
A KATHOLIEKE UNIVERSITEIT LEUVEN

FACULTEIT INGENIEURSWETENSCHAPPEN

DEPARTEMENT ELEKTROTECHNIEK–ESAT

Kasteelpark Arenberg 10, 3001 Leuven-Heverlee

White-Box Cryptography

Promotor:

Prof. Dr. ir. Bart Preneel

Proefschrift voorgedragen tot

het behalen van het doctoraat

in de ingenieurswetenschappen

door

Brecht WYSEUR

Maart 2009

ii

A KATHOLIEKE UNIVERSITEIT LEUVEN

FACULTEIT INGENIEURSWETENSCHAPPEN

DEPARTEMENT ELEKTROTECHNIEK–ESAT

Kasteelpark Arenberg 10, 3001 Leuven-Heverlee

White-Box Cryptography

Jury:

Prof. dr. ir.-arch. Herman Neuckermans, voorzitter

Prof. dr. ir. Bart Preneel, promotor

Dr. Henri Gilbert (Orange Labs)

Prof. dr. ir. Jean-Jacques Quisquater (UCL)

Prof. dr. ir. Vincent Rijmen

Prof. dr. ir. Marc Van Barel

Prof. dr. ir. Joos Vandewalle

Proefschrift voorgedragen tot

het behalen van het doctoraat

in de ingenieurswetenschappen

door

Brecht WYSEUR

U.D.C. 681.3*E4 Maart 2009

c© Katholieke Universiteit Leuven – Faculteit Ingenieurswetenschappen
Arenbergkasteel, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag vermenigvuldigd en/of
openbaar gemaakt worden door middel van druk, fotocopie, microfilm, elektron-
isch of op welke andere wijze ook zonder voorafgaande schriftelijke toestemming
van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

D/2009/7515/23

ISBN 978-94-6018-040-8

For those who keep trying,
failure is temporary

– Frank Tyger

ii

Acknowledgments

This dissertation is the result of a long process to which many people were directly
or indirectly involved. Therefore, I would like to take this opportunity to thank
everyone who has supported me during the past years.

First, I would like to express my gratitute to Prof. Bart Preneel for giving
me the opportunity to pursue a Ph.D. at COSIC. For this guidance and advice
during the past years, and carefully reading and correcting this dissertation. And
for the opportunity to explore my personal interests and set my own objectives.
I want to thank Dr. Henri Gilbert, Prof. Jean-Jacques Quisquater, Prof. Vincent
Rijmen, Prof. Marc Van Barel, and Prof. Joos Vandewalle for kindly accepting
to be members of the jury, and Prof. Herman Neuckermans for chairing it.

When I started working at COSIC, colleagues had to perform some kind of
speech-cryptanalysis in order to understand me. Fortunately, in time the com-
munication improved and while cosic was growing fast, many colleagues became
friends. The social events that we organized were a nice addition to support
friendship amongst colleagues. Hence, I would like to thank the past and cur-
rent COSIC members for the special atmosphere, including An, Antoon, Bartek,
Benedikt, Christophe, Christopher, Danny, Dave, Elmar, Elke, Frederik, George,
Gregory, Jens, Joe, Klaus, Koen, K̊are, Markulf, Miroslav, Nele, Nessim, Nicky,
Norbert, Robert, Pim, Roel, Saartje, Sebastian, Sebastiaan, Souradyuti, Ste-
faan, Stefan, Svetla, Thomas, and Wouter. In particular, I would like to thank
Jan Cappaert, Dries Schellekens, and Karel Wouters for all those years of shar-
ing and moving offices together throughout the entire ESAT building, and with
Elena Andreeva and Yoni De Mulder, for the good office atmosphere.

The fact that I can present this work to you, has only been possibly by virtue
of people that are (mostly in a healthy way) obsessed by Mathematics, and have
divulged this enthousiasm to many students. In particular, I want to thank Marc
Platteeuw, Prof. Paul Igodt, Prof. Jan Denef, and Prof. Igor Semaev, for their
joy of Mathematics they have shared with me.

iii

Péla Noë deserves a big thank you for many reasons. Not only for practical
matters such as paperwork, but also because she is someone whom you can always
talk to. And Elvira Wouters for the immens administrative work she is able to
cope with. Dank!

Graag dank ik mijn ma en pa voor de kansen die ze me geboden hebben. Mijn
zussen Liselot en Julie om het met me uit te houden. Ik geef toe dat ik misschien
niet altijd de gemakkelijkste broer of zoon ben geweest, maar toch zijn ze me
blijven aanmoedigen. Alsook aan m’n ganse familie. Bedankt voor de blijvende
steun! Mijn vriendin Lut verdient ook een woordje dank voor haar liefde, steun
en de tijd die ze me gaf om dit werk te voltooien.

Vriendschap geeft telkens een impuls om terug verder te gaan. Ik wens dan
ook tal van vrienden te bedanken voor de vele tijd die we samen hebben beleefd.
Een extra dank u aan Lies Verdru en Thomas rotté, voor hun gastvrije ontvangst
elke zondagavond en onze uitstapjes samen. Alle vrienden hier bedanken wordt
moeilijk, maar toch een woordje aan Dries en Inge, Luc en Ilse, Stefaan, Joris
(aka Sjors), Koen en Melanie, Lieven en Delphine, Anneleen, Bruno, Elke, Koen,
Leander, Wim. Vrienden van vroeger en tijdens het studentenleven. Dank aan
Lies, Inge, Yoni, en Karel om het aantal (dt-) fouten in deze tekst te reduceren.

Ut Vivat, crescat et floreat studentenclub Moeder Baekelandt! Dank aan haar
(oud-)leden, collega pro-senioren en praesidiumleden voor de mogelijkheden die
aangeboden werden om even aan het Ph.D leven te ontsnappen met een pint aan
de toog.

Last but not least, I would also like to acknowledge the K.U.Leuven and the
Institute for the Promotion of Innovation by Science and Technology in Flanders
(IWT), for funding my research work.

Brecht Wyseur
March 2009

iv

Abstract

This thesis studies the topic of white-box cryptography (WBC), which focusses
on software implementations of cryptographic primitives (such as encryption
schemes). Traditionally, cryptographic primitives are designed to protect data
and keys against black-box attacks. In such a context, an adversary has knowl-
edge of the algorithm and may examine various inputs to and outputs from the
system, but has no access to the internal details of the execution of a key in-
stantiated primitive. In contrast, the goal of white-box implementations is to
provide a degree of robustness against attacks from the execution environment.
In such an environment, an adversary has unrestricted access to the software
implementation.

The main part of this dissertation covers the security assessment of white-box
implementations. This contribution is two-fold: we study practical white-box
techniques and perform a theoretical study. First, a study is conducted on the
practical white-box implementations of DES and AES encryption algorithms,
which includes their cryptanalysis. Subsequently, generic cryptanalysis results
are described, which opens a discussion towards white-box design strategies.

Since no formal definitions of white-box cryptography were presented before
and the proposed white-box implementations did not come with any proof of
security, we initiate a study towards a theoretical model for white-box cryptog-
raphy. The study on formal models of obfuscation and provable security leads to a
definition where we capture the security requirements of WBC defined over some
cryptographic scheme and a security notion. This new theoretical model provides
a context to investigate the security of white-box implementations, which leads
to a number of positive and negative results.

Considering the practical interest of research in WBC, we conclude with an
overview of a selection of applications and related research fields that might
benefit from and contribute to this research topic.

v

vi

Samenvatting

Deze thesis bestudeert het onderwerp white-box cryptografie (WBC), dat zich op
software-implementaties van cryptografische primitieven (zoals vercijferingssche-
ma’s) concentreert. Traditioneel worden cryptografische primitieven ontworpen
om gegevens en sleutels te beschermen tegen black-box aanvallen. Hierbij heeft
de aanvaller kennis van het algoritme en kan hij de invoer naar en de uitvoer van
het primitief bestuderen. Maar hij heeft geen zicht op de interne werking van een
sleutel-gëınstantiëerd primitief tijdens de uitvoering (zwarte doos). In deze thesis
beschouwen we een aanvalsmodel waarbij de aanvaller onbeperkte toegang heeft
tot de software-implementatie: het white-box model. Het doel van white-box im-
plementaties is om in een dergelijke context een bepaald niveau van bescherming
te bekomen.

Het belangrijkste deel van deze thesis behandelt het nagaan van de veiligheid
van white-box implementaties. Deze bijdrage is tweezijdig. Allereerst worden
de praktische white-box implementaties van DES en AES vercijferingsalgoritmen
beschreven, en hun cryptanalyse voorgesteld. Deze resultaten worden verder
uitgebreid naar generische aanvallen, wat het pad opent naar nieuwe technieken.

Aangezien nog geen formele definities van white-box cryptografie voorgesteld
werden en de praktische white-box implementaties zonder bewijs van veiligheid
voorzien zijn, dringt zich een studie op naar het formeel definiëren van white-
box cryptografie. Dit is de tweede grote bijdrage. De studie van theoretische
obfuscatie en bewijsbare veiligheid resulteert in een definitie van WBC, waarbij
we de veiligheidsvereisten omvatten voor een bepaald cryptografisch primitief met
geassociëerde veiligheidsnotie. Dit nieuw theoretisch model levert een context
op, waarin de veiligheid van white-box implementaties bestudeerd kan worden,
en leidt tot een aantal positieve en negatieve resultaten.

Gezien de praktische mogelijkheden die kunnen voortvloeien uit WBC,
beëindigen we deze thesis met een overzicht van een selectie van toepassingen
en verwante onderzoeksdomeinen, aan welke dit onderzoek kan toe bijdragen.

vii

viii

Contents

Acknowledgments iii

Abstract v

Abstract in Dutch vii

Contents viii

List of Abbreviations xvii

List of Notation xviii

Summary in Dutch xxi

1 Introduction 1
1.1 Cryptology . 2

1.1.1 The Caesar Cipher . 3
1.1.2 Kerckhoffs’ Principle . 4
1.1.3 One-Time Pad . 4
1.1.4 Modern Cryptography . 5

1.2 Motivation . 6
1.2.1 Mobile Agents . 7
1.2.2 Digital Rights Management 8

1.3 White-Box Model . 9
1.3.1 Entropy Attack . 9
1.3.2 Key Whitening Attack . 11

1.4 White-Box Cryptography . 13
1.5 Outline of this Thesis . 13

ix

2 Block Ciphers 15
2.1 Introduction . 15

2.1.1 Terminology . 15
2.1.2 Objectives and Definitions 16
2.1.3 Design . 18

2.2 Block Ciphers . 21
2.2.1 The Data Encryption Standard (DES) 21
2.2.2 The Advanced Encryption Standard (AES) 23

2.3 Cryptanalysis . 25
2.3.1 Black-Box Cryptanalysis . 25
2.3.2 Side-Channel Cryptanalysis 28

2.4 Conclusion . 31

3 White-Box Implementations 33
3.1 Introduction . 33

3.1.1 Attack Models . 33
3.1.2 Comparison between Attack Models 34
3.1.3 Objectives of WBC . 36

3.2 Obfuscation Strategy . 37
3.2.1 Initial White-Box Strategy 38
3.2.2 Related Concepts . 39
3.2.3 Encoded Variants . 41

3.3 Security . 42
3.3.1 Local Security . 42
3.3.2 Metrics . 43

3.4 History . 44
3.5 Constructions . 45

3.5.1 White-Box DES Implementations 45
3.5.2 White-Box AES Implementations 50

3.6 White-Box Cryptanalysis . 53
3.6.1 Differential Cryptanalysis 53
3.6.2 Algebraic Cryptanalysis . 58

3.7 Running White-box Implementations Backward 66
3.8 Cryptanalysis of White-Box DES Implementations with External

Encodings . 67
3.8.1 Finding Restricted Bit Flips 69
3.8.2 Finding Single Bit Flips . 73
3.8.3 Obtain the Inputs to the S-boxes 74
3.8.4 Key Recovery . 75
3.8.5 Recovery of the External Encodings 77

3.9 Conclusion . 79

x

3.9.1 Further Research . 80

4 A Theoretical Model for White-Box Cryptography 83
4.1 Introduction . 83

4.1.1 Related Work . 84
4.1.2 Terminology . 85

4.2 Code Obfuscation . 85
4.2.1 Definitions for Obfuscation 86
4.2.2 Impossibility Results . 90
4.2.3 Positive Results . 93
4.2.4 Conclusion . 95

4.3 Security Notions . 96
4.4 Our Contribution . 99
4.5 Preliminaries . 100
4.6 Obfuscators . 102

4.6.1 Obfuscator (Correctness) 103
4.6.2 Obfuscator (Soundness) . 103

4.7 White-Box Cryptography . 105
4.7.1 Black-Box Game . 105
4.7.2 White-Box Game . 108

4.8 (Im)possibility Results . 110
4.8.1 Negative Results . 110
4.8.2 Positive Results . 113
4.8.3 UWBP for Non-Trivial Families 116

4.9 The Case of Probabilistic PTMFs 117
4.9.1 An Open Question: WBP and Soundness 119

4.10 Conclusion . 120

5 Applications 123
5.1 New and Improved Cryptographic Primitives 124

5.1.1 Asymmetric Encryption Schemes 124
5.1.2 Programmable Random Oracles 125

5.2 Hardware . 126
5.3 Computing in the Encrypted Domain 128

5.3.1 Homomorphic Encryption 128
5.3.2 Secure Function Evaluation 129

5.4 Software Protection . 130
5.4.1 Software Tamper Resistance 131
5.4.2 Diversity . 132
5.4.3 Trustworthy Execution . 132

5.5 Digital Rights Management . 139

xi

5.5.1 Traitor Tracing . 141
5.6 Conclusions . 141

6 Conclusions and Further Research 143
6.1 Conclusions . 143
6.2 Future Work . 145

Bibliography 148

Index 164

List of Publications 167

About me 169

xii

List of Figures

1.1 A cryptosystem . 2
1.2 Basic DRM architecture . 8
1.3 Graphical representation of a program binary, or memory dump [172] 10
1.4 Final operations of an SPN block cipher with key whitening 12

2.1 Cipher-block chaining (CBC) mode of operation 18
2.2 One Feistel cipher round . 20
2.3 the Data Encryption Standard . 22
2.4 A schematic overview of one round of the Advanced Encryption

Standard . 24
2.5 The black-box attack model . 26
2.6 The grey-box attack model . 29

3.1 Attack model comparison . 35
3.2 (a) One round of DES (b) One round of white-box DES 45
3.3 The two types of white-box DES T-boxes: (a) non-linear T-box

with internal S-box (b) bypass T-box 47
3.4 Matrix decomposition . 48
3.5 Type II table . 51
3.6 Type III and type IV table . 51
3.7 Type I table . 52
3.8 Statistical bucketing attack on naked white-box DES implementa-

tions . 55
3.9 Analysis of an encoded AES round mapping 59
3.10 Generic analysis of SLT rounds . 61
3.11 Analysis of an encoded XOR building block 64

4.1 Predicate-based Virtual Black Box Property 88
4.2 Left-or-right security . 98

5.1 The Hypervisor Architecture . 133

xiii

5.2 Time Overview of the Improved Pioneer Protocol 136
5.3 White-Box Remote Program Execution Architecture 137

xiv

List of Tables

3.1 Implementation size of an n-bit to m-bit lookup table. 39
3.2 White-box AES implementation size 52
3.3 White-box AES implementation diversity and ambiguity 53
3.4 Pre-image computations for fault injection attack 56

4.1 Overview of theoretical code obfuscation results 96

5.1 Comparison between hardware and software 127
5.2 The SG{∧,∨} gate . 139

xv

xvi

List of Abbreviations

AES Advanced Encryption Standard
AT Affine Transformation
BC Block Cipher
CBC Cipher-block chaining
CCA Chosen Ciphertext Attack
CED Computing on Encrypted Data
CPA Chosen Plaintext Attack
CPU Central Processing Unit
DES Data Encryption Standard
DRM Digital Rights Management
FTG Find Then Guess
GPS Global Positioning System
IND Indistinguishability
LUT Lookup Table
OT Oblivious Transfer
SFE Secure Function Evaluation
SLT Subsitution-Linear Transformation (cipher)
SN Security Notion
SPN Substitution-Permutation Network (cipher)
TM Turing Machine
TRS Tamper Resistant Software
VBBP Virtual Black Box Property
WBC White-Box Cryptography
WBP White-Box Property

xvii

List of Notations

Functions, Sets, Elements

Ek Encryption with key k ∈ K
Dk Decryption with key k ∈ K
K Key space
k ∈ K Key
P, C Plaintext space, ciphertext space
c ∈ C;m, p ∈ P A ciphertext; message or plaintext
m, p ∈ P Message or plaintext
GF(q) Finite field with q elements
GF(q)n n-dimensional vector space of GF(q)
{0, 1}n Bit-string of length n, i.e., any piece of digital data

({0, 1}∗ indicates an arbitrary length).
S A substitution operation or S-box
L A lookup table
R Random oracle
a← A Selection of an element a from a set A

(under some distribution)
Q[q] Instantiation of algorithm Q by q ∈ K
AP (x) Process A that computes on input x,

with oracle access to P
O – O(P) Obfuscator – obfusation of P
×n

i=1Ni Product space N1 ×N2 × · · · ×Nn

xviii

Basic Operators

⊕ the exclusive-or operation or addition modulo 2
⊕c a function that adds c to the input (modulo 2)

⊕c(x) = x⊕ c
a||b the concatenation of the strings/values a and b
|a| absolute value of a, or

bit-length of a (depending on the context)
|A| Size of the set A
dae The smallest integer larger than or equal to a
g ◦ f The composition of the functions f and g

(g ◦ f)(x) = g(f(x))

xix

xx

White-Box Cryptografie

Nederlandse samenvatting

Hoofdstuk 1: Inleiding

Het gebruik van computers in ons dagelijkse leven neemt toe. Daarbij denken we
niet enkel aan onze huishoudelijke elektronica (computer, gsm, televisie), maar
onder meer ook aan de computergestuurde besturing van onze wagens, rege-
ling van het elektriciteitsnetwerk, online bankrekening, en internet. Steeds meer
steunt onze maatschappij op computerinfrastructuur en het uitwisselen en ver-
werken van gegevens. In gëındustrialiseerde landen steunen quasi alle bedrijven
voor hun dagelijkse werking direct of indirecte op computers en software. Het
industriële en huishoudelijke gebruik wordt verder gestimuleerd door de indruk-
wekkende expansie van internet en (draadloze) communicatienetwerken. Door
het open karakter van tal van netwerken kan iedereen met verschillende toestel-
len hieraan connecteren.

Om gebruik te kunnen maken van de nieuwe opportuniteiten die computer-
systemen bieden, is er nood aan methodes die de communicatie en het verwerken
van gegevens veilig stellen. Cryptologie vormt hierbij een hoeksteen en omvat
het ontwikkelen van algoritmes (cryptografie) en het breken van deze algoritmes
(cryptanalyse), met als centraal doel het beveiligen van gegevens. Voorbeelden
van dergelijke algoritmes zijn onder andere gekend als vercijferingsalgoritmes en
digitale handtekeningen.

Aanvankelijk werd cryptologie toegepast voor het beschermen van militaire
en diplomatieke gegevens. Tegenwoordig wordt ze gebruikt voor het beveiligen
van netwerken, computersystemen en allerhande applicaties, zowel voor bedrij-
ven als voor particulieren. Vooral het beveiligen van softwareapplicaties is een
recent fenomeen. De nood naar beveiliging hiervan wordt versterkt door een
toenemende trend van het gebruik van complexe softwareapplicaties met strenge
beveiligingsvereisten. Denk daarbij onder andere aan online bankprogramma’s,

xxi

online spelletjes waar digitale valuta geassocieerd worden met reële valuta, en
digitale mediasystemen. Bovendien wordt dergelijke software vaak uitgevoerd op
onbetrouwbare systemen. Onbetrouwbaar vanuit het standpunt van de gebruiker
(bv. door de aanwezigheid van malware), of vanuit het standpunt van een leveran-
cier die niet wenst dat een gebruiker van de software bijvoorbeeld ongeoorloofd
digitale valuta kan aanmaken of digitale media kan kopiëren en verspreiden.

Dit brengt ons bij de doelstelling van deze thesis. Cryptografische primitieven
werden ontwikkeld om uitgevoerd te worden op betrouwbare computerplatfor-
men. Het principe van Kerckhoffs staat hierin centraal, en stelt dat de veiligheid
van cryptografische algoritmes enkel berust op de geheimhouding van sleutelin-
formatie, terwijl het algoritme zelf publieke kennis is. Ze worden echter steeds
meer gebruikt in softwareapplicaties die uitgevoerd op onbetrouwbare systemen,
wat problemen stelt bij de geheimhouding van sleutelinformatie. De doelstel-
ling is na te gaan hoe cryptografische primitieven zoals vercijferingsalgoritmes
veilig kunnen worden gëımplementeerd, zodat de aanvaller geen sleutelinforma-
tie kan bekomen ondanks het feit dat die aanvaller volledige toegang heeft tot
het computerplatform of zelfs de software-implementatie van het vercijferingsal-
goritme volledig ter beschikking heeft. Dit onderzoek wordt white-box (witte
doos) cryptografie genoemd, wat de context van volledige open toegang schetst
in tegenstelling tot een zwarte doos.

In het eerste hoofdstuk van deze thesis leiden we het onderzoeksdomein van
de cryptografie in en schetsen we de probleemstelling. We illustreren dit aan de
hand van 2 voorbeelden van mogelijke aanvallen op software implementaties. Een
eerste voorbeeld omschrijft een aanval die het geheugen uitleest tijdens de uit-
voering van een cryptografisch algoritme. Vermits er sleutelinformatie gebruikt
wordt tijdens een vercijferingsproces, zal sleutelinformatie in het geheugen op-
geslagen worden. Dergelijke informatie ziet er typisch meer willekeurig (hoge
entropie) uit dan uitvoerbare code (lage entropie), en kan door middel van een
entropieonderzoek van het geheugen gelokaliseerd worden. Het blijkt moeilijk
zich hiertegen te beschermen. Een typische tegenmaatregel is het opbreken van
sleutelinformatie in kleinere stukken en op uiteenliggende locaties in het geheu-
gen opslaan, of ervoor te zorgen dat telkens maar een klein deel sleutelinformatie
in het geheugen staat. Tegen een geschoolde, gemotiveerde aanvaller halen deze
beschermingsmaatregelen echter niet veel uit.

Een tweede aanval beschrijft een aanval op de software implementatie zelf,
waarbij een herkenbaar deel bewust overschreven wordt. Bij vele populaire cryp-
tografische algoritmes kan het overschrijven van een stuk (gecompileerde) code
leiden tot het weergeven van stukken sleutelinformatie bij uitvoering van de im-
plementatie.

Deze thesis levert een bijdrage tot mogelijke oplossingen voor deze uitda-

xxii

ging. Nadat in hoofdstuk 1 een context is omschreven, worden in hoofdstuk 2 de
cryptografische primitieven omschreven die we veilig wensen te implementeren.
We schetsen er ook een overzicht van bestaande aanvallen op cryptografische
primitieven in traditionele aanvalsmodellen. In het onderzoek naar white-box
cryptografie onderscheiden we drie belangrijke aspecten. We behandelen deze
elk in een hoofdstuk van deze thesis.

In hoofdstuk 3 presenteren we technieken die recent werden voorgesteld voor
het veilig implementeren van cryptografische primitieven in software. Ons onder-
zoek omvat een grondige analyse van deze technieken, en leidt tot het opstellen
van vereisten in het ontwerp van nieuwe vercijferingsalgoritmes. In hoofdstuk 4
schetsen we een theoretisch raamwerk voor white-box cryptografie, waarbinnen
we de theoretische grenzen van wat wel en niet mogelijk is afzoeken. Hoofd-
stuk 5 verdiept zich op de toepassingsgebieden en verwante onderzoeksdomeinen.
Hoofdstuk 6 sluit de thesis af met een korte samenvatting van de belangrijkste
resultaten en formuleert nieuwe uitdagingen voor de toekomst.

Hoofdstuk 2: Blokcijfers

In het tweede hoofdstuk van deze thesis verdiepen we ons in cryptografische sys-
temen. Onze focus richt zich vooral op vercijferingsalgoritmes. Deze hebben
tot doel om data (klaartekst) om te zetten in cijfertekst zodat enkel een per-
soon die de geheime sleutel kent de klaartekst opnieuw kan bekomen. In het
algemeen kunnen 2 soorten cryptografische vercijferingssystemen onderscheiden
worden: symmetrische en asymmetrische cryptografie. In symmetrische systemen
gebruiken beide partijen dezelfde sleutel, terwijl bij asymmetrische systemen bei-
de partijen een verschillende sleutel hanteren (een vercijferingssleutel, die publiek
kan zijn, en een private ontcijferingssleutel).

Symmetrische cryptografie wordt op zijn beurt opgesplitst in blokcijfers en
stroomcijfers. Stroomcijfers genereren uit de geheime sleutel een ‘sleutelstroom’,
die bij de klaartekst opgeteld wordt. Bij het ontcijferen wordt dezelfde sleutel-
stroom gegenereerd. Stroomcijfers transformeren klaartekst van arbitraire lengte,
terwijl blokcijfers op vaste blokken data opereren. Blokcijfers bestaan typisch uit
een opeenvolging van ronden die bestaan uit eenvoudige bouwblokken, waarbij
elk van deze ronden sleutelafhankelijk zijn.

Cryptanalysetechnieken

Het is nuttig om binnen de context van deze thesis de traditionele aanvallen
voor te stellen, wegens een verband met aanvalstechnieken in een white-box mo-
del. Een eerste aanvalsmodel is het meest traditionele en noemen we vaak het
black-box aanvalsmodel. Hierbij wordt een cryptografische implementatie als een

xxiii

zwarte doos gezien en is enkel orakeltoegang mogelijk. Dit wil zeggen dat een
aanvaller enkel over klaartekst en cijfertekst informatie beschikt, en op basis hier-
van sleutelinformatie probeert te bekomen. Dergelijke aanvallen zoeken typisch
naar statistische verbanden tussen verschillen aan de ingang en verschillen aan de
uitgang (lineaire en differentiële cryptanalyse), of wiskundige vergelijkingen op
te stellen voor het (sleutelgëınstantieerde) algoritme (algebräısche cryptanalyse).

Een tweede aanvalsmodel omvat nevenkanaalaanvallen. Dergelijke aanvallen
gebruiken informatie die ‘lekt’ tijdens het vercijferingsproces en eigen is aan de
manier waarop de cryptografische algoritmes zijn gëımplementeerd. Deze aanval-
len zijn typisch uitvoerbaar wanneer de aanvaller een beperkte toegang heeft tot
het uitvoerende toestel. Voorbeelden van nevenkanaal informatie zijn stroom-
verbruik van het toestel, elektromagnetische straling, en uitvoeringstijd. Bij ac-
tieve nevenkanaalaanvallen kan een aanvaller proberen het vercijferingsproces te
bëınvloeden door bijvoorbeeld fouten te introduceren (door middel van straling),
de voedingsspanning naar het toestel te onderbreken of andere parameters (bv
temperatuur) te bëınvloeden.

In een white-box aanvalsmodel stellen zich alle mogelijke aanvallen die hier-
boven beschreven zijn. Een aanvaller heeft volledige toegang tot het uitvoerend
platform en kan zo alle mogelijke parameters wijzigen. Wegens een volledige
toegang tot de software implementatie kan de aanvaller ongelimiteerd black-box
aanvallen uitvoeren, alsook de interne rondestructuur van een blokcijfer aan een
analyse onderwerpen. We stellen software-implementaties van vercijferingsalgo-
ritmes dus aan een erg krachtig aanvalsmodel bloot.

Hoofdstuk 3: White-box implementaties

Het bekomen van veilige software-implementaties verwijst in de eerste plaats naar
de methodologie van het implementeren van bestaande cryptografische algorit-
mes. Wanneer een aanvaller namelijk volledige toegang heeft, is de manier van
implementeren de enige verdedigingslijn. Logischerwijs dienen zich enkel vercij-
feringschema’s aan, die al veilig zijn tegen black-box aanvallen, vermits deze ook
in een white-box aanvalsmodel kunnen worden uitgevoerd. Omgekeerd zijn alle
implementaties die veilig zijn tegen white-box aanvallen, inherent veilig tegen
eender welke black-box en nevenkanaal aanvallen.

In 2002 deden Chow et al. [43, 42] een voorstel hoe dit kan worden aangepakt
met voorbeeld implementaties toegepast op DES en AES. Het algemene idee is om
alle operaties waaruit een blokcijfer bestaat, om te zetten naar een netwerk van
sleutelafhankelijke opzoektabellen, en vervolgens deze tabellen te randomizeren
door het invoegen van willekeurige, parengewijs opheffende, encoderingen. De
hoop is dat door analyse van het netwerk gerandomiseerde opzoektabellen de
sleutelinformatie zodanig moeilijk te extraheren valt, dat een aanvaller evengoed

xxiv

een black-box aanval had kunnen uitvoeren. In dit hoofdstuk van deze thesis
willen we de veiligheid van deze techniek nagaan.

Veiligheid

Het achterliggende idee dat een dergelijke techniek veilig kan zijn, komt uit het
concept van lokale veiligheid. Beschouw een reeks van 3 opzoektabellen L3 ◦L2 ◦
L1, waarbij L2 geheime sleutelinformatie bevat. Bijvoorbeeld L2(x) = f(x)⊕ k,
met f een gekende functie, en k geheime sleutel informatie (in overeenstemming
met het Kerckhoffs principe). In een white-box model heeft de aanvaller toegang
tot de beschrijving van L2, en kan deze dus evalueren voor de waarde 0 om de
sleutelinformatie te bekomen: k = L2(0).

Om dergelijke aanval tegen te gaan, worden de opzoektabellen als volgt
geëncodeerd:

L1 → L′1 = b1 ◦ L1

L2 → L′2 = b2 ◦ L2 ◦ b−1
1

L3 → L′3 = L3 ◦ b−1
2 ,

waarbij b1 en b2 bijecties zijn waarvan hun dimensies overeenkomen met deze
van L2. Het resultaat is een gerandomiseerde reeks van 3 opzoektabellen L′3 ◦
L′2 ◦ L′1, met als fundamentele eigenschap dat L′2 geen sleutelinformatie lekt.
Deze fundamentele eigenschap noemen we lokale veiligheid. Indien een aanvaller
sleutelinformatie wil bekomen, moet hij eerst informatie hebben over b1 en b2,
door analyse van respectievelijk L′1 en L′3. We dwingen aldus de aanvaller tot
een analyse van de hele reeks.

Deze methodologie wordt uitgebreid naar blokcijfers. De bedoeling is dat
we een aanvaller dwingen een analyse te doen van de hele implementatie (een
netwerk opzoektabellen), teneinde sleutelinformatie te bekomen. We willen dat
de moeite die hij hiervoor moet doen, ten minste equivalent is met het uitvoeren
van een black-box aanval.

De veiligheid van deze implementatiestrategie valt moeilijk te omschrijven. In
eerste fase beschreven Chow et al. metrieken zoals diversiteit en dubbelzinnig-
heid. De diversiteit metriek beschrijft hoeveel verschillende instanties gemaakt
kunnen worden met dezelfde sleutel, dubbelzinnigheid kwantiseert hoeveel kan-
didaat sleutels er zijn voor eenzelfde instantie. Metrieken zijn echter slechts
indicatief, en enkel van toepassing uit gebrek aan veiligheidsbewijzen of analyse
technieken. In het vervolg van dit hoofdstuk wordt een analyse van de state-of-
the-art white-box implementaties gepleegd. In hoofdstuk 4 gaan we op zoek naar
veiligheidsbewijzen.

xxv

Analyse

Onze analyse richt zich initieel op de white-box implementaties van DES en AES.
We onderscheiden twee soorten aanvallen: differentiële aanvallen en algebräısche
aanvallen. In deze verhandeling lichten we beide aanvalstechnieken toe en ge-
ven we een beschrijvend overzicht van enkele voorgestelde praktische white-box
aanvallen.

Differentiële aanvallen bestuderen de propagatie van het verschil tussen klaar-
teksten. Vermits in een white-box omgeving alle operaties zichtbaar zijn, kun-
nen we tijdens de uitvoering wijzigingen doorvoeren (fouten introduceren), en
bestuderen hoe deze zich doorheen de implementatie propageren. Bestaande dif-
ferentiële aanvallen op white-box implementaties richten zich op het introduceren
van fouten in de eerste of laatste ronde, waardoor ze sterk afhankelijk zijn van
ingang-uitgang encoderingen.

In ons onderzoek stellen we een nieuwe differentiële aanval voor, die op de
interne rondestructuur kan worden uitgevoerd, en daardoor onafhankelijk is van
externe encoderingen. Het succes van deze aanval berust op het feit dat het
moeilijk blijkt om differentiële eigenschappen van DES te verbergen in de white-
box implementatie. Ondanks het feit dat deze aanval specifiek is voor DES,
kan een analoge aanpak ook op andere implementaties toegepast worden, in het
bijzonder op Feistel blokcijfers.

Algebräısche aanvallen omschrijven een cryptografisch primitief door middel
van algebräısche vergelijkingen, om deze vervolgens op te lossen. Dit werd in
de context van white-box cryptografie voor het eerst voorgesteld op AES imple-
mentaties, waarbij de analyse van een geobfusceerde ronde de encoderingen van
de opzoektabellen grotendeels ongedaan kan maken. Het blijkt dat AES enke-
le eigenschappen heeft die zo’n aanval mogelijk maken. Verder onderzoek heeft
dergelijke aanvallen uitgebreid naar een grotere klasse vercijferingsalgoritmes.

Omdat blijkt dat bepaalde bewerkingen leiden tot een algebräısche aanval,
voeren we een analyse uit op de bouwblokken van blokcijfers. We presenteren
meer bepaald een aanval op de optellingsoperatie. Dit basisblok blijkt inherent
onveilig te zijn tegen aanvallen die de encoderingen proberen ongedaan te maken,
wat een impact heeft op de white-box implementaties van AES en DES.

Dit geeft een bijzonder interessant resultaat: ondanks het feit dat white-box
cryptografie initieel enkel bestudeert hoe een cryptografische veilig kan worden
gëımplementeerd (gegeven het primitief), blijkt het ook eisen te stellen op het
ontwerp van dit primitief. Als resultaat van dit hoofdstuk concluderen we dan ook
met enkele ontwerpcriteria voor het ontwikkelen van nieuwe primitieven (blok-
cijfers) die potentieel veilig kunnen worden gëımplementeerd.

Alle beschreven aanvallen hebben tot doel sleutelinformatie uit de implemen-
taties te bekomen. Het veilig implementeren omvat echter niet enkel als doelstel-

xxvi

ling het geheimhouden van sleutelinformatie, maar ook het behouden van andere
eigenschappen van cryptografische primitieven. Bijvoorbeeld de eigenschap dat
vercijferingsalgoritmes slechts in één richting uitgevoerd kunnen worden (enkel
vercijfering, geen ontcijfering mogelijk). Alvorens dit concept in hoofdstuk 4 for-
meel aan te pakken, tonen we hoe uit de white-box implementaties van de AES en
DES encryptieschema’s, hun corresponderend ontcijferingsalgoritme kan worden
afgeleid.

Hoofdstuk 4: Theoretisch model

In het vorige hoofdstuk werden praktische white-box implementaties voorgesteld.
In de literatuur werden echter geen formele definities voor white-box cryptografie
beschreven, alsook geen bewijzen van veiligheid. Gezien de succesvolle cryptana-
lyse van de bestaande white-box implementaties blijft het een open vraag of
veilige white-box implementaties al dan niet bestaan.

White-box cryptografie heeft als doel om een niveau van robuustheid te be-
reiken voor cryptografische software implementaties die onderhevig zijn aan aan-
vallen vanuit het uitvoeringsplatform. Dit stemt deels overeen met de technieken
van code obfuscatie, waarbij het doel is een programma P zo te implementeren
dat bepaalde karakteristieken van dit programma verborgen worden. Verschil-
lende theoretische modellen voor code obfuscatie zijn reeds voorgesteld. Het is
echter niet duidelijk of deze het begrip white-box cryptografie kunnen omvatten.

