · · · and thus

b3,3 < 0.

(1.2.5) Remark. In Theorem (1.2.2) we proved in fact that the numbers

(−1)i+jbi,j for i+ j ≤ d and d ≥ 4 are given by (with the same notations

as in the theorem)

(−1)i+jbi,j = dim ker(Hd−i,d−j(H2d−i−j(X)) → Hd−i,d−j(H2d−i−j(D))) + S,

where

S =





∑
l=1,...,α

al=d/2−1

dimHd−1,d−1(H2d−2(Dl)) if d even, i = j = d/2,

∑
l=1,...,α

al=(d−3)/2

dimHd−2,d−1(H2d−3(Dl)) if d odd, i = (d+ 1)/2,

j = (d− 1)/2,

0 otherwise.

In the following proposition we give a more intrinsic explicit description

for these numbers. The 2-dimensional case is trivial (you just find the

Hodge numbers of the crepant resolution), the 3-dimensional case is han-

dled in (1.2.6).

Proposition. Assume that Y is projective and satisfies condition (∗),

with d = dimY ≥ 4. Take a log resolution f : X → Y with Dl, l =

1, . . . , α, the irreducible components of the exceptional locus and with

al the discrepancy of Dl. Write Est(Y ) as a power series
∑

i,j≥0 bi,ju
ivj .

Then for i+ j ≤ d we have

(−1)i+jbi,j = dimHd−i,d−j(H2d−i−j(Y )) + S,

where S is as in the remark.
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Proof. The term S is in fact equal to the term R from the proof of

Theorem (1.2.2). By the remark above, it is thus sufficient to prove that

dim ker(Hd−i,d−j(H2d−i−j(X)) → Hd−i,d−j(H2d−i−j(D)))

= dimHd−i,d−j(H2d−i−j(Y ))

for i ≥ j and i + j ≤ d. Let y1, . . . , ys be the (isolated) singular points

of Y and take disjoint contractible neighbourhoods Uj for the complex

topology around the points yj . From the Leray spectral sequence for

f : Vj = f−1(Uj) → Uj it follows that Hm(Vj) = Hm(f−1(yj)) for all m.

Now we consider the long exact sequences for (X,∪jVj) and (Y,∪jUj).

We get the following diagram with exact rows (we use that Hm(∪jVj) =

Hm(D) and Hm(∪jUj) = 0 for m > 0, where D is the total exceptional

locus):

→ Hd−1(D)→ Hd(X,∪jVj) → Hd(X) → · · · → H2d(X) → 0

→ 0 → Hd(Y,∪jUj) → Hd(Y ) → · · · → H2d(Y ) → 0.

↑ ↑ ↑ ↑ ↑

By excision we have

Hm(Y,∪jUj) ∼= Hm(Y \ {y1, . . . , ys},∪jUj \ {y1, . . . , ys})

∼= Hm(X \D,∪jVj \D)

∼= Hm(X,∪jVj)

for all m and then the Mayer-Vietoris construction (see [Ro, Lemma 6.6])

gives us a long exact sequence (note that H2d−1(D) = H2d(D) = 0)

→ Hd−1(D) → Hd(Y ) → Hd(X) → Hd(D) → Hd+1(Y ) → · · ·

· · · → H2d−1(X) → 0 → H2d(Y ) → H2d(X) → 0.

This sequence is also used in the work of Caibăr, see for instance [Ca,

Section 3]. Thanks to Theorem (1.1.1) this sequence splits as follows:

→ Hd−1(D) → Hd(Y ) → Hd(X) → Hd(D) → 0, (d)

0 → Hd+1(Y ) → Hd+1(X) → Hd+1(D) → 0, (d+ 1)

...
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0 → H2d−2(Y ) → H2d−2(X) → H2d−2(D) → 0, (2d− 2)

0 → H2d−1(Y ) → H2d−1(X) → 0, (2d− 1)

0 → H2d(Y ) → H2d(X) → 0. (2d)

Now we apply the exact functor Hd−i,d−j to sequence (2d − i − j) and

we use the remark above to deduce the result. We must note that for

i + j = d, Hd−i,d−j(Hd−1(D)) = 0. This is [KK, Corollary 2 p.154], it

also follows immediately from the discussion in (1.1.3). �

Remark. We see from the short exact sequences (d + 1) to (2d) that

Hk(Y ) carries a pure Hodge structure for k > d. From the above proof

it is clear that this works for any projective Y with at most isolated sin-

gularities. Steenbrink proved this even for complete varieties with only

isolated singularities [St2, Theorem (1.13)].

(1.2.6) Proposition. Let Z be a projective threefold with Gorenstein

canonical singularities. Write the stringy E-function of Z as a power

series
∑

i,j≥0 bi,ju
ivj . Take a partial crepant resolution g : Y → Z as in

the proof of Corollary (1.2.3). Then for i+ j ≤ 3 we have

(−1)i+jbi,j = dimH3−i,3−j(H6−i−j(Y )).

Proof. Recall from (1.2.3) that Y has terminal singularities (which are

automatically isolated) and that Est(Z) = Est(Y ). For Y the analogue

of Remark (1.2.5) (with S = 0) is valid as well and thus we can proceed

exactly as in the proof of the previous proposition. �

(1.2.7) In view of the previous results it is tempting to define the numbers

(−1)i+jbi,j for d-dimensional varieties as in (1.2.5) or (1.2.6) and for i+j ≤

d as generalized stringy Hodge numbers hi,j
st , making it unnecessary to

assume that the stringy E-function is a polynomial. One could just put

hd−i,d−j
st := hi,j

st . Since the power series of uv−(uv)ai+1

(uv)ai+1−1
contains only powers

of uv, we have that the sum in the power series
∑

i,j≥0 bi,ju
ivj of the

stringy E-function only runs over those (i, j) with |i − j| ≤ d. With the

above definition we can write the stringy E-function as

d∑

i,j=0

hi,j
st u

ivj +
∞∑

k=1

∑

i,j≥k
i+j=d+k

ci,ju
ivj ,



28 Chapter 1. Nonnegativity of stringy Hodge numbers

so this means that we take ‘the largest possible symmetrical polynomial

piece’ apart. Note that as a rational function, f(u, v) :=
∑ ∑

ci,ju
ivj

also satisfies the symmetry relation f(u, v) = (uv)df(u−1, v−1).

(1.2.8) In order to make the analogy between classical Hodge numbers

and (generalized) stringy Hodge numbers even bigger, we remark the fol-

lowing. From the Lefschetz decomposition and its compatibility with the

Hodge decomposition it follows that classical Hodge numbers of a smooth

d-dimensional projective variety satisfy hp,q ≤ hp+1,q+1 for 0 ≤ p, q ≤ d−1

and p+q ≤ d−2. The well known fact that hp,p ≥ 1 for 0 ≤ p ≤ d can also

be seen as a corollary of these relations, since it is trivial that h0,0 = 1.

We also show these properties for the numbers (−1)i+jbi,j . Again the

2-dimensional case is trivial.

Proposition. Let Y be a projective threefold with Gorenstein canon-

ical singularities or let Y be projective of dimension d ≥ 4 and satisfy

condition (∗). Write Est(Y ) as a power series
∑

i,j≥0 bi,ju
ivj . Then for

0 ≤ i, j ≤ d−1 and i+j ≤ d−2, we have (−1)i+jbi,j ≤ (−1)i+j+2bi+1,j+1.

In particular, for i ≤ d/2, one has bi,i ≥ 1.

Proof. We give the proof for a d-dimensional variety Y satisfying condi-

tion (∗). The case of a threefold with Gorenstein canonical singularities

can be handled analogously via a partial crepant resolution. From Re-

mark (1.2.5) we get the description

(−1)i+jbi,j = dim ker(Hd−i,d−j(H2d−i−j(X)) → Hd−i,d−j(H2d−i−j(D))) + S,

where the term S only appears for i+ j = d. The corollary from (1.1.2)

states that there are surjections

∪ηs : ker(H2d−i−j−2(X) → H2d−i−j−2(D)) → ker(H2d−i−j(X) → H2d−i−j(D))

and these maps are morphisms of Hodge structures of type (1, 1). This

proves the first statement of the proposition, the second follows since

b0,0 = 1. �

1.3 Veys’ generalizations

(1.3.1) In this section we want to find out if Batyrev’s conjecture holds

for Veys’ generalized stringy E-functions from [Ve2] and [Ve3] (see also
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Section (0.3)). From [Ve2, Example 6.8] it follows already that the con-

jecture is probably not true. In this example, Veys computes the contri-

bution of a triangle singularity to the generalized stringy E-function. A

triangle singularity is a surface singularity with dual graph of the minimal

resolution equal to

u u u

u

E1
E

E3

E2

where all the curves are isomorphic to P1 and where the discrepancy

coefficients are −2 for E and −1 for E1, E2, E3. The contribution of this

singularity to the generalized stringy E-function is then

−(uv)2 − (n1 + n2 + n3 − 2)uv,

where ni is −E2
i . If we take a projective surface with one such singular

point, we already find that the constant term of the generalized stringy

E-function must be zero (see also [Ve2, Proposition 4.5]).

(1.3.2) In order to find a counterexample to Batyrev’s conjecture for the

generalized stringy E-function, we try to find a surface with two triangle

singularities (or singularities with a comparable contribution). This will

make the constant term of the generalized stringy E-function equal to −1.

The easiest example that we found is the following. Our starting point is

the variety X = {x3t5 + y8 + z2t6 = 0} ⊂ P3. This variety has a so called

E14 singularity in the origin of the affine chart with coördinates (x, y, z),

and this is a triangle singularity (in [Di, p.63] one can find a list of the

hypersurface triangle singularities). But the line {y = t = 0} is singular

on X. By blowing up with this line as centre, and afterwards performing

two more blow-ups in singular curves, we end up with a variety X̃ with

one other singular point besides the E14 singularity. This other singularity

is in the origin of the chart {x3 + y3t + yt3 = 0} ⊂ A3. If we blow it up

once, we obtain four singular points of type A2. We have to blow up each

of these points once more to get the following dual resolution graph:
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u

u

u

u

u

u u u u
E2 E1 G1 G2

F2

F1

H1

H2

D

Here all curves are rational, and the discrepancies are −3 for D, −2

for E1, F1, G1, H1 and −1 for the others. The Ei, Fi, Gi, Hi have self-

intersection number −2, since they come from an A2 singularity. The

contribution of this singular point to the generalized stringy E-function

is then

(uv − 3)(uv − 1)

(uv)−2 − 1
+

4(uv − 1)2

(uv)−1 − 1
+

4(uv − 1)2

((uv)−2 − 1)((uv)−1 − 1)
+

8(uv − 1)

(uv)−1 − 1

and this can be simplified to −(uv)2 − 4uv. Thus X̃ is a counterexample

to Batyrev’s conjecture for Veys’ generalized stringy E-function.

We can also compute the total generalized stringy E-function of X̃. For

the nonsingular part of the affine piece {x3 + y8 + z2 = 0} ⊂ A3, we can

use Proposition 2.8 from [Da] (see also Section 4.1). This gives (uv)2 − 1

as result. And the nonsingular part of X̃ that lies above the singular line

of X contributes 3uv. So the total generalized stringy E-function is

−(uv)2 − (n1 + n2 + n3 − 1)uv − 1,

where the ni are minus the self-intersection numbers of the exceptional

components of the triangle singularity.



Chapter 2

Stringy E-functions of

varieties with A-D-E

singularities

Abstract

In this chapter we compute explicit and fairly simple formulae for the contribution of an

A-D-E singularity to the stringy E-function in arbitrary dimension. For 3-dimensional

A-D-E singularities this was already done by Dais and Roczen, but their formulae

for the D and E cases contain inaccuracies. We correct these errors and simplify

their formulae for the A-case considerably. With the aid of these results we can say

when the stringy E-function of a variety with A-D-E singularities is a polynomial and

we can give a positive answer to Question (0.2.5) for projective varieties with such

singularities.1

2.1 A-D-E singularities and their desingulariza-

tion

(2.1.1) First we recall the defining equations of the A-D-E singularities.

Definition. By a d-dimensional (d ≥ 2) A-D-E singularity we mean a

singularity that is analytically isomorphic to the germ at the origin of one

of the following hypersurfaces in Ad+1
C (with coordinates (x1, . . . , xd+1)):

1This chapter corresponds to [Sch].

31
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Type An: xn+1
1 + x2

2 + x2
3 + · · · + x2

d+1 = 0 for n ≥ 1,

Type Dn: xn−1
1 + x1x

2
2 + x2

3 + · · · + x2
d+1 = 0 for n ≥ 4,

Type E6: x3
1 + x4

2 + x2
3 + · · · + x2

d+1 = 0,

Type E7: x3
1 + x1x

3
2 + x2

3 + · · · + x2
d+1 = 0,

Type E8: x3
1 + x5

2 + x2
3 + · · · + x2

d+1 = 0.

Some of their properties are listed in [DR, Remark 1.10].

(2.1.2) We will now construct a log resolution for these singularities by

performing successive blow-ups, but we will only do this for d ≥ 4. The

case d = 2 is well known and the construction in the 3-dimensional case

can be found in detail in [DR, Section 2]; in fact, our procedure is quite

analogous. The main differences are:

(1) For d ≥ 4, every blow-up adds just one component to the excep-

tional locus, whereas you can get two planes intersecting in a line as

new exceptional divisors after a single blow-up in the 3-dimensional

case (e.g. after the first blow-up in cases D and E).

(2) In the higher dimensional case, the analogue of this line will be

a singular line on the exceptional divisor, thus in order to get an

exceptional locus with smooth irreducible components one has to

blow up in such lines, which is not necessary for d = 3.

An example will make this clear: blow up in the singular point of the

defining hypersurface in the E6 case. For a suitable choice of coordinates

one finds {z2
3 + z2

4 = 0} ⊂ P3
C as equation of the exceptional locus for

d = 3, and for d ≥ 4 one finds {z2
3 + z2

4 + · · · + z2
d+1 = 0} ⊂ Pd

C (this is

irreducible, but the line {z3 = · · · = zd+1 = 0} is singular).

In what follows we use the same name for a divisor D at the moment of its

creation as at all later stages (instead of speaking of the strict transform

of D). We work out the details for the case of a Dn singularity with even

n and we discuss the results briefly in the other cases. We write m for

the number of variables (m ≥ 5) and use coordinates (x1, . . . , xm) on Am.
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(2.1.3) Case A

Consider the hypersurface X = {xn+1
1 + x2

2 + · · · + x2
m = 0} ⊂ Am for

m ≥ 5.

(1) n odd, n = 2k − 1, with k ≥ 1.

Blowing up an An singularity yields an An−2 singularity (that lies on the

exceptional locus) and nothing else happens. Thus after k point blow-ups

we already have a log resolution. The intersection diagram looks like

u u u u u

D1 D2 D3 Dk−1 Dk
. . .

where Di is created after the i-th blow-up. At the moment of its cre-

ation, Di (for i ∈ {1, . . . , k − 1}) is isomorphic to the singular quadric

{x2
2 + · · · + x2

m = 0} in Pm−1, and its singular point is the center of

the next blow-up. The last divisor Dk is isomorphic to the nonsingular

quadric in Pm−1. In the end the intersection of two exceptional divisors

is isomorphic to a nonsingular quadric in Pm−2.

(2) n even, n = 2k, with k ≥ 1.

This case is almost the same as the previous one. After k point blow-ups

the strict transform of X is nonsingular, but the last created divisor Dk

still has a singular point, so we have to perform an extra blow-up (with

exceptional divisor Dk+1 isomorphic to Pm−2). As intersection diagram

we find

u u u u u u

D1 D2 D3 Dk−1 Dk Dk+1
. . .

with all Di (i ∈ {1, . . . , k}) isomorphic to the singular quadric {x2
2 + · · ·+

x2
m = 0} in Pm−1 at the moment of their creation. Again, all intersections

are isomorphic to the nonsingular quadric in Pm−2.
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(2.1.4) Case D

Now we study X = {xn−1
1 +x1x

2
2+x2

3+· · ·+x2
m = 0} ⊂ Am for m ≥ 5 and

n ≥ 4. Note that you also find singularities for n = 2 and n = 3, but they

are analytically isomorphic to two A1 and one A3 singularity, respectively.

(1) n even, n = 2k, with k ≥ 2.

Step 1: We blow up X in the origin. Take (x1, . . . , xm) × (z1, . . . , zm)

as coordinates on Am × Pm−1 and consider the reducible variety X ′ in

Am × Pm−1 given by the equations

{
x2k−1

1 + x1x
2
2 + x2

3 + · · · + x2
m = 0

xizj = xjzi ∀ i, j ∈ {1, . . . ,m}.

In the open set z1 6= 0, X ′ is isomorphic to {x2
1(x2k−3

1 + x1x
2
2 + x2

3 +

· · · + x2
m) = 0} ⊂ Am by replacing xj by x1

zj

z1
and renaming the affine

coordinate
zj

z1
as xj for j = 2, . . . ,m. The equation x1 = 0 describes the

exceptional locus, while the other equation gives us the strict transform of

X, in which we are interested. Their intersection is the first exceptional

divisor, we call it D1. We can do the same thing for any open set zi 6= 0

and thus we can describe X ′ by the following set of equations:





x2
1(x2k−3

1 + x1x
2
2 + x2

3 + · · · + x2
m) = 0 (1)

x2
2(x2k−1

1 x2k−3
2 + x1x2 + x2

3 + · · · + x2
m) = 0 (2)

x2
3(x2k−1

1 x2k−3
3 + x1x

2
2x3 + 1 + x2

4 + · · · + x2
m) = 0 (3)

...
...

x2
m(x2k−1

1 x2k−3
m + x1x

2
2xm + x2

3 + · · · + x2
m−1 + 1) = 0. (m)

One sees from this that globally D1
∼= {x2

3 + · · · + x2
m = 0} ⊂ Pm−1,

which has a singular line {x3 = · · · = xm = 0} (located in charts (1)

and (2)). Notice that for k ≥ 3, we have a Dn−2 singularity in chart (1)

and a singularity that is analytically isomorphic to an A1 in the origin

of chart (2). In the other charts both D1 and the strict transform of X

are nonsingular, so we have no problems there. We will assume now that

k ≥ 4 and we will see later what happens if k = 2, 3.

