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Abstract [English]

Clean air is essential to our own health and thah® environment. Since the
industrial revolution, the quality of the air we ehathe has deteriorated
considerably for some chemical species (e.g. ofOGgeand particulate matter
(PM)), which can lead to serious health problemse @he one hand, this is
caused by a change in human activities, charaetefy e.g. rising industrial
and energy production, the burning of fossil fuetsl especially a dramatic rise
in traffic. On the other hand, the effect of a dpag climate itself has the
potential to increase average ambient concentsateomd the frequency of
pollution episodes. At present, levels of PM aral ghotochemical pollutant;O
continue to exceed the thresholds set by the Earopér Quality Directives,
albeit various mitigation strategies are introdusette the late 70s to reduce
(precursor) emissions. In this respect, most offthmpean emission reduction
strategies do not take into account a change maté# conditions. As in the
future O3 and PM are likely to remain of concehms tloctoral research aims to
estimate the effect of future climate change on (&% PM) concentrations,
assuming that future emissions remain at the prekgnlevel.

This research develops a statistical downscalinthogeas a combination of
two key techniques: 1) the objective Lamb circolatipattern classification
describing the large-scale synoptic conditions 2na linear multiple regression
analyses, relating surface meteorology to ozonecardmations. First, the
circulation technique based on sea level pressatiee dkscribes for a given day
the location of the high and low-pressure centidter the classification, all
members of each circulation-type class are ascriioe@ linear regression
equation, this for each season separately, takmg account a range of
meteorological surface variables for a rural mittdde site in the Netherlands.
The combination of the Lamb circulation pattern raggh prior to a multiple



linear regression is a new approach in the stadisdownscaling community
and analyses have shown to significantly improwe dbserved ©non-linear
characteristics. On the other hand, our researcdwshthat PM, is less
influenced by the considered meteorological vaeéabT herefore, this technique
Is only applied on future climate scenarios forreezo

The application of this technique on various clienahange scenarios from a
single global climate model shows an overall inseeaf maximum 8 hourly
mean Q concentration with 2.5 to 6.5 and 6.1 to 10.9 #gfor the 2051-2060
and 2091-2100 period respectively, against theepteday 10-year average of
55.2 pg/ms. This increase is even stronger whesidering the summer season
only. An increase in maximum temperature and sheorénradiation, associated
with a decrease in cloud cover under the variotigéuscenario assumptions are
the main drivers of ozone increase. In order taywarhether these findings are
physically plausible, our results are compared it observed heat wave in
August 2003, characterized by a poor air qualispéeially in terms of ¢) and
excess of mortalities in large parts of Western @edtral Europe. Here, the
observed @ concentration during August 2003 exceeded the fgamo Air
Quality Guidelines in Cabauw for 9 days, which lieshe upper range of our
estimated number of exceedences for the 2050s @nesponds closely to the
mean number of exceedences by the end of thisryef@r days month. This

Is confirmed by the exceptional warm and dry weatthéring August 2003,
which characteristics corresponds to the climatngk scenarios by the end of
this century. This suggests, that, not only in tewh temperature, but also in
terms of Q, the August 2003 conditions could become reprasest for our
future climate.



Abstract [Nederlands]

Zuivere lucht is essentieel voor onze gezondheidlanvan onze omgeving.
Sedert het begin van de industriéle revolutie namkdaliteit van de lucht
drastisch af voor een aantal chemische componégntets bijv. ozon (g) en
fijn stof (PM)), wat aanleiding geeft tot aanzigkdi gezondheidsproblemen.
Deze evolutie wordt enerzijds veroorzaakt door rekjke activiteiten en
anderzijds beinvloedt een veranderend klimaat aekf de concentraties van
atmosferische polluenten en de frequentie van g@esio met slechte
luchtkwaliteit. Tot op heden overschrijden de concgies van PM en de
fotochemische polluent Qe limieten voorgeschreven door de EU, ondanks het
feit dat sinds eind de jaren '70 verschillende amssmgsstrategieén werden
ingevoerd met als doel de (precursor) emissiesetemmvmderen. In dit opzicht
houden de meeste van de Europese reductiestrategge® rekening met een
verandering van de klimatologische omstandigheddéet als in het heden
verwacht men dat ook in de toekomsi €n PM de belangrijkste polluenten
zullen blijven. Daarom beoogt dit doctoraatsondekzeen schatting te maken
van het effect van ons toekomstige klimaat op dgeéd PM) concentraties,
onder de aanname dat in de toekomst concentratlgis lglijven aan deze van
vandaag.

Dit onderzoek ontwikkelt een statistische scha&le@mingsmethode bestaande
uit twee Dbelangrike benaderingen: 1) de Lamb tatoetype

classificatietechniek die de grootschalige syncpeskarakteristieken beschrijft
en 2) een meervoudige lineaire regressie analyse dppervlakte

meteorologische variabelen met ozonconcentratitermst. De classificatie
techniek maakt gebruik van de druk op zeeniveagesit voor een bepaalde
dag de locatie van de hoge en lage druk centra.vésrdeze classificatie



worden alle leden van een specifiek circulatietypegeschreven aan een
lineaire regressie vergelijking, dit voor elk seasmo afzonderlijk, waarbij
verschillende meteorologische variabelen in rekgmwmorden gebracht die
kenmerkend zijn voor een landelijke locatie in Néaled. De combinatie van de
Lamb circulatietypes voorafgaand aan een meerveudilgeaire regressie
vertegenwoordigt een nieuwe aanpak wat Dbetreft isstmhe
schaalverkleiningsmethodes, waarbij analyses wijzgn een aanzienlijke
verbetering van de waargenomen niet-lineaire ememen van ©
Anderzijds heeft dit onderzoek aangetoond dat Pkicentraties in mindere
mate te verklaren zijn aan de hand van meteoralbgigactoren die in deze
studie in rekening gebracht. Daarom wordt de hrgwikkelde techniek enkel
toegepast op klimaatscenario’s voor ozon.

De toepassing van bovenstaande techniek op klicesso’'s van €één
klimaatmodel toont een algemene toename van de nmaxi 8-uurlijks
gemiddelde ozonconcentraties met 2.5 tot 6.5 endd.10.9 pg/ms3, voor de
periode 2051-2060 en 2091-2100 respectievelijkerteger een huidig 10-jaar
klimaatgemiddelde van 55.2 pug/ms3. Dit effect isrigte in de zomer. De
toename van de maximum temperatuur en Kkortgolvigeerwaartse
zonnestraling, gepaard gaande met een afname vamolkenbedekking in
toekomstige klimaatscenario’s zijn de belangrijkstgjfveren voor deze
toename in ozon. Om na te gaan of onze bevindifggach mogelijk zijn,
vergelijken we onze resultaten met de waargenontegalf tijdens augustus
2003, gekenmerkt door een slechte luchtkwaliteie@m sterke toename van het
sterftecijfer in grote delen van West- en Centfgafopa. De geobserveerde
ozon concentraties in augustus 2003 overschredeiuwtepese richtlijnen
inzake luchtkwaliteit gedurende 9 dagen, hetgeeereamnkomt met het
gemiddeld geschatte aantal overschrijdingen tegéeinde van deze eeuw (9.7
dagen per jaar). Dit onderzoek suggereert dan abkidt alleen in termen van
temperatuur, maar ook in termen van ozon, de desdgedurende augustus
2003 representatief kunnen worden voor ons toekgrkitnaat.
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List of commonly used symbols and abbreviations

Symbol/Abbreviation Explanation

a Constant (=0.13) from Zilitinkevich (1990) [-]

ANN Artificial Neural Network

(AO)GCM/CGCM (Atmospheric-Ocean) Coupled Globalntdite Model

ARPS Advanced Regional Prediction System

CC Cloud Cover [Octas (1-8)]

Cr Geometric coefficient [-]

Cd, Surface drag coefficient [-]

COST European Cooperation in the field of Scientific arethnical
research

CT™M Chemistry Transport models

Co Volumetric heat capacity [J K]

DD / D010 Mean 10 meter wind direction [® from N]

e Vapour pressure [hPa]
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Chapter 1

| ntroduction

1.1 Background
1.1.1 Air quality in Europe: @and PMy

Air pollution produced by modern society is wellokm to cause damage to the
environment and ill health for human beings. Risingustrial and energy
production, the burning of fossil fuels and esplgcihe dramatic rise in traffic
on our roads all contribute to air pollution in tBaropean (and other) region(s),
which, in turn, can lead to serious health problelfts example, air pollution is
increasingly being cited as the main cause of llisgases such as asthma - twice
as many people suffer from asthma today compar@0@ teears ago.

Recognition of this in the European Union has tesuln legislation measures
since the early 1970s, aimed at curtailing emissiohthe most damaging of
these pollutants, such as sulphur dioxide, leadygen oxides, carbon monoxide
and benzene. However, despite a reduction in s@mmafbl emissions, air quality
continues to cause problems. Summer smog - origmah potentially harmful
ground-level ozone () - regularly exceeds safe limits. Moreover, alsghh
levels of particulate matter (PM) are a health tiskt raises concern. As an
example here, the EU has estimated “a statistica of life expectancy” for the
Benelux region by one to three years, owing todfiects of particulate matter
alone.
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Ground-level ozone, unlike many other pollutargsaaot emitted directly into the
atmosphere, but is a secondary pollutant producedhb reaction between
nitrogen oxides (N@, CO, volatile organic compounds (VOCSs), hydrocaid
and incoming solar radiation. VOCs are emitted frmwariety of manmade and
natural sources. The former include motor vehictdggmical plants, factories,
consumer and commercial products and industrialcesu Plants are responsible
for biogenic VOCs emissions in the form of isopieraad monoterpenes, and
more so with increasing temperature and light isitgn NO, are emitted from
motor vehicles, power plants and other sourceswibeistion, whereas its natural
sources include lightning and emissions from thé doe to denitrification
processes. Incoming solar radiation provides therggn to initiate ozone
formation; consequently, high levels of ozone a@agyally observed during hot
and sunny summertime weather. The sources of pkttecmatter, and conditions
under which it is formed, are varied, resultingaifarge spectrum of size, shape
and chemical composition. PM consists of solid iquitl particles in the air,
including dust, pollens and soot and aerosols foombustion activities. They
can be emitted directly into the atmosphere anda@an when gaseous pollutants
such as S®and NQ undergo transformation to small particles. psihd PM 5
particles (particles with an aerodynamic diameg¢ssIithan 10 um) are of major
current concern, as they are small enough to peeetieep into the lungs and so
potentially pose significant health risks (Bernatdl., 2001a, b).

In Europe, several Directives have been initiatedhiprove air quality, such as
the 6" Environmental Action Plan that is in part a poliegponse these problems.
The Clean Air for Europe programme (CAFE) withire t8" Environmental
Action Plan has developed the thematic strategyfdiother reduction of air
pollution and has recently prepared a proposah favised Air Quality Directive
(EU, 2005). The Thematic Strategy on the Urban Emvnent has the objective
to reduce the emissions in urban areas and toesachiealthy living environment
for Europe’s urban citizens. The Framework Direztand Daughter Directives
are addressing regular assessment of air qualitgugih monitoring and
modelling in agglomerations with more than 250Q@@abitants. This requires the
development of Action Plans for the improvementaaf quality and defines
obligations to inform the public on the air quakiyuation (EU, 2005).

1.1.2 Climate change prospects in Europe

During the 28 century, most of the European territory is chamapéd by an
increase in average annual surface temperaturera@eincrease over the
continent 0.8 °C), with stronger warming over mosgions in winter than in
summer (Alcamo et al., 2007). The 1990s and 2006 whe warmest in the
instrumental record. As an example, observed aip&Fature time series in Uccle
(Belgium) show that, since the start of the measerds in 1833, the warmest
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fourteen summers have occurred in the last ninetgears (1989-
2008)(www.kmi.be). Precipitation during the"™26entury showed an increase in
northern Europe (10 to 40%) and a decrease in soutburope (up to 20%). The
most recent climate models predict an increaseniua temperature in Europe
of 0.1 to 0.4 °C/decade over the*2Entury. By the end of 2100, the temperature
Is predicted to be greater by 1.7 - 4.9 °C in wiated by 2.4 - 6.6 °C for summer
compared to the end of the"™6entury (Alcamo et al., 2007). Also, a very likely
increase in the intensity and frequency of sumneat vaves throughout Europe
Is predicted, as e.g. the summer heat wave of 2068 large parts of (Central)
Europe. Moreover, the models predict a widespreacease in precipitation in
the north, small decreases in the south, and smalmbiguous change in central
Europe. It is likely that the seasonality of pre@pon will change and the
frequency of intense precipitation events will e&se, especially in winter.

The large spatial variability in the European clienahange projections makes it
necessary to develop regional (national) climatelehgrojections in order to

develop suitable mitigation or adaptation stratedoe, among others, air quality
abatement strategies and human health effectsimbtel change (Figure 1.1).
Although this thesis doesn’t aim to develop reglodanate scenarios, it is

important to have some background information o& thrrent status of the
developments in regional climate modelling. In tedlowing sections, this

information is narrowed down toward its role inute air quality levels.

Moderating
influences?
- Increased respiratory
Atmospheric !
processes Ampspheric symptoms and |IIne.ss
concenirations Exacerbated chronic
Cimate change Regional \ of pollutants E‘iesaé’;:;d lung
(natural and weethar Human- |- .0, | >
human- changes generated «BM Accelerated lung
caused) emissions aging
*Heat waves +80,
* Extreme «NO, Increased lung
weather Natural «C0 cancer risk
* Temperature emissions Increased risk of
* Precipitation premature death
Aeroallergens Allergic diseases
{amount, timing, Asthma
and disiy | Allergic rhinitis
Research  f——»| Adapiation

measures”

Figure 1.1: Climate change effects on air pollution and po&muman health effects (Bernard
et al., 2001)
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Currently, a great deal of information on the vigrief impacts of climate change
Is available for the whole of Europe through thier$ of the Intergovernmental
Panel of Climate Change and all researchers indoldevertheless, the spatial
variability in climate change predictions doesnlto@ a uniform European
climate policy adopted on e.g. the national lewdbreover, it is not only
important to know how to react on climate changaiés within the national
boundaries, but also how neighboring countries hdeseloped their scenarios
and maybe more important; how they will manage @¢al dvith these climate
change scenarios. In Europe, a number of Europeantiies have developed
specific national climate scenarios with respectattaptation strategies. For
example, in Belgium, regional climate scenariosdmeeloped by Boukhris et al.
(2007), combining a statistical downscaling apphoath frequency perturbation
factors from the existing high-resolution modelegrations from the European
PRUDENCE project (Déqué et al., 2005). The KNMI YyRlo Dutch
Meteorological Institute) developed four climatesisarios; two scenarios based
on an unchanged large-scale flow over The Nethe@slamd two scenarios based
on a changed circulation patterns over The Nethdslawhich then largely
influence other meteorological variables as emperature and precipitation. For
this purpose, they used global climate models fiB&GC 4AR (Randall et al.,
2007), regional climate models from the PRUDENCIBjgut and historical
Dutch measurement series. The U.K. developed rafidimate scenarios over
Great Britain based on the Hadley Centre ClimatelehqHadRM3) for four
different emission scenarios (Jenkins et al., 206fance developed climate
scenarios using the ARPEGE model under the IMFRESfept and Germany has
set up a number of experiments for different region Germany based on the
REMO, ECHAM and WETTREG models under various sdesaand spatial
resolutions. Also, the German World Wildlife Funddered national German
climate scenarios from the Hadley Centre, usingir ti¢éADRM3 model
(Bessembinder, J., 2007).

The above-mentioned paragraph reveals the curretdrest in, and the

importance of, more region-specific impacts of faetalimate change. Moreover,
the implications for our natural and anthropogdglobal and local) environment
are crucial. It is apparent that regional climateiability and change already
affects features and functions of Europe’s proaducsystems (e.g. agriculture),
key economic sectors (e.g. tourism, energy) anadatsiral and anthropogenic
environment. As an example of the latter, the imp&@n increasing temperature
on mortality is described extensively in the intgronal literature (e.g. Wagner,
1999; Chan et al., 2001; Hayhoe et al., 2004). éat lwaves are very likely to
become more common and severe, heat-related daethBkely to increase.

Similarly, many authors have shown that climatengeais likely to affect air

quality in Europe (see sections 1.1.2 and 1.1.33vekheless, air quality
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measures are often disregarded or only marginefigrred to in (inter)national
policies on climate change scenarios.

1.1.3 Climate change effects on air pollution

Global warming has the potential to increase aweragbient concentrations of
pollutants and the frequency and intensity of pmlu episodes. Local
temperature, precipitation, clouds and atmosphevater vapor influence
atmospheric chemical processes and interactionsr doetween regional-scale
environments. Bernard et al. (2001) and Hogrefal.e{2004) summarize three
reasons why air quality is affected by a warmer rmode variable climate:

1. Synoptic conditions: weather influences the disglerand ambient
concentrations of many air pollutants, while symofiow patterns govern
pollutant transport. For example, subsidence durinigh-pressure
situations often creates temperature inversiortscératrap air pollutants in
the boundary layer.

2. Rate constants of many chemical reactions incredbetemperature, in so
that higher temperatures are likely to increaseptioeluction of @ and PM
levels when precursors are present.

3. Modification of biogenic emissions: increasing tesrgiures can lead to an
increase of natural precursor emissions. For exanmpbody plants emit
biogenic VOCs called isoprenes, which productioninisfirst instance
controlled by leaf temperature and light. These @&, besides NQan
important precursor in the ozone formation process.

In the future, the pollutants of concern are likedyremain, as now, PM and the
photochemical pollutant {Bernard et al., 2001). Emissions of sulfur oxides
NO, due to power generation might increase, but cébrigohnologies are
available and can control such emissions. At piteseiost of the emission
strategies referred to in section 1.1.1 do not tateeaccount a change in climate-
driven variables such as atmospheric temperatude hamidity. Before these
effects can be introduced, it is of considerablganance to understand the
relation between meteorology and air-quality (esdlc O; and PMg) in a
present-day climate, before applying this inforimaton a future climate.

Therefore, the first aim of this dissertation isd@scribe the individual relations
between the meteorological predictor variables @adand PM, levels in a

present-day climate. Secondly, this informationsed to develop a statistical air-
guality downscaling tool that considers the combimdfect of the large-scale
atmospheric circulation and surface meteorology annquality levels. The

methodology is first calibrated and validated foe fpresent-day climate using
observations of meteorological variables. Aftervgartthe validation is extended
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using operational low-resolution present-day mad&rmation. Doing so, one
can quantify the limitations of the statistical dmealing tool itself and the
possible effect of model deficiencies and scalesddpncies of the surface
meteorological predictor variables on modelledcaiglity levels.

Afterwards, the statistical downscaling tool is kg to future climate scenarios
in order to estimate the effect of the latter otufe Q@ and PM, concentrations,
under the assumption of constant future emissilonthis respect it is important
to point out that this step is a first attempt $sess future air quality levels on a
local/regional scale. In order to develop more itkrlarelevant information
towards policy makers in the framework of futurer uality Directives, this
research has to be extended and performed in a@dirgammunity or project. A
first continuation of this is foreseen in the CLIQ&S project (CLimate IMpact
and Air Quality modelling for policy Support), imded to, amongst others,
conduct long-term regional climate impact and aiglqy simulations for the
Flemish region.

1.2 Key research questions

For Europe, major uncertainties in future climateojgctions include the
uncertainties associated with the still insufficieresolution of AOGCMs
(Atmospheric Ocean coupled Global Climate Modelgith the downscaling
techniques and with regional climate models. Irs théspect, the "4 IPCC
assessment report states thathough numerous studies have tackled a great
deal of expected climate change impacts and vulnigras, studies on present
and future air quality trends are still of indispiie importance”(Alcamo et al.,
2007).

In general, this dissertation follows a downscalagproach to bridge the gap
between the information gained from AOGCMs anditfiermation required by

the impact assessors (Wilby & Wigley, 1997). In themaining of this

dissertation, we follow a simple categorizationtlké downscaling techniques
(Hewitson and Crane, 1996, 2001): statistical aymiachical downscaling. Both
techniques are discussed in more detail in secfidhand 2.3 respectively. From
a practical point-of-view, the dynamical downscglintechniques are
computationally expensive and time consuming, wéreeestatistical downscaling
Is a computationally more efficient and practicalpach in addressing the
current needs of high-resolution climate modellingsults for impact and
assessment studies. From a physical point-of-vithe, dynamical approach
dynamically derives local (or regional) atmosphesaiability from large-scale

forcings. Thereby, the model itself resolves theysptal properties of the
atmosphere, whilst the statistical approach derguesntitative relations between

23



large-scale circulation indices and local climateenvironmental variables from
observations or reanalysis data using mathematicadtatistical relationships
(Figure 1.2). This dissertation first develops atistical downscaling approach
based on a circulation pattern (section 2.2.1) amdultiple regression (section
2.2.2) approach in order to statistically deriveanpgpecific information on air

qguality for the rural background station of CabawMterwards, a first step in

dynamical downscaling approach (section 2.3) iseua#ten. In this respect, the
regional atmospheric model ARPS (Advanced Regidtradiction System) is

evaluated in terms of some meteorological varialmegortant for air quality

modelling (Chapter 7).

A. DYNAMICAL B. STATISTICAL
Global Climate Model (GCM) Measurement GCM
gridded fields sites Single (multiple) grid
box(es)

i Provides l Provide i Provides
Initial and lateral boundary Predictor variables (e.g. temperature,
conditions (e.g. temperature, pressure...) pressure, wind speed...)

l Drives l Used to construct i Input for

v

Regional Climate Model (RCM) Transter function (s) (e.g. regression

model, circulation patterns...)

Mathematicaily/statistically
computes

Explicitly resolves physical
atmospheric properties and results in i

Spatially distributed site Point-specific site variables (for

variables (for e.g. temperature, e.g. temperature, precipitation...)
precipitation...)

Figure 1.2: A general conceptual representation of the dynamiA.) and statistical (B.)
downscaling approaches. The red dotted box shasvddtvnscaling step itself.

Based on these techniques, the main objective®fltesertation is to understand
the effect of the variations in large-scale cirtiola and surface meteorology on
Oz and PMg levels. In order to reach that goal, the followsttategy is used:
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» Derivation of the statistical relations between eoedlogical variables and
several air quality variables (with a focus onpadd PMy) for a rural mid-
latitude site.

* Development and evaluation of a novel approachotendcale large-scale
meteorological data from (low-resolution) modelsthwthe intention to
derive future regional-scales@nd PM, projections.

» Evaluation of the low-resolution global ECHAM5-MBPIM model in terms
of large-scale circulation patterns for present-alag future climate.

» Application and quantification of this novel apptbaon future climate
scenarios from ECHAM5-MPI/OM with respect to the r&pean
Guidelines for air quality and air quality assessine

1.3 Outline of thisthesis

The thesis consists out of 6 chapters, with a pliageintroductory chapter

(Chapter 1), followed by a general discussion andl fconclusion in Chapter 8
(Figure 1.3). Three appendices are added and préSean overview and recent
advances in circulation classification methodolegi®) comments on the
objective Lamb classification scheme and C) a pbssstrategy to extend the
spatial applicability of this approach. Chapterg and Appendix A have been
written as research papers, published or submiibedhternational scientific

journals. At the beginning of each chapter thatb&sed on published (or
publication intended) data, a footnote indicateg thaper on which the
information is based and mentions the current stafuthe paper. Since each
paper was intended to be read independently, ssmaap may occur between
the various chapters, especially in the introductiod data sections.
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1. Introduction [Ch 1.]

1.1 Background

1.2 Key research questions

1.3 Qutline of this thesis

2. Downscaling

Downs caling methods

Future Climate

STATISTICAL

Regression Methods

Circulation patterns

[Ch 2. Literature review]

T

DYNAMICAL

Regional meteorological
' model ARPS

General circulation
model

Future changes in circulation
patterns [Ch 5.]

ECHAMS-MPI/'OM

OBSERVATIONS

Urban flux measurements
from ESCOMPTE
programme (Marseille)

Meteorological
variables from Cabauw
(The Netherlands)

Air quality variables
from Cabauw and
Zegveld — Oude Meije
(The Netherlands)

3. Applications [Ch. 6]

3.1 Long-term O, projections for future climate change scenarios.

4. General discussion and conclusion [Ch 8.]

—» Input for

Figure 1.3: Dissertation research approach.

As an introduction to this research theme, chaptdescribes, in short, present
air- quality related issues and climate change atgp@vith a focus on air quality)

for Europe. This chapter briefly discusses the emtrresearch status on global
and regional climate modelling, air quality reséaend the key uncertainties
related to this topic. It concludes with formula@fithe specific objectives of this

study.
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Chapter 2 gives a review of the current status ywifachical and statistical
downscaling methods used for current and futurened impact studies and air
guality applications. Conclusively, it describesiatercomparison between both
dynamical and statistical applications and providese insight in the state-of-
the-art air-quality applications.

In the following chapters 3 and 4, the physico-cizamrelations between
meteorology and air quality variables are describHus is first addressed in
chapter 3. Secondly, an effort is done to develomethod that is able to
downscale regional observed and low-resolution aretegical variables with
respect to the air quality variables. This is déorethe rural mid-latitude sites in
The Netherlands. Chapters 3 and 4 describe thd appeoach combining large-
scale circulation patterns and a stepwise multgdgession technique.

Chapter 5 subsequently evaluates an AOGCM in teoingts circulation
characteristics and explores a possible changdaxet large-scale circulation
patterns under future climate change scenarios.

As global circulation models do not provide anyommhation on surface air
guality levels, one has to downscale them indiyedtom other modelled
(meteorological) variables. Therefore, chapter @liap the novel approach
developed in chapters 3-5 to estimate the effecth@nging meteorological
conditions on @ levels under changing climate scenarios. For #teerl, it is
important to mention that these implications assusn@ssion scenarios as
described in SRES from IPCC, without any furthdoimation or tendencies for
O; precursor emissions itself. Therefore, this redeanly explains this part of
the 3 variability explained by changes in meteorologyrtkermore, this chapter
does not provide a clear insight in future tendesich Q levels, but describes
only a first step in estimating local future levelsGs, as is mentioned in section
1.1

Chapter 7 describes the evaluation of the mesoseadeorological model ARPS
(Advanced Regional Prediction System) for the urbamergy balance in
Marseille. A large intensive measurement campangthe larger Marseille area
provided a great deal of interesting data to testrhodel in terms of roughness
length parameterizations and thermal admittancees@helements largely
influence the urban surface fluxes that alternatiadfects the boundary layer
characteristics that play a major role in air gyatiispersion. This study aims to
contribute to the often-disregarded implementatainurban-specific thermal
characteristics into mesoscale models, and a furitin@lementation of this
approach in densely populated areas, often assdciaith large air quality
problems.
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Finally, chapter 8 synthesis results in a genasalugsion and conclusion.

In addition, three appendices are added tacklinmgesaspects of the objective
classifications methods. Appendix A presents a nowtailed overview on the
objective classification of atmospheric circulatipatterns. As this statistical
downscaling method dominates a large part of thssedtation, this section
introduces in more detail the available classifaratmethods and describes the
recent developments and tendencies in applicatidppendix B illuminates
some inconsistencies between Chapters 5 and 6 ubmgobjective Lamb
classification method for different areas and ge@hfigurations. Appendix C
describes a possible strategy to extend the spmtaicability of the synoptic-
regression based approach. This is not done iguhent status of the research,
but provides possible strategies for future workhos topic.
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Chapter 2

The principle of downscaling: a literature review

2.1 Introduction

The climate change information required for manpawt studies is of a spatial
scale much finer than that provided by atmosphedean coupled global
climate models (AOGCMSs). Global climate models tpdéll have resolutions
of hundreds of kilometers, whilst regional climatedels may be as fine as tens
of kilometers. However, a great deal of impact sssent studies requires
information equivalent to point observations, whiake highly sensitive to
local-scale climate variations not taken into aetoun coarse-scale models.
Therefore, one can use a downscaling approachdgebthe gap between what
AOGCMs produce (large-scale) and what impact assesesquire (equivalent
to point observations) (Wilby & Wigley, 1997). Itowmsists in seeking
relationships between variables simulated by AOGGMd regional or local
surface climate (or environmental) variables. Astfinttempt to classify the
different approaches for regional climate modellings done by Giorgi and
Mearns (1991), by identifying three basic methodms: empirical, using
information from past climate analogues, semi-ero@iy based on the
statistical downscaling of GCM fields and modellmgproaches, using physical
models such as regional climate models (RCMs). k®riand Crane (1996)
revised this classification by describing only twategories of downscaling
methods: process-based techniques, involving thalicex solving of the
physical dynamics of the system and empirical tephes that use the identified
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relationships derived from observational data. Avrds, Wilby & Wigley
(1997) suggested four categories of downscalindghaust regression methods,
weather-pattern based approaches, stochastic weggherators and limited-
area models. This literature review follows Hewitsend Crane (1996, 2001),
using a downscaling categorization that differdaasabetween the empirical
based (statistical) and process-based (dynamioalpsicaling techniques. Each
approach is discussed in more detail in the folhgwsections 2.2 and 2.3
respectively. A short description of each method #heir advantages and
disadvantages are summarized in Table 2.1 beloweliye the stochastic
weather generators (Richardson, 1981; Rackso etl881) described as a
statistical downscaling method by Wilby et al. (2D0are excluded from this
literature overview. This tool produces artifictahe series of weather data for
a location based on the statistical characteristidhe observed weather at that
location (Richardson, 1981; Rackso et al., 19919.tlAs technique requires
long continuous time series of observed daily weatht least 10 years), which
are often not available for air quality observagibrecords, this technique is not
suitable for our purposes and therefore is noushedl in this literature review.

Table 2.1: Overview of the advantages and disadvantagesynfrdical and statistical
downscaling tools (compiled from Mearns et al., 200ilby et al., 2004).

Tool Description Method Advantages Disadvantages
Dynamical Providing Regional/ Provides very high resolvedComputationally expensive,
models information at Mesoscale spatial and temporaland thus few multiple

a high spatial/ climate information scenarios
temporal models Information is derived from Lack of two-way nesting
resolution physically-based models  may raise concern regarding

Many variables available = completeness

Better representation ofAdditive errors due to

some weather extremes thamodel configuration,

in GCMs parameterizations, domain
size and model resolution
Dependent on (usually
biased) inputs from driving
AOGCM
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Statistical Providing Circulation Provides  very highly Assumes constancy of

models information at patterns resolved spatial and empirical relationships in

a point/high temporal information the future

spatial e.g. analogue Potential to address aDemands access to daily

resolution method, diverse range of variables observational surface and/or
hybrid Rapid application to upper air data that spans
approaches, multiple GCMs range of variability
fuzzy Suitable for locations with Dependent on  (usually
classification, limited computational biased) inputs from driving
PCA, Self resources AOGCM
Organizing Yields physically May not capture intra-type
Maps interpretable linkages tovariations in surface climate
(SOM),... surface climate

Compositing for analysis of
extreme events

Regression Provides very high resolvedAssumes constancy  of

methods spatial and temporal empirical relationships in
information the future

e.g. linear Potential to address aDemands access to daily

regression, diverse range of variables observational surface and/or

neural Rapid application to upper air data that spans

networks, multiple GCMs range of variability

kriging, Suitable for locations with Dependent on  (usually

canonical limited computational biased) inputs from driving

correlation resources AOGCM

analysis, ... Straightforward to apply Poor representation  of
‘Off-the-shelf’ solutions and observed variance and
software available extreme events

May assume linearity
and/or normality of data

2.2 Statistical downscaling

In this approach, one seeks to derive quantitagletions between large-scale
circulation indices and local climate or environt@rvariables. This transfer
function is derived from observations using a mathkcal or statistical
relationship. Statistical downscaling is, compateddynamical downscaling,
computationally efficient, and is a practical agwio in addressing the current
needs of high-resolution climate modelling restithis impact and assessment
studies. This technique is analogous to the “penbecg” and “model output
statistics (MOS)” approaches used for short-rangearical weather prediction
(Klein and Glahn, 1974).

Within this statistical downscaling group, one e@g@point three subdivisions, as
was also suggested by Wilby & Wigley (1997): ciatidn types, regression
methods and stochastic weather generators. As dtter Idemands long

observational records (10 years or more), whichnateavailable in the field of

air quality, we opt to test and evaluate the fortmey methods, and therefore,
only these methods are described in more detadvwbdkections 2.2.1 and
2.2.2).
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2.2.1 Classification of circulation patterns

In general terms, classification is a task of groggentities (cases) so that they
share common features (are similar) within eaclugyovhile being dissimilar
between groups. In the context of the thesis, tbedwgroup’ has a meaning
similar to ‘class’, ‘cluster’ or ‘type’; all theseerms are used interchangeably.
The degree of (dis)similarity may be quantifiedayariety of metrics, usually
based on distance (e.g. Euclidean distance). @itadgns have had a long
history in meteorology and climatology. At the dawhmeteorology when it
was established as an independent science, atassifis (in those days called
usually ‘catalogues of synoptic types’) were usednty in weather forecasting.

The usage of classifications has widened in redenades, especially after the
advent of computers, which made it possible to gvand routinely apply
objective methods, based on processing large asmairdata. The advance of
computers, led at the same time, to a change inmitnodology of weather
prediction, which lost its interest in classificats. As a consequence, the main
driver of the progress in classifications in themaspheric sciences turned from
weather prediction to climatology. At present, vas classification methods
are used in many fields of the atmospheric sciefices large spectrum of
purposes, making classification one of the mosiwirtgmt fields in synoptic and
statistical climatology.

Since the field of classifications in meteorologydaclimatology is quite wide
and difficult to cover in total, this section igmited to the applications of
classifications of atmospheric circulation pattefingsed on sea level pressure),
an approach that is used in the following chaptérhis thesis. Classifications
of other atmospheric entities and phenomena ardionea only briefly with
the intention of providing a broader context. Farthore, a more detailed
description of the availability of different clasation approaches, their basic
algorithms, input variables and the recent advaaoegiven in Appendix A.

2.2.1.1 Current climate applications

Circulation pattern classifications have a longdrigs in synoptic meteorology,

and therefore have a large range of applicationshi® present-day and future
climate. In this section, some of these approaenesaddressed in more detalil,
in order to provide insight in the possible apdimas and capabilities of the
circulation pattern classification schemes.

The development of an improved data set of recoc®d, gridded, monthly
SLP data for the period 1780-1995 (Jones et al9)1@&hin the framework of
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the EU funded research Project ADVICE (Annual toc&dal Variability In
Climate in Europe) offers the opportunity to expawhoptic climatological
analyses well beyond the 20century. Moreover, as the SLP data were
reconstructed using solely station pressure dadacan thus be assumed to be
independent of surface climate variables (tempegafurecipitation). It enables
analysis of variations in the relationship betwdange-scale atmospheric
circulation and regional-scale surface climate othe¥se periods for which
climate forcing is negligible (such as the lattecades of the Little Ice Age)
and thus having anthropogenic activities of globahcern (i.e., the present
industrial period).

Beck et al. (2007) analyzed the the importanceowf-frequency and within-

type changes of atmospheric circulation types fent@l European climate

variations based on the automated circulation leason scheme from Beck

(2000). Using classification results and mean ckktmeopean temperature and
precipitation time series, both available for mtiian 200 years, temperature
and precipitation changes in central Europe weoikdwr down into frequency

changes of circulation types and changes attrilteitaowithin-type changes of
the circulation types. The decomposition was penéd for moving 31-year

time windows with annual time steps by comparinghedl-year period to its

adjacent 31-year periods shifted by 1 year, thenetipgg the decomposition
scheme according to Barry and Perry (1973). Thigragrh resulted in time

series of the total, the frequency induced, anthimstype related variations in

central European temperature and precipitation dkier whole 1780-1995

period. From this, the most remarkable overallifigds that only about half of

the climatic variations can be explained by varyengulation type frequencies.
Remaining parts are due to changing within-typerattaristics of several

major circulation types. Percentages of frequemtsted and within-type

induced changes do not only differ between seaswns climate variables

(substantially higher importance of within-type raility during summer and

concerning precipitation) but are also varying owsany decades, the latter
pointing to non-stationarities in circulation-clitearelationships which are
relevant for the application of downscaling apphesc

In the course of examination of historical circidat variability, the
development of a gridded SLP reconstruction datésethe European and
North Atlantic domain on a daily basis back to trear 1850 (Ansell et al.,
2006) was an important milestone. Within the Edeed project EMULATE
(European and North Atlantic Daily to MultidecadalinGate Variability),
intensive studies on circulation changes coveredhia dataset have been
untertaken making intensive use of circulation tygpessification. Within the
course of EMULATE conventional k-means clusteringsviound to be unstable
and an enhanced clustering algorithm has been amselutilising Simulated
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ANnealing and Diversified RAndomisation (called SBRA), which is much
more stable especially for large datasets (foridetae Philipp et al. 2007).

Based on the SANDRA technique, significant chanigesirculation showed

that significant trends in interannual variabilay cluster frequencies between
1850 and 2003 can be observed in all seasons.ntema remarkable result is
that a significant overall increase in the frequemfywesterly patterns is
manifested mainly for a pattern describing cyclonegh of the British Isles,

while a North Atlantic Oscillation (NAO)-like cirdation type, which has been
increasing in frequency since 1985, also showed Higquencies in the

relatively cold period between 1850 and 1870. Timans that there is no
significant increasing trend in frequency for theipee NAO state over these
150 years, contrary to what was assumed before Kagel and van Loon,

1997). At the same time, a significant decreaseeiquiency of continental cold
highs is confirmed for the whole period 1850-2003.

Altogether the classification approach shows thaangbks in the daily
circulation-type frequencies have clearly contralto the long-term warming
in Europe. The NAO does not seem to be the onlyedrof circulation-
dependent warming in central Europe but has maodwtributed to the
enhanced warming since about 1985. All in all, thact contribution of
changes in atmospheric circulation to the obseokhegate change in historical
times is still an open question, but circulatiopdyclassifications have been
proven to be a useful tool to narrow down the latknowledge and therefore
are subject to ongoing improvements. However, thia djuality for the early
instrumental period, even if remarkable advancesdonstructions are made, is
still limited. More reliable conclusions are podsitvhen using more recent data
of a higher quality. In this respect, two examples such “advanced”
applications are given. In the first, the changeshie lifetime of circulation
types are analyzed, together with their implicagiofor the severity of
temperature extremes, while in the second, thecteftd changes in the
frequency of circulation types on trends in surfadenate elements is
examined.

The increasing lifetime of circulation types, whietould be indicative of
increasing persistence of atmospheric circulatiorgeneral, was reported for
zonal Hess-Brezowsky types (see Appendix A) in &by Werner et al.
(2000). Kysely (2002) extended the analysis andveldothat the increasing
lifetime of the Hess-Brezowsky types is observeddib the types and in all
seasons. Kysely and Domonkos (2006) examined pamsis separately in
individual seasons and for 10 groups of types (HBrszowsky types) and
found out that, using the standard normal homogemest (Alexandersson and
Moberg, 1997), 67% of the timeseries of lifetimessé a significant change
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point during the 1980’s, while change points iniperl881-1980 were detected
in 8% of the series only. Furthermore, Kysely anatiH(2006) analyzed the
lifetime changes for types in the Hess-Brezowskglogue and in an objective
classification based on T-mode PCA combined witmdans cluster analysis.
The lifetime of Hess-Brezowsky types increasesdigpirom about 1980 and
peaks about 1990 for both winter and summer, balogit two days longer than
any time since 1881. The objective types persisgjéo in winter, although the
change is not as pronounced as for the Hess-Brégoeatalogue and the
values reached are fairly close to high values ftben1960’s and 1970’s, but
change very little since 1980 (in summer). The eddhce in the lifetime
changes between the Hess-Brezowsky and objectpestgan have several
causes (Kysely and Huth 2006): first, there mayabeinhomogeneity in the
subjective catalogue, although it is stated to tsemdgeneous (Gerstengarbe et
al. 1999); second, the Hess-Brezowsky cataloguesas limitation on the
minimum duration of types (3 days), while for tHgextive one, short events of
one or two days are typical; third, the objectisatogue possesses a large
number of unclassified days (about 20% in winted &%% in summer),
contrary to about 1% in Hess-Brezowsky; and foltik, objective catalogue is
based solely on 500 hPa heights, whereas HessBskyaeflects both mid-
tropospheric and near-surface circulation charesties.

An enhanced persistence of atmospheric circulapgpears to contribute to the
severity of extreme temperature events of bothss{gtysely 2002; Domonkos
et al. 2003; Kysely 2007). In this respect, Kys@§07) confirms that there are
two main causes of the formation of heat wavesmwadvection (originating in
eastern and southerly types) and anticyclonic ¢mmdi (as in types with
central European high). Whereas the persisten@n ainticyclone leads to an
increase of temperature in the course of its dumatihe warm advection does
not have such an effect. This means that an entas®eerity of heat waves
would result from increased lifetimes of situatiamgh stationary anticyclones,
where positive radiation balance and air mass satagn (the absence or
reduction of the removal of locally heated air,.elty passages of atmospheric
fronts) acts as a physical mechanism. On the tthed, changes in the lifetime
of advective types would not affect the severitheét waves.

The importance of atmospheric circulation on recehimate change is
frequently considered. Several recent studies enaahihe impact of changes in
the frequency of circulation types on trends irfate climate elements. In such
studies, conditional mean values of climatic elet®ieare calculated for
circulation types, their trends (which imply thhetcirculation changes are the
only source of the long-term changes) are evalyaed these ‘hypothetical’
trends are compared to the observed ones (e.ghdrsaand Ellis 1996; Huth
2001; Keevalik and Russak 2001). Changes in tlypiénecy of circulation types
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were found to contribute to spring drying in Pogl¢Corte-Real et al. 1998),
drought in Spain (Vicente-Serrano and Lopez-Mor20Q06), and a dramatic
precipitation decrease in southwestern Australiap@et al. 2006). The effects
of atmospheric circulation on climate trends in tGeech Republic were
analyzed using the Hess-Brezowsky catalogue forvealeclimate variables:
daily mean, minimum, and maximum temperature, pretion amount and
occurrence, relative humidity, cloudiness, sunshuhgration, zonal and
meridional wind components, and wind speed. Thdyaisawas conducted at
21 stations for the period 1961-1998. The ‘hypotaéttrends, reflecting only
changes in the frequency of Hess-Brezowsky typesgewalculated for all
variables at all stations and divided by the actuahds. The more this ratio
approaches one, the more long-term circulation gbamaffect the trend in the
particular surface element. Negative values ofréti® indicate that circulation
changes act in the direction opposite to the olesechanges. Here, it is shown
that changes in the frequency of Hess-Brezowskgulation types explain
about half of the temperature trends and non-néigigoortions of relative
humidity, cloudiness, and sunshine duration tremiswinter. In spring,
circulation changes are partially effective in eping trends in relative
humidity, cloudiness, and sunshine duration, whefeatemperature variables,
the share of explained trends is about 20% and lassummer, circulation
trends contribute to surface climate trends fainggligibly. In autumn,
circulation explains considerable amounts of caplrends (between 20% and
50%), as well as the trends in precipitation oa@nee, cloudiness, and sunshine
duration. Note also that the ratio of trend exmdiby circulation changes has a
large spread across stations for precipitation weoge and wind speed. For
precipitation amount and wind components, the numble stations with
significant trends is very low and no conclusioaa be made for them.

2.2.1.2 Future climate applications

With more AOGCM runs becoming available, the anedy®f changes of
circulation types under future climate conditioms mcreasing. Changes in the
frequency of circulation types from the currentn@ie conditions to future
(usually to the end of the 21st century) are exanhiais a first step in all studies
of this kind (Cassano, 2006a, Corte-real et al981@hapter 5 - Demuzere et
al., 2008a , Hope, 2006, Huth, 1996, 1997, Kidswh Watterson, 1995, Lynch
et al., 2006, McKendry et al., 2006, Saunders agch& 1996, Schoof and
Pryor, 2006). A few of these studies also examim&nges in the circulation
patterns themselves (e.g., weakening or strengtgewii troughs / ridges and
shifts of a jet stream axis) and related changespiecipitation. Any
generalization of the results is unfortunately iisgble because of the wide
variety of GCMs used and regions covered (EurometiNAmerica, Australia,
New Zealand, Arctic, Antarctic).
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Circulation classifications have also been appteedtatistical downscaling in
three different ways. First, data are stratifieddigulation classification and
the downscaling model is built within each claspasately, e.g., Cavazos
(1999), Enke and Spekat (1997) and Li and Saild@0@2. In this approach, the
relationship between the large-scale predictor laedl predictand may vary
depending on the type of synoptic pattern. Secttr@lmean value of a type is
calculated and attributed to each member of thedsc(Saunders and Byrne,
1996, 1999). This approach implicitly assumes thatire changes in the
climate element considered are solely due to clemgatmospheric circulation,
which is unrealistic; therefore, its outputs ardeaist questionable. Third, the
monthly or seasonal frequencies of daily circulatigpes serve as predictors of
monthly / seasonal mean values of a climatic végidboodess and Jones,
2002). As for all statistical downscaling methogspleed on future climate
scenarios, their application assumes constancynpireeal relationships in the
future (Table 2.1). In order to derive the empiricalationships between the
synoptic patterns and the predictand variable,ssct® daily observational data
that spans the range of variability is necessamytddver, this method may not
capture the intra-type variations in surface clendllevertheless, it is useful
because it produces highly-resolved temporal aatiadpnformation using only
limited computational resources. Furthermore, @pplied rapidly on multiple
AOGCMs, which supports the application on ensengrkdiction instead of
using one single AOGCM output dataset. Comparedotioer statistical
downscaling approaches, this method yields phygiaaterpretable linkages to
surface climate and environmental elements, whachiso shown in Chapter 3
(Demuzere et al., 2008b).