In dit hoofdstuk maken we een vergelijk tussen white-box cryptografie en ob-
fuscatie, en stellen dat de huidige definities van code obfuscatie niet volstaan voor
WBC. We stellen we een eerste model voor WBC op en formaliseren het concept
white-box cryptografie door middel van een white-box eigenschap. Dit maakt een
parallel met traditioneel onderzoek in theoretische modellen en bewijsbare vei-
ligheid in de cryptografie. In het tweede deel van dit hoofdstuk onderzoeken we
de eigenschappen van white-box cryptografie met ons nieuwe model. We stellen
enkele positieve en negatieve resultaten voor. Zo tonen we aan dat een white-box
implementatie van een cryptografisch primitief onmogelijk alle eigenschappen die
het in een black-box aanvalsmodel heeft, kan behalen in een white-box aanvals-
model. Als positief resultaat tonen we aan dat er cryptografische primitieven be-
staan die aan zinvolle eigenschappen kunnen voldoen in een white-box omgeving.
Zo stellen we een concreet symmetrisch encryptieschema voor dat semantisch
veilig is, en zodoende kan worden gëımplementeerd dat het ook in een white-box
aanvalsmodel semantisch veilig blijft.

xxvii

Code obfuscatie

Het onderzoek naar formele modellen voor code obfuscatie is een actief onder-
zoeksdomein. Aansluitend geven we een kort overzicht van de formele definities,
en omvatten de belangrijkste resultaten.

We noemen een obfuscator het proces dat een algoritme veilig implementeert.
Over het algemeen dient een obfuscator O aan de volgende drie eigenschappen
te voldoen:

• Functionaliteit – Het geobfusceerde programma O(P) dient functioneel
equivalent te zijn aan het originele programma P .

• Equivalente grootte en performantie – Het geobfusceerde programma O(P)
dient realistisch te blijven in verhouding met het originele programma.

• V irtuele Black-Box Eigenschap

Vooral de laatste eigenschap is van belang en omvat de veiligheid van een
obfuscator. Het is ook net in deze eigenschap dat de verschillende modellen voor
code obfuscatie zich onderscheiden. In de predicaat gebaseerde definitie krijgt de
aanvaller A het geobfusceerde programma O(P), en maakt die een uitspraak (π)
over het programma P . Indien een simulator S bestaat, met enkel toegang tot de
functionaliteit van P (= orakel toegang, of invoer-uitvoer toegang), die met een
grote waarschijnlijkheid dezelfde uitspraak π(P) kan bekomen, dan heeft de aan-
valler A geen voordeel gehad aan white-box toegang. Deze situatie is afgebeeld
in Figuur 4.1. Een obfuscator O voldoet aan de predicaat gebaseerde virtuele
black-box eigenschap, indien voor alle mogelijke programma’s P en predicaten
π, er voor elke aanvaller A steeds een simulator S kan worden opgesteld, tot op
een verwaarloosbaar aantal gevallen na. Een andere definitie is de IND-definitie,
waarbij een statisch vergelijk wordt gemaakt tussen de uitvoer van de aanvaller
A, en een simulator S.

Het probleem is dat er geen consensus is over welk model geschikt is voor
obfuscatie. De verschillende modellen hebben elk hun voor- en nadelen. Zo zijn
onder de IND-definitie slechts een beperkt aantal deterministische programma’s
obfusceerbaar. Cryptografisch nuttige programma’s, zoals deterministische ver-
cijferingsalgoritmes, kunnen dus onder dergelijke strikte vereisten niet worden
geobfusceerd. Soepelere definities, zoals de predicaat gebaseerde, zijn dan weer
te zwak om een zinvol resultaat te bekomen. Vermits predicaten gedefinieerd zijn
over het originele programma, kan deze definitie het lekken van non-black-box
informatie niet omvatten.

Bovendien lijkt het moeilijk om cryptografische vereisten, zoals bv. de niet-
inverteerbaarheid van vercijferingsalgoritmes, te omvatten door middel van ob-
fuscatie definities. We willen deze problemen aanpakken door een nieuw model
voor te stellen dat specifiek is voor white-box cryptografie.

xxviii

White-box cryptografie

Aan de basis van ons theoretisch model staan security noties. Hierbij volgen
we de strategie van formele modellen in traditionele cryptografie en bewijsbare
veiligheid. Een security notie is een formele beschrijving van de capaciteiten van
de aanvaller, en wat beschouwd wordt als een succesvolle aanval. Dit wordt in
het algemeen omschreven als een interactie tussen een uitdager en een aanvaller,
wat we een experiment noemen.

In het voorgestelde model maken we een vergelijking tussen twee experimen-
ten: het black-box experiment, waarbij een aanvaller enkele orakeltoegang heeft
tot functies Q, en een white-box experiment, waarbij een aanvaller naast orakel-
toegang tot de functies Q ook de software-implementatie O(Qi) verkrijgt. Dit
komt intüıtief overeen met de strategie in bewijsbare security, waarbij een ver-
gelijking of reductie wordt gemaakt tussen een cryptografisch primitief en zijn
gëıdealiseerde tegenhanger, of met de aanpak in code obfuscatie waarbij een ver-
gelijking wordt gemaakt tussen een aanvaller en een simulator. We stellen dat
een obfuscator O voldoet aan de white-box eigenschap voor een bepaalde security
notie sn en familie Q, wanneer de beste aanvaller in het white-box experiment
niet significant meer informatie kan bekomen (binnen het kader van de security
notie), dan de beste aanvaller in het black-box experiment.

Een belangrijke vaststelling die we maken is obfusceerbaarheid. Een security
notie omschrijft de capaciteiten van een aanvaller. Sommige security noties be-
perken een aanvaller in de operaties die kunnen uitgevoerd worden op een bepaald
primitief. Zo staat de IND-CCA2 security notie (zie algoritme 6) niet toe dat een
decryptieoperatie wordt uitgevoerd op een bepaalde cijfertekst. Echter, wanneer
de decryptieroutine wordt geobfusceerd en ter beschikking wordt gesteld van de
aanvaller, kan een dergelijke beperking niet ingevoerd worden. We kunnen dus
stellen dat de decryptieoperatie niet obfusceerbaar is wanneer van het encryptie
algoritme IND-CCA2 security verwacht wordt.

Resultaten

Dit model geeft ons de mogelijkheid om de veiligheid van white-box implementa-
ties te onderzoeken. Aan de hand van enkele voorbeelden tonen we aan dat er een
wezenlijk verschil is tussen white-box cryptografie en obfuscatie. De white-box
eigenschap is namelijk gedefinieerd voor een familie functies met geassocieerde
security notie, terwijl obfuscatie gedefinieerd is onafhankelijk van een security
notie.

Een belangrijke vraag die we stellen, is of er een familie niet-triviale functies
(zoals bv. vercijferingsalgoritmen) bestaat, waarvoor een obfuscator kan worden
opgesteld die zorgt dat alle security noties waaraan de familie voldoet in black-
box, ook voldaan zijn in een white-box model. We tonen aan dat dit niet het geval

xxix

is, namelijk dat er een security notie bestaat waaraan niet voldaan kan worden
in white-box ondanks het feit dat in black-box wel aan deze notie voldaan is.

Vermits de security notie die hiervoor gebruikt wordt, slechts een beperkt
praktisch nut heeft, kunnen we ons het volgende afvragen: bestaat er een zin-
volle security notie voor een zinvolle familie niet-triviale functies waaraan ook
de white-box implementatie voldoet? We tonen aan dat dit, onder aanvaardbare
veronderstellingen, het geval is. Meer bepaald beschrijven we concreet een sym-
metrisch vercijferingsalgoritme dat IND-CPA veilig is, waarvan zijn white-box
implementatie een asymmetrisch vercijferingsalgoritme is dat ook voldoet aan de
IND-CPA security notie.

Tenslotte zetten we ook een uitbreiding van ons model naar probabilistische
algoritmes uiteen, vermits deze in de cryptografie van praktisch groot belang
zijn. Dit hoofdstuk kan gezien worden als een eerste stap om de fundamenten
van white-box cryptografie op een gelijk niveau te brengen als wat bereikt is in
de formele studie van code obfuscatie.

Hoofdstuk 5: Toepassingen

Het onderzoek in white-box cryptografie richt zich op het veilig implementeren
van cryptografische primitieven in software. Bijgevolg leunt dit onderzoek dicht
aan bij praktische toepassingen. In dit hoofdstuk stellen we 4 verwante toepas-
singsdomeinen voor, waarop white-box cryptografie van nut kan zijn (en vice
versa). We stellen kort de 4 gëıdentificeerde domeinen voor.

Nieuwe cryptografische primitieven

Een eerste toepassing van white-box cryptografie is de eigenschap om nieuwe
cryptografische primitieven te maken. White-box cryptografie kan symmetrische
vercijferingsschema’s namelijk omzetten in asymmetrische vercijferingsschema’s.
Bij symmetrische schema’s wordt eenzelfde geheime sleutel gebruikt voor zowel
vercijfering als ontcijfering. Bij asymmetrische schema’s is er een publieke vercij-
feringssleutel, en een private ontcijferingssleutel. Wanneer we een symmetrisch
vercijferingsalgoritme samen met de symmetrische sleutel obfusceren, kan het
resultaat als publieke sleutel worden gebruikt. Iedereen kan vercijferen met de
bekomen implementatie, terwijl enkel met kennis van de symmetrische sleutel
decryptie mogelijk is.

De bekomen systemen zijn echter pas veilig wanneer deze voldoen aan de
CPA notie. Dit geeft meteen het belang aan van onze studie in hoofdstuk 4. In
hoofdstuk 3 hebben we ook aangetoond (door middel van een praktische aanval)
dat de voorgestelde white-box implementaties van AES en DES hieraan niet
voldoen.

xxx

Hardware

Vermits white-box cryptografie implementaties beschermt tegen software aan-
vallen, beschermt deze ook tegen zwakkere aanvalsmodellen, zoals bijvoorbeeld
nevenkanaal aanvallen. We stellen deze techniek dan ook voor om veilige imple-
mentaties op Gsm’s of TV set-top boxes te ontwikkelen.

Software geeft enkele inherente voordelen ten opzichte van hardware oplossin-
gen. Ze zijn goedkoper om te produceren (geen apparatuurkosten), en veel flexi-
beler. Zo kan software bijvoorbeeld via het Internet worden ge-update. Het is dus
interessant om te zien welke functionaliteiten door middel white-box cryptografie
kunnen worden beschermd, in plaats van te berusten op hardware-beveiliging.

Berekeningen in het vercijferde domein

Homomorfe functies zijn functies die rechtstreeks op geëncodeerde data bere-
keningen kunnen uitvoeren. Zo kan bijvoorbeeld een optelling van x1 met x2

ook rechtstreeks uitgevoerd worden op hun encodering E(x1), E(x2), indien het
vercijferingsschema homomorfe eigenschappen heeft. Dit heeft interessante toe-
passingen om de privacy van gevoelige gegevens te garanderen. Het obfusceren
van een cryptografisch schema dat 2 input waarden ontcijfert, een bewerking op
uitvoert, en terug vercijfert, kan gezien worden als een homomorfe functie.

Een ander verwant onderzoeksgebied is dat van ‘multi-party’ evaluatie. In
deze opstelling wensen een aantal partijen met private invoer een gemeenschap-
pelijke functie f te evalueren met hun invoer. Dit zonder hun private invoer aan
de andere partijen vrij te geven, en een soort garantie te bekomen dat de eva-
luatie correct is verlopen. De technieken om dit te realiseren, zijn gebaseerd op
‘garbled circuits’. Dit zijn een soort gerandomiseerde implementaties, wat sterk
overeenkomt met de aanpak in white-box cryptografie.

Softwarebeveiliging

Dit onderzoek heeft als doel om software-implementaties van cryptografische pri-
mitieven te beschermen tegen white-box aanvallen, en vormt daarmee een on-
derdeel van algemene software beschermingstechnieken. De doelstellingen van
softwarebeveiliging zijn in het algemeen het geheim houden van operaties of data
(obfuscatie); zorgen dat de functionaliteit niet gewijzigd kan worden; en garan-
deren dat software correct uitgevoerd wordt.

Tijdens het onderzoek op white-box cryptografie, werden diverse technieken
ontwikkeld die van toepassing zijn op softwarebeveiliging.

xxxi

Hoofdstuk 6: Besluit en verder onderzoek

White-box cryptografie heeft als doelstelling software-implementaties van cryp-
tografische primitieven te beschermen tegen allerhande aanvallen. In deze thesis
hebben we de verschillende praktische white-box implementaties bestudeerd. De
cryptanalyses hiervan leiden tot nieuwe inzichten en een strategie voor het ont-
wikkelen van nieuwe blokcijfers die geschikt zijn om in software te gebruiken.

In een tweede fase van het onderzoek stellen we een theoretisch raamwerk van
white-box cryptografie voor. Dit laat ons toe om verschillende eigenschappen
voor WBC te onderzoeken. Wat wel of niet binnen de mogelijkheden ligt. We
stellen een symmetrisch vercijferingsschema voor, die bewijsbaar veilig gëımple-
menteerd kan worden. Verder onderzoek dient te leiden tot een evaluatie van
andere klasses functies, zoals probabilistische vercijferingsschema’s.

Het onderzoek wordt beëindigd met een overzicht van toepassingen waarvoor
WBC van nut kan zijn, en verwante onderzoeksgebieden. Dit omvat onder an-
dere het ontwerp van nieuwe cryptografische algoritmes, berekeningen uitvoeren
rechtstreeks op vercijferde data, het gebruik van hardware, en software beveili-
ging. Binnen elk van deze domeinen geven we aanzet hoe WBC gebruikt kan
worden.

xxxii

Chapter 1

Introduction

We live in an information society. Increasingly, we rely on the exchange and pro-
cessing of information. Evidence of this evolution is the rapid growth of commu-
nication networks, and a trend towards complex software applications with strong
security requirements. Examples of these are the increasing use of portable de-
vices and wireless networks; communication with friends and colleagues via e-mail
and chat; the launch of (interactive) digital television and other media platforms
(e.g., iTunes); on-line banking and purchase of goods and services; online-gaming;
GPS navigation; professional and social networks (e.g., LinkedIn and Facebook);
and many more. In one way or another, these new trends affect our daily ac-
tivities in many ways, at home and in our professional life. On the downside
however, we become increasingly dependent on the information infrastructure
that empower our information society, and hence potentially vulnerable to at-
tacks on them. In recent years, this has been illustrated by attacks on Internet
servers, credit card fraud, hacking of banking applications and on-line games, cell
phones and TV set-top boxes, phishing, privacy violation, botnet threats, and so
forth.

In order to support our information society for the next years, and take ad-
vantage of the opportunities that it enables, the need for trustworthy informa-
tion infrastructure is growing. The trend towards complex software applications
with strong security requirements, increasingly demands for qualitative protec-
tion technologies. One prominent building block to enable information security
is cryptology.

1

2 CHAPTER 1. INTRODUCTION

1.1 Cryptology

The word cryptology is derived from the Greek words kryptós, meaning ‘hidden’,
and logos, meaning ‘word’. Strictly speaking, it is the science that studies how to
hide confidential information. Cryptology comprises of two complementary fields.
Cryptography is the study and practice of hiding information, while cryptanalysis
is the study of methods to obtain knowledge from hidden information.

The foundations of cryptography originate from Shannon, who is regarded as
the founder of information theory. In his seminal work on a mathematical model
for cryptography in 1948 [173], he described the basic model for a cryptosystem.
This typical scenario of cryptography, depicted in Fig. 1.1, consists of two par-
ties (traditionally denoted as Alice and Bob) who wish to exchange confidential
information.

EK

BobAlice

m

c

Eve

DK

m

Figure 1.1. A cryptosystem

In this classical model, Alice and Bob want to transmit confidential messages
m over an insecure channel in such a way that an adversary (Eve) eavesdropping
on the channel is not able to learn anything about the message. In modern
cryptography, Kerckhoffs’ principle states that only a secret key k is unknown by
the adversary, while the encryption and decryption algorithm are known by all
parties. This secret key is a priori exchanged between Alice and Bob.

Instead of the plaintext message m, Alice will send an encrypted ciphertext
message c to Bob over the insecure channel. The ciphertext is computed by Alice
using the encryption algorithm E, instantiated with the secret key k: c = Ek(m),
which Bob is able to decrypt using the decryption algorithm D. The same key
will be used for decryption, such that Dk(c) = Dk(Ek(m)) = m.

1.1. CRYPTOLOGY 3

We will denote this basic model as the black-box model, because Eve observes
only the channel between the communicating parties. In Sect. 3.1, we elaborate
on the different attack models.

In [157], Rivest summarized cryptography as follows: “Cryptography is about
communication in the presence of adversaries”. In this thesis, the exact inter-
pretation of this sentence is of great importance. In particular, “presence of
adversaries” can be interpreted in various ways. The problem statement ad-
dressed in this thesis is actually to find out how cryptography could be deployed
in the presence of the most powerful adversaries.

Although cryptography has received much attention in the last decades, the
science of “secret writing” is in fact far older. We give an overview of some historic
facts in the development of cryptography, to motivate the research carried out in
this thesis.

1.1.1 The Caesar Cipher

One early occurrence of cryptography is a cipher called “Caesar Cipher” (after
Julius Caesar), which was used by him and his successors in the times of the
Roman Empire to send directives from Rome to the legions and governors [121].
In this cipher, every letter is replaced by its third successor in the alphabet (A
→ D, B → E, . . .).

plaintext A M E S S A G E
ciphertext D P H V V D J H

However, as soon as one knows that a ciphertext is only a translation of the
plaintext, it is fairly easy to break the Caesar cipher. Since there are only 26 pos-
sible translations (in the Latin alphabet), an adversary can compute all possible
plaintexts for a given ciphertext, until something readable appears. Nevertheless,
the cipher worked sufficiently well in Roman times.

Later, ciphers were improved with ‘transposition vectors’. Instead of trans-
lating every symbol with a single fixed number of positions, more complex trans-
lation vectors were used. Consider the following example of the Vigenère ci-
pher [103, page 146] below, where the translation vector is KEY. The key word
is repeated to have the same length as the plaintext, and the ciphertext is the
addition of the plaintext with the expanded key (A+K → L; M +E → R; . . .).
The Vigenère cipher with key word ‘C’, corresponds to the Caesar cipher.

plaintext A M E S S A G E
transposition K E Y K E Y K E

ciphertext L R D F X Z R J

4 CHAPTER 1. INTRODUCTION

Most ciphers in the history of cryptography [103], like the Vigenère cipher,
are polyalphabetic ciphers. These are based on substitution using multiple sub-
stitution alphabets that are derived from a key word. Even the Enigma Machine
(most famous because of its use by the German military in World War II) is
fundamentally a polyalphabetic cipher. However, these ciphers are inherently
vulnerable to frequency analysis [3], where patterns are searched for in the ci-
phertexts. This inspired research towards modern cryptography.

1.1.2 Kerckhoffs’ Principle

In the past, cryptography was mainly used for military applications and diplo-
matic communications. For this purpose, governments developed cryptographic
ciphers, and kept their designs confidential. In fact, those ciphers were only se-
cure because of this confidentiality. As soon as the design was leaked or reverse
engineered, enemies could break the ciphers and start eavesdropping and forging
messages.

In 1883, August Kerckhoffs [104] defined the Kerckhoffs’ principle, that states
that a cryptosystem1 should be secure even if everything about the system, except
a key, is public knowledge. This principle is widely accepted, because it has been
shown in numerous cases that security through obscurity (keeping the design
confidential) is bad practice. The adoption of this principle is fundamental for
modern research in cryptography, both for government research institutes (since
World War II) and universities and industry (since around 1980).

Where in the past, the security of a cipher was only verified by a few experts,
they are now subject to public scrutiny because of this principle. This led to a
public debate and the search for secure cryptographic ciphers.

1.1.3 One-Time Pad

A year after he founded information theory, Shannon published a paper that
proved that unbreakable cryptography was possible [173]. (He did this work
prior to 1945, but at that time it was classified.) The scheme is called the one-
time pad or the Vernam cipher, after Gilbert Vernam, who had invented it near
the end of World War I.

plaintext A M E S S A G E
key R A N D O M K E

ciphertext S N S W H N R J

1The term cryptosystem is used as the short writing for cryptographic system. That is,
any system which involves cryptography, and hence contains a cryptographic primitive as a
component. A formal definition is presented in Chapter 2.

1.1. CRYPTOLOGY 5

The One-Time Pad offers unconditional security against unbounded adver-
saries. This means that, even with unlimited amount of computing power, an
adversary cannot compute any information of the secret key or the plaintext. This
is often denoted as perfect security [189, page 8]. Up to now, only few ciphers
provide this level of security. Unfortunately, it is not practical because keys are
as long as the messages that need to be encrypted, and cannot be re-used. There-
fore, it is used only very rarely, e.g., it was used to secure the communication
channel between the United States White House and the Russian Kremlin [103,
page 715].

1.1.4 Modern Cryptography

Since the early 1970s, cryptography has broadened its scope. Where in the past,
cryptography was exclusively about securing messages against eavesdropping
(confidentiality of information), modern cryptography also covers problems such
as message integrity, authentication, and non-repudiation. We refer to the Hand-
book on Applied Cryptography by Menezes, Van Oorschot, and Vanstone [129] for
an excellent treatment of these issues.

Secondly, modern cryptography differs from ‘classical’ (pre-1977) cryptog-
raphy in its methods to assess the security of cryptosystems. In the classical
approach, only designers and experts justified the security of a cryptosystems by
‘failure to break’. As long as there was no break (in spite of usage), a system was
believed to be ‘secure’. Breaking a system can have a variety of meanings: ob-
taining secret key information or plaintext information; forging digital signatures;
corruption of authenticated messages, and so forth. In modern cryptography, we
can distinguish three ways to assess the security of a cryptosystem:

1. Direct proof of security. Show that a cryptosystem is unconditionally se-
cure, based on information theoretical proofs. Unfortunately, only few cryp-
tosystems are shown to be information theoretically secure, and are largely
impractical.

2. Proof by reduction. Prove the security of a cryptosystem by reduction
to a hard mathematical problem. I.e., when an adversary would be able
to break the cryptosystem, the mathematical problem would be easy to
solve. These mathematical problems are typically NP hard2 problems,
which even the best mathematicians do not seem to be able to solve for
many years (and hence we accept the hardness assumption). Often, (sub-
)exponential problems are accepted also. For example, the best known

2A problem is NP (nondeterministic polynomial time) if it is solvable in polynomial time
by a nondeterministic Turing machine (see Definition 11, Chapter 4). A problem is said to be
NP-hard, if it is at least as hard as the hardest problem in NP.

6 CHAPTER 1. INTRODUCTION

algorithm for factoring the product of two large primes, is in the general
case sub-exponential, and used as a hardness assumption in many practical
schemes.

3. Failure to cryptanalyze. Assess the security by the development of crypt-
analysis techniques (security based on scrutiny).

The modern approach to evaluate the security is an open process. An open
competition of experts and ‘less’-experts from academics and industry, organized
in challenges, conferences, publications, prizes, and so forth, where reputation is
often important.

Finally, modern cryptography deals with a large variety of applications, and
is no longer exclusively deployed for military or diplomatic communications. It
has become a tool for a large section of our economy (both for industry as for
home consumers). The vast growth of (digital) communication between all sorts
of parties (supported by the explosive growth of the Internet, wireless networks,
and cell phones), and a trend towards complex software applications that de-
mand stronger security requirements (e.g., on-line banking, media platforms, and
games), enforced the interest in cryptology in all its aspects.

Moreover, while early systems worked well in military or diplomatic applica-
tions, where a fixed hierarchy of people were authorized to have access to and
knowledge of the deployed system, modern systems work in a completely differ-
ent setting. This gives a new dimension to Rivest’s description of cryptography,
where adversaries could have completely different capabilities.

1.2 Motivation

Commonly deployed ciphers are designed to operate in the standard model as
depicted in Fig. 1.1. In this a model, it is assumed that the communication
end points and computing environments are trusted. That is, it is assumed
that the cipher execution (encryption/decryption, instantiated with a secret key)
cannot be observed or tampered with. Only its functionality is accessible by an
adversary, hence it is often denoted as the Black-Box Model.3

However, the assumptions made in the past may often not be applicable in
current technology. In the past decade, the applications for which cryptographic
techniques were deployed have changed dramatically. As a result, one can no
longer assume that the communication end points are trusted entities. This has
a huge impact on the security of cryptographic implementations. When such an

3In the literature, one may encounter cryptographic models, such as the bare model, plain
model, or (random) oracle model. These are examples of a black-box model.

1.2. MOTIVATION 7

implementation resides in a hostile environment, an adversary may be able to
observe and tamper with the implementation to extract information about the
cryptographic key. As a result, methods that were developed in the past to assess
the security of ciphers, may no longer suffice for many modern applications.

Below, we present two examples where this conventional black-box model of
cryptography fails. In Chapter 5, we elaborate in more detail on these and more
applications where white-box cryptography could be deployed.

1.2.1 Mobile Agents

Mobile agents [163, 162, 94, 127, 86] are programs, which may be sent off from
a client computer to a remote server for execution. Often, they are even able
to travel around in a (public) network. Their goal is to fulfill the task that was
given to them by their owner, without any interaction with the owner during the
execution of that task. They have been proposed as a method for performing
transactions and information retrieval in networks. Typical examples of mobile
agent systems would be flight ticket ordering systems, or online auctioning.

In the case of the flight ticket ordering system, a mobile agent is sent out
by its owner, who wants to find the cheapest flight from A to B. This agent
will visit different travel agencies’ and flight companies’ websites in order to find
the cheapest ticket, and proceed with its purchase. The whole process should
run without any interaction with the owner who eventually wants to obtain the
electronic flight ticket.

Clearly, there are a few unconventional threats related to such a system. First
of all, the servers of travel agencies and flight companies might not behave as
trusted end points. It is in their interest to attack these mobile agents. E.g.,
rewrite the code from ‘find cheapest flight’ to ‘find my e 200 flight’, or force the
agent to buy a ticket on their servers. Secondly, in order to enable the purchase of
a ticket, the agent might need to be able to sign a contract or perform a payment.
Therefore, a public key cryptosystem needs to be deployed, such that the mobile
agent can create a digital signature for an electronic ticket. However, because
the mobile agent should not interact with the owner in the process of purchase,
the private signing key needs to be stored in the code of the mobile agent. It is
in the interest of the (malicious) servers, to obtain this private key information,
such that they can sign arbitrary electronic documents, and hence purchase any
goods in name of the author.

Hence a natural question arises: can we embed confidential data inside soft-
ware, albeit that the execution platform is untrusted? This is a question that
white-box cryptography attempts to address.

8 CHAPTER 1. INTRODUCTION

1.2.2 Digital Rights Management

A topic that has been at the center of the public debate, is that of Digital Rights
Management (DRM). Generally speaking, this topic covers a substantial set of
applications where the common goal is to restrict access to and consumption of
content, often based on top of a role-based access control system.

For example in the pay TV scenario, a broadcasting company would like to
distribute their multimedia content (movies) on an existing (public) network,
and restrict access such that only valid subscribers can watch the movie. These
subscribers should not be able to copy the movie, nor should non-subscribers
be able to watch a movie. This requires the content to be sent over the public
network in a garbled (encrypted) form. Figure 1.2 depicts a simplified view of
how such an architecture could look like.

Consumer

Ek(M)

M

Content Provider

DeckAuth REM

Figure 1.2. Basic DRM architecture

The multimedia content M is sent in encrypted form, where E is the encryption
function, k the (secret) encryption key, and Lic a license that is sent along. This
license contains an expression of the rights (of the subscriber) on the content. I.e.,
a list of which access privileges users/groups have. At the side of the consumer,
an application processes the license information (by means of a Rights Expression
Manager), parses the user authentication (through the Auth component), and
decrypts the content using the corresponding decryption routine D, instantiated
with the key k. Such an application can be implemented in hardware (e.g., in
a set-top box, typical for pay TV systems), or in software (e.g., iTunes [97] or
WM-DRM [136]) on the client’s PC. In both cases, the application is running on
a platform, controlled by an entity that might be untrustworthy.

This whole infrastructure breaks down when the secret key k is compromised.
In that case, an adversary could decrypt the content (due to the Kerckhoffs’ prin-
ciple, D is publicly known), without prior authentication and rights verification.
He could then re-distribute the content without any protection, or distribute the
decryption key.

Again, the question arises, whether it is possible to prevent the extraction of
key information, even when the execution platform behaves maliciously.

1.3. WHITE-BOX MODEL 9

Two recent examples of successful memory-based key extraction attacks are
the AACS/BackupHD-DVD hack that lifts the AACS4 keys from memory to
enable the BackupHD-DVD tool to copy the disc [66], and the FairUse4WM
utility that removes the DRM protection from Windows Media content [63].

1.3 White-Box Model

Cryptographic ciphers are commonly designed in the standard cryptographic
model, denoted as the black-box model, where the communication end points and
computing environments are trusted. As shown above, there exist applications
where adversaries do not comply with this model, hence a new model needs to
be formulated. We define the white-box model as the worst-case attack model,
in which adversaries have full access to the implementation of cryptographic
primitives, and complete power over their execution environment. In Sect. 3.1,
we elaborate on the details of this model.

We present two examples of techniques that are available to an adversary, and
are typical to the white-box attack context. We also suggest how these attacks
can be prevented, to be able to capture the main idea of white-box cryptography.

1.3.1 Entropy Attack

When two parties wish to communicate with each other, a cryptographic key
needs to be agreed upon. In the symmetric case, this key should be a priori
known by the two parties, and difficult to guess by an adversary. Hence, the
secret key should be taken at random from the set of possible keys. A metric
to measure randomness of data, is entropy [173]. We say something is random
when it has high entropy,5 and in order to be difficult to guess, a key should have
high entropy.

The implementation of the encryption and decryption algorithm on the other
hand has low entropy, because it is a compiled executable comprising of (a limited
number of) instructions. In Fig. 1.3, a binary representation of an implementation
with embedded secret key is depicted. A 0-bit is represented by a black dot, a
1-bit by a white dot.

4The Advanced Access Content System (AACS) [113] is a standard for content distribution
and digital rights management, intended to restrict access to and copying of the next generation
of optical discs and DVDs.

5There exist several functions H that express the entropy of a distribution X. In general,
the entropy of certainty is zero, while the entropy of random is reasonably higher. E.g., the
min-entropy of the uniform distribution of n elements is n (H∞(Un) = n).

10 CHAPTER 1. INTRODUCTION

Figure 1.3. Graphical representation of a program binary, or memory
dump [172]

We use this graphical representation to illustrate how easy secret keys can be
identified in binary implementations. Parts of the binary with low entropy (com-
piled code, function names, . . .) typically show some structure,6 as one can see
on the left and right of the figure. Parts of the binary with high entropy (secret
keys) look rather noisy. Hence, we can assume with a high level of certainty that
the embedded secret key is located in the middle of Fig. 1.3. The exact location
can be determined by more detailed examination.

This attack was presented by Shamir and Van Someren [172] in 1998. It can be
applied to any data container an adversary has read access to: program binaries
on hard disks, computer memory, and so forth. Unfortunately, such types of
attacks are still common practice, because often the capabilities of an adversary
are underestimated. This has recently been shown once again, in the case of
cold reboot attacks on hard disk encryption keys of laptops, by Halderman et
al. [85]. They showed that the memory remanence can be increased dramatically
with simple techniques. Hence a quick reboot (of a locked computer) with a live
CD, or quickly porting the memory to another machine, facilitated to copy the
memory, and search for keys in it.

Defenses against an entropy attack

In the past decade, many solutions have been proposed that could prevent attacks
such as the entropy attack. Most of them are software obfuscation techniques,
designed to protect data structures against software analysis tools. Software
obfuscation refers to the set of techniques that protect code against static and
dynamic analysis. They make it hard for an adversary to understand the im-
plementation of a program, though leaving its functionality unharmed. The
obfuscated implementation of a program P is often denoted as O(P).

The most common approach, mainly developed in the nineties, is to unstruc-
ture data structures and break the abstraction of a program variable. Several

6The 32-bit Intel architecture instruction set (code IA32) has a large set of instructions, and
a reasonable entropy, however, significantly less than cryptographic keys have.

1.3. WHITE-BOX MODEL 11

techniques were presented by Collberg et al. [47], such as variable splitting and
transformation. Key information could be chopped into several parts, each of
them stored at different address locations in the binary, such that the original
value cannot be read out easily by a static analysis tool. Or the chops of key
information could be consumed by the program in such a way that they are not
all stored in the memory at the same time. However, through dynamic analysis
of the implementation (i.e., analysis at execution time), the memory locations
can be traced, and thereby revealing the original key (see Yamauchi et al. [195]).
Improved techniques involve linear transformations. Instead of computing with
the original key value, a transformed value can be computed with. This involves
a modification of the code, hence the transformations are mostly kept simple.

Software obfuscation is an active field of research, and many other techniques
have been proposed to protect software code and embedded data structures.
However, no technique has been presented that is able to obfuscate cryptographic
primitives such that a sufficient level of confidentiality of secret key information
is obtained. As a result of these efforts, by the end of the nineties, it was believed
to be impossible to hide computational information into software binaries. That
is, information that is used at execution time (in contrast to passive information,
such as watermarks).

1.3.2 Key Whitening Attack

Hiding key information in software implementations of ciphers that use key
whitening seems even more difficult. In this example we focus on block ciphers.
They are a popular cryptographic primitive for concealing information, that work
on fixed size input and are initiated by a secret key [129, Chapter 7]. They con-
sists of several rounds, where for each round, a round key is generated from the
secret key. Common practice in the design of block ciphers, is to add a key
whitening operation at the end, which is the addition of an extra round key as
the final operation of the encryption.

In [105], Kerins and Kursawe presented an easy way to mount an attack on
software implementations of block ciphers, that have a key whitening and static
substitution boxes. Figure 1.4 depicts the final operations of such a block cipher,
where S denotes the substitution box (S-box) that operates on the input x, P
a permutation that operates on the output of S. This is followed by a final key
whitening addition with round key kw. The output y equals to P (S(x))⊕ kw.

Because of the Kerckhoffs’ principle (Sect. 1.1.2), the definition of the static
S-boxes is in general public knowledge. Hence, in a white-box attack context, an
adversary can find the locations of these S-boxes in the software binary, using
static analysis tools such as IDA Pro [90]. These S-boxes are implemented as
lookup tables, and can easily be overwritten in the software binary. When an

12 CHAPTER 1. INTRODUCTION

S P
P (S(x))S(x)

kw

yx

Figure 1.4. Final operations of an SPN block cipher with key whitening

adversary overwrites the lookup table with all zero’s, the execution of the tam-
pered binary will always result into the output kw, because P (S(x)) equals 0 for
any given input x. Hence the adversary has obtained key information.

A lot of block ciphers are inherently secure against this type of attack, such as
most Feistel ciphers (another important family of block ciphers, see Sect. 2.1.3).
In most cases, their key operation is performed prior to an S-box layer, and they
do not employ a key whitening. However, most SPN ciphers, such as the AES,
employ a key whitening to prevent a ‘peel off’ of the final permutation, others to
increase the complexity of a brute force attack (key-search). These are vulnerable
to this implementation attack. An example of the composite cipher DES-X [106],
used in the Win2K encrypting file system, defined as:

DES-Xk0,k1,k2(m) := DESk0(m⊕ k1)⊕ k2 ,

where key k2 can be recovered from the implementation. A few possible strategies
to prevent a key whitening attack are:

• Using block ciphers with key dependent S-boxes, such as Khufu [130] and
Blowfish [168]. However, one should not directly modify S-boxes of other ci-
phers, since this leads to non-standard implementations that might contain
unexpected weaknesses.

• Tweaking the cipher design, such that the S-boxes are different, but the
input-output behavior of the cipher is equal. This can be achieved by
masking techniques (inspired by techniques against side-channel attacks7),
obfuscation techniques, or by generating S-boxes on the fly.