Step 2: Let us first get rid of the A1 singularity. Thus we blow up in

the origin of chart (2). Since this blow-up is an isomorphism outside this
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point, we preserve the other coordinate charts and we replace chart (2)

by the following charts:





x4
1x

2
2(x4k−6

1 x2k−3
2 + x2 + x2

3 + · · · + x2
m) = 0 (2.1)

x4
2(x2k−1

1 x4k−6
2 + x1 + x2

3 + · · · + x2
m) = 0 (2.2)

x2
2x

4
3(x2k−1

1 x2k−3
2 x4k−6

3 + x1x2 + 1 + x2
4 + · · · + x2

m) = 0 (2.3)
...

...

x2
2x

4
m(x2k−1

1 x2k−3
2 x4k−6

m + x1x2 + x2
3 + · · · + x2

m−1 + 1) = 0. (2.m)

Now we see that the strict transform X̃ of X is nonsingular in this part,

but we still have the singular line on D1 (in charts (1) and (2.1) now). Our

new exceptional divisor, we call it E1, is globally a nonsingular quadric

in Pm−1.

We check immediately that D1 and E1 intersect transversally outside

the singular line of D1: take a point P = (0, 0, α3, . . . , αm) on their

intersection in chart (2.1) for example (thus α2
3 + · · · + α2

m = 0). We

assume that P does not lie on the singular line on D1 (so at least one of

the αi is nonzero), since we will blow it up later. The local ring O
P,

�
X

is

isomorphic to
(C[x1,...,xm]

I

)
mP

with I = (x4k−6
1 x2k−3

2 + x2 + x2
3 + · · ·+ x2

m)

and mP = (x1,x2,x3−α3,...,xm−αm)
I . As a C-vector space, mP

m2
P

has dimension

m−1 and is isomorphic to (x1,x2,x3−α3,...,xm−αm)
(x2

1,x1x2,x2
2,x2

3−2α3x3+α2
3,...)+I

. It is generated by

the set {x1, x2, x3 − α3, . . . , xm − αm} and the last m− 1 generators are

linearly dependent, since

x2 + 2α3(x3 − α3) + · · · + 2αm(xm − αm)

= x2 + 2α3x3 + · · · + 2αmxm

= x4k−6
1 x2k−3

2 + x2 + x2
3 + · · · + x2

m − (x4k−7
1 x2k−4

2 )x1x2

−(x2
3 − 2α3x3 + α2

3) − · · · − (x2
m − 2αmxm + α2

m)

= 0,

and thus x1 and x2 must be linearly independent. Hence D1 and E1 have

normal crossings at (0, 0, α3, . . . , αm). Later on, we will not check the

normal crossings condition any more, it will be satisfied for all divisors in

the end.
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Step 3: We tackle the Dn−2 singularity in chart (1) now. We blow up in

its origin:





x4
1(x2k−5

1 + x1x
2
2 + x2

3 + · · · + x2
m) = 0 (1.1)

x2
1x

4
2(x2k−3

1 x2k−5
2 + x1x2 + x2

3 + · · · + x2
m) = 0 (1.2)

x2
1x

4
3(x2k−3

1 x2k−5
3 + x1x

2
2x3 + 1 + x2

4 + · · · + x2
m) = 0 (1.3)

...
...

x2
1x

4
m(x2k−3

1 x2k−5
m + x1x

2
2xm + x2

3 + · · · + x2
m−1 + 1) = 0. (1.m)

It is no surprise that we find a Dn−4 singularity in the origin of chart

(1.1) and an A1 in the origin of chart (1.2). The newly created divisor,

called D2, intersects D1 and has a singular line in charts (1.1) and (1.2);

the singular line of D1 from chart (1) is transferred to chart (1.2).

Step 4: We blow up in the origin of chart (1.2). The singularity is resolved

and the new divisor E2 intersects both D1 and D2:





x8
1x

4
2(x4k−10

1 x2k−5
2 + x2 + x2

3 + · · · + x2
m) = 0 (1.2.1)

x2
1x

8
2(x2k−3

1 x4k−10
2 + x1 + x2

3 + · · · + x2
m) = 0 (1.2.2)

x2
1x

4
2x

8
3(x2k−3

1 x2k−5
2 x4k−10

3 + x1x2 + 1 + x2
4 + · · · + x2

m) = 0 (1.2.3)
...

...

x2
1x

4
2x

8
m(x2k−3

1 x2k−5
2 x4k−10

m + x1x2 + x2
3 + · · · + x2

m−1 + 1) = 0. (1.2.m)

The singular lines on D1 and D2 are separated and go to charts (1.2.2)

and (1.2.1) respectively.

We continue in this way, performing alternate blow-ups in a Di and an

A1, until we have to blow up in a D4 singularity.

Step n− 3: We blow up in the origin of the chart x2k−4
1 (x3

1 + x1x
2
2 + x2

3 +

· · · + x2
m) = 0.





x2k−2
1 (x1 + x1x

2
2 + x2

3 + · · · + x2
m) = 0 (1′)

x2k−4
1 x2k−2

2 (x3
1x2 + x1x2 + x2

3 + · · · + x2
m) = 0 (2′)

x2k−4
1 x2k−2

3 (x3
1x3 + x1x

2
2x3 + 1 + x2

4 + · · · + x2
m) = 0 (3′)

...
...

x2k−4
1 x2k−2

m (x3
1xm + x1x

2
2xm + x2

3 + · · · + x2
m−1 + 1) = 0. (m′)
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In fact (j′) stands here for (1.1 . . . 1︸ ︷︷ ︸ .j)
k − 2 times

. We get three singular points, all

analytically isomorphic to an A1 singularity. Both present divisors (we

call them of course Dk−2 and Dk−1) have a singular line and in fact all

the singular points lie on the singular line of Dk−1. One of the singular

points, the origin of chart (2′), lies on the intersection of Dk−2 and Dk−1.

Note that the singular points (0, i, 0, . . . , 0) and (0,−i, 0, . . . , 0) of chart

(1′) correspond to the points (−i, 0, . . . , 0) and (i, 0, . . . , 0) of chart (2′)

respectively.

Step n−2: We deal with the origin of chart (2′) first. Blowing it up yields

a divisor Ek−1 that intersects Dk−1 and Dk−2:





x4k−4
1 x2k−2

2 (x2
1x2 + x2 + x2

3 + · · · + x2
m) = 0 (2′.1)

x2k−4
1 x4k−4

2 (x3
1x

2
2 + x1 + x2

3 + · · · + x2
m) = 0 (2′.2)

x2k−4
1 x2k−2

2 x4k−4
3 (x3

1x2x
2
3 + x1x2 + 1 + x2

4 + · · · + x2
m) = 0 (2′.3)

...
...

x2k−4
1 x2k−2

2 x4k−4
m (x3

1x2x
2
m + x1x2 + x2

3 + · · · + x2
m−1 + 1) = 0. (2′.m)

The other two singularities lie in charts (1′) and (2′.1). The singular lines

on Dk−2 and Dk−1 get separated and go to charts (2′.2) and (2′.1), re-

spectively.

Step n− 1: After a coordinate transformation the equation of chart (1′)

becomes x2k−2
1 (x1x2(x2 + 2i) + x2

3 + · · · + x2
m = 0. To put the same

point in the origin, we have to change the equation of chart (2′.1) to

(x1 − i)4k−4x2k−2
2 (x1x2(x1 − 2i) + x2

3 + · · ·+ x2
m) = 0 for example. In this

step we blow up both charts in the origin and we call the new divisor F1:





x2k
1 (x2(x1x2 + 2i) + x2

3 + · · · + x2
m) = 0 (1′.1)

x2k−2
1 x2k

2 (x1(x2 + 2i) + x2
3 + · · · + x2

m) = 0 (1′.2)

x2k−2
1 x2k

3 (x1x2(x2x3 + 2i) + 1 + x2
4 + · · · + x2

m) = 0 (1′.3)
...

...

x2k−2
1 x2k

m (x1x2(x2xm + 2i) + x2
3 + · · · + x2

m−1 + 1) = 0 (1′.m)

and
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x2k
1 (x1 − i)4k−4x2k−2

2 (x2(x1 − 2i) + x2
3 + · · · + x2

m) = 0 (2′.1.1)

(x1x2 − i)4k−4x2k
2 (x1(x1x2 − 2i) + x2

3 + · · · + x2
m) = 0 (2′.1.2)

(x1x3 − i)4k−4x2k−2
2 x2k

3 (x1x2(x1x3 − 2i) + 1 + · · · + x2
m) = 0 (2′.1.3)

...
...

(x1xm − i)4k−4x2k−2
2 x2k

m (x1x2(x1xm − 2i) + x2
3 + · · · + 1) = 0. (2′.1.m)

The last singular point and the singular line on Dk−1 are now in charts

(1′.2) and (2′.1.1).

Step n: Before blowing up the final singular point, we first do a co-

ordinate transformation in chart (1′.2) to get the equation x2k−2
1 (x2 −

2i)2k(x1x2 +x2
3 + · · ·+x2

m) = 0 and in chart (2′.1.1) to get (x1 +2i)2k(x1 +

i)4k−4x2k−2
2 (x1x2 + x2

3 + · · · + x2
m) = 0. The new exceptional divisor is

called F2.��������� ��������
x2k

1 (x1x2 − 2i)2k(x2 + x2
3 + · · · + x2

m) = 0 (1′.2.1)

x2k−2
1 (x2 − 2i)2kx2k

2 (x1 + x2
3 + · · · + x2

m) = 0 (1′.2.2)

x2k−2
1 (x2x3 − 2i)2kx2k

3 (x1x2 + 1 + x2
4 + · · · + x2

m) = 0 (1′.2.3)
...

...

x2k−2
1 (x2xm − 2i)2kx2k

m (x1x2 + x2
3 + · · · + x2

m−1 + 1) = 0 (1′.2.m)

and

��������� ��������
x2k

1 (x1 + 2i)2k(x1 + i)4k−4x2k−2
2 (x2 + x2

3 + · · · + x2
m) = 0 (2′.1.1.1)

(x1x2 + 2i)2k(x1x2 + i)4k−4x2k
2 (x1 + x2

3 + · · · + x2
m) = 0 (2′.1.1.2)

(x1x3 + 2i)2k(x1x3 + i)4k−4x2k−2
2 x2k

3 (x1x2 + 1 + · · · + x2
m) = 0 (2′.1.1.3)

...
...

(x1xm + 2i)2k(x1xm + i)4k−4x2k−2
2 x2k

m (x1x2 + x2
3 + · · · + 1) = 0. (2′.1.1.m)

The singular line on Dk−1 is moved to charts (1′.2.2) and (2′.1.1.1).

In the next k − 1 steps we blow up in the singular lines on the divisors

Di. This gives rise to new exceptional divisors which will be denoted by

Gi. After k − 1 steps we finally have a log resolution; we will perform

steps n+ 1 and n+ k − 1 explicitly.

Step n+1: To cover the singular line onD1 completely, we have to perform

the blow-up in charts (2.1) and (1.2.2). In chart (2.1) we have to blow

up the reducible variety Y = {x4
1x

2
2(x4k−6

1 x2k−3
2 + x2 + x2

3 + · · · + x2
m) =

0} ⊂ Am in the line {x2 = · · · = xm = 0}. The strict transform of Y and

the exceptional locus form a reducible variety in Am×Pm−2, given by the
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equations

{
x4

1x
2
2(x4k−6

1 x2k−3
2 + x2 + x2

3 + · · · + x2
m) = 0

xizj = xjzi ∀ i, j ∈ {2, . . . ,m},

where (z2, . . . , zm) are homogenous coordinates on Pm−2. As for a point

blow-up, we can replace xj by xi
zj

zi
in the open set zi 6= 0 and rename

zj

zi

as xj . Hence we get the following equations for Y ′:





x4
1x

3
2(x4k−6

1 x2k−4
2 + 1 + x2x

2
3 + · · · + x2x

2
m) = 0 (2.1.2)

x4
1x

2
2x

3
3(x4k−6

1 x2k−3
2 x2k−4

3 + x2 + x3 + x3x
2
4 + · · · + x3x

2
m) = 0 (2.1.3)

...
...

x4
1x

2
2x

3
m(x4k−6

1 x2k−3
2 x2k−4

m + x2 + x2
3xm + · · · + x2

m−1xm + xm) = 0. (2.1.m)

The equations after blowing up in {x1 = x3 = · · · = xm = 0} in chart

(1.2.2) are:





x3
1x

8
2(x2k−4

1 x4k−10
2 + 1 + x1x

2
3 + · · · + x1x

2
m) = 0 (1.2.2.1)

x2
1x

8
2x

3
3(x2k−3

1 x4k−10
2 x2k−4

3 + x1 + x3 + x3x
2
4 + · · · + x3x

2
m) = 0 (1.2.2.3)

...
...

x2
1x

8
2x

3
m(x2k−3

1 x4k−10
2 x2k−4

m + x1 + x2
3xm + · · · + x2

m−1xm + xm) = 0. (1.2.2.m)

Step n + k − 1: Here we have to consider charts (1′.2.2) and (2′.1.1.1)

in which Dk−1 still has a singular line with equations {x1 = x3 = · · · =

xm = 0} and {x2 = x3 = · · · = xm = 0}, respectively. Blowing it up

yields������ �����
x2k−1

1 (x2 − 2i)2kx2k
2 (1 + x1x

2
3 + · · · + x1x

2
m) = 0 (1′.2.2.1)

x2k−2
1 (x2 − 2i)2kx2k

2 x2k−1
3 (x1 + x3 + · · · + x3x

2
m) = 0 (1′.2.2.3)

...
...

x2k−2
1 (x2 − 2i)2kx2k

2 x2k−1
m (x1 + x2

3xm + · · · + xm) = 0 (1′.2.2.m)

and

������ �����
x2k

1 (x1 + 2i)2k(x1 + i)4k−4x2k−1
2 (1 + x2x

2
3 + · · · + x2x

2
m) = 0 (2′.1.1.1.2)

x2k
1 (x1 + 2i)2k(x1 + i)4k−4x2k−2

2 x2k−1
3 (x2 + x3 + · · · + x3x

2
m) = 0 (2′.1.1.1.3)

...
...

x2k
1 (x1 + 2i)2k(x1 + i)4k−4x2k−2

2 x2k−1
m (x2 + x2

3xm + · · · + xm) = 0. (2′.1.1.1.m)

From these calculations, we can deduce the intersection diagram. We

leave it to the reader to check the details. It can easily be seen that the

same diagram is valid for k = 2, 3.
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(2) n odd, n = 2k + 1, with k ≥ 2.

The first 2k−4 steps are completely analogous to the case where n is even.

Now we end up with the equation x2k−4
1 (x4

1 + x1x
2
2 + x2

3 + · · · + x2
m) = 0

which has a D5 singularity in the origin. Blowing this up gives one A3

singularity on the new divisor Dk−1 (the equation of the first chart is

x2k−2
1 (x2

1 + x1x
2
2 + x2

3 + · · · + x2
m = 0)). We already know that this can

be resolved by two consecutive blow-ups, creating divisors F1 and F2.

Afterwards, the singular lines on the Di must be blown up. Explicit

computations lead to the following intersection diagram:
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u u u u
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E1
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. . .

(2.1.5) Case E6

After blowing up in the origin we get an A5 singularity and a singular

line on the first exceptional divisor D1. To resolve the A5 singularity we

need three more point blow-ups (creating D2, D3 and D4) and in the end

we blow up in the singular line (giving rise to a divisor D5). We find as

intersection graph:
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(2.1.6) Cases E7 and E8

An E7 becomes a D6 after one step and calculating the intersections gives

the following diagram
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where C1 is the very first exceptional divisor and where H1 arises after

blowing up the singular line on C1. The other divisors come from the D6

singularity. Notice the difference between F1 and F2. It is easy to see

that an E8 singularity passes to an E7 after one blow-up, with again a

singular line on the first exceptional divisor B1. We denote the divisor

that appears after blowing up in this singular line by I1 and we find the

following intersection graph:
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2.2 Computation of the Hodge-Deligne polyno-

mials

(2.2.1) Denote by ar, br, cr (r ≥ 2) the Hodge-Deligne polynomials of

• {x2
1 + · · · + x2

r = 0} ⊂ Pr+1
C ,

• {x2
1 + · · · + x2

r = 0} ⊂ Pr
C,

• {x2
1 + · · · + x2

r = 0} ⊂ Pr−1
C ,

respectively, where Ps gets coordinates (x1, . . . , xs+1). We will be able to

express all the needed Hodge-Deligne polynomials in terms of ar, br and

cr, and these last expressions are well known. For completeness we in-

clude their computation in the following lemma. From now on, we write

w as abbreviation of uv.

Lemma. The formulae for ar, br and cr are given in the following table:

r even r odd

ar
wr+1−1

w−1 + w
r
2
+1 wr+1−1

w−1

br
wr−1
w−1 + w

r
2

wr−1
w−1

cr
wr−1−1

w−1 + w
r
2
−1 wr−1−1

w−1
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Proof. Denote by dr the Hodge-Deligne polynomial of {x2
1 + · · ·+x2

r +1 =

0} ⊂ Ar. First we compute dr by induction on r. Since d2 is the Hodge-

Deligne polynomial of a conic with two points at infinity, it equals w− 1.

The variety {x2
1 +x2

2 +x2
3 +1 = 0} ⊂ A3 can be regarded as P1×P1 minus

a conic and thus d3 = (w+ 1)2 − (w+ 1) = w2 +w. For r ≥ 4 we use the

isomorphism {x2
1 + · · · + x2

r + 1 = 0} ∼= {x1x2 + x2
3 + · · · + x2

r + 1 = 0}.

If x1 = 0 in this last equation, then the contribution to dr is wdr−2

and if x1 6= 0, then it is (w − 1)wr−2, so we have the recursion formula

dr = wdr−2 + (w − 1)wr−2. From this it follows that dr = wr−1 − w
r
2
−1

if r is even and dr = wr−1 + w
r−1
2 if r is odd.

For a2 we find 2w2 + w + 1 and we have the recursion formula ar =

ar−1 + w2dr−1 for r ≥ 3. The formulae for br and cr can be deduced

similarly. �

(2.2.2) For the remainder of this section, we will calculate the Hodge-

Deligne polynomials of the pieces D◦
J (see the definition of the stringy

E-function). Since we are mainly interested in the contribution of the sin-

gular point (by which we mean Est(X)−H(D◦
∅) = Est(X)−H(X \ {0}),

where X is a defining variety of an A-D-E singularity), we will do this

for J 6= ∅.