2.2.1.3 Air-quality applications

Over the last few decades, several studies havwesdocon the relationship
between air pollution and synoptic circulation pats. Hereby, circulation
patterns are derived for a specific time and regbnnterest from different
predictor variables (e.g. SLP, wind, 850 hPa) arel used afterwards as an
indicator of high air pollution episodes. Therelaylarge number of studies
relate these large-scale synoptic patterns to nheagls of surface ©(e.g.
Schjoldager et al., 1981; van Dop et al., 1987)enehy an attempt is done to
mark these findings in relation to the associatederological characteristics.
In general, regimes with high-pressure systems cegsol with high
temperatures and low wind speeds are common on wais high ozone
(mixing) ratios (Hogrefe et al., 2004; Ainslie &e&ynh, 2007). For exemple,
Comrie etal. (1992) manually derived nine synoptic typesrirdaily surface
weather maps to examine basic associations beta@dace ozone pollution
and the atmospheric circulation. He concludes thathe Pennsylvania area

37



(USA), high ozone concentrations occur in summethwslow-moving
anticyclones, while in winter, low concentrationscor with cyclonic storms
moving in from the North and bringing cold, cloudyd windy conditions with
precipitation. Differences in winter and summer mza@onditions were further
marked and described by Davies et al. (1992), usingind speed index
indicative for the sub-regional surface pressuradignts in Europe. The
importance of wind speed in air-quality researchls® shown by Kassomenos
et al. (1998) and Ainslie & Steyn (2007). The fornotassified eleven distinct
mesoscale patterns derived from 850 hPa levelsniajyzing meteorological
sources gathered between 1983-1995 over Athense¢Greand found that
severe and bad air quality conditions were highlgited to southerly sea breeze
and calm wind. The latter performed a cluster aialgf wind measurements in
the Lower Fraser Valley, British Columbia (Canadm),identify mesoscale
circulation regimes that are common on days witfhhbzone mixing ratios.
Composite synoptic patterns associated with eagmee all showed high
pressure over the eastern Pacific Ocean with andddrough over Washington
State and southwestern British Columbia, whereby @omposite ozone
patterns, corresponding to each mesoscale cironlaggime, show similar
general features. They conclude that not only nmetegical variables, but also
precursor build-up prior to the exceedance dayy pla important role in the
spatial ozone pattern on exceedences days.

Furthermore, other research focuses on variousr atraospheric chemical
components. Several classification techniqueseasribed in Appendix A (k-
means clustering, tree-based recursive partitiommgdels, Lamb weather
types), using different meteorological input vakeh (750 hPa and 850 hPa,
SLP, temperature...) are applied in order to findegahrelations between the
large-scale synoptic features and surface or ugppospheric concentrations
of atmospheric chemical species. In this respemtimEr et al. (1989) showed
that on a monthly basis, specific sea-level atmesplpressure patterns can be
found conducive to high excess sulphate conceotstin precipitation over
Scotland. Similarly, Davies et al. (1990) used lthenb classification approach
(Lamb, 1972) to categorize precipitation compositiassociated with the
different circulation types. Kassomenos et al. @08stablished a correlation
between a circulation scheme using surface andisolevels of 850 hPa and
both gaseous and particulate pollutant concentrattimeasured in different
sectors of the Athens municipality during 1954-1988dgeman and O’Connor
(2007) categorized synoptic charts according to tuadrant where the
dominant pressure centre was located and foundaesignificant relationships
between their synoptic types and BMNO, and ozone concentrations for
Newcastle, located on the SE coast of Australinalfi, Chuang et al. (2008)
identified seven weather patterns from synoptic tivera maps for aerosol
events, which occurred between March 2002 to Fepruz005. This
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classification of the pollution origin of the airasses shows that 15% of event
days were contributed by long-range transport (LRZDP6 by local pollution,
and 65% by long-range transport/local pollution mix

These examples show that circulation patterns hesesl successfully in air-
qguality applications, with a wide range of classfion methods, input
variables, geographical regions and chemical spedience, this overview
shows a possible capability of circulation patter(end their related
meteorological characteristics) to discriminate wesn low and high
concentrations of a large range of chemical pafiista

2.2.2 Regression methods

There are various regression techniques availabtnvert coarse resolution
climate model outputs into daily meteorological am/ironmental variables.
The most widely used statistical downscaling meshiottlude linear methods
such as, multiple linear regression (MLR), candnmarelation analysis or
singular value decomposition (Conway et al., 1998)non-linear regression
methods, such as artificial neural networks (ANN&hich are nowadays
increasing in use because of their great potefdracomplex, nonlinear and
time-varying input—output mapping. Most studies|dedh the variability of
temperature and precipitation, while only recemtigre effort is done applying
these techniques on environmental issues. A limanabf this technique is the
poor representation of the observed variance atrdrag events, as for example
in precipitation (Trigo and Palutikof, 2001) or ni@xm temperatures (Huth,
1999) (Table 2.1). To deal with this, some auth&uggested a number of
techniques to increase the downscaled varianc, asiCinflated” (Karl et al.
1990; Huth et al. 2001), “expanded” (Burger 1996adding “noise” (Wilby et
al. 1999, Zorita & Von Storch 1999, Huth et al. 2pdownscaling approaches.
Although these techniques remain debatable (Vorcktd999), they have been
applied often in regression studies. Besides tloe tfaat variance-increasing
techniques are physically questionable, one alsottvdake into account that
such techniques applied to future climates intreduadditional
assumptions/questions on the validity of presegtsétationships extrapolated
to the future. Furthermore, regression technigsesilar to other empirical
downscaling techniques, assume constancy of theseptelay derived
relationships under a future climate (also knowhasstationarity assumption), a
characteristic that cannot be evaluated at presemontrast, this technique is
easily applicable on multiple AOGCMs, can addresside range of variables
and provides highly-resolved spatial and temponfbrmation, and can be
applied in areas when computational resourcesraredl (Table 2.1).
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2.2.2.1 Current climate applications

Regression methods have often been applied fodaagnscaling of (extreme)
precipitation and other related hydrological aspattvarious parts of the globe,
such as, e.g. for the southeast of Brazil usingalinand nonlinear methods
(Ramirez et al.,, 2006), for Northern Canada (Dib&ed Coulibaly, 2007;

Dibike et al., 2008), Ireland (Fealy and Sweend&d07), the European Alps
(Schmidli et al.,, 2007) and for Southern Africa ¢8gwe et al., 2006). In

addition, Gosh and Mujumdar (2007) tackled droumghpact assessment in
India with results from GCM mean sea level pressimailations using, next to
other techniques, statistical regression as a dmling tool to retrieve

precipitation at a smaller spatial scale. Lindergbnal. (2004) employed a
multiple linear regression approach for precipiatin Sweden, concluding that
the models were only capable for estimating the rmagcipitation and the

frequency of wet days.

Several studies compared and evaluated the restiltdifferent regression

downscaling techniques for precipitation and terapge with observational

data and between models to assess their validitfoaiconsistency (Hewitson

and Crane, 1996; Huth, 1999; Trigo and Palutikdi®D. In general, they

reveal that there is only little difference in tloapabilities of the various

methods. As numerous studies apply different sétsethods on different

areas, for different variables and specific skidbres, some examples are
provided below.

Schoof and Pryor (2001) found little difference vbe¢n regression-based
methods and ANN for the downscaling of temperatainel precipitation in
Indianapolis (USA). Khan et al. (2006) tested thmtiStical Downscaling
Model (SDSM) developed by Wilby et al. (2002) https://co-
public.Iboro.ac.uk/cocwd/SDSWH/together with a neural network approach and
the Long Ashton Research Station Weather Genefbf®RS-WG) in terms of
various uncertainty attributes on daily precipdati daily maximum and
minimum temperature. For daily maximum and minimbtemperature, the
performance of all three models is similar in tewhsnodel errors evaluation at
the 95% confidence level. But, according to thelwatson of variability and
uncertainty in the estimates of means and variaotdswnscaled precipitation
and temperature, the performances of the LARS-W@aihand the SDSM are
almost similar, whereas the ANN model performarsc®und to be poor in that
consideration. Similarly, Wetterhal et al. (200002) employed four statistical
downscaling methods for precipitation downscalingNorthern Europe and
China, whereby the weather patterns and SDSM dotpeed the other
methods and that no method could well capture ifierence between dry and
wet summers. Kostopolou et al. (2007) tested tli@enscaling approaches,
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Multiple Linear Regression using a circulation typ@proach (MLRct),
canonical correlation analyses and ANN, to asskes performance skills.
None of the methods were found to be superior & dthers. Harpam and
Wilby (2005) compared three statistical models downscaling heavy daily
precipitation occurrence and amounts at multiptessiThree models (multi
layer perceptron (MLP), ANN and SDSM) were appliedarea-average and
station daily precipitation amounts in northwesd asoutheast of England.
Thereby, each model approach showed individualrstdges and disadvantages
whereby all models had greatest capabilities fdices reflecting persistence of
large-scale winter precipitation (such as maximwda$ totals) or dry-spell
duration in summer.

Another large comparison study on the downscalindady mean temperatures
in 39 european sites has been performed by Hu®9)j19he methods include
canonical correlation analysis, single value deawsitpn and three multiple
regression models. The performance of the meth®dwvaluated using cross-
validation and root-mean-squared error as a meadwecuracy. The pointwise
regression proved to be best. Moreover, Huth (199gpested that, as GCMs
are likely to simulate different predictors withffdrent accuracy as well as to
be more confident in simulating large-scale feateleconnections, modes of
variability) than individual grid point values, theating of methods could
change when applied to a GCM run simulating presenfuture climate
conditions (e.g. Huth, 2004).

This overview suggests that there is no clear peafee between the various
available regression methods. Nevertheless, sontieesé studies suggest that
the use of non-linear downscaling methods doesnroessarily improve the
downscaling results (Wilby et al., 2002; Huth et &4B99, Huth et al., 2008b).
In this respect, the linear multiple regressiormegue is often brought forward
as a straightforward tool, known for its simpligifyractical feasibility and for
being more readily interpretable in comparison do-inear methods as ANN,
for example.

2.2.2.2 Future climate applications

Although downscaling of future climate scenariogwggegression analysis is
applied in many fields, the majority of them deathahydrology applications,
with results differing depending on AOGCM, the awiof SRES climate
scenarios, the downscaling method, time of the yeat the geographical
region. For example, Linderson et al. (2004) shoaegignificant increase of
the annual mean precipitation by about 10% andightsdecrease in the
frequency of wet days, indicating an increase m pinecipitation amounts as
well as in the precipitation intensity. The maircriease of precipitation and
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intensity occurs during winter, while the summereqgmpitation slightly
decreases. The seasonal changes found in preoipitate attributable to
changes in the westerly flow of the atmosphericutation. Hertig and Jacobeit
(2008) found a shorter but wetter wet season fer wlestern and northern
Mediterranean regions including precipitation irases in winter and decreases
in autumn and spring for the period 2071-2100 caexgbdo 1990-2019. The
eastern and southern parts of the Mediterraneam exbibit mainly negative
precipitation changes from October to May for aoréased greenhouse gas
forcing.

Others apply a regression-based downscaling totil vaspect to (extreme)
temperatures. For example, Tomozeiu et al. (2083¢ssed possible changes of
mean climate and the frequency of extreme temperagwents in Emilia-
Romagna (Italy), over the period 2070-2100 comp&rel®60-1990. They used
a multivariate regression based on canonical adrosl analysis to downscale
minimum and maximum temperature from AOGCM outpsing predictors at
different geopotential heights. After an optimipati and calibration using
NCEP/NCAR reanalysis, the downscaling model is iappio all model output
experiments to obtain simulated present-day and &l B2 scenario
information (Nakicenovic and Swart, 2000) at thealoscale. Various scenarios
predict significant increases in both maximum anchimum temperature,
associated with a decrease in the number of frags dnd with an increase in
the heat wave duration index. The increase is nsigaificant for the A2
scenario than for the B2 scenario. Schubert (1%9®wed that a statistical
model combining principal component analysis anddr multiple regression is
able to explain a considerable part of both shod lang frequency variations
of local temperature extremes. The downscaling fmnedes applied on an
AOGCM under 2 x C@emission scenario conditions. Compared to theemer
temperature changes simulated by the AOGCM diredie downscaled
variations are much weaker. This is a result offde that their downscaling
technique depends on the large-scale circulatiomciwonly shows minor
changes between the 1 x €&ahd 2 x CQscenario. From this it seems that their
statistical methods misses important processes fadjative processes) that
could cause large temperature changes without teffecthe synoptic
circulation. Nevertheless, they conclude that thmproach (adjusted for by
including non-circulation related temperature fogs like thickness between
1000 and 850 hPa) can provide more detailed ingsngtite processes leading to
more local extremes in temperatures.

Thus, regression downscaling techniques can pravidere reliable temporal
and spatial distribution at the scale of interesstful in impact studies (Gachon
and Dibike, 2007). Furthermore, this characterisfien implies a change in
magnitude between the downscaled and raw AOGCM, datavas shown for
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example for precipitation by Paul et al. (2008) &mdextreme temperatures by
Gachon and Dibike (2007).

2.2.2.3 Air quality applications

Multiple regression techniques have often been eyepl in short-term
applications of air quality assessment. In contiiiss approach has not, to the
author’'s best knowledge, been used as an air guadivnscaling tool using
future AOGCM scenarios for air quality applicatioriherefore, the section
below particularly addresses the short-term apjpdican more detail.

Stadloberet al. (2008) show how present-day RMata combined with the
next-day meteorological forecast can help forengstiaily PM, levels for
some cities in Austria using multiple-regressiomlgsis. Barrercet al. (2006)
developed a MLR model for the prediction of daigone maxima in the urban
area of Errenteria (Spain). They conclude that nmslel, despite being linear
and therefore unable to account for non-linear biehais able to forecast O
concentration maxima several hours in advance baséde day of the year, the
relations between sunlight and N@Q and previous day {devels. Hubbard
and Cobourn (1998) used the MLR approach to predixiy domain-peak
ground level ozone concentrations in the LouisiUeS.A.) metropolitan area.
Cuhadaroglu and Demici (1997) obtained through &ipherlinear-regression
analysis that, for some months, there is a modézaé of relation between the
SO, and suspended particle level and the meteorolbéactors in the highly
urbanized city of Trabzon (Turkey).

Also, in recent years, the artificial neural networ general, and the multilayer
perceptron neural network specifically, have exterlg been used in air quality
applications. ANN techniques are suggested todmeputational efficient, able
to handle nonlinear characteristics, able to geémergroperties and able to
work with high-dimensional data (Gardner and Daylih998; Papanastasiet
al., 2007). In contrast, Gardner and Dorling (1998)esthit the reason not to
use these techniques in practice is that theyi#freudt to handle and the results
are difficult to interpret. Still, many authors at use this technique to study
environmental problems in various geographical sremd for different
applications For example, Gardner and Dorling (1999) trainetlPVvheural
networks to model hourly NOand NQ pollutant concentrations in Central
London (UK). Nunnari et al. (1998) applied neurathniques to predict
atmospheric pollutant concentrations in areas waithgh density of industrial
plants in the province of Siracusa (Sicily), wharéddenvenuto and Marani
(2000) use this approach in data quality contradl ain pollution nowcasting for
the Venice (ltaly) region. Kukkoneet al. (2003) evaluate neural networks in
the prediction of N@ and PM, concentrations compared to a deterministic
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modelling system for the centre of Helsinki (FirdunHooyberghs et a{2005)
attempt to predict the next day PyMoncentrations for Uccle (Belgium). Reich
et al. (1999) proposed to use a three layered fleeekrd ANN to identify
unknown air pollution sources in the city of Sarc®as in the province of
Buenos Aires (Argentina), while the prediction oMPs and SQ in the
downtown area of Santiago (Chili) has been doneelspectively Perez et al.
(2000) and Perez (2001).

Some research papers apply various regressioni¢egsnon a single dataset in
order to perform an intercomparison study betwéendifferent methods used
in air quality applications. Goyal et al. (2005)paed three statistical models in
order to forecast respirable suspended particulzéer (RSPM) based on
meteorological factors for urban Dheli and Hong goiihey conclude that a
combination of a multiple-regression model and a-Benkins time series auto-
regressive, integrated, moving-average model olatpas a combination of the
two with respect to observations. Another papeAbyre-Basurko et al. (2006)
present the results obtained using three prognoxsiaels to forecast ozone and
nitrogen dioxide levels in real-time up to 8 hoatead at four urban stations in
Bilbao (Spain). Two multilayer perceptron based slsedand one multiple-
linear-regression-based model were developed. Tésilts indicated improved
performance for the multilayer perceptron-basedet®dver the multiple linear
regression model. Comrie (1997) investigated theerd@l for using neural
networks to forecast ozone pollution, as comparedraditional regression
models under different climate and ozone regimesd@l comparison statistics
indicate that neural network techniques are onph#lly better than regression
models for daily ozone prediction, and that alleypf models are sensitive to
different weather-ozone regimes. Cobourn et al0@Q20compared nonlinear
regression and neural network models for groundgll@zone forecasting in
Louisville (U.S.A). They conclude that both modeksrformed essentially the
same, as measured by various errors statisticoritrast, Gardner and Dorling
(2000a) conclude that significant increase in pemnce is possible when
using MLP models, whereas the use of regressionetmoalre more readily
interpretable in terms of the physical mechaniseitsvben meteorological and
environmental variables. Their conclusion is basedhe comparison of linear
regression, regression tree and multilayer peroepteural network in order to
accurately capture ozone behaviour from its ratatiwith meteorological
variables.

2.3 Dynamical downscaling

The idea to use regional climate models for rediaimnate studies was
originally proposed by Dickinson et al. (1989) agidrgi (1990). It was formed
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under the concept of a one-way nesting wherebyelaogle fields from global
model simulations or (re)-analysis products prouide initial conditions and
time-dependent lateral meteorological boundary tmmd to drive high-
resolution RCM simulations for a selected time g@emof the global model run.
The basic strategy underlying this one-way nestimgroach is that the GCM is
used to simulate the response of the global citiomao large scale forcings
and that the RCM is used to account for sub-GCM goale forcings (e.g.
complex topographical features) in a physicallydoh#/ay, and to enhance the
simulation of atmospheric circulations and climatiariables at fine spatial
scales (Giorgi and Mearns, 1999). The nesting tgciencan also be two-way
interactive, whereby the regional domain feeds batkhe large scales, thus
reducing potential mismatch between the regionalehand the nesting model.
Although two-way nested runs are already perforntedween chemical
transport (CTM) and regional climate models, to #ughor’'s best knowledge,
all RCMs to date have employed one-way nesting {GIDMSs.

The nested regional modelling technique essentailyinated from numerical
weather prediction models (Seaman, 2000), but isdwy extensively used in a
wide range of climate applications, ranging fronkepalimate to anthropogenic
climate change studies. Over the last two decadg®nal climate models have
been shown to be flexible tools, capable of rearhigh resolution (down to 10
km or even less) and capable of describing clifegdback mechanisms acting
at the regional scale. Regional modelling systeave lwidely been adapted to,
or developed for, climate applications. Therebye tmain advantage and
disadvantages are listed in Table 2.1. The maiorétieal limitations of this
technique are the effects of systematic errordhendriving large scale fields
provided by global models (which is common to alwhscaling methodologies
using AOGCM output) and the lack of two-way intérags between regional
and global climate. In addition, for each applioaticareful consideration needs
to be given to the model domain size and resolutiod to the technique for
assimilation of large scale meteorological forciiMpreover, the climatology
described by a regional climate model is determimed dynamical equilibrium
between two factors: the information provided a boundaries by the GCM
and the internal model physics and parameterizasicmemes (Giorgi and
Mearns, 1999).

From a practical point of view, one has to consttat, in order to run an RCM
experiment, high-frequency (e.g. 6-hourly), timgeedent GCM fields are
needed. These are not routinely stored becausbeofnplied mass-storage
requirements, so that careful coordination betwgehal and regional modelers
IS needed to design nested RCM experiments. Moreaepending on the
domain size and resolution, RCM simulations are matationally demanding
(comparable to the costs of AOGCMSs). In this regpeesults of one-way
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coupled GCM-RCM simulations depend on the choicsipé and location of
the domain, which is not transferable to otherargi Therefore, an alternative
technique known as “spectral nesting” or “largelscaudging” has gained
interest recently (von Storch et al.,, 2000; Binérag&, 2000). With this
technique, the large-scale component of the RCMdies nudged towards the
corresponding large-scale component of the nedtelds, within the whole
RCM computational domain. Hence the large-scalermétion of the driving
fields is fully used, which is not the case witle tlateral boundary nested in a
traditional one-way nesting (Figure 2.1). This dassimilation technique is
suboptimal and indirect (von Storch et al.,, 2008 an example, the
CLIMAQS project (see chapter 8) aims to nudge medehbbles towards large-
scale fields, in order to improve air-quality mod&hulations with ARPS and
AURORA (Air quality modelling in Urban Regions uginan Optimal
Resolution Approach).

One-way nesting Spectral nudging
7
‘ f
GCM 4 & e GCM
2 > - e nili vl g
T /ﬁ/ © 5 f‘x/ 2
= & T
A RCM & g RCM 7 &
longitude ) longitude "

Figure 2.1: A schematic overview of a one-way nesting anccspenudging approach often

applied in dynamical downscaling. Full lines prdsaitial and boundary conditions from the
GCM to the RCM. The dotted lines present the repfant of the large-scale RCM fields by
the GCM fields. More details on the spectral nudgechnique can be found in Von Storch
et al. (2000).

Over the past decade, numerous reports descrilreentwand future climate
simulations based on regional climate models. Thspter doesn’t provide a
complete overview of all literature tackling thestmpics. In the following

sections, some examples provide insight in theeodirand future climate
downscaling applications and air-quality-specifigplcations using regional
climate models. For a more complete descriptionothier applications, the
reader is referred to chapter 10 of the Third IP@&&sessment Report,
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“Regional Climate Information — Evaluation and Rijons” in Giorgi et al.
(2001) and chapter 11 of the Fourth IPCC Assessiapiort — “Regional
Climate Projections” in Christensen et al. (2007).

2.3.1 Current climate applications

The importance of regional climate impacts prongtseed to understand the
capabilities of regional climate models. Analysre anterpretation the results
of regional climate model will help pave the way foterpreting the results of
global climate models at higher resolutions. Irs tiemework, the Project to
Intercompare Regional Climate Simulations (PIRCS -
http://www.pircs.iastate.ejuvas developed to provide a common framework
for mesoscale models driven by initial and boundeaoynditions of global
climate models (here from the National Center forviEbonmental Prediction
and the National Center for Atmospheric ReseartCGEP/NCAR) (Takle et
al., 1999). Eight regional models (Takle et al99d) — their Table 2) are
intercompared and tested against observations egfitation, minimum and
maximum temperature and surface energy fluxeseherl, PIRCS concludes
that no single model stands out as best in all @r®pns; rather, each model
has its individual strengths and deficiencies. Thesiture illustrates the
importance of archiving a variety of output fieltteat can be compared with
observations.

Furthermore, besides large joint efforts, numeradlser control (current
climate) simulations of RCMs driven by boundary ditions of GCMs are
performed by the climate modelling community. Frdmese, it is understood
that errors introduced by the GCM large-scale egmtation are transmitted to
the RCM (e.g., Noguer et al., 1998). While the oegi biases of the RCM are
not necessarily lower than those of the driving GGNe spatial patterns of
climate produced by the RCMs are usually in bettgreement with
observations compared to those of the GCMs, dwelietter representation of
topography and high-resolution forcings. E.g., Giat al. (1994) showed that
mountain ranges strongly affect the regional pattdrprecipitation due to the
shadowing effect they cast. Moreover, there is @gwnence that RCMs do
reproduce prominent mesoscale features of pretgnt&xtremes at scales not
accessible to GCMs (e.g. Frei et al., 2003; Hutirget al., 2003; Christensen
and Christensen, 2003) and better than GCMs on ¢hielscale (Durman et al.,
2001). An example of heavy rainfall during autunmudated by a global and
regional climate models is given in Figure 2.2.
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Figure 2.2: The autumn heavy rainfall threshold (mm per dagulated by the HadAM3P

global climate model (top right), the Swiss CHRMwekr left) and UK HadRM3H (lower

right) regional climate models, compared with oleedrgridded data (top left) (Schmidli et
al., 2006; compiled from STARDEX final report).

2.3.2 Future climate applications

Similar to present-day RCMs, climate change expemts) indicate that, even
though the magnitude of surface climate changeha nested (RCM) and
driving (GCM) models are usually similar, the mesde details of the
simulated changes can sometimes be different batwdiferent RCMs
(Machenhauer et al., 1998; Pan et al., 2001). kample, Whetton et al. (2001)
show significant different patterns of changesemperature and rainfall in a
regional climate change simulation for Victoria,shalia. While winter rainfall
decreased in the driving GCM, it increased in tH@VR Due to this better
spatial representation and capability in providomgminent mesoscale features,
RCMs are largely adopted for hydrological studiesgrder to assess the impact
of climate change on the hydrology, water resountewer basins and extreme
flood events (e.g. Wilby et al., 2000; Hay et a002; Hay and Clark, 20083;
Huntingford et al., 2003; Christensen et al., 200é0d et al., 2004).

Although the impacts of climate change in the Msmd#&nean region are
expected to be large in the Mediterranean regialy, f@w impact assessments
studies have been reported. In general, most GGMs projected an increase
in temperature and a decrease in annual precgmtatior example, Alpert et al.
(2008) have shown tendencies towards decreasirgppetion, counteracted
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by an increase in extreme precipitation eventsombgnation with an increase
In temperature for the eastern Mediterranean. Maed-ujihara et al. (2008)
predicted an annual precipitation decrease for Seghan river basin area
(Turkey) between 157 - 182 mm (25 to 29%) in futG@Ms, with an annual
evapotranspiration decrease around 36 mm; the anmgff decreased by 118-
139 mm in GCM scenarios.

Recently, a large European effort was implementedetvelop regional climate
scenarios in the framework of the Prediction of iBegl scenario and
Uncertainties for Defining EuropeaN Climate chamig&s and Effects project
(PRUDENCE, e.g. Christensen, et al., 2002; Schal.e2004; Deque et al.,
2005). This project was initiated because the uac#res of current climate
change scenarios are poorly characterized andrésoitution is insufficient for
regional modelling. To date, the assessment ofnpateimpacts of climate
change has generally relied on projections fronp&mnslimate models or coarse
resolution AOGCMs, neither of them capable of reisg) spatial scales of less
than ~300 km. This coarse resolution precludes sihaulation of realistic
extreme events and the detailed spatial structtiramables like temperature
and precipitation over heterogeneous surfacestleegAlps, the Mediterranean
or Scandinavia. PRUDENCE, a European-scale invagstig, has the following
objectives: (1) to address and reduce the aboveionewd deficiencies in
projections, (2) to quantify our confidence and timeertainties in predictions
of future climate and its impacts, using an arrbglonate models and impact
models and expert judgment on their performance @hdo interpret these
results in relation to European policies for adaptto or mitigating climate
change (Christensen, 2001). More information on@&@M and RCM models
used, the applications and the results of this ggtojcan be found on
http://prudence.dmi.dkdnd a summary of the PRUDENCE model projections
of changes in European climate by the end of thestwy is given in
Christensen and Christensen (2007).

A continuation of this large joint effort is the BEMBLES project
(http://www.ensembles-eu.o)jg/ The project aims to develop an ensemble
prediction system for climate change based on tinecipal state-of-the-art,
high resolution, global and regional climate modglidated against quality-
controlled, high-resolution gridded datasets fordpe; to produce an objective
probabilistic estimate of uncertainty in futurentdite at the seasonal to decadal
and longer timescales; to quantify and reduce timeemtainty in the
representation of physical, chemical, biological &mman-related feedbacks in
the Earth System (including water resource, lared asd air quality issues, and
carbon cycle feedbacks) and finally to maximize é¢lploitation of the results
by linking the outputs of the ensemble predictiorstem to a range of
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applications, including agriculture, health, foocekcarity, energy, water
resources, insurance and weather risk managemenittrind Griggs, 2004).

In addition, two more projects are focusing on elien change impacts on
Central/Eastern Europe. The CECILIA (Central andt&a Europe Climate

Change Impact and Vulnerability Assessment) prajdudes applications of

RCMs at a resolution of 10 km in hydrology, wateaalify and management, air
qguality, agriculture and forestry. The CLAVIER (@iate Change and
Variability: Impact on Central and Eastern Europedject analyses climate
change impacts on weather patterns and extremesarhithealth, natural

ecosystems and water resources, and evaluates ctiromic impacts on

agriculture, tourism, energy and public sector stduand services (Christensen
et al., 2007a).

2.3.3 Air quality applications

The use of dynamical downscaling of GCMs in terrhgio quality modelling
has only begun to develop recently. Nevertheleasinaber of studies employed
regional climate models in combination with cherhtcansport models (CTMs)
to downscale GCMs in order to gain further insighthe effect of a changing
climate on future air quality levels. Here, the R@kbvides the meteorological
information to the CTM, in an on- or offline mod&n offline mode means that
the RCM is run first to produce the three dimenalometeorological fields,
which are afterwards used to drive the CTM. In castti the online mode passes
the meteorological information directly (at the gatime step) from the RCM to
the CTM.

In air quality modelling of the future, a whole g of GCM-RCM-CTM
coupled model chains are employed for a varietgliohate change scenarios,
future periods, chemical species (especiallya@dd PMy) and geographical
areas. In general, most studies agree that theatmm and availability of
chemical species is influenced by changes in teatpes, water vapor
(Racherla and Adams, 2008), cloud cover and ndtunthiropogenic emission
changes (Hogrefe et al.,, 2004a, b; Murazaki andsH2806). Hereby, an
increase in global and regional temperatures cauadcklerate the chemical
reactions that lead to the formation of pollutazusl increase the volatility of
aerosols (Racherla and Adams, 2008), althouglrékigonse will likely depend
on the non-linearity’s in the atmospheric chemistrigchanisms (Giorgi and
Meleux, 2007). In addition, higher temperaturesusthoncrease the biogenic
emission of pollutant precursors, which is likatyincrease atmospheric aerosol
and Q levels. An increase in precipitation can play ke o terms of greater
atmospheric cleansing, while a decrease favorsnareased photolysis rate
associated with reduced cloudiness, increased tampes and reduced wet
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removal (Giorgi and Meleux, 2007). The overall effef these climate change
factors simulated by RCM-CTM model chains are sunmed by Jacob and
Winter (2009) in their Table 2. For the U.S., amd@ in maximum 8 hourly
mean Q is expected ranging from —6% to +25% dependinghenregion and
the future SRES scenario. Thereby, dOncentrations are expected to decrease
or change insignificant in the Midwest U.S., Westl &outheast (Murazaki and
Hess, 2006; Nolte et al., 2008; Avise et al. 20D&garis et al., 2007), while a
large increase is expected in the Northeast andlE&s (Hogrefe et al., 2004a,
b; Kunkel et al., 2007; Lin et al., 2008; Murazakid Hess, 2006; Nolte et al.,
2008; Racherla and Adams, 2008). This increasectomapagnied by a
lengthening of the ozone season in spring and aut(@nen et al., 2008;
Mahmud et al.,, 2008) and a higher frequency of éondnigh ozone
concentration pollution episodes (Chen et al., 2008

For PM, most studies emphasize the importance ahgihg precipitation in
modulating the PM sink. In this respect, the ddéfames between GCM/RCMs in
the regional precipitation response to climate geaare a major cause of
discrepancy in the PM response (Racherla and Ad20@§). Factors other than
precipitation are also important in driving the sémity of PM to climate
change, as for e.g. wildfires from droughts, higlvater vapor leading to higher
concentrations of $D,, the principal S© oxidant (Liao et al., 2006) and a
positive response to rising temperature (Heald let 2008). This, in
combination with the diversity of the PM componerdad the general
uncertainty in GCM projections of the hydrologi@lcle, points out that the
effect of climate change on PM is more complicatednpared to ¢ The
studies dealing with the climatological effect dd Bpecies are summarized in
Jacob and Winter (2009), in their Table 3.

Until now, all examples have shown a significanpauat of meteorological
climate changes on future air quality levels. Amotkexplaining factor hereby
are the (precursor) emission themselves. For exarifijplgaris et al. (2007) state
that climate change has a rather small impact dlutpat concentrations, in
comparison to the importance of the emission chen@¢hers also stress the
importance of high spatial resolution in order 8sess climate change — air
guality interactions as they are determined by-foale structures in emissions
and climatic/chemical factors (Giorgi and Meleu®0Z2). This shows that there
Is still no consensus on the course of future allupant levels under a possible
changing climate. The global and regional diversitpmbined with the
numerous available models (GCMs, RCMs, CTMs) andoua modelling
frameworks (e.g. with/without including changes anthropogenic/biogenic
emissions, geographical areas, future time slicesiakes a uniform and clear
conclusion difficult. Furthermore, Gustafson anduhg (2007) concluded in
their research on the possible use of dynamicalndoaling in air quality
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studies that, once the downscaling has been dorteeéiRCM, a comparison
with observations must be done based on the gigmntitat are important for air
guality assessment. Thereby, the boundary layghhdbesides other variables,
has been shown to play a role in the dilution dfytant concentrations (Pielke
et al., 1991; Rao et al., 2003).

Dabbert et al. (2004) states that meteorology isicar for air quality

predictions and that boundary layer dynamics anudvdirection are perhaps
the two most poorly determined meteorological @asa for regional air quality
prediction. Therefore, Chapter 7 of this dissestatprovides an effort to
indirectly improve the representation of the bougddayer for urban

environments in a mesoscale model. A sensitivifyeexnent is performed to
more realistically improve the effect of the thefm@ughness length
parameterization and heat capacity, important fcoraect representation of the
urban energy balance and consequently importanttifer boundary layer
dynamics. Due to computational constraints, the adyinal downscaling

method is not pursued further, but will be usedtme future during the
CLIMAQS (see Chapter 8) project.

2.4 Dynamical and statistical downscaling: intercomparison studies

Although the sections above provide enough evidémce large application of
both dynamical and statistical downscaling techesjun current and future
climate and air-quality applications, studies cormga both downscaling
methods remain relatively limited. Unfortunatelyp tthe author's best
knowledge, no intercomparison studies on air-gualiplications are available,
and therefore, the section below provides insighstudies related to other
climatological applications and summarizes the nmpbrtant features that can
be drawn from them.

From a more general perspective, dynamical dowmgcabols show to have
good physically based grounds to estimate the teffieacclimate change on the
regional scale (Kidson and Thompson, 1998). Omevidack here is that one
needs to reduce the systematic simulation errar; mtroduced from the
driving AOGCM (Chapter 5 - Demuzere et al., 2008ad as a direct result of
the nested RCM (Noguer et al., 1998; Murphy et1#99). For example, Hay
and Clarck (2003) show that only after a bias atioe to the RCM model

output, the accuracy of the daily runoff simulasomproved dramatically. This
need for a bias correction may be somewhat trogphs it is unknown if bias
corrections to downscaled model output will be dvaln a future climate.

Therefore, it warrants to identify the causes fand removal of) systematic
biases in dynamical downscaling simulations, ananigrove these simulations
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of daily variability in the local climate. They arg that, until then, a statistical
downscaling approach in simulating runoff appearbd the safer downscaling
choice. Moreover, another advantage of the stegistnethods is the smaller
computational effort. Often, a drawback here is lingited availability of
continuous and long time series of observationsuisng that the necessary
observations are available, the statistical metlomidd be improved by using
longer calibration time series or a wider rangepagdictors (Murphy et al.,
1999).

Some authors found that dynamical and statisticathods have comparable
capabilities in determining daily and monthly statenomalies for temperature
and precipitation (Kidson and Thompson, 1998; Msahal., 1999). Others
show that the ensemble means from a statisticahdoaling approach shows
better capability in simulating minimum and maxim@emperature, although
worse results were obtained for precipitation comgao the RCM, probably
due to the large stochasticity of precipitatiorthe statistical model (Wilby et
al., 2000). In contrast, a study shown by HanssaneBet al. (2003) shows that
differences between statistical and dynamical doatesl changes in annual
mean future temperatures in Norway are insignificarile for precipitation,
only the dynamical downscaling showed a signifiaantease in the southwest
of Norway compared to an insignificant change ftbmn statistical method.

Moreover, as was seen from the intercomparisoniegtubdetween different
statistical and dynamical downscaling studies, Meat al. (1999) states that it
IS not possible to bring forward one method thaummes more “correct”
responses to external forcings of climate compaoethe other. They urge to
have more comparative studies, and encourage cbspasgrams that lead to
rigorous intercomparisons of statistical downseplimethods and nested
regional climate modelling methods. Leung et a00@ endorses the above-
mentioned opinion and state that intercomparisomafnscaling techniques
may help focus efforts on subsets of techniques ewmluate how much
downscaling contributes to the total uncertaintyciimate change scenarios.
The few studies performed so far show that staisiownscaling and regional
climate models have similar skill in simulating theean and variability of
present climate conditions. However, significanffedences exist between
statistical and dynamical downscaled future climateaditions. This is partly
explained by the fact that statistical downscakxgeriments typically employ
only a subset of the boundary information used I8MR. Therefore, future
statistical downscaling techniques versus RCM aaeparison studies need
more carefully designed experiments to ensure greparity of forcing
conditions.
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To further illustrate the previously-mentioned unamties in the use of both
methods, Planton et al. (2008) suggest that, alffnoboth dynamical or
statistical downscaling approaches have their knstnengths and weaknesses,
neither their validation on present climate comaii, nor their potential ability
to project the impact of climate change on extrewent statistics (e.g. high
percentiles) allows one to give a specific advantagene of the two types.
They state that the uncertainties associated tglti®l climate models and to
the scenarios dominate the uncertainty of climhtnge. Therefore, a complete
evaluation of the relative importance of these eausf uncertainties on the
projection of climate extremes implies the condtamcand use of multi-model
ensembles of simulations including different dovatisiy approaches, as was
suggested before by Mearns et al. (1999), Leungl.ef2003) and Hay and
Clarck (2003). Similarly, although Spak et al. (8DGave found similar skills
for a dynamical and statistical downscaling apphodor summer mean
temperatures over Eastern USA, they state thabmagiassessment of various
variables can be improved by assessing multiplendoaling methods for the
same AOGCM, ranging from state-of-the-art dynamicaldels to relatively
simple statistical predictions. Using multiple d@sealing methods with an
ensemble of AOGCMs will yield the most plausibleojpctions and will
develop a comprehensive understanding of the pllysiod mathematical
reasons behind apparent (dis)agreement among afisggional downscaling
techniques.

Previous examples often tackled mean distributibrcestain variables, while

Impact studies often require information on thetr@xe) quantities of climate
variables. In the framework of the STARDEX projetiis has been tested for
various statistical and dynamical downscaling tempies. Haylock et al. (2006)
applied six statistical and two dynamical downsaalmodels (see paper for
more details) with regard to their ability to dowake indices of extreme

precipitation in northwest and southeast Englandydneral, they conclude that
the performance among the eight downscaling models high for those

indices and seasons that had greater spatial cateer@he models based on
non-linear ANNs were found to be the best at mauglithe inter-annual

variability of the indices; however, their stronggative biases implied a
tendency to underestimate extremes. Also, six®htlbdels were applied to the
Hadley Centre global circulation model HadAM3P fmcby emissions

according to two SRES scenarios. This revealedtiieainter-model differences
between the future changes in the downscaled piaoim indices were at least
as large as the differences between the emisserasos for a single model.

This result implies caution when interpreting theput from a single model or

a single type of model (e.g., a regional climatedais) and shows the
advantage of including as many different types @#lscaling models, global
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models and emission scenarios as possible whenlopawg climate-change
projections at the local scale. Schmidli et al.Q20compared six statistical
downscaling models and three regional climate nsodel their ability to
downscale daily precipitation statistics in the dpean Alps (Figure 2.3). The
six statistical methods used here include, amoatistrs, regression methods
and a circulation pattern classification methode Tomparison is carried out
over the European Alps for current and future (2@2D0) climate. The
evaluation of simulated precipitation for the cuatrelimate showed that the
statistical and dynamical approaches tend to haweas biases but that they
differ with respect to interannual variations. Tsgtistical models strongly
underestimate the magnitude of the year-to-yeaiattans. Clear differences
emerge also with respect to the year-to-year anpomatelation skill: in winter,
the RCMs achieve significantly higher skills thdre tstatistical downscaling
approaches. In summer, there is still good qualéadgreement between the
RCMs but large differences between the statistral between the statistical
and dynamical techniques.

OBS FERA4D LT

HADRMAH

Figure 2.3: 90% quantile of daily precipitation (mm/d) in aain (SON) for OBS (top left
plot) and the models for the ERA15 validation peri®79-1993, for the European Alps. The
models are denoted by LOCI (= Local intensity segli CHRM (= climate version of NWP
model from ETH Zurich), HADRM3H (= the regional wlate model of the Hadley Centre of
the UK Meteorological Office), CCA (= canonical oslation analysis), MLR (= multiple
linear regression), MAR (= multivariate autoregressnodel) and ANA (= 2-step analogue
method). More information on the methods and audision of the figure can be found in
Schmidli et al. (2007).
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2.5 General conclusions

Since many impact studies require climate chanfpenration on a spatial scale
much finer than that provided by atmospheric oceanpled global climate
models (AOGCMs), downscaling approaches are anoappte method to
bridge the gap between what AOGCMs produce and whpact assessors
require. The idea to use regional climate modetsrégional climate studies
was originally proposed by Dickinson et al. (198@hereas the statistical
downscaling is developed analogously to the “péniecg” and “model output
statistics” approaches used for short-range nu@demneeather prediction.
Whereas the former follows the idea of using glabhabel simulations or (re)-
analysis products to provide the initial conditicansd time-dependent lateral
meteorological boundary conditions to drive highaletion RCM simulations,
the latter seeks to derive quantitative relatioagvieen large-scale circulation
indices and local climate or environmental variable

This literature review shows the existence of numasr studies on both
dynamical and statistical downscaling applicatiawsering large parts of the
globe and especially with respect to (extremesamyperature and precipitation.
The adaptation of these strategies in air qualpylieations has only begun to
develop more recently, whereby a great deal of thsgarch focuses on the
United States. Within this framework, this disskotais developed and tackles
O; and PM, levels under current and future climate conditioith a focus on
the Benelux area, and more specifically Cabauw (Nénerlands), as this rural
measurement site has sufficient data availables pbints to another important
feature: the choice of methods is largely dependentiata availability and
furthermore, on computer efficiency, practical fbdisy within the foreseen
time frame and strengths and weaknesses of thesahumg methodologies as
described in the current literature. Thereby, campa studies of dynamical
and statistical methods in simulating contemporeliynate by Kidson and
Thompson (1998), Mearns et al. (1999), Murphy (3988d Oshima et al.
(2002) are limited to temperature and precipitafields and confined to North
America, Europe, and Japan. Similar levels of perémce for present-day
climate for the dynamical and statistical methods a common finding,
independent of region, RCM, AOGCM, statistical t@igne, temporal scale,
and even performance metric. Other studies (Meatnal., 1999; Murphy,
2000; Oshima et al., 2002; Hanssen-Bauer et al3;28chmidli et al., 2007;
Spak et al., 2008) compared RCM and statisticalndomaling methods under
projected climate change. These comparative studiegound divergence
between the downscaling methods for temperatur@fptation projections
under climate change forcings, but without systemakplanations for the
magnitude of divergence. For example, Murphy (198&ed a change in the
strength of predictor/predictand relationships, &hekrns et al. (2000) found
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that the statistical approach produced an amplifedsonal cycle, while the
RCM generated greater variability in the spatidtgras of regional temperature
change. Here, it is generally suggested that amegjiassessment of a specific
variable can be improved by assessing multiple doaimg methods for the
same AOGCM combined with using multiple downscalingthods driven by
an ensemble of AOGCMs. This approach yields thet iplasisible projections
and develops a comprehensive understanding ofhihgiqal and mathematical
reasons behind apparent agreement and disagreamemig distinct regional
downscaling techniques.

This dissertation aims to identify elements frommaage of methods that are
valuable for this kind of research. In first inatantwo statistical downscaling
methods are applied and evaluated on their albdigimulate present-day levels
of O; and PMq: a circulation classification technique and a ipldtregression
approach. The review on the former demonstratesthigafield of circulation
classifications is evolving rapidly and their applions in climatology and
meteorology are increasing. There is presently déiset circulation classification
method preferable for downscaling of future climatenarios with respect to,
among others, air-quality assessment. We opt tahe®bjectified version of
the Lamb catalogue as performed by Jenkinson alid&@o(1977) and refined
by Jones et al. (1993). Its smaller-scale andyfadsy definition makes this
catalogue transferable to other regions; moreowersimplicity in terms of
input data (sea level pressure) and indices desgrlarge-scale patterns based
on the locations of high and low pressure systgmm/ide an easy physically-
interpretable framework for further air quality dtes under a future changing
climate. From the review on the regression-baselhigues, we have seen that
differences between linear (e.g. multiple-regressexhniques) and non-linear
(e.g. neural- network techniques) are shown tarbgeld (Comrie, 1997; Wilby
et al., 1998; Gardner and Dorling, 2000a) and ttheuse of multiple-regression
analysis is preferable in order to describe thesgay mechanisms. Therefore,
we opt to use a stepwise multiple-linear regressmael. This approach will
guarantee simplicity by the linear structure of th@del and practical feasibility
by the possibility to include a diverse range ofrialsles that are
provided/forecasted by AOGCMs/operational modelab{@ 2.1). As this
method has, to the author’'s best knowledge, notbgen applied directly in
downscaling AOGCM predictor variables in terms wofcuality products, this
approach will contribute to the debate whethergaession tool only is able to
reproduce the observed variability of air qualiriables. In a second step, a
dynamical approach, based on the mesoscale modBRBSA(Advanced
Regional Prediction System), is tested in termthefurban energy balance; one
of the meteorological actors important for air giyanodelling.
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Chapter 3

Theimpact of weather and atmospheric circulation

on O3 and PM 10 levels at arural mid-latitude site*

3.1 Introduction

Ground-level ozone (£§) and particulate matter (PM have been identified as
two of the most important air pollutants for Europgeneral (Jol and Kielland,
1997, Brunekreef and Holgate, 2002) and over theeBi region in particular
(Tulet et al., 2000). Since their adverse healfeatf have been observed for
decades, the supervising European institutions haogluced appropriate
legislation and several emission reduction meadsouags been taken to reduce
ambient air pollution (European Community, 1999; @/H2000, 2005).
Nevertheless, levels of ;Gand PM, continue to exceed frequently the target
values and the long-term objectives establishe&lhlegislation. Moreover,
international literature shows that air pollutioontinues to be detrimental to
human health despite these emission standards deanWwal and Janssens,
2000; Medina et al., 2004; Schlink et al., 2006).