• Trivial leaks can also be prevented when suitable verification mechanisms
are in place. These could be checksum computations to verify that the ex-
ecutable code has not been modified, checking that encryption and decryp-
tion behavior is matching, or performing trivial tests. However, current

7These are attacks that exceed the black-box model, as they take other information besides
the functionality of the cryptographic primitive into account. See Sect. 2.3.2.

1.4. WHITE-BOX CRYPTOGRAPHY 13

state-of-the-art obfuscation and tamper resistant software techniques are
not able to protect these verification techniques. A seminal attack example
in the area of tamper resistant software is the clone attack by Van Oorschot
et al. [183].

• White-Box Cryptography, the topic of this thesis.

1.4 White-Box Cryptography

In this thesis, we address implementation issues of cryptographic ciphers in a
white-box model. The research on cryptology in such a white-box model is called
white-box cryptography, and implementations of cryptographic primitives for such
a model are referred to as white-box implementations. Initially, we focus on white-
box implementations of block ciphers, because of their widespread popularity
and practical interest. Moreover, the initial work on white-box cryptography
was conceived on block ciphers. Later, we extend our discussion towards other
cryptographic primitives, such as asymmetric schemes and signature schemes.

The main research questions are: Is it possible to implement cryptographic
primitives in a ‘secure’ way, even if the implementation is under full control
of an adversary? And if so, which techniques can be used to construct such
implementations? What would their impact be on the design of block ciphers,
and on the deployment of cryptographic primitives in applications?

How would these constructions look like? And what would the implication of
this be?

The two attack scenarios that are presented above, already indicate that
novel implementation conventions will be required. Firstly, key information will
need to be distributed over the whole implementation, to prevent trivial retrieval
through static analysis. Secondly, randomness will need to be injected into the
cipher operations, to prevent dynamic attacks and targeted tampering of the
cryptographic implementation. Up to some extent, we still want to preserve
the original input-output behavior of the block cipher. Therefore, white-box
cryptography will mainly address strategies on how to compile a block cipher in
a secure way.

1.5 Outline of this Thesis

This thesis is organized in six chapters. Following the introduction presented in
this chapter, we give an overview of block ciphers and their design strategies. We

14 CHAPTER 1. INTRODUCTION

also discuss ‘classical’ cryptanalysis techniques and side-channel cryptanalysis
techniques, as they are a source of inspiration for white-box cryptanalysis.

The research in white-box cryptography can be categorized into three main
topics: practical constructions of white-box implementations; their formal defi-
nitions and the results based on theoretical foundations; and applications where
this technology can be deployed. We will devote a chapter to each category.

• Chapter 3: White-Box Implementations. Firstly, we elaborate on the white-
box model, and compare this to other attack models, such as the black-box
model and the grey-box model. Secondly, we present and analyze the white-
box implementations of the DES and the AES by Chow et al. [43, 42].
Our main contribution in this chapter is a cryptanalysis of white-box DES
implementations. We also present a few conclusions and ideas for further
research on this subject.

• Chapter 4: A Theoretical Model for White-Box Cryptography. In this chap-
ter, we present a theoretical model for white-box cryptography, inspired by
theoretical models of software obfuscation. In this new model, the possibil-
ity of secure white-box implementations is investigated. To achieve this, we
define the concept of security notions and experiments, to capture how a
cryptographic primitive is deployed, and what the strategy of the adversary
is. Based on some proofs by reduction, we obtain a number of positive and
negative possibility results.

The principle objective of these two chapters is to assess the security of white-
box implementations. In Chapter 3, practical schemes are investigated and crypt-
analysis techniques deployed, while in Chapter 4, a formal approach is described.

• Chapter 5: Applications. Cryptographic ciphers are a building block for
secure applications. Although they often represent only a small component
of the full application, compromise of a cryptographic piece can render
the application insecure and often useless. In this chapter, we investigate
what type of applications benefit from advance in white-box cryptography,
and how white-box implementations can be securely integrated. More than
often, they are a promising solution for problems that were believed to be
unsolvable. This however also raises questions on the feasibility to design
secure white-box implementations.

• Chapter 6: Conclusions and Future Research. Lastly, an overview is pre-
sented of the results that have been obtained in this thesis. This captures
the achievements in the three topics described above, and elaborates on
the interpretation of the results. Since white-box cryptography is to be
considered still premature, we present an overview of directions for future
research.

Chapter 2

Block Ciphers

2.1 Introduction

A block cipher is a pair of cryptographic algorithms, one for encryption, one
for decryption. They are one of the more popular cryptographic primitives de-
signed to enable concealed message exchange (Shannon [173]). In this chapter,
we describe the design principles of block ciphers, present some of state-of-the-art
block ciphers, and give an overview of cryptanalysis techniques.

2.1.1 Terminology

We will use the following terminology for a basic cryptographic system, as de-
picted in Fig. 1.1. The sender is denoted as the legitimate originator of a message,
while the receiver is the legitimate recipient of a message. An adversary is an en-
tity that aims at breaking into the communication between the legitimate parties.
To conceal a message (plaintext) from an adversary, it is sent in garbled form
(ciphertext) from the sender to the receiver. The ciphertext is the encryption of
the plaintext, and is computed by the sender. The receiver is able to obtain the
original message by decryption of the ciphertext.

Adversaries can be classified into two categories: passive adversaries only
observe the communication between the legitimate parties in order to obtain
information on the plaintext or key; active adversaries observe, tamper, and
interact with the communication, in order to obtain information on the plaintext,
to forge messages, or to recover key information.

15

16 CHAPTER 2. BLOCK CIPHERS

2.1.2 Objectives and Definitions

The objectives of information security can be categorized into three main goals.

• Confidentiality – Concealing a message against unauthorized eavesdrop-
ping.

• Integrity – Protecting a message against tampering.

• Authentication – Refers to entity authentication, related to the identifica-
tion of the (legitimate) parties, whereas data authentication is equivalent
to integrity.

Depending on the application in which a cryptosystem is deployed, a number of
other objectives can be formulated, such as non-repudiation,1 and availability.

A cryptosystem is designed in order to achieve these objectives, and a cryp-
tographic cipher is a pair of algorithms that implements the encryption (E) and
decryption (D) primitives for a cryptosystem. In accordance to Kerckhoffs’ prin-
ciple [104], the algorithms are public, while a (secret) key is used to instantiate
a cipher. The main classification of ciphers was established by Diffie and Hell-
man [59], and relates to the concept of key.

• A symmetric cipher is a function family (E, D), associated by a keyspace
K.

E : K × P → C D : K × C → P .

P is the plaintext space and C the ciphertext space. (Ek, Dk) denotes an
instantiation of the cipher with the key k ∈ K. The encryption function Ek

is injective2 and may be randomized. The decryption is defined such that
it satisfies the correctness condition: ∀m ∈ P, Dk(Ek(m)) = m.

• An asymmetric cipher is a triple (E,D, G); (EK , Dk) a particular instanti-
ation. G is the key generation function, that produces a public encryption
key K, and the corresponding private decryption key k for some seed s
(chosen at random by the receiver).

G(s)→ (K, k) EK : P → C Dk : C → P

The algorithms are designed such that ∀m ∈ P : Dk(EK(m)) = m.

1Non-repudiation refers to a guarantee that an entity cannot deny to have sent or received
a message.

2A function F : X → Y is injective, if ∀x1, x2 ∈ X: if F (x1) = F (x2), then x1 = x2. This
is often referred to as (left) invertible.

2.1. INTRODUCTION 17

Symmetric ciphers are typically more efficient than asymmetric ciphers, but
can only be used in situations where the secret key can be a priori established
between the parties. In the case of asymmetric ciphers, all parties (legitimate
and non-legitimate) are able to encrypt using the public key K, while decryption
is only possible for the receiver (with the knowledge of the private key k). The
assumption is that an adversary should not be able to compute k, given K (and
G). The dual scenario of public key encryption is digital signatures where only
one party is able to sign (the dual of decryption), while all parties are able to
verify a signature (the dual of encryption). We refer to Menezes et al. [129] for
more details on asymmetric cryptography and digital signatures.

Symmetric ciphers can be divided into block ciphers and stream ciphers.

Definition 1 A block cipher is a keyed family of pseudo-random permutations,
that operates on a fixed length input and produces a fixed length output. It is state-
less, time-invariant, and instantiated by a secret key k. For each key, we obtain a
permutation that is independent of all other instances. We define a block cipher
with block size n as a block cipher with binary string input-output words of size
n.

BC encryptionk : {0, 1}n → {0, 1}n

To allow encryption on plaintexts of arbitrary lengths, padding schemes and
modes of operation are introduced. Padding schemes introduce padding bits
that are added to plaintext messages with a smaller size than the block size.
The encryption operation becomes m→ Ek(m||padding). Plaintext messages of
larger size are divided into n-bit words (the last word possibly being padded).
The block cipher will operate on each of these words, according to a specified
mode of operation. The resulting ciphertext is the concatenation of the output
words. As an example, the cipher-block chaining (CBC) mode is depicted in
Fig. 2.1.

To make each message unique, a secret random initialization vector (IV) is in-
troduced at the beginning of this mode of operation, hence randomized encryp-
tion is obtained. Formally, CBC can be described with the following equation:
ci = Ek(mi ⊕ ci−1), where c0 = IV. Many other modes of operation have been
introduced, including

• electronic code book (ECB): ci = Ek(mi),

• cipher feedback (CFB): ci = Ek(ci−1)⊕mi; c0 = IV,

• counter mode (CTR): ci = Ek(IV ‖i)⊕mi.

18 CHAPTER 2. BLOCK CIPHERS

encryption encryptionencryption

block cipher block cipherblock cipher key

c3

m3

key

m1

c1

IV

key

c2

m2

Figure 2.1. Cipher-block chaining (CBC) mode of operation

2.1.3 Design

According to Definition 1, a block cipher is idealized by a pseudo random permu-
tation. This means that is it should indistinguishable from a random permutation
on n bits. I.e., a permutation that is chosen at random according to a uniform
distribution from the family of all permutations on n bits. To achieve perfect
security, block cipher implementations would need to be able to implement any
given permutation. But this is infeasible for reasonable block sizes, since there are
2n! permutations on n bits. Instead, block ciphers implement only a fraction of
the all possible permutations, instantiated by a secret key. For an m-bit key size,
a family of block ciphers implements 2m different permutations. Consequently,
block ciphers can achieve at most computational security. A block cipher is called
computational secure, if an adversary cannot distinguish an instantiation with
computationally less effort than a brute force search over the cipher’s key space.

Unfortunately, (most) block ciphers do not come with a proof of security.
Rather, the security of block ciphers is based on ad hoc security, which relates
to the unsuccessful cryptanalysis of the cipher by many cryptanalysts for many
years. As techniques in cryptanalysis improve, they impose more requirements
on the design of block ciphers. For example, the discovery of differential crypt-
analysis, initiated the study of the design of S-boxes and diffusion layers with
important differential cryptanalysis properties [1].

In [174], Shannon described the concept of product ciphers. These ciphers
consist of several key-dependant rounds, that combine simple operations. By
itself, one single round does not provide any security, but together, they provide
a complex network of operations that is ‘easy’ to analyze, but (hopefully) difficult

2.1. INTRODUCTION 19

to cryptanalyze. A complex design is avoided, because these might be slow in
software, or require a lot of gates in hardware.

Two methods were suggested by Shannon in [174, page 708] to frustrate crypt-
analysis, Diffusion and Confusion, which we present in our own words:

Diffusion. The diffusion property is a quantitative notions that refers to the
dependence on each plaintext and key bit to each ciphertext bit. When a cipher
has a good diffusion, any difference should propagate well. In particular, flipping
one bit of the plaintext should cause each output bit to flip with a probability
of one half. The propagation property is often captured by the avalanche effect.
Typical operations that are deployed for block ciphers are permutations and wide
linear operations. These refer to functions with a large input and output domain.
For efficiency reasons, diffusion operations are preferred to be simple.

Confusion. This is qualitative notion that refers to making the relationship be-
tween the plaintext bits, the ciphertext bits, and key bits as complex as possible.
Non-linear operations achieve confusion. Usually, they consist in the parallel
application of high degree functions called substitution boxes, or S-boxes. In
software, these S-boxes are usually implemented as lookup tables. Since storing
an m-bit to n-bit S-box requires n · 2m bits of storage, S-boxes are kept small,
typically with an input size (m) of 4 to 8 bit.

Product ciphers use alternating substitution and diffusion operations to
achieve both confusion and diffusion respectively. Two families of iterated block
cipher networks are commonly found in modern cryptographic ciphers: Feistel
ciphers, and Substitution-Permutation Network (SPN) ciphers.

Feistel ciphers have the following properties:

• Typically, they apply a complex operation on half the input bits. Denote
with Xi the input to round i; Li, and Ri respectively the left and right half
of the input (Xi = Li||Ri). Then, the output of the round can be described
as Xi+1 = Ri||(F (ki, Ri)⊕Li), where ki is the round key, derived from the
original key k via a key scheduling algorithm, and F some fixed function
that involves the round key. Fig. 2.2 describes one such a round.

• Given the output of a round, and the round key, the original input can
be computed as follows: Xi = Ri+1 ⊕ F (ki, Li+1)||Li+1. Hence, the F
function need not to be bijective. It is advisable though, that the function

20 CHAPTER 2. BLOCK CIPHERS

Ri+1Li+1

ki

F

Li Ri

Figure 2.2. One Feistel cipher round

F is “close” to surjective. Otherwise, attacks as described in [156] become
possible.

• Due to the symmetry between encryption and decryption, both functions
can be implemented with the same algorithm; only the round keys needs to
be computed in reverse order. Hence, as hardware implementations, their
circuits can be re-used, resulting in a smaller footprint. This is one of the
main reasons why Feistel ciphers are still a popular design strategy. On the
downside however, Feistel ciphers need a substantial number of rounds to
comply with the diffusion requirement, since a round function transforms
only half of the bits.

Modern Feistel ciphers might slightly deviate from this design, but hold sim-
ilar properties. The most common example of a Feistel cipher is the Data En-
cryption Standard (DES), which is the first widely accepted modern cipher. We
introduce DES in Sect. 2.2.1, and discuss implementation issues and its white-box
implementations in Chapter 3 of this thesis.

Substitution-permutation network (SPN). These ciphers transform all
the input bits of the round. They have the following properties:

• Typically, the round function of a SPN cipher consists of three layers: key
addition, a substitution (confusion) layer (several S-boxes in parallel), and
a permutation (diffusion) layer.

• Every building block of the cipher needs to be invertible, in order for the
round functions to be invertible, to allow decryption.

• Encryption and decryption require different algorithms, because the layers
need to be processed in reverse order.

2.2. BLOCK CIPHERS 21

The Advanced Encryption Standard (AES) is a SPN cipher, which we introduce
in Sect. 2.2.2.

2.2 Block Ciphers

2.2.1 The Data Encryption Standard (DES)

The DES [142] is a Feistel block cipher that operates on 64-bit blocks and uses
a 56-bit key; it has been adopted by NBS (currently named NIST [139]) in 1977
as the encryption standard with the perspective of being fast, simple and secure,
and has enjoyed widespread use ever since. It is the first widely accepted mod-
ern encryption algorithm with open and fully specified implementation details.
Therefore the DES has been subjected to intense academic scrutiny, and hence
motivated the modern understanding of block ciphers and their cryptanalysis.

The DES has been the most widely used cryptosystem in the world, but is now
considered to be insecure for many applications. This is due mainly to its small
key size (of 56 bits) and several attacks that have been presented [16, 124, 149]. In
1998, the Electronic Frontier Foundation created the $ 250,000 “Deep Crack” [62]
machine to crack DES-encrypted messages in about 56 hours of brute-forced
search for the secret key. In 2006, the COPACOBANA [178] machine was built,
with 120 low-cost FPGAs. It is commercially available, costs about $ 10,000,
and is able to perform an exhaustive key search on the DES in under 6.4 days
on average.

Although its successor, the Advanced Encryption Standard (AES), is designed
to meet new security requirements and the evolution of computers, the DES or
variants such as 3DES3 are still implemented and deployed in various applica-
tions, in particular in the financial sector for banking transactions and ATMs.
ATMs are difficult to replace frequently, and have a lifespan of about eight years.
The DES has been replaced on ATMs between 1998 and 2006 by 3DES, and up-
dating to another block cipher such as the AES is a process that will take about
a decade to implement [4].

Design of the DES

The DES consists of 16 Feistel rounds, accepts as input a 64-bit input plaintext,
and produces the corresponding ciphertext under a 56-bit key. The input to each
round r is divided into a left (Lr−1) and a right half (Rr−1) of each 32 bit. The
right half bits serve as input to the function F ; its output is XOR-ed with the left

33DES or Triple-DES is a variant of the DES, designed to enlarge the key space, without a
need to switch to another cipher implementation. The simplest variant, with a 192-bit key, is
described as DESk3 ◦DES−1

k2
◦DESk1 . For the 112-bit key variant, k1 = k3.

22 CHAPTER 2. BLOCK CIPHERS

half. At the end of the round, the two halves are swapped. Figure 2.3 gives an
overview of the DES, and depicts one such round in more detail. The 16 rounds
are insulated by an initial permutation IP at the beginning, and its inverse IP−1

at the end.

IP

IP−1

F

F

F

F

F

S1

S2

S8

kr

...

6

P E

4

F

3232

Figure 2.3. the Data Encryption Standard

The F-function is the non-linear function that exhibits the confusion and
diffusion properties which good cryptographic ciphers require, and depends on
a 48-bit round key that is computed from the 56-bit key using the DES key
schedule algorithm. Firstly, the 32 input bits are expanded to 48 bits through
the expansion operation E, which replicates 16 bits. The outcome is bitwise
added with the 48-bit round key kr, and subsequently evaluated by the 8 S-boxes
S1, S2, . . . , S8. Each S-box is a non-linear mapping of 6 onto 4 bits. Finally, the
resulting 32 bits are permuted through the Permutation block P .

A formal description of the DES is presented by Algorithm 1.
The DES has been designed with the perspective of being simple and secure,

and fast and compact in hardware (which was expensive in the seventies). The
DES key scheduling algorithm is designed to be functionally equivalent to the
identity function after 16 rounds. Hence its output can be fed into the key
schedule function again for the next encryption, such that there is no need to
store the key in a seperate register.

2.2. BLOCK CIPHERS 23

Algorithm 1: Formal description of DES
input : plaintext m
(L0||R0) := IP(m)
for r : 1 . . . 16 do

Lr := Rr−1

Rr := Lr−1 ⊕ P ((S1||S2|| . . . S8)(kr ⊕ E(Rr−1)))
end
output: ciphertext c := IP−1(L16||R16)

Relevance of the study on the DES

Although the DES is in withdrawal phase, it is still an important study object.
First of all, from a cryptanalytic point of view, it is interesting to mount attacks
on the DES in order to compare with other attacks. Linear and differential at-
tacks have extensively been deployed on the DES. Moreover, the design principles
of the DES are used in many other ciphers, including Triple DES, TEA [187],
Twofish [169].

From a theoretical perspective, Feistel ciphers are an interesting study sub-
ject. In [120], Luby and Rackoff presented a construction of a block cipher that is
information theoretically secure [72], given a random function. In practice, given
a good round function, four rounds of Feister are sufficient to achieve indistin-
guishability from a random permutation under chosen plaintext attack (CPA).

The DES has been the first cipher for which a white-box implementation
is presented. We elaborate on white-box DES implementations and subsequent
cryptanalysis in Chapter 3.

2.2.2 The Advanced Encryption Standard (AES)

Due to the small key size and the slow software performance of the DES, NIST
announced a competition for a new standard, the AES [138]. In 2001, after a
five-year competition and standardization process, the Rijndael block cipher [54],
fixed to a block size of 128 bits, was selected. Nowadays, it is one of the most
popular algorithms used in symmetric cryptography.

Unlike the DES, AES is a substitution-permutation network, not a Feistel
network. It is fast in both software and hardware,4 easy to implement, and
requires only little memory.

4Recently, Intel announced that it will include instruction sets in their 2009 processors to
speed up AES computations [98].

24 CHAPTER 2. BLOCK CIPHERS

Description of the AES

The Advanced Encryption Standard (AES) is a substitution-permutation net-
work that supports key sizes of 128, 192, and 256 bits (denoted as AES-128,
AES-192, and AES-256 respectively). It works on a fixed block size of 128 bits
(whereas Rijndael, the original submission, can be used with key and block sizes
in any multiple of 32 bits, with a minimum of 128 bits and a maximum of 256
bits).

Depending on the key size (128, 192, or 256), AES consists of respectively 10,
12, or 14 rounds, that operate on a 4× 4 array of bytes (called state). A round
is specified in four steps as follows:

1. SubBytes – evaluate each byte of the state by the same S-box, 16 times
in parallel; The S-box is defined by the equation S(x) = M(1/x) + b over
the field GF(28) where M is suitably chosen and b is a constant. Such a
definition gives tight linear and differential bounds.

2. ShiftRows – a cyclic shift of each row, which leaves the top row of four
bytes unchanged.

3. MixColumns – mixing of the four bytes of a column, by multiplication of
each column with a constant matrix over the field GF(28).

4. AddRoundKey – binary addition of the state with the 128-bit subkey;

SubBytes MixColumns

ShiftRows AddRoundKey

Figure 2.4. A schematic overview of one round of the Advanced Encryption
Standard

A preliminary AddRoundKey step is performed before the first round (with a
whitening key), and MixColumns is omitted in the final round. Note that the
MixColumns of the last round has no importance, as when it is applied, an
attacker can cancel this operation by applying a known transformation.

The round operation is designed as such that a change on the input to a
round can potentially affect all of the output bits after only two rounds. The
key schedule of AES-n takes an n-bit key and transforms it into NR+1 subkeys

2.3. CRYPTANALYSIS 25

of 128 bits each, where NR denotes the number of rounds. We refer to [54] for
further details on AES.

2.3 Cryptanalysis

The ultimate goal of the cryptanalyst is to present an attack faster than any
generic attack on the block cipher, i.e., faster than exhaustive key search. In
the exhaustive key search attack, the attacker tries all the keys sequentially,
and tests whether the intercepted messages are being decrypted into something
with redundancy. The assessment of the security of block ciphers is the main
motivation of research in the field of block cipher cryptanalysis. This process of
security justification consists of applying cryptanalytic techniques to the cipher,
where each technique aims at exploiting different design flaws. Through this
process, the cryptology community learns to understand the design methodologies
that could yield ‘secure’ block ciphers; i.e., block ciphers that resist all known
attacks.

In this thesis, our objective is to assess the security of block cipher imple-
mentations in a white-box attack context, which exceeds any other attack model
studied before. Nevertheless, cryptanalysis techniques that have been developed
in the past, often apply to white-box implementations or are a source of inspira-
tion for white-box cryptanalysis techniques. In this thesis, we present an overview
of the most important cryptanalytic techniques.

2.3.1 Black-Box Cryptanalysis

Black-box cryptanalysis refers to cryptanalysis techniques in the black-box attack
model. This is the traditional attack model that is studied in cryptography, and
is depicted in Fig. 2.5. In this model, the (black-box) security of a cryptographic
primitive is captured by using a security notion where an adversary is given black-
box (oracle) access to the functionality. That is, the adversary can send a number
of queries to the oracle, each representing a plaintext or a ciphertext. The oracle
answers with the corresponding ciphertext, encrypted by the cipher E under the
(secret) key k. The adversary is not able to obtain any other information besides
the functionality of Ek. This captures the concept of an active adversary in the
basic cryptosystem.

The objective of the adversary is to gain some knowledge. This can be quite
broad, e.g., obtain information of (part of) the key, find the original plaintext
message for a specific ciphertext, or distinguish the oracle (that implements the

26 CHAPTER 2. BLOCK CIPHERS

query q1, q2, . . . , ql

response r1, r2, . . . , rl

b

1x, Q

E, D

A Encryption function

Ek

Figure 2.5. The black-box attack model

cipher) from a random oracle (that implements a random function). The question
that is posed to the adversary is captured by Q, its answer by b. Moreover, A
has the functions E and D as subroutine, since these are public in accordance to
the Kerckhoffs principle, while k is unknown. 1x indicates the size of the input.
We elaborate on these formal models and security notions in chapter 4.

A cryptographic primitive is said to be secure under a certain model, if it
resists an adversary with appropriate powers. We can distinguish between several
types of attacks.

Generic Attacks are attacks that are applicable to any cipher without any
pre-condition, hence independent of their design. The most common generic
attack is exhaustive key search. This attack can work under a ciphertext-only
assumption, if the redundancy of the plaintext is sufficiently high, or a known
plaintext assumption otherwise. Another generic attack is the tabulation attack,
where an attacker obtains a table containing the encryption of a given plaintext
under all keys. Once the ciphertext of this plaintext is observed by the attacker,
he can access the pre-computed table and find the key in one table lookup.
Hellman suggested that there are many time-memory tradeoffs possible applying
to any block cipher [87]. The work of Hellman was further improved in a series
of works [29, 141], suggesting other tradeoffs or applications of these results.

Statistical attacks aim at finding statistical properties that distinguish between
a given cipher (or a reduced-round version of it), and a random permutation or
function. These include differentials, or linear approximations (finding correlation
between plaintexts and the ciphertexts). There are several statistical properties
that are used in the analysis of block ciphers. An example is the relation between
the parity of a subset of plaintext bits and a subset of ciphertext bits (which is
investigated in linear cryptanalysis [124]). Some statistical properties combine

2.3. CRYPTANALYSIS 27

information between more than one plaintext/ciphertext pair, and are used in
e.g., differential cryptanalysis [17].

Differential cryptanalysis was the first theoretical attack that could break
DES faster than exhaustive key search. It was introduced in 1990 by Biham and
Shamir [16].

The attack exploits the relation between the differences of plaintext pairs
(P, P+∆P) and the differences of the corresponding ciphertext pairs (C, C+∆C),
where ∆X denotes the difference between the string X and X ′, and is defined as
∆X = X + X ′ for some operation + over these strings. When the ⊕ (exclusive
addition, or xor) operation is used to combine round keys with the internal data,
a difference defined over ⊕ is unharmed by the round key addition.

The attack tries to find differentials ∆P → ∆C that occur with a significant
larger probability than 2−n, where the probability of a differential is defined as

Pr(∆C|∆P) = Pr
P,k

[Ek(P + ∆P) = Ek(P) + ∆C] ,

where PrP,k is an average probability over P and k.
Later, the attack was generalized to deal with partial differences (called trun-

cated differentials) and sets of plaintexts (instead of only pairs) in higher-order
differentials [108] . The methodology of differential cryptanalysis is employed in
our cryptanalysis of the white-box DES implementation in Sect. 3.8.

Linear cryptanalysis was discovered by Mitsuru Matsui in 1993 [124], al-
though the fundaments of its principle were initiated earlier with the analysis
of FEAL [177, 126]. In general, linear cryptanalysis is based on finding linear
approximations for a cipher. The attack relies on a statistical bias of the parity
of the bits of the plaintext, ciphertext and key of the cipher. The bias ε over a
parity λP , λC is defined as

ε = Pr
[
λP · P = λC · C

]− 1
2
,

where · denotes the scalar product. Using this technique, Matsui has exper-
imentally broken DES in 1994 [125]. Specifically, Matsui exploited the linear
correlation in the fifth S-box that was discovered by Shamir [171]. Although
S-boxes are balanced by design, the discovery of biased S-boxes enables a point
to mount a linear attack. If one can find a linear relation for a block cipher

that holds with a probability of
1
2

+
1
N

, then one can expect to be able to re-

cover keybits with about N2 plaintexts. If the best linear approximation implies
that N2 is greater that the number of possible plaintexts 2n, the block cipher is
considered secure against linear cryptanalysis.

28 CHAPTER 2. BLOCK CIPHERS

Algebraic attacks on block ciphers are a recent technique, introduced by Cour-
tois et al. [51]: they treat a cipher as an overdefined set of low degree equations,
which an attacker tries to solve. Each cipher can be described as a set of multi-
variate equations in the input bits, output bits, and key bits. If these equations
are of low enough degree, or have some specific structure, an attacker can find
the key bits from a small sample of plaintexts and ciphertexts by solving the set
of equations.

Other classes of attacks include meet-in-the-middle attacks and its variants.
They are one of the first cryptanalytic techniques that were published. E.g.,
on Double-DES with two independent keys, there is a meet-in-the-middle at-
tack [184]. Related key attacks [13] refer to attacks where an adversary analyzes
a cipher under different keys, where a relationship between the keys is known
(although they keys themself are unknown). To be feasible to deploy however,
an adversary must be able to observe the functionality of a cipher under several
different keys.

Reduced round attacks introduce an iterated process of cryptanalysis,
where an attack is first deployed on a reduced number of rounds of a cipher,
which might provide insight to extend the cryptanalysis to a larger number of
rounds or even the full round block cipher. E.g., for AES-128 and AES-192, a
7 and 8 round cryptanalysis has been presented respectively (out of 10 and 12
rounds) [107]. For the DES, three theoretical attacks already exist on the full
16 rounds, but until now, no practical attacks have been found on the full round
version.

2.3.2 Side-Channel Cryptanalysis

In the past decade, the field of cryptanalysis has experienced major changes.
Not only do cryptanalysts now investigate the design of cryptographic primi-
tives, but they also examine their implementation into devices. In 1995, Paul
Kocher discovered implementation attacks, and showed how timing information
of cryptographic operations can be used to break the implementation of several
cryptosystems [109]. This class of attacks is referred to as side-channel attacks.
The term side channel is an abstraction of all unintended information leakage
due to implementation as a circuit.

Side-channel analysis is a powerful cryptanalytic technique that can be used
to exploit data-dependent physical leakage in order to recover secret data from
actual implementations. In Fig. 2.6, a side-channel attack model is depicted.

2.3. CRYPTANALYSIS 29

b

1x, Q

E,D

A Encryption function

Ek
response c1, c2, . . . , cl

leakage L1(p1, k), . . . , Ll(pl, k)

query (L1, p1), . . . , (Ll, pl)

Figure 2.6. The grey-box attack model

The main difference between the side-channel attack model and the black-
box attack model, is the presence of a leakage function L. This leakage function
abstracts information an adversary is able to obtain due to the implementation of
the algorithm as a circuit, and can originate from diverse physical characteristics.
Not only does this leakage depends on the intended input (pi), it is also influenced
by other factors such as physical characteristics of the device in which the circuit
is implemented, and external environmental conditions such as heat, radiation,
etc. These external conditions can be manipulated by the adversary and are
captured in the model within the queries (Li, pi).

Information leakage functions

Side-channel attacks were introduced with the discovery of timing attacks by
Paul Kocher [109]. These attacks rely on the fact that some operations take
more time to compute than others. Hence, when a correlation exists between
the secret key, and the number of such operations, often a timing attack can be
deployed. Countermeasures against these attacks are fairly easy to implement
when introducing delay operations, but typically they reduce the efficiency of an
implementation.

Simple and Differential Power Analysis (SPA and DPA respectively), pub-
lished in 1998 by Kocher et al. [110], are a powerful class of non-invasive side-
channel attacks. These attacks use measurements of the device’s power con-
sumption to disclose secret key material. Simple Power Analysis involves the
interpretation of power consumption by a circuit in time. A typical attack on
cryptographic circuits would be on RSA implementations, where the key bits de-
cide whether a multiplication or addition operation will be performed. Due to its
difference in power consumption, the correlation between the key bits and power
consumption allows to mount a simple power analysis attack [140]. Differential

30 CHAPTER 2. BLOCK CIPHERS

Power Analysis is a more advance technique that involves statistical analysis of
power consumption information obtained by multiple measurements.

Electromagnetic emanation was introduced as a side channel in 2001. Fun-
damental works in this area were published by Quisquater and Samyde, as well
as Gandolfi, Mourtel and Olivier [151, 67]. Template Attacks were introduced by
Chari et al. [41] in 2002.

Side-channel attacks can be categorized into two classes: passive attacks,
which are non-invasive, such as power consumption and timing attacks; and active
attacks, which involve tampering of the circuit, such as fault attacks. The com-
plexity of side-channel attacks is expressed not only in computational complexity
(as with black-box attacks), but also the quality of the side-channel information
(related to the presence of noise).

Theoretic approaches

Side-channel attacks are categorized according to the type of leakage function,
the quantity of the side-channel information, and their quality. The leakage
functions available to an adversary and their conditions are described in a model.
A cryptographic primitive is said to be secure under a certain model, if it resists
any adversary with appropriate powers. Obviously, it is desired that such a
model is a reflection of the reality in which the cryptographic primitive is to be
deployed.

Several side-channel models have been described in the past years [112, 167].
An interesting new research field within the context of theoretical modeling is
Physically Observable Cryptography, introduced by Micali and Reyzin [132] in
2004. The approach is three-fold: (1) specify the physical world with a set of
axioms (model), (2) define what is understood under the security of an algorithm,
and (3) prove that no adversary for a secure algorithm can exist under reasonable
assumptions. A substantial result within this context, is the design of Private
Circuits I by Ishai et al. [100], who prove that secrecy can be guaranteed when an
adversary has access to a bounded number t of wires in a circuit. Private Circuits
II [99] persues a similar goal in the presence of tamperable circuits. However,
the main issue is how realistic these models are. The results are rather theoretic,
because the resulting (secure) implementation is rather big: O(nt2) gates, where
n denotes the size of the original (insecure) circuit. Also, once an adversary is
able to probe t wires, the effort is small to probe t + 1 wires, in which case the
implementation becomes insecure. Moreover, as the size of the circuit increases,
more information becomes potentially observable for other side-channels such as
power analysis.

2.4. CONCLUSION 31

2.4 Conclusion

We presented block ciphers, which are widespread cryptographic primitives that
are of particular interest for white-box cryptography. Traditionally, block ciphers
are designed to withstand black-box attacks, and their security is assessed by a
process of scrutinizing. This include the deployment of cryptanalytic techniques
such as differential cryptanalysis and algebraic cryptanalysis. A similar approach
will be conceived to assess the security of white-box implementations.

In practice however, popular trusted ciphers like RSA and AES might not
provide the level of security as expected, since they are not designed to operate
in environments where their execution could be observed. The introduction of
side-channel cryptanalysis techniques showed that even conditional access might
suffice for an adversary to obtain confidential information such as secret keys.
The natural process for research in side-channel cryptology exists in defining
a attack model (e.g., an adversary is allowed to probe t wires), and develop
countermeasures within that model. However, it turns out to be difficult to
define a model that captures real-world adversaries. Hence, the following natural
problem arises:

Problem 1 Given a cryptographic primitive that is secure against adversaries
in a given model. What if an adversary does not comply any more to the model?
What if an adversary ‘steps out’ of the model?

This is one of the issues that White-Box Cryptography aims to address.

32 CHAPTER 2. BLOCK CIPHERS

Chapter 3

White-Box Implementations

3.1 Introduction

The main objective of this dissertation is to assess the security of cryptographic
primitives in the presence of a white-box adversary. This research is denoted as
white-box cryptography. In this chapter, we analyze the security of practical im-
plementations of such primitives, denoted as white-box implementations. We refer
to the methods and procedures of such an adversary as white-box cryptanalysis.

The main interest of white-box cryptography lies in the implementation of
symmetric ciphers, in particular block ciphers. In this chapter, we assess the
security of these techniques, by analyzing the implementations and deploying
cryptanalysis techniques. This is similar to the ‘proof by scrutiny’ approach (see
Sect. 1.1.4). In Chapter 4 we will extend the research towards arbitrary crypto-
graphic primitives, and assess white-box security based on ‘proof by reduction’.
After a discussion on the white-box attack context, and introducing the main
obfuscation strategy, we present an overview of the state of the art in white-box
cryptography. One of our main contributions is the cryptanalysis of encoded
white-box DES implementations. We also initiate an analysis of basic building
blocks of block ciphers, and conclude with strategies towards secure white-box
implementations by formulating ‘white-box design criteria’ for block ciphers.

3.1.1 Attack Models

One can distinguish three main attack models that capture the attack capabilities
of an adversary on cryptosystems. These are the following:

• The black-box model is the traditional attack model, where an adversary
has only access to the functionality of a cryptosystem.