We remark here the following. In the defining formula of the stringy E-

function we need the Hodge-Deligne polynomials of the D◦
J at the end of

the resolution process. Note however that we can compute them imme-

diately after they are created, since a blow-up is an isomorphism outside

its center. So we just have to subtract contributions of intersections with

previously created divisors and already present centers of future blow-ups

from the global Hodge-Deligne polynomial in the right way.

The case of an A-D-E surface singularity is well known and for threefold

singularities we refer again to [DR], so we consider here the higher di-

mensional case. Parallel to the previous section, we work out the details

for the case Dn, n even, and state the results in the other cases. We use

the same notations as in the previous section.
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(2.2.3) Case A

From the description in (2.1.3), one gets the following:

(1) n odd

H(D◦
1) = bm−1 − 1

H(D◦
i ) = bm−1 − cm−1 − 1 (i = 2, . . . , k − 1)

H(D◦
k) = cm − cm−1

H(Di ∩Di+1) = cm−1 (i = 1, . . . , k − 1)

(2) n even

H(D◦
1) = bm−1 − 1

H(D◦
i ) = bm−1 − cm−1 − 1 (i = 2, . . . , k)

H(D◦
k+1) = wm−2 + · · · + 1 − cm−1

H(Di ∩Di+1) = cm−1 (i = 1, . . . , k)

(2.2.4) Case D

(1) n even

All the needed information can be read off from the equations in (2.1.4).

We follow the same steps.

Step 1: The first exceptional divisor is globally isomorphic to {x2
3 + · · ·+

x2
m = 0} ⊂ Pm−1, which has a singular line that contains the two singular

points of the surrounding variety. Hence H(D◦
1) = am−2 − (w + 1).

Step 2: One sees that E1 is a nonsingular quadric in Pm−1 that intersects

D1 in {x2
3 + · · · + x2

m = 0} ⊂ Pm−2, for a suitable choice of coordinates.

Thus H(E◦
1) = cm − bm−2. The intersection of D1 and E1 contains one

point of the singular line on D1 and hence H((D1 ∩ E1)◦) = bm−2 − 1.

Step 3: Analogous to step 1 one finds that D2 is isomorphic to {x2
3 +

· · · + x2
m = 0} ⊂ Pm−1, with a singular line that contains two singular

points of the surrounding variety. Now D2 intersects D1 in {x2
3 + · · · +

x2
m = 0} ⊂ Pm−2. This intersection has exactly one point (the origin
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of coordinate chart (1.2)) in common with the singular lines on D2 and

D1. The conclusion is that H(D◦
2) = am−2 − (w + 1) − bm−2 + 1 and

H((D1 ∩D2)◦) = bm−2 − 1.

Step 4: ForH(E◦
2) we find cm−2bm−2+cm−2, where 2bm−2 comes from the

intersections withD1 andD2 and cm−2 from the intersection withD1∩D2.

We also have that H((D1 ∩ E2)◦) = H((D2 ∩ E2)◦) = bm−2 − cm−2 − 1,

where the −1 comes from a point on the singular lines on the Di. Finally

H(D1 ∩D2 ∩ E2) = cm−2.

Analogously, for all i from 3 to k−2, we have H(D◦
i ) = am−2 − (w+ 1)−

bm−2 + 1, H((Di−1 ∩ Di)
◦) = bm−2 − 1, H(E◦

i ) = cm − 2bm−2 + cm−2,

H((Di−1 ∩Ei)
◦) = H((Di ∩Ei)

◦) = bm−2 − cm−2 − 1 and H(Di−1 ∩Di ∩

Ei) = cm−2.

Step n − 3: In this step three singular points are created, but since

they are all on the singular line on Dk−1, we still find H(D◦
k−1) =

am−2 − (w + 1) − bm−2 + 1 and H((Dk−2 ∩Dk−1)◦) = bm−2 − 1.

Step n − 2: Again nothing special happens: H(E◦
k−1) = cm − 2bm−2 +

cm−2, H((Dk−2 ∩ Ek−1)◦) = H((Dk−1 ∩ Ek−1)◦) = bm−2 − cm−2 − 1 and

H(Dk−2 ∩Dk−1 ∩ Ek−1) = cm−2.

Step n− 1 and step n: Both F1 and F2 are nonsingular quadrics in Pm−1

and their intersection with Dk−1 is {x2
3 + · · · + x2

m = 0} ⊂ Pm−2, which

has one point in common with the singular line on Dk−1. Thus H(F ◦
1 ) =

H(F ◦
2 ) = cm−bm−2 and H((Dk−1∩F1)◦) = H((Dk−1∩F2)◦) = bm−2−1.

Step n+ 1: The singular line on D1 is except for the origin of coordinate

chart (2.1) covered by chart (1.2.2). But after the blow-up, exactly the

intersection of E1 and G1 lies above the origin of chart (2.1). Thus to

calculate H(G◦
1), it suffices to consider only charts (1.2.2.1) to (1.2.2.m).

In chart (1.2.2.3) G1 is just isomorphic to Am−2. The piece of G1 that is

covered by chart (1.2.2.4) but not by (1.2.2.3) is isomorphic to Am−3 and

so on, until we add an affine line to G1 in chart (1.2.2.m). The intersec-

tion of G1 with E2 is isomorphic to Pm−3. It is not so hard to see that

H(D1∩E2∩G1) = cm−2 (note that the equations of (the strict transform

of) D1 in chart (1.2.2.3) for instance are x1 = 0 and 1+x2
4+· · ·+x2

m = 0),
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and from this it follows that H((D1 ∩G1)◦) = (w− 1)cm−2 (the w comes

from the x2-coordinate that can be chosen freely in every chart). Now we

also haveH((E2∩G1)◦) = wm−3+· · ·+1−cm−2 andH(G◦
1) = wm−2+· · ·+

w−(wm−3 + · · ·+1)−wcm−2 +cm−2 = wm−2−1−(w−1)cm−2. One gets

from charts (2.1.2) to (2.1.m) that H((E1∩G1)◦) = wm−3 + · · ·+1−cm−2

and that H(D1 ∩ E1 ∩G1) = cm−2.

More conceptually, G1 is a locally trivial Pm−3-bundle over the singular

line on D1 and E1 ∩ G1 and E2 ∩ G1 are two fibers. Thus H(G1) =

(w+ 1)(wm−3 + · · ·+ 1) and H(Ei ∩G1) = wm−3 + · · ·+ 1. Furthermore,

we can consider the singular line on D1 as a family of A1 singularities and

thus D1 ∩ G1 is a family of nonsingular quadrics in Pm−3. This implies

that H(D1 ∩G1) = (w + 1)cm−2 and H(D1 ∩ Ei ∩G1) = cm−2.

In exactly the same way one finds that (for i ∈ {2, . . . , k − 2}) H(G◦
i ) =

wm−2 − 1− (w− 1)cm−2, H((Di ∩Gi)
◦) = (w− 1)cm−2, H((Ei ∩Gi)

◦) =

H((Ei+1 ∩Gi)
◦) = wm−3 + · · ·+ 1− cm−2 and H(Di ∩Ei ∩Gi) = H(Di ∩

Ei+1 ∩Gi) = cm−2.

Step n + k − 1: This step looks very much like step n + 1. It suffices

to consider charts (1′.2.2.1) to (1′.2.2.m) to compute H(G◦
k−1). One

checks that H(Dk−1 ∩ F1 ∩ Gk−1) = H(Dk−1 ∩ F2 ∩ Gk−1) = cm−2,

H((F1∩Gk−1)◦) = H((F2∩Gk−1)◦) = wm−3 + · · ·+1−cm−2, H((Dk−1∩

Gk−1)◦) = (w− 2)cm−2 and thus H(G◦
k−1) = wm−2 + · · ·+w− 2(wm−3 +

· · · + 1) − (w − 2)cm−2. From charts (2′.1.1.1.2) to (2′.1.1.1.m) we get

H(Dk−1 ∩Ek−1 ∩Gk−1) = cm−2 and H((Ek−1 ∩Gk−1)◦) = wm−3 + · · ·+

1−cm−2. A conceptual explanation like in step n+1 can be given here too.

(2) n odd

There are only seven changes in comparison with the case where n is even.

First remark that F1∩Gk−1 and Dk−1∩F1∩Gk−1 are empty, but instead

H((F1 ∩F2)◦) = cm−1 − cm−2 and H(Dk−1 ∩F1 ∩F2) = cm−2. The other

five changes are the following:

H(F ◦
1 ) = bm−1 − bm−2

H(F ◦
2 ) = cm − cm−1 − bm−2 + cm−2

H(G◦
k−1) = wm−2 − 1 − (w − 1)cm−2

H((Dk−1 ∩ F2)◦) = bm−2 − cm−2 − 1

H((Dk−1 ∩Gk−1)◦) = (w − 1)cm−2
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(2.2.5) Case E6

We just list the results.

H(D◦
1) = am−2 − w − 1

H(D◦
2) = bm−1 − bm−2

H(D◦
3) = bm−1 − bm−2 − cm−1 + cm−2

H(D◦
4) = cm − bm−2 − cm−1 + cm−2

H(D◦
5) = wm−2 + · · · + w − wcm−2

H((D1 ∩D2)◦) = bm−2 − 1

H((D1 ∩D3)◦) = H((D1 ∩D4)◦) = bm−2 − cm−2 − 1

H((D1 ∩D5)◦) = wcm−2

H((D2 ∩D3)◦) = H((D3 ∩D4)◦) = cm−1 − cm−2

H((D4 ∩D5)◦) = wm−3 + · · · + 1 − cm−2

H(D1 ∩D2 ∩D3) = H(D1 ∩D3 ∩D4) = H(D1 ∩D4 ∩D5) = cm−2

(2.2.6) Cases E7 and E8

Let us first treat the E8 case. From the intersection diagram it follows

that we have to compute forty-seven Hodge-Deligne polynomials (there

are twelve divisors, twenty-three intersections of two divisors and twelve

intersections of three divisors). But there are twenty polynomials coming

from the ‘D6 part’ of the diagram that are left unchanged here. So we

will only write down the other twenty-seven.

H(B◦
1) = am−2 − w − 1

H(C◦
1 ) = am−2 − bm−2 − w

H(D◦
1) = H(D◦

2) = am−2 − 2bm−2 + cm−2 − w + 1

H(E◦
1) = H(F ◦

1 ) = cm − 2bm−2 + cm−2

H(H◦
1 ) = H(I◦1 ) = wm−2 + · · · + w − wcm−2

H((B1 ∩ C1)◦) = H((B1 ∩ I1)◦) = H((C1 ∩H1)◦) = wcm−2

H((B1 ∩D1)◦) = H((B1 ∩ E1)◦) = H((C1 ∩D1)◦)

= H((C1 ∩D2)◦) = H((C1 ∩ F1)◦) = H((D1 ∩D2)◦)

= H((D1 ∩ E1)◦) = H((D2 ∩ F1)◦) = bm−2 − cm−2 − 1

H((E1 ∩ I1)◦) = H((F1 ∩H1)◦) = wm−3 + · · · + 1 − cm−2

H(B1 ∩ C1 ∩D1) = H(B1 ∩D1 ∩ E1) = H(B1 ∩ E1 ∩ I1)

= H(C1 ∩D1 ∩D2) = H(C1 ∩D2 ∩ F1) = H(C1 ∩ F1 ∩H1) = cm−2
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For the E7 case, we can skip all expressions involving the divisors B1

and/or I1. This leaves us with thirty-seven polynomials and apart from

the following five, they are all the same as in the E8 case.

H(C◦
1 ) = am−2 − w − 1

H(D◦
1) = am−2 − bm−2 − w

H(E◦
1) = cm − bm−2

H((C1 ∩D1)◦) = H((D1 ∩ E1)◦) = bm−2 − 1

2.3 Computation of the discrepancy coefficients

(2.3.1) In this section we compute the last data that we need: the dis-

crepancy coefficients. As already mentioned in Example (0.2.5), all the

two dimensional A-D-E’s admit a crepant resolution, this means that all

the discrepancies are 0. For the three-dimensional case, the computations

are done in [DR, Section 3], but the authors are a bit inaccurate. Let us

again consider the case Dn, n even, with k = n
2 . The intersection diagram

is as follows:

u u u u

u u u u

u u u uu u

�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�

%
%
%%

@
@
@
@
@
@
@

e
e
ee

@
@
@
@
@
@
@

@
@
@
@
@

@
@@

�
��

e
e
ee

Q
Q

Q
Q

QQ
%
%
%%

�
�
�
�
��

D′′
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k−2 D′′
2 D′′

1

D′
k−1 D′

k−2 D′
2 D′

1

F1
F2 Ek−1 Ek−2 E2

E1
. . .

. . .

Compared to the higher dimensional cases, the Di fall apart into two

components D′
i and D′′

i , and there are no divisors Gi needed. If we denote

by ϕ : X̃ → X the log resolution, with X the defining variety of the Dn

singularity and X̃ the strict transform of X, then ϕ can be decomposed

into k birational morphisms

ϕk ϕ2 ϕ1

X̃ = Xk −→ Xk−1 −→ · · · −→ X2 −→ X1 −→ X0 = X,

where the exceptional locus of ϕ1 is {D′
1, D

′′
1}, of ϕi (2 ≤ i ≤ k − 1) is

{D′
i, D

′′
i , Ei−1} and of ϕk is {F1, F2, Ek−1}, again using the same name
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for the divisors at any stage of the decomposition of ϕ. We can also

decompose K �
X
− ϕ∗(KX) as

[
k−1∑

i=1

ϕ∗
k(ϕ∗

k−1 · · · (ϕ
∗
i+1(KXi

− ϕ∗
i (KXi−1))) · · · )

]
+KXk

− ϕ∗
k(KXk−1

).

Dais and Roczen calculated that for instance ϕ∗
2(D′

1) = D′
1 + D′

2 + E1

and ϕ∗
2(D′′

1) = D′′
1 + D′′

2 + E1, but D′
1 and D′′

1 are not Cartier. Their

sum D′
1 +D′′

1 is Cartier and it turns out that ϕ∗
2(D′

1 +D′′
1) = D′

1 +D′′
1 +

D′
2 +D′′

2 + E1 instead of · · · + 2E1. This kind of error occurs also in the

following stages for this type of singularity and also for type Dn, n odd,

and for types E6, E7 and E8. In the next table, we list the discrepancies.

We use notations analogous to our notations from section 2, but they

differ from the notations in [DR]. The coefficients that we have corrected

are in boldface.

Singularity Discrepancy

An

n even

n = 2k

k ≥ 1

k∑

i=1

iDi + (n+ 2)Dk+1

n odd

n = 2k − 1

k ≥ 1

k∑

i=1

iDi

Dn

n even

n = 2k

k ≥ 2

k−1∑

i=1

(
iD′

i + iD′′
i + 2iEi

)
+ kF1 + kF2

n odd

n = 2k + 1

k ≥ 2

k−1∑

i=1

(
iD′

i + iD′′
i + 2iEi

)
+ kF1 + 2kF2
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E6 D′
1 +D′′

1 + 2D2 + 4D3 + 6D4

E7 C ′
1 + C ′′

1 + 2D′
1 + 2D′′

1 + 4D′
2 + 4D′′

2

+3E1 + 7E2 + 6F1 + 5F2

E8 B′
1 +B′′

1 + 2C ′
1 + 2C ′′

1 + 4D′
1 + 4D′′

1 + 7D′
2 + 7D′′

2

+6E1 + 12E2 + 10F1 + 8F2

Remark. Dais and Roczen used their results to contradict a conjecture

of Batyrev about the range of the string-theoretic index (that is the de-

nominator of the stringy Euler number, see [Ba2, Conjecture 5.9], [DR,

Remark 1.9]). Luckily, this follows already from the formulae for the A

case, to which we do not correct anything. We will only simplify their

formulae in this case.

(2.3.2) Now we consider the higher dimensional case. As an example,

we compute the discrepancy coefficient of the divisor Ei for an (m − 1)-

dimensional Dn singularity, where n = 2k is even, i ∈ {1, . . . , k − 1} and

m ≥ 5. Let X be the defining variety {xn−1
1 + x1x

2
2 + x2

3 + · · · + x2
m =

0} ⊂ Am, and let ϕ : X̃ → X be the log resolution constructed in Section

2.1. We take a coordinate chart that covers a piece of Ei; in the notation

of Section 2.1, this could be for example chart (1.1 . . . 1︸ ︷︷ ︸.2.3)

i− 1 times

describing

an open affine set U ⊂ X̃:

y2k−2i+1
1 y2k−2i−1

2 y4k−4i−2
3 + y1y2 + 1 + y2

4 + · · · + y2
m = 0.

In this chart, y1 = 0 gives a local equation for divisor Di−1, y2 = 0 for Di

and y3 = 0 for our divisor Ei. The map ϕ : U → X can be found from
the resolution process. Here it will be

ϕ(y1, . . . , ym) = (y1y2y
2
3 , y

i−1
1 yi

2y
2i−1
3 , yi−1

1 yi
2y

2i
3 , y

i−1
1 yi

2y
2i
3 y4, . . . , y

i−1
1 yi

2y
2i
3 ym).

The section dx1∧...∧dxm−1

2xm
is locally a generator of the sheaf OX(KX)

(2xm = ∂ f
∂ xm

, where f is the equation of X) and we have to compare
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its pull-back under ϕ with the generator dy1∧...∧dym−1

2ym
of O �

X
(K �

X
)|U . We

have

ϕ∗(
dx1 ∧ . . . ∧ dxm−1

2xm
) = y

(i−1)(m−3)
1 y

i(m−3)
2 y

2i(m−3)
3

dy1 ∧ . . . ∧ dym−1

2ym
,

which learns us that the discrepancy coefficient of Ei is 2i(m − 3). And

we get the discrepancy coefficient of Di for free, it is i(m−3). In general,

the following can be proved by this kind of calculations.

Proposition. For all divisors that are created after a point blow-up,

except for divisor Dn
2
+1 in the An (n even) case, the discrepancy coeffi-

cient is m− 3 times the coefficient of the corresponding divisor(s) in the

3-dimensional case (see the table in (2.3.1)).

What about the other divisors ? They are all created after blowing up

a nonsingular surrounding variety in a point (case An, n even) or a line

(other cases). We consider again the case of a Dn singularity, with n even.