" Demuzere, M., Trigo, R. M., Vila-Guerau de Areliad. and van Lipzig, N. P. M., 2008.
The impact of weather and atmospheric circulatiorO3 and PM10 levels at a mid-latitude
site. Atmos. Chem. Phys. Discuss. 8, 21037-21088.
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In recent decades, typical causes of high ozonePivi@ pollution received
ample treatment in the scientific literature. Rgkly high levels of these
pollutants are usually associated to the close ipniox of high precursor
emissions and as a result of industrial and sdctetaelopments. Moreover,
ambient air pollution is also strongly influenceygl tneteorological factors, due
to a complex combination of processes and influgncamely; emission,
transport, chemical transformations, and removal wet and dry processes
(Seinfeld and Pandis, 1998). Thus, weather/cliretgenents play a significant
role in all these processes’ components. On a Iscale, emission (e.g.,
biogenic or dust emissions) may depend on climaaeiables such as
temperature and surface wetness; (photo) chemioatepses depend on
temperature, humidity, solar radiation fluxes afmldiness; the precipitation
process influences wet removal. From a regionaitpaf view, short and long-
term transport depends on the magnitude of surfadmulence and on the
atmospheric circulation (at the synoptic scalejsTheans that the distribution
of pollutants is not only dependent on the spreaisoemissions, but is also
affected by various weather/climatic drivers (Giagd Meleux, 2007).

Over the last few decades, the effects of chemnrealers on climate change
have been investigated extensively (Intergovernalefanel on Climate
Change, 2007). Conversely, comparatively less @tdternas been devoted to
the issue of climate-change effects on air qualindersson and Langner,
2007a; Jacobson, 2008). However, we believe thabrder to understand the
full range of atmospheric processes that governetimution of air quality
under a changing climate, one has to understandj@aactify the processes that
impact on the atmospheric pollutants on a presem scale. Air quality is
affected by both local (in situ) and regional sgalecesses on a few tens and
hundreds kilometers. As current AOGCMs (Atmosph@aean Coupled
Global Climate Models) are only capable of resalviphenomena at the
resolution of a few hundreds of kilometers, thanelie change-air quality
interactions are hampered. Furthermore, many cltaratmospheric elements,
and particularly those with adverse impacts on hunieealth, such as
tropospheric @ and PM,, have a lifetime of the order of some hours tosday
(Seinfeld and Pandis, 1998). As a result, theitribistion is highly variable in
space and time and is often tied to the distributod sources (Giorgi and
Meleux, 2007).

The main aim of this paper is to study the abovetiored weather

climatology-air quality relation at both the regabrand local spatial scales. On
the one hand, weather-air quality interactions e lbcal-scale are quantified
based on techniques often used in short-term ailitgyuforecasts. Here, the
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selection of an appropriate method depends on iitglisity, practical
feasibility, sufficient accuracy and should be comapionally inexpensive, so
that it can easily be applied to output of diffdrehmate models (Semazzi,
2003). The latter rules out the use of a complaxatke-air quality modelling
system (in off-or online mode), a field of reseattlat has been reviewed
comprehensively recently by Giorgi and Meleux (2007

Many empirical prediction models have been develope investigate the

relationships between meteorological and air qualéta. Numerous reports
describe model results on different air qualityialles and different locations
from multiple linear regression (MLR) analysis (Hhalod and Cobourn, 1998;
Barrero et al., 2006; Stadlober et al., 2008), imear multiple regressions
(Cobourn, 2007), artificial neural networks (ANNB4drdner and Dorling, 1998;
Nunnari et al., 1998; Reich et al., 1999; Benverarid Marani, 2000; Perez et
al., 2000; Perez, 2001; Kukkonen et al., 2003; Heoghs et al., 2005;

Papanastasiou et al., 2007), generalized additvdein and fuzzy-logic-based
models (Cobourn et al., 2000). Other authors coetpbaeveral methods on a
single dataset (from the same measurement site)oonbined various

approaches in order to improve the specific aidubaht forecast (Agirre-

Basurko et al., 2006; Goyal et al., 2006; Al-Alaatial., 2008). Comrie (1997)
compared the potential of traditional regressiod aeural networks to forecast
ozone pollution under different climate and ozoegimes. Model comparison
statistics indicate that neural network technigaes only slightly better than

regression models for daily ozone prediction. Caobaet al. (2000) compared
nonlinear regression and neural network models doosund-level ozone

forecasting in Louisville (U.S.A). They concludeathboth models performed
essentially the same, as measured by various estatstics. In contrast,

Gardner and Dorling (2000), concluded that sigatiicincrease in performance
Is possible when using MLP models, whereas theofisegression models are
more readily interpretable in terms of the physicaéchanisms between
meteorological and air quality variables.

Taking into account results obtained in previouseagch showing a similar
performance between linear regression and neur@onle techniques, we
decided to employ here a stepwise multiple lineagression model which
guarantees, simultaneously, robustness and sityplieractical feasibility is
obtained by including these parameters that areviged/forecasted
individually by AOGCMs/operational models. On theher hand, the
discriminative power of a circulation classificationethod is tested as an air
guality assessment tool, keeping in mind its paaéfiture use in downscaling
future climate scenarios for air quality purpoddsth et al., 2008). Prior to the
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selection of variables for the model, a comprehensiorrelation study is
conducted between the meteorological and air quabtriables. Afterwards,
levels of Q and PM, are reconstructed using a stepwise multiple linear
regression technique and a circulation pattern aggbr. Finally, both
methodologies results are objectively comparedj wie aim of stressing their
corresponding strengths and weaknesses for long-&ér quality assessment
studies.

To the best of our knowledge, this approach hagmbefore been conducted
for the Benelux area. In fact, this integrated apph connects both
atmospheric chemistry on the local scale using whsiens from rural sites in
The Netherlands and synoptic climatology based ONM®F (European Centre
for Medium-range Weather Forecasting) operatiomalysis data. Although
the different aspects of the methodology are wideslgd in their specific field
of application, they are seldom compared againsh edher. Many authors
solely used the first step in forecasting futusesls of air quality variables (e.g.
Oanh et al., 2005; Wise and Comrie, 2005), whileyrstudies investigated air
guality in relation to the latter (Comrie, 1992;\es et al., 1992a, b; Cannon et
al., 2002; Kassomenos et al.,, 2003; Bridgeman ait@€bmnor , 2007). An
objective combination of both methodologies resudtsa further insight in
weather-air quality related issues, and presentsir ticorresponding
(dis)advantages for long-term air quality assesssiewlies.

3.2 Data

In order to get insight in the weather-air qualiyeractions on the local and
regional scale, different sets of meteorological aim quality data are used and
described in the following sections.

3.2.1 ECMWEF operational data

We have extracted large-scale operational data nom 2.5° x 2.5° grid for the
larger European Atlantic Region (20 °W — 35 °E,°Rb— 35 °N). This dataset
Is used to determine prevailing circulation patteat the regional scale. The
data covers the 2001- 2004 period, identical topteod selected to construct
the linear model from the measurements describeseation 3.2.2. For the
circulation pattern approach, 12h UTC mean sed [@essure (MSLP) is used,
while mean temperature (K) and relative humidity) @ daily averaged from
the four provided time steps for the period 200040n order to compute the
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long-term climatological normal, we have extraci&th UTC MSLP and daily
mean temperature and relative humidity for thequei971-2000.

3.2.2 Local meteorological measurements

Previous efforts to relate air quality variable centration data to surface
meteorological variables have shown that tempezdfaimith et al., 2000), wind
speed, relative humidity, and cloud cover are @atewariables (NRC, 1991).
Other meteorological-air quality studies have fowvidd direction, dew point
temperature, sea level pressure and precipitats&fiuliin the modelling and
forecasting of air quality variables (Gardner amatidg, 1999; Delcloo and De
Backer, 2005; Hooyberghs et al., 2005; Grivas aruhldlilakou, 2006;
Andersson et al., 2007a, b; Papanastasiou et @07)2Furthermore, Comrie
(1997) states that the use of several types of mddeozone prediction can be
particularly sensitive to different weather-ozoneegimes and urban
measurement locations. In order to by-pass thisptexity, this study solely
uses measured high-temporal resolution data fraal sites. This is done in
order to get insight into the meteorological — @urality interactions with a
limited interference from local emission sourcesplying a limitation of this
approach to sites where the variability of emissienof minor importance. In
this respect, we have only considered measurenfemts rural observation
sites, with a daily (or higher) temporal resolutimeteorological measurements
for the period 2001-2006 and with the availabibfyair quality measurements
(see section 3.2.3). This results in a selectiofoof rural stations located in
central and southern sections of The Netherlandbl€T3.1 and Figure 3.1).
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Figure 3.1: Location of the rural meteorological and air diyaimeasurement sites in The
Netherlands.

For all stations, wind speed (FF) and direction {DBaily mean (Tmean),
minimum (Tmin) and maximum (Tmax) temperature aethtive humidity
(RH) are available. For Cabauw and Volkel, add@lanformation is available
on daily mean precipitation (Rain). Furthermord, sdéations (except Hupsel)
measure sea level pressure (P0). Cabauw has additinformation on
shortwave downward radiation (SWD) and cloud cq¥&€). As Cabauw has
no direct measurements of relative humidity, shdwyrBarrero et al. (2006) to
correlate significantly (p < 0.01) with suspendeadgticles, NQ, SO, and Q, the
relation between 2m air and 2m dew point tempeeatsirused to derive the
relative humidity. A quality control was performatithe KNMI (Royal Dutch
Meteorological Institute) whereby quality numbersr feach measured
parameter are defined in the same way as in theefocontinuous Cabauw
programme (Beljaars and Bosveld, 1997). After remh@f spurious data, the
measurements are averaged to daily values, in dadre able to make a
connection with coarsely spatial and temporal grdddlata from ECMWF
operational analysis or AOGCMs. As for the air gyalariables (see section
3.2.3), the first 4 years are used to built theesgion model, while the period
2005-2006 is used to validate the model.

Table 3.1: Characteristics of the meteorological and airliguaneasurement sites in The
Netherlands for the period 2001-2006.
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Code Location Latitude Longitudéleight Start End Available variables
(m) measurementsneasurements

Meteorological stations

(KNMI) ™

o o DD, FF, Tmean, Tmin,
375 Volkel 52,07°N 6,65°E 20.1  1/03/1951 Present Tmax, Rain, PO, RH
DD, FF, Tmean, Tmin,
Tmax, PO, RH

DD, FF, Tmean, Tmin,
Tmax, RH

DD, FF, Tmean, Tmin,
348 Cabauw 51.97°N 4.296°E -0.7 1/01/1997 Present Tmax, SWD, RH, P0,CC,

340 Woensdrechts51,45°N  4,35°E 14.9 2/05/1995 Present

283  Hupsel 51,65°N 5,7°E 29 1/01/1990 Present

Td, Rain
Air quality stations (RIVM -AIRBASE)
232  Volkel 52,07°N 6,65°E 20.1 Depends on the \deia G;, NO, NG, SO
235 Woensdrecht51,45°N  4,35°E 14.9 Depends on the variable 3, NOD, NQ, SO, PMyq
722  Hupsel 51,65°N 5,7°E 29 Depends on the variable 03, NO, NG
620 Cabauw 51.97°N 4.296°E -0.7 Depends on thelari Q, NO, NG, SO
633  Zegveld 52.139°N4.838°E 3 Depends on the variable 1M

* A  more detailed description of these measuremergtations is available at
http://www.knmi.nl/klimatologie/daggegevens/dowrddatm|

3.2.3 Air quality data

In addition to the meteorological variables, NO, Nghd SQ concentrations
are added as independent variables explainingahation of Qand PM. The
air quality data was obtained from the AIRBASE datse [ttp:/air-
climate.eionet.europa.eu/databases/EuroAxnétourly measurements of ;0
NO, NGO, and SQ are selected from the rural stations where availdbr the
period 2001-2006. Again, these locations are ch@sdnthe expectation that,
by selecting a rural background station, non-laxalelations would be more
clearly revealed and that the confounding effectoctl urban vehicular NO
emissions will be limited (Gardner and Dorling, 8D0Taking into account the
use of meteorological variables on a daily scaleepsesentative daily value is
considered for each pollutant. For Sé&hd PM, daily means are considered,
while for O; the daily 8-hourly maximum mean and for NO and,Nié® daily
maximum value is used (European Community, 1999).
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Figure 3.2: Time series of daily (grey bars) and monthly méaack line) values for surface
O3, NO, NG, SG and PMy measured at Cabauw/Zegveld between the period-200a
(03/2003-2006 for PI).

Monthly and annual cycles are clearly revealeddgrNO and NQ (Fig. 3.2).
The yearly cycles of ©Oreveal the highest peak concentrations in summer,
whereas for NO and NO the annual cycle is characterized by a summer
minimum and a maximum in winter. This can be uni&d from the mutual
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relation between © NO and NQ in which the oxides of nitrogen (next to CO
and volatile organic compounds (VOC) react with hiyeroxyl radical OH) as
precursors in the nonlinear chemical process fagn@(NRC, 1991; Sillman,
1999; Satsangi et al., 2004; Lasry et al., 200%)his respect, scientists have
attempted to characterize local regions as,-N@ited' and "VOC-limited' with
respect to the reduction of photo-oxidant formatidhe regime in a particular
region will depend principally on the concentratiminNG, and the VOC/NQ
ratio. Thereby, urban areas are often denoted &CHimited’ (lower VOC
concentrations), whereas rural and suburban areageaoted as ‘NOIlimited’
(lower NQ, concentrations) (Reis et al., 2000). Here,,MCGts as a catalyst and
produces @until its removal as NOby deposition processes or its conversion
into other forms of nitrogen. More detailed infotioa on the photochemical
reactions forming ozone under varying N@nd volatile organic compounds
emissions can be found in Sillman and He (2002 50, and PM,,
concentration levels are rather constant througtbat year. The highest
monthly SQ concentrations are reached in January and Junde \he
maximum daily concentration is reached in Marchdifidnally, differences
among the seasons can be considered relatively Gnaktandard deviation).
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Figure 3.3: Monthly distribution of @ and PM, concentrations for Cabauw/Zegveld (as
Box-Whiskers), Volkel (232), Woensdrecht (235) athapsel (722). The boxes present the
median, the first and third quartiles, while theiskiers and dots present the minimum and
maximum value and possible outliers respectively.

In order to know whether different rural sites Ire tNetherlands have similar
characteristics in terms ofs@nd PM, concentrations, the annual cycle for all
selected sites is depicted in Fig. 3.3. Concer@gg is found that the highest
median concentrations are observed in spring maiAgV) for all stations,
whereas peak concentrations occur in summer (JJA9.refers to the presence
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of a spring and summertime maximum often seen glatiiudes (Delcloo and
De Backer, 2008). As it is also shown by Fig. 32, lowest daily medians of
surface ozone concentrations are found in Novenibecember and January.
For PM, maximum daily mean concentrations are found imeJand
December, while in Cabauw and Woensdrecht a lessncli peak can be
observed in February and March. Furthermore, dear that for both ©and
PM,,, all sites are characterized by similar annuallesyan terms of their
median concentrations. Furthermore, the Directi989130/EC and following
up Directive 2008/50/EC of the European Parlian{ét, 1999, 2008) suggest
a threshold concentration of 120 pg/m3 and 50 pdém®a maximum eight-
hourly mean @ and daily mean PM concentration respectively for Europe.
The number of days exceeding these thresholdshirdifferent rural sites
range between 3 - 4.5 %yfor O; and 6.2 - 8 % yf for PMy,. This shows that
there are only minor differences ins @nd PM, concentrations for different
rural measurement sites in The Netherlands, as alss suggested by
Flemming et al. (2005) for other rural areas.

3.3 Methods

It is now widely accepted that there are two maupraaches in synoptic
climatology to investigate the links between losaile environmental features
and large-scale circulation patterns (Yarnal, 1998) environment-to-

circulation approach and the circulation-to-envimremt approach. The former
structures the circulation data based on criteegfindd by the environmental
variable and lacks any capability in a predictived®, but can be of use in a
descriptive way to get more insight in those patethat are regulating the
magnitude of surface environmental variables. Csalg, the latter classifies
the circulation data based on standard pressuldsfie.g. SLP or 500 hPa
geopotential height), prior to seeking links wikte tocal-scale environment. In
this study, we adopt the latter, which has the b#ipato calculate expected air
quality conditions related to each circulation eatf and to compare this
forecast with the observed air quality values taleate the strength of the
circulation-to-environmental approach (Cannon gt24102).

3.3.1 Stepwise regression analysis
Our goal is to model the maximum 8-hourly meanadd mean daily PM

levels by a linear model that will form the basts bur understanding and
reconstruction of the air quality variables basedlacal-scale meteorological
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and air quality observations. For this purpose,use a robust approach based
on stepwise multiple linear regression models fathlthe dependent variables
O3 and PMo,.

Prior to the regression analysis we assess tharlimature of the relationship
between the dependent and independent datasetasénthese relations are
non-linear, an appropriate variable transformatgoapplied in order to assure
linearity. Secondly, the data is checked for thisterce of multicollinearity. If
the tolerance (a measure for the strength of aiimelationship among the
independent variables) between two variables isvibal threshold value of 0.1
(Norusis, 2002), then these variables are highted and their simultaneous
use can be misleading and interfere with a corietérpretation of the
regression results. In such a situation, the vhsabthat suffer from
multicollinearity should be identified and sometbém removed from the rest
of the analysis. Only then we apply the multiplaelr regression with a
stepwise method for variable selection to recowsttume series for @and
PMy, with F probability <0.05 to enter and F probakil#0.10 to exit. The
model was developed with the data subset covehegwthole period, from
January 1, 2001 to December 31, 2004. Missing wata treated following a
listwise deletion (Norusis, 2002), which means tiwattPM,,, only the period
from 20" of March 2003 until 3% of December 2004 is considered.

3.3.2 Circulation-to-environmental approach

As our aim is to test the circulation patterns datare air quality assessment
tool, the circulation-to-environmental approach Ivbke followed using the
automated Lamb Weather Types (hereafter called Wddapted from
Jenkinson and Collison (1977) and Jones et al.3)189 the Low Countries.
The rationale for using this approach is that tdhentification of a clear link
between circulation patterns and air quality vddabcould be used as a
downscaling tool for air quality assessment, usopgrational analysis or
AOGCM data as input.
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Figure 3.4: Location of Lamb weather type grid on a 5° x X88olution, with 16 point
centered over the Benelux. “C” denotes the locatibthe Cabauw measurement station and
the grid center.

The WTs are developed using ECMWF MSLP data andafgiven day they
describe the location of the high- and low-pressigeters that determine the
direction of the geostrophic flow. A grid with 1l@ipts is assigned over the
larger Western and Central Europe, with a centoahtpover the Benelux, in
52.5°N and 5°E (Fig. 3.4). We computed a set opfematmospheric circulation
indices using mean sea level pressure (MSLP) af C2ld these 16 grid points,
namely the direction and vorticity of geostrophiow: southerly flow (SF),
westerly flow (WF), total flow (F), southerly shewmorticity (ZS), westerly
shear vorticity (ZW) and total shear vorticity (4.small number of empirical
rules devised previously (Jones et al., 1993; Tagd DaCamara., 2000) are
then used to classify each day as one of the Zlation types recently
developed in Demuzere et al. (2008).

3.3.3 Model evaluation measures
Statistical model performances are evaluated uspyopriate scalar measures
and skill scores (Wilks, 1995), namely: the Pearsomelation coefficient (R),

mean square error (MSE), root mean square errorSBMand explained
variance in % (R2). According to Murphy (1988)e tbkill of any given model

70



IS a measure of the relative accuracy of a modéh waspect to a standard
reference model. Hence, the skill of any model &hdae interpreted as the
percentage improvement over a reference or benéhmadel (Wilks, 1995).
The two most commonly applied reference models usedatmospheric
sciences are climatology and persistence. Therefae skill scores based on
the MSE will be used in this paper with the climagical mean (MSE;,) and
the persistence (MSEJ as a reference:

SS( MSE:% 100%
0-MSE;,
MSE- MS

SS§( MSBE:—Igers A00%
0-MSE,,

with the “0” corresponding to the accuracy levelttivould be achieved by a
perfect model.

Furthermore, the Kruskal-Wallis one-way analysivafiance is used as a non-
parametric method to test the difference afand PM, population medians
among the weather type groups (Kruskal and WdlB§2). A 1% significance
level is used and hereafter denotediagin section 3.4.3.

3.4 Results and discussion
3.4.1 Diurnal, seasonal and annual cycles

Prior to the selection of the weather and air qualariables for the regression
analysis, their mutual relations are investigated éunction of time. Therefore,
Pearson correlation coefficients are calculatesvéen each of the selected air
guality and meteorological variables for each ma#parately in (Fig. 3.5 and
6). We have used anomalies of each variable inram@eemove the annual
cycle. Furthermore, we have taken into accountcautelation effects when
computing the Pearson correlation values. Heneeséimple size n is replaced
by an effective (smaller) sample sizg: that returns the Pearson correlation
coefficient with its respective “adjusted” level significance (Santer et al.,
2000). Previous works have stressed the existehdengporal lags on the
relations between air quality and meteorologicatialdes (Kalkstein and
Corrigan, 1986; Styer et al., 1995; Ziomas etl#195; Cheng and Lam, 2000).
In order to investigate such hypothesis we havéudsd in the analysis all
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meteorological values registered with 6, 12, 18a8d 48-hour lag period (not
shown). Below, results obtained fog @nd PMg are described separately.
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Figure 3.5: Monthly mean Pearson correlation coefficientsueein daily maximum 8-hourly

mean Q and all available meteorological variable anonsaf@ Volkel (232), Woensdrecht

(235), Cabauw/Zegveld (620) and Hupsel (722). daticen coefficients significant on the

99% level are depicted by the grey shaded area.dwdtgical variables abbreviations are

denoted in Section 3.2.1.
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Figure 3.6: As in Figure 3.5, but for PM and the stations of Woensdrecht (235) and
Cabauw/Zegveld (620) only.

Os; — In general, ©correlations are not responding differently on diféerent
time lags. Only for the 12 and 18-hour time lagrrelations coefficients
between @and SWD changes from positive to negative vallibss is due to
daily cycle of the radiation terms at mid-latitudeghich changes from a
positive sign during daytime to a negative signight. The annual cycle of the
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correlations coefficients for temperature showrailar response as for SWD
(Fig. 3.5), with a strong positive correlation beem Q and Tmean /Tmax
(with R= 0.89/0.91 respectively) in summer. Thispense is the opposite of
that found for cloud cover, with strong negativeretations in summer. Over
the whole year, ©is significantly negatively correlated with relagihumidity.
During summer (JJA), Oconcentrations are negatively correlated to wind
speed, with a minimum of —0.61, whereas this sigerathes a maximum of
0.83 in winter (DJF). This dichotomy is in good egment to the results of
Davies et al. (1992), who found similar correlafiobpetween a wind speed
index and @ concentrations measured in Cabauw for the pel9d@-11988 (see
their Fig. 3.4). Another striking effect is the sificant negative correlation
between sea level pressure ang i©® winter. Together with the significant
positive correlations of wind speed for this seasthis could point to a
transport of ozone from the lower troposphere auérdposheric folding, as
described by Davies et al. (1992) and Delcloo aadBAcker (2008).

PMyo— In general, correlations between BNMnd meteorological variables on
different time lags weaken as a function of anaasing time lag. Only the
correlation coefficients for both the radiation iehles swap sign in the course
of the year, with a peak difference in summer, wiserar radiation is the
highest at these mid-latitude locations. The respaf air temperature on RM
varies seasonally (Fig. 3.6), with the highest fpasicorrelation coefficients
during the JJA (0.69), and negative during DJF@Y. This is consistent with
the results of van der Wal and Janssen (2000), f@tod that higher PM
concentrations in winter (summer) coincide with éswhigher) temperature for
PMyolevels in The Netherlands. For relative humidityere is an insignificant
correlation throughout the year, whereas this tatice is systematic negative
for daily precipitation, although the correlatiooetficients are only significant
for the months October, November and December.|&ita G;, wind speed is
significant negative correlated to RMor large parts of the year.

Previous research introduced a weekly cycle indearaadditional variable in
forecasting a) pollutant levels for the Athens gi@&amas et al., 1995; Grivas
and Chaloulakou, 2006), b) RMlevels in the Volos (Greece) area
(Papanastasiou et al., 2007) or c)pMalues for Belgium (Hooybergs et al.,
2005). However, in our case a weekly cycle is netl wstablished for most
pollutants with the exception of NOthat shows a decrease during weekends
(Saturday and Sunday) (Fig. 3.7). The fact thatnmabhsurement stations are
denominated as rural, can explain why the day-efvikeek influence on the
short-term variability is small. Flemming et al.0@5) confirms this limited
weekly variation in @ NO, SQ and PM, concentrations for German rural
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measurement stations. Furthermore, a weekly cytlaracterised by the
decreasing of NQand corresponding increasing o @uring the weekend
suggests that this is a N@mited system (Reis et al., 2000).
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Figure 3.7: Weekly cycles for @ NO, NG and SQ and PMg concentrations derived from
the measurement station of Cabauw.

In general, this analysis between the meteorolbgitd air quality relationships
shows only minor differences among the four diffeneiral measurement sites
considered within The Netherlands. These resultseapto confirm those
obtained by previous authors showing that rurabhsrean be considered as
spatially homogeneous in terms of air quality corigions (e.g. Flemming et
al., 2005). Taking these facts into account wetoptarry on our analysis with
Cabauw data only. Nevertheless, as correlation ficaafts between
meteorological and air quality variables do notvte any information on the
slope of the linear relation, a simple test is penked for these meteorological
variables available for more than one station @raiwn). The linear relations
between meteorological and air quality variablesat similar slopes in terms
of sign and in terms of the slope an overall demmin magnitude lower than
0.05. Hence, we consider the Cabauw station t@ejmesentative for rural areas
in The Netherlands, a decision that is further suigal by the fact that, unlike
the others, this station has a comprehensive seothf meteorological and air
guality variables.

Furthermore, the lag analysis also points out that addition of time lags

shorter than 1 day does not provide sufficientlyditonal information.
Therefore, only the 1 and 2 day time lags for boteteorological and air
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quality variables are taken into account in thessgient regression analysis.
Finally, as mentioned before and shown in Fig. &7Aveekly cycle in air
guality measurements from Cabauw is not well estabtl; therefore, this
variable is also dismissed.

3.4.2 Stepwise multiple regression

A large amount of research has been conductedeidat decade to test the
capacity of (linear) multiple regression (MLR) ayga$ and (non-linear) neural
networks for air quality prediction purposes based both air quality and
meteorological input. It has been shown that meders decrease by including
persistency (lag effect) of the air quality vareb(Perez et al., 2000; Smith et
al., 2000; Perez, 2001; Barrero et al., 2006; Graad Chaloulakou, 2006). The
aim of this research is to develop an approach thatalso useful for
downscaling operational low-resolution or AOGCM puit data in terms of air
guality assessment on the longer time scales. il dbntext, there is no
information on the (future) air quality data andigsions as a dependent input
variable. Therefore, the regression analysis idopmed for two sets of
predictors, both using measurements from Cabauw: dil without any air
guality data, hereafter called MET, and 2) with ¥ and 48-hour time lag
values of air quality variables included as indejset variables, hereafter
called METCHE.

Table 3.2 shows the resulting model coefficientsbioth G and PM,. All the
variables introduced in the model are associateda tooefficient that is
statistically significant. For both MLRtand MLRyetcHE, relative humidity is
the most significant variable. This is in accordamnath similar results using
MLR for the prediction of ozone in four locations Taiwan (Lu et al., 2006)
and based on PCA for the region of Oporto in Paitt§ousa et al., 2007).
Furthermore, Tmax plays an important role, bothtle present and previous
day in both analyses for ;0Including air quality variables as predictors
explains 15% more of the observed, @ariance, whereby Oand NQ
concentrations from the previous day provide addél relevant information in
agreement with results obtained in previous stubie$avis and Speckman
(1999) and Barrero et al. (2006). Both MR and MLRyercHe also reflect the
importance of shortwave downward radiation and wisgeed, and for
MLRveTche, the concentrations of nitrogen oxides on theipressday.
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Table 3.2: Summary of the model coefficients b, the standad coefficients3, t-statistic
and partial explained variance R2? for the stepwiseltiple regressions MLigr and
MLRmETCHE for O and PMo.

O3 MLRyer MLRveTcHe
Partial Partial
Variable b B t R2 Variable b B R2
(Constant) -0.60 -1.51 (Constant) -0.59 -1.60
RH -0.80 -0.30 -959 0.23 RH -0.68 -0.26 -856 0.24
TA002max 152 0.26 6.79 0.071 O3 (lag24) 0.36 0.36 1473 0.16
PO (lag24) -0.32 -0.14 -5.89 0.023 TAO0O2max (lag24)1.39 0.23 7.38 0.033
SWD 0.06 0.16 5.07 0.01 NO2 (lag24) -0.17 -0.14 -462 0.022
TAO0O2max (lag24) 0.82 0.14 4.36 0.01 SWD 0.054 0.15 4.97 0.015
F010 1.37 0.13 4.79 0.01 O3 (lag48) -0.12 -0.12 -5.12 0.012
DO10 (lag24) 0.19 0.066 2.60 0.006 PO (lag24) -0.30 -0.13 -5.60 0.008
TA002min -0.65 -0.10 -2.65 0.005 TAO002max 1.05 0.18 4.91 0.006
SWD (lag24) 0.021 0.058 2.20 0.002 TA002min (lag24)-0.56 -0.081 -2.60 0.005
D010 0.012 0.056 2.05 0.002 F010 1.26 0.12 4.54 0.005
F010 (lag 24) -1.18 -0.11 -3.85 0.003
D010 0.022 0.076 3.29 0.004
TA002min -0.58 -0.089 -2.48 0.003
NO (lag24) -0.023 -0.072 -2.42 0.002
Calibration?
R2 0.37 0.52
RMSE 14.3 12.8
PMyo MLRweT MLRwmeTcHE
Partial Partial
Variable B B t R2 Variable b B R2
(Constant) 1.08 2.49 (Constant) 0.91 2.06
F010 -1.48 -0.18 -4.54 0.088 PM10 (lag24) 0.34 0.34 9.57 0.18
TA002max 1.34 0.29 7.55 0.037 NO (lag24) 0.037 0.16 3.85 0.07
F010 (lag24) -1.27 -0.17 -4.18 0.039 RH 0.44 0.23 4.84 0.047
SWD -0.048-0.19 -3.91 0.027 TAO0O02max 1.10 0.23 6.02 0.046
CC (lag48) -0.81 -0.12 -3.36 0.018 F010 (lag24) -1.28 -0.16 -3.83 0.015
Rain -75.2 -0.15 -394 0.013 RH (lag24) -0.19 -0.097 -2.42 0.013
RH 0.32 0.17 3.62 0.011 Rain -65.45 -0.12 -3.23 0.008
D010 (lag24) -0.24 -0.11 -3.01 0.012 SwD -0.032 -0.12 -2.71 0.009
Rain (lag24) -40.8 -0.084 -2.27 0.006 NO (lag48) 0.018 0.081 2.23 0.006
D010 (lag24) -0.016 -0.075 -2.01 0.005
Calibration®
R2 0.25 0.42
RMSE 11.1 10.1

a Calculated over the period 2001-2004
b Calculated over the period 20-3-2003 to 31-124200
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For PM,, wind speed is most significant when no air qyafitedictors are
included while Tmax is important in both modelssulés that agree with those
obtained by Stadtlober et al. (2008) for Bolzanout Tirol - Italy). The model
results improve from R? = 25.0 for MRy to R? = 42.0 when the air quality
variables are included (MLRR+chE). Here, the previous day Rytoncentration
is shown to be an important parameter for the ptedi of PMyglevels, as was
shown in previous works (e.g. Hooyberghs et al052(Gtadtlober et al., 2008).
Furthermore, also previous day NO is in importardigator for high P}
concentrations. This strong correlation indicateadrtraffic as a local source
(Harrison et al., 1997). Although Cabauw/Zegveldlassified as a background
rural station, the different behavior of NO depawgdon the day of the week
(Fig. 3.4) points to a possible influence of roadffic on the PMg
measurements. This tendency is confirmed by thenteesults of Schaap et al.
(2008), who have found higher BMconcentration in Cabauw compared to
other European rural background areas. A compan$aome quality of the two
models for PM, shows that our results are of similar magnitudehoke by
Slini et al. (2006) and van der Wal and JansseQQRQhat have obtained a
correlation coefficient of respectively 29.7 and.®36 without any further
information on air quality predictors. In the foMmmg section 3.5, a more
thorough validation of the MLR approach and a comgpa with the circulation
approach will be performed.

3.4.3 Circulation-to-environment approach

The interannual variability of the eleven resultiddeather Types (WTS) is
depicted in Fig. 3.8, showing the relative frequen€ each WT averaged for
each month over the period 2001-2004. The antieyclaype is the most
frequent circulation pattern throughout the yeatcept for the month of
October, which is dominated by the southwest (SW) west (W) circulation
types. Throughout the year, the relative frequeatycyclonic situations is
almost constant, reaching a peak in August. Thadmaal circulation types
north (N) and south (S) are rather constant througlthe year, except for a
decrease of N observable from October to DecenfdeYVTs with a westerly
component and thus originating in the Atlantic Qc&W [southwest], W
[west], NW [northwest]) present stable relativegfrencies through most of the
year, although the NW regimes decline during wirded early spring. This
phenomenon is counteracted by an increase of atditig types between
March and May, which is in agreement with the wealbwn maximum of
blocking frequencies over the Euro-Atlantic regi@@iAndrea et al., 1998;
Trigo et al., 2004). The remaining types with astean component (NE, E
[east] and SE [southeast]) are the least frequieall weather types throughout
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the year with the relative frequencies of E beimfually zero between May
and August.

100%

90%

wnthly frequency (%6

Mean 1

Figure 3.8: Monthly mean frequencies of Lamb Weather Typesr dlie period 2001-2004.
The acronyms of circulation patterns are as foltdws unclassified, NW = northwest, W =
West, SW = southwest, S = south, SE = southeaste&st, NE = Northeast, N = North, C =
Cyclonic and A = Anticyclonic.

The analysis in section 3.2.3 (Fig. 3.3) has shthaihthe annual distribution of
O; and PMg is similar over the various rural sites in The INstands.
Therefore, the circulation type-specificz Gand PM, concentrations are
analysed for the Cabauw measurement site onlyr&sg®l9 and 3.10 depict the
statistical distribution of @and PM, according to their respective WT class.
Because some weather type clusters have insufficiata, a few percentile
bars/outliers are absent from Fig. 3.10. Fagr @n insignificant explained
variance (0.03) andyyw >1% show a limited discriminative power over the

whole year (Fig. 3.9).
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Figure 3.9: Box — Whiskers plots with the concentrations of &cording to the Lamb
weather type classes per season and year, avavagethe period 2001-2004. The box and
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Figure 3.10: As in Figure 3.9, but for PM.
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Nevertheless, the results based on seasons shog sgnificant results. For
DJF, highest concentrations can be observed i€ tf@yclonic), N, W and NW
WTs. Davies et al. (1992b) obtained similar depeanddor ozone with N, NW
and W weather patterns in Cabauw. It is noticed Home of the latter are
related to strong winds and tropopause folding rapms whereby ozone can
be transported from the lower troposphere (Delend De Backer, 2008). The
lowest DJF concentrations can be found in E, SE&udlitectional circulation
patterns. This discriminative power of the WT tagae for Q assessment is
supported by an explained variance of 26.0% an@d < 1%. Lamb weather
types do not succeed in explaining a great dedhefobserved variance in
MAM, which is also supported by an insignificant fa&tor (5.0%) anduy >
1%. The relation between the WTs and concentraifo®s; in JJA is opposite
compared to the DJF situation. Whereas in DJF thleest concentrations are
found in West to North directions, in JJA these barfound in opposite East —
Southeast directions. This coincides with the hsgjimeedian concentrations of
NO and NQ for the SE circulation pattern (not shown). Thixreased
transport of NQ in summer from the densely populated Ruhr areea(éal
south-easterly) makes the atmosphere more abuwdld@y precursors, which
can lead, in combination with positive temperatar®malies/increased solar
radiation, to higher ©formation and concentrations. The SON patterns are
typical of a transitional period characterised hgrging conditions from JJA to
DJF, namely with a shift in highest concentratidram North to Easterly
directions, and lower concentrations from SoutheaStoutherly directions. For
both JJA and SONyyw < 1%, so that the medians of the &d PM, clustered
per weather type group are significantly different.

In general, the Kruskal-Wallis test shows thatlthenb weather types are able
to distinguish between high and low episodes of,Mith oxw < 1% in all
seasons and over the whole year averaged. For thdFBox-Whisker plot
shows the lowest concentrations of glriginating from Western to Northern
circulation patterns, and the highest median camagons during A and SE
WTs. This is supported by the findings of van dal\&hd Janssen (2000) who
has obtained the highest PMevels in DJF in The Netherlands with winds
prevailing from east to southeast. The explainetuae is the highest (30.0%)
when compared to the other seasons. In MAM, thedsggPM,concentrations
are grouped with the WTs ranging from East to Salitéctions, which could
be associated to the transport of Bfvbm the high industrial Ruhr area. As for
DJF and MAM, the highest Pjlevels can be found for the SE and S classes,
and the lowest levels for types originating from3M® Northwest. Again, this
confirms the results of van der Wal and Jansse@QRWho reported higher
levels of PMg in JJA during dry weather condition with posititemperature
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anomalies, which is the case for the SE and S haediher types (not shown).
In autumn, the explained variance is the lowestQ®), although the highest
levels of PM, can again be associated with southeast to soutlogripatterns.
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Figure 3.11: Mean surface pressure fields (in HBa}the circulation type in each season
characterized by the highest mediap €ncentration for the period 2001-2004. Shaded
colors show the pressure anomalies (left panets)ie&Znperature anomalies (middle panels)
and relative humidity anomalies (right panels) frtme long-term mean (1971-2000). The
full dot refers to the Cabauw measurement location.
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Figure 3.12: Same as Figure 3.11, but for M

In order to gain further insight into the physicainditions behind the WT-air
guality relationships, we derive the seasonal cam@g@ressure maps for each
circulation pattern that is associated with thehbgj median of ©and PM,
(Fig. 3.11 and 3.12). For each season, the ciitonlaype with the highest
median of the air quality variable is identifiedydathe corresponding mean
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circulation pattern is depicted for the period 2@0D4 together with the
MSLP, temperature and relative humidity anomalgesr{puted with the normal
period from 1971-2000). For ;Dthe winter surface MSLP composite map
shows a meridional pressure gradient, with higlsguee located just west of
Ireland, and a low-pressure system positioned oweth-eastern Europe. This
implies a strong northerly circulation that is astent with previous results of a
strong correlation between high IBvels and strong winds in winter (Davies et
al., 1992b). The anomaly maps show an enhancediygopressure anomaly
south of Iceland, and a negative anomaly east ba@a. These patterns also
suggest strong winds and high frequencies of trewgleven cut-off lows in the
vicinity of the observation station, which suggasamsport of air mass from the
upper troposphere (low troposphere) to the sur{@edcloo and De Backer,
2008). This could explain the higher concentrati@ssociated with these
patterns, as in non-summer months there is lessrtypty for photochemical
production of ozone in the boundary layer (Daviesl €1992b).

The spring MSLP maps show the Azores high pressystem extending far
towards the northeast and a low located over Itahis pattern results in a
weak northwest-southeast pressure gradients andtimgswinds from the

northeast and a negative (positive) temperaturatire humidity) anomaly

over continental Europe. The spring MSLP anomaltidgate that the pressure
gradient is slightly stronger than normal, a fdwhttis consistent with the
positive (albeit insignificant) relation with wirgbeeds in spring.

The JJA composite MSLP maps show a strong antioycleystem located
north of Cabauw, resulting in a weak meridionalld his situation transports
warm and dry air from east and central Europergel@arts of Western Europe
promoting the appearance of a positive (negatiexpperature (relative
humidity) anomaly fields. This is consistent wittetstrong positive (negative)
relation between temperature (relative humidityatticharacterises high ;O
levels in summer. Pressure gradients and corregmpadomalies are generally
weak, which is also consistent with the negativati@ship between high O
levels and wind speed. These findings confirm #wults of Delcloo and De
backer (2008), who have shown that high summer @zewents in Uccle
(Belgium) - which has generally similar synopticadcdcteristics as Cabauw —
are often generated by slow moving air massesdingsiover the continent.
Furthermore, our results agree with those of Guitlamd Van Dop (1977),
who found a similar relation in the 1970s betweahlozone levels and the
synoptic situation above The Netherlands. The Gretsrlagen patterns (Baur
et al., 1944; Hess and Brezowsky, 1952) associaitidtheir high ozone levels
events describe a closed high over Middle Europé)(thigh over Scandinavia
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(Hfa) or high over the North Sea — Iceland (Hnanparable to our results
using Lamb weather types.

The autumn composite MSLP map exhibits a strongthm@st-southeast
pressure gradient, with an enhanced flow from tloetheast. A positive

pressure anomaly located northeast of the Brit@hsl presents the highest
magnitude when compared to those obtained in atbasons. Anomalies for
temperature and relative humidity are generallyrattarised by negligible

values which consistent with our explorative catiehn analysis in section
3.4.1.

For PMy, high levels occur during those occasions wherenasses are
advected from the south or east. In DJF, a largeyafonic system covers
large parts of north and Eastern Europe, assocwatbda high positive pressure
anomaly centred west of the Norwegian coast. Satteiqm results in a south-
eastern flow (over the highly industrialized Rulnea, and advection of cold
continental air. This is consistent with the negattorrelation of Pl levels
with temperature and mean sea level pressure dee8té.1) and the results
obtained by van der Wal and Janssens (2000), wkie haed P, data of
nineteen monitoring sites in The Netherlands (fo period 1993-1994). In
MAM, this pattern is similar, although weaker, wighpositive anticyclonic
system placed over Scandinavia, and a low pregsaced over the Bay of
Biscay, again advecting cold air from central E@o summer, pressure
gradients are generally weaker, with a small negafjpositive) pressure
anomaly located west of Ireland (Baltic Sea) prangpthe advection of warm
air from the south. A result that is consistenthwiite positive correlation of
PMy, levels and wind speed in JJA, confirming the rissabtained by van der
Wal and Janssen (2000) who stated that concemsatibPMg are higher than
normal during summer under conditions of high terapges and dry weather.
Autumn is characterised by a blocking high-pressystem over the northern
sea, which results in calm, colder than normal ieabver the area.

3.5Validation of MLR and LWT

In the previous sections 3.4.2 and 3.4.3 we haveateresults for the MLR
and WT approaches highlighting the resemblance suittlar research done for
Benelux and in other regions. Here we provide afeative comparison
between the results obtained with the MLR and thE &V quality assessment
models, using the period 2001-2004 for calibrateod the remaining years
2005-2006 for validation purposes. For MLR, theresgions obtained in
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section 3.4.2 are used on the validation dataseé¢idr the WT methodology,

Oz and PM, means are computed for each of the circulatiotepst for 2005-

2006. The average value of the air quality variab$#sociated with each
circulation pattern is used to reconstruct the tamees.

Table 3.3: Validation of the multiple linear regression imbdes (MLR — MET and MLR —
METCHE) and the Lamb weather type approach in 2esodWT-year and LWT-seas)
using the explained variance (R?), root mean sgeam® (RMSE) and two skill scores (SS
and Sg) for O; and PMg over the whole measurement period and the vatidgperiod
2005-2006.