33

34 CHAPTER 3. WHITE-BOX IMPLEMENTATIONS

• A grey-box model refers to a model where a leakage function is present. In
such an attack context, the adversary can deploy side-channel cryptanalysis
techniques. Due to the large variety of leakage functions (see Sect. 2.3),
several grey-box models can be defined.

• In the white-box model, the adversary has total visibility of the software
implementation of the cryptosystem, and full control over its execution
platform. One could refer to the white-box model as the worst-case model,
where in contrast to grey-box models, it is impossible for an adversary not
to comply with the this model. The white-box model is used to analyze
algorithms that are running in an untrusted environment, that is, an en-
vironment in which applications are subject to attacks from the execution
platform.

In 2002, Chow et al. [42] introduced the White-Box Attack Context (WBAC),
which assumes that:

• fully-privileged attack software shares a host with the cryptographic soft-
ware, having complete access to the implementation of algorithms;

• dynamic execution (with instantiated cryptographic keys) can be observed;

• internal details of cryptographic algorithms are both completely visible and
alterable at will.

The main goal of the adversary will be to extract secret key information. This
definition also captures the malicious host attack context studied by Sander and
Tschudin [162, 163] and Hohl [94].

The attack tools that are at the disposal of an adversary are diverse. They
include analysis of the memory and implementation binary (e.g., to deploy an
entropy attack; see Sect. 1.3.1.); interception of calls to the CPU or external li-
braries; use of debugging and analysis tools, such as IDA Pro [90] or Syser [176];
reverse-engineering; tampering of the software implementation, and fault injec-
tion at execution time. We refer to Main and van Oorschot [123] for an overview
of software attack tools.

3.1.2 Comparison between Attack Models

In Fig. 3.1, an overview of the attack models is depicted. In a white-box model,
black-box attacks can be deployed as well, since the functionality (by execut-
ing the given implementation) of the cryptosystem is available to the adversary.
Hence, to be potentially white-box secure, a cryptosystem needs to be black-box
secure in the first place.

3.1. INTRODUCTION 35

Furthermore, when a cryptosystem is secure in the white-box model, it will be
secure in any grey-box model as well, because the behavior of leakage functions
depends on the operations of the implementation, which are completely visible
in a white-box model. Hence, any leakage function can be simulated by a white-
box adversary. As a result, secure white-box implementations are not only secure
against the current state of the art side-channel attacks, but also inherently secure
against any future side-channel attacks.

White-box attacks supersede side-channel attacks. However, there is still a
significant gap between the two models. In grey-box models, adversaries are
limited in observations to physical boundaries: accuracy of measurements, speed
of logic-operations, noise, etc. These are boundaries that are not present in a
white-box model. Moreover, software implementations are not bound to any
platform, while circuit implementations are rather difficult to clone.

Oracle access

Time analysis

CPU call interception
Debugging
Reverse-engineering
. . .

. . .

Power analysis
Electromagnetic radiationSide Channel

Future
Side-Channel

White-Box

Black-Box

Memory inspection

Threat

Figure 3.1. Attack model comparison

However, given this relationship, one can not make any direct connection
between the security of an algorithm (in the black-box way), and the success
probability of a side-channel or white-box attack. The latter two attack classes
are only specific to the implementation of the algorithm.1

1Remark though, that in Sect. 3.9, we will make some indirect statements on this relation,
based on cryptanalysis results on the state of the art of white-box implementations. Namely,

36 CHAPTER 3. WHITE-BOX IMPLEMENTATIONS

Numerous examples from side-channel analysis results show that, when noth-
ing stands in between an adversary and the internals of the implementation, the
choice of implementation is the sole remaining line of defense [19, 23, 40, 53, 52].
Therefore, ‘white-boxing’ refers to the methodologies used to compile a crypto-
graphic algorithm into a secure implementation. Hence, we denote this as an
obfuscation technique (but then, a very specific one).

3.1.3 Objectives of WBC

White-Box Cryptography, when it was proposed in 2001 by Chow et al. [43], was
originally defined as an obfuscation technique with the following objective.

Definition 2 (Chow et al. [42]) White-Box Cryptography is an obfuscation
technique intended to implement cryptographic primitives in such a way, that
even an adversary who has full access to the implementation and its execution
platform, is unable to extract key information.

The protected implementation should be a functionally equivalent program
in which the key is no longer visible.2 The techniques introduced by Chow et
al. [43, 42] are implemented in the context of encryption algorithms. Ideally, a
white-box encryption implementation should be so robust against analysis that
an adversary would be inclined to resort to a plaintext/ciphertext pairs attack,
as if the white-box implementation were a black-box.

However, there is a fundamental problem with Definition 2. Adversaries typ-
ically try to tackle the weakest link in an application. In some applications,
isolating the cryptographic code in the application implementation might be suf-
ficient to defeat its purpose. This is referred to as code lifting, and is a common
threat to DRM applications. In some sense, white-box cryptography could also
be seen as a technique to hide a key in an even bigger key. As such, protection
against key recovery becomes a meaningless notion.

Therefore, we propose a new definition of the objectives for white-box cryp-
tography, to make more sense in practice. We formalize and discuss this definition
in detail in Chapter 4.

Definition 3 The objective of White-Box Cryptography is to implement cryp-
tographic primitives in such a way that, within the context of the intended appli-
cation, having full access to the cryptographic implementation does not present

that for some families of block ciphers, the particular building blocks that are designed to
withstand black-attacks, are exactly those building blocks that impose a vulnerability to attacks
in the white-box context.

2For practical purposes however, often an encoded version will be obfuscated. The result is
a program that is functionally equivalent to the encoded version of the original program.

3.2. OBFUSCATION STRATEGY 37

any advantage for a computationally bounded adversary in comparison to the
adversary dealing with the implementation as a black box.

We admit that this definition is rather vague. Yet it allows a more precise
definition of the requirements for a specific white-box implementation. What
we suggest, is that the implementation of cryptographic primitives should be
considered within the context of an associated security notion. A security notion
is used in cryptography to capture the security requirements of a cryptographic
primitive. It describes the capabilities of the adversary, and constitutes what a
succesfull attack means (see also Sect. 4.3). A similar issue was pointed out by
Hohenberger et al. [93], who presented a definition coined secure obfuscation.

Definition 2 refers to the key recovery (KR) security notion, which is an
essential standard objective in cryptography. Another security notion would
be for example PR-CPA, where an adversary tries to compute the plaintext
corresponding to a given ciphertext, given access to the encryption functionality.

Note that key recovery implies invertibility of the cryptographic primitive
(because due to the Kerckhoffs’ principle, the corresponding decryption routine
is available). The inverse is not always true.

PR-CPA secure ⇒ KR-CPA secure.

Hence, the non-invertibility security notion is a stronger requirement, but also
harder to meet. For practical deployment of white-box implementations how-
ever, this security notion is much more interesting, sometimes even essential, for
example when white-box implementations are deployed as an asymmetric prim-
itive. We discuss the issue of running white-box implementations backwards in
Sect. 3.7. Other security notions that might be relevant within the context of
white-box cryptography include: prevent key recovery; non-invertibility; (target-
ted) tamper prevention; and traceability. We discuss these notions and their
practical implications in Chapter 5.

Definition 3 opens a broad perspective on the concept of ‘security’ for white-
box implementations. We formally describe this into a formal model for white-box
cryptography in Chapter 4.

3.2 Obfuscation Strategy

When the internal details of an algorithm are exposed to an adversary, the last
line of defense is the way in which the algorithm is implemented. This conclusion
has been formulated in the study for secure implementations of cryptographic
primitives on smart cards by Daemen et al. [52, 53], Biham and Shamir [19],
Boneh et al. [23], and Cari et al. [40].

38 CHAPTER 3. WHITE-BOX IMPLEMENTATIONS

The generic attacks that were introduced in Sect. 1.3, indicate a general strat-
egy that needs to be followed for white-boxing a cryptographic primitive.

• Key information needs to be spread over the entire implementation, forcing
an adversary to analyze the whole implementation, instead of focussing on
individual parts (that could for example be identified by an entropy study).

• Besides the key, all building blocks of the cryptographic primitive are pub-
licly known (Kerckhoffs’ principle). In order to prevent local analysis (in-
troduction of break points or overwriting of components) similar to the key
whitening attack (see Sect. 1.3.2), the building blocks should be random-
ized.

3.2.1 Initial White-Box Strategy

The strategy, proposed by Chow et al. [43] consists in transforming a given block
ciphers into a randomized, key dependent network of lookup tables. This com-
prises three main steps.

1. Partial Evaluation. Embed the key into an operation, usually by trans-
forming the (fixed) S-boxes Si into key-dependent lookup tables Ti. E.g.,

Ti(x) := Si(x⊕ ki) ,

in the case of a key addition operation before the S-box operation.

2. Tabularizing. This process consists in transforming all components of the
block cipher, including the linear transformations, into lookup tables. This pro-
cess may seem like ‘black art’ for those who are not familiar with white-boxing
techniques. Also, there is no generic ‘compiler’ or algorithm for transforming a
given algorithm into its tabularized equivalent. Instead, in the literature, a list
of techniques is presented by means of demonstration on white-box implementa-
tions of the DES and the AES. We will introduce these techniques in Sect. 3.5 in
a similar manner.

3. Randomization and delinearization. The reason why a transformation
to lookup tables is used, is because lookup tables can implement any given func-
tion. Hence they are the ideal primitive to hide information. The main idea is
as follows.

Observe a chain of three consecutive lookup tables in the network L3◦L2◦L1,
where L2 contains some key information that needs to be hidden (e.g., L2(x) =
x ⊕ k). Because the description of the lookup tables is available to a white-box

3.2. OBFUSCATION STRATEGY 39

adversary, the key information can be extracted directly (evaluate L2(0)). We
prevent this by transforming the lookup tables as follows:

L1 → L′1 = b1 ◦ L1

L2 → L′2 = b2 ◦ L2 ◦ b−1
1

L3 → L′3 = L3 ◦ b−1
2 ,

where b1 and b2 are bijections of dimensions corresponding respectively to the
input and output dimension of the L2 operation. L′i are denoted as encoded
lookup tables, and the encoded chain L′3 ◦ L′2 ◦ L′1 has equivalent functionality
to the original chain. The fundamental property is that L′2 does not leak any
key information, and that an adversary is forced to analyze more components in
order to gain information. In this case, an adversary would need to analyze L′1
and L′3 to recover information of b1 and b2 respectively. We briefly discuss these
claims in Sect. 3.3.

Table 3.1. Implementation size of an n-bit to m-bit lookup table.

output size (bit) input size (bit)
4 8 16 32

4 8 bytes 32 bytes 8 kB 512 MB
8 16 bytes 64 bytes 16 kB 1 GB
16 32 bytes 128 bytes 32 kB 2 GB
32 64 bytes 256 bytes 64 kB 4 GB

Unfortunately, lookup tables can be quite large to implement. To implement
a n to m bit lookup table, 2n ·m bits of storage is required. The exponential size
in relation to its input is indicated by Table 3.1. Hence, for practical purposes,
the input size is kept small, and a network of lookup tables is implemented
instead of one big lookup table. The obfuscating internal encodings bi cannot
exceed the boundaries of the lookup table they encode, hence their effectiveness
is reduced when reducing the lookup table dimensions. Therefore, before the
tabularization process, other annihilating randomizations are injected, such as a
randomly selected affine permutation (e.g., the MB operation in the white-box
AES implementation).

This process of injecting annihilating bijections needs to be unpredictable,
and difficult (ideally impossible) to be undone by an adversary.

3.2.2 Related Concepts

This strategy is similar to other protection techniques that appear in the liter-
ature. The method of randomization is for example a generic representation of

40 CHAPTER 3. WHITE-BOX IMPLEMENTATIONS

homomorphic functions. These are functions E that allow to compute on data in
the encrypted domain (CED) [190], that is, to compute on data E(xi) instead of
xi. For example, the Paillier cryptosystem [144] is a homomorphic public key en-
cryption scheme that enables the addition of x1 and x2 in the encryption domain,
without the need to decrypt E(x1) or E(x2):

E(y) = E(x1 + x2) = E(x1) · E(x2) .

Let us generalize this to an operation f on data x1 and x2 that we wish to
compute in the encrypted domain. When f is described as a network of lookup
tables, then the randomization strategy can be deployed as follows: generate
random bijections b1, b2, b3, and transform f into f ′ = b3 ◦ f ◦ (b−1

1 ‖ b−1
2). As a

result, f ′ computes on the encrypted variables: b3(y) = f ′ (b1(x1), b2(x2)), where
the bi refer to an analogue of encryption functions.

The ultimate goal in CED research is to find an efficient homomorphic en-
cryption scheme for an algebraic ring, enabling both addition and multiplication
onto encrypted values. Sadly, the best results in CED enable (infinite) additions,
with only one multiplication [26]. This basic strategy has been deployed for hard-
ening software. It modifies operations, randomizes data flow, and hence raises
the bar against analysis. This was the germ for the initial white-box techniques
proposed by Chow et al. [43, 42].

In 1982, Yao [196] presented a solution for the millionaires problem, where
two millionaires want to know whom is the richest, without revealing their proper
wealth. This led to the concept of Secure Function Evaluation (SFE) with sem-
inal work of Goldreich, Micali, and Wigderson [73]. The core idea is that one
party (Alice) creates a garbled circuit, and sends it to the other party (Bob). Bob
is able to evaluate this circuit with his private inputs and compute the result.
This process of evaluation requires that Bob receives the (garbled) values of Al-
ice, without revealing any private information to each other. This is achieved
via Oblivious Transfer (OT) [152]. Such a garbled circuit resembles a network of
randomized lookup tables. The main difference however is that SFE is achieved
by means of a two party protocol, while white-box cryptography aims to imple-
ment a stand alone functionality. Recent research in SFE aims to reduce the
communication overhead [164, 111, 117], but unfortunately this leads to circuits
of unpractical size for reasonable algorithms. However, both research fields (SFE
and WBC) can inspire each other, and the ultimate goal would be a common
solution.

In 1997, Patarin and Goubin [146] introduced a new asymmetric cryptosystem
that is based on the difficulty of recovering two systems of multivariate polyno-
mials from their composition. Their scheme introduce the idea of hiding one or

3.2. OBFUSCATION STRATEGY 41

two rounds of small S-box computations with secret functions of degree one or
two. The one-round schemes have shown to be insecure [146]. In [14], Biham
cryptanalysed the two-round scheme (2R). However, this attack is not based on
the decomposition of the polynomials. Dingfeng et al. [198] presented an attack
based on the algebraic structure of the scheme with the intention of decompos-
ing the compostion. The 2R− schemes (where some polynomials describing the
composition are kept secret), are not subject to any of these attacks. This basic
idea was used by Carlier et al. [39] to obtain a way of representing block ciphers,
concealing their design but leaving them executable.

Sander et al. [161, 119] built upon the Quadratic Residue Hypothesis [79] to
hide polynomials and subsequently programs. Billet and Gilbert [20] proposed
a new family of block ciphers, based on the Isomorphism of Polynomials (IP)
problem [145, 147, 50], with traceability properties (see Sect. 5.5.1). The under-
lying building block was cryptanalysed by Faugère and Perret [64]. A repair for
the traceable block cipher was proposed by Bringer et al. [31], based on a per-
turbation idea that was introduced to re-enforce the IP-based cryptosystems by
Ding [60]. A similar approach was conceived in Bringer et al. [32], in an attempt
to repair the white-box AES cryptanalysis, which we discuss below in Sect. 3.6.2.

3.2.3 Encoded Variants

Often, instead of implementing a cryptographic primitive Ek, an encoded variant
is implemented. That is, a white-box implementation that is functionally equiv-
alent to the encoded primitive E′

k = G ◦Ek ◦F−1, where F and G are randomly
selected bijections. There are two main reasons to follow this strategy.

1. To improve the security of the white-box implementation.

The lookup tables of the white-box implementation are obfuscated using an-
nihilating internal encodings bi. The resulting lookup tables L′ = bi◦L◦b−1

i−1

are difficult to analyze without the knowledge of the bi encodings. How-
ever, the lookup tables at the beginning of the network are only protected
by means of internal output encodings (L′ = b0 ◦L), and hence potentially
more vulnerable to analysis. A similar reasoning holds for the final lookup
tables. This could make white-box implementations vulnerable to chosen
plaintext attacks (CPA), or chosen ciphertext attacks (CCA) when refer-
ring to the final round. To prevent analysis at the outer lookup tables of a
white-box implementation, external encodings might be applied.

2. To prevent code-lifting.

One of the major differences between a white-box model and the black-
box/grey-box model is copyability. If cryptographic primitives are imple-
mented in software, they can easily be duplicated. In one attack scenario

42 CHAPTER 3. WHITE-BOX IMPLEMENTATIONS

an adversary wants to extract the secret key, such that it can be used in
a standard implementation. Instead, in a white-box model, an adversary
could just use the implementation itself. E.g., isolate the decryption rou-
tine with embedded secret key from a DRM application, and use it in a
stand-alone manner. This way, one can circumvent code for device or user
authentication, no matter how robust the white-boxed decryption routine is
obfuscated against key recovery. This is often denoted as code-lifting, and a
related technique to prevent this attack, is called Software Shielding [180].

To prevent this, external encodings might be applied, which are embedded
into the white-boxed cryptographic primitive. The annihilating encodings
could be embedded into other parts of the application (e.g., in the user
authentication code), or on other machines (e.g., in a remote execution
scenario). We elaborate on the deployment of external encodings in practice
in Chapter 5.

The use of encoded variants may be reasonable for DRM applications, or to
prevent code-lifting. But they are not appropriate when standard encryption
schemes are required. Also, they interfere with the deployment of a mode of
operation, e.g., the CBC mode of operation, as depicted in Fig. 2.1. Hence,
their deployment should be taken into consideration within the context of the
application.

3.3 Security

3.3.1 Local Security

The core idea of white-box implementations, as proposed by Chow et al., is to
have perfectly obfuscated lookup tables. That is, lookup tables that do not leak
any information. This is denoted as local security, and is similar to the concept
of information theoretical security offered by the One-Time Pad.

Consider a lookup table L, that implements a key-dependent n-bit to m-bit
function fk:

L : GF(2)n → GF(2)m

x fk(x)

This lookup table is encoded using the randomly selected bijections b0 and b1,
such that L′ = b1 ◦L◦ b−1

0 . When fk is a bijective function, and b0, b1 are chosen
uniformly from the full set of possible n-bit to n-bit and m-bit to m-bit bijections
respectively, it can be proved information theoretically that L′ does not leak any
information about k. Intuitively: given the description of L′ and f., then, with
an equal probability for any k, there exists a b0, b1, such that L′ = b1 ◦ fk ◦ b−1

0 .

3.3. SECURITY 43

However, local security does not apply in any other cases. When a lookup
table L implements a lossy function, or the internal encodings are not taken
at random from the full set of possible bijections, useful information may leak.
E.g., in practice, often lookup tables of 2n-bit to n-bit are implemented (e.g., to
represent a XOR operation), where b1 is taken from the set of bijective functions
on GF(2)n×GF(2)n instead of GF(2)2n. We will demonstrate this vulnerability
when describing the algebraic cryptanalysis in Sect. 3.6.2.

3.3.2 Metrics

Formalizing any other claim on the security of white-box implementations is
difficult. For individual lookup tables, we can make some statements (such as
local security). However, describing the security against analysis of a collection
of lookup tables is hard. Furthermore, our goal is to implement block ciphers
in a secure way, where most block ciphers do not even come with a (black-box)
security description/proof themselves.

It is possible though, to set up some indicative metrics to account for the
cryptographic quality of white-box implementations, by counting the number
of different sets of lookup tables and the number of representations. A similar
approach is followed to capture the ‘security’ of obfuscation techniques [45, 46].
Although they are not bullet proof security measurements, they are able to qualify
the supposed robustness of white-box implementations, and provide a way to
compare between the different techniques.

The following two metrics have been formalized in [42, 43]:
Diversity relates to the number of distinct implementations that could be com-
piled from one given algorithm with instantiated key, that is, the number of
implementations that are functionally equivalent. This depends on the number
of possible annihilating bijections b and affine encodings that can be applied, and
can be counted as the number of possible encoding steps:

k ⇒ #L′ .

There exist 2n
∏n−1

i=0 (2n − 2i) bijective affine transformations on n bits, since
there are

∏n−1
i=0 (2n − 2i) non-singular n × n matrices [58], while there are 2n!

possible bijective lookup tables. Hence the diversity of a network of randomized
lookup tables is vast, even for small dimensions.

Ambiguity relates to the number of candidate keys for a given white-box im-
plementation, lookup table, or set of lookup tables. This is a more important
metric, as it is a better way to reflect the difficulty for an adversary to gain infor-
mation on the original component. It is a measure of the number of alternative

44 CHAPTER 3. WHITE-BOX IMPLEMENTATIONS

interpretations an implementation can have, amongst which an adversary must
disambiguate:

L′ ⇒ #k .

Metrics are only appropriate when there is a lack of efficient cryptanalysis
results or security proofs. Therefore, in the following sections, we will discuss the
state of the art of white-box implementations and of cryptanalysis results.

3.4 History

White-Box Cryptography was introduced in 2002 by Chow et al. in their seminal
papers [42, 43], and defined the white-box attack context. Although they were
the first to use the ‘white-box –’ terminology, similar attack models have been pre-
sented before, such as the malicious host model by Sander and Tschudin [162, 163]
and Hohl [94]. While public research in this topic mainly gained interest in the
last decade, industry (e.g., to protect Intellectual Property) and governments
(e.g., to protect military software implementations for in case they fall into ene-
mies hands [116]) have been investigating similar concepts.

Chow et al. presented practical white-box implementations for the DES [43]
and the AES [42]. Both implementations have been fully broken. In 2002, Jacob
et al. [101] presented a cryptanalysis of the naked variant, that is, a variant with-
out external encodings. They describe a fault-injection attack using differential
cryptanalysis. This attack was improved by Link and Neumann [118] in 2005:
they presented a new (naked) variant of white-box DES implementations that
was resistant against any known attack at that moment. In 2007, all existing
white-box DES implementations were cryptanalysed by Wyseur et al. [191], and
independently by Goubin et al. [82]. Both attacks are based on a truncated dif-
ferential cryptanalysis. Goubin et al. presented an attack that analyzes the first
rounds of the white-box DES implementations, while Wyseur et al. presented
an attack that works on the internal information, independently of the external
encodings that are applied. The cryptanalysis result can be extended to generic
Feistel ciphers, based on a similar strategy.

In 2004, Billet et al. [21] presented a very effective cryptanalysis of white-box
AES implementations. Their attack is an algebraic cryptanalysis that operates
on specific chosen sets of lookup tables, to remove the non-linear part of the
internal encodings. This result opens the door to mount an algebraic analysis on
a stripped down version of the white-box AES implementation. The attack was
further improved by Michiels et al. [135] and can be deployed on a generic class
of white-box implementations.

3.5. CONSTRUCTIONS 45

We outline the most important aspects of these cryptanalysis results in
Sect. 3.6, while the details of the cryptanalysis by Wyseur et al. are described
in Sect. 3.8.

3.5 Constructions

In this section, we present the white-box implementations of the DES, and the
AES, as proposed in [118], and [42] respectively. The goal is to introduce the
white-box transformation techniques that are needed to elaborate on their crypt-
analysis results.

3.5.1 White-Box DES Implementations

We describe the white-box DES implementation of Chow et al. [43], and indicate
some of the modifications that were presented by Link and Neumann [118], to
improve the efficiency and robustness of the implementation.

32

32

32 32

48 16

3232

48 16

16

P E

E

Lr−1 Rr−1

RrLr

S1...8

E

Yr

P

(a) (b)

Lr−1

RrXrLr

Rr−1

Dr

Xr−1Lr−1 Rr−1

select

k

S1...8
merge

Cr

Non-Linear Layer

Affine Layer

k

Figure 3.2. (a) One round of DES (b) One round of white-box DES

The DES is a Feistel cipher with 16 rounds, embedded between an initial
permutation IP before the rounds, and its inverse permutation IP−1 after the

46 CHAPTER 3. WHITE-BOX IMPLEMENTATIONS

last round. Fig. 3.2 (a) depicts one round of DES. It has the following building
blocks: an expansion operation E; an addition of a 48-bit round key Kr which
is generated from the key schedule; 8 S-box operations Si (each S-box is a non-
linear mapping from 6 bits to 4 bits); and a bit permutation P . We refer to
Sect. 2.2.1 for a detailed description of the DES.

The main idea of compiling DES as a white-box implementation is to express
DES as an alternating layer of parallel lookup tables (Cr), comprising the non-
linear part of the DES, and an affine transformation (AT) layer (Dr). These
ATs can than be broken up (matrix decomposition) into smaller transformations,
that can be described as lookup tables. Fig. 3.2 (a) depicts how the DES can be
cut into two suitable layers; the layered representation is depicted in Fig. 3.2 (b).
Notice that, following this strategy, it is thus possible to untie the Feistel structure
of DES and implement the cipher as a substitution-permutation network (SPN)
block cipher, as is the case with the AES.

T-boxes

The non-linear layer of each white-box DES round can be implemented as 12
parallel T-boxes, which are defined as follows:

{
T r

j = b0b1 || b2b7 ||Sj(b2b3b4b5b6b7 ⊕ kr
j) (a) ∀j = 1 . . . 8

T r
j = b0b1b2b3 || b4b5b6b7 (b) ∀j = 9 . . . 12

Here r denotes the round number (1 ≤ r ≤ 16), b0...7 represent the eight input
bits to each T-box, and kr

j represents six bits of the round key. Fig. 3.3 depicts
both types of T-boxes.

These 12 T-boxes represent the function Cr of round r of the DES imple-
mentation. The first eight T-boxes are called non-linear T-boxes, as they contain
the non-linear S-boxes. Furthermore, each of these eight non-linear T-boxes by-
passes two bits of Lr−1, and the two outer input bits to the S-box input (before
key addition). Due to the construction of the DES S-boxes, which have a bi-
jective relation between the four middle input bits b3b4b5b6 and the output bits,
these T-boxes are 8-to-8 bit bijections. This property is often referred to as
having entropy eight. This design property is needed to prevent the T-boxes to
leak information as described by Chow et al. [43]. Variations on the implemen-
tations [118, 192] can be introduced, such as re-arranging bypass bits, as long as
the design properties of DES remain fulfilled.

The eight non-linear T-boxes bypass 16 bits of Lr−1 and 16 bits of Rr−1 in
total. The other 16 bits of Lr−1 and 16 bits of Rr−1 are bypassed using four
linear T-boxes. We call these T r

j (∀j = 9 . . . 12) bypass T-boxes, and the 16 bits
of Rr−1 they bypass we denote restricted bits, denoted by Rr−1.

3.5. CONSTRUCTIONS 47

Sj

kr
j

T r
j T r

j

(a) (b)

Lr−1 Xr−1 Lr−1 Rr−1

Lr−1 Rr−1YrLr−1 Rr−1

Figure 3.3. The two types of white-box DES T-boxes: (a) non-linear T-box
with internal S-box (b) bypass T-box

A first randomization we apply is to shuffle the 12 T-boxes of Cr such that it is
not straightforward to know which S-box is contained in which T-box. Shuffling is
a linear operation, hence we can implement this operation in the affine operations
Dr−1 (shuffle) and Dr (unshuffle). Denote with π the shuffle operation which
maps the T-box with internal S-box Si onto Tπ(i).

Implementing the Linear Operations

The transformation Dr is a linear transformation of 96 bits to 96 bits. Denote
with M the 96×96 bit matrix that represents this transformation (Dr : y = Mx).
In order to implement this matrix operation as a network of lookup tables, we use
a technique called matrix decomposition. The main strategy is to subdivide the
96× 96 bit matrix M in m× n sub-matrices. Each m× n sub-matrix represents
how an n-bit sub-vector of the input vector affects an m-bit sub-vector of the
output vector. We implement each sub-matrix as a lookup table with 2n rows of
m bits.

In order to implement the full binary linear operation, the results of the
outputs of the sub-matrix lookup tables must be XOR-ed. Each XOR operation
applies to 2m bits and results into m bits. Putting it all together, implementing
these XOR operations as a lookup table of 22m rows of m bits results into the full
linear operation to be a network of lookup tables. Such a network is presented

48 CHAPTER 3. WHITE-BOX IMPLEMENTATIONS

in Fig. 3.4.

Output state (y)

Input state (x)

. . .

. . .

y xM

Figure 3.4. Matrix decomposition

Although lookup tables occupy much more space than linear operations, we need
to implement the linear operations as lookup tables to apply non-linear encodings
to the network. For both security and optimization purposes, Dr is decomposed
into 8 × 4 lookup tables (m = 4, n = 8). Because every 8 bit T-box result of
Cr is then preceding 24 (= 96/4) decomposed tables of the affine operation Dr,
we can fold this T-box with every of its proceeding 8 × 4 lookup tables, and
thus eliminate the 8 × 8 lookup tables, condensing the implementation. This
optimization step has been suggested by Link et al. [118].

Re-Indexing and Delinearization

The steps mentioned above transform the DES into a network of lookup tables
with an embedded key. At this point, these lookup tables do not provide much
security as it is not difficult to extract the key from the content of the tables. To
protect this content, input/output encodings are applied to these lookup tables.

Let Li be a lookup table, and f1 and f2 be random bijections. Then f2◦L◦f−1
1

is defined as its encoded version. We encode all lookup tables in the network, in
such a way that the output encoding is cancelled by the input decoding incorpo-
rated into the next lookup table. Thus, consider a sequence of connected lookup
tables

L := Lr ◦ Lr−1 ◦ . . . ◦ L2 ◦ L1 .

3.5. CONSTRUCTIONS 49

When we encoded each of these lookup tables, we obtain the chain

(fr ◦ Lr ◦ f−1
r−1) ◦ (fr−1 ◦ Lr−1 ◦ f−1

r−2) ◦ . . . ◦ (f2 ◦ L2 ◦ f−1
1) ◦ (f1 ◦ L1 ◦ f−1

0) ,

which is functionally equivalent to the encoded chain fr ◦L◦f−1
0 . The encodings

fr and f0 are discarded when a naked variant is desired. For practical implemen-
tation purposes (see Table 3.1), L might represent a network of lookup tables,
and then fi will be a cascade of non-linear encodings: fi = f i

1 ‖ f i
2 ‖ . . . ‖ f i

x.
This causes a loss in the possible diversity, which can partly be compensate for
by introducing wide affine encodings to L (e.g., a re-arrangement of the bits in
the T-box definitions, or shuffling of the order of T-boxes).

Result

As a result from the steps described above, we now have obtained a randomized,
key dependent network of lookup tables that is functionally equivalent to DES,
and for which it is hoped that is more difficult to ‘break’ in a white-box attack
context, than a standard DES implementation.

An adversary in the white-box attack context has access to the definitions of
the encoded lookup tables L′i = fi ◦Li ◦f−1

i−1, and any intermediate values during
execution. For example, to the input to the white-boxed DES round r, which is
defined as

fr−1
1 (vr

1) ‖ fr−1
2 (vr

2) ‖ . . . ‖ fr−1
12 (vr

12) ,

where vr
i is the input to the (naked) T-box T r

i . We define the inputs to the
T-boxes using σr, where (vr

1 ‖ vr
2 ‖ . . . ‖ vr

12) = σr(Lr, Rr). This captures any
re-arrangement and duplication of the input bits.

Recommended Variant

The recommended variant as presented by Chow et al. implements the encoded
DES cipher

DESk → G ◦DESk ◦ F ,

where F = M1 ◦ M0 and G = M4 ◦ M3, while M0 and M4 are affine mixing
bijections. A mixing bijection is a bijective affine transformation which attempts
to maximize the dependency of each output bit on all input bits. M1 combines
the initial DES permutation IP and the expansion E, while M3 combines the final
operations such as the DES permutation P and the inverse initial permutation
IP−1. On top of that, both F and G are encoded by a cascade of nibble encodings
in order to make them non-linear.

Without these external encodings, a white-box implementation (that is, a
naked white-box implementation) becomes potentially vulnerable in the first and

50 CHAPTER 3. WHITE-BOX IMPLEMENTATIONS

last round. Attacks on naked implementations have been presented in [43, 101,
118].

Implementation Size

The original white-box DES implementation as presented by Chow et al. has an
implementation size of 4.5 MB. A slight modification, as presented by Link and
Neumann [118], reduces the implementation size to 2.3 MB. The main difference
being the matrix decomposition into sub-matrices of size 8 × 4 (as described
above) instead of 4× 4, as presented by Chow et al..

3.5.2 White-Box AES Implementations

We describe the white-box AES implementation proposal of Chow et al. [42]. As
mentioned before, the general strategy is to merge several steps of the cipher into
a network of lookup tables, which are then obfuscated using (random) input-
output encodings. We present the white-boxing process for AES-128, which
counts 10 rounds. The strategy is similar for AES-192, AES-256, and any other
Rijndael implementation.

Construction

Denote by r the round number, and (i, j) the row and column index number of
a byte in the state array.

First, the partial evaluation technique is deployed to merge the key addition
with the subsequent S-box evaluation. The S-box function operating on the bytes
during the SubBytes step is denoted by S. Then, we define a T-box as follows:

T r
i,j(x) := S(x⊕ kr

i,j) for 1 ≤ r ≤ 9,
T 10

i,j := S(x⊕ k10
i,j)⊕ k11

i,j−i .

Each output of the T-box plus the ShiftRow step contributes to 4 bytes of
the state array after the MixColumns step. The contribution can be described by
a 32× 8 submatrix MCi of the 32× 32 bit matrix MC representing MixColumns.
The entire function can be described as a 32× 8 bit lookup table. The strategy
is similar to the matrix decomposition operation presented in the construction
of the white-box DES implementations above, which involves lookup tables that
implement the addition operation (denoted by Chow et al. [42] as type IV tables,
as depicted in Fig. 3.6.

This lookup table needs to be obfuscated with 4-bit nibble encodings.3 To
34-bit nibble encodings were chosen instead of 8-bit encodings (which would obfuscate the

full width of the T-boxes), for implementation size purposes. This allows the use of 8 × 4
addition operations, instead of 16× 8, which would be 256 times larger to implement.

3.5. CONSTRUCTIONS 51

add to the diffusion, 8× 8 affine mixing bijections are inserted before T r
i,j and a

32× 32 affine bijections MB is inserted after the MixColumns part. The mixing
bijection is canceled out by the preceding MC (round r− 1), which includes the
inverse (by simple matrix multiplication). Hence the inversion step is diffused
over several lookup tables, making it hard to remove it. The resulting lookup
table is depicted in Fig. 3.5.

out out out out out out

8× 8 T r
i,j

out out

in

in
MB ×MCi

Figure 3.5. Type II table

To cancel the effect of the MB mixing bijection, a type III untwist table is
implemented to take care of the inversion. The resulting lookup table is depicted
in Fig. 3.6.

out out out out out out

in

in

in

out

out out

MB−1
i

in

⊕

Figure 3.6. Type III and type IV table

To ensure that the encoded components of the type II and type III tables
carry maximum information and to maximize the diffusion, we choose MB as
a non-singular matrix where the 4 × 4 submitrices have full rank. Xiao and
Zhou [194] presented an efficient method to generate such matrices.

External Input and Output Encodings

Finally, the external input and output encodings are implemented. Chow et
al. [42] suggested to insert a 128 × 128 mixing bijection prior to the first T-box
computation, and a 128×128 mixing bijection after the last T-box computation.
The input encoding is composed with the inverted 8 × 8 input mixing bijection
for T 1. These can be implemented using two sets of sixteen 8-bit lookup tables,
depicted in Fig. 3.7, and a set of 960 addition tables (Type IV). Thus, instead
of AESk, NO ◦MG ◦ AESk ◦MF ◦ NI is implemented, where MF and MG are
the affine input and output encodings respectively, and NI and NO are the input
and output non-linear nibble encodings respectively.

52 CHAPTER 3. WHITE-BOX IMPLEMENTATIONS

out out out out out

in

in

out

linear mapping

out . . .

Figure 3.7. Type I table

Each external input encoding table represents the linear mapping associated
with one 128× 8 column of a 128× 128 matrix – the composition of MF and the
concatenation of the input mixing bijections for T 1

i,j ’s inverses – surrounded by
4-bit to 4-bit non-linear nibble encodings.