Denote by X(i) the variety obtained after n + i steps in the resolution

process of Section 2.1 (i ∈ {0, . . . , k− 2}). The log resolution ϕ : X̃ → X

can be decomposed as follows:

χ(i+1) ϕ(i+1) ψ(i)

X̃ −→ X(i+1) −→ X(i) −→ X,

where ϕ(i+1) is the blow-up of the singular line on the divisor Di+1 ⊂

X(i) and where χ(i+1) and ψ(i) are compositions of other blow-ups. Note

that all the singular lines on X(0) are disjoint. Thus, to compute the

discrepancy coefficient of Gi+1, it suffices to look at its coefficient in

KX(i+1) − (ψ(i) ◦ ϕ(i+1))∗(KX). This is equal to

KX(i+1) − (ϕ(i+1))∗((ψ(i))∗(KX) −KX(i)) − (ϕ(i+1))∗(KX(i)).

It follows from [GH, p.608] that the last term is −KX(i+1) + (m− 3)Gi+1

(X(i) is nonsingular !). And in the second term we only get a nonzero

coefficient for Gi+1 from −(ϕ(i+1))∗(−(i + 1)(m − 3)Di+1) (this follows

from [GH, p.605], and the exact coefficient is 2(i+ 1)(m− 3) because the

multiplicity of a generic point of the singular line on Di+1 is 2). This gives

us 2(i+ 1)(m− 3) + (m− 3) = (2i+ 3)(m− 3) as discrepancy coefficient

for Gi+1. In all other cases where we blow up in a line, the multiplicity
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of a generic point of the singular line will also be 2 and thus we have the

following proposition.

Proposition. For all divisors that are created after a blow-up in a sin-

gular line of another divisor D, the discrepancy coefficient is

2(discrepancy coefficient of D) + (m− 3).

The reader may check that the same arguments give (n + 1)(m − 3) + 1

as coefficient for Dn
2
+1 in the case An, n even.

These results lead to the observation that any variety with at most A-D-

E singularities satisfies condition (∗) (see Definition (1.2.1)), and thus we

have the following theorem, as a corollary of Theorem (1.2.2).

Theorem. Let Y be a projective variety with at most A-D-E singulari-

ties. Then the answer to Question (0.2.5) is positive for Y .

In the next section we compute explicit formulae for the contribution

of an A-D-E singularity to the stringy E-function and these formulae

will enable us to say which varieties with A-D-E singularities have a

polynomial stringy E-function.

2.4 Contribution of an A-D-E singularity to the

stringy E-function

(2.4.1) Let X be a defining variety of an A-D-E singularity; hence X

is a hypersurface in Am (m ≥ 3) with a singular point in the origin. By

the contribution of the singular point to the stringy E-function, we mean

Est(X) −H(X \ {0}). Before stating the formulae, we first remark that

we have to make a distinction between m even and m odd, because the re-

quired Hodge-Deligne polynomials depend on the parity of the dimension.

Theorem. The contributions of the (m − 1)-dimensional A-D-E singu-

larities (m ≥ 3) are given in the following tables (where sums like
∑k

i=2

must be interpreted as 0 for k = 1).
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Singularity Contribution of singular point for odd m

An

n even

n = 2k
k ≥ 1

1 +
(w − 1)

(w(2k+1)(m−3)+2 − 1) � k+1�
i=2

w(k+i)(m−3)+2

+

k�
i=1

w(k+i)(m−3)+ m+1

2 +

k�
i=1

wi(m−3)+ m−1

2 +

k�
i=1

wi(m−3)+1 �
n odd

n = 2k − 1
k ≥ 1

1 +
(w − 1)

(wk(m−3)+1 − 1) � k�
i=1

wi(m−3)+1 +

k−1�
i=1

wi(m−3)+ m−1

2
�

Dn

n even

n = 2k
k ≥ 2

1 +
(w − 1)

(w(2k−1)(m−3)+1 − 1) � 2k−1�
i=1

wi(m−3)+1 + wk(m−3)+1 �
n odd

n = 2k + 1
k ≥ 2

1 +
(w − 1)

(w2k(m−3)+1 − 1) � 2k�
i=1

wi(m−3)+1 + wk(m−3)+ m−1

2 	
E6 1 +

(w − 1)

(w6m−17 − 1) 
 w6m−17 + w4m−11 + w3m−8

+wm−2 + w
9m−25

2 + w
5m−13

2 �
E7 1 +

(w − 1)

(w9m−26 − 1) � w9m−26 + w7m−20 + w6m−17 + w5m−14

+w4m−11 + w3m−8 + wm−2 
E8 1 +

(w − 1)

(w15m−44 − 1) � w15m−44 + w12m−35 + w10m−29 + w9m−26

+w7m−20 + w6m−17 + w4m−11 + wm−2 
Singularity Contribution of singular point for even m

An

n even

n = 2k
k ≥ 1

1 +
(w − 1)

(w(2k+1)(m−3)+2−1) � k+1�
i=2

w(k+i)(m−3)+2 +

k�
i=1

wi(m−3)+1 �
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n odd

n = 2k − 1
k ≥ 1

1 +
(w − 1)

(wk(m−3)+1 − 1) � k�
i=1

wi(m−3)+1 + w
m

2
−1 �

Dn

n even

n = 2k
k ≥ 2

1 +
(w − 1)

(w(2k−1)(m−3)+1 − 1) � 2k−1�
i=1

wi(m−3)+1 + wk(m−3)+1

+

k−2�
i=0

w(k+i)(m−3)+ m

2 +

k−1�
i=0

wi(m−3)+ m

2
−1 + w

m

2
−1 �

n odd

n = 2k + 1
k ≥ 2

1 +
(w − 1)

(w2k(m−3)+1 − 1) � 2k�
i=1

wi(m−3)+1 +

k−1�
i=1

w(k+i)(m−3)+ m

2

+

k−1�
i=0

wi(m−3)+ m

2
−1 	

E6 1 +
(w − 1)

(w6m−17 − 1) 
 w6m−17 + w4m−11 + w3m−8

+wm−2 + w
11m−30

2 + w
3m−8

2 �
E7 1 +

(w − 1)

(w9m−26 − 1) 
 w9m−26 + w7m−20 + w6m−17 + w5m−14

+w4m−11 + w3m−8 + wm−2 + w
17m−48

2 + w
15m−42

2 + w
11m−30

2

+w
9m−26

2 + w
5m−14

2 + w
3m−8

2 + w
m−2

2 �
E8 1 +

(w − 1)

(w15m−44 − 1) 
 w15m−44 + w12m−35 + w10m−29

+w9m−26 + w7m−20 + w6m−17 + w4m−11 + wm−2

+w
29m−84

2 + w
27m−78

2 + w
23m−66

2 + w
17m−48

2

+w
15m−44

2 + w
9m−26

2 + w
5m−14

2 + w
3m−8

2 �
Proof. Let us first consider the case where m ≥ 5. We will focus again on

the singularity of type Dn for n = 2k and also for even m. All the other

cases are completely analogous. We just insert the data from Sections

2.1, 2.2 and 2.3 in the defining formula of the stringy E-function and we

find the following formula for the contribution of the singularity:

(wm−1 − w2 + w
m+2

2 − w
m

2 )

(wm−2 − 1)
+

k−1�
i=2

(wm−2 − w + w
m

2 − w
m−2

2 )(w − 1)

(wi(m−3)+1 − 1)
+

wm−2(w − 1)

(w2m−5 − 1)
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+

k−1�
i=2

(wm−2 − wm−3 − w
m−2

2 + w
m−4

2 )(w − 1)

(w2i(m−3)+1 − 1)
+

2wm−2(w − 1)

(wk(m−3)+1 − 1)

+

k−2�
i=1

(wm−2 − wm−3 − w
m−2

2 + w
m−4

2 )(w − 1)

(w(2i+1)(m−3)+1 − 1)

+
(wm−2 − 2wm−3 − w

m−2

2 + 2w
m−4

2 )(w − 1)

(w(2k−1)(m−3)+1 − 1)

+

k−2�
i=1

(wm−2 − w + w
m

2 − w
m−2

2 )(w − 1)

(wi(m−3)+1 − 1)(w(i+1)(m−3)+1 − 1)
+

(wm−2 − w + w
m

2 − w
m−2

2 )(w − 1)

(wm−2 − 1)(w2m−5 − 1)

+

k−1�
i=2

(wm−3 − 1 + w
m−2

2 − w
m−4

2 )(w − 1)2

(wi(m−3)+1 − 1)(w2i(m−3)+1 − 1)
+

k−2�
i=1

(wm−3 − 1 + w
m−2

2 − w
m−4

2 )(w−1)2

(wi(m−3)+1 − 1)(w(2i+2)(m−3)+1 − 1)

+
2(wm−2 − w + w

m

2 − w
m−2

2 )(w − 1)

(w(k−1)(m−3)+1 − 1)(wk(m−3)+1 − 1)
+

k−2�
i=1

(wm−3 − 1 + w
m−2

2 − w
m−4

2 )(w − 1)2

(wi(m−3)+1 − 1)(w(2i+1)(m−3)+1 − 1)

+
(wm−2 − 2wm−3 − w + 2 + w

m

2 − 3w
m−2

2 + 2w
m−4

2 )(w − 1)

(w(k−1)(m−3)+1 − 1)(w(2k−1)(m−3)+1 − 1)

+

k−1�
i=1

(wm−3 − w
m−4

2 )(w − 1)2

(w2i(m−3)+1 − 1)(w(2i+1)(m−3)+1 − 1)

+

k−2�
i=1

(wm−3 − w
m−4

2 )(w − 1)2

(w(2i+2)(m−3)+1 − 1)(w(2i+1)(m−3)+1 − 1)
+

2(wm−3 − w
m−4

2 )(w − 1)2

(wk(m−3)+1 − 1)(w(2k−1)(m−3)+1−1)

+

k−2�
i=1

(wm−3 − 1 + w
m−2

2 − w
m−4

2 )(w − 1)2

(wi(m−3)+1 − 1)(w(i+1)(m−3)+1 − 1)(w(2i+2)(m−3)+1 − 1)

+

k−1�
i=1

(wm−3 − 1 + w
m−2

2 − w
m−4

2 )(w − 1)2

(wi(m−3)+1 − 1)(w2i(m−3)+1 − 1)(w(2i+1)(m−3)+1 − 1)

+

k−2�
i=1

(wm−3 − 1 + w
m−2

2 − w
m−4

2 )(w − 1)2

(wi(m−3)+1 − 1)(w(2i+2)(m−3)+1 − 1)(w(2i+1)(m−3)+1 − 1)

+
2(wm−3 − 1 + w

m−2

2 − w
m−4

2 )(w − 1)2

(w(k−1)(m−3)+1 − 1)(wk(m−3)+1 − 1)(w(2k−1)(m−3)+1 − 1)
.

The terms correspond to the following pieces of the exceptional locus (in

that order):

D◦
1, D

◦
i , E

◦
1 , E

◦
i , F

◦
i , G

◦
i , G

◦
k−1, (Di ∩Di+1)◦, (D1 ∩ E1)◦, (Di ∩ Ei)

◦,

(Di ∩ Ei+1)◦, (Dk−1 ∩ Fi)
◦, (Di ∩Gi)

◦, (Dk−1 ∩Gk−1)◦, (Ei ∩Gi)
◦,

(Ei+1 ∩Gi)
◦, (Fi ∩Gk−1)◦, Di ∩Di+1 ∩ Ei+1, Di ∩ Ei ∩Gi,

Di ∩ Ei+1 ∩Gi, Dk−1 ∩ Fi ∩Gk−1.

By a very long but easy calculation, it can be proved by induction on k

that we indeed get the requested formula. We remark here that we have

done the computations for m ≥ 5, for m = 4 and for m = 3 separately,
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and then noticed that the formulae for m ≥ 5 are correct in the other

cases too.

We can now explain why these formulae are also valid for m = 4. For the

An case, this is not a surprise, since the intersection diagram for m = 4

is the same as for m ≥ 5. For the other cases, consider for example a

singularity of type Dn, n even. The blow-ups in the singular lines on the

divisors Di in the higher dimensional case correspond here to blow-ups in

the intersections D′
i ∩D

′′
i . Performing these unnecessary extra blow-ups

yields just another log resolution, and the formula for the contribution

of the singularity for that log resolution will be exactly the evaluation of

the formula from the first part of the proof for m = 4 (notice for instance

that the Hodge-Deligne polynomial for D◦
i (i > 1) becomes 2w2 − 2w for

m = 4 and the Hodge-Deligne polynomials for (D′
i)
◦ and (D′′

i )◦ will both

be w2 − w).

For m = 3 it can be checked easily that the formulae are correct but

again we give a more conceptual explanation. Compared with the higher

dimensional case, all divisors except the last one split into two (distinct)

components in the An case, for odd n. This is consistent with the Hodge-

Deligne polynomials from (2.2.3), evaluated for m = 3. For even n, we

must notice that the last blow-up is unnecessary for surfaces; performing

it anyway does not yield a crepant resolution any more (the last divisor

has discrepancy coefficient 1, as it should be, according to (2.3.2)). This

last divisor is irreducible and the first n
2 blow-ups each add two compo-

nents to the exceptional locus (compare this with (2.2.3) again). For the

Dn case, the analogue of blowing up in a singular line on a divisor Di

would be to blow up in Di itself, because it is just a line for m = 3. Such

a blow-up is an isomorphism, and the result is that the divisors Di are re-

named as Gi. As intersection diagram one finds the same as in the higher

dimensional case, but without the divisors Di. To be able to compare

this to (2.2.4), we must notice that it is logical to set a1 = w + 1, c1 = 0

and b1 = 1 in (2.2.1). Then indeed all Hodge-Deligne polynomials that

describe a piece of a divisor Di are 0 in (2.2.4) for m = 3. For the E cases

the same sort of arguments apply. �

(2.4.2) In the next proposition we exclude the two-dimensional case,

since it is trivial.
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Proposition. The stringy E-function of a projective variety X of dimen-

sion ≥ 3 with at most A-D-E singularities is a polynomial if and only if

dimX = 3 and X has singularities of type An (n odd) and/or Dl (l even).

Proof. It follows from Theorem (2.4.1) that the contributions of the

singular points for m ≥ 5 can be written in the following form:

1 +
w2(wα + aα−1w

α−1 + · · · + a0)

wα+1 + wα + · · · + 1
,

where α ∈ Z>0 and all ai ∈ Z≥0. Such expressions or finite sums of such

expressions can never be polynomials. For m = 4 the contributions are

given in the following table.

Singularity Contribution of singular point

An
n even

n = 2k
1 + w2(w2k+2−wk+2+wk−1)

w2k+3−1

n odd

n = 2k − 1
w + 1

Dn
n even

n = 2k
2w + 1

n odd

n = 2k + 1
w + 1 + w2(w2k−wk+1+wk−1−1)

w2k+1−1

E6 1 + w2(2w6−2w5+w4−w2+2w−2)
w7−1

E7 w + 1 + w2(w4−w3+w−1)
w5−1
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E8 1 + w2(2w7−w6−w5+2w4−2w3+w2+w−2)
w8−1

There are exactly two contributions that are polynomials and one sees

again that adding a finite number of the non-polynomial expressions never

gives a polynomial. �

Remark. It is no surprise that the An singularities for odd n and the Dl

singularities for even l give a polynomial contribution for m = 4. This can

be seen by the following well known construction (originally from Atiyah,

see [At, Section 3]). An An singularity can be described as the origin

of the hypersurface X = {xn+1
1 − x2

2 = x3x4} in A4. Instead of blowing

up in the singular point, one can use the divisor {xk
1 − x2 = x3 = 0}

as center for a blow up, with k = n+1
2 . The result is a proper bi-

rational morphism f : Y → X from a smooth variety Y such that

f : Y \ f−1(0) → X \ {0} is an isomorphism. And f−1(0) is only a

(rational) curve ! Such a resolution is called ‘small’. In particular, f is

crepant, and thus Est(X) = Est(Y ) = H(Y ). In this way we also find

w + 1 as the contribution of the singular point. For a Dl singularity (l

even) you have to perform two of such blow-ups to find a crepant mor-

phism from a nonsingular variety. The inverse image of the singular point

consists in that case of two intersecting rational curves, leading to a con-

tribution of 2w + 1. Note that the above table also shows that the other

3-dimensional A-D-E singularities do not admit a small resolution (this

gives for instance another proof of [Re2, Corollary (1.16)]).

Example. Consider the variety X = {xyz + t3 + s3 = 0} ⊂ P4, where

we use coordinates (x, y, z, t, s). It is clear that the points (1, 0, 0, 0, 0),

(0, 1, 0, 0, 0) and (0, 0, 1, 0, 0) are 3-dimensional D4 singularities. Thus,

their contribution to the stringy E-function of X is 3(2w+1). To compute

the Hodge-Deligne polynomial of X, we divide X in three locally closed

pieces:

X = (X ∩ {x 6= 0, y 6= 0}) t (X ∩ {x 6= 0, y = 0}) t (X ∩ {x = 0}).

The Hodge-Deligne polynomial of the first piece is just (w − 1)w2 since

y, z, t, s have become affine coordinates and y, t, s can be chosen freely,
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with y 6= 0. The second piece consists of three planes in A3, intersecting

in a line and has Hodge-Deligne polynomial 3(w2 −w) +w and the third

piece are three planes in P3, intersecting in a line, with contribution

3w2 + w + 1. Thus H(X) = w3 + 5w2 − w + 1 and the Hodge-Deligne

polynomial of the nonsingular part is w3 + 5w2 − w − 2. It follows that

the stringy E-function of X is equal to w3 + 5w2 + 5w + 1 and thus the

stringy Hodge numbers of X are indeed nonnegative.





Chapter 3

Stringy E-functions of

hypersurfaces

Abstract

The stringy E-function for canonical hypersurfaces can be obtained from the motivic

zeta function of Denef and Loeser. This is in fact a nice application of the inversion

of adjuction theorem by Ein, Mustaţă and Yasuda. If an affine hypersurface is given

by a polynomial that is non-degenerate with respect to its Newton polyhedron, then

the motivic zeta function and thus the stringy E-function can be computed from this

Newton polyhedron (by work of Artal, Cassou-Noguès, Luengo and Melle based on an

algorithm of Denef and Hoornaert). We use this to check the formulae for the A-D-E

singularities from Chapter 2.