Calibration (2001-2004) R2 (%) RMSE SSc SSp
03 Year DJF MAM JJA  SON

MLR - MET 37.2 29.2 36.0 50.4 33.6 15.1 94.6 36.3
MLR - METCHE 51.8 50.4 43.6 60.8 44.9 13.3 95.8 450.
LWT - year 1.2 3.24 3.61 8.41 0.00* 19.0 91.4 -0.95
LWT - seasonal 12.3 5.29 5.76 221 4.84 17.9 924 0.71
PM10

MLR - MET 25.0 23.0 26.0 28.1 24.0 12.1 72.8 16.9
MLR - METCHE 42.3 31.4 50.4 36.0 46.2 10.7 86.3 534.
LWT - year 13.0 12.3 17.6 16.0 9.61 12.9 80.1 4,59
LWT - seasonal 17.6 17.6 22.1 185 16.8 12.6 81.1 639

Validation (2005-2006)

03

MLR - MET 51.8 64.0 38.4 68.9 26.0 11.3 96.8 9.90
MLR - METCHE 62.4 65.6 51.8 774 281 10.1 97.4  (28.
LWT - year 4.0 0.09* 1.69 13.0 0.49* 15.7 93.7 -73.8
LWT - seasonal 20.9 23.0 6.25 29.2 0.16* 14.2 94.8-43.3
PM10

MLR - MET 34.8 21.2 51.8 449 32.5 6.06 78.3 1.18
MLR - METCHE 36.0 27.0 46.2 51.8 30.3 6.24 93.4 584
LWT - year 15.8 16.8 24.0 212 7.84 6.74 92.2 -22.2
LWT - seasonal 23.3 22.1 27.0 24.0 20.3 6.44 92.9 11.3-

Results achieved with all the developed models,bfath the calibration and
validation periods, are shown in Table 3.3. In gaheMLR techniques are
known to underestimate peak levels of ozone (Barret al., 2006).
Interestingly, although the MLR model is built ugithe calibration dataset
only, we can observe an increase in accuracy for(>20% in explained
variance) when the model is applied to the valaatataset for both ML+

and MLRyetche. Thus, errors between observed and modellgte@ls from
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the validation period decrease (while R? increases)ecially in JJA and DJF
with 15% and 30% respectively. In terms of seasdifdrences, the regression
model explains more of the observed variance in &# JJA and less in the
transition seasons. The skill score against tmatblogical mean is higher than
90% for both MLRyer and MLRyetcHe, Which points out that a forecast based
on climatology is easily outperformed by a lineasdal (or an analysis based
on circulation patterns). As expected, persistarareesponds to a benchmark
model considerably more difficult to beat, therefany positive values of SSp
are particularly relevant. The better quality o€ tNILRyerche model when
compared with the MLR=r can be observed in this assessment against
persistence, with an improved skill score from 8650% (validation period)
and from 9.9 to 27% (validation period) for MLE and MLRyetche
respectively.

Table 3.3 also reveals an improvement for the Wpregch applied on the

validation dataset compared to the calibrationskdtdn general, the circulation
patterns explain less than 21% of the observedrdiance, again with the

highest scores being observed in DJF and JJA. Bgoavariance improves

significantly (between 10 to 16%) for the WT based seasonal means
compared to yearly averages. However, overall scare considerably lower
when compared to those obtained with MLR while RMSE values are about
5 ng/me higher compared to those from the regrasaimalysis. Although WT

presents a good skill score against the climatolgnean, it fails to show any
significant improvement against persistence, rengaiometimes even a lower
guality than the persistence model. These resuliplies that, although

circulation patterns are able to discriminate betwhigh (low) concentrations
for different seasons and WTSs, day-to-day varigband the complex sequence
of physic-chemical ozone formation/destruction natsms play a large role
that can not be fully captured by the circulati@attern classification.

For PMy, the performance of the model improved significafbr MLR yet
model, with a R? increase of 25 and 35% for thécation and the validation
periods respectively. However, the MlRcqe reveals a slight decrease in
performance from 42% to 36% between these two dtstasn general, the
overall best performance (based on R?) is obtainedlAM, JJA and SON,
depending if the air quality variables are inclu@sdpredictors or not. Results
are worse for DJF, which could be due to possiimé PM,, events related to
an increased surface stability (surface inverstbnj is not captured by MLR
trained with surface meteorological data. The fathre for the calibration and
validation dataset against climatology improves 1%dboth periods, between
the MLRyer and MLRyetche. The skill score against persistence improves
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similarly for the calibration dataset, althoughsths not the case for the
validation dataset.

The analysis for the PMLWT approach shows low coefficients for R2,
although somewhat higher compared to the R? olddmrethe Q-LWT model,
with a maximum explained variance for the validatperiod using LWT based
on seasonal averages (R? = 23.29). Identical to Mh& observed variance for
PMy, is explained the most in MAM, and JJA. The skillosx against
climatology is higher for both the calibration aralidation dataset compared to
the MLRyer, with overall high scores (>80%). For the calimatdataset, the
LWT approach is performing slightly better than thersistence model, while
for the validation dataset, results are worse.

Concerning the WT classification method, it is feor state that our results
partially contradict previous studies that discdsslee strength of synoptic

categories in relation with air pollution concetitvas (e.g. Comrie and Yarnal,
1992; Davies et al., 1992b; Kalkstein et al., 19@6eng and Lam, 2000;

Ainslie and Styen, 2007). This discrepancy coulddbe to multiple reasons.

However, we firmly believe that the most importaaason is associated with
the lack of validation measures used in those ssudin fact these studies
described synoptic situations associated with chbargtic levels of an air

quality variable without objectively quantifyingishresult, an approach that can
lead to misleading results. Nevertheless otheressoay also intervene, as for
e.g. levels of air pollutants associated with tgpirculation patterns are solely
compared to other classification approaches (Caehah, 2002). Furthermore,
there are many different classifications technigaestmospheric circulation

types (PCA, clustering, etc) taking into accounlifeerent number of variables

on various pressure levels (Huth et al., 2008) #oar use could alter our

findings to a certain degree.

In summary, our statistical analysis reveals thatsingle use of a weather type
approach is limited in terms of short-term day-&y-dair quality forecasts.
Nevertheless, our analysis also shows that a aitionl type approach brings
forward some interesting physical relations betwégnge-scale circulation
patterns and associated air quality concentratidhs. supports the use of this
approach with respect to future long-term air duaprojections and low
temporal air quality fluctuations, as was recestigcessfully tested for Plylat
several Bavarian sites in Germany (personal comeation, C. Beck, 2008).
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3.6 Summary and conclusion

We investigate the relationships of climatology amdquality by statistically
analyzing meteorological and air quality variabdesculated and observed at 4
rural sites in The Netherlands. On the one handgractions between
meteorology and 9Qand PM, on the local-scale are quantified based on a
multiple linear regression analysis, a techniqueerofused in short-term air
quality forecasts. On the other hand, the Lamb merattype circulation
classification method is applied as an alternagiveuality prediction tool. This
technique is potentially useful as downscaling tbfuture climate scenarios
for local air quality purposes.

By selecting these methods, we seek simplicityedity and practical
feasibility of the models in order to make this @g@Th appropriate for
downscaling forecasted meteorological fields or AAM&G scenarios for air
guality purposes. The multiple linear regressiordetayuarantees simplicity,
and applying the regression without (Mi£&) or with air quality variables
(MLRveTcHe) as predictors, provides a comprehensive summarythe
capabilities of these 2 modes. Comparing the resilthis local-meteorology
based approach with results from a circulation pofrview based on mean sea
level pressure, which takes into account the laggde circulation above our
area of interest, provides further insight in tlemteolling processes forming
and resulting in representativg @nhd PM levels for rural midlatitude sites.

Prior to the construction of the multiple regreasmodels, a comprehensive
correlation study is conducted between all metegiohl and air quality
variables for all stations. The dataset is extendetliding all meteorological
variables on a 6, 12, 18, 24 and 48-hour time ilagyrder to investigate any
lagged effect on the meteorological-air qualityatigins. In general, this
analysis shows a limited response of the air quaétiables on the < 1-day lag
meteorological variables, apart from the inverdati@ns with downward solar
radiation, explaining the day and night cycle. Rarimore, a clear relation is
found between ©and (maximum) temperature in JJA, combined witlova
relative humidity. Rain amount is significant negaly correlated with Pl in
winter, which could point out atmospheric removaédo wet deposition. Wind
speed is strongly negative correlated with,P&er the whole year and withs O
in winter, while this relation is positive duringuramer for the latter.
Furthermore, this analysis shows that differentlrsites for a similar mid-
latitude area have similar characteristics, botterms of the annual cycle o0
and PMg as in their relation with the suite of selectedeneological variables.
This provides confidence in the spatial homogenetasacter of rural sites for
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a mid-latitude area in the Netherlands and justifiee use of a single rural
station (with abundant air quality and meteorolabimeasurements) for the
remaining of this analysis.

Secondly, both multiple linear regression modesaépromising results in
forecasting especially {or rural sites in The Netherlands, outperformioagh
climatology and persistence models. The input Wemare selected in the way
that they are available from operational forecasA®@GCM output (for the
MET mode) and the simple and transparent charadftéihe model provides
clear insight in the importance of the specific iabhles that govern the
evolution of Q and PM,. The statistical performance is good in comparitson
similar statistical studies for both the calibratiand the validation period,
testing the 2 modes MLJRt and MLRyercre. In general, including information
on the previous-day air quality variables improttes explained variance with
10 to 18% for ozone and RM respectively, with the best results for
MLRvetcHe for PMyg in the calibration period (42.0%), and for ozorseng
MLRvercHe In the validation period (62.0%). Moreover, thisrformance is
promising when considering the skill scores agaipstsistence, with an
improvement of almost 20% for some model situations

In order to acquire a deeper understanding of itheaf relations obtained,
levels of Q and PMgare connected to large-scale circulation pattesirsguthe
objective Lamb weather type approach. Based onUIIZb operational analysis
of MSLP extracted from ECMWEF, eleven circulatiompéyg are obtained, being
associated with levels of Gand PM, at the seasonal and annual scales. As
shown by other authors in previous research, sdes physical links can be
seen between the large-scale patterns and high (oWlution events. As a
general rule, most relations between pressure, \8pwkd, temperature and
relative humidity and levels of £and PM, found in our correlation analysis
(using observations from all rural sites) can beieeed independently using
the seasonal composite circulation patterns and @lssociated anomalies. For
O, the surface pressure composite maps generally shoanomalous strong
high located north or west from the measuremerttostadepending on the
season. This results in cold and humid (DJF and NlAkd warm and dry
(JJA) air advected from north to east wind diretdiocontributing to higher
than normal ozone concentrations. Using the citimrgpatterns for ozone in
winter reveals the highest average concentratiomma direction from W to N,
under high wind speed circumstances. This featuggests the influence of
ozone transported from the free troposphere towHrdssurface, which was
also suggested by Davies et al. (1992b) and DelmhabDe Backer (2008). For
PM,,, high levels are largely controlled by air advedctiem the south to east.
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Hereby, pressure gradients are often low, with sitpe pressure anomaly
north- to eastwards from the measurement statigainadepending on the
season.

Finally, reconstructing the time series of @nd PM, for the calibration and
validation period objectively compares the multigkepwise regressions and
the objective Lamb weather type approach. Althotlgh explained variance
and the skill score against climatology is high %8, the results against
persistence can be rather poor, often revealingitapt structural weakness of
the models. In this regard, the stepwise regredsiof®; performs satisfactory
for all indices. Contrarily, although seasonal cosife maps have shown a
distinct pattern for typical episodes of high ager&; and PMyconcentrations,
the Lamb weather type as an air quality forecasdehperforms poor for both
O3 and PMy, with the skill score against persistence beingsame situations,
even worse than persistence itself. On the one,lhigdresult could be due to
the short time availability of the air quality datehich restrains the possibility
to obtain a robust dataset with significant witseason and type-associated
differences in concentrations of;@nd PM, On the other hand, this result
points out the limitation of the circulation-basapproach in terms of day-to-
day air quality forecasts. And although circulatipatterns are not able to
capture the short- term fluctuations of the poltiga which is to be expected
from the intrinsic nature of the circulation, tlapproach can provide a clear
insight in typical large-scale atmospheric struesuand associated anomalies in
meteorological variables during high (or low) ptlm events. We are
confident that the multi model approach presentexk ltan be used in other
rural settings, particularly those located in matitbdes where several different
weather type classifications have been developédvahdated. Moreover, as
this tool can easily be transferred to other ggulgcal areas, it is a promising
tool in discriminating atmospheric conditions leaglito relatively low or high
concentrations of ©and PM, (and probably other polluters as well). In this
respect, further research could provide more ingighhe possible adaptation
of the multiple regression results on AOGCM outghe use of circulation
pattern in providing possible long-term trends apa&cific air quality variable,
and on the use of a combination of a combined pialtregression and
circulation-type approach. Therebyz; @nd PM, levels could be explained
using the multiple regression technique for thealscale photochemical
formation and the circulation-based approach fer ldrge-scale transport of
(secondary) pollutants from other source areas.
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Chapter 4

A new method to assess air quality levels using a synoptic-regression
approach. Part |: Present-day O3 and PM jganalysis

4.1 Introduction

Since high concentrations of;@nd PM, affect public health, much attention is
paid to the improvement of the accuracy of sharitedeterministic and statistical
prediction models and the development of robusgH@mm air quality prediction
systems. Complex models, including a full desavipf atmospheric chemistry and
meteorological processes, are often used with ceé$pehe former (Otte et al., 2005;
Giorgi and Meleux, 2007). Although these technigaesshown to be powerful for
short-term predictions, the complex climate-air Iqpanodelling-systems, together
with their computational/technical characteristicgkes them less useful for long-
term predictions based on AOGCM outputs (Giorgi ktedeux, 2007).

Therefore, statistical downscaling methods wereshigped to determine predictive
relationships between air pollution concentrati@ml individual meteorological

" Demuzere, M., van Lipzig, N.P.M., 2008. A new nuethio assess air quality levels using a
synoptic-regression approach. Part |. Present sisalgr Q and PM,. Atmospheric environment
(submitted).
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parameters. This was done for different air qualdyiables and different locations.
Different methods can be distinguished namely mplgtlinear regression (MLR)
analysis (Hubbard and Cobourn, 1998; Barrero eRaD6; Stadlober et al., 2008),
nonlinear multiple regressions (Cobourn, 2007)fieidl neural networks (ANN)
(Gardner and Dorling, 1998Junnari et al., 1998; Reich et al., 1999, Benverantd
Marani 2000; Perez et al., 2000; Perez, 26Qkkonen et al., 2003; Hooyberghs et
al., 2005;Papanastasioat al.,2007) and generalized additive models and fuzzy-
logic-based models (Cobourn et,&000). Among these approaches, regression
methods are well documented because of their dasgtementation and their low
computation requirements (Maerns et al., 2003; Wdhd Wigley 1997; Wilby et
al., 2004). The technique first detects present-dagtionships between local
meteorological variables (or “predictors”) and eagr quality variables (or
“predictands”). These relations based on (nomdimultiple regressions have been
described in literature numerously, as for e.@Claloulakou et al., 2003a,b; Barrero
et al., 2006; Ainslie and Steyn, 2007. The use wétlzer downscaling tool,
circulation patterns (Wilby and Wigley, 1997), igdespread, although less common
in air quality research. In that respect, this meghe is adopted by Comret al.
(1992a), Davies et al. (1992a, b) and McKendry 4196 explain observed ozone
variability at measuring sites in the Europe, U8 @anada.

Some authors have tried to combine the above-mediotwo downscaling
technigues. A stratification based on the circalagpattern is adopted to introduce
nonlinearity into the model (Huth et al., 2008) andhe assumption that the
relations between large-scale predictors and pigttis may vary depending on the
type of the synoptic pattern. This technique isliadpfor downscaling surface
meteorological variables (e.g. temperature, pr&tipn, etc.) by Cavazos (1999),
Enke and Spekat (1997) and Li and Sailor (2000)velbeless, this synoptic-
regression based approach has not been adoptedria of air quality assessment
yet. To the author’s best knowledge, there has bagnone study so far that used a
within-synoptic-type air pollution model to studytdire air pollution levels for a
variety of pollutants (Cheng et al., 2007a, b).

The aim of our study is to test a set of simpledinregression methods together
with a stratification of the dataset by its dailyneptic patterns prior to the
regression method in their ability to hindcast Isv& O; and PM,. To achieve this
goal, regression results from previous researcbhdasn station measurements from
Cabauw (Chapter 3 - Demuzere et al., 2008b) aré toseeconstruct the observed
maximum eight-hourly meansQug/m3] and daily mean PM[ug/m3] levels for the
period 2001-2004 (calibration) and 2005-2006 (eatadun). Furthermore, the Lamb
weather type classification is used as a synoptitulation-typing tool to enter
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nonlinearity of the regression equations into tlevkscaling model in order to

construct a robust method for the improved propadiof air quality levels. These
methods are calibrated on observed air quality fftata the Cabauw measurement
tower and the measurement station of Zegveld-OudgeMThe Netherlands) for

the period 2001-2004.

The Intergovernmental Panel on Climate Change edimiut that climate change
may increase the concentration of, @lthough the magnitude of the effect is still
uncertain (IPCC, 2001). Therefore, assessing alpgesmpact of a climatic change
in meteorological variables and synoptic circulatam air pollution concentrations
requires additional attention. Before the abovetierd downscaling approach is
used to bridge the gap between what is produceflfypCMs and what is needed in
climate impact research (Part Il of this analysthle observed local relations
between meteorological and air quality variablesth&o be tested on the larger
scale. After all, AOGCM-output is at present onlagable at typical scales of
300x300 krA. Therefore, the validity of these station-basedogyic regression
configurations as an air quality downscaling to®ltésted using low-resolution
operational ECMWF data for the period 2005-2006this way, a regression-based
model forced with meteorological ECMWF data is usesl a prototype for a
modelling system in which AOGCM-output is downschl®r the purpose of
obtaining projections for future air quality levels

4.2 Data

High temporal resolution meteorological data foe feriod 2001-2006 from the
rural measurement station of Cabauw (The Netheslangartly operated by the
KNMI and located in a rural area (Beljaars and Bdsy1997) were used. Ten-
minute measurements are averaged to daily valuese Netails on the measurement
site characteristics and quality control are preuithy Demuzere et al. (2008b). The
calibration of the multiple-linear regression edguatis based on local observations
of two meter air and dew point temperature (T ar), ™aily maximum and
minimum temperature (Tmax and Tmin), wind speed didction (FO10 and
D010), total cloud cover (TCC), total precipitatipiprec) and shortwave downward
radiation (SDW) from the Cabauw measurement sitetlie period 2001-2004.
Relative humidity (RH) is calculated from T and Tding the Magnus-Tetens
approximation. Similar meteorological informati@abtained from the operational
ECMWF model on a N400 Gaussian grid resolutiontfa period 2005-2006. As
this methodology is developed for providing futaie quality projections based on
global climate model information, the ECMWF dataaggregated to the spectral

95



T63 resolution (1.85 ° x 1.85 °), which is identi¢a the resolution of e.g. the
SRESA1B IPCC 4AR ECHAMS5-MPI/OM experiment (Marslamd al., 2003;
Roeckner et al., 2003, 2004).

There is a continuing debate as to whether AOGCHRpuda should be treated as
individual grid points or areal aggregates in conguen with individual station data

(Skelly and Henderson-Sellers, 1996). Huth et 200() and Gachon and Dibike
(2007) have shown that for daily maximum tempeesiheat waves and

mean/extreme temperatures respectively, therertisally no difference between a
single grid point use and neighboring grid pointrages. As Cabauw is situated in
the centre of four surrounding grid points, therage of the neighbouring four

ECMWEF grid points is used in the further analy3isis means that an area~0850

x 350 km? is taken into account.

The air quality data for ozone is taken from Cabatow the period 2001-2006,
while PMy is taken from the neighbouring station Zegveld-©udeije. The
Directive 1999/30/EC and following up Directive BIBO/EC of the European
Parliament (EU, 1999, 2008) describe a threshatdteatration of 120 pg/ms3 and 50
png/ms3 for a maximum eight-hourly meany @nd daily mean PMN concentration
respectively for Europe. These threshold valuesrapsrtant for possible regional
air quality mitigation strategies and therefore thmaining of this study focuses on
these thresholds as the framework to validate tbendcaling methodologies
provided in section 4.3.

4.3 Methods

Multiple-linear regression models have widely badopted to reconstruct observed
time series of @ and PM, for various heterogeneous regions based on
measurements (Hubbard and Cobourn, 1998; Barreah,e2006; Stadlober et al.,
2008). Moreover, Huth et al. (2008) point out thewpr of a pointwise linear
regression method (using grid point values insteadrincipal components as
predictors) in comparison with non-linear methodshsas neural networks. And
although Huth et al. (2008) does not find clearderce in the improvement of
downscaling temperatures when stratifying the a@dtdy classification patterns
prior to the regression analysis, Cheng et al. {Za)@ave shown this approach to be
promising in terms of air pollution variables. Té#re, in order to clarify the
potential of each method in air-quality applicapnthree regression-based
approaches are examined and compared: (1) a nedlimgar regression model as
developed in Demuzere et al. (2008b), hereafteredamILR, (2) a multiple
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regression model with the Lamb weather types (Jateal., 1993; Trigo and
DaCamara, 2000) included as predictors (MR and (3) a stratification of the
data by the Lamb weather type technique prior ® rtiultiple linear regression
(LWTy\r). As seasonality could be an important factorammis of Q and PM,
reconstruction (Tarasova et al., 2007), model agugres (2) and (3) are also run in a
seasonal mode, whereby the regression analysmnis fbr each season separately.
These techniques are hereafter referred to asdWisRnd LW Tseas+wir for (2) and
(3) respectively. The latter results in a set ofNlimes Nseas regression equations
and describes the seasonal within-weather-typ@diution characteristics, where
N wr IS the number of weather type classes agghdNs the number of seasons.
Moreover, it is important to underline that air ttyavariables are not taken into
account as predictor variables. Previous reseamhtqa out that model errors
decrease by including persistency (lag effect)hef air quality variables (Perez et
al.,, 2000; Smith et al.2000; Perez, 2001; Barrero et al., 2006; Grivas and
Chaloulakou, 2006). However, as there is no infaioneon future air quality data as
input variables, they cannot be included in theesgjon analysis as predictors. For
future use, this approach has two important assongtl) applying this method on
future AOGCM scenarios assumes that the present-ddgtions between
meteorology and air-quality variables stay constdmbugh time and 2) when
applying these techniques for future air qualityojections, the impact of
meteorological changes on futures @nd PM, levels is isolated, and possible
changes in future (precursor) emissions are neisassl.

A preliminary analysis has shown that there arey amhall differences between
observed and downscaled énd PMg time series obtained using various predictors
(raw data, anomalies and normalized anomalies).reftwee, for simplicity, the
linear, pointwise, regression-based downscaling eisodre developed using raw
observed meteorological input data from Cabauwtherperiod 2001-2004. For all
variables, daily mean values are used, except fimexTand Tmin, which represent
maximum and minimum daily temperature.

The Lamb weather types (WTs) are developed usimgatpnal ECMWF sea-level
pressure (SLP) data for the calibration period 20004 and for the validation
period 2005-2006. For a given day, the WTs desdhielocation of the high and
low-pressure centers that determine the directiothe geostrophic flow. A grid
with 16 points is assigned over the larger Wesagich Central Europe, with a central
point over the Benelux, in 52.5°N and 5°E. We cotedua set of simple
atmospheric circulation indices using 12h sea lgvessure (SLP) in these 16 grid
points, namely the direction and vorticity of geophic flow: southerly flow (SF),
westerly flow (WF), total flow (F), southerly sheworticity (ZS), westerly shear
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vorticity (ZW) and total shear vorticity (Z). A stthaaumber of empirical rules
devised previously (Jones et al., 1993; Trigo aaC&mara, 2000) are then used to
classify each day as one of the 10+1 undetermimedlation types developed in
Chapter 5 (Demuzere et al., 2008a). The composiesnof sea level pressure for
each Lamb weather type derived from ECMWF SLP §ighyeraged over the whole
period 2001-2006 are depicted in Figure 4.1.

Weather Type = U Weather Type = C

Weather Type = A

Weather Type = N Weather Type = NE

Weather Type = E

Weather Type = SE

Weather Type = S Weather Type = SW
=015 [¥ N k= —_—

Weather Type = W Weather Type = NW

Figure 4.1: Composite maps of sea level pressure for eachbLasather type derived from
ECMWEF SLP fields, averaged over the whole period122006. The Cabauw measurement site is
marked with a black dot.
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A wide range of possible criteria can be used taluate statistical downscaling
methods. However, the majority of downscaling stadrely on a more simple
measure of accuracy such as the explained var@ma®t-mean-square error only.
Here, the quality and reliability of the downscaledues are examined using several
statistical indices proposed by Willmott (1981, 2p&nd Willmott and Matsuura
(2005). These indices include thesam, the standard deviatios )( and variance
(62) and the mean absolute error (MAE), which averaties absolute error
magnitudes. Furthermore, we used the root mearresgueor (RMSE), measuring
the total deviation of downscaled values from obsérvalues, and the explained
variance (R2)The student t-test and the F-statistics are usesktavhether observed
and downscaled time series have significant differeneans and variances
respectively, on a 95% confidence level. AdditibnaWilks (1995) suggested that
the skill of any model should be interpreted as tdrens of improvement over a
reference or benchmark model. According to Murpl888), the (temporal) skill of
any given model is a measure of the relative acguoh a model with respect to a
standard reference model. Therefore, the skillescbased on the mean square error
(MSE) will be used in this paper with persistenlgkSE,.) as a reference:

MSE- MSE,,
SS(MSE=—————®° 300%
0-MSE,

with the “0” corresponding to the accuracy levelttivould be achieved by a perfect
model (Wilks, 1995). Furthermore, as suggested bth et al. (2008), the degree of
asymmetry and peakedness of the statistical diginibs are evaluated in terms of
the third and fourth moments, viz. the skewnesskamtibsis.

4.4 Results

First, the various multiple-linear regression edaureg described in section 4.3 are
calibrated for the period 2001-2004, using obsewat data (section 4.4.1).
Secondly, it is tested which of the methods is msgitable for hindcasting
maximum eight-hourly @and daily mean PN concentrations for the independent
evaluation time period 2005-2006, using observetearelogical data as input to
the regression-based model. Thirdly, it is testbeétiver the MLR equations derived
from observed meteorological data still hold whesing gridded low-resolution
meteorological data as input to the regressionébasedel. For this purpose
operational ECMWF meteorological data for the pe26005-2006 are used (section
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4.4.2). Finally, section 4.4.3 describes the witlyie variability of the meteorogical
predictors provided by Cabauw observations and EGMbdYecast data.

4.4.1 Comparison and evaluation of various dowimsgdbols

In order to justify the implementation of a cirdie approach prior to the linear
regression technique, it is important to know wketlthe introduction of this
stratification leads to an improvement in perforoc@of the downscaling procedure.
Therefore, the comparisons are carried out not anlyterms of correlation
coefficients, but also for temporal correlationser§istence) and higher-order
statistical moments (skewness and kurtosis). Tipestormance statistics for the
calibration and evaluation period are summarizedable 4.1 and Tables 4.2 and
4.3 for skewness and kurtosis respectively. Forcdidration period in general, the
combination of synoptic classification using Lambather types prior to a seasonal
linear multiple regression analysis (L\Afks+mr) performs best for both £and
PM,o. This is shown in terms of explained variance &3lfor both Q and PM,
(0.80/75 and 0.60/66 respectively). Furthermore,BV#nd RMSE show a similar
tendency, with the lowest values fog 6f 8.3 and 10.9 pg/m3 and for Riof 5.8
and 8.6 pg/m3 compared to the other approacheterBiices between observed and
modelled means are insignificant for all model agufations based on the t-test. In
terms of variance, the F-test shows that all modeés unable to reproduce the
observed variance, except fog @sing MLRsgas, LWTyr and LWTsgas+mir As all
statistics for PNy are lower than for ¢) these results based on the available
meteorological observations suggest that l@as more predictability based on
meteorology solely compared to PM

To further illustrate this, scatter plots of moddiliversus observed; Qupper panels)
and PM, (lower panels) concentrations following the pur&RVi(left panels) and
synoptic regression (right panels) approach arevsh@igure 4.2). For ozone, the
best results are obtained for L\Afks+mLr, With the regression line closer to the 1:1
(perfect model) line. For P)M there is a large difference between the various
models, with again the best performance for the k¥divr model.
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Table 4.1: Statistics describing the performance of thebcation time series (2001-2004) and
evaluation series (2005-2006). The measures inctbhdemean X), standard deviationd),
variance @2), mean average error (MAE), root mean square €RMSE), explained variance
(R% in %) and skill score against persistence (SSjpJues significant different on the 95%
confidence interval based on t-test and chi-sqtesé for mean and variance respectively are
denoted in bold.

Species Model X c 62 MAE RMSE R2? (%) SSp
O3 Reference 57.0 29.8 887.2
MLR 549 259 6714 143 190 61 38
MLRsgas 551 275 758.7 104 13.2 65 69
MLR wt 56.6 26.0 676.3 126 159 71 56
Calibration LWTur 55.2 274 7515 10.2 139 78 67
LWTsgas + MLR 565 28.0 783.1 8.3 109 80 75
2001-2004
PMyo
Reference 27.2 156 244.6
MLR 27.7 9.1 83.4 11.1 151 12 22
MLRsgas 271 105 1105 8.6 11.8 41 50
MLR wt 27.0 9.9 97.8 8.6 11.8 40 52
LWTwr 27.0 125 1553 34 10.8 52 62
LWTseas + MLR 271 134 180.6 5.8 8.6 60 66
05 Reference 57.580.82 955.90
MLR Observations 56.6@5.28 639.29 13.70 17.70 68 50

ECMWF 58.0521.52 463.13 16.98 22.42 60 37

MLRsgas Observations 57.127.87 776.57 11.77 15.11 58 59
ECMWF 58.2422.03 485.32 13.97 17.92 44 43

MLR wT Observations 56.486.55 704.85 13.46 17.65 68 51
ECMWF 63.3526.62 708.37 16.00 20.22 61 34

LWTwir Observations 57.326.81 718.59 13.13 17.35 69 52
ECMWF 50.4227.98 782.89 19.68 25.76 61 31

LWTgeas + mirObservations 57.829.37 862.85 12.76 16.71 72 56
ECMWF 57.6 27.14 736.58 16.24 20.42 63 33
Evaluaton
2005-2006PM;q Reference 23.132.05 145.20
MLR Observations 26.68.17 66.71 7.16 10.29 32 35

ECMWF 21.458.31 69.04 859 10.72 28 43

MLRsgas Observations 25.560.20 104.09 8.39 10.62 34 30
ECMWF 20.729.76  95.27 8.35 11.20 27 27

MLR wt Observations 25.180.54 111.17 8.47 10.73 31 35
ECMWF 19.1610.80 116.57 8.45 10.73 32 31

LWTwur Observations 26.162.66 160.15 8.32 10.54 34 34
ECMWF 23.0313.78 189.88 8.40 10.62 32 28

LWTseas + mgObservations  26.785.98 255.30 10.55 15.22 34 33
ECMWF 24.3415.74 247.75 10.17 1522 32 28
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Lu et al. (2006) tested a similar approach usiagitional MLR regression against
different MLR equations for different weather regsnfor ozone episodes at 4
measurement sites in Taiwan. The authors foundmgrovement in R? of 50%

between their MLR model derived for different weathypes and the traditional
MLR model. Our results confirm this, with an impemnent from 61% for the

traditional MLR to 80% for the LWdgas+mir Mmodel. Although the improvement
here is less strong, the absolute explained vagiaenuch higher than the results
obtained by Lu et al. (2006).

Furthermore, Tables 4.1 to 4.3 show the modelsopednce for hindcasting
maximum 8 hourly mean Qand daily mean PN levels for the independent
evaluation time period 2005-2006, using observeteanelogical variables. ForD
all models perform similar in terms of R2 and,S8ith the best results obtained for
R2 for LWTsgassmir (72%) and for S$ with MLRsgas (59%). Both model
approaches are also able to reproduce the obseammhces, whereas all other
model configurations have variances significantliiyedent at the 95% confidence
interval compared to the observed explained vaeatt terms of skewness and
kurtosis, the best results are obtained with theTkMs.mr model, with values of
0.91 and 3.27 respectively, compared to an obseskedness and kurtosis of 1 and
2.28 respectively (Tables 4.2 and 4.3). For, M general, lower values of the
statistical indices are obtained compared to tlsali® for Q. Again here, models
perform similarly in terms of Rz and $%or all methods, with the best results
obtained with MLRgas MLR wt and LWTsgas+mir for the former (34%) and for
MLR and MLR s for the latter (35%). The large observed skewneskkartosis
values are best reproduced by LWH with respective values of 1.02 and 4.29
compared to an observed skewness and kurtosig®fahd 4.78 respectively. These
results are also depicted in Figure 4.3 (upper Isaneshowing the best
representation of observed maximum 8 hourly meaar@ daily mean PM levels
based on observed meteorological variables forrtdiependent period 2005-2006
using LWTseas+«mrand LW Ty r respectively.
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Table 4.2: Skewness coefficients fors@left) and PMy (right) for the various methods and the
reference and observed and ECMWF downscaled dstésethe period 2005-2006.

O3 PMyo
Reference Obs ECMWEF Reference Obs ECMWF
1.00 1.73
MLR 0.26 -0.002 -0.085 0.043
MLRsgas 0.78 0.42 -0.19 -0.11
MLR wt 0.28 0.15 -0.27 -0.056
LWTur 0.62 0.31 1.02 0.70
LWT sgasmir 0.91 0.80 3.08 0.82

Table 4.3: Kurtosis coefficients for ©(left) and PMo (right) for the various methods and the
reference and observed and ECMWF downscaled dstésethe period 2005-2006.

Os PMyo

Reference Obs ECMWF Reference  Obs ECMWF

2.28 4.78
MLR -0.40 -0.71 -0.083 -0.50
MLR sgas 0.86 0.43 012 -0.20
MLR wr -0.27 -0.63 -0.26  -0.49
LWT wir 0.51 0.028 429  6.54
LWT seas+mir 327 2.31 6.14  6.92
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Figure 4.3: Quantile-Quantile(QQ)-plots of modelled versusarved eight-hourly maximumzO
and daily mean PM concentrations [pg/m3] for the evaluation peri@®2-2006, using observed
(upper panels) and operational ECMWF (lower pardgdsy as predictors for the regression-based
models. The 1:1 line presents the perfect modealdaist and the red lines (dotted — observation,
dashed — modelled) show the threshold of 120 andgd®? for Q and PMgrespectively.

4.4.2 Evaluation of various downscaling tools fmwiresolution data

In order to know whether regression-based modelgeldped from measured

predictors are still valid using lower resolutioata, such as operational ECMWF
data, this approach is tested on the latter formtiependent evaluation period 2005-
2006.

In general the lower variability of the low-resotut meteorological ECMWF

predictors results in a smaller explained variarafe operational ECMWF
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downscaled @and PM, time series compared to the observed downscaleekse

(Table 4.1). The explained variance fog (9, in accordance to the calibration

period, the highest for the LWdas+mr method for both observed and ECMWF

downscaled series (72 and 63%). In terms @f 8® pure seasonal regression model
MLRsgas is slightly better than the LWiEas+mr Method, with a performance of

59/43% and 56/33% (Observations/ECMWF) respectiaghinst persistence (Table

4.1).

In order to compare the distribution of the obsdraed modelled maximum eight-
hourly G; and daily mean PM throughout the evaluation period, the quantile
distribution of the modelled air quality data isofped against the quantile
distribution of the observed air quality data in Q@ts (Figure 4.3). When using
the observed meteorological data as predictors,bdst results are obtained for
LWT seas+mir When using the ECMWEF data as predictors, alsolLiV8 sgas+mir
gives the best results. Although one could argae fibr high Q concentrations the
best correspondence between modelled and measwadtilgs is found for
LWT R, it is clear that around ozone concentrationsQff fig/m3, Qquantiles are
overestimated in the LW r model compared to the observations.

As different properties of the downscaled air gyaBeries may be relevant in
climate change impact studies in different secttrs, degree of asymmetry and
peakedness of statistical distributions are alstuated in terms of the standardized
third and fourth moments, i.e. skewness and kwgt@ables 4.2 and 4.3). Following
the supposition of Huth et al. (2008) that the namif independent realizations in
the time series is 300, than the skewness testdionality (Thode, 2002) indicates
that the hypothesis of zero skewness is rejectelea®5% significance level if the
skewness coefficient exceeds a value of 0.275h@rabsolute sense). The reference
O; distribution shows a positive skewness of 1.0@n{ficant skewed) and a
kurtosis of 2.28. When using observed meteoroldégd=asta as predictors, the
methods applying stratification of the; @istribution by the Lamb classification
method prior to the regression analysis (LAAE-wLr) are able to catch the third and
fourth order statistical measures much better thathods where such stratification
IS not taken into account. Similarly, the same tusions can be drawn when using
the ECMWEF data as predictors, although the distidluis slightly less positive
skewed in that case (Table 4.3).

For PM,, a regression-based approach based on the meigioredl variables
suggested in Chapter 4 is insufficient to explaigreat deal of the observed M
variability (Table 4.1). The results of the regresshased models are similar in
terms of R?, whereby the best approximation ofdbserved time series is obtained
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by both LWTyr and LWTsgas:mir (DOth 34% respectively). Contrarily, better
results for Spare obtained for the standard regression model Mtith a 35% and
43% improvement for both observed and ECMWF dowlescaPM, series
compared to the persistence model. For all modelspt LWTy s the varianceo(z)
differs significantly from the observed variance RM,,. The reference PM
distribution is highly positively skewed (signifitaon the 95% level), which is well
reproduced by the LW r approach and overestimated by L¥WAs«wvir When
observed meteorological data are used as prediffaldes 4.2 and 4.3). Moreover,
the LWTy.r model more realistically generates the strong egifes peakedness of
4.775 compared to the LWgasmr approach (Table 4.3). For the ECMWF
downscaled PM time series, the distribution is in general mooenmal compared to
the reference distribution, although the kurtosisoverestimated for the LWilr
and LWTSEAS+MLRappr0aCh (TabIeS 4.2 and 43)

In general, the analysis above shows that fgrs@asonality is an important factor,
which confirms the results of Tarasova et al. (300Next to its photochemical
production, a variable seasonal impact of metegro# variables (e.g. wind speed
and total precipitation) on ozone (Demuzere eR808b) can alter its concentration,
which should be taken into account in the downegafrocess. For P) this
effect is less distinct, which is also clear froneas pronounced seasonal cycle in
observed PN, concentrations (Flemming et al., 2005; Demuzerelgt2008b).
Moreover, the results in Table 4.1 show that agggjon-based approach using only
meteorology data is able to explain a great deti@bbserved Qvariability, which

iIs not the case for PM This research shows that the meteorological bkesa
available for this regression approach are unablexplain a great deal of the
observed PNjvariability. One the one hand, RMevels are influenced by the local
emission sources and the long-range transport. Wassshown in Chapter 3 (Table
3.3), with a R2 improvement of 17% when includingepous-day PNy
concentrations compared to the use of meteorolbgioaedictor variables only.
Nevertheless, as these concentrations are at presenyet available from
AOGCMs, we can not include the R¢emissions themselves as predictor variables
into the synoptic regression-based statistical @ggir. On the other hand, the low
explained variability could be due to the absencthe boundary layer height as a
predictor variable. Previous research (Hooybergd.e2004, 2005) has shown that
by far the boundary layer height is the most imgatrtparameter in their neural
network approach. Unfortunately, boundary layerghtimeasurements are not
available at present, and therefore, we did noe teto account this variable.
Nevertheless, an attempt should be done to takeirtto account for (short-term)
PM,, predictions.
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Furthermore, the results in Tables 4.1, 4.2 andsh@®@v an additional value of
stratifying all days according to their circulatiocharacteristics prior to the
regression analysis. Although Huth et al. (2008)est that the effect of introducing
non-normality by mixing several normally distribdteneteorological parameters
using a classification method for temperature dwmalnsg is rather weak and
insufficient to produce significant deviations framermality, our result show that
this is not the case for air quality distributiohkereby, large skewness and kurtosis
values can only be reproduced by stratifying thiaskt and by developing within-
weather-type group regression models shown in Fabl2 and 4.3. Moreover, the
skill score against persistence {HSwhich tests the temporal structure of the
downscaled time series against a 1l-day lag benéhmmardel, shows a better
performance for the LWT methods than compared ® itore simple linear
regression model approaches (Table 4.1). Thersferept to use the LW/ r+seas
and LWTy.r for O; and PM, respectively in the remaining of this study.

Finally, the hypothesis that an observation-basgdession still holds when applied
on low-resolution gridded (ECMWF) data is validasdtbwn in Tables 4.1, 4.2 and
4.3. Although part of the explained variance ig hge to a lower variability of the
meteorological predictors (Figure 4.3), this regrm@s-circulation pattern approach is
able to detect the high observed &d PM, concentrations that are important in
terms of European air quality Directives and aialgy mitigation strategies. This
will be discussed in more detail in the followirgcton 4.4.3.

4.4.3 Meteorological predictor variability

In the previous paragraph, regression-based measks used to hindcast air quality
levels by calculating ©and PM, concentrations from meteorological conditions on
a larger scale, as available from ECMWF. Howevenenvthe ECMWF output
differs from the observed conditions, this will a#gely influence the model
performance. A similar effect was described by Zhanal. (2007) who showed that
a reduced uncertainty in meteorological conditipemults in a much smaller spread
in the ensembles distribution of;Qredictions for the Houston area (USA).
Therefore, it is important to provide more insight the effect of forecasted
meteorological ECMWEF variable deficiencies on tleef@rmance of the regression-
based models for each weather type separatelyhdsdgression-based method
profits from introducing non-linearity by the obiee Lamb classification method
prior to the regression analysis, modelled versiserwved @ and PM,
concentrations are analyzed for each weather t\gss separately (Figures 4.4, 4.5,
4.6 and 4.7).
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Figure 4.7. Same as Figure 4.6, but now using ECMWF metegicdd data as input to the
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High O; concentrations are restricted to the summer seg@ddé), and more specific
to the Lamb weather types A, E, SE and S. The nexti€); time series are in good
agreement with the observed Concentrations for the period 2005-2006 (Figure
4.4). All distributions are thereby closely scagtearound the perfect 1:1 line. When
ECMWEF data are used as predictors for the regmnedsased model, the highest
concentrations are found for the same weather tlpsses (A, E, SE and S).
However, the distributions are characterized byaegdr scatter and a lower
explained variability, in the higher quantiles bétdistribution (Figure 4.5).

The modelled versus observed BMalues show a large scatter around the optimal
1:1 line, especially for those types characteriagdhe highest concentrations (all
types except N, NE, W and NW) both when observatiand when ECMWF data
are used as predictors (Figure 4.6 and Figureesfgectively). Again, these results
show that for PNy, a regression-based approach using the availabiger of
meteorological data is insufficient to explain tlbserved PN, variability.
Therefore, the remaining of this sensitivity studfydownscaled air quality levels to
its meteorological predictor values is restrictedds.

In order to understand the deficiencies of theeggjon-based model, the differences
between ECMWF data and observations are studieg fonlthese meteorological
predictor variables that are included in the camtioh pattern dependent regression
equations (Figure 4.8). Data are shown for the tbhths only, as this season is
characterized by the highest Gncentrations.

Modelled Q values for the weather types A, SE and S areipelsitrelated to Tmax
(Demuzere et al., 2008b), which is underestimateitsimedian value by up to 3 K
in the ECMWF model. TCC, RH and PO are negativetyated to ozone
concentrations for the southern circulation pattéhrese variables are overestimated
by the ECMWF model (Figure 4.8) and dampen highnezooncentrations. The
underestimation of modelleds;@oncentrations under high-pressure conditionse(typ
A) are favored by an overestimation of the relatienidity in ECMWF compared
to the observations, which is again a predictorthie regression model for ;O
formation.
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Figure 4.8: Median and normalized standard deviation (coléos)each of the meteorological
predictor variables that are used in the circutatipecific regression equations, averaged over the
summer (JJA) period 2005-2006. The upper paneleptesobservations, while the lower panel
present the results based on ECMWF data.
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4.5 Discussion

Deficiencies in the regression-based models candie to 1) an inadequate
representation of the predictor variables and 2) fdct that most downscaling
methods tend to resolve only part of the totalarase (Mearns et al., 2003; Barrero
et al.,, 2006). In the previous section we foundssattial differences between
ECMWEF data and observed meteorological variabless difference can be due to
1) deficiencies in the ECMWF model or 2) the lovatsal resolution used in our
analysis. After all, in order to test our method fmwssible future downscaling
purposes using AOGCM output as an input for theesgion-based models, we
averaged four surrounding grid points from the #pécT63 horizontal grid.
Therefore the ECMWF predictors are representativeah area of about 350x350
km2. By using such a coarse resolution predictorability is possibly dampened.
In order to test this, a comparison is made witiVB?@F operational forecast data
from a single grid point (52.505 °N / 4.95 °E) extted from the original N400
Gaussian grid resolution (hereafter referred t8@MWF1). The ECMWEFL1 data are
representative for a much smaller area of abowt 2% km2.