Each external output encoding table represents one 128× 8 column of a 128×
128 matrix – the composition of the output mixing bijection of the last round,
one of the mappings T 10

i,j , and a column of the matrix MG – surrounded by 4-bit
to 4-bit non-linear nibble encodings.

Both the outputs of the input and the output encoding network need to be
associated with a network of (encoded) addition tables to complete the implemen-
tation. These decode the outputs, xor together, and re-encode with the nibble
encodings corresponding to the tables of type II and IV.

Implementation Size and Metrics

In Table 3.2, an overview is presented of the number of lookup tables that con-
stitute the white-box implementation.

Table 3.2. White-box AES implementation size

Type # lookup tables # size
Type I 32 131072 bytes
Type II 144 147456 bytes
Type III 144 147456 bytes
Type IV 2688 344064 bytes

Total 3008 770048 bytes

In total, the white-box AES implementation as described above, with the
external input and output encodings consists of 3008 lookup tables, and has
an implementation size of 770 kbytes. In comparison, a standard AES imple-

3.6. WHITE-BOX CRYPTANALYSIS 53

mentation requires around 4 kbytes of implementations size and 300 operations
(both lookup tables and XOR operations). While AES-CTR-128 (AES-128 in the
counter mode of operation) has a benchmark performance of 15.98 cycles/byte
on a Pentium 4 [150], white-box AES implementations in a similar mode has an
estimated performance of 188 cycles/byte, almost 12 times slower. The slow-
down is mainly caused by the implementation of addition operations into 2688
lookup tables. Although this seems a substantial price to pay in performance
and memory size, for some applications it might be an acceptable trade-off.

Table 3.3. White-box AES implementation diversity and ambiguity

Type Diversity Ambiguity
Type I 21483.5 2937.4

Type II 2556.6 2439.6

Type III 2486.4 2369.4

Type IV 2132.8 284.6

Table 3.3 refers to the number of different interpretations a lookup table can
have. Computing the ambiguity of groups of lookup tables, or even for the entire
white-box implementation is rather hard, as it depends on relations that can be
constructed between lookup tables.

3.6 White-Box Cryptanalysis

In this section, we present an overview of cryptanalysis results on white-box
implementations. The techniques that are deployed are inspired by cryptanalysis
techniques as introduced in Sect. 2.3 and Sect. 2.3.2. The method of deployment
will be slightly different though, due to the open attack model. Particularly,
intermediate information can be exploited and faults can be injected between
steps in the implementation (at run time).

We distinguish two main classes of attacks. For clarity, we will present the
details of our cryptanalysis of white-box DES implementations in a separate
section (Sect. 3.8).

3.6.1 Differential Cryptanalysis

Differential attacks exploit the relation between differences of plaintext pairs,
and the differences of the corresponding ciphertext pairs (see Sect. 2.3). While
in black-box cryptography, a statistical comparison between input and output

54 CHAPTER 3. WHITE-BOX IMPLEMENTATIONS

difference is made, the white-box attack model allows a finer granularity. Namely,
an adversary can observe any intermediate information between the building
blocks4 of the white-box implementation at execution time. This includes the
input to the obfuscated rounds.

Differential cryptanalysis techniques have been mounted on white-box imple-
mentations in recent years [43, 101, 118, 82, 191], in particular on the white-box
DES implementations.

In their seminal paper, Chow et al. [43] already admitted a vulnerability of
their naked white-box DES implementation. They presented a statistical bucket-
ing attack, which is similar to DPA attacks: guess key bits, and use differences (in
DPA, statistical differences of power profiles) to confirm or deny the guess. The
strategy described by Chow et al. is depicted in Fig. 3.8, and works as follows:

• Select an S-box S1
i of the first round. Because the implementation is naked,

it is straightforward to find out which T-box implements S-box S1
i . This

can be achieved by selecting plaintext differences that affect S1
i , and observe

which T-box is affected. We denote a building block to be affected (by some
difference ∆), when its input changes (due to the effect of this difference).

• Guess 6 bits of the round sub-key that affect S1
i , and compute 64 plaintexts

P , each corresponding to a different input to the S-box.

• Pick b, an output bit of S1
i , and group the plaintexts into two sets I0, and

I1 using a reference DES implementation and the key guess. P ∈ I0 if
b = 0, while P ∈ I1 if b = 1.

• Select a T-box T 2
z that implements an S-box S2

j that has bit b as input.
Compute the set I ′0 of inputs to T 2

z corresponding to the plaintexts P ∈ I0.
Similarly, compute the set I ′1. If our key guess is correct, then I ′0 and I ′1
must be disjoint sets, because they correspond to obfuscated inputs of T 2

z

that are different in at least bit b.

Iterated verification of key guesses for all S-boxes in the first round, eventually
reveals 48 bits of the 56-bit key. The remaining 8 bits can be determined by
exhaustive search. This cryptanalysis exploits the non-linearity of the S-boxes.

Link and Neumann [118] improved the statistical bucketing attack. They
observed the 4-bit nibble encoded outputs of the first round of T-boxes T 1, cor-
responding to the output of S1

i , to confirm or deny their key guesses, instead of
a verification based on one bit at the input of the second round, thus greatly

4In the white-box implementations, presented by Chow et al. [43, 42], and Link and Neu-
mann [118], all building blocks of the implementation are lookup tables.

3.6. WHITE-BOX CRYPTANALYSIS 55

. . .

P

. . .

b

S2
j

S1
i

T 1

T 2
z

Figure 3.8. Statistical bucketing attack on naked white-box DES implementa-
tions

improving the efficiency of the statistical bucketing attack. Their attack relies
on the fact that the 8-bit output of the T-boxes are protected by two cascaded
4-bit nibble encodings.

In order to prevent an attack on the split T-box output, Link and Neumann
suggest to discourage analysis of the T-box output by eliminating it as an ac-
cessible intermedia variable. This can be achieved by decomposing the matrix
preceeding the T-boxes into 8 × 4 blocks. Consequently, the 8 × 8 T-boxes and
the corresponding 8 × 4 multiplication tables can be merged into a single 8 × 4
lookup table. To prevent the original statistical bucketing attack, an extra diffu-
sion matrix δ is introduced, that mixes Lr bits with replicated bits of Rr. This
defeats the detection of wrong key guesses, and hence successful deployment of
the original statistical bucketing attack.

Fault Injection

In [101], Jacob et al. presented a differential fault analysis attack [18] on naked
white-box DES implementations. The fault injection attack exploits the capabil-
ities of an adversary in the white-box context to alter the implementation, or to
modify the data flow at execution time. The attack strategy is as follows:

• Observe the final round of the implementation. Its input is Cr−1, a 96-

56 CHAPTER 3. WHITE-BOX IMPLEMENTATIONS

bit vector, the input to the 4-bit nibble encoded T-boxes. The output is
the naked vector C = (Lr, Rr). The attack computes the pre-image Cr−1

of the final round for some specific ciphertext C. Note that, in order to
compute this pre-image, a decryption routine corresponding to the white-
boxed encryption scheme needs to be available (black-box access suffices).

Cr−1 = WBE1...r−1
k ◦Dk(C) = f−1

r−1(σr−1(Lr−1, Rr−1)) .

The pre-images Cr−1 that Jacob et al. compute, are listed in Table 3.4,
where i runs through the values 1 . . . 32, and F k

r denotes the round key kr

addition, S-box operation and permutation operation.

Table 3.4. Pre-image computations for fault injection attack

C = (Lr, Rr) (Lr−1, Rr−1)
(0, 0) (F k

r (0), 0)
(2i, 0) (F k

r (0)⊕ 2i, 0)
(0, 2i) (F k

r (2i), 2i)

• The fault injection takes place at the input of the final round, to reset the
input from (F k

r (2i), 2i) to (F k
r (0), 2i), where 2i is the string that repre-

sents the integer 2i. This can be achieved with overwhelming probability,
by observing the 4-bit nibble input encodings that are affected by the dif-
ferences between the plaintexts computed in Table 3.4. The outcome will
be C = (F k

r (2i) ⊕ F k
r (0), 2i), from which the last round sub-key can be

computed (due to the non-linear behavior of the S-boxes).

The attack by Jacob et al. is very efficient, and requires only very few oper-
ations. However, it requires the availability of a corresponding decryption func-
tionality, and can only be deployed on the naked variant. Moreover, for the fault
injection to succeed, the encodings must have the property that an attempt to
modify Lr−1 to F k

r (0) does not affect any bits of Rr−1.
Link and Neumann [118] improved the white-box DES implementation, to

reduce the fault injection success probability, and strengthen the intermediate
values against tampering. They proposed to implement the final addition tables
as 16× 8 lookup tables, such that the T-boxes can be encoded with 8× 8 input
encodings instead of nibble encodings. This gives the attack by Jacob et al. only
a valid attack point with probability 0.25. Their measurements indicate that
the resilience of white-box DES against the fault injection attack improves: on
average 9.8 bits of the final round key can be learned rather than 40.

3.6. WHITE-BOX CRYPTANALYSIS 57

Cryptanalysis of Encoded Variant

In 2007, Goubin et al. [82] and Wyseur et al. [191] independently presented a
differential cryptanalysis on white-box DES implementations.

Goubin et al. describe a truncated differential cryptanalysis on the naked and
encoded variant of the white-box DES implementation as presented by Link and
Neumann. The cryptanalysis is based on the difference cancellation property of
the DES round (see Desmedt et al. [57]), to verify guesses on the round sub-key.
We first explain the attack on the naked variant.

Observe the first round of the DES. (L0, R0) denotes the input to this round
(the plaintext after IP). Then, the input to the next round (L1, R1) is defined as
follows:

L1 = R0

R1 = L0 ⊕ f(R0, kr) ,

where f denotes the non-linear operation of the DES, which consists of the round
key addition, parallel evaluation by 8 S-boxes, and the permutation P. The dif-
ference cancellation property states that ∆L0 (the difference between L0 and L′0)
can be chosen as such that ∆R1 = 0. Hence, for a difference ∆R0 , we are able to
compute ∆L0 (given a correct key guess), such that only left bits to the input of
the second round are flipped:

given ∆R0 = R0 ⊕R′0 ,
compute L′0 = L0 ⊕ f(R0, k)⊕ f(R′0, k) ⇒ ∆R1 = 0

∆L1 = ∆R0 .

As a result, we are able to control the flips of bits to the input of the second
round. Verification of the key guess can occur by counting the number of affected
T-boxes. Observe that, when ∆R0 represents flips of bits with index 2 and/or 3
(b4 or b5 in our T-box definition), at most two T-boxes in the second round will
be affected.

To mount this attack on the encoded variant, analysis of the input encod-
ing is required. The approach consists in computing the images of a random
vector X0 at different levels of the obfuscated DES, and compare these values
to the corresponding images of X0 ⊕∆. This way, basis vectors for the matrix
M−1

0 can be recovered, enabling a point of attack to deploy the naked variant
strategy described above. We refer to Goubin et al. [82] for more details on this
cryptanalysis.

Note however, that this cryptanalysis depends on the description of the ex-
ternal input encoding. It is not clear how nibble encodings on the external input
encoding (as suggested by Chow et al.) affect the cryptanalysis. To thwart the
cryptanalysis, non-linear external encodings could be applied, e.g., an external
encoding that is similar to two obfuscated DES rounds with random key/S-boxes.

58 CHAPTER 3. WHITE-BOX IMPLEMENTATIONS

Cryptanalysis on the Internal Round Structure. In [191], we present a
truncated differential fault injection attack on the internal rounds of the white-
box DES implementation. We present a summary of the cryptanalysis here, and
refer to Sect. 3.8 for a detailed description.

The attack described is deployed directly on the obfuscated round vectors
fr

i (vr
i); it analyzes the difference propagation caused by a fault injection on these

vectors. Because on the one hand, the vectors fr
i (vr

i) are encoded versions of the
naked inputs inputs vr

i of T-box T r
i , and on the other hand the encodings fr

i are
non-linear, it is impossible to deduce which difference has been applied to the
input of T r

i . Therefore, the attack observes the difference propagation of ∆ in
the following rounds (r + 1, r + 2, . . .).

The attack has the following steps:

• Observe the propagation of a difference ∆ on the input of an encoded T-
box T r

i in rounds (r + 1, r + 2), and select those differences that represent
single bit flips on the inputs of the (obfuscated) S-boxes Sr+1

j by counting
the number of affected T-boxes.

• Identify the non-linear T-boxes and by-pass T-boxes.

• As a result of the partial recovery of the non-linear encodings to the T-
boxes T r+1

z , and using specific properties of the DES S-boxes, the inputs
to the S-boxes are (partially) recovered.

• Based on relations between inputs to S-boxes (on several rounds), recover
the key bits (up to some natural ambiguity).

• In the case of simple external encodings, their definition can be recovered
using the extracted secret key.

The cryptanalysis works on a subset of consecutive obfuscated rounds, regardless
of the external encodings, and exploits specific properties of the DES round
function. Through analysis of the difference propagation, information on the
inputs to the S-boxes (after key addition) is gained, eventually leading to a point
of attack to extract secret key information.

3.6.2 Algebraic Cryptanalysis

The strategy adversaries conceive in algebraic cryptanalysis is to model cryp-
tographic primitives as a set of algebraic equations. Solving these equations
eventually yields secret key information. Block cipher designers introduce a ro-
bustness against algebraic cryptanalysis by designing round functions that have
a high algebraic degree. The combination of several rounds makes it infeasible

3.6. WHITE-BOX CRYPTANALYSIS 59

in practice to deploy algebraic cryptanalysis in a black-box context. In a white-
box context, these attacks are in particular interesting, because more equations
can be composed, that describe a smaller group of components of the implemen-
tation, e.g., a collection of lookup tables that describes an obfuscated round.
The main idea can be described as follows: although none of the lookup tables
(when considered individually) should leak sensitive information, the analysis of
a composition of lookup tables could reveal information.

Stripping non-linear encodings from obfuscated rounds

Algebraic cryptanalysis of white-box implementations has been introduced by
Billet et al. [21], with their cryptanalysis of white-box AES implementations.

They presented a novel way to remove the non-linear encodings of the obfus-
cated rounds. Recall that one obfuscated AES round consists of four mappings
between four bytes of the input array to four bytes of the output array. Each
mapping refers to one 4-bytes MixColumns operation, and is preceded by four
parallel T-box T r

i,j operations which includes the round key addition. The map-
pings are (byte-)encoded with the input encodings P r

i,j and output encodings Qr
i,j .

Note that consecutive encodings are annihilating: P r+1
i,j = (Qr

i,j)
−1. Denote by

Rj
j such a mapping, which is depicted in Fig. 3.9.

Qr
1,j

Qr
2,j

Qr
3,j

Qr
0,j

T r
1,j

T r
2,j

T r
3,j

P r
1,j

P r
2,j

P r
3,j

P r
0,j T r

0,j

fc,c′ = y0,c ◦ y−1
0,c′

c′3

c3

MixColumns

Figure 3.9. Analysis of an encoded AES round mapping

The main idea of the cryptanalysis is to observe the composition of lookup
tables that correspond to a mapping Rr

j as one mapping of four input bytes
(x0, x1, x2, x3) to four output bytes (y0, y1, y2, y3), and construct algebraic equa-
tions for this mapping.

60 CHAPTER 3. WHITE-BOX IMPLEMENTATIONS

Define y0,c(x) as the mapping from x0 to y0, where (x1, x2, x3) are fixed to
the constant c = (c1, c2, c3). Then,

y0,c(x) = Qr
0,j

(
αT r

0,j

(
P r

0,j(x)
)⊕ βc

)
,

where α and βc originate from the affine mapping MC, and βc depends on the
constant inputs c. The mapping y0,c is bijective, due to the bijectiveness of P r

0,j ,
T r

0,j , MCi|0..7, and Qr
0,j . Hence we can define

fc,c′ = y0,c ◦ y−1
0,c′ = Qr

0,j

((
Qr

0,j

)−1 ⊕ βc,c′
)

,

as depicted by the dotted line in Fig. 3.9, where βc,c′ = βc ⊕ β′c. Note that βc,c′

can take all values in GF(28) by varying the constant c′ (even one c′i will suffice).
An adversary is able to compute this mapping fc,c′ , given input-output access to
Rr

j . The mapping y−1
0,c′ can be computed by computing a lookup table for y0,c′

on all its 28 inputs, and inverting the obtained lookup table. The mapping Qr
i,j

and βc,c′ are unknown. Using Theorem 1, an adversary is able to recover the
non-linear part of the encoding Qr

0,j .

Theorem 1 Given a set of functions S = {Q ◦ ⊕β ◦ Q−1}β∈GF(28) where Q is
a permutation on GF(28), and ⊕β is the translation by β ∈ GF(28), one can
construct a permutation Q̃ such that the mapping A = Q̃ ◦Q is affine.

This was presented by Billet et al., who described an efficient algorithm to
compute such a permutation Q̃ . As a result, an adversary is able to remove
from the white-box AES round mapping Rr

j the non-linear part of the encodings
P r

i,j , Q
r
i,j using the recovered permutations (Q̃r−1

i,j)−1 and Q̃r
i,j respectively.

R
′r
j :=

{∥∥∥
i
Q̃r

i,j

}
◦Rr

j ◦
{∥∥∥

i

(
Q̃r−1

i,j

)−1
}

,

where Q̃r−1
i,j is obtained by analogous analysis of Rr−1

j . Remaining is a white-box
AES round R

′r
j that is encoded by affine parasites of the form AQ = Q̃◦Q. A set

of algebraic equations can be composed for R
′r
j from which, using specific design

properties of the MixColumns operation, the affine parasites can be obtained.
This eventually leads to the recovery of the AES-128 key. We refer to [21] for a
detailed description of this cryptanalysis. The most important element to capture
within the context of this thesis is the innovative strategy that is deployed to
remove the non-linear part of the round encodings.

3.6. WHITE-BOX CRYPTANALYSIS 61

Generic Attack

Michiels et al. [135] have generalized the attack strategy described in Billet et al.,
for a family of substitution-linear transformation (SLT) ciphers. The white-box
techniques described by Chow et al. [43, 42] can be applied to derive white-box
implementations of other block ciphers. The question remains for which block
ciphers such a white-box implementation remains secure, given the recent crypt-
analysis results. Therefore, generic attacks are in particular interesting. The
attack strategy consists of three steps: (1) removal of the non-linear part of the
round encodings, based on the process applied by Billet et al., (2) removal of the
linear part of the round encodings (based on solving an affine equivalence prob-
lem [22]), and (3) extraction of the secret key information by algebraic analysis
of the stripped-down round function (by solving a matrix equivalence problem).

First, let us define the family of block ciphers on which this generic crypt-
analysis applies.

V

U

zi

fc1,c2
(zi)

P r
i T r

i Qr
idiffusion operation

Figure 3.10. Generic analysis of SLT rounds

Definition 4 (Substitution - Linear Transformation (SLT) ciphers). A cipher
is defined as an n-bit SLT cipher, if it can be described as a number of rounds
Ri, 1 ≤ i ≤ r, where each round is specified as 3 consecutive layers:

• a round key kr addition,

• a layer of parallel S-boxes Sr
1 , Sr

2 , . . . Sr
s . These S-boxes are (public) m-bit

non-linear mappings, with n = m · s, to realize confusion.

• a linear diffusion layer, which can be represented by an n× n matrix Mr.

62 CHAPTER 3. WHITE-BOX IMPLEMENTATIONS

The operations Sr
i and Mr are part of the cipher specification (according to Ker-

ckhoffs’ principle).

The family of SLT ciphers, is a subset of the SPN ciphers, and includes ciphers
such as the AES [138], Serpent [15], and KHAZAD [7].

The strategy of the cryptanalysis consists of the following steps.

1. Observe that Billet et al. construct a bijective relationship between x0 and
y0 that can be influenced by the inputs x1, x2, x3. Michiels et al., general-
ized this to a bijective relationship between a subspace of U (input to P r

i),
and an output of Qr

i , influenced by the choice of vectors of V . U and V
are required to be disjoint sets.

Similar to the approach in Billet et al., a mapping fc1,c2 can be constructed,
and thus a family S = {Qr

i ◦ ⊕c ◦ (Qr
i)} can be composed. If the mapping

of vectors from V is surjective on the output of Qr
i (i.e., surjective on

GF(2m)), c2 ∈ GF(2m) can cycle through the entire space of its values. As
a result, based on Theorem 1, the non-linear part of Qr

i can be recovered.

Now, an adversary can strip down the obfuscated white-box round function
to an affine encoded round function Rr, thus having access to affine encoded
inputs ar

i (v
r
i) to the T-boxes.

2. The next two steps of the cryptanalysis are intended to describe the affine
encoded round function in a generic representation that can be further
analyzed. First Rr is described as

⊕
i Ti, where Ti are m-bit to n-bit T-

boxes. Remark that this only applies to ciphers with an affine permutation
network. For example, this also applies to the Serpent family of ciphers.

Next, the round function is described as a SAT cipher round function.
That is, a cipher for which the round function is a cascade of S-boxes Lr

i ,
followed by an affine transformation br. These components Lr

i and br can
be computed by an adversary.

Note that at this point, the obfuscated cipher can be inverted, because the
br operation is affine, invertable, while the S-boxes Lr

i can be inverted by
inverting the (bijective) lookup table description.

3. The last step performs the round key extraction. This is achieved by ob-
taining the equivalence between the computed Lr

i , and the S-boxes Sr
i from

the cipher description. An algorithm to compute an affine equivalence
L = C · S · D is described by Biryukov et al. [22]. The substitution box
Lr

i includes the round sub-key kr
i operation. The algebraic equations that

3.6. WHITE-BOX CRYPTANALYSIS 63

need to be solved are:

Lr
i = cr

i ◦ Si ◦ dr
i{‖i ci

}
= b−1 ◦ {‖i ar+1

i

} ◦M{‖i di

}
= ⊕k ◦

{‖i ar
i

}−1
,

where ci, di are the affine functions that describe the affine relation between
Lr

i and Sr
i , and dr

i contains the key addition operation ⊕k. Solving these
equations eventually leads to the secret key k, based on a linear equivalence
solver for matrices.

To conclude, we note that the algebraic analysis of white-box implementations
mainly constitutes of equivalence solving. Extracting the non-linear encodings
from Q◦⊕β◦Q−1 by Billet et al., solving a linear equation based on the algorithm
by Biryukov et al., and recovery of secret key information based on a matrix
equivalence solving by Michiels et al.

As described in related work, the traceable block cipher introduced by Billet
et al. [20] can be regarded as a white-box implementation. This has been crypt-
analyzed based on a equivalence solver for isomorphic polymorphisms by Faugère
et al. [64].

The deployment of equivalence solvers for white-box implementations is a
natural process, because the main idea of obfuscating block ciphers consists in
constructing F ◦ L ◦G, for random bijections F, G, in order to hide (key) infor-
mation of L. It is of interest to perform further studies on equivalence solvers
for various building blocks, in order to obtain mathematical structures that are
suitable for white-box implementations.

Analysis of a Basic Building Block

The analysis, as introduced by Billet et al. to remove the round encodings from
white-box AES implementations, and by Michiels et al. for generic white-box SLT
implementations, can be applied to other white-box building blocks besides the
round functions. Observe that in both the white-box DES implementations, and
the white-box AES implementations, trees of XOR tables are implemented (re-
ferred to as type IV tables in the white-box AES implementation). Although
implementing XOR operations as lookup tables imposes a negative effect on
computation speed and implementation size, they are required in order to de-
ploy non-linear encodings on the keyed building blocks. Moreover, de-linearizing
affine transformation as trees of encoded lookup tables is the basic method to
make implementations such as the white-box DES implementation robust against
inverting.5 However, we show that this strategy fails.

5Note however, that invertibility is not an general requirement. E.g., in a traitor tracing
scheme or secure storage scenario, the PR-CPA notion is often not demanded.

64 CHAPTER 3. WHITE-BOX IMPLEMENTATIONS

g
⊕f−1

0

f−1
1

c0

y1,c0

Figure 3.11. Analysis of an encoded XOR building block

In this dissertation, we show how the cryptanalysis strategy introduced by
Billet et al. can be applied to XOR tables. The y1,c0 function can be computed
by an adversary that has input-output access to the encoded XOR building block:

y1,c0 := g ◦
⊕

f−1
0 (c0)

◦f−1
1 ,

where f0, f1 are the (yet unknown) input nibble encodings to the XOR building
block, and g the output nibble encoding. Observe that for any input c0, y1,c0 is
bijective. Hence, the family

y1,c0 ◦ y1,c′0 = g ◦
⊕

f−1
0 (c0)⊕f−1

0 (c′0)

◦g−1 ,

can be computed. From this family of functions {g ◦ ⊕c ◦ g−1}, where c takes
all possible values (which can easily be achieved by running over all possible c′0
because f−1

0 is surjective), the non-linear part g̃ of g can be derived, that is, g̃
such that g̃ ◦ g = ag, with ag an affine function.

As a result, the non-linear parts f̃0, f̃1 of the encodings f0, f1 respectively can
be computed {

f̃0 = g̃ ◦ y0,c1

f̃1 = g̃ ◦ y1,c0 .

Hence, we obtain a re-linearized XOR building block

ag ◦
⊕
◦ {af0 ‖ af1} = g̃ ◦ BB ◦

{
f̃−1
0 ‖ f̃−1

1

}
,

where BB denotes the original (de-linearized) building block, and ai are affine
functions.

Applying this strategy to the final lookup tables of an encoded XOR tree, im-
mediatly reveals the encodings of the entire tree. Observe that f̃0 is the non-linear

3.6. WHITE-BOX CRYPTANALYSIS 65

component of the output encoding of the XOR table at the branch preceding f−1
0

in the XOR tree. Hence, an XOR tree can be re-linearized efficiently.
The security metrics described in Sect. 3.3.2 did already indicate the potential

vulnerability of such building blocks. The XOR building block in the white-box
AES implementation has by far the weakest ambiguity.

A similar analysis can be achieved for other basic building blocks that have
a similar double bijective behavior such as group addition in GF(2n). Hence, to
construct secure white-box implementations, the security of the implementation
should not rely on the robustness of the obfuscation of these building blocks,
as they leak information. We will show that this is the case for the white-box
implementations of AES and DES.

Defeating the Initial Obfuscation Strategy

For XOR tables at the edges of a tree, the re-linearization process reveals encod-
ings of other building blocks. This results into a generic point of attack. Once
white-box implementations have been (partially) linearized, they become a target
for algebraic analysis. For example, the nibble encodings of the type II tables in
the white-box AES implementation, can be re-linearized in this way, which leads
to an alternative mounting of the attack by Billet et al. [21].

Similarly, an alternative attack on white-box DES implementations might be
constructed. Analysis of the addition tables at the tail of the addition trees
in round r leads to recovery of the non-linear part of the input encodings of
the T-boxes in round r + 1. The head of the addition tree consists of the sub-
matrices Mij of the matrix M (which represends Dr, see Sect. 3.5.1), who’s
output encodings can be linearized with the analysis technique described above.
As a result, the adversary has obtained knowledge of the affine encoded T-boxes
(merged with the sub-matrix Mij):

ar
ij ◦Mij ◦ T r

j ◦ ar
j ,

where az = Az ⊕ bz are the (unkown) affine encodings, Az its linear function,
and bz a vector. Denote with T

r

j the T-box without the key addition: T r
j =

T
r

j ◦
⊕

kr
j
. Since Mij and T

r

j are known, we can deploy the affine equivalence
solver by Biryukov et al. [22], and obtain a pair of affine functions (ej , eij) =
(Ei ⊕ di, Eij ⊕ dij) such that

⊕

dr
ij

◦Er
ij ◦Mij ◦ T

r

j ◦
⊕

dr
j

◦Er
j = ar

ij ◦Mij ◦ T
r

j ◦
⊕

kr
j

◦ar
j .

66 CHAPTER 3. WHITE-BOX IMPLEMENTATIONS

Note that this pair (ej , eij) is not unique. In order to recover the key informa-
tion, we correlate the obtained information for T-box T r

j with similar information
for all the T-boxes T r−1

z of round r − 1. This gives a new point of attack, since
the input to Er−1

jz is equivalent to the input of Dr−1 (see Fig. 3.2 (a)), up to an
ambiguity in the pairs (ej , eij). When this ambiguity can be solved, then,

er
j ◦XOR ◦

∥∥∥
12

i=1
er−1
ij =

⊕

kr
j

◦Dr−1 , (3.1)

where XOR denotes a (known) network of affine encoded XOR operations, is
equivalent at the input of the S-box of T

r

j . Since Dr−1(0) = 0, evaluating Equa-
tion (3.1) in the value 0 yields kr

j . However, it remains to be seen up to what
extend the pairs (ej , eij) can be disambigated.

In the case that mixing bijections are introduced, two addition networks are
implemented (one corresponding to the matrix J , another to the matrix K),
instead of the addition table corresponding to M , with M = J ◦ K, and J,K
have sub-matrices of full rank. Since the sub-matrics Kij are unknown, we cannot
deploy the attack as described above. However, we might include Kij in the
affine encodings, and recover this with the equivalence solver. The result is a
more complicated attack, since also the Jij have to be taken into account when
solving the relations between the recovered affined encodings, but nevertheless
make white-box DES implementations prone to this cryptanalysis technique.

We might also extend the XOR builing block attack to other lossy building
blocks. However it remains to be investigated up to what extend information
can be extracted when the ‘double bijective behaviour’ is not present. Also, it
is essential that the underlying structure of the encoded building block is known
(which is for example not the case when mixing bijections are introduced). Hence,
the security of white-box implementations should not rely solely on the injection
of random annihilating encodings.

3.7 Running White-box Implementations Back-
ward

When Chow et al. introduced white-box cryptography, their main objective
was to prevent key extraction from the white-box implementations. However, it
should be clear that they also attempted to introduce some one-wayness. This
is mainly the case for the white-box DES implementations. When we do not
consider the cryptanalysis results (since key extraction makes DES trivially in-
vertible), it would require an effort of 16 · 296 to invert the functionality (note

3.7. CRYPTANALYSIS OF WHITE-BOX DES IMPLEMENTATIONS 67

that a brute-force black-box attack to invert the functionality only required 256

effort). This is mainly by virtue of the addition networks. Every addition network
in white-box DES implementations consists of 24 layers of networks that map 96
bits onto 4 bits, which is difficult to invert. However, given the generic attack
on the XOR building block, the addition tables become linear, which makes the
addition network invertible.

The white-box AES implementations have an inherently weak asymmetric
behavior. Inverting their functionality requires only 40 ·232 computational effort,
since every 32-bit column (see Fig. 2.4) can be inverted seperately. This effort is
much less than brute-force inverting an AES implementation (effort 2128), hence a
white-box adversary has a significant advantage to a black-box adversary). How-
ever, this is specific to white-box AES implementations. It is plausible that other
white-box implementations offer a stronger resistant against inverting attacks.

Note that the generic attack by Michiels et al. [135] makes a white-box imple-
mentation of an SLT cipher invertible after the second step in their cryptanalysis.

3.8 Cryptanalysis of White-Box DES Implemen-
tations with External Encodings

In [191], we have presented an algorithm to extract the secret key from white-box
DES implementations. We elaborate on the cryptanalysis in this section.

This cryptanalysis is based on the observation that the white-box implemen-
tations that have been proposed so far, fail to obfuscate the fault propagation of
the cipher they intend to obfuscate. Unbalanced fault propagation of the block
cipher might be detected in its white-box implementations. Observe that the
DES cipher has an unbalanced fault propagation, because of the Feistel struc-
ture, where only half of the bits are evaluated by non-linear S-boxes in one round.

In a white-box attack context, an adversary has full access to observe and
manipulate intermediate data (even at run-time). As a result, an adversary
has access to the inputs of the obfuscated round functions, denoted as vr =∥∥

i
vr

i , where vr
i are the encoded inputs to T-box T r

i for round r. Denote with
fr

j the input encoding of T r
i . We mount our cryptanalysis on white-box DES

implementation as follows: for the input of some round, we inject a fault on vr
i .

The objective is to identify faults ∆vr
i that correspond to some specific difference

on fr
i (vr

i), e.g., a flip of a single bit on the input of the S-box Sr
i . However, because

fr
i is a non-linear bijective mapping, the corresponding difference ∆fr

i (vr
i) cannot

be deduced immediately. Instead, we observe the difference propagation at the
output of each round (i.e., the input of the next round), to identify what difference
∆fr

i (vr
i) is caused by the fault injection on vr

i . With this knowledge, we mount
a truncated differential analysis on the DES implementation, which allows us

68 CHAPTER 3. WHITE-BOX IMPLEMENTATIONS

to retrieve a representation of the secret key that has been embedded into the
white-box DES implementation.

Because the cryptanalysis only requires the input-output relation of the ob-
fuscated rounds, it is independent of round obfuscation techniques. Also, the
cryptanalysis can be mounted on an arbitrary set of consecutive round functions,
and there is no restriction which window of consecutive rounds is targeted. Em-
pirical results show that eight consecutive rounds will satisfy. This is the main
difference with the cryptanalysis by Goubin et al. [82]. Our cryptanalysis is
independent of the external encodings.

We structure our cryptanalysis in five main steps, and present the details of
every step in the remaining part of this section.

1. First, we distinguish a set of faults on the inputs to a obfuscated round r,
that represent differences that propagate the slowest through the modified6

DES rounds. With overwhelming probability, the obtained set of faults will
represent differences that flip only (one or two) restricted bits (denoted as
Rr−1).

2. Based on this set of faults, we distinguish faults to the input of round r+2,
that represent differences that flip only one of the right half of bits (denoted
as Rr+1).

3. With knowledge of the relation between faults at the input of an obfuscated
round, and the difference it represents to the underlying DES implementa-
tion, we can apply differential cryptanalysis. This leads to the identification
of the S-boxes that are implemented by the T-boxes, and eventually to the
(partial) recovery of the inputs to these S-boxes (after key addition).

4. Based on this information, we can compute a representation of the secret
key that is used to implement the white-box DES implementation, up to
some natural ambiguity.

5. As the inputs to the S-boxes is known, and we have information on the key,
we are able to recover the shielding external encodings.

Let us elaborate on the details of the cryptanalysis below. The steps used
in the summary above, corresponds to the steps in the different parts of the
cryptanalysis below.

6Note that for the obfuscated DES, rounds are defined differently. That is, a DES round is
defined to start (and end) just after the expansion operation; the Initial Permutation at the
input incorporates the expansion operation of the first round, while the last round does not
implement the expansion operation.

3.8. CRYPTANALYSIS OF WHITE-BOX DES IMPLEMENTATIONS 69

Initialization

Denote with the internal state before round r, the 96 bits that represent the
encoded version of Lr−1||Xr−1||Rr−1. This is a 12-bit vector vr

1||vr
2|| . . . ||vr

12,
where vr

j stands for the encoded input to a T-box T r
j . This is a vector, and

attacker is able to observe and manipulate.

Proposition 1 An adversary is able to distinguish, isolate, and compute with
the obfuscated round functions WBDESr : GF(28)12 → GF(28)12.

It is reasonable to assume that Proposition 1 holds, since this reflects that
we wish to avoid security through obscurity, in accordance to the Kerckhoffs
principle. For white-box DES implementations, it is particularly easy to identify
the boundaries between the obfuscated rounds, since the addition networks can
be distinguished easily. Denote with WBDESr (1 ≤ r ≤ 16) an obfuscated round
function of a white-box DES implementation. Then, for a fixed input X, we can
compute all the internal states vr

j (1 ≤ j ≤ 12; 1 ≤ r ≤ 16), using these round
functions:

(vr+1
1 , vr+1

2 , . . . , vr+1
12) = WBDESr(vr

1, v
r
2, . . . , v

r
12).

We store all the values vr
j , corresponding to the input X, and perform our crypt-

analysis based on a fault injection on these internal states, as we have mentioned
in the cryptanalysis strategy above.

We define a difference ∆v on the input of T r
j , as the difference between the

original input value vr
j , and the perturbated value v′, caused by a fault injection.

∆v = vr
j ⊕ v′ ∈ GF(28) .