3.1 The motivic zeta function

(3.1.1) First we recall the definition of the Grothendieck group of com-

plex algebraic varieties, denoted K0(V arC). It is the abelian group gen-

erated by the symbols [X], where X is a complex algebraic variety (not

necessarily irreducible), and with the following relations:

• if X is isomorphic to Y , then [X] = [Y ],

• if Y is a Zariski closed subset of X, then [X] = [X \ Y ] + [Y ].

There is a product structure making K0(V arC) into a ring, defined by

[X] · [Y ] = [X × Y ]. Thus the Grothendieck ring is the value ring of the

61
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‘universal Euler characteristic’ on algebraic varieties. The class of the

affine line A1 is usually denoted by L; the class of a point is the unity 1.

The localization of K0(V arC) with respect to the element L is denoted

by MC.

(3.1.2) Let X be an algebraic variety over C (not necessarily irreducible).

The space of arcs modulo tn+1 or the space of n-jets on X is an algebraic

variety Ln(X) such that

{points of Ln(X) with coordinates in C}

= {points of X with coordinates in
C[t]

(tn+1)
}.

If X is an affine variety given by equations fi(x1, . . . , xm) = 0 for i =

1, . . . , k, then Ln(X) is given by the equations in the variables a
(1)
0 , . . . ,

a
(1)
n , a

(2)
0 , . . . , a

(2)
n , . . . , a

(m)
0 , . . . , a

(m)
n expressing that

fi(a
(1)
0 +a

(1)
1 t+· · ·+a(1)

n tn, . . . , a
(m)
0 +a

(m)
1 t+· · ·+a(m)

n tn) ≡ 0 mod tn+1,

for all i. Note that L0(X) = X. There are natural truncation maps

πm
n : Lm(X) → Ln(X) for m ≥ n. The image πn

0 (γ) of an n-jet γ is called

the origin of γ. One also considers the space of arcs L(X) on X, it is the

inverse limit of the Ln(X) (this is not finite dimensional if dimX > 0

and is thus not a ‘true’ algebraic variety).

(3.1.3) Now we come to the definition of the motivic zeta function by

Denef and Loeser. Let X be a smooth complex algebraic variety of dimen-

sion d and let f : X → A1 be a non-constant morphism. This morphism

induces morphisms fn : Ln(X) → Ln(A1) for every n ≥ 1. A point α of

Ln(A1) corresponds to an element α(t) ∈ C[t]
(tn+1)

and thus one can consider

the function

ordt : Ln(A1) → {0, 1, . . . , n,∞},

which maps α(t) to the lowest power of t with nonzero coefficient, with

ordt(0) = ∞. Define the set Xn as

{γ ∈ Ln(X) | ordtfn(γ) = n}.

This is a locally closed subvariety of Ln(X). In [DL3, Definition 3.2.1]

Denef and Loeser define the following power series over MC:

Zf (T ) :=
∑

n≥1

[Xn]L−ndTn.
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They call it the naive motivic zeta function of f ; we will just call it the

motivic zeta function of f here. For a point x ∈ f−1(0) there exists also

a local version

Zloc,x,f (T ) :=
∑

n≥1

[Xn ∩ (πn
0 )−1(x)]L−ndTn,

obtained by restricting to jets with origin in x. The definition of the

motivic zeta function is in fact inspired by its number theoretic analogue:

Igusa’s p-adic zeta function (see [DL2] for more information).

Denef and Loeser express these power series in terms of an embedded

resolution of f−1(0) as follows. Let h : Y → X be an embedded reso-

lution of f−1(0). So Y is a nonsingular variety, h is a proper birational

morphism, the restriction h : Y \ h−1(f−1(0)) → X \ f−1(0) is an iso-

morphism and h−1(f−1(0)) is a divisor with smooth irreducible compo-

nents and normal crossings on Y . Denote the irreducible components of

h−1(f−1(0)) by Ei, i ∈ I, and for a subset J ⊂ I, write EJ := ∩i∈JEi and

E◦
J := EJ \ (∪i∈I\JEi). Let Ni be the multiplicity of Ei in the divisor

of f ◦ h and let νi − 1 be the multiplicity of Ei in the divisor of h∗dx,

where dx is a local generator of the sheaf of differential forms of maximal

degree on X. These two numbers are called the numerical data of Ei.

The motivic zeta function is then equal to ([DL3, Corollary 3.3.2], see

also [DL2, Theorem 2.2.1])

Zf (T ) =
∑

∅6=J⊂I

[E◦
J ]

∏

i∈J

(L − 1)

LνiT−Ni − 1
, (1)

where this equality must be interpreted in MC[[T ]]. In particular, this

formula does not depend on the chosen embedded resolution. For the

local motivic zeta function the formula becomes

Zloc,x,f (T ) =
∑

∅6=J⊂I

[E◦
J ∩ h−1(x)]

∏

i∈J

(L − 1)

LνiT−Ni − 1
. (2)

The motivic zeta function contains an enormous amount of information.

It specializes for example to the topological zeta function (defined by

Denef and Loeser in [DL1]), by ‘replacing’ T by L−s and applying the

topological Euler characteristic (see [DL3, Section 3.4]). In the next sec-

tion we will see what the connection with Batyrev’s stringy E-function

is.
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3.2 The Hodge zeta function and the stringy E-

function

(3.2.1) Let X be a smooth complex algebraic variety and let f : X →

A1 be a non-constant morphism. The Hodge-Deligne polynomial H( · )

can be seen as a ring morphism from K0(V arC) to Z[u, v], since it is

a generalized Euler characteristic. This induces a ring morphism from

MC[[T ]] to Q(u, v)[[T ]], and since H(L) = uv, this morphism applied to

(1) from the previous section gives

∑

∅6=J⊂I

H(E◦
J ;u, v)

∏

i∈J

(uv − 1)

(uv)νiT−Ni − 1
.

We will denote this element of Q(u, v)[[T ]] (even of Q(u, v)[[T ]]∩Q(u, v, T ))

by Hf (T ). It is called the Hodge zeta function, see for example [Rod].

(3.2.2) Proposition.1 Let X be a smooth algebraic variety of dimension

d and let f : X → A1 be a non-constant morphism such that X0 =

f−1(0) is irreducible, normal and canonical (recall that a hypersurface is

automatically Gorenstein). Then

Est(X0;u, v) = −
1

uv(uv − 1)
(Hf (T )(T − uv))|T=uv,

where the evaluation in T = uv makes sense, since the denominator of

Hf (T ) contains the factor T − uv only once.

Remark. The stringy E-function for a hypersurface can thus be seen as

a ‘residue’ of the Hodge zeta function.

Proof. Let h : Y → X be an embedded resolution of X0, with Ei, i ∈ I the

irreducible components of h−1(X0) and such that h : h−1(X0) → X0 is an

isomorphism outside the singular locus Sing X0 of X0. For a component

Ei that intersects the strict transform X̃0 of X0 (with Ei 6= X̃0) we can

look at the numerical data (νi, Ni) of the embedded resolution, but also

at the discrepancy ai of X̃0 ∩ Ei for h| �
X0

: X̃0 → X0 (this is actually a

log resolution !). Then we claim that ai + 1 = νi −Ni. Denote by J ⊂ I

the index set of the components Ei 6= X̃0 having nonempty intersection

1This proposition was communicated to me by W. Veys.
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with X̃0, and by J ′ the index set of all components different from X̃0.

Let f : X0 ↪→ X and g : X̃0 ↪→ Y be the inclusions. We have

KY = h∗(KX) +
∑

i∈I

(νi − 1)Ei

and

K �
X0

= h|∗�
X0

(KX0) +
∑

i∈J

ai(Ei ∩ X̃0)

By the adjunction formula, this latter is also equal to

g∗(KY + X̃0) = g∗(h∗(KX) +
∑

i∈I

(νi − 1)Ei) + g∗(h∗(X0) −
∑

i∈J ′

NiEi)

= h|∗�
X0

(f∗(KX +X0)) +
∑

i∈J

(νi − 1 −Ni)(Ei ∩ X̃0),

and then applying the adjunction formula once more proves the claim.

For X̃0 itself, the numerical data are (1, 1). So the terms of Hf (T ) con-

taining a piece of the Hodge-Deligne polynomial of X̃0 assure that the

‘residue’ of these terms is indeed the stringy E-function (modulo the cor-

rection − 1
uv(uv−1)), since X0 is canonical and all the ai + 1 = νi − Ni

are thus ≥ 1. If we can show that no exceptional component Ei with

Ei ∩ X0 = ∅ has νi − Ni = 0, then we are done. This follows from

the inversion of adjunction theorem for a smooth ambient variety by Ein,

Mustaţă and Yasuda (see [EMY, Theorem 1.6], later the first two authors

generalized this result to local complete intersection varieties in [EM]; see

also [K+, Chapter 17] for more information on inversion of adjunction).

In their terminology, the minimum of the ai + 1 for i ∈ J is called the

minimal log discrepancy of the pair (X0, ∅) on Sing X0. They show that

it is equal to the minimal log discrepancy of the pair (X,X0) on Sing X0,

and this is given by the minimum of the νi −Ni, for all i with Ei 6= X̃0.

This proves that all such νi −Ni ≥ 1. �

(3.2.3) Remark. If X0 has an isolated singularity in a point x and if

we want to compute the contribution of this singular point to the stringy

E-function, we can use the formula

−
1

uv(uv − 1)
(Hloc,x,f (T )(T − uv))|T=uv,
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where Hloc,x,f (T ) denotes the element of Q(u, v)[[T ]]∩Q(u, v, T ) obtained

by applying the Hodge-Deligne polynomial to formula (2) from Section

3.1.

3.3 Motivic zeta function of non-degenerate af-

fine hypersurfaces

(3.3.1) In this section we discuss the method of Artal, Cassou-Noguès,

Luengo and Melle to compute the motivic zeta function of a polyno-

mial that is non-degenerate with respect to its Newton polyhedron (see

[ACLM, Chapter 2]). This method is essentially earlier work by Denef

and Hoornaert for Igusa’s p-adic zeta function ([DH]). First we need

a lot of definitions about Newton polyhedra and polyhedral cones. Let

f : Ad → A1 be a morphism with f(0) = 0. (so f is just a poly-

nomial
∑

n∈(Z≥0)d anx
n, where x = (x1, . . . , xd),n = (n1, . . . , nd) and

xn = (xn1
1 , . . . , xnd

d ). The support of f is the set supp(f) = {n ∈

(Z≥0)d | an 6= 0}. The Newton polyhedron Γ(f) of f is the convex hull in

(R+)d of ⋃

n∈ supp(f)

n + (R+)d.

For the definition of a face of the Newton polyhedron we refer to [Roc,

p.162]. In particular, the Newton polyhedron itself is also considered as

a face. A (d − 1)-dimensional face of the Newton polyhedron is called a

facet. For a face τ of Γ(f), we denote
∑

n∈τ anx
n by fτ . The polynomial

f is called non-degenerate at the origin with respect to its Newton poly-

hedron if for every compact face τ the subvariety of (A1 \ {0})d given by

fτ = 0 is nonsingular. It is called non-degenerate if the same is true for

every face.

For k = (k1, . . . , kd) ∈ Rd set mf (k) := infx∈Γ(f){k · x}, with · the

standard inner product. In fact this infimum is attained and is thus a

minimum. The first meet locus of k is the set F (k) := {x ∈ Γ(f) |k ·x =

mf (k)}. This is a compact face of Γ(f) if and only if k ∈ (R+ \ {0})d.

For a face τ one defines the associated polyhedral cone ∆τ := {k ∈

(R+)d |F (k) = τ} in the dual space. It is well known that the cones

associated with the compact faces form a partition of (R+ \{0})d. A cone

∆ is called a rational simplicial cone (of dimension e) if it is generated by
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e linearly independent integer vectors β1, . . . , βe; thus

∆ = {λ1β1 + · · · + λeβe |λi ∈ R+ \ {0}}.

Usually one allows the λi to be 0 in this definition, but for our goal it is

more appropriate not to do that. We are interested in the set of integer

points ∆′ of such cones ∆:

∆′ := {δ ∈ (Z>0)d |nδ = λ1β1 + · · · + λeβe for some n ∈ Z>0 and λi ∈ Z>0}.

Let γ1, . . . , γe be obtained from the βi by dividing by the greatest common

divisor of the coordinates of βi. Then we say that ∆′ is strictly generated

by γ1, . . . , γe and

G∆′ := {δ ∈ (Z>0)d | δ = λ1γ1 + · · · + λeγe, 0 < λi ≤ 1}

is called the fundamental set of ∆′.

Every point k ∈ (Z>0)d belongs to a unique cone ∆τ associated to a

compact face τ . Let σ(k) be k1 + · · ·+kd. Artal, Cassou-Noguès, Luengo

and Melle define the following term for a compact face τ of the Newton

polyhedron of f (inspired by the work of Denef and Hoornaert):

S∆τ (f, T ) :=
∑

k∈(Z>0)d∩∆τ

L−σ(k)Tmf (k).

Note that this element does not need to belong to MC[[T ]]. Artal, Cassou-

Noguès, Luengo and Melle show that it belongs to the ring ([ACLM,

Lemma 2.1])

Z[L,L−1, (1 − L−σ(a)Tmf (a))−1][T ],

with a in the set of vectors such that a · x = M is a reduced integral equa-

tion of an affine hyperplane containing τ . In fact they give a more general

definition for S∆τ , but for our purposes this definition is sufficient. The

term can be computed by first computing a partition of ∆τ into rational

simplicial cones ∆i, i = 1, . . . , s. Then S∆τ (f, T ) =
∑s

i=1 S∆i
(f, T ). If ∆i

is the cone strictly generated by γ1, . . . , γe and Gi is the fundamental set

of ∆′
i, then one can prove that

S∆i
(f, T ) =


 ∑

g∈Gi∩(Z>0)d

L−σ(g)Tmf (g)




e∏

j=1

1

1 − L−σ(γj)Tmf (γj)
.
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For a compact face τ Artal, Cassou-Noguès, Luengo and Melle also define

a term Lτ (f, T ), as follows (in fact both this definition of Lτ (f, T ) and

our definition of the motivic zeta function differ by a factor L−d from

theirs). Let Nτ be the subvariety of (A1 \ {0})d defined by {fτ = 0} and

let [Nτ ] be its class in the Grothendieck ring K0(V arC). Set

Lτ (f, T ) := (L − 1)d − [Nτ ] + (L − 1)[Nτ ]
L−1T

1 − L−1T
∈ MC[[T ]].

Then we can finally state the following theorem ([ACLM, Theorem 2.4];

compare with the second remark after Theorem 4.2 in [DH] by ‘replacing’

L by p and T by p−s).

Theorem. Let f be a polynomial in d variables over the complex num-

bers with f(0) = 0. Assume that is non-degenerate at the origin with

respect to its Newton polyhedron Γ(f). Then

Zloc,0,f (T ) =
∑

compact faces
τ of Γ(f)

Lτ (f, T )S∆τ (f, T ).

When f is non-degenerate with respect to Γ(f), an analogous formula for

Zf (T ) can be given, by summing over all faces of Γ(f) (see Theorem 4.2

in [DH]).

(3.3.2) In the next section and in Chapter 4 we will combine this theorem

with Remark (3.2.3) to compute the contribution of an isolated singular

point of non-degenerate affine hypersurfaces to the stringy E-function.

The major advantage of this approach is that there are in general very few

denominators compared to the computation via a log resolution. Consider

for example an (m − 1)-dimensional An singularity, with n odd, m ≥ 4.

In Chapter 2 we found k = n+1
2 different discrepancy coefficients ai and

thus a priori k different denominators (uv)ai+1 − 1. Let us now apply

the above theorem. In this easy case all dual cones of the compact faces

are already simplicial. There is one compact face of dimension d − 1

and its dual cone is strictly generated by k := (1, k, . . . , k). This gives a

denominator of the form ((uv)(k(m−3)+1)−1), since σ(k) = (m−1)k+1 and

mf (k) = 2k (compare with Theorem (2.4.1) !). The additional generators

of dual cones of other compact faces τ are just a number of standard basis

vectors. They give a denominator of the form (uv− 1), but it will cancel
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since the Hodge-Deligne polynomial of Nτ contains this factor as many

times.

3.4 Contribution of an A-D-E singularity to the

stringy E-function revisited

(3.4.1) We will use the results of the previous sections to compute the

contribution of an A-D-E singularity to the stringy E-function in another

way. We only handle the Dn case (n even), since this is the hardest one.

Let m ≥ 3 be the dimension of the surrounding affine space. We explain

how one can find all the necessary data to compute the formula of Theo-

rem (3.3.1). We have put these data in a computer program that allowed

us to check the formula from Theorem (2.4.1) for concrete values of m

and n. We use the notations of the previous section.

The Dn singularity (n ≥ 4) was given by the origin of the hypersurface

{f(x) := xn−1
1 + x1x

2
2 + x2

3 + · · · + x2
m = 0} ⊂ Am.

So the 0-dimensional faces of the Newton polyhedron are given by the m

points

(n− 1, 0, . . . , 0), (1, 2, 0, . . . , 0), (0, 0, 2, 0, . . . , 0), . . . (0, . . . , 0, 2).

A compact face is then the convex hull of a number of these points. It

is easy to check that f is non-degenerate at the origin with respect to its

Newton polyhedron. For a compact face τ we compute first the class of

[Nτ ] in the Grothendieck ring, secondly the generators of the dual cones

and finally the decomposition in simplicial cones and the integer points

in the fundamental sets of these simplicial cones.

(3.4.2) Computation of the classes [Nτ ]. First note that if τ is 0-dimen-

sional, then the class [Nτ ] is zero. Essentially there are four kinds of

classes that we have to compute:

• Wl := the class of {xn−1
1 + x1x

2
2 + x2

3 + · · ·+ x2
l = 0} ⊂ (A1 \ {0})m

for 2 ≤ l ≤ m (for l = 2 we mean the class of {xn−1
1 + x1x

2
2 = 0}),

• Xl := the class of {x1x
2
2 + x2

3 + · · · + x2
l = 0} ⊂ (A1 \ {0})m for

3 ≤ l ≤ m,
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• Yl := the class of {xn−1
1 + x2

2 + · · · + x2
l = 0} ⊂ (A1 \ {0})m for

2 ≤ l ≤ m− 1,

• Zl := the class of {x2
1+· · ·+x2

l = 0} ⊂ (A1\{0})m for 2 ≤ l ≤ m−2.