The quantile distribution of the ECMWF data is ca@mgd to the observed quantile
distribution for the relevant meteorological vatesb (Figure 4.9). The largest
differences between ECMWF1 and ECMWF are foundTiorax, RH and cloud
cover. Tmax shows a large decrease in RMSE in ECUW&used by a better
representation of the higher percentile valuesh@lgh the RMSE for RH and cloud
cover derived from ECMWF1 is slightly higher thamwrh ECMWEF, the quantile
distribution of ECMWF1 corresponds more closelytite observations. The impact
of these differences in ECMWF predictor values owmiscaled @levels is plotted

in terms of RMSE for LWigas+mr (Figure 4.10). Furthermore, a qg-plot is used to
present the distribution for both ECMWF and ECMWFHbwnscaled ©
concentrations using the LWHdas+mir approach (Figure 4.11). This comparison
shows that in term of RMSE, there is a negligibféedence for the downscaled;O
time series using both spatial average or a siggtepoint predictor data (Huth et
al., 2001; Gachon and Dibike, 2007). Hereby, theI&\Vscores are systematically
lower for the latter for the circulation patterndacacterized by high O
concentrations (A, E, SE and S). Neverthelessqthplot (Figure 4.11) shows that
higher quantiles of observed; ©Goncentrations (>120 pug/m3) are better reproduced
by the single grid point predictor data compareth® 4-grid point spatial average.
This suggests that the differences between obseamddECMWF downscaled ;0
time series are both due to the usage of the 4pidt average ECMWF data,
dampening some of the predictors variability, al aedeficiencies in the ECMWF,
resulting in a insufficient representation of theteorological variables used as
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predictors in the regression-based model. Consdlgudhis result implies that
downscaling techniques using low-resolution gridddata from e.g. AOGCMs
suffer from the low-resolution itself although inopement can already be obtained
by addressing and carefully taking into account ehairors, as was suggested by
Cheng et al. (2007Db).
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Figure 4.9: Quantile-Quantile(QQ)-plots of ECMWF versus olser meteorological predictor
variables for the evaluation period 2005-2006. THeline presents perfect ECMWF data and the
RMSE present the error for both ECMWF spatial agedaon over an area of 350 k(ECMWF)
and ECMWF for one grid point (25 Kn (ECMWF1) compared to reference observed
meteorological values from Cabauw.
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for the evaluation period 2005-2006. The 1:1 lirespnts perfect model line.
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4.6 Conclusion

The primary aim of this paper is to evaluate a etgriof regression-based
methodologies to hindcast levels of @&hd PM, from meteorological predictors. In
order to quantify the performance of the regresbiased methods, several criteria
are employed, next to general methods proposed ibgnott (1981, 1982) namely:
fit between modelled and observed series using@tp&ined variance, shape of the
distribution in terms of skewness and kurtosis pacsistence using the skill score
against a persistence benchmark model. The andlgtsed on the calibration period
2001-2004 and an independent evaluation period -2006 reveals that a
stratification of the dataset using the automatanohlh weather type scheme, prior to
the regression analysis improves the downscalisgitefor Q and PMy in terms of
explained variances and skill score against thesigfence model (1 day lag).
Furthermore, simple model regressions have showrtonbe able to capture the
deviation from normality, e.g. with a non-zero skess and kurtosis for the
observed @ and PM, distributions. The introduction of a classificatiapproach
can reproduce these non-linearity characteristdereover, as @ is highly
dependent on seasonal changes in its relationswéatborological predictors, thesO
regression model is run in a seasonal mode, wkidlt necessary for P

Before the regression-based methods can be uselbforscaling air quality levels
from coarse AOGCM-output (with a typical resolutioin300 x 300 ki), it needs to
be tested whether the observed local relations dertwmeteorological and air
guality variables hold on a larger scale. Therefmtaegression-based models are
evaluated using low-resolution ECMWF data interfemlaon the spectral T63
horizontal grid for the period 2005-2006. Using shedata as an input of the
regression-based models leads to a slight decoddke explained variance due to a
lower variability of the meteorological predictofdevertheless, this approach can
compete with other dynamical and statistical dowhsg methods, which are often
employed using observed time series, without bsted on low-resolution gridded
data.

The somewhat deteriorated model performance i®llaglated to both ECMWF
model deficiencies as well as to the coarse rasoluf the data by averaging four
surrounding grid points from the spectral T63 homial grid. The results from the
regression-based model are similar in terms of RM&E better for the higherO
percentiles when using original ECMWF data on a $<Seun N400 resolution
(corresponding to about 25 Rjrfrom the single grid point nearest to Cabauw as
input to the regression-based model. Furthermoremparing ECMWF
meteorological data with observed data has showmesaorculation-specific biases
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for these variables that play an important rolethe ozone formation process.
Therefore, we can conclude that apart from the @smmg of variance due to the
coarse resolution, ECMWF model deficiencies alsotrcd the lower performance
compared to modelledand PM, time series when observational meteorological
data are used as predictors. It is clear thatrttoesein the predictor variables need to
be reduced or quantified in order to produce rBaligir quality projections as a
downscaling product of AOGCMSs.

At present, chemical transport models are able &kemshort-term air quality
prediction in real-time and should be preferredratatistical methods as they take
into account the whole range of meteorological @meimical processes. However, in
case this approach suffers from computational caims$, the synoptic-regression
based model presented in this paper shows poteesiaécially for @ to be used in
short-term air pollution prediction using meteogt@l output from numerical
prediction models. This was also suggested by Cletngl. (2007a) and further
research could provide more insight using this eagin.
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Chapter 5

An analysis of present and future ECHAMS pressure fields using
a classification of circulation patterns

5.1 Introduction

Over the past decade, scientific interest in the of circulation patterns to
describe and analyze a wide array of climatolotycdifferent situations has
been steadily increasing. For example, severaliegutiave been exerted
correlating near surface meteorological variableslarge-scale circulation
pattern changes (Buishand and Brandsma, 1996, Bmgb Dacamara, 2000,
Buchanan et al., 2002, Fowler and Kilsby, 2002 tleosl., 2002). For Western
Europe and the North Atlantic sector, a major pafrtthe formation and
variability in circulation patterns is strongly lnénced by the passage of high
and low-pressure systems in the midlatitudes. Gn dbntrary, spatial and
temporal changes in these patterns will lead tongls in Western European
climatic conditions. Thus, it is of great inter&stanalyze and compare the main
circulation patterns and their variability over W&a Europe with other
important climate indices and patterns for thisioege. g. the North Atlantic
Oscillation (NAO). The NAO has been investigateteasively (Marshall et al.
(2001) - and references herein) and it has beewrshiwat, for the midlatitudes,
the NAO is the major winter climate mode, accounfior about one third of the
inter-annual variability (Schwierz et al., 2006)urthermore, the NAO has

" Demuzere, M., Werner, M., van Lipzig, N. P. M. a@Rdeckner, E., 2008. An analysis of
present and future ECHAMS pressure fields usingassdication of circulation patterns.
International Journal of Climatology 29.
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already been examined in relation to extreme imfiedscyclones (Rogers,
1997; Serreze et al., 1997; Ulbrich and Christdl®99; Raible and Blender,
2004) and mean flow (Raible, 2007) or blocking-ljgatterns over central to
northern Europe (Scherrer et al., 2006; Schwieat.e2006).

Analyses of circulation patterns and their varipibver Western Europe can be
either performed by using observational data, reanalysis data sets, or by
using data sets from coupled general circulationlehdCGCMs) simulations.
The latter will not only allow examining past andegent situations but also
enable the study of potential future changes watspect to different climate
scenarios. In addition, a comparison of circulatipatterns imprinted in
reanalysis and CGCM data sets can be used as &, movgue method to
explore the accuracy of CGCMs. However, until nomtyofew studies have
examined the strength of CGCMs in reproducing t¢atoon patterns (Huth,
2000). Several other studies have evaluated thenpak to use blocking as a
diagnostic tool for climate models (e. g. Tibalt®93; D’Andrea et al., 1998).
However, the use of blocking techniques as a disiimdool is intrinsically
limiting the research of some very specific climBgatures. A broader approach
using a circulation classification method can gavenuch more detailed insight
on a synoptic time-scale, as such a method cartifigl@ot only the position of
cyclones and anticyclones (cyclone detection andkohg phenomena), but also
the strength and frequencies of zonal and meritlimean flow patterns and the
transition between different circulation patterns.

The main focus of our study is the use of an aut@warsion the Lamb weather
type classification method (Jenkinson and Collisb®77; Jones et al., 1993;
Trigo and Dacamara, 2000) as a diagnostic toovatuate ECHAMS pressure
fields and to study trends in the frequency of o@nce of circulation patterns
for the period 1860-2100. This automatic weathgretyscheme grid (WT-
scheme), initially developed for the British Islescentred above Belgium. This
region is chosen because of planned studies onus® of circulation

classifications for air quality studies in BelgiuniHowever, our method
encompasses the circulation patterns for the laMy@stern and Central
European Region and therefore, our results anstefast for this larger region.

The method was designed as an automatic versidoawib’s classification.
Buishand and Brandsma (1996), Trigo and Dacam&@0)2 Buchanan et al.
(2002), Fowler and Kilsby (2002) and Post et a0 for example, describe
previous studies and applications. Mostly, local teoslogical station
measurements are used to establish the relatiomeed® weather types and
local surface characteristics, while daily gridddelds of SLP from
NCEP/NCAR or ECMWF reanalysis data provide the swes input for the
WT-scheme. In this study we use the ECMWF ERA40wafesis data (Uppala
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et al.,, 2005) to evaluate the sea level presswiesfifrom the ECHAMS-
MPI/OM model.

The 1961-2000 ERA40 period is used to evaluateEtBBIAMS capabilities in
generating the sea level pressure fields. Secoaliyatological trends based on
the WTs are calculated for the period 1860-210@alli, a comparison of
changes in WTs between the A1B, B1 and A2 IPCCates of the ECHAMbS-
MPI1/OM model for the period 2000-2100 is conducted.

This paper is organized as follows. In sectionablizief overview is given of the
data and models used in this study, thereby desgriboth ECMWF-ERA40
data and the general circulation model ECHAMS-MRYOand the Lamb
weather type method used to construct a daily laticun pattern database. In
section 5.3 the result of the sensitivity of theribaweather type number of
unclassified days on grid size and resolution issented, followed by a
comparison of ECHAMS5-MPI/OM pressure fields with &40 data. Hereby,
also the relation between WT and NAO-index andteelayclone identification
and blocking features are investigated. Furthermarenatic trends are
investigated using the IPCC scenarios provided GiAAM5-MPI/OM. Section
5.4 discusses our results and presents the comausi

5.2 Data and methods
5.2.1 Data

In this study we use the ECMWF - ERA40 SLP datased 2.5° x 2.5° grid, for
the larger European Atlantic Region (27.5 °“W - 2765 85 °N — 15 °N),
centered above Belgium. The 6 hourly SLP valuesh,006 h, 12 h, 18 h) are
averaged over a 24 hourly period in order to obdaitty mean sea level pressure
fields for the period 1961-2000 (CEkasg). The fields are averaged to seasonal
and yearly means. The ECHAM5/MPI-OM SLP fields thie 23" century
control (CTL) run for the period 1961-2000 (hereafteferred to as CHchawms)
were generated with the coupled atmosphere-ocedelI{i6ECHAMS/MPI-OM)

at a T63L31 resolution~(1.85° x 1.85°) in the framework of thé"4PCC
assessment report.

The coupled model used in this study consists @f m®del versions for both
the atmosphere and the ocean. In the atmospherel iE@HAMS; Roeckner et
al., 2003, 2006a) vorticity, divergence, tempemtamd the logarithm of surface
pressure are represented by a truncated seriphefical harmonics (triangular
truncation at T63), whereas the advection of wedgor, cloud liquid water and
cloud ice is treated by a flux-form semi-Lagrangianheme. A hybrid
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sigma/pressure system is used in the vertical titre¢31 layers with the top
model level at 10 hPa). The model uses state-c&th@arameterizations for
shortwave and longwave radiation, stratiform cloudamulus convection,
boundary layer and land surface processes, andtygmaave drag. The ocean
model (MPI-OM; Marsland et al., 2003) uses the pnm equations for a
hydrostatic Boussinesq fluid with a free surfaclee Vertical discretisation is on
40 z-levels, and the bottom topography is resolwectheans of partial grid cells.
The ocean has a nominal resolution of 1.5° angthes of the curvilinear grid
are shifted to land areas over Greenland and AmtarcConcentration and
thickness of sea ice are calculated by means ghamdic and thermodynamic
sea ice model. In the coupled model (Jungclauk,£2@06), the ocean passes to
the atmosphere the sea surface temperature, seeomm@®ntration, sea ice
thickness, snow depth on ice, and the ocean suvkiloeities. The atmosphere
runs with these boundary values for one couplimgetistep (one day) and
accumulates the forcing fluxes. These fluxes aem tinansferred to the ocean.
The model does not employ flux adjustments.

Global ECHAMS5/MPI-OM SLP datasets were provided thg Max Planck
Institute for Meteorology, Hamburg, for the yea6Q to 2100. The available
simulations include 3 IPCC scenarios A1B, B1 andb&Bveen years 2001 and
2100 (Roeckner et al., 2006b), for which SLP fiedds available at a 6-hourly
resolution (SCENg-coupied- Pressure data for an area identical to the tselec
ECMWF-ERA40 region were extracted from the T63 EQHAMPI-OM SLP
grid and re-gridded by conservative remapping (Sot899) to a 2.5° by 2.5°
regular lat/lon grid, which can directly be usedha WT-scheme.

5.2.2 Automatic classification method

A method to classify daily circulation patterns wasginally developed by
Lamb (1972). This subjective classification usedase pressure synoptic charts
describing the flow in the 500 hPa level in the @dphere. To avoid dependency
of the daily weather types on experience and ctargig of the researcher, this
method was objectified by Jenkinson and Collis@®7{). Moreover, as shown
by Conway and Jones (1998), circulation patternsddmentally control
meteorological characteristics on the surface, alherthe use of sea level
pressure has a lot of advantages. Previous stuidies by McKendry et al.
(2006) show that upper pressure level patternslem® variable than surface
pressure patterns and that particular upper leatéms may be associated with
a large range of pressure synoptic types. Thereéf@&VT method uses surface
pressure, which is more appropriate for the clasgibn of circulation patterns
than upper level pressure patterns. Based on thebLmethod, the WT
circulation pattern for a given day is describethgighe locations of the high
and low pressure centers that determine the dwrecii the geostrophic flow. It
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uses coarsely gridded pressure data on a 16-powve¢able grid and is therefore
easily applicable in any area with available data.

This method allows twenty-seven different clasatilen weather types to be
defined, including eight main directional typesrthg northeast, east, southeast,
south, southwest, west, northwest and three natititinal types: anticyclonic,
cyclonic and unclassified types. Sixteen hybriceypcombination of directional
and non-directional types) are also recognized @Ldra72). These types are
characterized through the use of a set of indises@ated to the direction and
vorticity of geostrophic flow. The indices used #ne following: southerly flow
component of the geostrophic surface wind (SF),tevgsflow component of
the geostrophic surface wind (WF), resultant flé¥), southerly shear vorticity
(Z2S), westerly shear vorticity (ZW) and total shearticity (Z). These indices
were computed using sea level pressure (SLP) valbtsned for the retained
number of grid points, and are both for the flowtsiras for the geostrophic
vorticity expressed in hPa. The weather types afmed by comparing values
of FF and Z:

« Direction of flow (in degrees) is given by tarfWF/SF), 180° being
added if WF is positive. The appropriate wind dil@t is computed using
an eight-point compass, allowing 45° per sector.

* If |Z|<FF, flow is essentially straight and conse&te to be of a pure
directional type (eight different possibilities acding to the compass
directions).

* If |Z|>2FF, the pattern is considered to be of eefmyclonic type if Z>0,
or of a pure anticyclonic type if Z<0.

» If FF<|Z|<2FF, flow is considered to be of a hyhyge and is therefore
characterized by both direction and circulatiomtésen different types).

e If Zor FF < 6, than a day is classified as “unsiasd”.

The latter point reveals that a threshold value Zoor FF is used to define
whether a day is allocated as unclassified or Rot.the analyses of the SLP
fields, values of Z and FF do not show any spedfigstering or grouping

around a specific threshold value, which is in kg the findings of Goodess
(2000). Therefore, it is not necessary to implenardther more useful cut-off
point for our central and western European grichaaad hence the original
threshold value of 6, defined originally for a gadntered on the British Isles,
was retained (Jones et,dl993).

The analysis of the number of occurrences for eaelather type shows
relatively small numbers for the sixteen hybridiugyrs. Moreover, differences in
occurrence within one direction (including both ttyeclonic and anticyclonic
type) are small compared to differences betweeferdiit directions of types.
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Therefore the 27 WTs are combined in a smaller rarnalb main groups, this
according to their directional characteristics. Albes, both from the pure
directional and hybrid types, with the same diewi component are combined
into the same directional group/type. This resulteight directional types (e.g.
N(d) [directional North]= N [North], CN [cyclonic &Fth], AN [Anticyclonic
North]), two pure vorticity types A [anticyclonignd C [cyclonic] and the U
[unclassified] type, so eleven types in total (Babll).This strategy of reducing
the number of classes facilitates the intercomparibetween classification
types derived from both ECHAMS5/MPI-OM and ECMWF-ERASLP fields.

Figure 1 depicts the SLP composite maps for thecal&VTs separately for the
ECMWF-ERA40 SLP reference dataset.
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Figure 5.1: SLP composites for all directional Lamb weathgpes derived from the
ECMWF-ERA40 SLP reference dataset, averaged oeepdhiod 1961-2000. The black dot
represents the center of the Lamb grid configunatiecated in Uccle.

First, the number of WTs will be derived based &dHAMS5 — MPI/OM and

ECMWF — ERA40 SLP fields for the period 1961 — 2000 assess whether
there are significant differences in observed andetied frequency distribution
averaged over all types and for different periofilroe (year, season, month),
the x2 test is applied using a 0.1 significance level d@bff and Lehmann,
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1954). In this way, it is possible to get more gmsiin the overall model
performance in terms of weather types over the eHJ-\period. Interannual
variability for each weather type individually ssted with the student t-test on a
monthly time scaleTo investigate whether differences in trends ofather
types based on the three different IPCC scenamessignificant, the Mann-

Kendall test (e.g. Verstraeten et al., 2006) waedususing a statistical
significance of 10%.

5.3 Results
5.3.1 Grid sensitivity of the WT Scheme

Previous studies using the WT classification schersed the 16-grid points
configuration with a 5° grid resolution (Trigo abhcamara, 2000; Post et al.,
2002; Buishand and Brandsma, 1996; Fowler and il2B02 and Buchanan et
al., 2002). One would expect that grid size andlut®n play an important role
in the allocation of weather types and in the numbk unclassified days.
Therefore, a sensitivity test is done using variausbers of grid points and
different grid configurations. Originally, the gndas set up consisting of 16 grid
points with a 10° resolution in longitude and a ®%solution in latitude
(Jenkinson and Collison, 1977). Eight sensitivilps are set up here, differing
in number of grid points (9, 16, 32) and grid resioin (2.5°, 5° and 10° in both
latitude and longitude) (Figure 5.2). A sensitivityn with a 10° resolution on a
32-point grid is neglected because the area destiily such a configuration
exceeds our region of interest.

Table 5.1: Overview of the JC Weather Types, representimg26+1 JC weather types and
the reduced 8 directional weather type groups {igglumn).

Pure Types Directional Types Hybrid Types

u i N CN AN b N(d)

c r NE CMNE ANE 0 NE(d)

A i E CE AE . E(d)
r SE CSE ASE 1 SE(d)
] S Cs AS ) S(d)
[ SW CSW ASW 0 swd)
r W cwW AW O wWi(d)
i NV CNVV ARV G MWW )
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Figure 5.2: Visualization of the grid for the different setmgity runs. Upper row: 9 grid

points 2.5°, 5°, 10°; middle row: 16 grid points 2/5°, 5°, 10°; lower row: 32 grid points on
2.5 and 10°. Grid points are labeled only for teatral plots from 1 to 9, 1 to 16 and 1 to 32

for the 9, 16 and 32 number of points plots respeigt

Overall, we can conclude that the number of undladsdays and the associated
standard deviation decreases with a decreasingresmlution (Table 5.2). For
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the configuration with 16 and 32 grid points, adgspacing of 2.5° is

inappropriate leading to a large number of unclessidays, 155 and 136 days
per year respectively (Table 5.2). Also, for thefgguration with 9 gridpoints, a

grid spacing of 2.5° is not appropriate: this grmhfiguration doesn’t capture
any circulation pattern (Table 5.2), and classiBash day as pure anticyclonic,
which explains the non-existence of unclassifiegsd&rom this it is clear that
the grid spatial scale needs to be related to ypecdl scale of synoptic

circulation patterns. However, as differences betwe¢he 5° and 10° grid

resolution using 16 grid points are small (25 aAdrdspectively) and previous
studies used the 16-grid points and 5° resolutibis, study applies the same
grid, enabling the opportunity to compare the rssial former studies.

Table 5.2: Averaged number and standard deviation per yéamolassified days for the
1961-2000 period, for a grid configuration with1®, or 32 grid points and a resolution of 2.5,
5 or 10°.

Grid Points 9 16 32

Resolution 2.5° 5° 10° 2.5° 5° 10° 2.5° 5°
Mean - 62 21 155 25 19 136 35
Stand. Dev. - 9 6.25 14.64 5.94 4.19 14.25 6.59

5.3.2 Evaluation of ECHAMS SLP fields using ECMWERA40 data

ECHAM5-MPI/OM SLP fields are evaluated using thderence CTkra40
dataset, for the December-January-February (DJEycMApril-May (MAM),
June-July-August (JJA) and September-October-Noeemt$ON) seasons
separately. Figure 5.3 shows the seasonal meano$bBth models together
with the absolute bias of the ECHAM5-MPI/OM norrzall by the standard
deviation of the ECMWF-ERA40 40-year time seriesdach season separately.
The normalized bias is largest during summer andllemduring the winter
season. This is due to the small interannual vditialfas expressed by the
standard deviation of the 40 year time series)ndusummer, which is related to
the weak north-south pressure gradient during ge&son (van Ulden and van
Oldenborg, 2006). Therefore, the discrepancy in Wa&sveen CTkcyavs and
CTLgraago Is largest during summer, whereas during winter\WAl' occurrences
correspond much better.
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Figure 5.3: Mean Sea Level Pressure during the period 1960,20ased on ECHAMS/MPI-
OM (left column), ECMWF-ERA40 (middle column) andet difference between the two
(right column), normalized by the standard deviatidhis is done for each season seperately
(consecutive a) DJF, b) MAM, c) JJA and d) SON).

The patterns in ECHAM5-MPI/OM are overall similasngpared to the ERA40
reference dataset, although differences can becawbtin the strength and
location of the anticyclonic belts and low-presssystems. The differences in
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occurrences during the year are largest for citimraype W(d), which is to a
large extend caused by a large overestimationdrstimmer season (Table 5.3).
During that season, there is an underestimatigheofrequency of occurrence in
CTLechams Of 3.5 and 4.3 days for the NE(d) and E(d) dimew groups
respectively and an overestimation of 3.7 dayskh8 days for the JJA SW(d)
and W(d) respectively. This effect is even enhanat@n considering these
differences change against the observed absolutarrences derived from
ERA40 (Table 5.3). Here we see that the differeraneseven larger than the
number of absolute occurrences for SW(d), and ayle for circulation pattern
S(d) too because of its low occurrence in the alagems. These findinges can
be explained by an underestimation of ECHAMS-MPI/®OAMLP north of the
British Isles, and a small overestimation of MSltBuend the Mediterranean Sea
(Figure 5.3c), associated with an increased Nodadits pressure gradient in
ECHAMS5-MPI/OM.

Table 5.3: Mean annual and seasonal frequency differenaesddys) of all groups of
directional circulation types for ECHAM5 minus ER®4between 1961-2000. The %
provides the differences between ECHAM5 minus ERAdAinst the observed occurrence of
each circulation type (x100).

Annual Winter (DJF) Spring (MAM) Summer (JJA) Auta (SON)

Days % Days % Days % Days % Days %
U -10.2  -248 0.4 12.1 2.4 216 -6.1 -33.0 -22 265
C 2.3 10.1 3.7 84.1 0.2 2.2 -1.7 -354 0.2 4.7
A -16.3 -21.5 -7.6 -39.2 -15 -10.4 -0.8 -3.8 -6.3 -29.6
N(d) -7.3 -58.9 -0.2 -154 -0.9 -36.0 -1.3 -448 9-0 -56.3
NE() -9.8 -53.6 -1.0 -345 -4.0 -53.3 -35 -67.3 1.4- -50.0
E(d) -9.7 -27.7 -2.9 -33.7 -2.6 -21.3 -43 -558 00. 0.0
SE() 0.7 5.8 -0.9 -205 0.8 27.6 -0.2 -13.3 0.9 327
S(d) 13 155 0.0 0.0 0.7 38.9 0.6 100.0 0.0 0.0
Sw() 10.8 36.1 0.9 8.7 5.0 89.3 3.7 1156 1.3 12.0
w(d) 325 356 7.4 27.2 5.2 27.1 12.8 64.6 7.0 27.8
NwW(d) 1.2 5.3 0.1 1.8 -0.6 -10.5 0.8 11.3 1.0 22.7

For DJF, CTlgchams Shows an easterly geostrophic flow anomaly in the
northern part and a westerly geostrophic flow arlgnmathe southern part of
the WT grid (Figure 5.3a). Note hereby that the @il is extending from the
south of Norway to Sardinia (Figure 5.2)his results in anomalous cyclonic
shear vorticity in our region of interest explaminhe underestimation in
anticyclonic WTs in CTlgchaws. In addition, the North-South gradient in the
WT grid increases, explaining the overestimatiomwestern WTs in CTkcpawvs
(Figure 5.3a).
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For MAM, the location of an anomalous low-pressaystem in CTlLecyawvs
west of the British Isles, results in a strongesgure gradient in the Northwest
to Southeast axis in our region of interest. Ta&lk to an increase (decrease) of
W(d) and SW(d) (E(d) and NE(d)) weather types (Feght.3b). As pressure
differences are smaller for SON in the LW grid damérigure 5.3d), also
weather type frequency differences are lowestHisrseason (Table 5.3).

In general, the more pronounced Clduavs pressure gradients result in a lower
number of unclassified days, both yearly and sesdsahich suggest that CTL
Echams pressure patterns have more pronounced (unregligirculation
characteristics (Table 5.3). Most significant diffleces (based on t-test
statistics) between CTkcuavs and CTLgrago are found in the late spring,
summer and beginning of autumn (from May to Sep&nnprable 5.4; Figure
5.4). During these seasons, weather type occumsentewestern types are
significantly higher for CTlLecyams than for CTLgraso and the occurrences of
eastern types are lower. This corresponds to thealtseof van Ulden and van
Oldenborg (2006), who tested various global couptéchate models with
respect to the explained variance in sea levelspresfor northern latitudes
(their Figure 5.2). They found that ECHAMS5-MPI/OMgxt to others, has
difficulties in correctly simulating circulationsdm April to September. These
discrepancies could arise because ECHAMS5-MPI/OM sdibe use flux
adjustment (as compared to other models), andftreranodel bias in SST can
be expected which will also affect circulation patts. van Ulden and van
Oldenborg (2006) tested various IPCC AR4 modelderms of circulation.
ECHAMS5-MPI/OM was shown to be one of the best medalthough also here
summer circulations in northern latitudes (30°-9Dae shown to be difficult to
simulate correctly. Moreover, a comparison to & tajusted model (MIROchi
— their Figure 18) showed that the latter was beftesimulating the explained
spatial variance in SLP, compared to the other fhon-adjusted models,
including ECHAMS. Also the model resolution sholld taken into account.
Roeckner et al. (2006a) found that the JJA westemd bias around 50°N is
still present at TLO6L31 resolution but clearly #erahan at the resolution used
in our study (see their Figure 10).
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Figure 5.4: Mean monthly bias for each individual directionaather type, for each month
between 1961-2000, calculated as the differencedsat ECHAMS and ECMWF-ERA40.

Table 5.4: Monthly frequency differences (in days averagedralO years) for all groups of
WTs for ECHAMS minus ERA40. Differences significaom the 99% level are denoted in
bold. The bias presents the differences in morftelyuencies (days per month) averaged over
all years for all types (CTdenams minus CTlerag0). Months with a yearly averaged bias > 1
are denoted by *.

U C A N(d) NE()E(d) SE(d) S(d) Sw(dy(d) Nw(d)Bias
(days/month)
January -0.07 2.07 -2.05 0.09 -0.05 -0.49 -0.1990.r0.42 1.21 -0.3 0.65

February -0.28 1.14 -1.88 -0.23 -0.7 -1.23 -0.21280 1 279 -0.12 0.9
March 0.37 -0.09 -1.81 0.05 -0.33 0.26 0.49 0.26841.-0.07 -0.95 0.59

April -0.84 0.33 0.26 -049 -2.07 -035 04 O 1.23.56 -0.02 0.68

May -165 0 -0.02 037 -1.72 -281 -0.23 0.35 2.0284 0.6 1.24*
June -1.02 -049 -019 -037 -1.88 -1.72 0.09 02109 342 0.86 1.03*
July -2.05 -0.44 -1.23 -042 -1.05 -1.65 -0.12 04151 5 0.05 1.26*

August -2.88 -0.98 0.56 -0.26 -0.47 -0.72 -0.21 20.11.05 3.88 -0.09 1.02*
September-2.09 -0.3 -1.84 -0.05 -049 -0.77 0.14 0.07 1.26563 0.51 1.01*
October -0.42 -0.12 -142 -044 -0.09 047 04 60.10.09 095 042 045
November -0.28 0.47 -2.67 -0.28 -0.6 0.14 0.23 1003 333 0.19 0.79
December 0.47 0.42 -3.44 -0.05 -0.35 -0.95 -0.2D090.0.47 3.16 04 091

The difference in frequency distribution of weatlgpes between CTehams
and CTlgraso IS assessed using thgz test. During the summer season
CTLechams distribution of weather types significantly diffefeom CTlerago
(Table 5.5). During spring, autumn and winter bgibpulations are not
significant different. On a monthly scale, sigrgiint differences between
CTLechams and CTlgrago are revealed in May and July weather type fregesnc
(Table 5.5).
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Additionally, WTs are derived removing the systamadrrors in ECHAMb5-
MPI/OM prior to doing the classification. Firstifne monthly mean 40-year bias
Is calculated as the difference between ECHAMS5-K@RI/ and ECMWF-
ERA40 SLP. Secondly, the weather types are demftnt subtracting this bias
from the original daily ECHAMS5-MPI/OM SLP. There assignificant impact of
eliminating the biases on the WT classification[€a5.6). The variability in
WTs in Western Europe is very well presented by BEH once the systematic
errors in SLP are removed: There is no signifiaiifference in terms of mean
annual, seasonal and monthly weather type freqgasnbetween ECMWEF-
ERA40 and the bias-corrected ECHAM-MPI/OM SLP (Eabl6). Therefore it
Is concluded that the discrepancy in WT occurrenicesveen ECHAM5-
MPI/OM and ECMWF-ERA40 can be explained by the mbnmean bias.

Table 5.5: Statistical analysis between observed and exgdotguencies of weather types
during the 1961 — 2000 period. Values less thanadel contrary to the hypothesis that
CTLechawms is a good approximation of CEkaso(both populations are significantly different)
(marked in bold).

Year Season Month
Dec \ 0.33
Jan } 0.20 0.98
Feb 0.60
Mar 0.82
Apr } 0.25 0.62
May 0.55 10° 4.6 107
Jun > 0.11
Jul } 410° 5.5 107
Aug 0.28
Sep 0.19
Oct } 0.42 0.77
Nov / 0.49

For each month, the mean bias for all weather typves the 40-year period is
calculated. This bias presents the mean differenceumber of occurrences
(days) between CTdenavs and CTlerago Calculated for each month separately
over all directional weather types (Table 5.4, righlumn). Biases are largest
for May and July (1.24 and 1.26 days respectivéiypy. all months from May to
September, biases are exceeding a value greatedtbay (Table 5.4). For the
remaining months, values are less than 1 (day).se@eon the significant
differences on a monthly and seasonal time scata frable 5.4, and taking into
account this value of 1 day as a threshold, welodeachat ECHAM5-MPI/OM
generally reproduces the observed weather typestitjaa for the October-
November-December-January-February-March-April (JQRB®A) months for
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the period 1961-2000. Non-negligible differences the May-June-July-
August-September (MJJAS) period are found, wheréggdavs overestimates
(underestimates) the number of westerlies (eas$@rliTherefore, in order to
avoid the model uncertainties concerning MJJASutatton patterns in the
ensuing analysis, our further analyses are restricct the ONDJFMA period.

Table5.6: Same as Table 5.3, but using ECHAMS5 SLP with atimy bias-correction.

Annual Winter (DJF) Spring (MAM) Summer (JJA) Auta (SON)

Days % Days % Days % Days % Days %
U -4.59 -1.3 -0.28 -0.1 -0.43 -0.1 -1.64 -04 -2.24 -0.6
C -0.98 -0.3 1.29 0.4 -0.74 -0.2 -1.23  -0.3 -0.30 0.1-
A 0.93 0.3 -0.24 -0.1 1.42 0.4 130 04 -1.56 -0.4
N(d) 0.73 0.2 0.12 0.0 0.53 0.1 0.63 0.2 -0.56 -0.2
NE(d) -2.63 -0.7 -0.18 0.0 -1.72 -0.5 -0.09 0.0 640. -0.2
E(d) 1.11 0.3 -0.82 -0.2 -0.34 -0.1 0.64 0.2 164 40
SE(d) 0.67 0.2 -0.64 -0.2 -0.20 -0.1 039 0.1 1.12 0.3
S(d) -0.19 -0.1 0.22 0.1 -0.26 -0.1 034 01 -0.48-0.1
SW(d) -1.94 -0.5 -1.12 -0.3 0.24 0.1 -0.13 0.0 -0.93 -0.3
w(d) 3.81 1.0 1.71 0.5 1.02 0.3 -1.52 -0.4 2.60 0.7
Nw(d) 3.0 0.8 -0.1 0.0 0.5 0.1 1.3 0.4 1.4 0.4

In Figure 5.5, mean sea-level pressures compoaieylotted for the years
1961-2000, for the ONDJFMA period. Generally, thePSshows similar

patterns for CTkcyavs and CTlerago, a@lthough values differ regionally. The
CTLechaus run overestimates pressure over the Sahara ragimorthern parts
of Scandinavia, with pressure differences up t@eesvely 2.5 and 3.0 hPa,
whereas pressure patterns are slightly underestthiedm Central Europe to the
Northwest region of Ireland, with differences up 3ohPa. Generally, the
pressure differences between GElavs and CTlgraso are small over the WT

grid, and therefore differences in WTs are small tfttese months. Note that

there are no significant trends in weather typauoence over the 40-period in
ERAA4O.
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Figure 55: Mean Sea Level Pressure averaged over the pergil-2000, for the
ONDJFMA period only. The ECHAM5-MPI/OM SLP patters shown in the left panel,
ECMWF-ERAA40 in the middle and the difference betw#ee two in the right panel.

5.3.3 The relation between weather types and atlleres of large-scale flow

Since the NAO index, cyclone identification anddidimg indices are often used
to characterize atmospheric flow conditions in Wastand Central Europe, this
section compares some of these measures with them@&hod in order to
evaluate climate models. Many authors have propasethods to calculate
NAO indices, based on (normalized) pressure diffegs between stations pairs,
area-weighted pressure extremes or principal commontime series
corresponding to a pressure field principal comporpattern (Osborn et al.,
1999 — references therein). Some authors (Ul@rah Christoph, 1999; Hu and
Wu, 2004) show that the largest values in telecotiviy do not coincide with
the reference locations used in the NAO index dedim provided by Hurrell
(1995). In addition, they point out a shift in thNAO action centers in global
warming climate simulations. Latif et al. (2000)néom this with a canonical
correlation analysis applied on ECHAMA4. Their as@yeveals a northeastward
shift in the NAO centers of action. As pointed bytCampbell et al. (1995) and
Huth (1997) there is a lack of consensus on thBaddAO characteristics. This
Is especially relevant for studying changes inNiA€©, as the shift in the NAO
action centers depends on the methods used toctéidza the NAO. It is,
however, of lesser importance here as the aim ofaoalysis is to relate the
present-day NAO with present-day SLP circulatiorttggas. For such an
analysis, the precise definition of an index i$ess importance provided that the
comparison is performed on an identical basis (@sla al., 1999). Indices
derived for longer timescales show that the NA®ast discerned when time-
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averaged (monthly or, preferably, seasonal) atnmespifields are analyzed
(Marshall, 2001; Loptien and Rubrecht, 2005). Tfeee the seasonal DJF
NAO index is derived from both ECMWF-ERA40 and ECHMB-MPI/OM by
calculating the difference of normalized sea lgwelssure from the nearest grid
boxes to the Ponta Delgada (Azores) and the Stykkisur (lceland)
measurement sites (Figure 5.6). In addition, the ONAndex based on
measurements from Hurrell (1995) is added as tezerece NAO index (Figure
5.6).

4
2 13
: , 2\
N A
» : W
2 TR
= 0 \. ’ P a l
S \j il 4
= ; ] '] \ A
“ T Y
Uosly
2 | i !
b
¥
4 - Hurrell (1995)
- ERA40
— — — ECHAMS
| | |
1 T T
1960 1970 1980 1990 2000

Year

Figure 5.6: The station-based NAO-index from Hurrell (1998 alerived from ERA40 and
ECHAMS5-MPI/OM as the difference of normalized seadl pressure from the nearest grid
boxes to the Ponta Delgada (Azores) and Stykkistio(leeland) between DJF 1961-2000.

Pearson correlation coefficients are calculateavéen the DJF frequencies of
weather types and the DJF NAO index, both for €gkke and ECHAMbS-
MPI/OM (Table 5.7). There is a strong significaegative correlation between
the DJF NAO index and both CEkaso and CTlgchavs Cyclonic weather types.
This can be explained by a northward shift of cyel® (above 60°N) during
winters with a positive winter NAO index (Raible0@; Raible, 2005;
Sickmdller et al., 2000). Since the northern bouyndd the WT grid is located
at 60°N, our WT classification method is not cajtgrthe increase in cyclones
north of 60°N during a positive NAO phase. Our tessoaonfirm the findings of
Sickmoller et al. (2000) who states that cyclonaswred based on their
occupation (northeastward (NE), zonal (ZO) andistaty (ST)) show clear
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negative correlations with NAO for their NE and Z§clone clusters over
central Europe.

Table 5.7: Correlation between the NAO index and the Gkalo & CTLgcnawvs directional
WTs frequencies using ERA40 NAO and ECHAM5-MPI/OM@®, this for DJF. Values on
a 90% significance level are denoted in bold.

U C A N(d) NE() E(d) SE() S(d) SW(d) W(d) Nw(d)

DJF
ERA40 -0.031 -0.37 0.19 -0.04 -0.24 -0.28 -0.37 170. 0.006 0.45 -0.01

ECHAM5 0.11 -0.27 0.29 0.02 -0.07 -0.15 0.11 -0.210.21  0.17 -0.05

Scherrer et al. (2006) have shown, next to otherat there is a positive
correlation between three blocking indices and sitpe NAO-phase. This is
consistent with the significant positive correlatiooetween NAO and
anticyclonic weather types for both Cdlas and CTlgchams (Table 5.7). The
underestimation of the correlation coefficient INMMlGecpavs IS due to an
underestimation of anticyclonic weather types fegtuies in CTkchavs
compared to CTErago (Table 5.3). The slope of the regression curvevéen
anticyclonic weather type frequency and NAO indsxsimilar in CTlgcyavs
compared to CTirago (Figure 5.7a).
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Figure5.7: Mean frequencies of the a) A and b) W(d) weatiees (in mean number of days
per year) against the NAO index, plotted with ateasling NAO index.

The directional western weather type correlatestigely with the winter NAO
index (Table 5.7), but the correlation is only siigant at the 90% level for
CTLerago and not for CTkcpyams. Figure 5.7b shows that not only the
correlation coefficient, but also the slope of tlegression between western
directional type W(d) and NAO index differs, evdrough the mean pressure
pattern anomalies during the positive NAO years QNA and negative NAO
years (NAO-) (Figure 5.8) are almost identical. dmalyse this in more detail,
the regression between the mean yearly indicesA8F,FF and Z of the WT
method (see 5.2.2) and the NAO-index for Gddavs and CTlgraso Were
calculated (not shown). There is no differenceha slope of the regression
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between geostrophic flow indices SF, WF and FF BiA®D index between
ECHAM5-MPI/OM and ECMWF-ERA40. Contrarily the vartly index Z
shows a less negative slope in Glavs compared to CLdraso NOte that such
a difference between CEkyams and CLTeraq0 in the sensitivity of the shear
vorticity to the NAO index can also be identifiesbrh Figure 5.8. Since the
sensitivity of Z to the NAO index is underestimat@d CTlgcpams, the
sensitivity of C to the NAO index is slightly unéstimated as well. This is
compensated by a slight underestimation of theitbatys to NAO index of
W(d), SE(d) and E(d) (Table 5.7; Figure 5.7b).

ECHAM5 ECMWF ECHAM5—ECMWF (difference)

-25 —-15 -5 5 15 25 -5 -3 -1 1 3 5
Pressure difference (hPa) Pressure difference (hPa)

Figure 5.8: Mean SLP differences between NAO+ and NAO- y¢fnsDJF), for CTlechamvs
(left panel) and CLdras0 (Middle panel) and CTdeuams— CLTerag0 (right panel).

On the one hand, our approach confirms the resfilisany authors who have
already shown that a positive NAO corresponds terdranced zonal flow over
central Europe with an anomalously low (high) puessover the subpolar
(subtropical) North Atlantic (Hoerling et al., 200@Figure 5.8). On the other
hand, it clearly points out the additional value wding this weather type
approach as a diagnostic evaluation tool for CGCM#. only does it capture
large-scale features found by other authors comgiai multiple set of methods
(NAO index, cyclone algorithms, blocking indice#)also shows that although
pressure pattern differences between NAO+ and N&@®-similar for CTlra4o
and CTlgchavs (Figure 5.8), one should also check the frequai@ccurrence
of the large-scale circulation patterns, which baneasily done using the WT
method.
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5.3.4 Climatic trends in Weather Types

In this section, ECHAM5-MPI/OM climate change exp®nts with observed
atmospheric greenhouse and aerosol concentratione 4860 and different
assumptions on future greenhouse gas and aerasmmoations are discussed,
namely the IPCC scenarios A1B, B1, and A2 untilybar 2100. Following the
IPCC report 2001, scenario A1B describes the futuith a fast economic
growth, a world population that peaks in the midtoey and declines
afterwards and new and more efficient technologiBise scenario Bl is
described by a similar population curve as A1B,etih an emphasis on global
solutions to economic, social and environmentaltasogbility, including
improved equity. The last scenario A2 differs hertiat population continues
growing through the century with a regionally deyghg economic growth and
fragmented technological changes (IPCC 2001).

For each weather type group and scenario, the yweadan number of
occurrences is calculated for the 2001-2100 ONDJFRMAod (SCEN:s-coupled
SCENs1-coupled@nNd SCEM.coupied- Trends are calculated for the eight directional
and two pure (anti) cyclonic weather type groupsveen 2001-2100 and for the
various scenarios A1B, B1 and A2. The trend anslyssed on the Mann-
Kendall test for the directional groups N(d), NE(&E(d), S(d), SW(d) and
NW(d) shows no significant trends over the whateetiperiod (not shown). The
(anti) cyclonic and W(d) and E(d) series of occoces and their linear trends
are shown in Figure 5.9. Within each directionabther type group, trends for
scenarios Al1B, B1 and A2 are similar over the whpériod, as well in
amplitude as in overall trend. Year-to-year valtigbiis large, as one could
expect. Because long-term differences betweendheus scenario trends based
on weather types are small, this study will corgints focus on the scenario
AlB, only. Trends have been re-calculated for ti® Acenario over the whole
240-year period, expanding from 1860 till 2100esgéhg ONDJFMA months,
only (Figure 5.10).
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Figure 5.9: Mean number of days per year with weather type#& ,GN(d) and E(d) for the
SCENig-coupled (red), SCEMNi-coupled (Qreen) and SCEMN coupled (blue) simulations with
ECHAMS5 — MPI/OM from 2000 — 2100, for the ONDJFMAnod only. The bold line in its
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Figure 5.10: Same as Figure 5.9, but for the SGENouped run and the 1860 — 2100
ONDJFMA period only.

Thereby, we can see an increase in number of tlstemedirectional type,
balanced by a smaller decrease of pure cyclonic aheastern directional
weather types. The Mann-Kendall test is applietesd the trends’ significance.
For the representative directional and the two my@onic WTs, the Mann-
Kendall trend test P-values and linear trends atengTable 5.8).
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Table 5.8: The Mann-Kendall rank test is used to calculagaificance of the SCENg-coupled
circulation trends between the 1860 — 2100 per@N@JIFMA). 90% level of significance is
indicated in bold, 95% level by *.

Type C A N(d) NE(d) E(d) SE(d)
Linear trend  -5.807 2.489 -0.11 -1.11 -4.3 -1.6
Mkprob 0.000106* 0.252208 0.284108 0.025138 0.08234 0.127748
Type S(d) SW(d) W(d) NW(d) All West All East
Linear trend  0.201 1.512 11.91 -1.2 12.22 -7.011
Mkprob 0.878028 0.3939 0.00034* 0.066631 0.001055* 0.001689*

The statistical analyses shows that the incregslagreasing) trend in all-West
(all-East) is determined to a large extent by aificant increase in pure West
directional types (by a decrease in pure East wea types) (Table 5.8). The
increase of W(d) results in an absolute mean isered almost 73 extra days
over 240 years of westerly flow W(d) over centrairépe during the months
ONDJFMA. Again, a large year-to-year variability feund for all directional
groups.

5.4 Conclusions

Until now, only few studies have tackled the sttengf CGCMs in reproducing

circulation patterns. In this respect, the aut@mal/T classification method is
tested as a diagnostic tool to evaluate CGCMs Her Western and Central
European region. The WTs for a 40-year control (@861-2000) of the

ECHAM5-MPI/OM ACGCM for Western and Central Europee evaluated

using the ECMWF-ERA40 database. In general, ECHAW™N/OM appears to

be able to reproduce the frequencies in directicivalilation types, especially
for the late autumn, winter and early spring pe@dDJFMA. For late spring,

summer and early autumn (MJJAS), significant déferes are found for most of
the directional types. In particular western types significantly overestimated
by ECHAMS5-MPI/OM, while eastern types are underaatied.

As the North Atlantic Oscillation climate varialyliis of large interest for the
Western and Central European climate, this largéeseleconnection pattern is
compared to the WTs for the DJF winter period. N#O index is positively

correlated with the frequency of occurrence of esgtweather types whereby
our approach confirms the results obtained by erarkksearch that a positive
NAO phase is characterized by a stronger zonal, fthve to positive (negative)
pressure anomalies over the subtropical (subpotaan (Hoerling et al2001).