In the white-box attack context, an adversary can always choose which fault
he wishes to inject. This in contrast to side-channel cryptanalysis, where it is
difficult to inject a fault, such that the perturbated result is a pre-specified value.
This is an important difference between a white-box model and a grey box model,
and is crucial to deploy a cryptanalysis to white-box implementations.

3.8.1 Finding Restricted Bit Flips

Let T r
j be an arbitrary encoded T-box in round r, encoded with input encoding

fr
j . In the first step of this cryptanalysis, we present an algorithm to construct

the set SR(T r
j)

SR(T r
j) = {∆v = vr

j ⊕v′ | v′ ∈ GF (2)8; v′ 6= vr
j ; fr

j (vr
j)⊕fr

j (v′) an Rr−1 bit flip},

70 CHAPTER 3. WHITE-BOX IMPLEMENTATIONS

of input differences to the encoded T r
j which represent flips of one or two re-

stricted bits (|fr
j (vr

j)⊕ fr
j (v′)| = 1, 2).

The algorithm consists of two parts: (1) constructing the set SR(T r
j) of all

differences which represent flips of one or two bits of Rr−1, and (2) to divide this
set into SR(T r

j) and SR\R(T r
j).

Finding Single Rr−1 Bit Flips

Let ∆v : vr
j → vr

j ⊕ ∆v be a difference of the input of T r
j while the inputs vr

l

to the other T-boxes T r
l are fixed to the values from the initialization phase

(∀l 6= j : ∆vr
l = 0). The following two properties can be proved for ∆v.

Property 1 If ∆v represents a single bit flip of Rr−1, then in round r + 2, at
most two T-boxes are affected.

Proof: When ∆v represents a flip of a single bit of Rr−1, then in round r + 1 it
represents a flip of a single bit of Lr, as the reader can deduce from Fig. 3.2 (b).
Because of the expansion and selection operation, this will result into two bits
flipped to round r + 2 (one of Xr+1 and one of Rr+1; or both Xr+1 flips). Thus
at most two T-boxes in round r + 2 are affected. ¤

Remark that for some white-box DES implementations, a flip of two Rr−1 bits
has the same behavior, when both touch the same S-box in round r + 2 (these
bits will then be the two middle bits). Therefor they cannot be distinguished
from single bit flips.

In the white-box DES implementations presented by Chow et al. and Link et
al., eight such double flips will occur for each round. Depending on the definition
of σr, the number of double flips can vary to less than 8, but this does not
influence our cryptanalysis. To keep the discussion clear, in the remainder of the
cryptanalysis, we assume the by-pass bits are ordered according to the design by
Chow et al., and therefore eight double bit flips will satisfy property 1.

Property 2 When ∆v is a difference such that a bit of Lr−1 or Yr is flipped,
then in almost all cases more than 2 T-boxes are affected in round r + 2. The
exceptions (false positives) can be detected by repeating this process up to α times
with different fixed inputs to the other T-boxes T r

l .

Proof: In round r + 1, besides bypass bits, these differences represent flips to the
inputs of S-boxes. Therefore, the number of flips to the inputs of round r + 2
explodes, and strictly more than 2 T-boxes will be affected.

There are a few exceptions in which not more than 2 T-boxes are affected
(false positives). Observe an affected S-box in round r+1. (There will always be
at least one affected S-box). The input to this S-box changes in at least one and

3.8. CRYPTANALYSIS OF WHITE-BOX DES IMPLEMENTATIONS 71

at most 3 bits (one for Yr and two for Lr−1 bit flips). The effect on the output
bits of this S-box depends on its other input bits, which depend on the inputs vr

l

set at the initialization phase. Hence the number of affected T-boxes in round
r+2 will very likely change if we set other inputs to T r

l , witch l 6= j. With a very
high probability, two extra checks are sufficient to detect these false positives, if
we change all the inputs to the other T-boxes (α = 2). ¤

A faster selection can be implemented when taking the propagation to the
input of round r +1 into account. For the differences described above, one single
T-box will be affected, namely the T-box that by-passes the flipped bit.

These two properties give us a means to distinguish differences ∆v that rep-
resent flips of Rr−1 bits, and compose the set SR(T r

j). Algorithm 2 describes
this procedure. The total number of differences representing flips of bits of Rr−1

for all the T-boxes of one round, is exactly 40: 16 single flips of bits of Rr−1

originating from Xr−1, 16 single flips of bits of Rr−1, and 8 double flips of bits
of Rr−1.

Algorithm 2: Selecting obfuscated Rr−1 bit flips on input of T r
j

Set all vr
l (1 ≤ l ≤ 12)

For all ∆v ∈ GF (2)8\{0}
Compute 2 round functions with perturbated input vr

j ⊕∆v on the
input of T r

j

if # affected T-boxes > 2 then
break;

end
Perform extra checks, with vr

l ←R GF(2)8 (1 ≤ l ≤ 12; l 6= j)
∆v → SR(T r

j)
end for

Split Rr−1 into Rr−1 and Rr−1\Rr−1 Flips

Let ∆v represent flips of Rr−1 bits. The following properties can be proved for
∆v ∈ SR(T r

j).

Property 3 If ∆v represents a flip of bits of Rr−1, there are exactly 2 propagated
differences in round r + 2: ∆m, ∆n. One (say ∆m, input difference to T-box
T r+2

m) will affect strictly more than 2 T-boxes in round r +4, the other difference
will affect at most 2 T-boxes in round r +4. Moreover, T r+2

m will be a non-linear

72 CHAPTER 3. WHITE-BOX IMPLEMENTATIONS

T-box; ∆m represents flips of one or both of the two middle bits of the internal
S-box; and ∆n represents flips of respectively one or two Rr+1 bits.

Proof: Let ∆v ∈ SR(T r
j) represent a flip of single (or double) bits of Rr−1. Then,

in round r + 2, this will propagate to a flip of one (or both) of the two middle
input bits of an S-box Sm in T-box T r+2

m . Hence T r+2
m is a non-linear T-box.

Denote ∆m the propagated input difference to T r+2
m . Furthermore, this flip will

also be bypassed because of the selection operation (see Fig. 3.2 (b)). If this
would be bypassed by T r+2

m as well, then this T-box has an entropy of seven, in
contradiction to the T-box design. Thus a second T-box T r+2

n is affected, with
input difference ∆n. Therefor, ∆v will affect exactly two T-boxes T r+2

m , T r+2
n

with input differences ∆m,∆n.
Consider the following DES S-box design properties [48]:

∆in = 0wxyz0 ⇒ |∆out| ≥ 2 (3.2)
|∆in| = 1 ⇒ |∆out| ≥ 2 , (3.3)

with ∆in the input difference to an S-box, ∆out its resulting output difference,
and wxyz ∈ GF (2)4\{0}. Because of (3.2), ∆m represents a flip of at least two
Yr+2 bits at the output of the S-box. Due to the DES permutation P diffusion
property and (3.3), ∆m will affect more than 2 T-boxes in round r + 4. ∆n
represents a flip of bits of Rr+1, and affects no more than two T-boxes in round
r + 4 (see Property 1). ¤

Property 4 If ∆v represents a flip of bits of Rr−1\Rr−1, there are exactly 2
propagated differences in round r + 2. Both affected T-boxes are non-linear T-
boxes, and each of their input differences will affect strictly more than two T-boxes
in round r + 4.

Proof: If ∆v ∈ SR(T r
j) represents a flip of bits of Rr−1\Rr−1, then for 2 S-boxes

in round r+2, exactly one input bit will be affected, and thus exactly 2 non-linear
T-boxes in round r + 2 are affected.

Because of S-box design property (3.3), each of these differences will represent
a flip of at least two Yr+2 bits. As a consequence of the DES permutation P
diffusion property, both these differences in round r + 2 will affect strictly more
than two T-boxes in round r + 4. ¤

Based on these properties, we have a tool to identify restricted bit flips, and
to distinguish non-linear T-boxes. In Algorithm 3, this procedure is described.
Note that during the algorithm, we also store the differences ∆m representing
flips of middle bits (b4b5) to an S-box Sm in the set SM (T r+2

m).

3.8. CRYPTANALYSIS OF WHITE-BOX DES IMPLEMENTATIONS 73

Algorithm 3: Split Rr−1 into Rr−1 and Rr−1\Rr−1 flips

forall ∆v ∈ SR(T r
j) do

Compute 2 round functions ∆m,∆n← propagated differences in
round r + 2 of T r+2

m , T r+2
n , with m 6= n

δm← # affected T-boxes in round r + 4 propagated by ∆m in round
r + 2.
δn← # affected T-boxes in round r + 4 propagated by ∆n in round
r + 2.
if δm > 2 and δn = 2 then

∆v → SR(T r
j);∆m→ SM (T r+2

m)
Denote T r+2

m as non-linear T-box
end
else if δm = 2 and δn > 2 then

∆v → SR(T r
j);∆n→ SM (T r+2

n)
Denote T r+2

n as non-linear T-box
end
else if δm > 2 and δn > 2 then

∆v → SR\R(T r
j)

Denote both T r+2
m and T r+2

n as non-linear T-box
end

end

With the combination of Algorithm 2 and Algorithm 3, applied on T r
j (1 ≤

j ≤ 12), we are able to obtain the following information of differences on the
input to the obfuscated round r:

Sr
R

= ∪jSR(T r
j): differences representing restricted bit flips

Sr+2
M = ∪jSM (T r+2

j): differences representing S-box middle bit flips
T r+2

π(1) . . . T r+2
π(8): the 8 non-linear T-boxes (π unknown)

3.8.2 Finding Single Bit Flips

In the previous step, we were able to obtain differences on the input of obfuscated
T-boxes, that represent flips of the 2 middle input bits of the underlaying S-boxes.
Let T r+2

j be an arbitrary non-linear T-box in round r + 2, and SM (T r+2
j) its set

of middle bit flips. Denote SM (T r+2
j) = {∆m1, ∆m2, ∆m3} the set of obtained

differences (two single bit flips, and one double bit flip).
One can verify that, except for S-box S8, each of the four output bits of the

S-box Sr+2
j are flipped at least once by going through one of the values vr+2

j ⊕
∆m1, v

r+2
j ⊕∆m2, v

r+2
j ⊕∆m3. Furthermore, as the middle bits are not bypassed

74 CHAPTER 3. WHITE-BOX IMPLEMENTATIONS

in the same T-box, no other output bits of the T-box are affected. Due to the
diffusion property of the DES permutation P, each of the four output bits affects
a different S-box in round r+3 (see [33]). Thus, the propagated input differences
to the T-boxes in round r+3 represent single bit flips. Algorithm 4 describes this
procedure, which constructs the set SS(T r+3

i) of differences representing single
bit flips.

As mentioned, the described property does not hold for S8: for the input
11b4b501, with arbitrary b4 and b5, the rightmost output bit cannot be flipped
by flipping the input bits b4 and b5. Thus, with a probability of 1/16, we are
not able to find all single bit flips of round r + 3. However, it will become clear
in the next section that we do not need all information to successfully apply our
cryptanalysis.

Algorithm 4: Finding single bit flips

forall ∆v ∈ SM (T r+2
π(j)) j = 1 . . . 8 (for non-linear T-boxes) do

Compute one round function
forall ∆wi propagated difference to a T-box T r+3

i do
∆wi → SS(T r+3

i)
end

end

3.8.3 Obtain the Inputs to the S-boxes

Let T r+3
j be an arbitrary non-linear T-box in round r + 3. Using the acquired

information from the steps above, we deploy a filter algorithm to identify the
S-box (Sπ−1(j)) in the T-box T r+3

j , and to find the value of its 6-bit input vector
(fr+3

j |2...7(vr
j)⊕ kr+3

j).
We define the set P(T r+3

j) = {(Sq, wl) | 1 ≤ q ≤ 8, wl ∈ GF (2)6} as the set of
all possible pairs of S-boxes and input vectors. Our strategy is to remove all the
invalid pairs from the set. We can do this by comparing the number of affected
T-boxes in round r + 4 when a difference ∆vi ∈ SS(T r+3

j)∪SM (T r+3
j) is applied

to the input of T r+3
j , with the number of affected S-boxes in a non-white-box

DES simulation with a pair (Sq, wl) ∈ P(T r+3
j).

We define δi as the number of T-boxes that are affected when ∆vi is applied.
To verify a pair (Sq, wl), we take part of a non-white-box DES implementation
with S-box Sq and S-box input wl, and simulate the behavior of a flip of the
i’th input bit to the S-box. Then, δ′i is defined as the number of affected S-
boxes in the next round of this simulation. Define ∆wi as the difference to the

3.8. CRYPTANALYSIS OF WHITE-BOX DES IMPLEMENTATIONS 75

input of the internal S-box of the T-box to which ∆vi is applied (∆wi : wl →
wl ⊕ fr+3

j |2...7(∆vi)).
If (Sq, wl) is a candidate solution, it should satisfy the following conditions:

• There can only be one Sq for each round.

• ∆v7 = SM (T r+3
j)\SS(T r+3

j) is the flip of both middle bits, represented as
∆w7 = 001100, for which δ′7 can be computed. Because ∆v7 only affects
bits of Yr+3, δ7 must be equal to δ′7.

• {∆v3, ∆v4} = SM (T r+3
j) ∩ SS(T r+3

j) represent the two single flips of the
input bits to the S-box, but we do not know in which order. Moreover they
only affect bits of Yr+3, and thus we must have {δ′3, δ′4} = {δ3, δ4}.

• Similarly {δ′2, δ′5} ∈ {δ1, δ2, δ5, δ6}.
• The differences affecting the outer input bits affect bits of Rr+2, and there-

fore the number of affected S-boxes can be smaller than the number of af-
fected T-boxes, which should be taken into account when comparing {δ′1, δ′6}
to {δ1, δ2, δ5, δ6}\{δ′2, δ′5}.

Any pair (Sq, wl) that does not fulfill these conditions is removed from the set
P(T r+3

j). At the end, if only pairs with one type Sq remain, then this Sq is the
internal S-box of T r+3

j (π(q) = j). As soon as S-boxes are identified, we can also
make use of S-box relations between consecutive rounds. E.g., S1 in round r
does not affect S-box S1 and S7 in round r + 1. Moreover, if for example S3 is
identified in round r + 1, then S1 affects its second input bit, which allows us to
narrow down the conditions (δ2 = δ′2).

Because all eight DES S-boxes are very different, and are highly non-linear,
the filtering process will reduce most P(T r+3

j) sets to a singleton (Sq, wl), where
Sq = Sπ−1(j) is the internal S-box and wl = fr+3

j |2...7(vr+3
j) the 6-bit input vector

to this S-box.

3.8.4 Key Recovery

Given that we have found a sufficient number of inputs to S-boxes, we start an
iterated recovery of key bits, initiated by guessing one single key bit, using the
following two observations:

• The expansion operation E maps some of the input bits to 2 different S-
boxes, prior to the key addition. In step 3, we have obtained values of the
input bits to these S-boxes, after the round key addition. Hence, if we know
one of the corresponding two bits of the round key, we are able to compute
the other key bit.

76 CHAPTER 3. WHITE-BOX IMPLEMENTATIONS

• The value of one single bit can be followed through several rounds. Consider
an Rr−1 bit. In round r and r + 2, after the expansion and the round key
addition, this is the (known) input to an S-box. In round r + 1 it is XOR-
ed with an output bit b of an S-box after the permutation P operation.
Because P is known, the S-boxes in round r + 1 are identified and their
input is known, we can compute the value of b. Hence, if one bit of the
round key bit in round r or r + 2 is known, we can compute the other key
bit.

Iterated use of these algorithms generates the DES key bits. When a new
round key bit is computed, we can pull this back through the DES key schedule.
This is possible, because the 48-bit round key is a fixed permutation of a subset
of the 56-bit DES key. New key bits in turn result into new round key bits, to
which the two described methods can be applied.

Depending on the initial key bit guess, two complementary keys k0 and k1

can be computed. Because of the complementation property DES exhibits, both
keys are a valid result. The complementation property of DES [148] is defined as

DESk =
⊕

1

◦DESk⊕1 ◦
⊕

1

,

where
⊕

1 represents the XOR with the all one vector. Then

G ◦DESk ◦ F = G ◦
⊕

1

◦DESk⊕1 ◦
⊕

1

◦F
= G′ ◦DESk⊕1 ◦ F ′ .

Hence if k is the original DES key, and F, G the external encodings used to
shield the white-box DES implementation, then the complementary key k ⊕ 1
is also a valid DES key with external encodings F ′, G′, where F ′ =

⊕
1 ◦F and

G′ = G ◦⊕
1.

Our algorithm recovers two possible solutions of keys that could have been
embedded in the white-box implementations. Because the external encodings can
be chosen freely, there will be no means to discover which of the two secret keys
was chosen. Hence we can conclude that the white-box ambiguity (see Sect. 3.3.2)
for white-box DES implementations is exactly two, i.e., the number of given
constructions (secret key + external encodings) which could produce exactly the
same set of tables. It will be exactly two, because once the initial key bit has
been chosen, the secret key (and the external encodings) can be computed by a
deterministic algorithm.

3.8. CRYPTANALYSIS OF WHITE-BOX DES IMPLEMENTATIONS 77

3.8.5 Recovery of the External Encodings

The prior goal in the cryptanalysis of any white-box implementations, is to re-
cover information of the embedded secret key. However, in most cases in practice,
to break a system where white-box implementations are deployed, information of
the external encodings that have been used will need to be recovered as well. E.g.
in DRM systems, white-box implementations will be accompanied with external
encodings in order to ‘lock’ them to authentication code, or a rights management
engine. To decrypt protected media content, it will need to be processed by these
external encodings as well.

For any white-box DES implementation, as soon as the key has been recov-
ered, the external encodings can be recovered in a generic way as follows: for
any given input vEXTin to the encoded implementation, we are able to find the
inputs to the S-boxes. We simply deploy the cryptanalysis above, and choose
vEXTin as the vector X in the initialization phase.

For Feistel ciphers, given the input to two consecutive rounds and the se-
cret key, the plaintext can easily be computed backwards. Hence we are able
to compute the input to the naked DES, i.e., vDESin = F (vEXTin), where F
is the (unknown) input encoding. Once F and the DES key k have been com-
puted, the output of G for any given input v can be computed easily, since
G(v) = WBDES◦F−1 ◦DES−1

k (v). Hence, chosen input-output pairs for the ex-
ternal encodings can be computed. As a result, when the external encodings are
learnable, their definition can be recovered. A function is called learnable when
a limited amount of input-output pairs satisfy to define the function (see also
Definition 11). Examples of learnable functions are linear and affine functions,
and polynomials.

Chow et al. [43] proposed a specific class of external encodings: block encoded
affine mixing bijections. Suppose these block encodings are nibble encodings. To
recover the input encoding F , it suffices to run through all 16 possible values
for each of the 16 nibble input encoding independently, keeping the other inputs
fixed. Once F is recovered, chosen input-output pairs for the external output
encoding G can be computed, which eventually leads to the recovery of the
definition of the external output encodings recommended by Chow et al..

Implementation and Complexity

We have implemented our cryptanalysis in C++, and conducted tests on a Pen-
tium M 2 GHz. On average, about 213 obfuscated round functions of the white-
box DES implementation need to be computed to check the difference propa-
gations. This is less than our complexity study below indicates, due to some

78 CHAPTER 3. WHITE-BOX IMPLEMENTATIONS

extra optimizations we have applied (e.g., introducing requirements regarding
round r +1 in Property 1 substantially improves the efficiency of the algorithm).
Moreover, our tests indicate that computations with eight consecutive obfuscated
round functions is sufficient for the attack to succeed. There is no restriction on
which window of eight round functions to chose. The space complexity is neg-
ligible, as most space is used in step three of the cryptanalysis, to store the
set P(T r

j) of candidate pairs (Si, wl). Note that we can pre-compute the simu-
lates set of pairs, because that does not require any information of the key and
implementation.

In the conducted tests on several white-box DES implementations, our crypt-
analysis algorithm extracted the DES key in all tests in under a second. On
average the cryptanalysis requires 0.64 seconds on a standard 2Ghz computer.

Complexity. We define the complexity of the cryptanalysis as the number of
round functions of the white-box implementation that need to be computed. The
first step described, to retrieve flips of bits of Rr−1, has the highest complexity.
Because of the lack of any prior information on internal flips, all differences have
to be computed through several rounds in order to learn this bit flip information.

In Algorithm 2, for all twelve T-boxes, and all 28 − 1 possible differences,
two rounds need to be computed to observe the difference propagation. This
corresponds to a total of 12 · (28 − 1) · 2 = 6120 round function computations.
For each positive result, we perform at most two double checks as described in
Property 2. Algorithm 3 requires six round computations for each difference
of SR (two for ∆v, two for ∆l and two for ∆m). Hence, 240 round functions
computations are performed.

Consequently, we can retrieve all flips of bits of Rr−1 for one round in less than
213 round computations in total. As described in Property 2, from ∆v ∈ Sr

R
, we

can efficiently compute ∆n ∈ Sr+2

R
. Because of the one-to-one relation between

∆v and ∆n, this is sufficient to find all the single Sr+2

R
bit flips. Thus, when for

two consecutive rounds, SR is found, we can compute this set for all subsequent
rounds using Property 3 only. Hence, with about 214 round computations, we
can compute all flips of single bits of Rr−1 for all rounds.

The complexity of the other steps of the cryptanalysis is negligible. In Algo-
rithm 4, for each ∆m ∈ Sr

M , one round function needs to be computed. Hence,
for each round, at most 24 round computations are needed (for 16 single bit flips
and at most 8 double bit flips). To compute the exact inputs to the S-boxes,
a filtering process needs to be applied to each non-linear T-box. In the worst
case, we need to compute the difference propagation for all seven input differ-
ences. Thus at most seven round computations for each of the eight non-linear
T-boxes. The simulation process for each T-box needs to be performed at most
26 · 8 = 29(= |P(T r

j)|) times, which is the equivalent effort of computing one

3.9. CONCLUSION 79

white-box DES round function (which consists of 552 ∼ 29 lookup table compu-
tations). The total complexity to compute the inputs to all S-boxes of one round
is thus 8 · (7 + 1) = 26.

Hence, the total complexity to recover a representation of the secret key
embedded in white-box DES implementations is 214.

3.9 Conclusion

White-box implementations are hard to understand, and their techniques are
deployed in different ways on different ciphers. Moreover, their security is hard
to evaluate, while only indicative metrics exist. As a consequence there is a strong
need for cryptanalytic work to investigate the robustness of the techniques used
in white-box implementations.

The cryptanalysis on white-box DES implementations can be mounted
for a great deal due to properties that are specific to the DES. The confusion
property of the DES S-boxes, the diffusion property of the DES permutation P,
and the design of the expansion operation are critical operations used to extract
key information. It appears to be difficult to obfuscate their behavior, and it has
been shown that a sufficient amount of information leaks to recover the secret
key.

The analysis, while specific to the DES, nevertheless points the way to analyze
other ciphers. Feistel ciphers are particularly vulnerable due to their inherent un-
balanced differential propagation , which was abused in recent cryptanalysis [191].
Within this context, a practical measure to estimate the vulnerability of a block
cipher to differential cryptanalysis on its white-box implementation, would con-
sist in computing the minimum number of active S-boxes . A low bound on this
metric might indicate a point of attack. Studies on the black-box security of
block ciphers against differential cryptanalysis have conducted similar research
(on active S-boxes). As a result, families of cryptographic ciphers with better
differential properties have been proposed, such as the family of ciphers with
diffusion based on MDS matrices. It would seem to be that these ciphers are
better candidates to obtain secure white-box implementations.

Cryptanalysis of white-box AES implementations have presented alge-
braic attacks. In particular, it has been shown by Michiels et al. [135] that MDS
matrices introduce an attack point to mount algebraic analysis.

In conclusion to these cryptanalytic results on white-box implementations,
we observe a conflict between black-box security criteria and white-box security.

80 CHAPTER 3. WHITE-BOX IMPLEMENTATIONS

Black-box security criteria are introduced based on black-box analysis of crypto-
graphic primitives. A first criterion is high non-linearity, to protect against linear
attacks. This is fulfilled by the use of S-boxes in common block ciphers.7 Other
criteria that are introduced are balancedness, algebraic degree, optimal diffu-
sion (for which MDS matrices are introduced), active S-boxes, and correlation
immunity.

White-box security criteria at this point are mainly obtained by cryptanalytic
experiences, and white-box metrics such as diversity and ambiguity. The latter
metric is the most important from a security point of view, since it accounts
for the space of possibilities which an adversary must disambiguate in order to
find key information. Unfortunately, metrics can only be indicative, hence the
importance of cryptanalytic techniques. The cryptanalysis results have shown
that some cryptographic building blocks introduce a point of attack. For example,
MDS matrices have been exploited in the generic attack by Michiels et al. [135].
Hence, a building block that has been introduced because of its properties against
black-box cryptanalysis, is exactly the building block that enables an attack on
its white-box implementation. The interesting conclusion is that, although white-
box cryptography investigates techniques on how to compile a block cipher in a
secure way, it also imposes requirements on the design of the block ciphers.

We have also extended the analysis to basic building blocks. In particular,
addition tables are prone to analysis. We have shown to extract information on
the encodings of an addition table, and how this can be used as an alternative
attack on the white-box implementations of AES and DES.

3.9.1 Further Research

The current white-box implementations of the DES and the AES have shown
to be insecure. To thwart their cryptanalysis, slight modifications in the white-
boxing techniques might be introduced, certainly for the DES. However, our
impression is that no matter which improvements on white-box implementation
techniques are presented, the white-box implementations of some ciphers will
remain insecure. This because of the observation that some block cipher building
blocks might yield a point of attack.

Instead, white-box implementations of ciphers composed of other building
blocks must be studied; even new block ciphers might be proposed that are suit-
able for white-boxing, while providing a sufficient level of black-box security.
Therefore, we should move forward towards a public scrutiny process for white-
box implementations. New ideas and constructions on the design of white-box

7The non-linearity of an S-box is the minimal distance of all non-trivial combinations of the
columns of S to the set of affine functions. We refer the work by Braeken [30] for an extensive
study on the construction of S-boxes.

3.9. CONCLUSION 81

implementations need to be presented and published at cryptology conferences,
although they are not accompanied by security proofs. This way, one can learn
what exactly makes white-box implementations (in)secure, and learn how to im-
prove such implementations. One should of course keep black-box security criteria
in mind, because white-box implementations need to be secure against black-box
attacks in the first place. Unfortunately, white-box implementations are not yet
well accepted by the cryptology community, and theoretical results are often
miss-interpreted [6].

Based on our discussions above, we offer the following reflections on require-
ments and methodologies for new white-box implementations:

• White-box implementations should not only prevent key recovery, but also
be non-invertible. Hence, white-box implementations introduce some nat-
ural asymmetric behavior (even if they are applied to symmetric ciphers).
One can encrypt plaintexts, given a white-boxed encryption implementa-
tion, while only the party that has knowledge of the secret key, or has
a decryption implementation is able to do so. Therefore, building blocks
for new white-box implementations can potentially be found in the field of
asymmetric cryptography. A block cipher based on asymmetric primitives
has been proposed by Billet et al. [20] and is an interesting direction for
further research.

Note that it is not an absolute requirement to implement white-box imple-
mentations as a network of lookup tables. Constructions based on poly-
nomials can be proposed, where key information is hidden by introducing
obfuscating polynomials, similar to the research in Hidden Field Equations
(HFE), Isomorphisms of Polynomials (IP) [145], and Multivariate Equa-
tions (MQ) [188].

• For practical purposes, the implementation size of white-box implemen-
tations matters. In one publication, Bringer et al. [32] have presented a
white-box AES implementation of around 568 MB. Certainly when white-
box implementations are deployed on embedded devices (to prevent side-
channel analysis), these constraints have to be taken into consideration.

• In a white-box attack context, many more algebraic equations can be con-
structed than in a black-box attack context. To thwart algebraic analysis,
the algebraic (round) structure should be destroyed. Bringer et al. [32] have
introduced a perturbations approach on white-box AES implementations.
Another approach is to construct round functions based on non-compatible
operators; a similar approach has been conceived in the design of the IDEA
block cipher [115]. Several non-compatible operators can be combined into

82 CHAPTER 3. WHITE-BOX IMPLEMENTATIONS

a (key dependent) lookup table, making it hard to analyze. These lookup
tables should have a small dimension input, while their output size can be
arbitrary.

Key update

Once secure white-box implementations have been constructed, an interesting
direction for further study, is how to manage key updates. That is, given a
white-box implementation of Ek, how can a minimal amount of modifications
yield an implementation of Ek′ , while preserving the security.

Consider for example the white-box AES implementation as described in
Sect. 3.5.2. A key update could be achieved by injecting a new type of tables
before the input of Type II tables (see Fig. 3.5). Let n1, n2 be the two nibble
input encodings to this Type II table, and denote this new type of tables as Type
V, which can be defined as

Type V∆kr
j

= (n−1
1 ‖n−1

2) ◦ {8× 8}−1 ◦
⊕

∆kr
j

◦{8× 8} ◦ (n1‖n2) ,

where ∆kr
j defines the 8-bit round sub-key modification. Then, 80 kbytes would

be sufficient to update an AES key. Unfortunately, this approach is quite limited,
since the information of multiple key updates might offer sufficient information
to recover information on the nibble encodings, similar to the attack described
by Billet et al. [21]. Let Q denote (n1‖n2) ◦ {8× 8}, then

[
Type Vβ1

] ◦ [
Type Vβ2

]−1 = Q ◦
⊕

β1⊕β2

◦ Q−1 .

Hence, eight linear independant round key updates gives the entire space of pos-
sible β ∈ GF(28) (think of more combinations such as

[
Type Vβ1

]◦ [Type Vβ2

]◦[
Type Vβ3

]−1), such that Theorem 1 can be used to recover information on the
encoding Q.

Therefore, more complex updates will be required. But first, secure white-box
implementations need to be presented.

Chapter 4

A Theoretical Model for
White-Box Cryptography

4.1 Introduction

White-Box Cryptography deals with protecting cryptographic primitives embed-
ded in a program to which an attacker has white-box access. It aims to provide
security when the program is executing in a hostile environment and the attacker
can conduct non-black-box attacks (such as code inspection, execution environ-
ment modification, code modification, etc). Practical white-box implementations
of DES and AES encryption algorithms were proposed by Chow et al. [43, 42],
which we have studied in Chapter 3. However, no formal definitions of white-box
cryptography were given, neither were there any proofs of security. With their
subsequent cryptanalysis [21, 191, 82], it remains an open question whether or
not such white-box implementations exist.

One way to realize WBC is to obfuscate (using an obfuscator) the executable
code of the algorithm and hope that the adversary cannot use it in a non-black-
box manner. What we would like is that, given an obfuscator satisfying some
definition, a white-box implementation can be proved secure under some secu-
rity notion. While code obfuscation attempts to hide certain characteristics of a
program P , white-box cryptography specifically focusses on software implemen-
tations of cryptographic primitives (such as encryption schemes); its goal is to
offer a certain level of robustness against an adversary who has full access to and
control over the implementation of the primitive. Several models for obfuscation
have been presented before, but it is not clear if any of these definitions can
capture the concept of white-box cryptography. Other models that have been
presented include the malicious host model [94, 162, 163], within the context of

83

84 CHAPTER 4. A THEORETICAL MODEL FOR WBC

mobile agents.

In this chapter, we discuss the shortcomings of obfuscation models, their
relation with white-box cryptography, and formalize the notion of white-box
cryptography by capturing the security requirement using a ‘White-Box Prop-
erty’ (WBP). We elaborate on the work we have presented in [165]. This new
theoretical model provides a context to investigate the security of white-box im-
plementations. The chapter is organized as follows: in Sect. 4.2, we introduce the
concept of code obfuscation and discuss the most important (im)possibility re-
sults. The formal definitions of code obfuscation are provided in Sect. 4.6. Since
these models fail to capture the concept of white-box cryptography, we present
a new model in Sect. 4.7. A key concept in our model are security notions
(Sect. 4.3), which have been presented as a concept to capture the requirements
of cryptographic primitives in the ‘black-box’ model, and are introduced for the
formalization of theoretical security proofs [72, 75]. Inspired by theoretical re-
sults on obfuscation, we translate some theoretical properties onto our model,
and present (im)possibility results in Sect. 4.8.

4.1.1 Related Work

The notion of code-obfuscation was first given by Hada in [84], who introduced
the concept of virtual black-box property (VBBP) using computational indistin-
guishability. In [6], Barak et al. defined obfuscation using the weaker predicate-
based VBBP and showed that there exist unobfuscatable function families under
this definition. Goldwasser and Kalai [76] extend the impossibility results of [6]
w.r.t. auxiliary inputs.

On the other hand, several positive results have been formalized. For in-
stance, Lynn et al. show in [122] how to obfuscate point functions in the random
oracle model [10]. Subsequently, Wee [186] demonstrated how to obfuscate point
functions without random oracles. Hohenberger et al. [93] used a stronger no-
tion of obfuscation (average-case secure obfuscation) and showed how it can be
used to prove the security of re-encryption functionality in a weak security model
(i.e., IND-CPA). They also presented a re-encryption scheme under bilinear com-
plexity assumptions. Hofheinz et al. [91] discuss a related notion of obfuscation
and show that IND-CPA encryption and point functions can be securely obfus-
cated in their definition. Goldwasser and Rothblum [81] define the notion of
“best-possible obfuscation” in order to give a qualitative measure of information
leakage by an obfuscation (however, they do not differentiate between “useful”
and “useless” information). Recently, Canetti and Dakdouk [35] gave an obfusca-
tor for point functions with multi-bit output for use in primitives called “digital
lockers”. Finally, Herzberg et al. [89] introduce the concept of White-Box Remote

4.2. CODE OBFUSCATION 85

Program Execution (WBRPE) in order to give a meaningful notion of “software
hardening” for all programs and avoid the negative results of [6].

4.1.2 Terminology

Formal models in computer science are often described on Turing Machines,
which are abstract devices which can simulate any computer algorithm [181].
They are only intended to provide a basic logic for formal theories in computer
science, and hence are not constructed in practice. Denote by TM the set of
all Turing Machines (TMs). Studying their abstract properties yields many new
insights in computer science, which is also our objective within the context of
white-box cryptography. In electrical engineering, often a formal model based on
circuits is used. Note that for simplicity, in this work, we only consider the case
of Turing Machines. However, all results also carry over to circuits.

For any TM X, we denote by |X| the length of the string containing a de-
scription of X. For simplicity, we define the input-space of arbitrary TMs to be
{0, 1}∗, the set of all strings. If however, the input-space of a TM is well defined
and efficiently samplable (for instance, the strings should be of a particular en-
coding), then we implicitly imply that the inputs are chosen from the input-space
sampled using a string from {0, 1}∗. All our definitions and results apply in this
extended setting without any loss of generality.

Denote by P the set of all polynomials with non-negative integer coefficients.
A mapping f : x ∈ N 7→ f(x) ∈ R is a negligible function in x (written f(x) ≤
neg(x)) if

∀p ∈ P, ∃x′ ∈ N, such that ∀x > x′ : f(x) < 1/p(x) .

A point function fα is a function that evaluates to 1 if and only if α is presented
as input, 0 for any other input.

fα(x) =
{

1 iff x = α
0 otherwise .

Denote with AP (x) some primitive A that computes on input x and is given
oracle access to P .

These definitions are used in the sections below. In Sect. 4.5, more definitions
are provided, which are needed to formalize the model for white-box cryptography
that we present.

4.2 Code Obfuscation

Code obfuscation is the most viable method to prevent reverse-engineering [45].
A code obfuscator is used to convert a code (program) into an equivalent one that

86 CHAPTER 4. A THEORETICAL MODEL FOR WBC

is difficult to reverse engineer, by distinguishing its internal workings. We denote
an obfuscator as O, and the obfuscation of the program P as O(P). In this
section, we review the theoretical approaches on code obfuscation, upon which
our model for white-box cryptographic is inspired. For an overview of (practical)
code obfuscation techniques, we refer to our survey in [38].