For all of these cases we derive recursion formulae. Let us start with the

last one. We easily find Z2 = (L − 1)m−2(2L − 2). For l = 3 we use the

isomorphism

{x2
1 + x2

2 + x2
3 = 0} ⊂ (A1 \ {0})m

∼= {x2
1 + x2x3 = 0} ⊂ ({x2

2 6= x2
3}) × (A1 \ {0})m−2.

For x3 = 0 we find no contribution, since x1 6= 0. For x3 6= 0, we

can write x2 = −
x2
1

x3
. The condition that x2

2 6= x2
3 leads to x4

1 6= x4
3

in the (x1, x3)-plane. Together with x1 6= 0 and x3 6= 0 we find thus

L2 − 6(L− 1)− 1 = (L− 1)(L− 5) for the contribution of coordinates x1

and x3. We can choose m− 3 coordinates freely and x2 is determined by

x1 and x3. Thus

Z3 = (L − 1)m−2(L − 5).

For l ≥ 4 we use the analogous isomorphism

{x2
1 + · · · + x2

l = 0} ⊂ (A1 \ {0})m

∼= {x2
1 + · · · + x2

l−2 + xl−1xl = 0} ⊂ ({x2
l−1 6= x2

l }) × (A1 \ {0})m−2.

Now we find the contribution
Zl−2

L−1 for xl = 0 and (L − 1)m−1 − 2
Zl−1

L−1 for

xl 6= 0. Indeed, for both xl = xl−1 and xl = −xl−1 we have to subtract
Zl−1

L−1 . So we have the recursion formula

Zl =
Zl−2

L − 1
+ (L − 1)m−1 − 2

Zl−1

L − 1
.

For Y2 we find (L − 1)m−1 and for l ≥ 3 we proceed as in the Z-case:

Y3 = (L−1)m−2(L−3) and for l ≥ 4 we have the same recursion formula

Yl =
Yl−2

L − 1
+ (L − 1)m−1 − 2

Yl−1

L − 1
.

The Xl are also easy: since x2 cannot be zero we immediately find

(L − 1)m−1 −
Zl−2

L−1 , with X3 = (L − 1)m−1.
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The class W2 is equal to the class of {xn−2
1 + x2

2 = 0} ⊂ (A1 \ {0})m and

this is (2L − 2)(L − 1)m−2. For W3 we use the isomorphism of varieties

in (A1 \ {0})m induced by blowing up:

W := {x1 + x1x
2
2 + x2

3 = 0} ∼= {xn−1
1 + x1x

2
2 + x2

3 = 0}

(x1, . . . , xm) 7→ (x1, x
(n−2)/2
1 x2, x

(n−2)/2
1 x3, x4, . . . , xm).

It is easy to compute the class of W . If x2 6= ±i, then the contribution is

(L − 1)m−2(L − 3), and for x2 = ±i we find nothing. For l ≥ 4, we again

have the recursion formula

Wl =
Wl−2

L − 1
+ (L − 1)m−1 − 2

Wl−1

L − 1
.

(3.4.3) Computation of the generators of the dual cones. These gener-

ators correspond to the cones that are dual to the facets of the Newton

polyhedron (not only to the compact facets). There are m+2 such facets.

The following picture for m = 3 might be helpful.

u

u

A
A
A
A
AA

u

�
�

�
�

�
�

�
���������

%
%%

(n− 1, 0, 0)

(1, 2, 0)

(0, 0, 2)

%
%
%
%
%%

x1

x3

x2

The hyperplane through all the m 0-dimensional faces of Γ(f) has equa-

tion

2x1 + (n− 2)x2 + (n− 1)x3 + · · · (n− 1)xm = 2(n− 1),

and thus its dual cone is generated by α := (2, n − 2, n − 1, . . . , n − 1).

If we consider the noncompact facet that contains all points except (n−

1, 0, . . . , 0), we get a dual cone generated by β := (2, 0, 1, . . . , 1). All the

standard basis vectors generate dual cones as well. Note that the first
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one (1, 0, . . . , 0) is different from the others, since it is dual to a facet

that contains only m − 2 0-dimensional faces. We call this vector δ, the

other standard basis vectors are denoted γ2 := (0, 1, 0, . . . , 0), . . . , γm :=

(0, . . . , 0, 1). For all of these vectors, the essential data are the sum of the

coefficients σ and the number mf (see previous section). We denote these

data for a vector k by [σ(k),mf (k)]. Thus we get the following table

generator α β γ2 . . . γm δ

[σ, mf ] [(n − 1)(m − 1) + 1, 2(n − 1)] [m, 2] [1, 0] . . . [1, 0] [1, 0]

(3.4.4) Computation of the decomposition in simplicial cones and the in-

teger points in the fundamental sets of these cones. There is one compact

face of dimension m− 1, with one integer point in the fundamental set of

the dual cone, namely α, with data [(n− 1)(m− 1) + 1, 2(n− 1)]. There

are two types of compact faces of dimension m − 2. The first type does

not contain the point (1, 2, 0, . . . , 0) (dual cone generated by α and γ2,

since this compact face is the intersection of the facets dual to α and

γ2) or a point (0, 0, 0, . . . , 0, 2, 0, . . . , 0) with the 2 on position i ≥ 3, its

dual cone is then strictly generated by α and γi. The fundamental set

has only the integer point (2, n − 1, . . . , n − 1) for the first cone, and

(2, n−2, n−1, . . . , n−1, n, n−1, . . . , n−1) in the second case. The data

are [(n − 1)(m − 1) + 2, 2(n − 1)]. The second type is the compact face

that does not contain (n− 1, 0, . . . , 0), with dual cone strictly generated

by α and β. This cone has n− 2 integer vectors in its fundamental set:

{
j

n− 2
α+

n− 2 − j

n− 2
β | j = 1, . . . , n− 3} ∪ {α+ β},

with data

{[(j + 1)(m− 1) + 1, 2(j + 1)] | j = 1, . . . , n− 3} ∪ {[n(m− 1) + 2, 2n]}.

Note that the cone generated by α and δ does not correspond to an

(m− 2)-dimensional compact face of the Newton polyhedron.

For the 3-dimensional cones the situation becomes more complicated. The

reason is that the intersection of the facets dual to α, β, γ2 and δ is also

an (m − 3)-dimensional compact face τ . This means that the cone dual

to τ is not simplicial, since it is generated by 4 elements. We decompose
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it in three pieces; the first piece ∆3
1 generated by α, β, δ, the second ∆3

2

generated by α, γ2, δ and then a 2-dimensional cone ∆3
1,2 generated by

α, δ. There are n− 2 integer vectors in ∆3
1, namely

{
j

n− 2
α+

n− 2 − j

n− 2
β + δ | j = 1, . . . , n− 3} ∪ {α+ β + γ},

with data

{[(j + 1)(m− 1) + 2, 2(j + 1)] | j = 1, . . . , n− 3} ∪ {[n(m− 1) + 3, 2n]}.

For ∆3
2 we find the integer vectors

{
j

n− 1
α+

j

n− 1
γ2 +

n− 1 − 2j

n− 1
δ | j = 1, . . . , (n− 2)/2}

∪{
j

n− 1
α+

j

n− 1
γ2 +

2n− 2 − 2j

n− 1
δ | j = n/2, . . . , n− 2} ∪ {α+ γ2 + δ},

with data

{[j(m− 1) + 1, 2j] | j = 1, . . . , (n− 2)/2}

∪{[j(m−1) + 2, 2j] | j = n/2, . . . , n−2}∪{[(n−1)(m−1) + 3, 2(n−1)]}.

And for ∆3
1,2 we only find α+ δ with data [(n− 1)(m− 1) + 2, 2(n− 1)].

The other 3-dimensional cones are easier. There are m−2 cones generated

by α, β and a γi (i ≥ 3), with data

{[(j + 1)(m− 1) + 2, 2(j + 1)] | j = 1, . . . , n− 3} ∪ {[n(m− 1) + 3, 2n]}.

And then we have
(
m−1

2

)
cones generated by α, a γi and a γj . These have

only one integer vector in their fundamental set, with data [(n− 1)(m−

1) + 3, 2(n− 1)].

We can continue in this way for the higher dimensional cones. However,

we must be careful: there are three cones that need a different treatment

(one of dimension m − 1 and two of dimension m). First we summarize

the results for general k-dimensional cones. We also give the correspond-

ing class in the Grothendieck ring (recall that these classes are 0 for

m-dimensional cones). There are
(
m−1
k−1

)
cones generated by α and k − 1

γi’s. These have one integer vector in their fundamental set, with data

[(n− 1)(m− 1) + k, 2(n− 1)]. If γ2 belongs to the set of generators, then
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the corresponding class in the Grothendieck ring is of type Ym−k+1, else

it is of type Wm−k+1. There are
(
m−2
k−2

)
cones generated by α, β and k− 2

γi’s (i ≥ 3) with data

{[(j+ 1)(m− 1) + k− 1, 2(j+ 1)] | j = 1, . . . , n− 3}∪ {[n(m− 1) + k, 2n]}

and with class in the Grothendieck ring of type Xm−k+2. And then there

are
(
m−2
k−3

)
non-simplicial cones, generated by α, β, γ2, δ and k − 3 γi’s

(i ≥ 3). The class in the Grothendieck ring corresponding to these cones

is of type Zm−k+1. They can be divided in three simplicial cones; first

∆k
1 generated by α, β, δ and the k − 3 γi’s with data

{[(j+ 1)(m−1) +k−1, 2(j+ 1)] | j = 1, . . . , n−3}∪{[n(m−1) +k, 2n]}.

The second piece is ∆k
2 generated by α, γ2, δ and the γi’s, with data

{[j(m− 1) + k − 2, 2j] | j = 1, . . . , (n− 2)/2}

∪{[j(m−1)+k−1, 2j] | j = n/2, . . . , n−2}∪{[(n−1)(m−1)+k, 2(n−1)]}.

The third piece is generated by α, δ and the γi’s and has data [(n−1)(m−

1) + k − 1, 2(n− 1)].

Finally, we handle the three special cases. The (m− 1)-dimensional cone

generated by α, γ3, . . . , γm has two integer vectors in its fundamental set,

namely

(1,
n− 2

2
,
n

2
, . . . ,

n

2
) and (2, n− 2, n, . . . , n),

with data

[(m− 1)
n

2
, n− 1] and [(m− 1)n, 2(n− 1)].

An analogous phenomenon occurs for the m-dimensional cone generated

by α, γ2, γ3, . . . , γm. The data are now

[(m− 1)
n

2
+ 1, n− 1] and [(m− 1)n+ 1, 2(n− 1)].

And there is also the m-dimensional cone generated by α, β, γ3, . . . , γm.

The integer vectors of the fundamental set of this cone are

{
j

n− 2
α+

n− 2 − j

n− 2
β + γ3 + · · · + γm | j = 1, . . . , n− 3}

∪{α+ β + γ3 + · · · + γm}
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∪{
j

n− 2
α+

n− 2 − 2j

2(n− 2)
β +

1

2
γ3 + · · · +

1

2
γm | j = 1, . . . ,

n− 4

2
}

∪{
j

n− 2
α+

3(n− 2) − 2j

2(n− 2)
β +

1

2
γ3 + · · · +

1

2
γm | j =

n− 2

2
, . . . , n− 2},

with data

{[(j + 2)(m− 1), 2(j + 1)] | j = 1, . . . , n− 3} ∪ {[(m− 1)(n+ 1) + 1, 2n]}

∪{[(m− 1)(j + 1), 2j + 1] | j = 1, . . . ,
n− 4

2
}

∪{[(m− 1)(j + 2) + 1, 2j + 3] | j =
n− 2

2
, . . . , n− 2}.

(3.4.5) To conclude this section and this chapter, we give an easy ex-

plicit example of the above computations. For a 5-dimensional (m = 6)

D8 singularity (n = 8) our computer program gives the following local

motivic zeta function:

Zloc,0,f =
T 2

(L − T )(L18 − T 7)

(
(1 − L − 2L3 + 2L4)T 6

+ (2L3 − 2L4 − L6 + L7)T 5 + (L6 − L7 − L8 + L9)T 4

+ (L8 − L9 − L11 + L12)T 3 + (L11 − L12 − L13 + L14)T 2

+ (L13 − L14 − L16 + L17)T + L16 − L17 − L18 + L19

)
.

Thus by the procedure of Section 3.2 the contribution of such a singularity

to the stringy E-function becomes (with w = uv)

w12 + w11 − w10 + w9 − w7 + w6 − w4 + 2w3 − 2w2 − 1

w11 − 1
,

and by a short computation this can be seen to be equal to the formula

from Theorem (2.4.1).





Chapter 4

An interesting example

Abstract

We show by example that the answer to Question (0.2.5) is ‘no’ in general. Our example

consists of a 6-dimensional projective variety with isolated terminal singularities. We

have computed a log resolution that has some components with discrepancy 1. In

particular, this shows that Theorem (1.2.2) cannot be extended, since in that theorem

we already allow discrepancy coefficients ≥ 2.

4.1 Hodge-Deligne polynomials of quasi-homo-

geneous hypersurfaces and Fermat hypersur-

faces

(4.1.1) In this section we discuss some results obtained by Dais in [Da].

He used these results to compute the contribution of a so called A
(r)
n,l

singularity to the stringy E-function (for the cases l |n and l |n + 1).

This kind of singularity is given by the origin of

{xn+1
1 + xl

2 + · · · + xl
r+1 = 0} ⊂ Ar+1,

for r ≥ l ≥ 2 and n+1 ≥ l. In particular, this includes the An singularities

from Chapter 2. We will need Dais’ computation of the Hodge-Deligne

polynomial of a quasi-homogeneous affine hypersurface with an isolated

singularity in the origin and of the Hodge-Deligne polynomial of a Fermat

hypersurface.

77
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(4.1.2) Let f ∈ C[x1, . . . , xr+1] be a quasi-homogeneous polynomial of

degree d with respect to the weights w1, . . . , wr+1 ∈ Z>0. This means

that

f(λw1x1, . . . , λ
wr+1xr+1) = λdf(x1, . . . , xr+1) for all λ ∈ C∗.

In particular, f(0) = 0. Assume moreover that 0 is an isolated singularity

of the hypersurface Y := {f = 0} ⊂ Ar+1 = Cr+1. The following well

known construction is due to Milnor ([Mi]). For small enough ε > 0, the

closed ball Bε ⊂ Cr+1 of radius ε and centered in the origin intersects

f−1(0) transversely. For 0 < η � ε and for t in the disk Dη ⊂ C with

radius η around the origin, the fibre f−1(t) intersects Bε transversely

as well. Set X := f−1(Dη) ∩ Bε, X0 := X ∩ f−1(0), X∗ = X \ X0 and

D∗
η = Dη \ {0}. The mapping

f |X∗ : X∗ → D∗
η

is a locally trivial C∞-differentiable fibre bundle. Its fibre Xt over a point

t ∈ D∗
η is called the Milnor fibre. The link L is the intersection of {f = 0}

with the boundary of Bε. Let Ft be the interior of Xt. It is well known

that the cohomology of L and Ft carries a natural mixed Hodge structure.

Dais shows that ([Da, Proposition 2.8])

H(Y ;u, v) = (uv)r + (−1)r−1(uv − 1)
r−1∑

p=0

hp,r−1−p(Hr−1(L,C))upvr−1−p,

where hp,r−1−p(Hr−1(L,C)) denotes the dimension of the Hp,r−1−p com-

ponent of the mixed Hodge structure on the singular cohomology group

Hr−1(L,C). These numbers can be computed in terms of w1, . . . , wr+1,

as explained in Theorem 2.6 and Lemma 2.7 of [Da]. Consider the Milnor

algebra

M(f) :=
C[x1, . . . , xr+1](

∂f
∂x1

, . . . , ∂f
∂xr+1

) .

This becomes a finitely generated graded C-algebra if we give xi degree

wi. The Poincaré series of such an algebra is defined by

PM(f)(t) :=
∑

k≥0

dimC(M(f)k)tk,
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where M(f)k is the piece of degree k. This series can be calculated by

the formula

PM(f)(t) =
(1 − td−w1) · · · (1 − td−wr+1)

(1 − tw1) · · · (1 − twr+1)
.

Dais shows, referring to work of Griffiths and Steenbrink ([Gr] and [St1]),

that the numbers hp,r−1−p(Hr−1(L,C)) equal

dimC(M(f))(p+1)d−(w1+···+wr+1),

and thus they can be computed from the Poincaré series.

(4.1.3) We denote the d-dimensional Fermat hypersurface of degree l by

Y
(d)
l . So Y

(d)
l is given by

{xl
0 + · · · + xl

d+1 = 0} ⊂ Pd+1.

To write down the Hodge-Deligne polynomial of Y
(d)
l we need an auxiliary

definition. Dais considers the numbers

G(κ, λ | ν, ξ) :=

λ∑

j=0

(−1)j

(
κ+ 1

j

)(
ν(λ− j) + ξ

κ

)

for (κ, λ, ν, ξ) ∈ Z4
≥0 and κ ≥ λ (if m > n, the binomial coefficient

(
n
m

)

must be interpreted as 0). Then the Hodge-Deligne polynomial of Y
(d)
l is

given by ([Da, Lemma 3.3])

H(Y
(d)
l ;u, v) :=

d∑

p=0

up
(
vp + (−1)dG(d+ 1, p+ 1 | l − 1, p)vd−p

)
.

4.2 A negative answer to Question (0.2.5)

(4.2.1) Suppose that we would like to prove Theorem (1.2.2) in some

other cases. One of the first cases not covered by this theorem, is that

of a 6-dimensional projective variety Y with Gorenstein terminal isolated

singularities (thus compared with condition (∗) we also allow discrepancy

coefficients equal to 1). If we develop the stringy E-function of Y in a

power series
∑

i,j≥0 bi,ju
ivj , then the problem to prove Theorem (1.2.2) is

situated in the coefficient b3,3 (the other coefficients bi,j for i+j ≤ 6 always

have the right sign, this can be proved like in Theorem (1.2.2)). We recall
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some of the notations of the proof of Theorem (1.2.2). Take a log resolu-

tion f : X → Y of Y with irreducible exceptional components Di, i ∈ I.