Furthermore, a positive relation between the NAGwage and blocking over
Central Europe, as shown by Scherrer et al. (2036)yecognized by our
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classification approach: the relation between teguency of occurrence of the
anticyclonic weather type and the NAO index is pesi The negative

correlations between cyclones and the NAO indefoasd by Sickmoller et al.

(2000) are confirmed by a negative correlation leetnv the frequency of
occurrence of the cyclonic weather type C and tA®Nhdex.

In order to avoid model deficiencies in the anadysé potential future changes
of circulation patterns, ECHAM5-MPI/OM climate seeios are tested for the
ONDFJMA period, only. Although interannual variafyilbetween the A1B, Bl
and A2 IPCC scenario schemes is large, the treodshe circulation types
between 2000 and 2100 using the three IPCC scenamgsimilar. The Mann-
Kendall test is used to calculate the SGEN.pieqCirculation trends between
1860 and 2100. While in general the trends for dimectional groups are
insignificant, there is a significant increase (@ase) in western (eastern)
directional groups. This suggests that one can atxpelarger influence of
western circulation over Central Europe during fetwutumn and winter
seasonsHowever, one should keep in mind that the used ERIBMPI/OM
model showed the largest deviations from the ECMERA40 data for exactly
the same circulation patterns, W(d) and E(d), dutire summer months. Thus,
further analyses and GCM inter-comparison studiescartainly needed to test
the robustness of the detected future circulati@nges.

In order to increase the reliability of coupled geal circulation models in future
projections, down-scaling, air quality monitoringpundary conditions for
regional climate models and other applications, lmaeto make sure that overall
circulation patterns are projected with confidenoeall seasons. Thus, the
approach suggested here could provide a ratherdesimpthodology to detect
changes and differences in circulation patterns @ynoptic time-scale, which
makes this weather type scheme an appropriate fe@oCGCM evaluation.

Much research has been done on the NAO-relatedattimmpacts (see
Marshall et al., 2001 and references therein), @ ag on cyclone activity and
blocking. Based on an automated classificationhoekt as presented in this
paper, climate impacts for various regions and ayraoptic timescale could
easily be investigated for present day climate &rdre CGCM scenarios.
Thereby, further work is underway to extend thespn¢ analysis on its
implications on regional surface climate variabl€ggo et al., 2002, 2004) as
precipitation (Hurrell et al.,, 2004) and temperatuiSchar et al., 2004).
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Chapter 6

A new method to assess air quality levelsusing a synoptic;
regression approach. Part I1: Future O projections

6.1 I ntroduction

Over the past 20 years, levels of ozone have b@ameern to policymakers in
Europe, as observed;Qevels continue to exceed internationally accepted
guidelines for the protection healthiness and \aget in the spring and
summer months (EU, 1999, 2008). Since the,M@d VOC protocols of the
United Nations Economic Commission for Europe (UNHE} Convention on
Long-range Transboundary Air Pollution (CLRTAP) akh 20 years ago,
downward trends in VOC and N@ave been observed. As a consequence, also
episodic peak ozone levels decreased over partsrtf-west Europe (Derwent
et al., 2003). Despite these reductions in epispdek levels, ozone levels are
still a cause for concern during in the®2Entury and air quality guidelines are
still exceeded in most years in some EU countfiesghis respect, the question
is whether further regional pollution control ségies (e.g. CAFE thematic
strategy for Air Pollution — EU 2005) will be stgant enough to reduce the
overall ozone levels in Europe to its postulateele

Future air quality levels will be affected by sealeflactors including changing
biogenic and anthropogenic emissions, (intercontad long-range transport
and possible changes in the regional climate (Mfeted al., 2002; Derwent et

" Demuzere, M., van Lipzig, N.P.M., 2008. A new nuetho assess air quality levels using a
synoptic-regression approach. Part Il: Futurg @ojections. Atmospheric environment
(submitted).
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al., 2003, 2004; Delcloo and De Backer, 2008). Agample, Derwent et al.
(2008) suggests an increase in regional-scale odoedo a drying out of soils
and vegetated surfaces and Lee et al. (2006) sugihes increasing
temperatures may lead to increased biogenic isepeemssions, strengthening
the regional-scale ozone formation. In this respaajections from AOGCMs
are commonly used as scenarios of future climatentwenty-first century.
Unfortunately, the resolution of these global cliemenodels exceeds the impact
assessors’ needs, which often requires informatemuivalent to point
observations. Therefore, a downscaling approachsed to bridge the gap
between what AOGCMs produce and what impact assessguire (Wilby and
Wigley, 1997). Some authors have attempted to ifyashe different
approaches for climate modelling (e.g. Giorgi andakhs, 1991; Wilby and
Wigley, 1997), with Hewitson and Crane (1996) andwison and Crane
(2002) suggesting two categories of downscaling hodg: process-based
(dynamical) techniques, involving the explicit galy of the physical dynamics
of the system and empirical (statistical) techngyukat use the identified
relationships derived from observational data. @ftlynamical downscaling is
done in first instance for the present-day climaéerwards, the evaluated
model setup is being used to investigate the inftee of a possible future
climate change on various (atmospheric) prope(tes. Hogrefe et al. 2004;
Andreani-Aksoyoglu et al., 2008).

Dynamic and statistical downscaling techniques am@plementary and both
methods should be used to evaluate future ozomdsléMahmud et al., 2008).
Giorgi and Meleux (2007) have shown that the complkmate-air quality
modelling-systems, together with their computatitt@ehnical characteristics,
make dynamical downscaling methods less usefulldng-term predictions
based on AOGCM outputs. These limitations are @agrly due to spatial and
temporal constraints in terms of computational povilani and Pleim (1996),
afterwards refined by Cohan et al. (2006), set @peu limit for the horizontal
grid resolution for air quality modelling to ledsan 12 km. With such a high
resolution, it is hardly possible to simulate 1@ngeor more, which is necessary
to obtain reliable results (Forkel and Knoche, 200Iherefore, statistical
downscaling methods are useful in terms of tempamdl spatial computational
requirements.

This study uses the synoptic-regression based apiprpresented in Chapters 3
and 4 of this dissertation (Demuzere et al., 2008b, The approach has
successfully been applied to downscale maximumtdighrly mean ozone
levels from observed and coarse resolution ECMWErdgean Center for
Medium-Range Weather Forecasts) meteorologicalakkes for the rural
background station of Cabauw (The Netherlands). $¥eoptic-regression
based relationships between meteorology and oldenaximum eight-hourly
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mean ozone concentrations are built on presentddéy (see Chapter 4) and
therefore intrinsically include present-day preoursmission information. As
the evolution of biogenic and anthropogenic emissiand their feedbacks onto
the physic-chemical formation processes of ozoneeunfuture climate
conditions is uncertain, the same relations are kapdownscaling possible
future climate scenarios. In doing so, we assuraettie present-day relations
between meteorology and air-quality variables stapstant through time.
Moreover, when applying these techniques for futireuality projections, we
aim to identify the impact of meteorological chas@a future maximum eight-
hourly mean ozone levels solely, without takingpiaccount possible changes
in future (precursor) emissions.

6.2. Datasets
6.2.1 Air quality data

In order to evaluate the downscaled maximum eighidy mean ozone time
series using AOGCM present-day meteorological béesm one needs a long
enough homogeneous maximum eight-hourly mean ozeoerd (which is
calculated as the daily maximum of the 8-hourlyning mean). As the Air
Quality Monitoring Network of RIVM (National Instite of Public Health and
Environment) is measuring ozone in The Netherlamdse the 70s (Beck et al.,
1996), this dataset is available. However, in otddest the performance of the
downscaling approach itself, it is important to @hany inconsistencies in the
dataset due to a change in for e.g. monitoring@spanthropogenic emissions
and quality control.

Except for the year 1986, the amount of missing éatimited to less than 5%
over the period 1981-2000. In contrast to the sed¢w@tf of the period, values of
maximum eight-hourly mean ozone exceed 200 pg/magluhe period 1981-
1990, with a maximum in 1982 (252 pg/ms3). First,st@andard normal
homogeneity test (SNHT) of the form of Alexandersemd Moberg (1997) is
performed to check for change-points in the ozeend. A critical value of the
SNHT statistic T of 14.94 is used on the 99% sigaifce interval, as suggested
by Khalig and Ouarda (2007) for a sample size @07&lements. According to
this analysis, a change point is detected in 1984 ¥90. Furthermore, the
Mann-Kendall test is used to see whether theresigmaficant trends over the
whole observation period 1981-2000 and the suledetP91-2000. Figure 6.1
shows there is a significant (on the 99% levelgdindecrease of —12.76 pug/ms
In maximum eight-hourly mean ozone concentratioerothe whole period.
Similar, Beck et al. (1996) found a significant texse in ozone concentration
(on the 95% level) in Cabauw over the period 198921 When only the
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second half of the observation period (1991-20@0¢ansidered, there is no
significant trend in the observations (P>0.01). é&wding to Roemer (2001), the
significant negative trends over the period 198Q2@o not match with

observed trends of maximum eight-hourly mean ozooecentration in the
neighboring monitoring stations of for e.g. Germaawd Belgium. This

artificial trend is probably due to a change inm&ononitors in the beginning of
1990 from a Philips PW 9771 based on the chemilaszant reaction of ozone
and rhodamine B to a Thermo Environmental Instrun{@ii&l) model 49W

based on UV absorption at 254 nm (Uiterwijk et ab90). Furthermore, a
change in on site calibration instrument, caliloratimethod and practice
occurred in the same time span. Therefore, in otderencompass this
inconsistency in the dataset, we opt to work witlprasent-day 1991-2000
reference period.

Trend [1981-2000] = -12.76 (0.00)
Trend [1991-2000] = -2.89 (0.35)

®  Max. 8h mean Ozone

300 A

200 A

100 A

Ozone concentration [ug/m?]
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Figure 6.1: Observed maximum 8-hourly mean ncentration for Cabauw for the period
1981-2000. The linear trend value (Mann-KendallaRsg) is given for the periods 1981-
2000 and 1991-2000.

6.2.2 Meteorological data

The AOGCM used in this study consists of the madesions ECHAMS and
MPI1/OM for both the atmosphere and the ocean réisqed, which are used in
the framework of the 4 IPCC assessment report. In the atmosphere model
ECHAMS, vorticity, divergence, temperature and tlogarithm of surface
pressure are represented by a truncated seripd@fical harmonics (triangular
truncation at T63), whereas the advection of wadgor, cloud liquid water and
cloud ice is treated by a flux-form semi-Lagrangsaieme (Roeckner et al.,
2003, 2006). The ocean model (MPI/OM; Marslandl gtZz®03) has a nominal
resolution of 1.5° and the poles of the curvilingad are shifted to land areas
over Greenland and Antarctica. The vertical dissagibn is on 40 z-levels, and
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the bottom topography is resolved by means of glagtid cells. In the coupled
model (Jungclaus et al., 2006), the ocean passesethsurface temperature, sea
ice concentration, sea ice thickness, snow deptlt@nand the ocean surface
velocities to the atmosphere. The atmosphere rutistiiese boundary values
for one coupling time step (one day) and accumsiltite (non-adjusted) forcing
fluxes.

In order to evaluate the synoptic-regression badednscaling tool as
developed in Chapter 4, observed present-day (2000) maximum eight-
hourly mean ozone levels are reconstructed basqutesent-day meteorology
from the ECHAMS SRES 20C control run with greentegasses increasing as
observed through the ®@entury. The meteorological variables include 2eme
air and dew point temperature (T and Td), daily mmaxn and minimum
temperature (Tmax and Tmin), wind speed and doedt010 and D010), total
cloud cover (TCC), total precipitation (Tprec) armsthortwave downward
radiation (SDW) four times daily (0, 6, 12, 18 houimC) at a T63L31
resolution for four neighboring grid points (3.7%.62 °E, 51.29 - 53.15 °N)
around the Cabauw measurement station (cf. Demwetead 2008b). Except
the minimum and maximum daily temperature, all afales are averaged to
daily mean values whereby the relative humidity YRHcalculated from T and
Td using the Magnus-Tetens approximation. The ECBANMUTC sea level
pressure data (SLP) used to derive the objectivablLairculation patterns as
described in section 3 is selected on the largemofaan-Atlantic Region
(27.5°W - 27.5°E, 15°N - 85°N) on a T63L31 resaatiand re-gridded by
conservative remapping to a 2.5° by 2.5° reguldiolagrid, which can directly
be used in the circulation type scheme.

The available future simulations from ECHAMS5 in tframework of the 4
IPCC assessment report include the SRES scenatiBs Bl and A2 between
the years 2001 and 2100 (Roeckner et al., 2006)iich all meteorological
fields are available at a 6-hourly resolution. Theee SRES scenarios describe
the relationships between the forces driving greesbh gas and aerosol
emissions and their evolution in the future, whgrelch scenario represents
different social, demographical, economic, techgigial and environmental
developments. A more detailed description of thenados is given in
Nakicenovic et al. (2000), while the effect of tlseenarios on surface
meteorological variables is presented in Chapteoflibe 4" IPCC assessment
report (Meehl et al., 2007).

Unfortunately, measurements of the predictor véemlare not available from
the Cabauw measurement site for the period 1990-2006wever, in order to
evaluate the downscaled ECHAMS maximum eight-hounhgan ozone
concentration time series for the present-day ¢emthe ECMWF - ERA40
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reanalysis data (hereafter referred to as ERA4@pda et al., 2005) can be
used as a reference dataset, although it has takiea into account that this
dataset also has uncertainties in its surface madtggcal variables (e.g.

Chapter 4). The ERA40 SLP is selected for the semrepean Atlantic region
on a 2.5°x2.5° grid using the 12 UTC time stepmifir, all meteorological

variables are obtained from ERA40 for the perio®1:2000 on a 6 hourly
resolution, for 4 neighboring grid points on a 1x&Solution (4-5°E, 51-52°N).
All variables are reduced to their daily means,egxdor the daily maximum

and minimum temperature. To study the effect of hloeizontal resolution,

ECMWEF - ERA40 reanalysis data is also extractednftbe original ERA40

N80 reduced Gaussian resolution for the singleastareighboring grid point to
the Cabauw measurement station (hereafter refesrasl ERA40-1).

6.3 Methods

The synoptic-regression tool applies a circulapattern classification prior to
the multiple regression analysis in order to introel a non-linearity, thus
meaning a stratification of the data in terms geaof circulation patterns. The
classification is based on the automated Lamb \dealflype classifications
adapted from Jenkinson and Collison (1977) andslehal. (1993) to the Low
Countries. The circulation patterns are developgdgugridded SLP data and
for a given day they describe the location of tighland low-pressure centers
that determine the direction of the geostrophievflé\ grid with 16 points is
assigned over the larger Western and Central Euregie a central point over
the Benelux, in 52.5 °N and 5 °E (Cabauw) (Fig.).6l2dices referring to the
direction of vorticity and geostrophic flow are @alated daily from the sea
level pressure values at 12UTC in these 16 griahtpoisoutherly flow (SF),
westerly flow (WF), total flow (F), southerly shesorticity (ZS), westerly
shear vorticity (ZW) and total shear vorticity (A.small number of empirical
rules devised previously (Jones et al., 1993; Tagd DaCamara., 2000) are
then used to classify each day as one of the 2ulation types. Afterwards, all
daily types are clustered according to their pesfeal geostrophic wind
direction, as was done in Chapter 5 (Demuzere ,2@08a).
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Figure 6.2: Location of the 5° x 10° SLP grid used, with 1&im centered over the Benelux.
“C” denotes the location of the Cabauw measurersiation and the grid center.

The analysis in Chapter 4 reveals that a stratifinaof the dataset using the
automated Lamb weather type scheme, prior to aiptailtinear regression
analysis improves the downscaling results for maximeight-hourly mean
ozone concentration in terms of explained variarases skill score against the
persistence model (1 day lag). Thereby, the obdemea-linear characteristics
(e.g., skewness and kurtosis) of the observed maxireight-hourly mean
ozone concentratiogistributions are well reproduced. After the clasation,
all members of each circulation-type class areilasdrto a linear regression
equation, this for each season separately. Tallerlists for each season the
frequency of occurrence of all predictor varialhleshe set of linear equations.
Over all seasons, shortwave downward radiation ((WBlative humidity
(RH) and maximum temperature (Tmax) are the mosfuRently occurring
predictor variables, with the largest individuakéduency for the latter in JJA
(72.7%). In winter, wind speed (F010) is equallyportant as Tmax in summer,
while in the transition seasons MAM and SON, thiathee frequencies of
occurrence are similar for each predictor variable.
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Table 6.1: The number of predictor occurrences in the syinapigression approach over all
circulation types and for each season (DJF — wilt&M — spring, JJA — summer, SON —
autumn).

DJF MAM JJA SON
Sea Level Pressure (P0) 7 1 2 1
Total Precipitation (Tprec) 2 1 3 2
Shortwave Downward Radiation (SWD) 7 7 6 4
Maximum Temperature (Tmax) 3 3 8 4
Minimum Temperature (Tmin) 1 1 0 2
Relative Humidity (RH) 3 6 6 6
10m Wind Speed (F010) 8 3 2 3
Wind Direction (D010) 5 1 4 4
Total Cloud Cover (TCC) 4 2 2 2

The linear relationships between the three mostorapt JJA predictor
variables and observed maximum eight-hourly meam@zoncentration within
each circulation-type class are shown in Figure Bt predictor variables are
grouped for the E (east), SE (southeast) and Shem) circulation patterns
(characteristic for high maximum eight-hourly mesaone concentrations) and
only shown for JJA as an example. The maximum teatpee has the strongest
linear relation with maximum eight-hourly mean oeorconcentrations
(R2=0.68), followed by a negative correlation felative humidity (R2=0.49). In
the synoptic-regression approach, RH is negativedyrelated to ozone
formation (Chapter 4 - Demuzere et al., 2008c)nteochemical point-of-view,
this relation is not straightforward. A decreaseRéf together with an increase
of the photolysis rate, due to a decrease in ctmwer (Meleux et al., 2007),
could lead to a lower production of OH radicals.efdby OH does not just
oxidize VOCs (volatile organic compounds) but adlows the conversion of
NO to NQ. This cycle suggests a decrease of ozone formatitbna decrease
of OH, while on the other hand, the @moval by the process of N®@tration
will decrease (Sillman, 1999). OH radicals alsocteaith NO, leading to
HNO;, a sink for the ozone production. These featu@mat be explained
using a statistical downscaling tool, but should fbeher investigated with
state-of-the-art chemical transport models. Furtioee, an increase in
shortwave radiation positively influences the plobtemical production of
ozone with a positive linear correlation of Rz 3D (Fig. 6.3). For more details
on the calibration and evaluation of this synop#gression downscaling
approach, the reader is referred to Chapters 3l afidhis dissertation.
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Figure 6.3: Linear relationship between daily observed shaviev downward radiation
(SWD), maximum temperature (Tmax), relative hunyidiRH) and observed maximum
eight-hourly mean ozone concentrations, with meament taken from the period 2001-2006
(Chapter 4 — Demuzere et al., 2008c). The circutapatterns E, SE and S are grouped
together and are shown for JJA only.

In first instance, the synoptic-regression basedndgaling tool is used to
downscale maximum eight-hourly mean ozone concemisa for present-day
conditions based on daily mean ECHAMS meteoroldglesa. Afterwards, the
same approach is followed to downscale future gg€imaximum eight-hourly
mean ozone concentrations based on the ECHAMS SRESA1IB and Bl
scenarios for two selected future periods 2051-28&d 2091-2100. Thereby,
the relationships derived from the present perif122006 (Chapter 4) are
assumed to remain constant in the future and futhesmges in biogenic and
anthropogenic (precursor) emissions are not taknaiccount.

6.4 Results

In this section, results of the statistical dowtisgaof present-day and future
AOGCM data in terms of maximum eight-hourly meaormz concentrations is
discussed. As the circulation patterns are an itapoifactor in the statistical
downscaling approach (Chapter 5 - Demuzere et @08&), present-day
circulation patterns derived from ECHAMS SLP arealemated with the
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circulation patterns derived from ERA40 SLP fiel@ection 6.4.1). Secondly,
the synoptic-regression based statistical downsgatool is applied on the
present-day meteorological variables from ECHAMX asompared to the
observed maximum eight-hourly mean ozone concemtrdime series at the
Cabauw monitoring station for the period 1991-20€¢€xtion 6.4.2). Finally, a
set future maximum eight-hourly mean ozone coneéotr estimates are done
based on ECHAMS future A2, A1B and B1 scenariodlierperiods 2051-2060
and 2091-2100 (section 6.4.3).

6.4.1 Objective Lamb circulation patterns (1991400

First, the objective Lamb circulation patterns @oret al., 1993, Trigo and
Dacamara, 2001, Demuzere et al., 2008a) are defwethoth ERA40 and
ECHAMS sea level pressure fields for the period 19900 (Fig. 6.4). The
spatial agreement of the circulation patterns @eriifrom ERA40 and
ECHAMS is good, with a similar location of the highd low-pressure systems
for each circulation type.

Nevertheless, there are some differences in teagtn of the pressure systems,
which also returns in differences in frequencies aacurrence for some
circulation patterns (Fig. 6.5). To assess whettierse differences are
significant over all types per month and for eagtetover the whole year, the
x2 test is applied using a 0.1 significance leveld@bff and Lehmann, 1954).
If the goodness-of-fit is low (with P < 0.1), thepgothesis that the given
modelled frequencies are an accurate approximabidhe observed frequency
distribution has to be rejected. The differencewerall frequency distribution
of the ECHAMS circulation types per month is insfgrantly different
compared to the ERA40 observed frequency distobyexcept for February (P
= 0.09). This can be seen in Figure 6.5, with désg number of misclassified
days by ECHAMS £ 10 days). The frequency distribution per type ot
whole year only shows a significant difference e tWestern circulation
pattern (P = 0.04) between the modelled (ECHAM®qgfiencies and the
observed (ERA40) frequencies. Thereby, this biasvesterlies is positive
(negative) in the months July, August, Septembanuydry, February, March
and December) (Fig. 6.5). This result is in coritvagh the findings in Chapter
6 of this dissertation, which has shown that theme significant differences
between ECHAM5 and ECMWF circulation patterns foe imonths April to
September for the period 1961-2000. This discrepandurther elaborated in
Appendix B.
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Figure 6.5: Bar chart showing the frequencies (in mean nunobelays per month) for each
circulation pattern for ECMWF (a), ECHAMS (b) arftetECHAM5-ECMWEF difference (c)
for the period 1991-2000.

As the circulation patterns dominating high ozooneaaentrations (in summer)
are controlled by east to south directions (Chagjerthis significant bias in
westerlies has only a minor impact on the resulthie downscaling approach.

6.4.2 Downscaled £for the present-day climate (1991-2000)

In Chapter 4 of this dissertation, the synopticresgion based statistical
downscaling method is thoroughly tested using bofiserved and coarse
resolution ECMWEF operational data. Thereby, the @hodhs shown to have an
acceptable skill in terms of explained variance, $8Mand skill score against
persistence using the coarse resolution ECMWF dathpugh the higher
percentiles were underestimated in comparison éouie of single grid-point
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higher-resolution ECMWEF predictor variables. Theexplained part of the
variance is due to a combination of the intringroitation of a regression
method to capture the higher percentiles (Wilbyaét 2004), the scale-
dependency of the predictor variables and ECMWF ehatkficiencies. In
Figure 6.6, these error trends are confirmed ferpériod 1991-2000 using both
the coarse resolution ERA40 and ERA40-1 predictotables. The explained
variances for both datasets are respectively 6Bafel similar to the explained
variance obtained using the 2005-2006 validatiamodg63%) in Chapter 4 of
this research. In contrast to the explained vaaatarger differences can be
found in the higher percentiles of the downscalekimum eight-hourly mean
ozone concentration distribution (see Fig. 4.1Chapter 4). This can be seen
from the number of days with a concentration higth@n or equal to the 120
ng/m3 set by the European Union as a guidelinediorQuality for human
health protection (EU, 1999, 2008); 62 and 79 dagpectively compared to an
observed 141 days over the whole period.

This effect of underestimating the higher maximuighehourly mean ozone

concentration percentiles is enhanced using ECHAWEeorological variables

as predictors for the present-day period of 199062(F-ig. 6.6). Although the

overall mean from the prediction model using ECHANME1-2000 predictor

data is similar compared to the observations (94.65.2 pg/m?), the standard
deviation is significant smaller (of 24.0 vs. 3u/m?3). This difference is due
to an overestimation of the lower maximum eightihoumean ozone

concentration percentiles in the ECHAM5 model, whia general have a
higher frequency of occurrence compared to thedrnigiercentiles. In contrast,
the higher percentiles are largely underestimatddch can be seen from, for
example, the number of days that are exceeding 20e..g/m3 threshold (21
days).
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Figure 6.6: Quantile-quantile plot showing observed versusirthtaled maximum eight-

hourly mean ozone concentration concentrationsgusRA40 (diamonds), ERA40 - 1 (gray
triangles) and ECHAMS (black circles) predictor aldor the period 1991-2000. The bias-
corrected ECHAMS downscaleds©oncentrations are shown in blue squares.

Section 6.4.1 has shown that there are no significhfferences between
modelled and observed Lamb circulation patternsther period 1991-2000,
except for February. As this month is characterizsd a relatively low
concentration of maximum eight-hourly mean ozong.(B.7), this difference
in circulation pattern frequencies cannot expldia targe underestimation of
the higher @ percentiles by ECHAMS. Consequently, the reason the
difference in observed and downscaled maximum éightly mean ozone
concentration must lie in the representation ofrtie#eorological variables that
are used in the statistical downscaling proces®l€Té.2). Hence, ECHAMS
summer (JJA) predictor values are compared witlEflR&40-1 JJA predictors.
This is done for the patterns E, SE and S onlythag are associated with the
highest concentrations in summer.
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Figure 6.7: Mean ozone concentration for each month and 8pecirculation pattern
separately, averaged over the period 1991-2000.

Table 6.22 ECHAM5 — ERA40-1 differences in predictor variedlstatistics used in the
synoptic-regression downscaling approach the 198D Zummers, for the circulation types
E, SE and S only. Values are shown for the minin(iim.), 5" and 9%' percentile and
maximum (Max.).

E SE S

SWD CC Tprec Tmax PO TmaxRH CC
Min. -44.24 -0.04 0 -0.81 -5.52 0.72 16.470.22
5" percentile -48.28 -0.08 0 -1.5 -2.15 -2.6 13681
95" percentile8.92 0.4 0.05 -3.87 0.08 -1.99 8.74 0.04
Max. -10.87 0 0.05 -3.87 2.2 -1.34 14.750.05

For the eastern circulation patterns, ECHAMS (uhd&erestimates the mean
amount of cloud cover in the (lower) higher perdest associated with an
overall underestimation of the shortwave radiatoECHAMS. This results in
a reduced ozone formation for this pattern, as S@WID) reduces (stimulates)
the photochemical ozone production. The southeagtaitern SE is associated
with a small overestimation in the precipitatiorstdbution statistics and too
low maximum temperatures in ECHAMS compared to dbserved ERA40-1
values, especially in the 95ercentile (-3.87 °C) and maximum (-3.87 °C).
Again, both features contribute to an underestonatif downscaled maximum
eight-hourly mean ozone. Also for the southern guait ECHAMS is
characterized by lower Tmax and a general overasiom of PO, RH and CC in
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the higher percentiles (Table 6.2). As the lattexy aegatively correlated to
maximum eight-hourly mean ozone concentrations neteeffect of the biases
in meteorological variables dampens the produatibmaximum eight-hourly

mean ozone. Together with the effect of the hotialoresolution (Fig. 6.6), we
can conclude that a large part of the differencetvéen observed and
downscaled ECHAM5 maximum eight-hourly mean ozooecentrations are
resulting from the differences between ECHAMS anBAEBO-1 predictor

values.

The differences between observed and modelled mrésg maximum eight-
hourly mean ozone concentrations should be addtesseorder to estimate
future maximum eight-hourly mean ozone levels. réfeee, we perform a bias
correction method proposed by Cheng et al., (20@¥h takes into account
the differences between the ECHAMS downscaled abpserwed maximum
eight-hourly mean ozone concentrations. In a &tep (1), this is done for the
present-day climate, and afterwards, the same doasection is applied to
future air pollution concentrations (2) describadsection 6.4.3. By doing so,
we assume that the model bias in a future clinmathe same as in the present-
day climate. The first step in this bias correctmocedure uses the following
expression:

_ = O pres-0bs , =
(1) 03 pres- new_(03 pres- old - Q pres oI() = S+ Q3 Ob

o pres- old

where O, os o aNd O e, are daily model predictions using present-day
ECHAMS data before and after the bias correctiof),, o, and . o4 are

standard deviations of the observations and moaligtions for the present-
day run respectively.Q, ., ,,and0,,, are respectively the means of the

present-day downscaled and observegdii@e series. In this way, the mean and
standard deviation ad Is identical to the observed time series.

3pres- new

In order to know whether the model bias is spremttlomly over different

circulation patterns or if the maximum eight-hountgean ozone bias is
circulation type-specific, the significance testggested by Raisdnen et al.
(2001) is used which tests the significance of ¢hreulation-type dependent
bias in maximum eight-hourly mean ozone concemtnaiimodelled versus
observed) against the type-specific internal vdlitgb The estimate of the

statistical significance is inferred from the tistcs:

M. -Q
2) t= L
( ) I \/(UZMi+020i)/(n -1)
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Hereby, M, and O denote the means of the modelled and observednmaxi

eight-hourly mean ozone concentration respectivielyeach circulation pattern
I. 02, and o2, refer to the internal variances for both modebed observed

time series, and refers to the number of days in each circulatiosteri.

In general, there is an inhomogeneous distributiothe bias over the different
circulation patterns (Table 6.3). All patterns haveositive type-specific bias
M; - O, except for the cyclonic, east and southeasteitempa. Nevertheless, all
t-values are low, which indicates that the typeeffpe bias is insignificant
compared to the type-specific internal maximum elghurly mean ozone
variability. Hereby, a high bias is often assodat&ith a high internal
variability (e.g. types E and SE). Therefore, thaskcorrection method (1) is
applied for the whole year, without taking into agnt the type-specific biases.

Table 6.3: Modelled minus observed maximum eight-hourly meaone biases for the
period 1991-2000 for each circulation pattern atsl significance against the pattern-
dependent internal variability. M-O refers to thasobetween modelled (M) and observed
(O) maximum eight-hourly mean ozone concentratias®y, - 6% to the difference in
modelled and observed variance, n the number of olagach circulation pattern cluster and
t the t-statistic from the Raisénen et al. (200dnificance test.

C A N NE E SE S SW W NW
M-0O -3.54 3.14 8.11 4.22 -28.40 -12.79 9.83 3.860.71 6.86
0%y - 0% 2598.043557.101555.013669.464314.43 7132.354495.38 2077.56 1090.15870.47
n 232.00 745.00 262.00 220.00 217.00 164.00 2414%B.00 454.00 310.00
t 0.00 0.00 0.01 0.00 -0.03 -0.01 0.01 0.00 0.00 010.

Applying the bias correction results in a significemprovement, especially for
the higher percentiles (Fig. 6.6). This can be sagan from the number of
days that are higher than or equal to the 120 p¢ineshold: from 21 days
decad& in the original present-day downscaled maximunhtefgurly mean
ozone concentration time series to 79 days décdde the bias corrected
maximum eight-hourly mean ozone levels, identi@alusing the ERA40-1
predictor variables. Moreover, the bias correct€€HEM5 maximum eight-
hourly mean ozone series is closer to the perfemeinline (1:1 line) in the
lower and higher percentiles (Fig. 6.6).

6.4.3 Future @levels (2051-2060 and 2091-2100)
Daily maximum eight-hourly mean ozone concentratifor two future periods
— 2051-2060 and 2091-2100 — are estimated usingstiuestical synoptic-

regression based approach with the future SRESAAR,and B1 scenarios and
associated future circulation patterns. Accordioghte removal of the bias in
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the first step (1), the differences in overall ne#d,) and standard deviations

(o) between the afterpfes-new and before dres-old correction of the
present-day downscaled maximum eight-hourly meam®zare used to adjust
future maximum eight-hourly mean ozone concentnati©,,,_,,) in a second

step (3) using the following equation:

— g _ —
(3) 03 fut—neW:(O3 fut old O3 pres oI() apres neW+ Q pres- new*

pres- old

Hereby, O, ..., Present future daily model prediction after thasbcorrection,

assuming that the model bias in the future wilslmilar the bias in the present-
day climate. This results in a downscaled biasexted ozone concentration for
the three SRES climate change scenarios for thedse2051-2060 and 2091-
2100 (Fig. 6.8).
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Under the various SRES scenarios, the overall maxineight-hourly mean
ozone concentration increases with 2.5 to 6.5 afdt® 10.9 pg/ms, for the
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2051-2060 and 2091-2100 periods respectively, ag#ne present-day 10-year
average of 55.2 pg/ms3. When considering the sunse@&son only, the range of
change over all scenarios increases with 5.4 t 18/m23 and 13.4 to 26 pg/ms3
(for 2051-2060 and 2091-2100 respectively) agamgbresent-day summer
average of 73.5 pg/ms.

In addition to changes in mean concentrations, gésuin the number of days
within low, moderate and high levels of ozone seeer a whole year are of
interest to the public and policy makers (Table.@>ays with low air pollution
are characterized by a concentration < 80 pg/mys deith moderate air
pollution have an maximum eight-hourly meagn €ncentration between 80
and 120 pg/m3 and days with high concentrationg@&xXdhe threshold of 120
ng/ms. The application of different SRES scenahias a variable impact on the
number of days in each specific maximum eight-nhoarean Q concentration
category. By the middle and end of this centurg, namber of days with high
levels of Q could increase in a range of 5.6 — 12.3 % (4.35-d@ys y') and
9.2 — 27.5 % (7.1 — 21.1 days'yrrespectively, with the highest increase
against the 2050s for the A2 and by the end of deistury for the AlB
scenario. A similar effect can be seen for the dagis a moderate maximum
eight-hourly mean ©concentration, varying between 2.2 to 11.9 % 9.2
days yt') and 11.7 to 19.2 % (9 — 14.8 day3)yfor the periods 2051-2060 and
2091-2100 respectively. This is counteracted blyang decrease in the number
of days with low concentrations (8.1 — 24.3% an®2046.8 % of the days by
the 2050s and 2090s respectivelgimilar to the results in Figure 6.8, Figure
6.9 again depicts the large scatter when apphjhegdifferent SRES scenarios.
Here, the absolute number of days exceeding thept2®3 threshold in the
present-day climate are given, together with thange in number of days
exceeding this threshold by the middle and enchisf ¢entury. The error bars
present the lowest/highest change over the threeasios, while the average
change is calculated as the mean change over the #tenarios. Thus, on
average, there is an increase of 2.2, 4.2 and &8 thonti exceeding this
threshold for June, July and August 2051-2060 mspdy. By the end of this
century, the overall effect increases, with 3.3,dhd 8.5 days morittfor June,
July and August respectively. The error bars preseriarge uncertainty
depending on the future scenario, with a maximurnafdity of 4 days month

by the 2050s almost 7 days mohtby the end of the century.
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Table 6.4: Differences in absolute number of days (and esaesn %) between future
number of days and present-day number of days diwpehe thresholds for the high,
moderate and low £concentration categories. The difference is exgg@ss the difference
between the two future periods from the three SRRSA1B and Bl scenarios and the
observed number of days in 1991-2000. The scematiothe highest increase and decrease
in Oz concentration for each future period are denatethlic.

Category [pg/m3] No. Of days\2 Al1B Bl

2051-
(observed) 2051-2060 2091-210®051-2060 2091-2100 2060 2091-2100

days (%) days % days% days % days% days %

High >=120 13.7 95 123 127 16543 56 212 27545 58 7.1 9.2
Moderate 80-12039.8 9.2 119 122 1584.7 6.1 148 19.217 22 9.0 117
Low <80  266.3 -18.7 -24.3 -24.9 -32.9€.0 -11.7 -36.0 -46.8-6.2 -8.1-16.1 -20.9

Although peak ozone months are known to be Jug aia August, Figure 6.9
shows that under future climate, a lengtheninghefdzone season could occur.
In the present-day climate, the highest numbexoéedences occur in July (2.9
days montH), followed by June and August (1.4 and 1.5 daysnthio
respectively). In the future climate scenarioss thould shift from July to
August, the latter characterized by an increasevdmt 6.5 and 14.2 days
month* with high levels of maximum eight-hourly mean oecrpncentration
by the end of the century (Fig. 6.9). This changedistribution of days
exceeding the 120 pg/ms3 threshold is caused bygarancrease (decrease) in
Tmax (RH) from August to October by the end of #esitury, in comparison to
late spring and early summer (not shown). Moreoasrsuggested by Chen et
al. (2008) and Mahmud et al. (2008), the ozonemeasuld be lengthened,
especially in autumn. Thereby, September and Octatngdd be associated with
an increase in number of days exceeding the 12&3uteshold, up to 1 day
per month by the end of this century, compared.4ca@d 0.11 days per month
in the present-day climate.
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Figure 6.9: The number of days per month exceeding the 12@niu¢hreshold for the
present-day climate and future climate SRES soesiafior the periods 2051-2060 and 2091-
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dashed line indicates the number of observed exceed in August 2003.

6.5 Discussion

As the synoptic-regression based approach doeskminto account emissions
as predictor values, the change in number of daiis moderate and high
downscaled maximum eight-hourly mean ozone conagoms between the
future SRES scenarios and the present-day 20C telinm@ can be caused by
two interrelated effects: 1) a change in frequeotyhose circulation patterns
favoring high Q concentrations and 2) a change in meteorologicadigtor
values regulating the production of ozone in theetgpecific regression
analysis (Table 6.1 and 6.5 and Fig. 6.10).

In order to test the sensitivity of future ozoneels to the change in frequency
of occurrence of the future Lamb circulation patsgrthe Mann-Kendall test is
used to calculate the trends in JJA frequencie&,06E and S circulation
patterns for the period 2001-2100. As it is showChapter 5 (Demuzere et al.,
2008a), there is a large interannual variabilittwsen the three future SRES
scenarios without a significant difference in tHeiture trends and frequencies,
we opt to test the A1B scenario only. This trendlgsis shows an increase of
the frequency of these patterns (0.96 number of ¢y, which is insignificant
at the 90% level. As a result, this increase ioutation patterns characterised
by high Q concentrations has an insignificant impact on ldrge estimated
increases of maximum eight-hourly mean ozone cdratsons.
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As this trend analysis shows no significant chamgethe frequency of

occurrence of these specific circulation pattethe, change in the individual
meteorological variables between the differentquisiis investigated. Fig. 6.10
depicts the cumulative frequency distribution foe tpredictor variables that
occur most frequently in summer (Table 6.1). Héne, SRES scenarios A1B
and A2 show the highest increase in maximum tentpexrawith an averaged
increase of 4.8°C in August by the end of this een{Fig. 6.10). Furthermore,
all scenarios show a reduction of cloud cover, ascdbed in Giorgi et al.

(2004), Meleux et al. (2007) and Forkel & Knoch@d?2), which is associated
with an increase in future shortwave downward ttasha(Langner et al., 2005;
Meleux et al., 2007) (Fig. 6.10). The change iatreé humidity is rather small,
with generally a decreasing trend, strongest inustigand by the end of this
century.
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Figure 6.10: Cumulative probability density functions for ECNI& present-day (black) and
future A1B scenario predictor variables (2051-206€d — 2091-2100: blue). The rows
present the meteorological variables: A. Shortwal@vnward radiation (W/m?2), B.
Maximum temperature (°C), C. Relative humidity (8)d D. Wind speed (m/s), while the
columns present the summer months June, July agdshuThe mean conditions in August
2003 (from ECMWEF operational data) are depictedhgyfilled grey square.

To estimate the individual contribution of eachdicéor variable, a sensitivity
experiment is performed for all circulation pat®reconducive for high
maximum eight-hourly mean ozone concentrationsummer (Table 6.5). For
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each predictor variable, the present-day mediarpkced by its future value,
while keeping the other predictor variables tortipeesent-day levels. Thereby,
the predictor variables are perturbed with theedéghce between future and
present-day medians (for the E, SE and E patteav&raged over the three
scenarios, which provides a measure for the indaliccontribution of each
predictor variable to the change in future maximeight-hourly mean ozone
concentration. In general, the maximum temperatinges the largest
contribution, with an ozone increase of 5.9 and 1%/m3 by the middle and
end of this century respectively (respectively 48 44.1% of the change). The
highest frequency of occurrence for this prediatorthe regression model
shown in Table 6.1 denotes the importance of tarsable on maximum eight-
hourly mean ozone concentrations in a future cem&urthermore, the strong
linear trend of Tmax depicted in Fig. 6.3 gives fatence in the robustness of
the statistical downscaling tool, as a future cter&nds to show a shift towards
higher maximum temperatures (Beniston, 2004), wiaich linearly related to
maximum eight-hourly mean ozone concentrations €urtide assumption that
present-day relations will be similar in the fufur@he contribution of the
shortwave radiation decreases between the middleead of this century with
12.5%, to an increase of 6.1 pg/m? for the perio€122100. The decrease in
cloud cover results in an average increase of i&d16a3 pg/ms3, which accounts
for respectively 17 and 22.5% of the total chanidee mean sea level pressure
PO, total precipitation and relative humidity ordgntribute marginally to the
total change, with a maximum of 9.5 % for all thegiables together by the end
of this century.

Table 6.5: The individual influence of each predictor vat@abn the synoptic-regression
based approach on the resulting downscaled maximaight-hourly mean ozone
concentration, averaged for the E, SE and S citionlgatterns in summer. The percentage
of maximum eight-hourly mean ozone changes betwleerA1B future climate periods and
the downscaled maximum eight-hourly mean ozmmeentration for the reference period are
given in brackets.

Predictors @concentrations
Mean (1990-2000) 2051-2060 — 1990-2000 2091-2100 — 1990-2000
pg/ms (%) pg/ms (%)
PO [hPa] 1018.3 0.1 (1.1) 0.1 (0.3)
Tprec [mm/day] 0.007 0.1 (1.2) 1.8 (6.4)
SWD [W/m?] 200.6 4.1 (34.1) 6.1 (21.6)
Tmax [°C] 23.3 5.9 (48.7) 125 (44.1)
RH [%] 717.7 -0.1 (-0.9) 1.6 (5.6)
CC [octas] 3.5 2.1 (17.0) 6.3 (22.5)

In order to verify whether these findings are pbgby plausible, our results are
compared with the observed heat wave in August 2€l&racterized by a poor
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air quality (especially in terms of;Dand excess of mortalities in large parts of
Western and Central Europe (WHO, 2005), In thippees Beniston (2004),
Schar et al. (2004) and Vautard et al. (2007) ssiggethe extremely warm
summer of 2003 to be representative for the clinaatine end of this century.
Therefore, we analysed this in terms of measuregusdiu2003 @levels, and
first compared the number of exceedences > 1203against present-day and
future modelled exceedences (Fig. 6.9). Seconldey,miean of the distribution
of the August 2003 observed meteorological varmldéesouring high ozone
concentrations are displayed in Figure 6.10. Dutimg 2003 August, 9 days
exceeded the threshold of 120 pg/m3 in Cabauw, wies in the upper range
of the number of exceedences for the 2050s ancsmonds closely to the
mean number of exceedences by the end of thisryef@? days month. This

Is confirmed by the exceptional warm and dry weath&ing August 2003,
which characteristics corresponds to ECHAMS scesahy the end of this
century. For shortwave downward radiation and cloader, the August 2003
values correspond to the A2 and A1B scenarios,ewfiof RH and Tmax, the
observed values correspond more closely to thecBdasio. This suggests, that,
not only in terms of temperature, as was shown @&yi®on (2004) and Schar et
al. (2004), but also in terms of;Cthe August 2003 conditions could become
representative for future conditions.

6.6. Conclusion

The synoptic-regression based downscaling apprdactloped in Chapter 4 of
this study can be used to estimate future maximight-éourly mean ozone
concentrations for areas in Western Europe. Expdaypameteorological

predictor variables are taken from ECHAMS for thegent-day 1991-2000
period and 2 future periods 2051-2060 and 2091-Z&0éhe SRES A2, A1B

and Bl scenarios. Hereby, any information on biagemd anthropogenic
emissions is not explicitly taken into account.hdligh the capabilities of the
downscaling method were tested thoroughly in Chapteusing coarse
resolution meteorological ECMWEF variables, it appeéa that results
deteriorated when using ECHAMS5 meteorological dakherefore, it was

necessary to apply a bias correction method thisstanto account the
differences between the ECHAMS downscaled and @bgdemaximum eight-

hourly mean ozone distribution quantities.

In this study, the future estimates of maximum eigburly mean ozone
concentrations are derived as a statistical dovingcaroduct from only one
AOCGM simulation (ECHAM5-MPI/OM), under three SREScenarios.
Nevertheless, the conditions used here are inwitle those projected by most
other global models (Giorgi and Bi, 2005a, b).hosld, however, be noted that
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by taking into account only one GCM, the range atartainty might be
underestimated. Under the various SRES scenahesverall mean maximum
eight-hourly mean ozone concentration increase2.5yto 6.5 and 6.1 to 10.9
png/m3, for the 2051-2060 and 2091-2100 period mEspmdy, against the
present-day 10-year average of 55.2 pug/m3. Whersidering the summer
season only, the impact of climate change increasesiderably, with a range
between the different future scenarios of 5.4 t& 1@/m3 and 13.4 to 26 pg/ms3
(for 2051-2060 and 2091-2100 respectively) agamsgpresent-day summer
average of 73.5 pg/ms3. In terms of number of dayeeding the threshold set
by the European Guidelines on Air Quality, the nembf days with high levels
of maximum eight-hourly mean ozone concentration1@0 pg/m3) could
increase by the middle and end of this century marge of 5.6 — 12.3 % and
9.2 — 27.5 % respectively.