4.2.1 Definitions for Obfuscation

The first contributions towards a formalization of code obfuscation were made
by Hada [84], who presented definitions for obfuscation based on the simulation
paradigm for zero knowledge, called GMR-ZK, given in [74].

Using simulation is an approach that has been used before in formal security
proofs for cryptography. In this approach, there are two settings. One setting
in which an arbitrary, probabilistic, polynomial-time adversary can interact with
the cryptographic primitive; in the other setting, the adversary interacts with
an idealized version of the cryptographic primitive that can never be broken.
Note that this idealized version is an abstract primitive. E.g., a perfectly secure
encryption function as an idealized abstract version of a practical encryption
scheme. To determine whether a primitive is secure, the output of the adversaries
in the two settings is compared. If their outputs are approximately the same (or
indistinguishable in the case of output distributions), then the cryptographic
primitive must be secure, since the idealized version is secure.

The main difference between the obfuscation definition and the simulation
based definitions used in (black-box) cryptography, is in the type of objects the
adversary interacts with. In the obfuscation case, it is a comparison between
(white-box) interaction to an implementation of the primitive, and the interaction
with a oracle implementation (black-box) [5]. In the tradition cryptography
case, it is between an oracle implementation of the cryptographic primitive, and
an idealized version. This new concept is captured by the Virtual Black-Box
Property (VBBP).

This brings us to the definition of obfuscation, which was formalized by
Canetti [34] (for point functions) and Barak et al. [6] (for any function).

Definition 5 (Obfuscator) A probabilistic algorithm O is an obfuscator if the
following three conditions hold:

• Functionality – ∀ program P, O(P) describes a program that computes
the same function as P .

• Polynomial slowdown – There exists a polynomial p, such that ∀P :
|O(P)| ≤ p(|P |), and if P halts in t steps on some input x, then O(P)
halts in p(t) steps on input x.

4.2. CODE OBFUSCATION 87

• Virtual Black Box Property – Given access to the obfuscated program
O(P), an adversary should not be able to learn anything about the program
P , that it could not learn from oracle access to P .

Informally, an obfuscator O is an (efficient, probabilistic) “compiler” that
takes as input a program (or circuit) P , and produces a new program (respectively
circuit) O(P) that has the same functionality as P yet is “unintelligible” in some
sense. This property of “unintelligible” is captured in Definition 5 by the Virtual
Black-Box Property, and has been defined in several different formulations by
Barak et al. [6]. We present the main notions and their comparison below.

Predicate-based notion of obfuscation

In this notion, an adversary aims to compute some predicate on the program P .
In this sense, the virtual black-box property captures that for any adversary and
any Boolean predicate π, the probability that an adversary is able to compute
π(P) given the obfuscation O(P) should be comparable to the probability that a
simulator S is able to compute π(P) when given only oracle access to P . Roughly
speaking, this guarantees that the adversary A does not have any advantage of
white-box access, compared to a black-box simulation, hence the obfuscation
does not leak any extra information on π(P). Definition 6 formally captures this
notion.

Definition 6 (Predicate-based Virtual Black-Box Property) An
obfuscator O satisfies the Predicate-based VBBP if for any predicate π and for
any (polynomial time) adversary A, there exists a (polynomial time) simulator
S, such that for all programs P ∈ P :

∣∣∣ Pr [A(1s,O(P)) = π(P)]− Pr
[
SP

A (1s) = π(P)
] ∣∣∣ ≤ neg(|P |) ,

where the probabilities are taken over the coin tosses of A, S, and O, and s is
some security parameter (often defined in terms of |P |).

Note that the predicate does not need to be efficiently computable, and that
the notion needs to be qualified over all adversaries. This notion of obfuscation is
depicted in Figure 4.1, where (a) depicts the white-box adversary A with access
to O(P), and (b) the simulator which has oracle access to P , and has A as a
subroutine (to be able to simulate its behavior).

However, as pointed out by Barak et al. [6] and Hohenberger et al. [93], we
might consider a stronger notion of “virtual black-box”. The predicate definition

88 CHAPTER 4. A THEORETICAL MODEL FOR WBC

b

P

b

A
A

1sO(P), 1s

S

(a) (b)

Figure 4.1. Predicate-based Virtual Black Box Property

does give some quantifiable notion that some information (i.e., predicates) re-
mains hidden, but other non-black-box information might leak and compromise
the security of the system.

Distinguisher-based notion of obfuscation

This notion of obfuscation is based on computational indistinguishability, and
does not restrict what the adversary is trying to compute. We say that, for any
adversary given the obfuscated program O(P), it should be possible to construct
a simulator S (with only oracle access to P) that is able to produce a similar
output. This notion of similarity is captured by a distinguisher D.

Definition 7 (Distinguisher-based Virtual Black-Box Property) An ob-
fuscator O satisfies the distinguisher-based VBBP if for any (polynomial time)
adversary A, there exists a (polynomial time) simulator S, such that for all pro-
grams P ∈ P :

∣∣∣ Pr [D(O(P)) = 1]− Pr
[
D(SP (1|P |)) = 1

] ∣∣∣ ≤ neg(|P |) ,

where D is a distinguisher, and the probabilities are taken over the coin tosses of
A, S, and O.

This notion of security is quite similar to the notion of semantic security for
(black-box) cryptographic schemes. As pointed out by Wee [186], this removes
the need to quantify over all adversaries, as it is necessary and sufficient to simu-
late the output of the obfuscator. To avoid trivial obfuscation, Hofheinz et al. [91]

4.2. CODE OBFUSCATION 89

extended the distinguisher-based definition by giving the distinguisher oracle ac-
cess to the functionality P . A similar approach was conceived by Hada [84],
with the difference that an extra copy of the obfuscation was presented to the
distinguisher, instead of oracle access to the functionality. This leads to a very
strong notion of obfuscation. We will discuss this in more detail below.

Other notions of obfuscation

Barak et al. [6] presented other notions of obfuscation, which are largely defined
over what the adversary aims to compute. The following are the most common
ones (in decreasing order of generality)

• Computational indistinguishability [6, 91, 93, 186] (strongest security
requirement) – Given just oracle access to P , an adversary tries to produce
an output distribution that is computationally indistinguishable from what
the adversary would compute when given O(P).

• Satisfying a relation [6] – Adversary tries to produce an output that
satisfies an arbitrary relation with the original program.

• Computing a function [6] – Restrict the previous requirement to relations
which are functions.

• Computing a predicate [6, 186] (weakest security requirement) – restrict
previous to {0,1}-valued functions; that is, the adversary trying to decide
if some property of the original program is true or false.

Different notions of obfuscation lead to different results. Below, we present
some (im)possibility results. Note that impossibility results have the strongest
meaning under the weakest notion of obfuscation, while positive results have
the strongest meaning under the strongest notion of obfuscation. Also, these
definitions of obfuscation can be extended towards approximate obfuscators.

Definition 8 (Approximate obfuscator) A predicate/distinguisher-based
approximate obfuscator O, is a predicate/distinguisher-based obfuscator that sat-
isfies the following functionality property.

With an overwhelming probability, O(P) behaves exactly identical to P on
almost all inputs. That is, there exists a negligible function, such that for any
input length n:

∀x ∈ {0, 1}n : Pr
[O(P)(x) 6= P (x)

] ≤ neg(|P |) ,

where the probabilities are taken over the coin tosses of O.

90 CHAPTER 4. A THEORETICAL MODEL FOR WBC

4.2.2 Impossibility Results

In their seminal paper [6], Barak et al. show that it is impossible to achieve
the notion of obfuscation according to Definition 6, that is, it is impossible to
construct a generic obfuscator for all family of programs (TMs and circuits)
P. This is proved by constructing a family of functions F which is inherently
unobfuscatable in the sense that there exists some predicate π : F → {0, 1} that
can be computed efficiently when having access to an obfuscated implementation
O(f) of f ∈ F , but no efficient simulator can compute π(f) much better than by
random guessing, given solely oracle access to f .

This results follows from the following paradox.

• If one-way functions exist, then there exists an inherently unobfuscatable
function ensemble (under Definition 6).

• The existence of an efficient obfuscator implies the existence of one-way
functions.

As a result of the above, it can be concluded that efficient obfuscators do not
exist.

Because this impossibility applies to the weakest notion of obfuscation, it
directly applies to any other (stronger) notion of obfuscation. The presented
construction requires that the obfuscated program O(P) computes exactly the
same function as the original program P . With some additional steps, the im-
possibility results also extends to approximate obfuscators.

An inherently unobfuscatable function family ensemble

The essence of the proof is that there is a fundamental difference between getting
oracle access to a function, and having a program that computes it, no matter
how it is obfuscated. In order to exploit this, an unobfuscatable function f must
not be learnable. Obviously, if a function is learnable (i.e., one can acquire a
function f ′ with the same functionality as f by sampling a limited number of
oracle queries to f ; see also Definition 11), the difference disappears. This implies
that learnable functions are trivially obfuscatable according to Definition 5.

Based on the existence of one-way functions, a specific family of functions can
be constructed. Namely, a family of cannibalistic functions, which leak their se-
cret solely when receiving their very own description (functionality) as input. The
intuition is that with black-box access a (exact) description cannot be retrieved
(because the function is not learnable), while an adversary with access to the ob-
fuscated function (which has by definition the same functionality), can clone the

4.2. CODE OBFUSCATION 91

code and present this as input.1 Algorithm 8 gives an intuition of such a family
of cannibalistic functions. This strategy applies to Turing Machine obfuscators.
For circuit obfuscators, a inherently unobfuscatable circuit can be constructed
based on a homomorphic encryption oracle. We refer to [6] for technical details
on both constructions.

Unobfuscatable cryptographic primitives

Other unobfuscatable families of functions that are presented by Barak et al.
include cryptographic primitives. Namely, every cryptographic primitive that
implies the existence of a one-way function, implies the existence of a respectively
unobfuscatable primitive (which can be constructed by using the obtained one-
way function as a building block for the primitive) [96]. This applies to digital
signature schemes, symmetric-key encryption schemes, pseudo-random function
ensembles, and MAC algorithms. In [84], Hada already showed the impossibility
of securely obfuscating pseudo-random functions (in the context of their definition
of obfuscation).
Remark. Note that the impossibility results refer to generic obfuscators. This
means that one single (efficient) obfuscator for an entire class of programs (all
programs, or all signature schemes) cannot exist. This does not rule out that
obfuscators for specific (useful, natural) classes of programs cannot exist (there
are obfuscatable families [6, 186, 91, 165]). Unfortunately, the results by Barak
et al. are often interpreted incorrectly, and the title (“On the (Im)possibility of
Obfuscating Programs”) might be misleading. Instead, it should be interpreted
as “On the Impossibility of a Generic Program Obfuscator”.

Possible directions of further research in response to this impossibility results
by Barak et al. are (a) to explore weaker but nonetheless meaningful notions of
obfuscation, or (b) constructing obfuscators for restricted, yet still non-trivial
and interesting classes of programs.

Relaxed notion of obfuscation

Goldwasser and Kalai [76] augmented the predicate-based notion of obfuscation
to hold in the presence of auxiliary input. They observe that this is an impor-
tant requirement for many applications of obfuscation, because auxiliary input
comes into play in the real world. Two different definitions are formulated. One
definition models security in the presence of auxiliary information that depends
on the particular function to be obfuscated (for example, previous versions of the
software), and one that relates to independent auxiliary information.

1Note that this cloning trick is very specific to the white-box attack context, and is exactly
what is indirectly abused in many impossibility results (e.g., in Theorem 2).

92 CHAPTER 4. A THEORETICAL MODEL FOR WBC

The notion of obfuscation is relaxed in the sense that it only requires security
for a random function chosen from some distribution. This is justified by the
observation that in most cryptographic applications, an adversary is confronted
with such a randomly chosen (obfuscated) function. Whereas requiring the black-
box property to hold when an auxiliary input is given, is a strengthening of
the original definition by Barak et al., the fact that we require the black-box
property to hold for a random circuit is a weakening of the requirements of
Barak’s definition. Weakening the definition of obfuscation, strengthens any
impossibility result.

This weakening is meaningful in cryptographic applications, where a class
programs P corresponds to a class of cryptographic algorithms and a random
choice of P ∈ P corresponds to the choice of a particular secret key to instantiate
a cryptographic algorithm.

Goldwasser and Kalai show that relaxing the notion of obfuscation of Barak,
does not help to prevent the impossibility result. They prove that there exist
many natural classes of functions that cannot be obfuscated with respect to
auxiliary input (both dependent and independent auxiliary input). This is shown
for filtered functions (functions that are forced to output 0 when the input is not of
special form). On the positive side, they prove that any obfuscator for the class
of point functions is also an obfuscator with respect to independent auxiliary
input.

Obfuscating deterministic programs

Wee [186] explored obfuscation of deterministic programs under the strong (dis-
tinguisher-based) notion of obfuscation, and concluded that deterministic func-
tions can be obfuscated if and only if the function is learnable (it is not so hard
to see this). A similar result is conceived in [84]. This is partly because these
definitions require security for all keys in a given set. Hence, this notion of
obfuscation is clearly too strong to achieve any meaningful results. Note that
impossibility results in the strong notion of obfuscation are weak, and do not
imply impossibility in weaker models of obfuscation.

Following these results, Hofheinz et al. [91] remarked that any family of deter-
ministic functions must be approximately learnable to be obfuscatable (in their
augmented strong notion of obfuscation). Hence, it is not possible to obfuscate
(deterministic) pseudo-random functions under their definition. This in particu-
lar rules out the obfuscation of deterministic digital signatures schemes, public-
key decryption and pseudo-random functions. Point functions remain possible, as
these are approximate learnable. Hence the interest to investigate the obfuscata-
bility of probabilistic functions, as conceived in [93]. In Sect. 4.9, we introduce a
formal definition of probabilistic functions within the context of white-box cryp-
tography.

4.2. CODE OBFUSCATION 93

4.2.3 Positive Results

The results by Barak et al. [6] and Goldwasser and Kalai [76] are rather complex.
It remains an open question whether obfuscation can be achieved for some natural
class of functionalities and circuits. The halting problem and satisfiability seems
to indicate that source code access yields few significant capabilities, apart from
black-box access.

A positive result on obfuscation was presented prior to the first formulation
of definitions for obfuscation. In [34], Canetti presented a special class of func-
tions suitable for obfuscation under very strong computational assumptions, that
works for (almost) arbitrary function distributions. In subsequent work, Canetti
et al. [37] presented a construction suitable for obfuscation under standard com-
putational assumptions, that is proved secure for uniform function distribution.
Both results are probabilistic and technically very sophisticated.

Obfuscation in the random oracle model

Lynn et al. [122] explored the question of obfuscation within the random oracle
model [10]. This is an idealized setting, in which all parties (including the adver-
sary) can make queries to a random oracle (see also Sect. 5.1.2). Their results
apply to the predicate-based notion on obfuscation. The obfuscatable family of
functions that is presented, are point functions. Random oracles can obfuscate
point functions because the output of a random oracle R hides all information
about the input that produced it. The obfuscation of the point function fα is
defined as follows:

O(fα)(x) =
{

1 iff R(x) = α′

0 otherwise ,

where α′ = R(α), and fα denotes the point function that evaluates to 1 if and
only if α is presented as input. This is closely related to a password verification
system.

The idea of using random oracles for obfuscation was originally motivated by
the hope that, given access to such an idealized building block, it would be fea-
sible to obfuscate some functionalities. However, Goldwasser and Rothblum [81]
presented a strong negative result for obfuscation in the random oracle model.
They showed that the existence of such idealized boxes, allows the construction
of a natural class of functions that are impossible to obfuscate. Note that the
impossibility results presented in [6, 76] extend to the random oracle model.

Obfuscation in the standard model

However, in practice (programmable) random oracles are difficult to realize. Un-
der cryptographic assumptions, it is known how to obfuscate point functions

94 CHAPTER 4. A THEORETICAL MODEL FOR WBC

without a random oracle (in the standard model). Canetti [34] showed how to
obfuscate point functions (even under a strong auxiliary input definition), using a
strong variant of the Decisional Diffie-Hellman assumption. Wee [186] presented
a point function obfuscator based on the existence of one-way permutations that
are hard to invert in a very strong sense. Their results apply to a weakened
predicate-based notion of obfuscation, a relaxation on Definition 6 in allowing
the size of S to depend on ε, where ε(n) = neg(n). Wee also presented a con-
struction for obfuscating point functions with multi-bit output. These are point
functions fα,β that evaluate to β on input α, and to 0 on any other input.

However, Canetti and Dakdouk [35] uncovered some weaknesses in Wee’s
definition. One weakness is that the definition does not provide any security
guarantee even under very weak forms of composition. Canetti and Dakdouk
augmented this concept and introduced the concept of digital lockers and con-
structed a connection with symmetric encryption as follows: to encrypt a message
m using a key k, simply output an obfuscation Fk,m. We elaborated on this work
to construct an asymmetric primitive and improve the bounds related to a con-
ditional adversary; i.e., an adversary limited in terms of number of queries to a
random oracle [65]. Similar relations and bounds were discovered by Yao and
Yin [197], within the context of key derivation functions [114]. A generalization
of one-way functions can be found in the work of Dodis and Smith [61] who show
how to obfuscate a proximity function.

Improved models

Most of the obfuscation definitions presented above, are either too weak for or
incompatible with cryptographic applications, have been shown impossible to
achieve, or both. Hohenberger et al. [93] and Hofheinz et al. [91] present new
definitions which have a potential for interesting positive results. On the one
hand, the new definitions need to allow the obfuscation of point functions (non-
learnable functions), yet at the same time should be strong enough to achieve
meaningful results (e.g., turn a symmetric encryption scheme into an asymmetric
encryption scheme).

To address this issue, Hohenberger et al. introduce the notion of average-case
secure obfuscation, based on a distinguisher-based definition that allows families
of circuits to be probabilistic. Their goal is to capture a similar definition as our
Definition 3, and as such, they note that the predicate-based definition cannot
guarantee security when obfuscated programs are used in cryptographic settings.
Hohenberger et al. present a probabilistic re-encryption functionality that can be
securely obfuscated according to this new definition.

Similarly, Hofheinz et al. present another variant of a distinguisher-based def-
inition. The deviation is that they consider probabilistic functions and select the

4.2. CODE OBFUSCATION 95

function to be obfuscated according to a distribution. Their new notion is coined
average obfuscation. The goal is to consider obfuscations for specific applica-
tions, and they demonstrated the obfuscation of an IND-CPA secure symmetric
encryption scheme that results into a IND-CPA secure asymmetric scheme. Sim-
ilar results hold for the obfuscation of MAC algorithms into digital signature
schemes. Note that this result does not apply to IND-CCA secure schemes!

Obviously, the impossibility results by Barak et al. [6] apply to these weakened
(but still strong) notions.

Other classes

Other work on obfuscation includes Ostrovsky and Skeith [143], who consider a
notion of public-key obfuscation applied to keyword search. Such an obfuscator
does not maintain the functionality of a program, but rather ensures that the
outputs of a public-key obfuscated program are encryptions of the original pro-
gram’s output. A similar variation was considered by Adida and Wikström [2]
with their definition of public mixing. These deviate from the original notion
of obfuscation in which functionality needs to be retained. A similar strategy
is conceived in Herzberg et al. [89], in their construction for a remote program
execution model, where the output of a virtual machine is an encrypted authen-
ticated output corresponding to some program and input that are both delivered
(in encrypted form) to a virtual machine (see also Sect. 5.4.3).

4.2.4 Conclusion

Several definitions of obfuscation have been proposed. They differ in their for-
mulation of the “virtual black-box property” (predicate-based vs. distinguisher-
based), and the functionality description (exact vs. approximate functionality).
Also, average case definitions have been proposed, which capture that the def-
initions should hold for a randomly selected function of the family (according
to some distribution), inspired by a random key selection to instantiate crypto-
graphic primitives.

A brief overview of the main results on theoretical obfuscation is presented in
Table 4.1. Note that only the main results of a selection of papers are presented.

Although many definitions of obfuscation have been proposed in the literature,
none of them is accepted as the default one. One of the problems is as follows:
the distinguisher-based definition is too strong in practice to yield any results [93,
186], since deterministic functions can only satisfy the obfuscation definition when
they are learnable. This rules out an obfuscator satisfying the distinguisher-based
definition for most interesting (deterministic) function families such as pseudo-
random functions, encryption and digital signature schemes. Hofheinz et al. [91]

96 CHAPTER 4. A THEORETICAL MODEL FOR WBC

Table 4.1. Overview of theoretical code obfuscation results
Weak notion Strong notion

+ - + -
Canetti [34]
Canetti et al. [37]

Barak et al. [6]
Goldwasser and

Lynn et al. [122] Kalai [76]
Wee [186] Wee [186]

Hohenberger et al. [93]
Hofheinz et al. [91]

extended this towards approximate obfuscators for similar types of families. On
the other hand, it has been pointed out in several papers (e.g., [6, 93]) that the
predicate-based definition is too weak to capture any meaningful result, since
useful non-black-box information might still leak (a concrete example of this is
Theorem 2).

Nevertheless, the impossibility results for obfuscation by Barak et al. [6] and
Goldwasser et al. [76] do not rule out the existence of an obfuscator for a specific
meaningful (i.e., non-trivial) natural class of functions. Specifically within the
context of white-box cryptography. It is conceivable that a definition of obfusca-
tion can be formulated falling somewhere in between the two extremes, which is
neither too weak nor too strong, and can be used for proving white-box security
of arbitrary cryptographic primitives. This will be our objective in the remainder
of this chapter.

4.3 Security Notions

A major area of study in cryptology involves formal security models to assess
the security of cryptographic primitives. Formal security models specify how
an adversary can interact with (legitimate users of) a cryptosystem, and what
should be achieved in order to break the cryptosystem. We refer to Dent [55] for
an overview of models in provable security, and their respective issues.

We follow the basic principle of various “game-based” approaches [9, 11, 78,
79], where an attack is captured using an interactive game with an adversary. A
challenger generates all keys in the model, and may respond to queries from the
adversary. The game terminates when the adversary terminates (with polynomial
time), and a cryptographic primitive is said to be secure (under the specified
security notion), when the probability of success (i.e., the adversary meets the

4.3. SECURITY NOTIONS 97

conditions specified to break the system) is small. A Security Notion (SN) is a
formal description of the security desired from a cryptographic scheme [9, 11], and
defines what capabilities the attacker is given and what constitutes a successful
attack. Security notions for many types of cryptographic primitives have been
proposed, including digital signatures [80], asymmetric encryption schemes [153],
and symmetric encryption schemes [8].

For convenience, we make the following assumptions: (1) a security notion
is specific to a cryptographic scheme (thus, IND-CPA-AES, and IND-CPA-DES
are two different SNs), (2) all interactions with the adversary is done via oracle
queries made by the adversary.

Semantic security

A widely accepted notion of security for asymmetric encryption schemes is seman-
tic security. For a (probabilistic) encryption scheme to be semantically secure, it
must be infeasible for a computationally bounded adversary to derive additional
information about a plaintext, when given the corresponding ciphertext (and
the public key K). This notion was introduced by Goldwasser and Micali [78].
Subsequently, Goldwasser and Micali [79] showed that semantic security follows
from ciphertext indistinguishability. This allowed the use of the IND-CPA secu-
rity notion as a more commonly used notion to assess the security of asymmetric
encryption schemes.

The IND-CPA security notion for a public-key cryptosystem defines that the
adversary has access to the encryption oracle and needs to guess a secret bit.
Hence, a public-key cryptosystem is defined to be IND-CPA secure if no adver-
sary with access to an encryption oracle can pick two messages, of equal length,
such that it can distinguish (still having encryption-oracle access) between the
encryptions of the two. This notion is similar to the find-then-guess CPA (FTG-
CPA) security by Bellare et al. [8] (for symmetric ciphers).

Definition 9 (IND-CPA security) The IND-CPA game is defined by the fol-
lowing steps:

• Setup. Challenger C sends the public key K to the adversary A, and
privately chooses a bit b← {0, 1}.

• Challenge. A computes two equal length messages (m0,m1) and sends
these to C, who responds with the encryption c∗ = εK(mb).

• Output. Within a polynomial-complexity time, A outputs a ∈ {0, 1}.
Then,

AdvIND-CPA
A =

∣∣∣∣Pr[a = b]− 1
2

∣∣∣∣ .

98 CHAPTER 4. A THEORETICAL MODEL FOR WBC

A scheme is said to be ε-IND-CPA secure if AdvIND-CPA
A ≤ ε (win condition).

Another commonly used security notion is IND-CCA [153], similar to the
FTG-CCA in [8] for symmetric schemes. It differs from IND-CPA, in that an
adversary is given access to a decryption oracle (prior to receiving the challenge).
This is often denoted as non-adaptive CCA. In adaptive CCA (IND-CCA2), the
adversary is allowed access to the decryption oracle also after receiving the chal-
lenge. Obviously, access to the decryption oracle is limited in the sense that
decryption of the challenged ciphertext is not allowed.

Left-or-right security

To analyze the security of symmetric key primitives, Goldreich [71] suggested to
treat this similarly as in the asymmetric setting. However, to model for example
IND-CCA2 attacks, one must provide the adversary a means to encrypt, while
this is by definition available in the asymmetric setting (by means of the public
key K). This presence of an encryption oracle is one of the reasons why notions
of symmetric encryption cannot be treated as a special case of asymmetric en-
cryption. In [8], Bellare et al. suggested four notions of security for symmetric
encryption. We refer to [8] for a formalization of, and a comparison between the
four notions of security.

Let us present the notion of “left-or-right security”. This notion specifies two
different games, Game 1, and Game 2, as depicted in Fig. 4.2. Both games are
initiated with the same randomly chosen key k ← K, which remains fixed for
the duration of the game. On input (m1,m2), Game i responds with εk(mi), the
probabilistic encryption of mi under key k, with random seed r. The goal of the
adversary is to distinguish the oracles.

Game 2

m1 m2
r

εk(m2, c)

Game 1

m1 m2
r

εk(m1, c)

Figure 4.2. Left-or-right security

4.4. OUR CONTRIBUTION 99

Definition 10 (Left-or-Right security [8]) A (probabilistic) symmetric en-
cryption scheme (ε,D,K) is said to be (t, q, u; ε)-secure in the left-or-right sense,
if for any adversary A that runs in at most time t and asks at most q queries for
a total of at most µ bits, holds that

AdvlrA =
∣∣∣∣

Pr
[
k ← K : Aεk(left(.,.)) = 1

]−
Pr

[
k ← K : Aεk(right(.,.)) = 1

]
∣∣∣∣ ≤ ε ,

where the probabilities are taken over the coin tosses of A, εk, and over the
distribution of K.

White-box security

The (black-box) security of any primitive is captured using a security notion
where the adversary is given black-box access to some functionality (e.g., encryp-
tion), and a white-box implementation can be required to satisfy that security
notion when the adversary is given access to a white-boxed version of the func-
tionality. We would like an obfuscation to ensure that all the security notions are
satisfied in the white-box variant when they are satisfied in the black-box variant.
However, from prior work, it is not fully clear if any of the existing definitions of
obfuscation can be used to achieve such a goal. Hence, a natural question is:

Given an obfuscator satisfying the virtual black-box property for a program P,
and some security notion that is satisfied when the adversary is given black-box
access to P, can it be proved that the security notion remains satisfied when the
adversary is also given access to the obfuscated program O(P)?

4.4 Our Contribution

The contributions in this chapter are two-fold. First, in Sect. 4.7, we develop
the foundations of white-box cryptography by formalizing the notion of security
that cryptographic primitives must satisfy. In order to do this, we define the
white-box property (WBP) which captures the security of an obfuscated program
with respect to some given security notion. If satisfied, the WBP implies that
the obfuscation does not leak any useful information under that security notion,
even though it may leak useful information under a different security notion.

Second, in Sect. 4.8, we present some (im)possibility results about the reduc-
tion between WBP and obfuscation and answer the above natural question in
the negative – we show that under any definition of obfuscation, the answer is, in
general, no. In other words, we show that for most programs P , there cannot ex-
ist an obfuscator that satisfies the WBP for all security notions in which P might
be present. We also show impossibility results for the composition of white-box

100 CHAPTER 4. A THEORETICAL MODEL FOR WBC

implementations. On the positive side, we show that under reasonable com-
putational assumptions, there exists an obfuscator that satisfies the WBP with
respect to a meaningful security notion for a meaningful cryptographic primitive.
We also show that there exist obfuscators that satisfy the WBP with respect to
every security notion for a (contrived) non-learnable, but approximate learnable
family.

To understand these results, it is important to note that obfuscation and
white-box cryptography are two distinct concepts and should not be confused
with each other. The soundness of obfuscation is captured by a Virtual Black-
Box Property, which is defined with respect to a program alone [6, 76, 91, 93, 186],
while WBC is captured using a WBP, which is always defined with respect to a
program and a security notion.

4.5 Preliminaries

The following definition settles some terminology that we need to formalize our
notion of white-box cryptography.

Definition 11 In the following, unless otherwise stated, a TM is assumed to
have one input tape.

1. (Equality of TMs.) X,Y ∈ TM are equal (written X = Y) if ∀a : X(a) =
Y (a).

2. (Polynomial TM.) X ∈ TM is a Polynomial TM (PTM) if there exists
p ∈ P such that ∀a : X(a) halts in at most p(|a|) steps. Let PTM be the set
of al PTMs.

3. (PPT Algorithms.) A PPT algorithm (such as an adversary or an ob-
fuscator) is a PTM with an unknown source of randomness input via an
additional random tape. We denote the set of PPT algorithms by PPT. The
running time of a PPT algorithm must be polynomial in the length of the
known inputs.

4. (TM Family.) A TM Family (TMF) is a TM having two input tapes:
a key tape and a standard input tape. We denote by TMF the set of all
TMFs. Let Q ∈ TMF. Then:

(a) The symbol Q[q] indicates that the key tape of Q contains the string q.

(b) We denote by KQ the key-space (valid strings for the key tape) of Q.

(c) Let q ∈ KQ. In our model, the input-space (valid strings for the stan-
dard input tape) of Q[q] is fully defined by the parameter |q|. We

4.5. PRELIMINARIES 101

denote this space by IQ,|q|. Furthermore there must exist a polynomial
PQ ∈ P such that:

∀q ∈ KQ, ∀x ∈ IQ,|q| : |x| = PQ(|q|) .

All TMFs considered in this work are deterministic. That is, for any
(Q, q) ∈ TMF × KQ the output of Q[q] is fully defined by the input.
For modeling probabilistic algorithms using TMFs we will assume that
randomness is supplied as part of q and/or the input.

5. (Polynomial TM Family.) Q ∈ TMF is a Polynomial TMF (PTMF) if
there exists p ∈ P such that ∀q ∈ KQ, ∀a ∈ IQ,|q| : Q[q](a) halts in at most
p(|q|) steps. We denote the set of all PTMFs by PTMF.

6. (Learnable Family.) Q ∈ TMF is learnable if ∃(L, p) ∈ PPT× P s.t.

∀k : Pr
[
q

R← {0, 1}k ∩ KQ;X ← LQ[q](1|q|, Q) : X = Q[q]
]
≥ 1/p(k)

(the probability taken over the coin tosses of L) and:

(a) ∀a : if Q[q](a) halts after t steps then X(a) halts after at most p(t)
steps.2

(b) |X| ≤ p(|q|).
Informally, a function Q is learnable when, by means of a limited number
of queries to its functionality, an equivalent function X can be constructed.
L is called the learner for Q, and LF is the set of all learnable families.

7. (Approximate Learnable Family.) Q ∈ TMF is approximate learnable
if ∃(L, p) ∈ PPT× P s.t.

∀k : Pr
[
q

R← {0, 1}k ∩ KQ; a R← IQ,k;X ← LQ[q](1|q|, Q) :

X(a) = Q[q](a)
]
≥ 1/p(k)

(the probability taken over the coin tosses of L), and:

(a) ∀a : if Q[q](a) halts after t steps then X(a) halts after at most p(t)
steps.

(b) |X| ≤ p(|q|).
2This condition is to prevent an exponential time learner from becoming polynomial time

by hard-wiring the learning algorithm and queries/responses inside X.

102 CHAPTER 4. A THEORETICAL MODEL FOR WBC

An approximate learnable family is a relaxed notion of a learnable family,
in the sense that the equality should only hold for a randomly selected input
a, not for the entire input space. For example, point functions are an
approximate learnable family, but not a learnable family.

We denote the set of all approximate learnable families by ALF.

Lemma 1 captures that if two families behave identically in a black-box way,
and the corresponding keys are of equivalent size, then both families are either
learnable or non-learnable. This lemma will be used in the proofs of our results,
such as Theorem 4.

Lemma 1 If Q1 ∈ PTMF\(A)LF, then the following holds:

[
∃(Q2, p) ∈ PTMF× P, ∀q1 ∈ KQ1 ,∃q2 ∈ KQ2 :

Q1[q1] = Q2[q2] ∧ |q2| ≤ p(|q1|)
]
→ Q2 /∈ (A)LF.

The symbol (A) indicates that A is optional in the above statement.

Proof: Assume for contradiction that for any given Q1 ∈ PTMF that is not
learnable, there exists some (Q2, p) ∈ PTMF× poly such that the left-hand side
of the above implication is satisfied but the right-hand side is not. Let L1 and
L2 be the learners for Q1 and Q2 respectively. L1 runs L2 using its own oracle
to answer L2’s queries. If Q2 is learnable, then L2 will output X2 = Q2[q2]
with non-negligible (in |q2|) probability in a polynomial (of |q2|) number of steps,
which is a polynomial function of |q1| by assumption, a contradiction. ¤

4.6 Obfuscators

Informally, an obfuscator O is a probabilistic compiler that transforms a program
P into O(P), a functionally equivalent implementation of P which hides certain
characteristics of P .

In this work, we only consider obfuscation of PTMFs with a uniformly se-
lected key, and not of a single PTM. Denote by Q a family of cryptographic
primitives (a PTMF), for which the description is publicly known. Denote by
Q[q] a primitive instantiated with secret key q selected from some distribution on
the key-space IQ,|q|. As is common in cryptography, we define the functionality
of the obfuscator using a correctness property and the security using a soundness
property.

4.6. OBFUSCATORS 103

4.6.1 Obfuscator (Correctness)

Definition 12 A randomized algorithm O : PTMF × {0, 1}∗ 7→ TM is an (ef-
ficient) obfuscator for Q ∈ PTMF if it satisfies correctness defined using the
following properties:

1. Approximate functionality:

∀q ∈ KQ, ∀a ∈ IQ,|q| : Pr [O(Q, q)(a) 6= Q[q](a)] ≤ neg(|q|) ,

the probability taken over the coin tosses of O.

2. Polynomial slowdown and expansion: There exists p ∈ P s.t.

∀q ∈ KQ : |O(Q, q)| ≤ p(|q|) ,

and ∀a, if Q[q](a) halts in t steps then O(Q, q)(a) halts in at most p(t)
steps.

For now, we consider the functionality of Q only in a deterministic sense and
do not explicitly consider the notion of obfuscation of “probabilistic functions”
(used, for example, in [91, 93]). However, our negative results (presented in
Sect. 4.8.1) also apply to probabilistic functions using an appropriately defined
notion of probabilistic PTMFs (PPTMFs) (and a corresponding notion of ap-
proximate functionality for PPTMFs). This aspect will be further discussed in
Sect. 4.9.

4.6.2 Obfuscator (Soundness)

Over recent years, several definitions of soundness have been proposed, all based
on some sort of Virtual Black-Box Property (VBBP) [6, 91, 93, 122, 186] (see
Sect. 4.2). Let Q ∈ PTMF and let q ∈ {0, 1}∗. Loosely speaking, the VBBP
requires that whatever information about q a PPT adversary computes given
the obfuscation O(Q, q), a PPT simulator could also have computed using only
black-box access to Q[q]. All existing notions of VBBP can be classified into
one of two broad categories. At one extreme (the weakest) are the predicate-
based definitions, where the adversary and the simulator are required to compute
some predicate of q. At the other extreme (the strongest) are definitions based
on computational indistinguishability, where the simulator is required to output
something that is indistinguishable from O(Q, q). We define these two notions
below. Our definitions are based on those of [76], where an auxiliary input is also
considered.