Let ai be the discrepancy coefficient of Di. Set DJ := ∩i∈JDi for a subset

J ⊂ I. Denote the Hodge-Deligne polynomial of X by
∑

i,j ai,ju
ivj and

of DJ , J 6= ∅, by
∑

i,j a
J
i,ju

ivj . Then we can write b3,3 as

b3,3 = a3,3 −
∑

i∈I

a
{i}
2,2 +

∑

J⊂I
|J |=2

aJ
1,1 −

∑

J⊂I
|J |=3

aJ
0,0

+
∑

i∈I
ai=1

a
{i}
1,1 −

∑

i∈I
ai=1

a
{i}
0,0 −

∑

{i,j}∈I
ai=1 or aj=1

δ{i,j}a
{i,j}
0,0 +

∑

i∈I
ai=2

a
{i}
0,0 ,

(1)

where δ{i,j} ∈ {1, 2} is the number of components in {i, j} with discrep-

ancy 1. For the terms on the first line, we can proceed exactly as in the

proof of Theorem (1.2.2) to prove that their alternating sum is nonnega-

tive. For the terms on the second line this is not clear; and it is actually

not true. They can even be ‘negative enough’ to make b3,3 negative. So

in order to find an example where this occurs, we need some exceptional

components with discrepancy 1 and a lot of intersections with them. At

least the first of these needs is fulfilled by the hypersurface singularity

{x5
1 + x5

2 + x6
3 + x6

4 + x6
5 + x6

6 + x6
7 = 0} ⊂ A7. If we blow up once in the

origin, the exceptional locus consists of five irreducible components, all

having discrepancy coefficient 1 (thanks to the fifth powers in the equa-

tion). To get this singularity on a projective variety, we just take the

projective closure:

Y := {x5
1z + x5

2z + x6
3 + x6

4 + x6
5 + x6

6 + x6
7 = 0} ⊂ P7,

where we consider z = 0 as the hyperplane at infinity. This operation

gives us five additional isolated singularities at infinity. The rest of this

section is devoted to computing the stringy E-function of Y . This leads

to the following result.

Proposition. The answer to Question (0.2.5) is ‘no’ for Y .

(4.2.2) Contribution of the singularities to the stringy E-function via a

log resolution. Let us consider the singularities at infinity first. These are

all analytically isomorphic to the origin of

Y ′ := {x2
1 + x2

2 + x6
3 + · · · + x6

7 = 0} ⊂ A7.
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To resolve them, we have to blow up in the singular point first. This

gives two exceptional components, denoted D∞
1 and D∞

2 , and their inter-

section becomes the new singular locus. Blowing it up, gives again two

exceptional components E∞
1 and E∞

2 whose intersection is singular for

the strict transform of Y ′. Moreover, the components D∞
1 and D∞

2 are

separated (like in Chapter 2, we use the same name for an exceptional

divisor at every moment of the resolution process). Then we only have to

perform the blow up in the intersection of E∞
1 and E∞

2 . This gives one

new exceptional component F∞ and the following intersection diagram:

u u u u u

D∞
1 E∞

1 F∞ E∞
2 D∞

2

The discrepancy coefficient of all these components is 4. The components

D∞
1 and D∞

2 are isomorphic to P5, E∞
1 and E∞

2 are P1-bundles over P4

and all intersections are isomorphic to P4. It is not so easy to compute

the Hodge-Deligne polynomial of F∞. In one of the charts, F∞ is given

by the equations

{x3 = 0, x2
1 + x2

2 + 1 + x6
4 + x6

5 + x6
6 + x6

7 = 0} ⊂ A7.

This variety is isomorphic to

{x1x2 + 1 + x6
4 + · · · + x6

7 = 0} ⊂ A6.

For x1 6= 0, one finds a contribution of (uv− 1)(uv)4 to H(F∞;u, v). For

x1 = 0, one finds uv times the Hodge-Deligne polynomial of an affine piece

of the 3-dimensional Fermat hypersurface Y
(3)
6 of degree 6 (in fact Y

(3)
6 \

Y
(2)
6 ), and this Hodge-Deligne polynomial can be calculated by (4.1.3).

Taking into account the contributions of all other relevant coordinate

charts (that can be calculated analogously), one finds

H(F∞;u, v) = (uv)5 + 2(uv)4 + 2(uv)3 + 2(uv)2 + 2(uv) + 1 + (uv)H(Y
(3)
6 ;u, v),

with

H(Y
(3)
6 ;u, v) = (uv)3 + (uv)2 + uv + 1 − 5u3 − 5v3 − 255u2v − 255uv2.

With these data, one can compute that the contribution of such a singular

point to the stringy E-function is

A :=
(uv − 1)

((uv)5 − 1)

(
5(uv)5 + (uv)4 + (uv)3 + (uv)2 + uv + 1

− 5u4v − 5uv4 − 255u3v2 − 255u2v3

)
.
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The computation of the contribution of the singularity in (0, . . . , 0, 1) is

a bit complicated, though the results are nice. First we blow up in the

singular point itself. As already noticed, this produces five exceptional

components D1, . . . , D5. After this blow up, they all go through one P4,

and thus they have nowhere normal crossings. The new singular locus

is a Fermat hypersurface of degree 6 on this P4. Blowing up in this

singular locus gives two new exceptional divisors E1 and E2. They both

intersect the Di, but the new singular locus is the intersection of E1 and

E2. This singular locus also contains a piece of the intersection of the

Di, and this piece is exactly the intersection of the Di with E2 (which is

surprisingly only 3-dimensional). Blowing up in this new singular locus

splits of E2 from E1 and all the Di. Two new exceptional components

F1 and F2 appear. They intersect each other, and apart from that, the

first intersects E1 and all the Di, and the second intersects E2 and the

Di. The new singular locus consists of five separate pieces; one piece on

each Di. It is exactly the intersection of F2 with the Di. Blowing it

up gives us five new components G1, . . . G5, all intersecting F1, F2, and

every Gi intersects one Di (of course we take a compatible numbering).

Finally we have a nonsingular strict transform, but still the Di have no

normal crossings. Blowing up in their intersection (which isomorphic

to P4), gives one new exceptional component C (a P1-bundle over this

intersection), intersecting each Di and also intersecting E1. We find the

following intersection diagram:

u

u

u

u

u

u u u u

u

u

u

u
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We mentioned already that the discrepancy coefficients of the Di are 1.

One finds 6 for C, 5 for E1 and the Gi, 4 for F1, 3 for F2 and 2 for E2.

There are twenty threefold intersections, namely C∩E1∩Di, E1∩F1∩Di,

F1∩Di∩Gi and F1∩F2∩Gi, where i runs of course from 1 to 5. They are

all isomorphic to the Fermat hypersurface Y
(3)
6 . One can count from the

diagram that there are thirty-four twofold intersections, all having Hodge-

Deligne polynomial (uv+ 1)H(E
(3)
6 ;u, v), except for the C ∩Di, they are

isomorphic to P4. The Hodge-Deligne polynomials of the components

itself are

H(C) = (uv + 1)((uv)4 + (uv)3 + (uv)2 + uv + 1),

H(Di) = (uv)5 + (uv)4 + (uv)3 + (uv)2 + uv + 1 + 3uvH(Y
(3)
6 ;u, v),

H(E1) = H(Gi) = ((uv)2 + 2uv + 1)H(Y
(3)
6 ;u, v),

H(E2) = ((uv)2 + uv + 1)H(Y
(3)
6 ;u, v),

H(F1) = H(F2) = ((uv)2 + 7uv + 1)H(Y
(3)
6 ;u, v).

By a rather lengthy calculation one can simplify the contribution of this

singular point to

B :=
(uv − 1)

((uv)7 − 1)

(
5(uv)10 + (uv)9 + 7(uv)8 + 3(uv)7 + 9(uv)6 + 4(uv)5

+ 8(uv)4 + 2(uv)3 + 6(uv)2 + uv + 1 − 5u9v6 − 5u6v9 − 255u8v7

− 255v7v8 − 5u8v5 − 5u5v8 − 255u7v6 − 255u6v7 − 5u7v4 − 5u4v7

− 255u6v5 − 255u5v6 − 5u6v3 − 5u3v6 − 255u5v4 − 255u4v5

− 20u4v − 20uv4 − 1020u3v2 − 1020u2v3

)
.

(4.2.3) Contribution of the singular points to the stringy E-function via

Newton polyhedra. It is interesting to explain this method too, since in

this particular case, it is easy to find the dual cones, and so the contribu-

tions of the singular points can easily be calculated by a computer. We

will handle the singularity in the origin; the singularities at infinity are

even easier. The Newton polyhedron of f = x5
1+x5

2+x6
3+x6

4+x6
5+x6

6+x6
7

has one compact facet with dual 1-dimensional cone generated by α :=

(6, 6, 5, 5, 5, 5, 5). The other facets are non-compact and simply have the

standard basis vectors β1, . . . , β7 as generators of their dual cone. For a

j-dimensional cone we want to distinguish in general three types.

• Type 1 : There are
(

5
j−1

)
cones generated by α and j − 1 vectors

from {β3, . . . , β7} (for j ≥ 1). So this type does not occur for j = 7.
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There is one integer vector in the fundamental set, namely the sum

of the generators, with data [37 + j − 1, 30]. To this rule, there is

one exception: for j = 6 there are 6 integer vectors:

{(1, . . . , 1), . . . , (6, . . . , 6)}

with data

{[7, 5], [14, 10], . . . , [42, 30]}.

• Type 2 : There are 2
(

5
j−2

)
cones generated by α, β1 or β2 (not both),

and j − 2 other βi’s. There is no 1-dimensional cone of this type.

These cones have always one integer vector in their fundamental set

with data [37 + j − 1, 30], except for j = 7. In that case there are 6

integer vectors with data

{[8, 5], [15, 10], [22, 15], [29, 20], [36, 25], [43, 30]}.

• Type 3 : Now we choose α, β1, β2 and j− 3 other βi’s as generators.

This type does not occur for j = 1, 2 and there are
(

5
j−3

)
cones of

this type. There are always 5 integer vectors in the fundamental

domain with data

{[6 + j, 6], [13 + j, 12], [20 + j, 18], [27 + j, 24], [36 + j, 30]}.

These types correspond to three types of varieties whose classes in the

Grothendieck ring must be computed, namely

• Type 1 : Xj := {x5
1 + x5

2 + x6
3 + · · · + x6

8−j = 0} ⊂ (A1 \ {0})7 for

1 ≤ j ≤ 6 (for j = 6 we mean X6 = {x5
1 + x5

2 = 0}),

• Type 2 : Yj := {x5
1 +x6

2 + · · ·+x6
8−j = 0} ⊂ (A1 \{0})7 for 2 ≤ j ≤ 7

(with Y7 = {x5
1 = 0}),

• Type 3 : Zj := {x6
1 + · · · + x6

8−j = 0} ⊂ (A1 \ {0})7 for 3 ≤ j ≤ 7.

In fact we will not compute the classes, but just the Hodge-Deligne poly-

nomial of these varieties; that is sufficient for the stringy E-function. We

will just present one example: Type 1 for j = 4. Let X ′
j , Y

′
j and Z ′

j be the

varieties given by the same equations as Xj , Yj and Zj , but considered as

a subvariety of A8−j . We can express the Hodge-Deligne polynomial of
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Xj as follows (by subtracting from H(X ′
j) the intersections with the co-

ordinate hyperplanes, adding again twofold intersections and so on, and

multiplying by the right power of (uv − 1)):

H(X4) = (uv − 1)3
(
H(X ′

4) − 2H(Y ′
5) − 2H(X ′

5) +H(Z ′
6) + 4H(Y ′

6)

+H(X ′
6) − 2H(Z ′

7) − 2H(Y ′
7) + 1

)
.

The Hodge-Deligne polynomials of X ′
j , Y

′
j and Z ′

j can be calculated by the

method of Dais from (4.1.2). We get (here the last five are elementary)

H(X ′
4) = (uv)3 + 20uv(uv − 1)

H(Y ′
5) = (uv)2

H(X ′
5) = (uv)2

H(Z ′
6) = 6uv − 5

H(Y ′
6) = uv

H(X ′
6) = 5uv − 4

H(Z ′
7) = 1

H(Y ′
7) = 1,

and thus we find H(X4) = (uv − 1)3((uv)3 + 16(uv)2 − 5uv − 12). For

smaller j, the computation is more complicated, we have written a short

computer program for that. In the end, the result is the same as expres-

sion B above.

(4.2.4) Computation of the Hodge-Deligne polynomial of the nonsingular

locus. Let us first compute the contribution of the nonsingular part of Y

at infinity. The total part at infinity is given by

Y∞ := {x6
3 + x6

4 + x6
5 + x6

6 + x6
7 = 0} ⊂ P6.

To find the nonsingular part, we just have to remove 5 points. In fact

Y∞ can be found from Y
(3)
6 by taking twice the projective cone. On the

level of the Hodge-Deligne polynomial, one such operation multiplies the

original Hodge-Deligne polynomial by uv and adds 1. The contribution

at infinity becomes thus (do not forget to subtract the 5 singular points)

C := (uv)5 +(uv)4 +(uv)3 +(uv)2 +uv−4−5u5v2−5u2v5−255u4v3−255u3v4,

since H(Y
(3)
6 ;u, v) was

(uv)3 + (uv)2 + uv + 1 − 5u3 − 5v3 − 255u2v − 255uv2.
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Finally, we only have to compute the contribution of {x5
1 +x5

2 +x6
3 + · · ·+

x6
7 = 0} ⊂ A7 minus the singular point. This can again be done by the

method of (4.1.2) and the result is (subtracting also the singular point)

D := (uv)6 − 1 − (uv − 1)(20u4v + 20uv4 + 1020u3v2 + 1020u2v3).

(4.2.5) The total stringy E-function. We just add the terms 5A,B,C

and D and simplify. The result is

Est(Y ;u, v) =
1

((uv)5 − 1)((uv)7 − 1)

(
(uv)18 + (uv)17 + 6(uv)16 − 3(uv)15

+ 7(uv)14 + 21(uv)13 − 20(uv)12 − 12(uv)11 + 6(uv)10 − 14(uv)9 + 6(uv)8

− 12(uv)7 − 20(uv)6 + 21(uv)5 + 7(uv)4 − 3(uv)3 + 6(uv)2 + uv + 1

− 25(u17v14 + u14v17 + u4v + uv4) − 1275(u16v15 + u15v16 + u3v2 + u2v3)

+ 20(u16v13 + u13v16 + u5v2 + u2v5) + 1020(u15v14 + u14v15 + u4v3 + u3v4)

− 5(u15v12 + u12v15 + u6v3 + u3v6) − 255(u14v13 + u13v14 + u5v4 + u4v5)

+ 10(u11v8 + u8v11 + u10v7 + u7v10) + 510(u10v9 + u9v10 + u9v8 + u8v9)

)
.

So if we develop this in power series, we get a term −3(uv)3, and this

gives indeed a negative answer to Question (0.2.5). It is interesting to see

what formula (1) from (4.2.1) becomes in this case. Let D∞ be the total

exceptional locus of all singular points at infinity, and let D be the total

exceptional locus of the other singular point. There are exact sequences

0 → H3,3(H6(D)) → H3,3(H6(D(0))) → H3,3(H6(D(1)))

→ H3,3(H6(D(2))) → 0

and

0 → H3,3(H6(D∞)) → H3,3(H6((D∞)(0))) → H3,3(H6((D∞)(1))) → 0,

as in the proof of Theorem (1.2.2). The dimensions of the spaces in

the first sequence are (in the right order) 24, 67, 63, 20 and of the second

sequence 25, 45, 20 (this can be seen from the explanation in (4.2.2)). And

the first part of the formula for b3,3 from (4.2.1) becomes

a3,3 −
∑

i∈I

a
{i}
2,2 +

∑

J⊂I
|J |=2

aJ
1,1 −

∑

J⊂I
|J |=3

aJ
0,0
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= (1 + 24 + 25) − (67 + 45) + (63 + 20) − 20 = 1,

where the 1 comes from the coefficient of (uv)3 in C + D. The second

part of that formula is

∑

i∈I
ai=1

a
{i}
1,1−

∑

i∈I
ai=1

a
{i}
0,0−

∑

{i,j}∈I
ai=1 or aj=1

δ{i,j}a
{i,j}
0,0 +

∑

i∈I
ai=2

a
{i}
0,0 = 20−5−20+1 = −4,

and in that way we find −3 for b3,3.
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(1) Polynomial stringy E-functions. The example of Chapter 4 provides

some evidence that Batyrev’s conjecture (0.2.5) might not be true. But

in his conjecture, he assumes that the stringy E-function is a polynomial.

If we compare this to a power series development
∑

i,j≥0 bi,ju
ivj , like in

Chapter 1, this means that all bi,j are 0 for i, j ≥ d, where d is the dimen-

sion of the variety Y . Moreover, bd,d = 1, and there are symmetry rela-

tions bi,j = bd−i,d−j for i, j ≤ d. If we choose a log resolution f : X → Y ,

all these relations can be translated to relations between Hodge numbers

of X and Hodge numbers of the exceptional components Di, Hodge num-

bers of intersections of these components, etc. (the components with the

smallest discrepancy coefficients have the most contributions). However,

these relations are rather complicated and it is not immediately clear how

they can help to prove the conjecture.

(2) Connection with intersection cohomology. Let us have another look

at Proposition (1.2.5). If we forget the term S, then the numbers bi,j for

i+j ≤ d come fromHd−i,d−j(H2d−i−j(Y )), where Y is our singular projec-

tive variety of dimension d, satisfying condition (∗). By the remark after

the proof of Proposition (1.2.5), H2d−i−j(Y ) has a pure Hodge structure

for i+j < d. For i+j = d, only the quotient Hd(Y )
Wd−1Hd(Y )

, where W• denotes

the weight filtration, contributes to the numbers bi,j . These groups are

in fact isomorphic to the intersection cohomology groups (with respect to

the middle perversity). Since Y has isolated singularities, it follows im-

mediately from [KW, Proposition 4.4.1] that IH2d−i−j(Y ) ∼= H2d−i−j(Y )

for i+ j < d. This same proposition says that

IHd(Y ) ∼=
Hd(Y )

ker(Hd(Y ) → Hd(Y \ Sing Y ))
,

where Sing Y is of course the set of singular points of Y . The natural

89
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map Hd(Y ) → IHd(Y ) is thus certainly surjective, and the combination

of Theorem 1.7 (D’) and (E’) from [We] gives then

IHd(Y ) ∼=
Hd(Y )

ker(Hd(Y ) → Hd(Y \ Sing Y ))
=

Hd(Y )

Wd−1Hd(Y )
.