The changes in maximum eight-hourly mean ozonearanation obtained from

our statistical downscaling approach are mainly ttua positive shift in the

frequency distribution of the meteorological valesbdriving the high ozone

concentrations. In this respect, an increase initmax temperature has been
shown to be the main driver for an increase in maxn eight-hourly mean

ozone concentration, together with an increase lofrtwave downward

radiation and an overall decrease in cloud coverd Although the different

SRES scenarios project a large variability in theous predictors, the overall
changes result in a significant increase in ozooecentrations. In order to
verify whether these findings are physically pléalesi our results are compared
with the observed heat wave in August 2003, charaetd by a poor air quality
and excess of mortalities in large parts of Westerd Central Europe. This
shows that for the main predictors driving high mzoconcentrations, the
observed values fit closely to the predictor’'s fatulistributions, taking into

account the given scenario assumptions. Thus,@88 Beat wave, with related
high maximum eight-hourly mean ozone concentrafiocen serve as an
analogue to what may occur more regularly in thary not only in terms of

temperature, but also in terms of maximum eightrlyoumean ozone

concentrations.

This paper studies the impact of global climatengeaon future Qlevels only,
without taking into account future changes (reduts) in emissions. We have
shown here that, under changing atmospheric comditithe maximum eight-
hourly mean ozoneoncentration increases significantly by the endtho$
century, assuming present-day emissions, which iad@ectly taken into
account in the statistical downscaling tool. Hahes question arises whether
current emission control strategies will be suffiti to reduce ©precursor
levels in order to keep the future; @oncentrations below the European
thresholds. In this respect, future climate charglesild be taken into account
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in the decision process on the European threshaid&ir Quality, and the
thresholds should be set equal or lower in theréuto protect the human health
and the natural environment. After all, troposptiezone is the third most
important man-made greenhouse gas aftey &@d methane. Furthermore, joint
efforts should be done first to develop an integgfatmodel setup, as was
suggested by Vautard et al. (2007), in order tongfyaair quality levels under
changing climate conditions. This should be donerder to set-up appropriate
emission reduction measures to achieve acceptaioleedevels in the future,
both on local, regional and the global scale.
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Chapter 7

M odelling the energy balancein Marseille:
Sensitivity to roughness length parameterizations and

thermal admittance’

7.1 Introduction

Cities’ surfaces are characterized by various gldnaterials, each with their
respective thermal characteristics, and are cordajun complex geometric
structures such as street canyons. This urbanegiiwmcess more and more
replaces natural surfaces with buildings and pawethces. Thereby, together with
human activities in these areas, changes in meish@at and momentum exchange
processes will occur in the boundary layer andrdjsish urban areas from their
surrounding rural areas. The urban heat island YUEtaracterized by urban
warming relative to the rural surroundings, is thest obvious consequence of
urbanization (Fan and Sailor, 2005; Sarrat et 2005). In order to develop
effective mitigation strategies in these urban emments, it is important to
understand all processes leading to the formati@ndJHI and significant related
processes such as air quality, cooling energy ddmamd human comfort.
Recently, there has been a growing interest in tifafive research in urban

" This chapter is based on the following researgrepaDemuzere, M., De Ridder, K. and Van
Lipzig, N. P. M., 2008. Modeling the energy balarnoeMarseille: Sensitivity to roughness
length parameterizations and thermal admittanaegndb of Geophysical Research-Atmospheres
113, 1-19.
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boundary layer dynamics and air pollution proce¢Bewies et al., 2007). Piringer
and Joffre (2005) comment that the incorporatiomtan-type surface forcing is
important for a correct modelling of urban pollutig@ispersion. The latter is
controlled by many meteorological parameters wihleeemixing height is one of
the parameters that determine the volume of aouthin which the pollution is
mixed (Collier et al., 2005). Thereby, a need hasvg to simulate meteorological
fields for complex situations at finer spatial fesions. This has partly been
stimulated by scientific and technological advaraed partly by policies requiring
more detailed assessment of air pollution on utisaregional scales. Therefore,
dynamical models have increasingly been used wadkelfor meteorological and
air pollution applications. Models developed folodbr long-range applications
are not always appropriate in flow conditions inmag intermediate meso-scale
features and processes because appropriate apptmisiand parameterizations
need to be different for models of different scalasaddition, at these mesoscales,
the simulated phenomena are driven by both localesmfluences (e.g. urban
areas) as well as synoptic scale processes. S€20@0) states that surface fluxes
of heat, moisture, momentum and short/long waveatiat are crucial for air-
guality applications because they are the primargchanisms driving the
development of the turbulent boundary layer (PBAS. turbulence is critical to
vertical transport, horizontal plume dispersion airg deposition in the PBL
(Seaman 2000, 2003), it is worthwhile to investgapecific land surface
characteristics and thermal parameterizations. Bxattameters, especially over
urban surfaces, partly control the magnitude ofd@esible heat flux, which is a
necessary prerequisite of models to calculatediugon dispersion, urban mixing
depth and mesoscale airflow (Grimmond and Oke, R002

Recently, detailed urban models have been develb@ladg into account the

impact of horizontal (canyons, floors, roofs) arettical (walls) surfaces in the
momentum, heat and turbulent kinetic energy eqoati®aha, 1999; Matrtilli et al.,

2002; Masson et al., 2000; Kanda et al., 2005). @awback of this approach is
the need for a large number of thermal and geomprameters, which are often
unknown. When one is not interested in the det#Hilthe urban canopy climate,
simpler schemes can be used (Grimmond and Oke).286fng these is the soil-
vegetation-atmosphere transfer scheme developed®édyRidder and Schayes
(1997) which was recently upgraded to better regmesrban surfaces (De Ridder,
2006) and incorporated in the Advanced RegionatiBtien System (ARPS), a

non-hydrostatic mesoscale meteorological model. diiggnal thermal roughness
length parameterization based on the bulk temperadifference proposed by
Anderson (1993) was replaced by adopting the Bentgd982) parameterization
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for thermal roughness length, designed specificitysurfaces containing solid
obstacles (in contrast to porous obstacles sugkgstation).

The aim of this paper is to investigate the infieeiof the modelled urban surfaces
and characteristics on the atmosphere at the statecity. In particular, it is
verified whether the above-mentioned roughnessnpetierization by Brutsaert is
the most suitable one, compared to other parametems suggested by
Zilitinkevich et al. (1992) and Cahill et al. (1997Furthermore, sensitivity
experiments are conducted on the thermal admittasabee (1). This quantity
presents the amount of heat that passes in arottime through an interfacing
area when the opposite sides differ in temperdivyrene Kelvin (Priestley, 1959),
and is calculated as the square root of the proofuttte volumetric heat capacity
(Cp) and thermal conductivity (k). In order to ewatle the validity of these
parameterizations and parameter values, ARPS wasnra three-level nested
setup over the Marseille Berre-Pond Region (Sotiffrance), using data from the
experimental campaign ESCOMPTE (Experience sur [8ig COntraindre les
Modeles de Pollution atmospherique et de Transg&missions ), which took
place in the summer of 2001. Finally, our resuitsrf the simple model approach
are compared with results from the more complex -TEBA (Mestayer et al.,
200) and LUMPS (Grimmond and Oke, 2002) schemepliemp for the same
period of time in Marseille Centre.

The remainder of this paper is organized as folldwsSection 7.2, the methods
are discussed, describing the mesoscale metearalogiodel ARPS, the land

surface scheme, and the different roughness |Igrayiimeterizations and thermal
admittance values. In Section 7.3, the ESCOMPTEsoreanent sites and data are
described, and subsequently the model evaluatiaessribed in Section 7.4. In

Section 7.5, an analysis of the sensitivity simatet is performed using the

different thermal roughness parameterizations dwfnial admittance values,

followed by a discussion and formulation of the dagsions in Section 7.6.

7.2 Methods

7.2.1 Model description

A mesoscale non-hydrostatic model, the AdvancedidRey Prediction System
(ARPS) (Xue et al., 2000; Xue et al., 2001) was famthe period 20 to 23 June

2001, covering the Marseille Berre-Pond Region. AREmploys a finite-
difference approximation of the fully compressiblavier-Stokes equations, which
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are solved on a terrain-following grid. The modebn@ins advanced
parameterizations for moist processes and radiatransfer. The 1.5-order
turbulent kinetic energy-based closure scheme &l der the turbulent mixing
terms. The land surface scheme provided in ARPS repalsced by the scheme
developed by (De Ridder and Schayes, 1997). ltasa:itone vegetation layer, a
soil skin layer and four subsurface soil layerse T$hortwave and longwave
radiation in the vegetation is calculated using tihve-stream theory. Turbulent
transfer at the surface is treated in a very simpd@ner, considering canopy-air
and ground-air exchanges separately. Plant water ifi governed by differences
in water potential between the soil and the leavHse stomatal resistance
formulation uses the effective leaf area index Hredleaf water potential as key
variables. The transpiration scheme implicitly aeds for the influence of
photosynthetically active radiation (PAR) (De Riddend Schayes, 1997), soil
moisture, atmospheric saturation deficit and leahgerature. The land surface
scheme employs the mosaic approach, in which diftetand use types are
allowed to co-exist within a surface grid cell. Theface heat fluxes are calculated
for each land use type separately, and subsequémdlyotal flux within one cell is
calculated using the fraction of each type as aei

Recently the land surface scheme by De Ridder ahdy®s (1997) was modified
to better represent urban surfaces (De Ridder,)2Q06ng a simple approach, all
urban surfaces are represented as a bare soil, appinopriate values for the
momentum roughness length, the albedo, the entgsiwith a thermal
conductivity of k = 2wm®K* and a volumetric heat capacity of Cp =x2.0°
Jm?® K* (Garratt, 1992). Also, urban surfaces are consdlénpermeable, so that
rainfall — apart from a small surface storage conembd — is mostly lost as runoff.
The model was extended with a parameterizatiomefroughness length for heat
(zon) specifically designed for urban surfaces. Thiggtmess length is crucial in
the calculation of the surface sensible heat flugraities, and accounts for the
obstacle-rough types of surfaces that are charsiitefior cities, in contrast to the
common parameterizations that are solely applicabléhe so-called ‘porous-
rough’ surfaces such as vegetation. Although teentlal roughness schemes tested
in this study (section 7.2.3) are only valid foutblrough surfaces, many urban
land uses can be a mix. For each land cover typleinvthe grid cell (mosaic
approach), an appropriate roughness length for be#tt and momentum is used
whereby the resulting fluxes are subsequently nbthias a weighted average.
Hereby, the weights are calculated as the percembgccurrence of each land use
type within one grid cell. As will be seen belowetmain purpose of the present
paper is to evaluate the validity of the variousapaeterization schemes qf, 2and

177



of the values used for thermal conductivity andtheapacity, using detailed
experimental data.

7.2.2 Description of the simulations

The ARPS simulations were performed using threellegrid nesting. The
Operational Reanalysis Data from the European €efdr Medium Range
Weather Forecasting (ECMWF) with a resolution ofpragimately 50 km
provided 6-hourly initial and boundary conditiorsr fa model run with 16 km
resolution and 75 grid points in each horizontaécion. An intermediate grid
was nested in the output fields of the latter, congpa domain consisting of 83
horizontal grid points at a resolution of 4 km. iAd€f grid was nested in the 4-km
domain, using a 1-km horizontal resolution and ¢fi8 points (Figure 7.1). In all
these simulations, in the vertical, 35 levels wesed with a 25 m spacing near the
surface increasing to 1 km near the model top, vivas located at 15 km altitude.
The model was integrated using a leap-frog disagon with time steps of 40 s,
15 s and 6 s for the three nesting levels respaygtiv

Land cover-dependent parameters such as aerodymamghness length and
albedo, were specified as a function of land cdype, which were interpolated
from the CORINE land cover map (European Commissi®®4). Following land
use classes from CORINE land cover map are usedateEr, 2) urban, 3) pasture,
4) crops, 5) forest, 6) perpetual snow/ice, 7) sbr& barren land (Table 7.1 and
Figure 7.1). The CORINE land cover map has a résoluof 250 m. Using a
window equal-sized to the ARPS grid resolution, pleecentage of occurrence of
each land cover type for each grid cell is derivé&anally, for each grid cell, the
dominating land cover type (with the highest petaga of occurrence) is retained.

Table 7.1: Overview of the land cover types derived from @@RINE land cover map and their
respective roughness length and albedo (OKE, 1987).

Land Cover Type Roughness length) (z Albedo
Water 0.0001 0.05
Urban 1.2 0.15
Pasture 0.01 0.2
Crops 0.01 0.2
Forest 1.2 0.15
Perpetual snow/ice 0.001 0.7
Shrubs and barren land 0.1 0.15
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Terrain height was interpolated from the GlobalA36-Second Elevation Data Set
(GTOPO30) completed in late 1996 and distributedheyU.S Geological Survey.
Sea surface temperature was derived for June 2061 NOAA/NASA Pathfinder
Advanced Very High Resolution Radiometer (AVHRR)TS8agery. Vegetation
abundance was specified as a function of the NasewlDifference Vegetation
Index (NDVI) contained in imagery from the VEGETAIN instrument onboard
the SPOT satellite platform, following relationstasished by Wittich and
Hansing (1995) and Gutman and Ignatov (1998).

7.2.3 Thermal roughness length and thermal adnogtan
7.2.3.1 Thermal roughness length parameterization

The thermal roughness length is the height abogaltplacement height defined
by the Monin-Obukhov similarity (MOS) theory, whiathefines the effective
source of sensible heat in the canopy, which & latver level than the roughness
length for momentum due to a greater aerodynansisteance for the transfer of
heat than for momentum (Troufleau et al., 1997)er€hy, this & can be
interpreted aghe surface intercept of the atmospheric surfagerléemperature
profile in the same way as.zis the zero velocity intercept for the surface faye
velocity profile (Arya, 2001). The roughness lenfiihtemperature is necessary to
estimate the sensible flux from atmospheric surfeger similarity theory in
conjunction with air temperature measurements (Mahral., 1997). Brutsaert
(1982) proposed a theoretical relationship fgras a function of the interfacial
transfer coefficienst° - cd°® for rough-bluff surfaces, which reads as:

Zon = Zmexp| (—K( S§°°- Cg*°)] (1)

where 3. is the roughness length for momentugy,tke thermal roughness length
andk (=0.4) the Von Karman constartd, (=u/u) is the drag coefficient at the

top of the interfacial sublayer (with the mean wind speed and the friction
velocity), St is the Stanton number, written as a function of tbaghness
Reynolds number Re uz, v) (with v (=1.46110° m=*]the kinematic

molecular viscosity),Pr the Prandtl number an@z a geometric coefficient
(Garratt, 1992), which results in:

Zon = ZmeXp[ (- K( G RE Pt- C¢°°)] (2)
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Numerous sets of values fa', g, Pr and Cd,*® have been developed (see also

Table 7.1 of Cahill et al. (1997)). Based on labama measurements, Brutsaert
(1982) derivedc' P =6.2 with g =0.25and Cd;** =5, resulting in:

Z, = 7, exp[(— k)( 6.2 R&*°- ﬂ (3)

This difference betweenggz and g, often is described with a dimensionless
parameter defined byB*=In(z,,/z,), wherebyB*=6.2R€*- . There are many

other formulas to predict B whereby most of them focus on sparse vegetation
surfaces (Ma and Daggupaty, 2000 and referenceseitihe For natural
homogeneous surfaces it has widely been obsenatdzih differs by up to an
order of magnitude fromgz, whereby B' 0 5 (Garratt, 1992; Ma and Daggupaty,
2000). For urban surfaces with their complex geoynahis approximation no
longer holds. With this sensitivity study we seeak validate a number of
parameterizations for the thermal roughness lemyr urban grid cells on a
mesoscale. Cahill et al. (1997) used meteorogiczhsurements taken from the
Campbell Tract and the dry Owens Lake sites tordes@dequately the sensible
heat fluxes. Based on the field measurements, threpose changes in the
Brutsaert parametersd,®®,C.' Pr and g, so that (3) can be written, either

with a value forcd,**of 9.5:

ZOh = 20m eXp|:(— k)( 6.2 Ré‘zs— 9¥:| (4)

with values forC:' Pr' and g of 4.31 and 0.247 respectively:

Z, = 7, exp[(— k)( 4.31RE*'- ))6] (5)

Zilitinkevich et al. (1992) and Zeng and Dickins@d®98) suggested the following
parameterization for the thermal roughness lengdlsed on dimensional analysis
and interpretation of heat transfer experiments:

In (ﬁj =a(Re)*® ,where a = 0.13 (Zilitinkevich, 1970). (6)

h

180



7.2.3.2. Thermal admittance

The city centre of Marseille is a dense commerarad residential area, with 4-6
storey buildings characterized by a variety of dindg materials and surfaces
(Grimmond et al., 2004; Lemonsu et al.,, 2004; Haradd Schayes, 2005;
Mestayer et al., 2005) and a plan area of vegetatddces per total plan area of <
14% (Lemonsu et al., 2004; Hamdi and Schayes, 2@@6pmpassing, trees, grass
terrain and bare soil. Each land cover materialitsagwn thermal properties, and
therefore a wide range of volumetric heat capa@®y and thermal conductivity
values (k) for urban and natural surfaces has lob@sen in order to test the
sensitivity of the urban energy balance to the nttaércharacteristics of these
surfaces. Volumetric heat capacity and thermal ootidty are both separately
defined in the land surface scheme, whereby thenddeadmittance, a parameter

that combines both properties gs /kC, , is used to refer to the combinations of

the former two. In this study, the thermal admit&manges from approximately
340 J it s"2K™* for dry peat soil and foamed concrete to approiéfye2200 J rif
s"2K* for wet sandy loam or dense concrete (Welty, 19e, 1987; Incropera
and Dewitt, 1990 and Sabins, 1997). During the ifeitg experiments, only the
reference values of the volumetric heat capacity the thermal conductivity for
the urban grid cells are changed (table 7.2). Ottwed cover types keep their
original reference-state values. Furthermore, athmeterizations (3), (4), (5) and
(6) are tested by implementing them in the ARPS kurface scheme model. Each
parameterization formula is subsequently combineth veach of the six
combinations of thermal parameter values, resuiting4 sensitivity runs (Table
7.2).
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Table 7.2: Overview of the simulation runs combining the feliént thermal roughness
parameterization schemesp{Acheme) with the values of the thermal admittamce is the

density, Cp is the volumetric heat capacity antikthermal conductivity (withu:‘/ka ). The

thermal roughness lengths are denoted as (3) Brui€®82), (4) Brutsaert — Varl, (5) Brutsaert
— Var2, (6) Zilitinkevich (1992).

Run Zon Scheme p . G 3- K B Mo _
Number <O (x1Ckgm®  (xaPJIm*kh  (WmiK?) (@ m?s’?KY

Combined in
Ref (3) p 2 2 2000

p

1 (3) 2.11 1.94 0.06 341.17
2 4) 2.11 1.94 0.06 341.17
3 (5) 2.11 1.94 0.06 341.17
4 (6) 2.11 1.94 0.06 341.17
5 3) 1.6 1.42 0.25 595.82
6 (4) 1.6 1.42 0.25 595.82
7 (5) 1.6 1.42 0.25 595.82
8 (6) 1.6 1.42 0.25 595.82
9 (3) 1.83 1.37 0.83 1066.35
10 (4) 1.83 1.37 0.83 1066.35
11 (5) 1.83 1.37 0.83 1066.35
12 (6) 1.83 1.37 0.83 1066.35
13 (3) 2.11 1.94 0.75 1206.23
14 (4) 2.11 1.94 0.75 1206.23
15 (5) 2.11 1.94 0.75 1206.23
16 (6) 2.11 1.94 0.75 1206.23
17 (3) 2.4 2.11 151 1784.96
18 (4) 2.4 2.11 151 1784.96
19 (5) 2.4 2.11 1.51 1784.96
20 (6) 2.4 2.11 151 1784.96
21 (3) 2 31 1.58 2213.1
22 (4) 2 3.1 1.58 2213.1
23 (5) 2 3.1 1.58 2213.1
24 (6) 2 3.1 1.58 2213.1
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7.2.4 Model performance evaluation methods

The quality and reliability of the model framewonlere examined using several
statistical indices proposed by Willmott (1981; 298005). These indices are the
following (where P and O denote predicted and otegkvalues respectively):

Mean (Pand O), describing the mean of a sample of a randonakib|

Standard deviation ($and &), which is a measure of the dispersion of a deta s
from its mean. The more spread apart the dathashigher the deviation.
Variance (S3 and S%), which describes the dispersion of a variableuagothe
mean. Variables with little dispersion have redi@ss tightly clustered around the
mean, and vice versa.

Mean absolute error (MAE), which returns the ‘tadador’ divided by the number
of samples.

Root mean square error (RMSE), which is a meastrineo total deviation of
predicted values from observed values.

Correlation coefficient (R), which reflects the ext of a linear relationship
between the observed and the predicted values.

Index of agreement (d) in the following form:

d=1{ ®-07 13 (H-[q] ?}

i=1

whereP =P-0 and0=0 - 0. Thereby,P and O are the modelled and observed

variable respectively, anB andO respectively presents the mean of the modelled
and observed variablé. indicates the degree to which the predictions ohodel

are error freelt is a measure of how well the simulation resustahce from the
observed mean (Mo) matches, for each individuakoiagion, the observational
result distance from the Mo. This dimensionles®ibas a theoretical range of 1,
for perfect agreement, to 0, for no agreement (IBajmal, S. and Moussiopoulos,
N., 2006).
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7.3 Data
7.3.1 The ESCOMPTE campaign

The domain of the ESCOMPTE study is characterize@ lcomplex geography,
land use and atmospheric circulation. Summer agiboyc conditions favor an
afternoon sea breeze from the southwest, tranagqgoblliution from industrialized
and urbanized areas located close to the shoredinldue to a highly variable
terrain elevation, the resulting flows are compland therefore form a challenge
for mesoscale meteorological modelling. For mor&ited information about the
ESCOMPTE campaign refer to (Cros et al., 2004).ifguthe summer of 2001,
large quantities of instruments were deployed darge number of fixed sites,
airborne devices and mobile instruments. Duringwhele campaign, fifteen days
were characterized as “Intensive Observation Peér{fdP) days. The present
study focuses on the first half of the second IsitenObservation Period, hereafter
called I0P2a, which took place from™b 23" of June 2001. The first period of
IOP2a consists of three days characterized by lownbderate Westerly and
Northwesterly winds, followed by a day with deciegswind speeds and a
synoptic pattern favoring the development of a westhblished sea breeze from
the Southwest (Cros et al., 2004).

7.3.2 The selected fixed measurement sites

The ESCOMPTE database (http://medias.obs-mip.fsfapte/) includes high
resolution meteorological and emission inventosed field experiments in a 120
x 120 knf area centered over Marseille. From this databhsee fixed surface
stations are used, namely the measurement sitddardeille Centre, Trets and
Meyrargues (Figure 7.1). The fixed measuremeniosistare selected because of
their diversity with respect to location, surfadeaacteristics and measurement
heights (Table 7.3). In order to validate simulatsehsible heat fluxes, also
scintillometer measurements along two pathlengins Marseille Centre are used
(Figure 7.2 and Table 7.3).
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Figure 7.1. Vegetation cover (%), terrain height (m) and \agen type of the ESCOMPTE
campaign measurement area (ARPS domain) with ttegtibm of the three selected stationary
surface measurement sites Marseille-Centre, Tretdvieyrargues. Vegetation types are derived
from the CORINE land cover map and classified aswvdter, 2) urban, 3) pasture, 4) crops, 5)
forest, 6) perpetual snow/ice, 7) shrubs & baresl
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Figure 7.2: Satellite image locating the 3 LAS measuremeaiticgis Nédelec, Timone Hopital
and Paradis, the LAS measurement pathlenghts, &&MCmeasurement tower and the two
selected representative measurement points LAS1.A8a.

Table 7.3: Characteristics of the 5 measurements sites ddcat the Marseille Berre-Pond
Region (France).

Site Coordinates Height asl Land Cover Tempor_al
(m) Resolution
. Central Urban Site — Gravel
Marseille 4317°N  5.22°E 70 roof of CAAM within a 30 min.
Centre )
densely built —up area
Trets 4327°N  5.419°E 264 Grass terrain in municipal o
stadium
Meyrargues 43.65°N 5.53°N 196 Maize field 15 min.
Nedelec — o ° i
Paradis (LAS1) 43.295°N  5.379°E 50 Urban — Centre of Marseille  niiB
Nedelec —
Timone 43.289°N  5.391°E 74 Urban — Centre of Marseille  nif
(LAS2)
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The measurement site of Marseille Centre is cedtene the Cour d’Appel
Administratif de Marseille (CAAM). It is situatecth a dense commercial and
residential area of the city. Measurements werertalsing a pneumatic tower on
the top of the CAAM. More detailed characteristidghis site are fully described
in (Grimmond et al., 2004; Lemonsu et al., 2004mda and Schayes, 2005;
Mestayer et al., 2005), which also provides a tetaidescription of the
micrometeorological measurements and instrumemtafldne other stations are
located in rural areas. Trets is located 30 kmheast of Marseille Centre (Figure
7.1). Measurements were taken on a grass terraimeimunicipal stadium, with
hourly temperature measurement at a standard heightm and wind speed and
direction on a 10 m high pylon. The second ruralieh Meyrargues is situated in
a maize field, located 1.6 km north of the smaty @f Meyrargues and 41 km
north of the CAAM measurement tower and extendingraan area of 13 ha.
Thereby, the fetch exceeded 100 m or more in afldwdirections. During the
IOP2a period, there was no irrigation on the fiedd.standard meteorological
station, installed on the site for the experimgmgvided measurements of solar
radiation, air temperature (3 m height), humidggessure, precipitation, and wind
speed and direction. In addition, vegetation heggit leaf area index (LAI), heat
fluxes, soil humidity and temperature were measuviate information describing
the measurement site can be found in (Michou g2@05).

Next to that, two LAS (Large Aperture Scintillometewere installed over
Marseille city center between “1&f June and 10of July 2001. Transmitters and
receivers were placed on three locations in thecahter (Paradis (P), Nedelec (N)
and Timone Hospital (T)) (Figure 7.2), whereby pextights are 1785, 1878 and
2308 m for P-N, P-T and N-T respectively. Line agprd @ from the LAS are
computed using two methods (De Bruin et al.,, 1996Aneney et al., 1995).
Further information regarding these methods f& fpiecific location can be found
in Lagouarde et al. (2002), Hartogensis et al. 800emonsu et al. (2004) and
Mestayer et al. (2005). Mestayer et al. (2005)st#tat both methods are in good
agreement, so therefore only the classic methodMloAneney et al. (1995)
assuming mixing conditions (hereafter referredsdexXT) will be used. To obtain
the footprint of the scintilometer measurementse das to take into account the
weighting of the scintillometer along its pathwayd the footprint of each point
along the scintillometer beam. The weighting hdseb-shaped curve (weighting
towards the middle of the path whereby first arsl 6% of the path only play a
minor role (Hartogensis et al., 2003). Moreoverhds been shown that for the
Marseille area, the spatial variability of the sblesheat fluxes measured by the
LAS is small (Mestayer et al., 2005) and that gusface is rather homogeneous
with a dense mixture of old buildings of 4—6 sterfegh and narrow streets in all
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directions (Lagouarde et al.,, 2002; Hamdi and Sebay005). Therefore, two
points in the middle of the path line between Nedel Paradis (LAS1) and
Timone — Nedelec (LAS2) are selected to be reptasea measurements sites to
validate the modelled sensible heat flux for itspextive model grid boxes
covering the LAS’ path line (Figure 7.2 and Tablg)7

7.4 Evaluation of the model
7.4.1 Meteorological variables

In this section 7.4, a validation of the ARPS —dlaurface model set-up in its
reference state as described in section 7.2.1ns.8easurements of temperature
are thereby provided at a height of 20 m (abové top), 3 m and 2 m (above
ground level) respectively for the Marseille Centtdeyrargues and Trets
measurement stations. As temperatures from thHeAR®S level are simulated at a
height of 12.5 m, Monin-Obukhov similarity theorg iused to extrapolate
simulated temperature values to the measuremest. |&pplying the Monin-
Obukhov similarity theory on the temperature cy@sults in a strengthening of
diurnal temperature values, with lower and higleengeratures respectively during
night and day. In the further analysis for wind egppeand direction, a threshold
value of 1 m § for observations is taken into account, in ordarto consider the
accuracy of the measurement devices.

As there is a lack of a broader consensus on tignitoae of errors of modelled
variables, air quality applications are chosendbeas standard accepted error. In
respect to air quality modelling, Bartsch-Ritteradt (2003) and Dawson et al.
(2007a) have shown that a reasonable 10% errog sofentration prediction for
different geographical regions relates to a tempegachange of 3.5°C. Also Grell
et al. (2005) show that simulating 1-h maximumdOncentration are predictable
within a 10ppbv @concentration interval. Moreover, Dawson et al.0@f) have
shown that for a reasonable 10% error in,EMoncentration prediction this
corresponds to a 5°C error in temperature. Therédny,this paper a desired
accuracy of 2 °C (Schlinzen et al., 2003) is setaa acceptable error for
temperature, which corresponds well to the lowéneraf 3.5 °C temperature error
limit deduced from ozone applications. As there aoedefined accepted errors
stated for wind speed and direction, related to quality applications, an
acceptable error range of + 1 fhand + 30° respectively is set (Schliinzen et al.,
2003). For water vapour pressure, a study of Clagezbal. (2007) on the effects of
urbanisation is used to set an upper water vap@sspre limit. Using the coupled
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Penn State/NCAR MM5/CMAQ system, they tested thenge (increase) of urban
land use on surface meteorology and ozone predg:tibhereby they predict more
than 0.6 g kg decrease of water vapour mixing ratio over thet B6xyears, which
corresponds to a change of 0.59 hPa in water vgpassure. The impact of the
increased urbanization would thereby result in & dpb increase in average O
levels. As the direct effect of water vapour onrmeaes still ambiguous and this
predicted Q increase is half of the choseny €rror interval, an accepted error
estimate of £ 0.6 hPa is set for water vapour.

Figure 7.3 shows model simulations against temperatvind speed and direction
measurements, respectively for Marseille Centreyritgues and Trets. For
Marseille Centre, urban conditions generate a va#atnal cycle in simulated and
observed air temperatures (Wi, andS2?, 0.093 and 0.051 respectively), which
are captured well by the model. Simulated tempezatalues for Marseille are
slightly high (with a MAE and RMSE of 1.05 °C and9 °C respectively) and a
high d and R (0.99 and 0.9 respectively). Modeliead speeds are in the range of
the observation, with a RMSE of 1.42 i($able 7.4). Wind directions are overall
in good agreement with the observations whereby dhferences in wind
directions for the Marseille Centre measurementicstaat the end of the
second/beginning of the last day, can be attribui@da missing shift to
Southeastern wind directions at night and earthémorning by the model, which
shows a dominant Northwestern wind direction inni@ning (Figure 7.3a). This
could point out a missing land breeze during tlghninot captured by the model
due to a too low surface temperature for the urpaah cells. This bias in wind
direction also results in higher modelled wind gfseécompared to observed) at
that time, because of the fact that observed Sastbdy winds are blocked by the
pronounced hills surrounding Marseille in the seedist, resulting in lower
observed speeds over the centre of Marselille.
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Figure 7.3: Continued.

Simulated temperatures for Meyrargues and Tretsnageod agreement with the
observations, with a temperature phase shift tosvdngher maximum values
during day and night, resulting in a RMSE/d of 2°830.99 and 2.12 °C/0.99 for
Meyrargues and Trets respectively (Table 7.4). Als® larger daily amplitude
(compared to the urban station) is captured wgplaened by the large®2,/ S?,,
of 0.56/0.57 and 0.52/0.53 for Meyrargues and Tretpectively. Thereby, all
modelled values for temperatures for all the selb@bcations are within our error
limit of £2 °C.

The model captures diurnal wind speed and directipeies, characterized by
northwesterly wind directions turning to southwdse to a reinforcement of the
sea breeze (Figure 7.3). This is confirmed by @tistical indices in Table 7.4,
whereby the larger MAE and RMSE values can bebaittied to the representation
of ° from N, which automatically returns high esdoor winds coming from the
northerly sector. Also here, wind speed errorsaatiein the accepted range.

For the vapour pressure, root mean square errarsMfarseille centre and

Meyrargues are respectively 1.82 and 2.38 hPa, eblgethe model shows less
water vapour in both situations with a differenegweeno - 7 of 0.72 and 1.28
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hPa for Marseille Centre and Meyrargues respegtifEable 7.4). This points a
small lack of moisture, especially for the rurakgj0.38 hPa larger than accepted
error) in the model, which also shows a small uesmation of the latent heat
fluxes for the Meyrargues measurement site (Figutb).
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Table 7.4: Model performance estimators as destiibsection 7.2.4 for observed (O) and simulaidv@alues of temperatures (T),
wind speed (U), water vapour pressure (e), incometgadiation (Q*), sensible heat flux (QH), lataeat flux (QE) and storage heat

flux (AQs). Values are calculated using hourly values, amtyre case where observations are available (ddrimt % acc.).

Location ~ Variable %acc. Pp [®) Sp So $?, MAE RMSE D R
T (°C) 99 22.77 23.26 0.23 0.30 0.051 0.093 1.05 391 0.92 0.91
U (ms’ 100 2.506 2.26 0.09 0.12 0.008 0.015 1.08 1.42 0.42 0.042
D (°from N) 100 272.1 246.47  7.22 5.86 52.11 34.30 72.36 96.32 0.52 -0.01
% E (hPa) 99 12.92 13.64 0.23 1.21 0.051 1.47 156 831.  0.77 0.68
8 Q*(Wm? 97 143.3 162.55  26.43 28.98 698.62 840.00 42.38 2.87 0.96 0.98
Q Qi(Wm? 97 78.61 147.59  10.40 14.90 108.019  222.13 75.55 97.05 0.85 0.93
3 Q(Wm? 85 33.36 25.71 3.26 4.65 10.65 21.60 25.09 38.10 0.66 0.45
g AQ Wm? 85 31.33 -38.02 15.15 16.44 229.56 270.20 58.69  9071.  0.93 0.90
T (°C) 100 23.17 21.68 0.76 0.75 0.57 0.56 2.51 82.8  0.96 0.94
U (ms?) 100 3.09 271 0.16 0.13 0.025 0.016 1.64 2.056 0.36 -0.09
D (°fromN) 100 225.88  264.23  8.89 8.32 78.94 69.1 69.30 102.69 0.74 0.33
E (hPa) 100 10.93 12.21 1.10 1.00 1.21 1.00 2.071 .38 2 0.48 0.25
® Q*(Wm? 100 164.87  184.30  25.57 26.24 653.76 688.35 23.93 40.77 0.99 0.99
) QW m? 97 71.38 49.04 12.57 8.65 157.99 74.90 38.80 %7.2 0.92 0.94
g Q(Wm? 97 85.97 93.80 8.26 11.19 68.15 125.13 24.74 %2.6 0.95 0.94
2 AQ (Wm? 97 7.53 37.54 6.71 9.73 44.98 94.6 45.3 68.30 0.80 0.74
T (°C) 100 23.08 22611  0.73 0.72 0.53 0.52 1.8 321 097 0.96
%) U (ms?) 100 291 271 0.15 0.18 0.021 0.032 1.76 217 0.40 0.03
= D (°from N) 100 21454  229.032 8.91 7.75 79.43 080.  81.72 112.86 0.72 0.01
LAS1 QWm? 92 77.55 147.33  9.44 13.12 89.09 172.14 79.72 334, 083 0.93
LAS2 QWm? 91 76.53 134.66  9.30 11.89 86.52 141.35 67.48  481. 0.84 0.92
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7.4.2 Heat fluxes

Because heat flux measurements are unavailable riets, Tonly the Marseille

Centre and Meyrargues station, combined with thatifometer measurements
were used for the evaluation of the simulated Aaaées. As the storage heat flux
(AQ,) is not measured, it is calculated as the residlilie surface energy balance

(RES method). This surface energy balance (equatjors a statement of the
partitioning of radiant energy absorbed at the lEarsurface (Q*) into turbulent
fluxes of sensible and latent heat;(@d @) and an anthropogenic heat flux from
traffic, households and serviceg(€Q Appendix A) into the atmosphere and a
conductive flux of sensible heat into the subst(atg,), which results in:

Q*= Q+Qc+AQ+ Q. . (7)

Pleasant temperatures during the simulation pesumgjest anthropogenic heating
from house heating and air-conditioning to be leditNevertheless, other sources
of anthropogenic heat play a role, sp €pould be included in these experiments.
From the energy release per unit 8gnission and the GAlux measurements by
Grimmond et al. (2004), the amount of energy reddasom traffic (Q,), taking
into account vegetation respiration, is estima#®opéndix A.1). This results in a
mean daily value of 12.3 Wma peak value of 18.9 W hduring daytime, and a
minimum value of 5.3 W i during the night. These values can be confirmed
using the method of Makar et al. (2006) as a vabdaool. The diurnal pattern is
introduced following the temporal variation of- @easured by the GQluxes
(Grimmond et al., 2004) and confirmed by Ichinosale(1999) and Sailor and Lu
(2004) (Appendix A.1l). Next to that, also an estenaf anthropogenic heat of
households & services () has been estimated, using the ratio energy affetf
energy use households and services from EurostaFrimce 2001 (Appendix
A.2). This results in a daily mean:f 6.3 W n¥. More details on the calculation
of the anthropogenic heat flux can be found in Aqe A.

As mentioned above, the storage heat flag,() is not measured; it is calculated as

the residual of the surface energy balance (RE®adet The latter RES method
involves an accumulation of the measurement ewdrsll urban fluxes into the
storage heat flux residual term. These estimatas @lffer from the inclusion of
the almost immeasurable anthropogenic heat fluindJour different approaches
to calculate/modeh Qs, Roberts et al. (2006) shows that all methods agaree
towards the same results, suggesting that the gleftem of storage behavior is
approximately correct.
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Figure 7.4: Observed (triangles) and simulated (full line} meoming radiation (Q*), sensible
heat flux Qu), latent heat flux Qg) and storage heat fluxA@Qs) for Marseille Centre (a),
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and d). The storage heat flux is each time caledlats the residual of the 3 other turbulent
fluxes.
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Figure7.4: Continued.

Figure 7.4a, b, c and d represent simulated heaedl for Marseille Centre,
Meyrargues, LAS1 and LAS2. The net all-wave radratis estimated well for
Meyrargues, with a MAE / RMSE of respectively 2ar¢d 40.77 W M averaged
over all days (Table 7.4). For Marseille Centre, REME increases to 62.9 Win
which is probably due to the high value of thernmartia in the standard run of
ARPS. Thereby, the surface temperatuged@esn’t increase fast enough in the
morning, resulting in a too lows{and too high Q*), while in the afternoon i§
too high (and Q* too low) by using the extreme InyBrutsaert (1982) value (see
also table 7.5). The simulated sensible heat flox Marseille Centre is
problematic, as it displays an RMSE of 97.05 W (able 7.4), with a mean
predicted sensible heat flux value, which is halfh@ observed (78.6 compared to
147.6 W nf respectively) over the whole period (Figure 7.44%0 for the 2 LAS
measurement points, the MAE / RMSE values show @aor,exhich is of the same
order of magnitude as for Marseille Centre. Whegk&ss a value of 0.94 in the
case of Meyrargues, it has values lower than O.@lfoother urban measurement
sites. Regarding the heat storage flux, we see dereastimation for Marseille
Centre as well for Meyrargues with simulated / obsdrmeans of respectively
31.3/-38.02 and 7.5 / 37.5. The difference in M&&l RMSE are of the same
order of magnitude, which proof that those errarbeat storage flux by using the
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RES method are not responsible for the variancethénsensible heat flux.
Comparing these result with the more complex TEB-ISBédel setup, thereby
using observed forcing to run in offline mode, feséor the heat storage flux are
of the same order of error magnitude with a RMSE662 and 71.1 for the
complex TEB/ISBA scheme and our reference run res@égt(Lemonsu et al.,

2004; Mestayer et al., 2005).

Although these differences for the sensible haat @an partly be related to the
underestimation of the net incoming radiation by tmodel and uncertainties in the
derivation of the heat storage flux, the model dtilesn’t capture a substantial part
of the sensible heat flux. Contrarily, differendestween the rural and urban
measurement sites are very well captured by therd®&nsible and higher latent
heat fluxes for the rural station (Figure 7.4b).general, simulated heat fluxes
agree well with observations for Meyrargues, witRMSE for the net incoming,
the sensible and the latent heat flux of 40.8 W B7.3 W nf and 42.7 W
respectively.

To conclude this section, biases and RMSE valuetfoperature, wind speed and
direction (Table 7.4) are in an acceptable rangé&® urban and rural stations, and
the simulated surface energy balance reproducdshgaineasurements at the rural
sites. In contrast, the simulation of the surfacergy balance — and especially the
sensible heat flux — of the urban station in thetreeof Marseille is poor. As the
simulated urban surface energy balance is stroladigcted by the thermal
roughness length as well as by the values usedhen model for thermal
conductivity and heat capacity, the following sewatiwill attempt to identify
combinations of parameter values armg, parameterizations and thermal
admittance as described in Section 7.2.3.1 an8.2.Respectively that yield better
results compared to those obtained with the standalues used in the model and
described in Section 7.2.1.

7.5 Senditivity simulations

Table 7.5 shows the MAE, RMSE and R for the urbatiostaf Marseille Centre
and the 2 LAS measurement sites, for each of tfiereint values for the thermal
admittancep and all thermal roughness parameterization scher@e®rall,

simulations are in good agreement with observatiavith correlation factors
higher than 0.9, except for the Marseille Centre with the lowest value for the
thermal admittance (Table 7.5). Furthermore, tléar that the Zilitinkivich et al.
(1992) thermal roughness length parameterizatidmerse (equation (6)), Iin
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combination with intermediate values forgives the best results compared to the
observations. Changing the value of the drag coefficcd**from 5 to 9.5

(equation (4)) in the original Brutsaert (1982) sokeas suggested by Cahill et al.
(1997) has a negligible effect on the sensible fleaes (RMSE difference of 2
Wm?, for all values of thermal admittange(Table 7.5). Furthermore, changing
the values ofC' Pr' and g from 6.2 and 0.25 to 4.31 and 0.247 respectively

(equation (5)) in the original Brutsaert (1982) subke results in a better
representation of the sensible heat flux for inestrate thermal admittance values
(592.82 — 2213.1 J As?K™), with a maximum difference in MAE / RMSE of 17
W m?, for all urban measurement sites and a thermalttadroe values of 1784.96

J m2st?K1,

For all urban measurement sites, the best reswudsohtained combing the
Zilitinkevich et al. (1992) with a thermal admit@nvalue of 1206.23 Jhs/2K™.
Sensible heat flux MAE / RMSE values decrease tlyerdth 8.2 / 12.2, 13.8 /
15.9 and 11/ 10.?&V m” for Marseille Centre, LAS1 and LAS2 respectively.
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(1992) -u combination (bold full line) for net incoming radion (Q*), sensible heat fluxQ),
latent heat flux@Qg) and storage heat flux\(Qs) for Marseille Centre.
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By using the Zilitinkevich et al. (1992) scheme dhd thermal admittance value
of 1206.23 J Ms"?K™, not only the sensible heat flux improves, bus #iso has
a positive effect on the modelled net incoming aidn and the air temperature
(Table 7.6). The low Q* values in the standard oampared to the Marseille
Centre observations (Table 7.4) improve with a desirgy MAE and RMSE of
5.32 and 9.32 W i Furthermore, the modelled air temperature impsonith a
RMSE and MAE of 0.5 °C for the Zilitinkevich et all992) scheme combined
with the thermal admittance of 1206.23 F s1° K™%. Using this combination of
thermal characteristics, less heat is stored ingtbend during daytime, resulting
in a positive MAE / RMSE values difference betwebka selected optimum run
and the reference run of 5.44 and 5.98 ¥ (figure 7.5). Although the RMSE
heat storage flux in the new run changes to a vallu&.8 W nf, it is still of the
order of magnitude of RMSE that is obtained using tomplex TEB-ISBA
scheme (Mestayer et al., 2005). This phenomenoausteracted by an increase of
33.27 W n¥ for the sensible heat flux, using the new set dides for thermal
roughness length and thermal admittance. This aseres much larger than the
decrease imQg, which is also shown by the smaller MAE / RMSE ealof 15.82

and —24.22 -W ffirespectively. Although slightly higher, the RMSHstained by
our simple model approach are comparable to theegabbtained by Lemonsu et
al. (2004) and Mestayer et al. (2005) using the mer TEB-ISBA model
configuration (Table 7.7). Thereby, our configusatresults in a more pronounced
RMSE, for the net incoming radiation, sensible H&at and storage heat flux.
This is probably due to their more sophisticatedBIEBA schemes, thereby
including radiation coming from roofs, walls andests separately. Nevertheless,
keeping in mind the simplicity of our approach, #meall differences in RMSE for
all fluxes supports the use of our configuration o simple urban meso-scale
model approach. Testing the LUMPS model of intenaied complexity
(Grimmond and Oke, 2002) on the Marseille city datgsee Appendix B) shows
a lower RMSE for LUMPS for sensible heat, decreafiom 72.8 to 50.5 W i
Furthermore, we obtain a similar value for lateg&th(38.7 compared to 39.4 W m
%) and an increase of RMSE for the storage heatfflom 77.09 to 97.7 W h
(Table 7.7), which is similar to the results ob&alrby Roberts et al. (2006), table 5
therein. A more detailed explanation on the drawbadf LUMPS to simulate the
storage heat flux is given in Roberts et al. (20083 LUMPS is based on
measured net-incoming radiation, and taking intmaat the fact that the LUMPS
approach is more data demanding in terms of sudacer fraction and empirical
parameters obtained from measurement campaigngemain confident in the
usefulness of our method to simply approximate mrbaergy fluxes in a larger
mesoscale setting.
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Table 7.5: MAE, RMSE and R of the sensible heat fluxes [W2]Jrfor the sensitivity runs using different valuet thermal
admittance [J m-2 s1/2 K-1] and the different tharnoughness lengths parameterizations. Here,dkedzores for all three stations
are denoted in bold.