This same result can also be deduced by using Durfee’s construction of

a mixed Hodge structure on a punctured neighbourhood. Let Ti, i =

1, . . . , s be disjoint contractible closed neighbourhoods around the sin-

gular points yi. Let T ∗
i be Ti \ {yi}. Then according to [Du, Theorem

3.2], there exists a mixed Hodge structure on the cohomology of the T ∗
i

such that the Mayer-Vietoris sequence (written down for m > 0; then the

cohomology of the Ti is trivial)

→ Hm(Y ) → Hm(Y \ Sing Y ) → Hm(∪iT
∗
i ) → Hm+1(Y ) →

is a sequence of morphisms of mixed Hodge structures. Moreover, by

Proposition 3.8 from the same paper, WmH
m(∪iT

∗
i ) = 0 for m ≥ d and

WmH
m(∪iT

∗
i ) = Hm(∪iT

∗
i ) for m ≤ d−1. So if we write down the pieces

of weight d− 1 and d of the sequence above, we find exact sequences

→ Hd−1(∪iT
∗
i ) → Wd−1H

d(Y ) → 0

‖ ∩ ∩

→ Hd−1(∪iT
∗
i ) → Hd(Y ) → WdH

d(Y \ Sing Y ) → 0,

where we use that WmH
m(Y ) = Hm(Y ) for a complete variety and that

Wm−1H
m(Z) = 0 for a smooth variety ([De2, Théorème 8.2.4]). So here

we find too that

Wd−1H
d(Y ) = ker(Hd(Y ) →WdH

d(Y \ Sing Y ))

= ker(Hd(Y ) → Hd(Y \ Sing Y )).

A natural question is whether intersection cohomology also corresponds

to the first terms of the expression for the numbers bi,j for non-isolated

singularities.

(3) Reduction from the canonical to the terminal case. Let Y be a projec-

tive variety with Gorenstein canonical singularities. Assuming the Mini-

mal Model Program, there exists a projective birational morphism f from

a terminal variety X, such that KX = f∗(KY ), i.e. a crepant morphism

(the existence of such crepant morphisms has been proved for threefolds;
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we used this result in Chapter 1, but it is an open problem in higher di-

mensions). In particular, by [Ba2, Theorem 3.12], the stringy E-functions

of X and Y are equal. Thus under these assumptions, it is enough to

prove Batyrev’s conjecture for terminal varieties. However, even if one

starts with isolated canonical singularities, the terminal singularities may

be non-isolated. An example of this phenomenon is the hypersurface sin-

gularity {x4
1 + x4

2 + x5
3 + x5

4 + x5
5 = 0} ⊂ A5. The first blow-up gives a

crepant morphism from a terminal variety, but the new singular locus is

1-dimensional. So we cannot apply our results from Chapter 1.

In this context, we can prove the following partial result, for 4-dimensional

varieties. Let Z be a 4-dimensional variety with at most Gorenstein

canonical isolated singularities. Suppose that f : Y → Z is a crepant mor-

phism from a terminal projective variety. Take a log resolution g : X → Y

that is also a log resolution of Z. Let D be the total exceptional locus

of f ◦ g, and D′ the total exceptional locus of g. Denote the irreducible

exceptional components with discrepancy coefficient 0 by Di, i = 1, . . . , β

and the others by Di, i = β + 1, . . . , α. Put

D′ :=
α⋃

i=β+1

Di, D(j) :=
∐

J⊂{1,...,α}
|J |=j+1

Di, D′(j) :=
∐

J⊂{β+1,...,α}
|J |=j+1

Di.

From Theorem (1.1.1) we know that there are surjections H i(X) →

H i(D) for i ≥ 4, making the mixed Hodge structure on H i(D) pure.

Proposition.1 The cohomology groupsH4(D′), H5(D′) andH6(D′) have

a pure Hodge structure as well.

Proof. Since D′ is a normal crossing divisor, we can describe its cohomol-

ogy by the spectral sequence of (1.1.3). Let us write down the E1-term

explicitly:

1For this proposition I am indebted to J. van Hamel.
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0

1

2

3

4

5

6

7

q

H0(D′(0))

H1(D′(0))

H2(D′(0))

H3(D′(0))

H4(D′(0))

H5(D′(0))

H6(D′(0))

0

0

→

→

→

99K

99K

→

→

H0(D′(1))

H1(D′(1))

H2(D′(1))

H3(D′(1))

H4(D′(1))

0

0

1

→

→

99K

→

→

H0(D′(2))

H1(D′(2))

H2(D′(2))

2

0

0

→

→

→

H0(D′(3))

0

0

3

→ 0

4 p

We claim that the dashed arrows describe surjective maps. Recall that

this is the case for the corresponding maps in the E1-term of the coho-

mology of D, because of the purity of H4(D) and H5(D). Consider for

example the following commutative diagram induced by these two spec-

tral sequences (the vertical arrows are just restrictions to direct sums with

less summands):

H4(D(0))

d1

−→ H4(D(1))

↓ ↓

H4(D′(0))

d′1
−→ H4(D′(1))

The surjectivity of d1 and the restrictions implies then the surjectivity of

d′1. In the same way, one can prove the surjectivity for the other maps

from the claim. This means that E1,4
2 , E1,3

2 and E2,2
2 are zero, and this

proves the proposition. �



Some ideas for the future 93

However, for a proof of Batyrev’s conjecture in this setting, we really need

the surjectivity of the map

H4(X) → H4(D′) = ker(H4(D′(0)) → H4(D′(1))),

and this does not follow from the surjectivity of

H4(X) → H4(D) = ker(H4(D(0)) → H4(D(1))).

So the question here is how to prove this surjectivity.
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[Ca] M. Caibăr, Minimal Models of Canonical 3-fold singularities and their Betti

numbers, Int. Math. Res. Not. 2005, no. 26, 1563-1581.

[CR] W. Chen and Y. Ruan, A new cohomology theory of orbifold, Comm. Math.

Phys. 248 (2004), 1-31.

95



96 Bibliography

[Da] D. Dais, On the string-theoretic Euler number of a class of absolutely isolated

singularities, Manuscripta Math. 105 (2001), 143-174.

[DR] D. Dais and M. Roczen, On the string-theoretic Euler number of 3-

dimensional A-D-E singularities, Adv. Geom. 1 (2001), 373-426.

[DK] V. I. Danilov and A. G. Khovanskĭı, Newton polyhedra and an algorithm

for computing Hodge-Deligne numbers, Math. USSR Izvestiya 29 (1987),

279-298.

[dCM1] M. A. de Cataldo and L. Migliorini, The Hodge theory of algebraic maps,
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N.1 Inleiding en basisbegrippen

(N.1.1) Het uitgevoerde onderzoek behoort tot het domein van de alge-

bräısche meetkunde, een deelgebied van de zuivere wiskunde. Algebräısche

meetkunde kent reeds een zeer lange geschiedenis; zelfs de meetkunde van

de oude Grieken kan men hiertoe rekenen.

Meer specifiek hebben wij de stringy Hodge-getallen bestudeerd (letterlijk

‘snarige’ Hodge-getallen), zoals gedefinieerd door Batyrev in [Ba2]. Zoals

reeds blijkt uit de naamgeving, liet hij zich bij deze definitie inspireren

vanuit de snaartheorie in theoretische natuurkunde. Vooraleer we de de-

finitie geven, voeren we eerst een aantal andere begrippen in.

(N.1.2) Zij X een algebräısche variëteit (we werken altijd over de com-

plexe getallen, X is hier niet noodzakelijk irreducibel) en Y een gesloten

deelvariëteit. Deligne heeft aangetoond dat er een natuurlijke gemeng-

de Hodge-structuur ligt op de cohomologiegroepen H•(X,Y,C). In het

bijzonder is ook de cohomologie met compacte drager H•
c (X,C) van X

uitgerust met zo’n gemengde Hodge-structuur. Noteer de dimensie van

de Hp,q-component van H i
c(X,C) met hp,q(H i

c(X,C)). Men definieert dan

de Hodge-Deligne-polynoom van X door middel van de formule

H(X;u, v) :=
2d∑

i=0

(−1)i
∑

p,q

hp,q(H i
c(X,C))upvq ∈ Z[u, v].

(N.1.3) Vanaf nu bedoelen we met een variëteit steeds een irreducibele

algebräısche verzameling. Zij Y een normale variëteit. We noemen Y

Gorenstein indien KY Cartier is. Zij f : X → Y dan een logresolutie

van Y . Dit betekent dat X niet-singulier is, dat f een proper birationaal

N1
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morfisme is dat, beperkt tot het inverse beeld van het niet-singuliere deel

van Y , een isomorfisme is, en dat bovendien de exceptionele locus van

f een divisor is met gladde componenten en normale snijdingen. Noteer

de irreducibele exceptionele componenten met Di, i ∈ I. We kunnen de

canonieke divisor op X dan schrijven als

KX = f∗(KY ) +
∑

i∈I

aiDi.

De gehele getallen ai worden de discrepantiecoëfficiënten genoemd. Men

noemt X terminaal indien alle ai ≥ 1 en canoniek indien alle ai ≥ 0 (dit

hangt niet af van de gekozen logresolutie).

(N.1.4) Zij Y een Gorenstein canonieke variëteit. Kies een logresolutie

f : X → Y . Noteer de irreducibele exceptionele componenten opnieuw

met Di, i ∈ I, en hun discrepanties met ai. Voor een deelverzameling

J ⊂ I noteren we DJ := ∩i∈JDi en D◦
J := DJ \ ∪i∈I\JDi. Batyrev

definieerde dan de stringy E-functie van Y door

Est(Y ;u, v) :=
∑

J⊂I

H(D◦
J ;u, v)

∏

i∈J

uv − 1

(uv)ai+1 − 1
∈ Z[[u, v]] ∩ Q(u, v).

Voor J = ∅ moet men DJ beschouwen als X en
∏

i∈J als 1. Batyrev

toonde met behulp van motivische integratie aan dat deze definitie niet

afhangt van de gekozen logresolutie. Bovendien voldoet de stringy E-

functie aan volgende eigenschappen.

1. Als Y glad is, dan is Est(Y ;u, v) = H(Y ;u, v). Als Y een crepante

logresolutie f : X → Y toelaat (d.w.z. KX = f∗(KY )), dan is

Est(Y ;u, v) = H(X;u, v).

2. Zij Y projectief van dimensie d. Dan is

Est(Y ;u, v) = (uv)dEst(Y ;u−1, v−1)

en Est(Y ; 0, 0) = 1.

3. Een alternatieve formule voor de stringy E-functie is

Est(Y ;u, v) =
∑

J⊂I

H(DJ ;u, v)
∏

i∈J

uv − (uv)ai+1

(uv)ai+1 − 1
.
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(N.1.5) Veronderstel nu dat Y ten hoogste Gorenstein canonieke singula-

riteiten heeft en projectief is van dimensie d. Veronderstel bovendien dat

de stringy E-functie een polynoom
∑

p,q ap,qu
pvq is. Dan definieert Ba-

tyrev de stringy Hodge-getallen van Y door hp,q
st (Y ) := (−1)p+qap,q. Dan

kan men gemakkelijk volgende eigenschappen nagaan (merk de analogie

op met de klassieke Hodge-getallen van gladde projectieve variëteiten !).

1. Stringy Hodge-getallen kunnen enkel verschillen van 0 voor 0 ≤

p, q ≤ d,

2. h0,0
st (Y ) = hd,d

st (Y ) = 1,

3. hp,q
st (Y ) = hq,p

st (Y ) = hd−p,d−q
st (Y ) = hd−q,d−p

st (Y ),

4. voor gladde Y zijn de stringy Hodge-getallen gelijk aan de klassieke

Hodge-getallen.

Er is echter één gewenste eigenschap die helemaal niet duidelijk is uit de

definitie: positiviteit !

Conjectuur (Batyrev). Stringy Hodge-getallen zijn positief.

Dit probleem is het onderwerp van deze thesis. Merk op dat het niet

duidelijk is wanneer je mag verwachten dat de stringy E-functie een po-

lynoom is. In feite hebben we ons geconcentreerd op de volgende iets

algemenere vraag (die op natuurlijke wijze voortvloeide uit onze beko-

men resultaten).

Vraag. Zij Y een d-dimensionale projectieve variëteit met ten hoogste

Gorenstein canonieke singulariteiten. Schrijf de stringy E-functie van Y

als een machtreeks
∑

i,j≥0 bi,ju
ivj . Is (−1)i+jbi,j ≥ 0 voor i+ j ≤ d ?

Voorbeeld. Voor variëteiten die een crepante resolutie toelaten is de

conjectuur waar. In het bijzonder is dit het geval voor alle Gorenstein

canonieke oppervlakken (de enige toegelaten singulariteiten zijn in dat

geval A-D-E singulariteiten).

N.2 Overzicht van de belangrijkste resultaten

(N.2.1) In Hoofdstuk 1 bewijzen we volgend positief antwoord op Vraag

(N.1.5).
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Stelling. Zij Y een d-dimensionale Gorenstein projectieve variëteit met

ten hoogste gëısoleerde singulariteiten (d ≥ 3). Zij f : X → Y een

logresolutie. Veronderstel dat de discrepantiecoëfficiënten van de excep-

tionele componenten strikt groter zijn dan b d−4
2 c (deze voorwaarde hangt

niet af van de gekozen logresolutie). Dan is het antwoord op Vraag (N.1.5)

‘ja’ voor Y .

Zij D de totale exceptionele locus van f . Om bovenstaande stelling te

bewijzen combineren we een recent resultaat van de Cataldo en Miglio-

rini (H i(X,C) → H i(D,C) is surjectief voor i ≥ d) met de welbekende

constructie van de gemengde Hodge-structuur op de cohomologie van D.

Voor het 3-dimensionale geval kunnen we nog meer aantonen. Reid heeft

immers bewezen dat er voor een Gorenstein canonieke variëteit Z steeds

een partiële crepante resolutie bestaat vanaf een terminale variëteit Y . In

dat geval is Est(Z) = Est(Y ) en op Y kunnen we bovenstaande stelling

toepassen. We besluiten dus dat het antwoord op Vraag (N.1.5) voor het

3-dimensionale geval steeds ‘ja’ is !

Bovendien konden we onder de voorwaarden van de stelling een explicie-

te beschrijven geven van de getallen (−1)i+jbi,j (voor i + j ≤ d) uit de

machtreeksontwikkeling Est(Y ;u, v) =
∑

i,j bi,ju
ivj , essentieel in termen

van dimensies van componenten van de gemengde Hodge-structuur op de

cohomologie van Y . Voor een 3-dimensionale Gorenstein canonieke va-

riëteit Z is deze beschrijving dan gegeven in termen van de cohomologie

van een partiële crepante resolutie Y .

(N.2.2) In Hoofdstuk 2 berekenen we de bijdrage van een A-D-E singula-

riteit tot de stringy E-functie in willekeurige dimensie, door expliciet een

logresolutie te construeren. Voor 3-dimensionale A-D-E singulariteiten

was dit reeds gedaan door Dais en Roczen, maar hun formules voor geval-

len D en E bevatten een onnauwkeurigheid. We hebben ze verbeterd en

bovendien hebben we hun formules voor geval A kunnen vereenvoudigen.

In elke dimensie bekomen we overigens relatief eenvoudige formules.

Als gevolg van deze berekeningen stellen we vast dat variëteiten met ten

hoogste A-D-E singulariteiten voldoen aan de voorwaarden van Stelling

(N.2.1) en dus is het antwoord op Vraag (N.1.5) ‘ja’ voor zulke variëteiten.

We kunnen onze formules ook gebruiken om in te zien dat variëteiten met
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A-D-E singulariteiten enkel een polynomiale stringy E-functie hebben

indien ze 3-dimensionaal zijn en singulariteiten hebben van type An (n

oneven) en/of Dl (l even).

(N.2.3) In Hoofdstuk 3 presenteren we een alternatieve methode om de

stringy E-functie te berekenen voor affiene hyperoppervlakken die niet-

gedegenereerd zijn ten opzichte van hun Newtonpolyeder. Voor nulpunts-

verzamelingen van reguliere functies op een gladde variëteit (dus in het

bijzonder voor affiene hyperoppervlakken) hebben Denef en Loeser de mo-

tivische zetafunctie gedefinieerd. Via de Hodge-zetafunctie kan de stringy

E-functie (voor canonieke nulpuntsverzamelingen) hier ook uit afgeleid

worden. Dit is een mooie toepassing van de ‘inversie van adjunctie’-

stelling van Ein, Mustaţă en Yasuda.

Voor niet-gedegenereerde affiene hyperoppervlakken bestaat er een algo-

ritme om de motivische zetafunctie te berekenen uit de Newtonpolyeder

(van Artal, Cassou-Noguès, Luengo en Melle; in essentie werk van Denef

en Hoornaert). Dit algoritme hebben we gebruikt om de formules voor

de A-D-E singulariteiten uit Hoofdstuk 2 te controleren.

(N.2.4) Laten we Stelling (N.2.1) nog eens nader bekijken. Eén van de

gevallen die net niet onder de voorwaarden van deze stelling vallen is dat

van een 6-dimensionale variëteit met terminale singulariteiten (waarbij

er dus discrepantiecoëfficiënten gelijk aan 1 mogen zijn). In Hoofdstuk 4

tonen we met een voorbeeld aan dat deze stelling ook niet kan uitgebreid

worden tot dit geval. In het algemeen is het antwoord op Vraag (N.1.5)

dus ‘neen’ ! Dit is ietwat verrassend en het zou er op kunnen wijzen dat

de conjectuur van Batyrev in het algemeen misschien niet waar is. De

singulariteit die leidde tot dit tegenvoorbeeld is gegeven door de oorsprong

van

{x5
1 + x5

2 + x6
3 + x6

4 + x6
5 + x6

6 + x6
7 = 0} ⊂ A7.

In het bijzonder is de methode van Hoofdstuk 3 om de bijdrage tot de

stringy E-functie te berekenen voor deze singulariteit veel gemakkelijker

dan het berekenen van een logresolutie.

(N.2.5) We besluiten de thesis met enkele opmerkingen. De belangrijk-

ste is de volgende. Als de conjectuur van Batyrev toch waar is, moet de

voorwaarde dat de stringy E-functie een polynoom is op essentiële wij-
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ze gebruikt worden in het bewijs. Het is echter niet duidelijk hoe deze

conditie uitgebuit kan worden.