Thermal admittance values
1341.17 | 592.82 ! 1066.35 | 1206.23 . 1784.96 L 22131
MAE RMSE R MAERMSE R MAE RMSER MAE RMSE R ' MAE RMSE R | MAE RMSE R

Marseille Centre

Brutsaert (1982) | 67.97 8359 0.8 67.8837 0.90 68.04 8450 0.92 69.3 86.96 092 73FB0 0.93: 77.75 101.59 0.93
Brutsaert (1982) - Varl 67.31 82.85 0.63 67 82.2800066.78 82.70 0.92 67.985.03 0.92 | 72.082.03 0.93}76.03 99.25 0.93

Brutsaert (1982) - Var2 67.40 84.11 0.88 658275 0.89; 61.48 75.00 0.92 61.95.00 0.92 | 63.6779.46 093 | 66.93 85.42 0.93
Zilitinkevich (1992) :70.04 86.92 055 66.72.37 0.89 60.45 73.24 0.92 59.72.83 0.92 | 60.4174.04 0.93 | 62.326 78.40 0.90

__________________________ 1
|

Scintillometer- LAS1

Brutsaert (1982) 563.40 69.49 0.95 66.0B.71 0.96; 70.35 77.98 0.96 72.28.90 0095 78.291.78 0094 83.21 99.97 0.93
Brutsaert(1982)-Var:iL 62.42 68.95 0.96 64BR39 0.96! 68.77 67.04 0.96 70.68.84 0.96 76.4689.59 0.94:81.46 97.72 0.93
Brutsaert(1982)-Var2Li° 59.96 68.43 0.956 6068672 0.965 59.23 65.79 0.96 60.85.31 0.96364.954.78 0.95569.55 81.80 0.94
Zilitinkevich (1992) 561.00 7137 096 59.457.92 096 56.86 62.99 0.96 56.82.91 0.96159.3637.61 0.95562.81 73.01 0.95

__________________________________________________________________________________________________________________________________________________________________________

Scintillometer — LAS2 :

Brutsaert (1982) 551.05 60.57 0.9,:5 52.66.85 0.955 56.93 67.34 o.9o:1 50.69.82 0.94365.9779.01 0.92571.14 86.10 0.91
Brutsaert (1982) - Var} 50.46 6025 0.95 51K03 095} 5525 6585 0.04 57.68.20 094 64.2277.18 092 69.43 8421 091
Brutsaert (1982) - Var2 52.69 6361 095 50GBY0 095 48.00 59.22 0.95 49.68.01 0.95 52.6166.00 0.93 | 58.09 7166 092
Zilitinkevich (1992)  56.54 67.52 095 52.88.37 0.95 47.35 58.05 0.95 46.58.98 095 48.3151.00 0.94 51.23 6509 0.93

200



Table 7.6: Resulting changes i , Sy S2, MAE, RMSE and R for [Zilitinkevich et al.
(1992),u = 1206.23] — [Reference run] for Marseille Cersttation.

B S, S2, MAE RMSE R

T (°C) -0.09 0.03 0.01 -0.05 -0.05 0.01
FF (m &) 0.24 0.01 0.00 0.04 0.06 0.04
DD (°fromN) 158 0.22 3.24 2.42 1.84 0.00
E (hPa) -0.09 0.01 0.01 0.08 0.09 -0.02
Q* (W m?) 16.76 0.29 1522  -5.32 -9.32 0.01
QH (W 1) 33.27 5.15 133.41  -1582  -2422  -0.01
QE (W i) 0.90 0.09 0.58 0.60 0.61 -0.01
AQs (W nd) 1110 -2.56 7112 544 5.98 -0.02

Table7.7. RMSE comparison between our results, results fftmmcomplex TEB-ISBA using a
single urban class (Lemonsu et al., 2004), anduarurban classes (Mestayer et al., 2005) and
results from LUMPS (Grimmond and Oke, 2002 — sqeeagdix B).

RMSE RMSE RMSE RMSE

Our (Lemonsu (Mestayer et al.,

results et al., 2004) 2005 LUMPS
Q* (W m?) 53.6 30 28.8
Qu (W m?) 72.8 63 61.2 50.5
Qe(W m?) 38.7 42 42.3 39.4
AQs (W 1) 77.9 66 66.2 97.7

7.6 Discussion and conclusion

Measurements from the urban station Marseille Ceatr@ the rural stations
Meyrargues and Trets, obtained during the ESCOMR&aEpaign Intensive
Observation Period 10P2a, were used for the evaluabf the mesoscale
meteorological ARPS. The model was run for the @e?i0 to 23 June 2001, for a
domain covering the Marseille Berre-Pond Region. HRPS-LAICa model
system was run in a three-nested way, using 6 Wauoitial and boundary
conditions from the operational ECMWF reanalysisadMoreover, as suggested
by many authors (Taha, 1997, Sailor and Lu, 20CGpkand Yamaguchi, 2005;
Makar et al., 2006; Offerle et al., 2006 and mariiers), an estimate of
anthropogenic heat based on measuregddissions and energy consumption by
households and services, also taking into accountup@ke by plant respiration,
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has been included as waste heat in the land-sudelbeme. The simulated
temperature, wind speed and direction were evaluadeng hourly measurements
from the urban and rural stations, showing that ARP&pable of reproducing
diurnal cycles of temperature, wind speed and tioe@nd water vapour as well
for urban as for rural areas. For all parametegjatied versus simulation errors
are within the defined error limits based on airmlgy modelling purposes.

Subsequently, simulated surface heat fluxes wenfraated with measurements
from Marseille Centre, Meyrargues and two LAS obagon sites. Overall, the

simulated fluxes agreed with the measurements/ fall, except for the sensible
heat flux over the centre of Marseille and the LAi&s, which were largely

underestimated.

In order to address this discrepancy, sensitivitgutations were executed in
order to test the impact on the simulated sensieé flux over urban portions of
the domain with respect to different thermal rouggslength parameterizations
and various thermal surface parameter values. Thé/sis of these sensitivity
simulations showed that the Zilitinkevich et al992) thermal roughness length
parameterization scheme, in combination with intgrate values for thermal
admittance | = 1206.23 J M s"?K™), gives the best results compared to the
observations. This value is confirmed by a studpedby Hafner and Kidder
(1999), who used thermal channel 4 and 5 to acdeanal inertia for a model
domain covering Atlanta. Thereby, they obtain artted admittance value for the
inner Atlanta city between 1200 and 1400 3 s¥? K™, which corresponds with
our sensitivity results.

These findings are dissimilar to results previouwdyained by De Ridder (2006),
who found the Brutsaert (1982) parameterizationedgom well for the city of

Paris. Note though, that in the latter study use wede of instantaneous (at
around 14:00 local time) remotely sensed surfacepéeature for comparison
with the simulation. It could well be that the Bragst parameterization which
yields extremely low values afy, in combination with a rather high thermal
admittance, correctly generates observed surfaopeiatures at that particular
time of the day. However, also Voogt and GrimmoBgd0Q), using helicopter-

and ground-based measurements on an urban quanténicouver, found their

analysis to agree well with observations when usingsaert’s parameterization.
Also note, that the findings of this study are esgntative for the simulation
specific characteristics, namely the Marseille Bé&tond Region and a week in
June 2001, governed by a high pressure system wtitteon. Clearly, more

research is required to settle this for other negjior cities and time periods.
Nevertheless, a similar study has been performedhi® Paris agglomeration,
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whereby the same set of parameterizations andiassat of thermal admittance
values have been tested. Surface temperature ddroma the SEVIRI instrument

on the Meteosat Second Generation platform is comdpaith modelled surface

temperatures. Here, also the Zilitinkevich (1992)gmeterization was shown to
provide the best results, in combination with artied admittance value of similar
magnitude (K. De Ridder — personal communicatidih)s results shows that our
study is not only valid for Marseille, but also fmther dense European cities.

To investigate the main factors controlling urbaathislands and air dispersion
on the mesoscale, the difference of the surfaceggrimalance between rural and
urban surfaces has to be determined (Hafner andeKidl999). This study has
shown that the ARPS-LAICa model setup is able tsfatiory simulate the flux
differences between urban and rural areas, espedsl using the thermal
roughness length parameterization of Zilitinkevi¢gh992) and a thermal
admittance valug of 1206.23 J Ais"?K™. Moreover, comparisons with more
complex models as the TEB/ISBA scheme over the samairt (Mestayer et al.,
2005) shows that using this simple approach, saragnitude of flux errors
compared to observations are obtained. Moreovenpaoison to a study done by
Lemonsu et al. (2004) shows that our simple modeup generates results for
the surface fluxes (in terms of RMSE) similar tottbB TEB-ISBA using a single
urban class as defined in the CORINE land coversitieation (as used in this
study) over Marseille. Although LUMPS seems to perf better on the sensible
heat flux, one has to keep in mind that this schésnenore complex while
additional surface properties are needed to cdiule surface energy fluxes,
which is not necessary in our approach. Furthermaiag assumptions for some
parameters, as shown in Appendix B, it is still mbd¢ar if the empirical
parameterizations contained therein can be usgéneral, and could be used to
implement in any NWP model to include urban areas isimple way over a
randomly chosen area.

In the framework of air dispersion modelling, thmmplex geometry of an urban
area makes the modelling within the street canydifiult, although it is the
venting of these street canyons that is importantdetermining air pollution
concentrations. For numerical weather predictiodVfy models, restrictions on
the resolution of the model mean that the citiesaten poorly resolved. These
restrictions are due to limits on the available patmng resources, and the
required narrow timeliness of the forecasters plog their data to the
community. The resource and timing issues also havdications for the
complexity of the model, since more complex modeisease the computational
cost and hence the time taken to integrate the hiBést, 2005). In this aspect,
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some mesoscale modelling studies have been underiakluding urban land
cover characteristics. But often, these models lgveally a high resolution in
which the city is well resolved. In this study, Wave followed a simple approach
to model the exchange between an urban surfacehendtmosphere. For the
materials used in the downtown city of Marseilleappeared that the thermal
roughness length parameterization from Zilitinkeetcal. (1992) and a value for
the thermal inertia of 1206.23 J2ws"2 K are appropriate. For densely
constructed old cities (as is already shown foisPave expect similar values to
be adequate, for the use in simple mesoscale laffacs schemes.

Appendix
A. Estimation of the anthropogenic heat
A.1Traffic

The anthropogenic heat release from traffig, JQs calculated based on relations
between combustion of gasoline/diesel, ,C@missions and energy release.
Thereby, the resulting GOemission per produced unit of energy from the
combustion of gasoline/diesel corresponds to 70g € MJ energy (revised
1996 IPCC Guidelines for National Greenhouse Gasritories), so that a GO
flux of 0.001 g rif s* corresponds to 14.3 W mFigure 3.10 (upper panel — calm
winds) from Grimmond et al. (2004) shows gfDxes in umol rf s*; with one
mol CO, corresponds to a molecular mass of 44 g, so thambl m® s*
corresponds to 44 Py nmi? s CO,. Combining these previous steps results in an
energy flux from traffic of 6.3 W thper 10 pmol i s* CO,. Following the CQ
flux measurements of Grimmond et al. (2004), therdil CQ flux values range
from 10 umol rif s* during the night to 30 pmol frs?, which corresponds to a
range of @, between 6.3 (night) to 18.9 Whiday). To determine hourly energy
flux values from traffic it is then fitted (withifts measurement errors) to the
diurnal evolution of the measured €Q@ux, resulting in a traffic induced
anthropogenic heat of 5.3 W™ nbetween 20h — 5h GMT, a linear increase
(decrease) between 5h — 8h GMT (18h - 20h GMT) fSoBnW ni’to 18.9 W nif
and a constant flux between 8h — 18h GMT of 18.9nW resulting in a daily
mean of 12.3 W ifi

In the above analysis, the €@riginating from vegetation is disregarded. The
absorption of C@by vegetation during the day results in a negdiilevnward)
CO, flux, which should be taken into account whileenureting the CQ
measurements of Grimmond et al. (2004) to obtaa “bure” traffic signal.
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Therefore we use the water use efficiency, whicturns the amount of
assimilated C@per kg evaporated water. From the observed daypesk in
latent heat flux (70 W i) the water mass flux is calculated, yielding aueabf
0.028 g nf s*. Under a pressure P of 1010 hPa (Grimmond e2@04) and a
specific humidity q of 8 g K (Mestayer et al., 2005), the vapour pressure e
amounts to 13 hPa. This results in a vapour presddficit (VPD) of 20 hPa
(Oke, 1987). Under such a vapour pressure defieater use efficiency is
typically of the order of 3 mg COper g HO (Mahrt and Vickers, 2002). This
results in a C@flux of 0.084 mg C@ m? s’ for 0.028 g rif s* water flux,
corresponding to a correction to the anthropogkaat flux of 1 W rif, which is
negligible. Nighttime respiration should also bleetainto account, but as daytime
assimilation exceeds nighttime respiration, thismtas also negligible (Oke,
1987).

As there are no observations to adopt and valiti&se values as a formal result,
one can look for an entirely different method tedhthe order of magnitude of
these results. Therefore, the method proposed bkaMat al. (2006), also
successfully used in Van Weverberg et al. (200®stimate anthropogenic heat
in Brussels, is used to make an independent appmfattie anthropogenic heat
flux from traffic in Marseille. Based on satelliteded anthropogenic light
irradiance, together with a spatial dissagregatipproach as described in Makar
et al. (2006), one obtains an annual average gmigemic heat flux for Marseille
amounting to 28.8 W in(seewww.iiasa.ac.at/Research/TNT/WEB/hgatJsing
the ratio of energy from traffic from the Energy &fly statistics from
(http://epp.eurostat.ec.europa.eu/portal/page? ¢aty@r3,46587259& dad=port
al& schema=PORTAL&p product_code=KS-CN-04-001)3A Eurostat  for
France 2001, we can estimate that traffic accotmts43.3% of the energy
released. From that, a daily mean value gf @ounts up to 12.3 W i which
confirms our daily mean estimate of 12.3 W.m

A.2 Electricity

Next to traffic, also households (heating, air daboding...) are a source of
anthropogenic heat. To estimate the amount of teéedised from the households
& service sector, we use the ratio energy useidrafénergy use households &
services from Eurostat for France 2001, which retan energy use for traffic of
43600 TOE (tonnes of oil equivalent) and for howde$ & services of 21400
TOE, resulting in a ratio of 0.49. These are annosan values, so a
simplification of this method includes the assumptithat this ratio is not
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dependent on seasons. From the ratio 0.49, dayt@aerelease from households
results in 6.3 W M. Q- is kept constant during the daily cycle.

A.3 Conclusion

The total anthropogenic heat flux of 18.6 W i calculated for the CAAM site
using the C@fluxes measured by Grimmond et al. (2004). Folfmpiemonsu et
al. (2004) and Hamdi and Schayes (2005) the plea af vegetated surfaces per
total plan area for this urban measurement sites agdto 14%. By multiplying
18.6 W n’by 0.86, an estimated daily mean of totalb®21.7 W n¥ for a 100%
total urban area is obtained. The diurnal variabbthe anthropogenic heat flux
can be seen in figure A.7.1. For our mesoscale hnoglepurpose, the total
amount of Q is added to the simulated turbulent sensible hegtyoportion to
the percentage vegetated cover fraction for edsarugrid cell.

N w w
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Anthropogenic heat (W/m?)
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O v X B 20 0 N> 0 D D )
Time (hours)
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—6—Qf - 86% urban ——Qf - 100% urban

Figure A.7.1: Anthropogenic heat in Marseille for the summe@20divided in anthropogenic
heat for households & services and anthropogeratfoe traffic.

Although a direct comparison with other estimatesdifficult, our approach

results in an anthropogenic heat flux value simtlarthe values obtained by
Pigeon et al(2007) for Toulouse, a French city with comparathlaracteristics as
Marseille (Grimmond et gl2004). They calculate an anthropogenic heat ftux f
the local scale and the scale of the agglomeram®rthe residual of the SEB
equation and from the energy consumption inventespectively, resulting in a
value for summer between 15 and 30 W maspectively.
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Sailer and Lu (2004) proposed a top-down approachrithropogenic heat based
on the energy consumption in the building sectaangportation sector and
metabolism. Thereby, each component is a functibthe cities’ population
density. From this point of view, Marseille (ddgsi3400pers/km?) can be
compared to the results from Los Angeles, whichdasmmer diurnal value of
anthropogenic heat between 10 and 30 W/m?2 (Sandrlai, 2004 — figure 6
therein), which is similar Eobtained by our approach (Figure A.7.1).

B. Calculation of the Surface Energy Budget using IR8AGrimmond and Oke,
2002)

Although mentioned in Mestayer et al. (2005), LUMRBPScal-scale Urban
Meteorological Parameterization Scheme) (Grimman@®lee, 2002) has not yet
been tested for Marseille, using the ESCOMPTE dataserder to be able to
compare our simple approach to the results from B3ywe use the observation
done by Grimmond et al. (2004) to calculate alkéls. A full explanation of
LUMPS is given in Grimmond and Oke (2002), and bgreonly a short
description of its configuration is given.

The heat storage by the urban fabric is paramet@fiom net all-wave radiation
and surface cover information using the objectiyestéresis model (OHM)
(Grimmond et al., 1991):

AQIWMI =Y ) @ +)( 19 F+Y( 19 (B

where,i is one ofn surface types of varying fractior),( such as roofs, walls,
lawns, or roads. The time derivative of net radmtiis approximated as
0.5@Q*., - Q*_y, with t in hours, and tha coefficients empirically derived from

independent studies specific on urban surface typesur approach, four surface
types (gravel roof, clay tile roof, impervious gnaliand vegetation - no water in
the city center) for the Marseille city center taken into account (Roberts et al.,
2006), wherebyhte appropriate source area locations and surfaggtivegs are
calculated hourly with a flux footprint model, irombination with an urban
geographic information system (S. Grimmond pers@oahmunication) (Table
B.7.1). The coefficients foa, , 3 are taken from Roberts et al. (2006) (their Table
1).
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The turbulent sensible and latent heat fluxes asdcutated using the
parameterizations proposed by de Bruin and Holt€l®$2) and mentioned in
Grimmond and Oke (2002):

21 ==+ (V/S) jvx Ay -

AQy [W m?] =22 K20 -6Q) -8 (B.2)
2] = @ .

AQe [W m?] =< (Q"-5Q) + 4 (B.3)

wheres s the slope of the saturation vapor pressure gdeuaperature curve,is
the psychrometric ‘constanfy=3 an empirical parameter taken from Grimmond
and Oke (2002) angis based on the land cover and the land cover cteistics

as proposed inGrimmond and Oke (2002). The values $andy are calculated
based on hourly observations of air temperature {por pressure (hPa) and
pressure (hPa).

Table B.7.1: OHM empirical coefficients for Marseille Centre.

al a2 a3
Gravel roof 0.26 0.89 -24
Tile roof 0.07 0.06 -5
Road (impervious) 0.7 0.41 -0.38
Vegetated 0.32 0.54 -27.4
Water 0.5 0.21 -39.1

Using formulas B1, B2 and B3, based on the obsemsitirom the measurement
tower on the CAA roof top (Grimmond et al., 2004me empirical parameters

and additional information on the fraction of tlad cover, all fluxes are derived
from the net radiation on an hourly basis. Anthggac heat is not additionally

included, but implicitly included since LUMPS isdesl on measured fluxes, as
mentioned in Grimmond and Oke (2002).
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Chapter 8

General conclusion and outlook

In this dissertation, three main goals are tackledto describe the relations
between meteorological variables and &hd PM, levels in a present-day
climate, 2) to use this information in developing statistical air-quality

downscaling tool that considers the combined effettthe large-scale
atmospheric circulation and surface meteorology 3no calibrate and validate
this methodology for the present-day climate usihgervations. Afterwards,
this approach is used to make a first estimatéefimpact of a possible future
climate change on air quality.

In general, a downscaling approach is followedridde the gap between what
AOGCMs produce and what impact assessors requne fifist four chapters of
this dissertation focus on a statistical downsgaliapproach, which is
computationally more efficient and in general m@mactical compared to a
dynamical downscaling approach. Thereby, chaptensd34 describe the role of
the individual surface meteorological variablespvasent-day levels of £and
PM;o and the development of a synoptic-regression bedo derive present-
day G and PMg levels. Chapter 5 provides more insight in thdugrice of
changing circulation patterns in a future climatal dinally, chapter 6 applies
the synoptic-regression tool to estimate futurendse in surface ©
concentration. In addition, chapter 7 performgst Btep of model improvement
relevant for dynamical downscaling used to modegaality concentrations.



8.1 A novel synoptic-regression based tool for downscaling of air quality

Prior to the construction of the statistical dowalswy tool, a comprehensive
correlation study is conducted between all metegiohl and air quality
variables using observations from a rural backgdowstations in The
Netherlands. In general, a clear relation is fobetiveen @ and (maximum)
temperature in summer, combined with a low relabuenidity. Rain amount is
negatively correlated with Pjlin winter, which could point out atmospheric
removal due to wet deposition. Wind speed is siyonggative correlated with
O; and PM, for large parts of the year, pointing to stabl@dibons without
strong advection and a built-up of species in thadary layer.

This quantitative information is used to developo tatatistical downscaling
approaches: 1) a multiple linear regression amalydten used in short-term air
guality forecasts, and 2) the Lamb circulation grattclassification method. The
former method is run in 2 modes, viz. with and withair quality variables as
predictors, as AOGCMs do not explicitly hold infation on future emission
(precursor) levels. The latter method providesydailculation patterns based on
geostrophic flow and vorticity indices derived framanalyzed or operational
ECMWF mean sea level pressure in sixteen grid paahtered on the Cabauw
measurement station. By selecting these methodseek simplicity, linearity
and practical feasibility of the models in ordentake this approach appropriate
for downscaling forecasted meteorological fieldsSAQAGCMs scenarios for air
quality purposes. Comparing the results of thisalloneteorology based
approach with results from a circulation point-eéw, which takes into account
the large-scale circulation above our area of @sigrprovides further insight in
the controlling processes forming and resultingdpresentative Pand PMg
levels for rural background stations at mid-latéisites.

First, a preliminary analysis has been performetk$d whether different rural
sites in The Netherlands show similar charactedgstn terms of air quality and
meteorology. Based on similar annual cycles fohliatand PMgyand the minor

differences between the meteorological and airityuedlationships at all sites,
the analyses provides solid arguments to consider Gabauw station as
representative for rural areas in The Netherlahdisteover, this decision is
justified because of the fact that Cabauw has #Hrgebt data availability,
necessary as input for the statistical downscalpyroach.

Based on the Cabauw measurements, the multiplarInegression model in two
modes provides reliable results, especially for @utperforming both the
climatology and persistence models. The statistmaiformance is good in
comparison to similar studies for both the calirat(2001-2004) and the
validation (2005-2006) period. In general, inclglinnformation on the
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previous-day air quality predictor variables impeevthe explained variance
with 10 to 18% for ozone and Bprespectively. From the relation between the
large-scale circulation patterns and high (low)lyan events, some clear
physical links can be seen. Thereby, all relatiogisveen pressure, wind speed,
temperature and relative humidity and levels of &dd PM, found in the
comprehensive correlation analysis can be retriénoad the seasonal composite
circulation patterns and their anomalies. Fgy tBe surface pressure composite
maps generally show an anomalous strong high-piessstem north or west of
the measurement station, depending on the seaswos.rdsults in cold and
humid (winter and spring) and warm and dry (sumna@radvected from north
to east wind directions, contributing to higherrthrormal ozone concentrations.
Using the circulation patterns for ozone in winteveals the highest average
concentration in wind direction from west to nortimder high wind speed
circumstances. This feature suggests the influehozone transported from the
free troposphere towards the surface in winter,ctviwas also suggested by
Davies et al. (1992b) and Delcloo and De Backef820For PM,, high levels
are overall controlled by air advected from southetst. Hereby, pressure
gradients are often low, with a positive pressurenaaly north- to eastwards
from the measurement station, again dependingesdhson.

Finally, the reconstruction of thes@nd PMytime series for the calibration and
validation period objectively compares the multiptepwise regressions and the
objective Lamb circulation pattern approach. Thepwsise regression for ;0
performs satisfactory for all statistical indicé&Sontrarily, although seasonal
composite maps have shown a distinct pattern fprc&y episodes of high
average @ and PMg concentrations, the Lamb circulation patterns aha@rt-
term air quality forecast model performs poor fothhO; and PM,, whereby
the skill score against persistence (one-day lagin some situations, even
worse than persistence itself. Although circulatpatterns can provide a clear
insight in typical large-scale atmospheric struesuand associated anomalies in
meteorological variables during high (or low) ptithen events, this approach is
not able to capture short-term fluctuations ofgb#éutants.

In a next step, Pand PMglevels are explained using a combination of a linea
multiple regression and a circulation-type approdctis analysis, based on the
same above-mentioned calibration and evaluationog®r reveals that a
stratification of the dataset using the automatemmih circulation pattern
scheme, prior to the regression analysis improvesiownscaling results for;O
and PMy in terms of explained variances and skill scoraireg} the persistence
model. For @, this approach is shown to be beneficial for repnting higher-
order statistical moments (e.g. skewness and ksytds contrast, the synoptic-
regression approach using only meteorology data fwasd insufficient to
explain the observed PMvariability. Thus, this suggests that for RMother
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meteorological variables not available for thisdstge.g. boundary layer height)
and local or long-range emissions (and emissionces) could play a more
important role. Therefore, the remaining of thisalgsis will only deal with
projections of future @concentrations derived from an AOGCM. Moreover, as
O is highly dependent on seasonal changes in igioak with meteorological
predictors, the @regression model is run in a seasonal mode.

Prior to using the synoptic-regression based tooldbwnscaling of air quality
levels from coarse AOGCM-output (with a typicalatesion of 300 x 300 ki),

it needs to be tested whether the observed lolzdiares between meteorological
and air quality variables hold on a larger scaleent¢, the statistical
downscaling tool is evaluated using low-resolute@MWF data interpolated
on the spectral T63 horizontal grid (similar to tHECHAMS-MPI/OM
resolution) for the period 2005-2006. Using thisadas input for the regression-
based models leads to a slight decrease of thaiargl variance due to a lower
variability of the meteorological predictors anddrbbiases. Nevertheless, this
approach can compete with other dynamical and sstati downscaling
methods, which are often employed using observed 8eries, without being
tested on low-resolution gridded data.

In a last step, the synoptic-regression based appras applied on future
ECHAM5-MPI/OM data in order to make estimates alufe G, levels for the
mid-latitude site of Cabauw. Thereby, explanatorgteorological predictor
variables are taken from ECHAMS5-MPI/OM for the pmesday 1991-2000
period and 2 future periods 2051-2060 and 2091-2ft6éh three SRES
scenarios A2, A1B and B1. As any information ongeimic and anthropogenic
emissions is not explicitly taken into accountsthesearch solely includes the
influence of changes in meteorological variableghout taking into account
future levels of biogenic and anthropogenic emissio

The circulation pattern frequencies derived fromHA®I5-MPI/OM for the
period 1991-2000 do not differ significantly comgar to the reference
circulation pattern frequencies. Moreover, the rhignfrequency distribution
over all patterns also does not differ significentéxcept for the month of
February. This allows a straightforward evaluawdnhe present-day and future
downscaled versus observed lIevels in terms of the meteorological variables
important for high ozone concentrations. Althoudte tcapabilities of the
downscaling method on coarse-resolution data isedesxtensively, the
downscaled @levels from ECHAM5-MPI/OM meteorological predictoare
still underestimated compared to the observed cdrat@ns for the present-day
evaluation period of 1991-2000 (see section 8.8réfore, a bias correction
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method is applied that takes into account the idiffees between the ECHAMb5-
MPI/OM downscaled @and observed (listribution quantities.

Under the various SRES scenarios, the overall maxin hourly mean ©
concentration increases with 2.5 to 6.5 pg/m3 aridté 10.9 pg/ms3, for the
2051-2060 and 2091-2100 period respectively, agdnespresent-day 10-year
average of 55.2 pg/ms3. This effect is enhanced wimsidering the summer
season only, with a range of increase between iffexeht future scenarios of
54 to 125 pg/m3 and 13.4 to 26 pg/m3 (for 20562@&Nnd 2091-2100
respectively) against a present-day summer aveah@8.5 pug/ms3. An increase
In maximum temperature and shortwave radiatioma@ated with a decrease in
cloud cover under the various future scenario apions are the main drivers
of ozone increase.

In order to verify whether these findings are pbghy plausible, our results are
compared with the observed heat wave in August 200&racterized by a poor
air quality (especially in terms of;Dand excess of mortalities in large parts of
Western and Central Europe. In this respect, thavser of 2003 has been cited
and shown in our analysis to be an example of hawé European summers
may look like under a changing climate. As obsere@003, the increase in
ozone in a future climate can pose a serious thoeduman health and the
natural environment in Western Europe. And althoaghresults are from one
individual AOCGM only, most other global models ardine with the projected
conditions that are used here. It should, howevernoted that by taking into
account only one GCM, the range of uncertainty migh underestimated.
Therefore, a future task lies in the applicatiortro$ tool on multiple AOGCMs
and SRES climate scenarios (ENSEMBLES). This caqurtavide a more in-
depth understanding of future ;Qrariability under different models and
scenarios, creating the possibility to present maieust lower and upper
boundaries of possibles@oncentrations, comparable to the IPCC projectains
future temperature levels and precipitation amaunts

8.2 Limitations of the synoptic-regression based approach

Section 8.1 descris how the synoptic-regressioredagpproach is developed
and to what extent it can be applied to estimateréuC; concentrations for rural
mid-latitude areas in The Netherlands. In the c®ws the above-mentioned
analyses, we specifically mentioned the weaknegsgs loss of the observed
explained variance for a multiple regression, dsrred to in Table 2.1) and
strengths (e.g. easy physically interpretable, malde diagnostic tool for

AOGCM evaluation) of the used methods. Nevertheléss worth mentioning
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some additional limitations of the entire stratg@ynoptic-regression based
statistical downscaling) in order to put this reshan a wider perspective.

As mentioned in the introduction, this dissertatiftmllows a downscaling
approach to bridge the gap between the informaggeaned from AOGCMs and
the (local-scale) information required by the impassessors. Whereas the
dynamical downscaling techniques are computatipnakpensive and time
consuming, statistical downscaling is a computatignmore efficient and
practical approach in addressing the current neédsigh-resolution climate
modelling results for impact and assessment stuéi@sn a physical point-of-
view, the dynamical approach dynamically derivestisfly distributed local (or
regional) atmospheric variability from large-scA®GCM forcing. Hence, the
model itself resolves the physical properties & #mosphere. In contrast, the
statistical approach developed here derives gadinBtrelations between large-
scale circulation indices and local climate or emwimental variables from
observations using statistical relationships. Asoasequence, the latter is, in
first instance, limited to the area for which tmansfer functions are derived.
Although our analysis shows that rural areas carcdiesidered as spatially
homogeneous in terms of air;@nd PM,, as is shown by Flemming et al.
(2005), it does not provide a straightforward dolutfor other land covers
(surban, urban, ...). A possible strategy for thisagwn is addressed in appendix
C.

Secondly, our statistical approach assumes thairésent-day meteorology - air
guality relations remain constant in the futurevééheless, the rates of the
chemical reactions that form ozone are temperatapendent, and will proceed
more rapidly in a warmer environment. Also a daseesin relative humidity
together with an increase of the photolysis rate,  a decrease in cloud cover
(Meleux et al., 2007), could lead to a lower prdduct of OH radicals.
Moreover, photolysis of ozone produces an oxygemmatvhich can either
reform ozone via reaction with oxygen moleculegpoyduce OH radicals via
reaction with water vapor, the latter represenéirgink for ozone. It is clear that
these complex reactions cannot be solved by ourststal downscaling
approach, as mentioned in Chapter 6. In this reésfggobal) chemistry transport
models provide a promising (albeit at present awmrably more
computationally expensive) tool for future air qtyahssessment studies. This is
further addressed in section 8.4.

Climate change also has an indirect effect on &uamone concentrations. E.g.,
forests, shrubs, grasslands, and other sourceatofah hydrocarbons (VOCS)
emit greater quantities at higher temperatured. r8mrobial activity may also
Increase with warmer temperatures, leading to arease in NQ emissions.
These higher natural emissions of VOCs and, M@uld lead to an increase in
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tropospheric @ A further impact is through the increase of Nf@m lightning.
While lightning is not a significant source of N@ver industrial regions, it
forms ozone over remote regions of the globe, tbaatributing to the
background concentrations of ozone. On the othedhelimate change could
reduce @ concentrations. For example, a more vigorous Hgdio cycle could
lead to an increase in cloudy days. More cloud coegpecially in the morning
hours, could diminish reaction rates and thus lo®erformation. Moreover,
future anthropogenic emissions are another soufcenoertainty. To some
extent, this is indirectly taken into account usimgteorological information
from the AOGCMs driven by future SRES scenariosvéheless, the above-
mentioned features are hard to cope with in stegistiownscaling approaches,
as the latter cannot take into account these @twhanges in emissions
because of constant air-quality and meteorologystea functions that are based
on present-day information. Nevertheless, thesagdmare not straightforward
to implement in dynamical downscaling technique as, although explicitly
resolving physical-chemical processes, a great déalncertainty exists at
present with respect to the hydrological cycle dhd effect of vegetation
dynamics in (global) chemical transport models.

Because many (natural and anthropogenic) aspethe afarth system affect air
guality, and most of these have been held constatgbwnscaling studies, the
results of these studies should not be considartiqtions of future air quality
levels associated with climate change. Rather, degyonstrate the sensitivity of
atmospheric air pollutants to changes in (in thigly) specific meteorological
variables. In this respect, the statistical methiayided here remains relevant in
the future air quality debate because of its siogli physical interpretability
and computational efficiency. The latter is furthddressed in section 8.5.

8.3 A need for AOGCM improvement

During the statistical downscaling analysis usiogy resolution meteorological
variables and circulation patterns from operaticB@MWF and future SRES
ECHAMS5-MPI/OM scenario data, it became clear timatxt to the importance
of the resolution, also deficiencies in the modaksy an important role in the
correct representation of present-day downscalgdopared to observeds; O
records. In first instance, model deficiencies appa terms of a lower
variability of the ECMWF and ECHAMS meteorologicariables compared to
the observed variables. At present, confidencdimate models is founded in
accepted physical principles and from their ability reproduce observed
features of current climate and past climate chgnpgarticularly at continental
scales and above. This confidence in model estsnatkigher for some climate
variables (e.g., temperature) than for others ,(@wgcipitation), and for large-
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scale feature compared to small-scale processdashwhnnot be represented
explicitly by the models (Randall et al., 2007).iSlexplains why the mean
properties of a specific variable are often welprogluced while significant
discrepancies can be found in the tails of theabdes’ distribution functions.
Precisely these statistical properties are importarair quality research and
hence explain the discrepancies in some of the EEMaMd ECHAMS5-
MPI1/OM surface meteorological variables found irs tissertation.

Secondly, significant differences were found inmerof ECHAMS5-MPI/OM
circulation pattern frequencies compared to theenlesl frequencies, especially
In summer over the 40-year reference period (19810 This is derived from
the application of the objective Lamb classificatimethod on a 40-year 20
Century control run (1961-2000) of the ECHAM5-MPMOnodel for Western
and Central Europe, evaluated using the referei@d\WWF-ERA40 reanalysis
data. In general, ECHAM5-MPI/OM is able to reproeute frequencies in
directional circulation types, especially for thetel autumn, winter and early
spring period. For late spring, summer and eartyran of this 40-year period,
significant differences are found for most of theectional types. In particular
western types are significantly overestimated byHE®I5-MPI/OM, while
eastern types are underestimated. In contrast th#srences in frequencies are
shown to be insignificant for the more recent 1@rygeriod (1991-2000). This
discrepancy is elaborated in more detail in Apperili of this dissertation,
whereby it is shown that differences in frequencgusrences between objective
Lamb weather types are due to a large sensitiithe circulation patterns to
the grid configuration of the objective Lamb cléissition method and the time
periods under consideration. Splitting the 40-y@amod into four 10-year sub
periods reveals that the first two sub periods 19810 and 1971-1980 have a
larger variability in circulation patterns, whiclarmot fully be captured by the
AOGCM, especially for the late spring and summeiqae The periods 1981-
1990 and 1991-2000 are characterized by smallesebiain frequency
occurrences, except of the months June and Febnnampe two periods
respectively.

This research not only shows that the use of alation classification technique
provides a rather simple methodology to detect ghanand differences in
circulation patterns on a synoptic time-scaleJsbashows that the use of Lamb
circulation patterns is an appropriate tool for ACI& evaluation, in order to

detect biases in the global model, which should cbaesidered when the

AOGCM is applied for specific impact studies, aswlane in Chapter 7 of this
dissertation. Here, the AOGCM mean is replacedneyabserved mean, for the
present-day climate, and a similar approach is ueedorrect for the future

climate based on the present-day AOGCM resulterOdt more straightforward
and popular procedure for rapid impact assessmeaaoh as “change factors” or
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“perturbation factors”, is used (Prudhomme et 2002; Wilby, 2004). In this

approach, a reference climatology is established afospecific region and

variable, for e.g. the climatological 1960-1990 lglanaximum temperature

average. Secondly, the changes in the relevant @@ibox closest to this

target site are calculated between a future andepteday climate from the
AOGCM (e.g. a difference of 5°C). Third, this dié@ce is simply added to
each day in the reference climate. Although thisvigles an areal average
climate change for the grid-box of the GCM, incoging the details of the

station observations, there are some problems thithmethod. This method
assumes that only the minima, maxima and meansedfuture climate change,
whereas all other properties (e.g. variability) aamconstant. This procedure
also assumes a constant future spatial patterilasias the one in the present-
day climate, and furthermore, this method assumesri@ct representation of
the AOGCM for the present-day climate. Clearly,stlapproach should be
considered with caution, as AOGCMs still show imgietencies for some
variables. Moreover, some processes are highlylinear in time, space and
physical properties, and should therefore be tdeaggpropriately. As already
stated above, in order to avoid additional non-mfajsuncertainties in the

process of local climate assessment studies, thgesufor a further and

continuous improvement of the present-day statiw@fart AOGCMSs.

Furthermore, it is worth mentioning that the foratidn of clear reasons for the
model biases found in this dissertation is outhef $cope of this work. This can
only be done by detailed sensitivity experimentat tfocus on the models

responses to changes in physical parameterizatiodel resolution, coupling

to ocean, etc.... Nevertheless, in order to addiesset questions, one has to
know the biases. Therefore, we hope that our appraauseful to determine

circulation pattern specific model biases and camelpful to the modellers’

community.

8.4 Issuesin dynamical downscaling

It is important to stress that this dissertatiomydackles the impact of global
climate change on future ;Qevels, thereby not taking into account future
changes in anthropogenic emissions and disregaadivey feedbacks that could
play an important role. Future regional-scale ozonesases for example appear
to be related to a drying out of soils and vegeéitatafaces, leading to a reduced
destruction of ozone. Others suggested that inedesnperatures could lead to
increased biogenic volatile organic compound (V@@)ssions (e.g. isoprenes),
strengthening the regional-scale ozone formatiantrépospheric ozone is, after
all, the third most important man-made greenhowseafter CQ and methane,
joint efforts should be done first to develop ategrated model setup, in order

217



to improve the quantification of air quality levelsader changing climate
conditions. Attention should be paid to a combimete of changing future

(biogenic and anthropogenic) emissions and climgto&l conditions in order

to set-up appropriate emission reduction measurexhtieve acceptable future
ozone levels, both on local, regional and the dlebale.

This integrated approach, taking into account eomnsshanges, feedbacks and
other physical processes can only be done usingnantical downscaling
approach, hence meaning the nesting of regionataté models in global
climate models for regional impact assessmentesudihereby, the errors in the
large-scale AOGCM (as described in 8.2) are traresfeto the RCM, which
itself has biases that are not necessarily lowethis respect, some sensitivity
experiments are performed in order to improve ARRSban thermal
characteristics. These features are of importancairi quality modelling and
downscaling studies because of their influence len diurnal boundary layer
height development and the dispersion, hence theecdration, of various air
pollutants. Based on the measurements from the BSTO®& campaign, the
mesoscale model ARPS was first evaluated for the30of June 2001 period,
in the Marseille Berre-Pond region (France). ARBSshown to be able to
reproduce the diurnal cycle of temperature, wingesppand direction and water
vapour, as well for urban as for rural areas. Hoparameters, the modelled
errors are within the error limits defined for @uality modelling purposes.
Subsequently, simulated surface heat fluxes wané@ated with measurements
from Marseille Centre, Meyrargues and two scintileier observation sites.
Overall, the simulated fluxes agree fairly wellmihe measurements, except for
the sensible heat flux over the centre of Marseitid the urban scintillometer
sites, which were largely underestimated. Theref@asitivity simulations were
executed in order to test the impact of differemérmal roughness length
parameterizations andrious thermal surface parameter valaeghe simulated
sensible heat flux over urban portions of the dom@he analysis of these
sensitivity simulations showed that the Zilitinkelvi et al. (1992) thermal
roughness length parameterization scheme, in catibm with intermediate
values for thermal admittance, give the best reswdompared to the
observations. Moreover, comparisons with more cemphodels as for e.g. the
TEB/ISBA and LUMPS scheme over the same terraiaystihat by using this
simple approach, a similar magnitude of flux erroosnpared to observations
are obtained.

Next to the thermal characteristics, many otheeetsp for e.g. the initial and
boundary conditions, the parameterizations and luen, contribute to a
correct representation of the surface meteorolMpreover, the heterogeneity
of the earths’ surface makes it hard to draw amyg finiform conclusions on the
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results described in chapter 3. The findings apeasentative for the simulation
of specific characteristics in the Marseille BelRend Region and a week in
June 2001, governed by a high-pressure system wtitreon. Although we
expect the use of similar values of thermal roughnkengths and a similar
thermal parameterization scheme to be adequateldosely constructed old
European cities (similar to Marseille), it is cleaat more research is required to
settle this for other regions or cities, time pdsi@nd meteorological conditions.
A first step in this direction is the MUSTI (Measwg urban surfaces’ thermal
inertia) project (PRODEX-PX/8/EQ/14). Thereby, thigective of the MUSTI
project is to retrieve thermal coefficients thatuacterize urban surfaces using
diurnal time series of surface temperature as mmedsiby the SEVIRI
instrument (Spinning Enhanced Visible and Infrai@dger) onboard the MSG
platform (Meteosat Second Generation), togetheh \siirface temperatures
simulated by the ARPS atmospheric model. The tatgparameters are thermal
conductivity, heat capacity, and thermal roughiesgth.

Of course this research is only part of a contirsuongoing research trying to
produce reliable meteorological conditions with osEsmle models that,
afterwards, can serve as input for air dispersicodets. More research is
planned to be done in the CLIMAQS project which maljective is to develop
a very broad and generic knowledge platform in aded atmospheric
modelling, thereby aiming at medium- to long-terpplecability of ARPS and
AURORA (Air quality modelling in Urban Regions uginan Optimal
Resolution Approach) for policy support in the are& climate change impacts
and urban/regional air pollution.

8.5 The relevance of dynamical versus statistical downscaling in future air
quality applications

At present, mesoscale and global models continuenpwove their results in
comparison to present-day observed data, with areasing horizontal and
vertical resolution and growing (international adioated) efforts towards an
online coupled meteorological - air dispersion apgh (e.g. COST 728 —
www.COST728.0ory In the near future, we believe that, due torardaase in
computing power and an improved understanding ef ghysical processes
governing specific air quality episodes, meteormalgair quality model
systems are converging towards a high-resolutioin@coupled integrated
system, in which the necessary feedbacks are mdvidom the chemical
transport model to the meteorological model ane viersa. Nevertheless, due to
the fact that this dynamical approach is at pressit computationally
expensive, we have opt to continue this researadhgusn a statistical
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downscaling approach that is computational less ameing, more easy
applicable and rapidly interpretable in terms & ghysical linkages.

Comparative studies applying both dynamical antssitzal downscaling tools
on downscaling surface meteorological or environaervariables found
divergence between the methods under various dirnhange forcings, but
without systematic explanations for the magnitude dovergence. These
intercomparison studies state that it is not pdssib bring forward one method
that returns more “correct” responses to exteroatiigs of a possible climate
compared to the other. Generally, it was suggesimda regional assessment of
a specific variable could be improved by assessiatjiple (both statistical and
dynamical) downscaling methods for the same AOG@M research programs
are encouraged that lead to rigorous intercompasisd statistical downscaling
methods and nested regional climate modelling nastho

Therefore, we believe that this study providesghsiin the meteorological
elements contributing to high ;Oconcentrations in present-day and future
climate conditions. Further research based on ardigal downscaling method
and focusing on the ‘correct’ representation ofséheneteorological variables
believed to be important fors@roduction, should provide insight in other, more
complex processes that can result in even highwer O; concentrations. In
this way, it is clear, that, as long AOGCMs and RCHlb not provide the
physical evidence of being reliable and applicafie terms of spatial and
temporal resolution) in a specific climatologicalda(or) environmental field, it
IS interesting to perform both statistical and dwieal downscaling methods, as
both methods are complementary.
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