Definition 13 An obfuscator O for Q ∈ PTMF satisfies soundness for Q if at
least one of the properties given below is satisfied.

104 CHAPTER 4. A THEORETICAL MODEL FOR WBC

1. Predicate Virtual black-box property (PVBBP): Let π be any effi-
ciently verifiable predicate on KQ. O satisfies PVBBP for Q if

∀(A, p) ∈ PPT× P, ∃(S, k′) ∈ PPT× N, ∀k > k′ : Advpvbbp
A,S,O,Q(k) ≤ negl(k) ,

where the advantage of the adversary Advpvbbp
A,S,O,Q(k) is defined as

max
π

max
z∈{0,1}p(k)

∣∣∣∣∣
Pr[q R← {0, 1}k ∩ KQ : AQ[q](1k,O(Q, q), z) = π(q)]
−Pr[q R← {0, 1}k ∩ KQ : SQ[q](1k, z) = π(q)]

∣∣∣∣∣ ,

the probability taken over the coin tosses of O, A, S.3

2. Computational Indistinguishability (IND): O satisfies IND for Q if

∀(A, p) ∈ PPT× P, ∃(S, k′) ∈ PPT× N, ∀k > k′ : Advind
A,S,O,Q(k) ≤ negl(k) ,

where the advantage of the adversary Advind
A,S,O,Q(k) is defined as

max
z∈{0,1}p(k)

∣∣∣∣∣
Pr[q R← {0, 1}k ∩ KQ : AQ[q](1k,O(Q, q), z) = 1]

−Pr[q R← {0, 1}k ∩ KQ : AQ[q](1k, SQ[q](1k, z), z) = 1]

∣∣∣∣∣ ,

the probability taken over the coin tosses of O, A, S.

Depending on the property satisfied, we call it IND-soundness or PVBBP-
soundness (note that the former implies the latter).

It has been noted (informally) in several papers (e.g., [6, 93]) that the PVBBP
is too weak for practical purposes. Furthermore, it has been noted that the IND-
soundness is too strong to be satisfied in practice [93, 186]. This can be captured
in a formal way as follows.

Proposition 2 If there exists an obfuscator satisfying IND-soundness for some
Q ∈ PTMF then Q ∈ ALF.

This result does not hold if the definition of approximate functionality in
correctness is extended to probabilistic functions. See Sect. 4.9 for details.

3The definition of PVBBP given here is slightly weaker than the one used in [6] because
they require this property to hold for every q, while we require it to hold only for uniformly
selected q.

4.7. WHITE-BOX CRYPTOGRAPHY 105

4.7 White-Box Cryptography

In this section, we formalize the notion of WBC by defining a white-box prop-
erty (WBP). A key concept in our model are security notions, which capture
the capabilities of the adversary, and what constitutes a successful attack (see
Sect. 4.3). Definition 14 presents a formal definition of a security notion.

Definition 14 A Security Notion (SN) is a 5-tuple (n, pin,Q, Extr, Win) ∈
N× P× PTMFn × PTM× PTM such that:

• Q = (Q1, Q2, . . . , Qn) ∈ PTMFn is an array of (the descriptions of) n
PTMFs.

• Extr and Win are (the description of) PTMs of the type {0, 1}pin(k) 7→
×n

i=1KQi and {0, 1}∗ 7→ {0, 1} respectively.

Denote by SN the set of all security notions. For any sn = (n, pin,Q, Extr, Win) ∈
SN and any Q ∈ PTMF, we say Q ∈ sn if Q ∈ Q.

The Win predicate captures the requirements and objectives of the security
notions, in the sense that it verifies if the adversary did not exceed his capabilities,
and has achieved the objectives. The Extr function describes the generation of
the keys by the challenger. In the following sections, we introduce the black-box
game, and the white-box game, which describe the games that the challenger
and the adversary play, in respectively the black-box attack context and the
white-box attack context.

4.7.1 Black-Box Game

Definition 15 describes the black-box game, which captures the success proba-
bility of an adversary A to analyze a set of cryptographic primitives Q under a
security notion sn ∈ SN when given oracle access to these primitives.

Definition 15 A Black-box Game is a TM describing an interactive protocol
with the adversary A ∈ PPT. It has a standard structure given below. It takes
as input a tuple (1k, sn, r), where sn = (n, pin,Q, Extr,Win) ∈ SN is a secu-
rity notion, and r ∈ {0, 1}pin(k) is a string (representing randomness supplied
to the game). It outputs 0 or 1. The black-box game is given in Algorithm 5
(GameBBA).

Queries is a set representing oracle queries made by A during the game. Each
element j of this set is an ordered tuple of the type

(tj , ij , inj ,outj) ∈ N× {1, 2, . . . , n} × {0, 1}∗ × {0, 1}∗,

106 CHAPTER 4. A THEORETICAL MODEL FOR WBC

Algorithm 5: GameBBA(1k, sn, r)

input : 1k, sn, r
Parse sn as (n, pin,Q,Extr, Win)
Parse Q as (Q1, Q2, . . . , Qn)

/* extract keys for each family */
(q1, q2, . . . qn)← Extr(r)

/* interact with adversary */

s← AQ1[q1],Q2[q2],...,Qn[qn](1k, sn)
/* decide if adversary won */

result←Win(r,Queries, s)
output: result

indicating respectively, the time, oracle number, input, and the output of each
query.4 The game has two important rules: (1) at any instant A can query
at most one oracle, and (2) each query by the adversary takes one unit time
irrespective of the amount of computation involved. Denote by AdvBBsn

A (k) the
black-box advantage of an adversary A, defined as

Pr
[
r

R← {0, 1}pin(k) : GameBBA(1k, sn, r) = 1
]

,

the probability taken over the coin tosses of A.

An example game for the IND-CCA2 security notion

Let E = (G,E, D) be a symmetric encryption scheme. The key generation al-
gorithm G takes in as input the security parameter (1k) and a k-bit random
string. It outputs a k-bit symmetric key K. As an example, we describe the
Indistinguishability under Adaptive Chosen Ciphertext Attack (IND-CCA2) of E
using security notion ind-cca2-E = (3, pin,Q, Extr, Win), with pin(k) = 2k + 1
and Q = (E,D,C) in Algorithm 6).

E ∈obf ind-cca2-E since the Win predicate does not consider the queries made
to the encryption oracle E[K].

Discussion on Obfuscatability

Observe the IND-CCA2 game described in Algorithm 6. The adversary has
oracle access to the encryption and decryption functionality E[K] and D[K]

4Note that the last element of this tuple (the output) is redundant because it is efficiently
computable from the input alone. However, including it makes some definitions simpler (for
instance IND-CCA2 security).

4.7. WHITE-BOX CRYPTOGRAPHY 107

Algorithm 6: Security Notion ind-cca2-E
input : 1k, r
Function E[K](Input 〈α, m〉) {

output E(K,α, m)
}
Function D[K](Input c) {

output D(K, c)
}
Function C[〈b,K, β〉](Input 〈m0,m1〉) {

if (|m0| = |m1|) then output E(K, β, mb) else output 0
}
Function Extr(Input r) {

parse r as 〈γ, β, b〉;
K ← G(1|γ|, γ);
output K, K, 〈b,K, β〉

}
Function Win(Input (r,Queries, s)) {

Parse r as (q, x, a);
if ((At most one query to C[〈b,K, β〉]) AND No query to D[K] on

output of C[〈b,K, β〉] after query to C[〈b,K, β〉]) AND
(s = b)) then Output: 1

else Output: 0
}

respectively, with K the instantiated secret key. The adversary wins if he can
guess the bit b correctly, without querying D[K] with the challenge ciphertext
mb.

Then, D[K] cannot be obfuscated, since this would render the correspond-
ing asymmetric scheme E insecure under IND-CCA2: once the adversary has
obtained an executable implementation of D[K], the challenger cannot prevent
the adversary to query the decryption function on the challenge ciphertext (the
adversary does not even have to ‘break’ any obfuscation in order to do this).
On the other hand E[K] is a perfect candidate for obfuscation since the winning
condition does not depend on what was queried to E[K].

We introduce the concept of ‘obfuscatability’ in Definition 16 to capture when
a cryptographic primitive (i.e., family) is a suitable candidate for obfuscation.
Intuitively, Definition 16 says that a family Qi is a possible candidate for obfus-
cation (within the context of a security notion), when the winning condition is
not affected by the number of queries to the functionality of Qi.

108 CHAPTER 4. A THEORETICAL MODEL FOR WBC

Definition 16 For any sn ∈ SN and Qi ∈ sn, the family Q is denoted Obfus-
catable if the output of Win is invariant with respect to the entries of Queries
corresponding to oracle Qi[qi] in a black-box game. Formally, for any PTMF
Qi ∈ sn, define Queriesi to be the following set:

{(tj , ij , inj ,outj)|(tj , ij , inj ,outj) ∈ Queries ∧ ij 6= i}
Qi is obfuscatable in sn (written Qi ∈obf sn) if

∀r,Queries, s : Win(r,Queries, s) = Win(r,Queriesi, s).

Note: If Q /∈ sn then Q /∈obf sn.

We claim that a meaningful notion of white-box security cannot be obtained
for a family under a security notion in which it is not obfuscatable. For instance,
white-boxing the decryption function of a symmetric encryption scheme, or the
‘signing’ function of a MAC scheme under any standard security notion is not
meaningful (however, it is possible to construct specialized/contrived security
notions in which this becomes meaningful).

4.7.2 White-Box Game

In Definition 17, we extend the black-box game to a white-box game, which cap-
tures the success probability of an adversary A to analyze a set of cryptographic
primitives Q under a security notion sn ∈ SN when given oracle access to these
primitives, and given full access to the primitive Qi that is obfuscated by O.

Definition 17 A White-Box Game is defined for the tuple (A,O, Qi) by ex-
tending the black-box game. For a security notion sn = (n, pin,Q, Extr, Win) ∈
SN with (Q = (Q1, Q2, . . . , Qn), assume that Qi ∈obf sn (1 ≤ i ≤ n) and that
O ∈ PPT is an obfuscator for Qi. The white-box game is given in Algorithm 7
(GameWBA,O,Qi).

Denote by AdvWBsn
A,O,Qi

(k), the advantage of an adversary in the white-box
game, defined as

Pr
[
r

R← {0, 1}pin(k) : GameWBA,O,Qi(1
k, sn, r) = 1

]
,

the probability taken over the coin tosses of A.

Definition 18 Let O be an obfuscator for Q ∈ PTMF and let sn ∈ SN such that
Q ∈ sn. The White-box Advantage (WBA) of O for (Q, sn), AdvWBsn

O,Q(k),
is defined as

∣∣∣∣ max
A∈PPT

AdvWBsn
A,O,Q(k)− max

A∈PPT
AdvBBsn

A (k)
∣∣∣∣ .

4.7. WHITE-BOX CRYPTOGRAPHY 109

Algorithm 7: GameWBA,O,Qi
(1k, sn, r)

input : 1k, sn, r
Parse sn as (n, pin,Q, Extr,Win)
Parse Q as (Q1, Q2, . . . , Qn)

/* extract keys for each family */
(q1, q2, . . . qn)← Extr(r)

/* interact with adversary */

s← AQ1[q1],Q2[q2],...,Qn[qn](1k, sn, i,O(Qi, qi))
/* decide if adversary won */

result←Win(r,Queries, s)
output: result

The WBA serves as a measure of useful information leakage by an obfuscation.

The term ‘useful information’ within the context of the security notion is any
information that aids the adversary in conducting a successful attack.

Definition 19 Let O be an obfuscator for Q ∈ PTMF and let sn ∈ SN such that
Q ∈ sn. O satisfies the White-box Property (WBP) for (Q, sn) if

AdvWBsn
O,Q(k) ≤ neg(|k|) .

This captures the notion of obfuscation, in the sense that the best adversary
in a white-box setting is not able to extract significantly more useful information
than the best adversary in a black-box setting.

Definition 20 Let O be an obfuscator for Q ∈ PTMF. O satisfies the Univer-
sal White-box Property (UWBP) for Q if for every sn ∈ SN with Q ∈obf sn,
O satisfies WBP for (Q, sn).

Definition 19 and 20 give us a formal, sensible meaning of what the objective
of white-box cryptography is. The WBP, if satisfied would imply that, given
a cryptographic primitive that is secure in the black-box sense, its white-box
implementation also remains secure with respect to the desired security notion.
In the next section, we investigate what can be achieved within the context of
our model.

110 CHAPTER 4. A THEORETICAL MODEL FOR WBC

4.8 (Im)possibility Results

In this section we give some useful relationships between obfuscators, WBP and
UWBP.

4.8.1 Negative Results

Barak et al. [6] gave several impossibility results on obfuscation, some of them
quite strong (for instance they present an unobfuscatable encryption scheme).
Our negative results are even stronger than theirs. To put our main negative
result in context with that of [6], we first mention their result using our notation.

Proposition 3 (Barak et al. [6]) There exists a pair (Q, sn) ∈ PTMF×SN with
Q ∈obf sn such that every obfuscator for Q fails to satisfy WBP for (Q, sn).

In other words, there cannot exist an obfuscator that satisfies UWBP for
every Q ∈ PTMF. However, their results do not rule out an obfuscator that
satisfies the UWBP for some useful family Q. We show that even this is not
possible unless Q is at least approximate learnable.

No UWBP for “Interesting” Families

Obfuscators that satisfy the UWBP for “interesting” families do not exist. That
is, in Theorem 2, we show that any non-approximately-learnable family, there
exists a security notion that cannot be satisfied when an adversary has white-
box access to the white-box implementation.

Theorem 2 For every family Q ∈ PTMF\ALF, there exists a (contrived) sn ∈
SN such that Q ∈obf sn but every obfuscator for Q fails to satisfy the WBP for
(Q, sn).

Proof: Let Q ∈ PTMF\ALF. Consider the security notion guess-x, defined as
(2, pin, (Q,Q1), Extr, Win) ∈ SN, with pin(k) = 2k + PQ(k), described in Algo-
rithm 8.

Observe that Q ∈obf guess-x. Since Q /∈ ALF, therefore by virtue of Defini-
tions 11.7 and 12.1, for sufficiently large k, the following inequalities are guaran-
teed to hold:

∀A ∈ PPT : 0 ≤ AdvBBguess-x
A (k) < α(k) ,

∃A ∈ PPT : 1 ≥ AdvWBguess-x
A,O,Q (k) ≥ 1− β(k) ,

where α, β are negligible functions. Hence, we have that

AdvWBguess-x
O,Q (k) > 1− α(k)− β(k) ,

4.8. (IM)POSSIBILITY RESULTS 111

Algorithm 8: Q1, Extr and Win for guess-x.
Function Q1[q1] (Input Y1) {

/* Assume: Y1 ∈ PTM */
Parse q1 as (q, x, a)
if (Y1(a) = Q[q](a)) then output x else output 0
/* Q is used as a black-box and let Q[q] halt in t steps */

/* Y1 is halted after p(t) steps for some (large) p ∈ P */

}
Function Extr(Input r) {

Parse r as (q, x, a)
/* Assume that q ∈ {0, 1}k, x ∈ {0, 1}k, and a ∈ {0, 1}PQ(k) */

/* Without loss of generality, we can assume that */
/* q ∈ KQ and a ∈ IQ,k */

set q1 ← (q, x, a)
output q, q1

}
Function Win(Input (r,Queries, s)) {

Parse r as (q, x, a)
if (s 6= x) ∨ (more than one query to Q1[q1]) then output 0 else
output 1

}

which is non-negligible in k. This proves the theorem. ¤

Intuitively, for a given non-approximately learnable family Q, the proof of
Theorem 2 constructs a special (non-learnable) family of functions Q1, and defines
a specific security notion. A member Q1[q1] of this family Q1 accepts as input a
function Y1, and will output its ‘secret’ (x) when Y1 and Q[q] are equivalent for
some input a. The security notion specifies that the adversary will win if he can
obtain this value x with at most one query to Q1[q1].

Since Q is a family of non-learnable functions, a black-box adversary has to
guess the value a correctly in order to construct a function that is equivalent to
Q[q] in a. Or the adversary has to guess the value x in order to win the game.
However, since x and a are randomly selected from a uniform distribution, a
black-box adversary has only negligible chance to win the game (black-box game).

An adversary that has the implementation of Q[q] on the other hand, can
pass this as an input string to the functionality of Q1[q1] in order to recover the
value of x (one query to Q1[q1] will suffice) and win the game (white-box game).
Hence, a white-box adversary has significant advantage to a black-box adversary
by having access to the implementation of Q[q], no matter how obfuscated.

112 CHAPTER 4. A THEORETICAL MODEL FOR WBC

Discussion on Impossibility Result

Our result is different from the impossibility result of Barak et al., in the sense
that for any family Q ∈ PTMF\ALF, we can construct a game (security notion)
in which Q[q] cannot be obfuscated. Therefore, this result directly applies to
‘useful’ families of functions such as pseudorandom functions, encryption schemes
and MAC algorithms. In contrast, Barak et al. construct a specific family Q ∈
PTMF\ALF for which no obfuscator can exist, thereby ruling out the existance
of a generic obfuscator. Hence our result is even stronger than theirs. The
underlying idea of using a function that leaks some secret x is similar.

Our result applies because the approximate functionality requirement for ob-
fuscators (Definition. 12) is defined for deterministic PTMFs only. Extended
definitions of probabilistic families can be considered (such as in [91, 93]), and a
similar result can be achieved. This aspect is discussed in Sect. 4.9.

Although we define ALF to be the set of families which can be approximately-
learned with a non-negligible advantage (which is quite broad), we note that the
above result can be further strengthened by narrowing down the definition of
ALF to only families that can be approximately-learned with an overwhelming
advantage.

Our next result deals with multiple obfuscations.

Simultaneous Obfuscation May Be Insecure

A desired property is the composition of obfuscations. When two implemen-
tations are securely obfuscated, one would desire that the combination of the
two remains secure, as this opens perspectives to many practical applications.
Wee [186] and Canetti et al. [35] have investigated this question for point func-
tions, while Lynn et al. [122] have found a negative answer to this question for
generic programs. In Definition 21, we capture the concept of composition within
the context of white-box cryptography. In Theorem 3, we show that simultaneous
white-boxing of two families may be insecure even if white-boxing each family is
secure.

Definition 21 (Multiple obfuscations) Let sn ∈ SN be a security notion and let
Qi, Qj ∈obf sn for some 1 ≤ i, j ≤ n. Let O be an obfuscator for Qi, Qj. We ex-
tend the white-box game GameWBsn

A,O,Qi
of Definition 17 by defining a new game

GameWB1sn
A,O,Qi,Qj

in which A gets as input the tuple
(1k, sn, i, j,O(Qi, qi),O(Qj , qj)). Denote the advantage of an adversary for this
new game as AdvWBsn

A,O,Qi,Qj
(k), defined as

Pr
[
r

R← {0, 1}pin(k) : GameWB1sn
A,O,Qi,Qj

(1k, r) = 1
]

,

4.8. (IM)POSSIBILITY RESULTS 113

the probability taken over the coin tosses of A,O. The obfuscator O satisfies
WBP for ((Qi, Qj), sn) if

∣∣∣∣ max
A∈PPT

AdvWBsn
A,O,Qi,Qj

(k)− max
A∈PPT

AdvBBsn
A (k)

∣∣∣∣

is negligible in |k|.

Theorem 3 Let Qi, Qj ∈ PTMF\ALF. Then there exists a sn ∈ SN with
Qi, Qj ∈obf sn such that even if there exists an obfuscator for Q1, Q2 satisfy-
ing WBP for (Qi, sn) and (Qj , sn), every obfuscator fails to satisfy WBP for
((Qi, Qj), sn)

The proof is similar to the proof of Theorem 2.

4.8.2 Positive Results

Although the above results rule out the possibility of obfuscators satisfying
UWBP for most non-trivial families, they do not imply that a meaningful defini-
tion of security for white-box cryptography cannot exist. In fact, any asymmetric
encryption scheme can be considered as a white-boxed version of the correspond-
ing symmetric scheme (where the encryption key is also secret). We use this
observation as a starting point of our first positive result. A similar observation
was used in the positive results of [91].

WBP for “Useful” Families

In Theorem 4, we formally state that there exists a non-approximately learnable
family, and an obfuscator that satisfies the WBP for that family for a useful
security notion.

Theorem 4 Under reasonable computation assumptions, there exists a tuple
(O, Q, sn) ∈ PPT × PTMF\ALF × SN such that Q ∈obf sn and O is an ob-
fuscator satisfying WBP for (Q, sn).

Before we prove this theorem, we describe a primitive known as bilinear pair-
ing in Definition 22, which we require for the construction in the proof of Theo-
rem 4.

Definition 22 (Bilinear pairing) Let G1 and G2 be two cyclic multiplicative
groups both of prime order w such that computing discrete logarithms in G1 and
G2 is intractable. A bilinear pairing is a map ê : G1×G1 7→ G2 that satisfies the
following properties [24, 25, 27]:

114 CHAPTER 4. A THEORETICAL MODEL FOR WBC

1. Bi-linearity: ê(ax, by) = ê(a, b)xy ∀a, b ∈ G1 and x, y ∈ Zw.

2. Non-degeneracy: If g is a generator of G1 then ê(g, g) is a generator of G2.

3. Computability: The map ê is efficiently computable.

Proof: We prove Theorem 4 by construction of an obfuscatable family Q. We
will use an encryption scheme based on the BF-IBE scheme [24].
Define a symmetric encryption scheme E = (G, E, D) as follows.

1. Key Generation (G): Let ê : G1×G1 7→ G2 be a bilinear pairing over cyclic
multiplicative groups as defined above (such maps are known to exist). Let
|G1| = |G2| = w (prime) such that blog2(w)c = l. Pick random g

R← G1\{1}
and define H : G2 7→ {0, 1}l to be a hash function. Pick x

R← G1 and define
K = 〈ê, G1, G2, w, g,H, x〉. The encryption/decryption key is K.

2. Encryption (E): Parse K as 〈ê, G1, G2, w, g,H, x〉. Let m ∈ {0, 1}l be
a message and α ∈ Zw be a random string. The encryption family E is
defined as

E[K] : {0, 1}l × Zw 7→ {0, 1}l ×G1

(m,α) 7→ (H(ê(xα, g))⊕m, gα) .

3. Decryption (D): Parse K as 〈ê, G1, G2, w, g,H, x〉. The decryption family
D is defined as

D[K] : {0, 1}l ×G1 7→ {0, 1}l
(c1, c2) 7→ H(ê(c2, x))⊕ c1 .

It can be verified that D[K](E[K](m,α)) = m for valid values of (m,α). The
scheme can be proven to be CPA secure if H is a random oracle and w is suffi-
ciently large. We construct an obfuscation of the E[K] oracle that converts E into
a CPA secure asymmetric encryption scheme under a computational assumption.

We define the obfuscator O as follows: the input is (E, K).

1. Parse K as 〈ê, G1, G2, w, g,H, x〉. Set y ← ê(x, g).

2. Set K ′ ← 〈ê, G1, G2, w, g,H, y〉 and define family F with key K ′ as:

F [K ′] : {0, 1}l × Zw 7→ {0, 1}l ×G1

(m,α) 7→ (H(yα)⊕m, gα) .

3. Output F [K ′].

4.8. (IM)POSSIBILITY RESULTS 115

Claim 1 O is an efficient obfuscator for E satisfying WBP for (E, sn), where
sn := “IND-CPA security of E”, assuming that the bilinear Diffie-Hellman as-
sumption [24] holds in (G1, G2) and H is a random oracle.

Proof: The IND-CPA security notion captures an adversary that can only per-
form queries to an encryption oracle with arbitrary plaintexts. The objective is
to obtain the plaintext corresponding to a challenge ciphertext. See Algorithm 6
for the IND-CCA2 security notion. The IND-CPA security notion is a restricted
version of this where the family D is absent.

First note that the obfuscator satisfies correctness for E because F [K ′] =
E[K]. The proof of the above claim follows from the security of the BasicPUB
encryption scheme of [24]. ¤

Claim 2 If H is a one-way then E ∈ PTMF\ALF.
Proof: Clearly, F ∈ PTMF and the following holds:

∃p ∈ P, ∀K ∈ KE , ∃K ′ ∈ KF :

F [K ′] = E[K] ∧ |K ′| = |K|+ p(|K|).
By virtue of Lemma 1, in order to prove that E /∈ ALF, it is sufficient to prove
that F /∈ ALF. Finally, it is trivial to prove that if H is a one-way function then
F /∈ ALF.

¤
This completes the proof of Theorem 4. ¤

An interesting observation from Theorem 4 is that even though the obfuscator
O satisfies WBP for (E, sn), it does not satisfy soundness for E (under Defini-
tion 13). This indicates that the obfuscation soundness property and WBP are
in general independent of each other.

To justify our choice of the particular scheme (instead of RSA/ElGamal) in
the above proof, observe that RSA does not enjoy the security notion of IND-
CPA, while Encryption in ElGamal is learnable. To see this, consider the ElGa-
mal encryption oracle:

ElGamal Enc(m,α) = (gα, m · hα) ,

with g the generator for a multiplicative group G, x the private key, and h =
gx ∈ G the public key. The ElGamal encryption cannot be obfuscated, since the
encryption key is learnable with a single query: E(1, 1) = (g, h). The obfuscator
of [93] does not satisfy our definition of approximate functionality, and hence
their scheme is unsuitable for the proof. (However, the scheme of [93] is the ideal
candidate for an analogous approach on probabilistic functions in Sect. 4.9.)

116 CHAPTER 4. A THEORETICAL MODEL FOR WBC

Discussion on Positive Result

We have presented a symmetric scheme that can be implemented by an obfuscator
in such a way that it remains provably CPA secure. However, in the proof of
Theorem 4, we have used a primitive that consists of building blocks (pairings)
that are typically used in asymmetric cryptography. This can be seen as an
admission in the sense that we started the research of white-box cryptography
with the obfuscation of symmetric block ciphers such as DES and AES.

However, cryptographic schemes that can be securely implemented (under
a CPA security notion) naturally turn into asymmetric primitives, since CPA
security is a basic notion. Also, because we attempt to achieve a provable degree
of security, we naturally fall back on asymmetric primitives since it is feasible
to reduce their security to some known hard problem. Unfortunately this is not
the case with block ciphers such as DES and AES, since their security relies on
public scrutiny. It would be interesting to come up with a reduction between the
security of white-box implementations and their (black-box) scrutinized security.
For example, of great interest would be an obfuscator for which we could say that
the white-box implementations of the block cipher is at least as robuust against
software attacks, as the original block cipher is against black-box attacks.

It is still an open question if such type of reductions can be achieved.

4.8.3 UWBP for Non-Trivial Families

Let Q ∈ PTMF∩LF. Then it is easy to construct an obfuscator satisfying UWBP
for Q with a non-negligible probability (same as that of learning Q). We call such
families trivial.

Although Theorem 2 rules out the possibility of an obfuscator satisfying
UWBP for some Q ∈ PTMF\ALF (which includes most non-trivial families),
it does not rule out the possibility of an obfuscator satisfying UWBP for some
non-trivial family Q ∈ PTMF ∩ ALF (i.e., Q ∈ PTMF ∩ ALF\LF). Our next
positive result shows that, under reasonable assumptions, this is indeed the case.

UWBP for a Non-Trivial Family

In Theorem 5, we formally capture that there exists an obfuscator satisfying
UWBP for a non-trivial (but contrived) family Q.

Theorem 5 Under reasonable assumptions, there exists a family Q ∈ PTMF ∩
ALF\LF and an obfuscator O for Q that satisfies UWBP for Q.

Proof: For simplicity, we prove the above result in the random oracle model. Let
R|q| be a random oracle mapping arbitrary strings to |q|-bit strings. Consider
the family Q defined using Algorithm 9.

4.9. THE CASE OF PROBABILISTIC PTMFS 117

Algorithm 9: Family Q ∈ PTMF ∩ ALF\LF.
Function Q[q] (Input Y) {

/* R` : {0, 1}∗ 7→ {0, 1}` is a random oracle */
if (R|q|(q||Y) = q) then output 1 else output 0

}

Observe that Q ∈ PTMF ∩ ALF\LF. It can be proved that ∀D ∈ PPT (the
distinguisher),

∣∣∣∣∣Pr

[
b

R← {0, 1}; q0, q1
R← {0, 1}k ∩ KQ

: DQ[qb](1k, q0, q1) = b

]
− 1

2

∣∣∣∣∣ ≤ negl(k), (4.1)

the probability taken over the coin tosses of D. For any k, let q
R← {0, 1}k ∩KQ.

Consider an obfuscator O that takes in as input (Q, q) and simply outputs a
description of Q[q] as the obfuscation of Q[q]. Let sn ∈ SPEC be such that
Q ∈obf sn butO does not satisfy WBP for (Q, sn) w.r.t. some adversary A ∈ PPT
(that is, the white-box advantage of (O, Q, sn) is non-negligible), then A can be
directly converted into a distinguisher D such that Equation (4.1) does not hold,
thereby arriving at a contradiction. ¤

The approach that has been conceived is similar to the positive result by Lynn
et al. [122]. One can extend the proof to hold in the standard model, based on
reasonable computational assumption, similar to the results shown in Canetti [34]
and Wee [186].

4.9 The Case of Probabilistic PTMFs

Our negative results apply because the approximate functionality requirement
for obfuscators (in the correctness definition of Sect. 4.6.1) is defined only for
deterministic PTMFs. What about extended models (such as in [91, 93]) which
allow probabilistic families? It turns out that similar results can be obtained
for such models using appropriately extended definitions. We give an overview
below.

There are two types of PPTMs considering the way randomness is encoded:
(1) randomness encoded in the input tape as in the encryption oracle of the
example in Algorithm 6, or (2) randomness encoded in the key tape as in the
challenge oracle of the same example. Our negative results assume that the
obfuscated family is of the first type. However, we can also talk about obfuscating
the second type of families (this was considered in [91, 93]). Denote a PTMF

118 CHAPTER 4. A THEORETICAL MODEL FOR WBC

of the latter type a probabilistic PTMF (PPTMF). We ignore any additional
randomness in our discussion since the adversary cannot be trusted to supply
randomness.

Intuitively, a PPTMF is simply an ordinary PTMF Q with part of the key
used for randomness, so that two different keys are “equivalent” provided only
their random bits are different. Formally, a PPTMF is a pair (Q, τ), where
Q ∈ PTMF and τ is an equivalence relation on KQ that partitions KQ into
equivalence classes, s.t. ∀q1, q2 ∈ KQ :

τ(q1, q2) = 1 ⇐⇒ only random bits of q1, q2 are different.

In Definition 23, we extend the definitions of equality, (approximate) learn-
ability, approximate functionality and correctness from PTMFs onto PPTMFs
using the relation τ .

Definition 23 In the following, let (Q, τ) ∈ PPTMF.

1. Let q ∈ KQ, and I be the input space. Then:

• For any (a, z) ∈ IQ,|q| × {0, 1}∗, we say that z is τ-equal to Q[q](a)
(written z =τ Q[q](a)) if

∃q′ ∈ KQ : z = Q[q′](a) ∧ τ(q, q′) = 1 .

• For any X ∈ TM we say that X is τ-equal to Q[q] (written X =τ

Q[q]) if
∀a ∈ IQ,|q| : X(a) =τ Q[q](a).

2. We define a τ-(approximate) learnable family by replacing “=” with
“=τ” in the definition of (approximate) learnable families. The following
claim is easy to prove.

Claim 3 If Q is not τ -approximate learnable then Q /∈ ALF.

3. Let O : PTMF× {0, 1}∗ 7→ TM be a randomized algorithm. Then:

• O satisfies τ-approx. functionality for Q if

∀q ∈ KQ, ∀a ∈ IQ,|q| : Pr[O(Q, q)(a) 6=τ Q[q](a)] ≤ negl(|q|) ,

the probability taken over the coin tosses of O.

• O satisfies τ-correctness for Q if Definition 12 (of Sect. 4.6.1) holds
when “approximate functionality” is replaced by “τ -approximate func-
tionality”.

4.9. THE CASE OF PROBABILISTIC PTMFS 119

• O is a τ-obfuscator for Q if it satisfies τ -correctness for Q.

4. Q is τ-decidable if there exist p, p′ ∈ P and for every k ∈ N, there exists
an efficiently computable map

fk : {0, 1}p(k) 7→ {0, 1}k ∩ KQ × PTM ,

such that for all (q, Z)← fk(r), the following holds:

• ∀a, z ∈ {0, 1}∗ : Z(a, z) = 1 ⇐⇒ z =τ Q[q](a).

• If r is uniformly distributed then so is q.

• |Z| ≤ p′(k).

We claim that for any meaningful PPTMF construction (Q, τ), the family
Q must be τ -decidable.

Despite several known positive white-box results for PPTMFs [91, 93], our
negative results also extend to such families due to the ‘τ -decidability’ property,
which roughly says that for every equivalence class of Q in τ , there must exist
an efficient distinguisher that decides whether a given PTM is a member of that
class or not (any meaningful PPTMF must satisfy this property). Theorem 6
describes the corresponding statement of our main negative result in Theorem 2.

Theorem 6 For every (Q, τ) ∈ PPTMF with Q τ -decidable but not τ -approx.
learnable, there exists spec ∈ SPEC such that Q ∈obf spec but every τ -obfuscator
for Q fails to satisfy the WBP for (Q, spec).

The τ -decidability property allows us to extend the counter-example in the
proof of Theorem 2.

4.9.1 An Open Question: WBP and Soundness

Let ((Q, τ), sn) ∈ PPTMF× SN such that the following is true:

1. Q is not τ -approximate learnable.

2. Q ∈obf spec

3. Q is τ -decidable

4. O is a τ -obfuscator for Q satisfying IND-soundness (Sect. 4.6.2, Defini-
tion 13).

120 CHAPTER 4. A THEORETICAL MODEL FOR WBC

A useful question is: Given a security notion sn, can we decide if O satisfies
WBP for (Q, sn)?

Why is it useful? Ideally, we would like the WBP to be satisfied. However,
WBP is defined with respect to a family and a security notion while soundness is
defined with respect to a family, independent of the security notion. On the one
hand, due to this simplified definition, obfuscator designers may find it appealing.
On the other hand, it is possible that IND-soundness may be too strong to be
satisfied even though WBP is (with respect to some security notion), as in the
example in the proof of Theorem 4. Nevertheless, we consider it an interesting
question to characterize cases when the WBP can be reduced to IND-soundness.
The assumption that O is a τ -obfuscator (rather than an obfuscator) for Q is
necessary to falsify Proposition 2, which rules out interesting families.

An Open Question: If sn is such that the only oracle available to A is
the one being obfuscated, then the WBP for sn indeed holds if IND-soundness
holds. The result also holds if sn has additional oracles that always output the
same string (which can be given as an auxiliary input to the distinguisher – cf.
“distinguishable attack property” of [93]). At this stage, an open question is:
how to characterize sns where A is given additional oracles which output query-
dependent strings?

4.10 Conclusion

The goal of White-Box Cryptography is to implement cryptographic primitives
in such a way that they achieve a certain level of robustness against an adver-
sary that has full access to and control over the implementation of the primitive.
Up to some extent, this is related to code obfuscation, which attempts to hide
certain characteristics of a program. Despite the fact that many formal models
for obfuscation have been presented, white-box cryptography lacks foundations.
This chapter provides an initial step to bring the foundations of white-box cryp-
tography to a same level as obfuscation.

Our work made several contributions in this regard. We extended the no-
tion of WBC to arbitrary cryptographic primitives and initiated a formal study
of WBC by introducing precise definitions of what it means for a white-box
implementation to be secure. To achieve this, we formalized the White-Box
Property (WBP). The WBP is defined for a program family (e.g., encryption)
with associated security notion (e.g., IND-CPA), and describes how much ‘useful
information’ is leaked from the white-boxed program. It captures the security
requirements of WBC defined over some scheme and a security notion. We also
showed how to encode security notions in a formal manner, which might be of
independent interest.

This new theoretical model provides a context to investigate the security of

4.10. CONCLUSION 121

white-box implementations. We present some (im)possibility results, and de-
scribe the connection between WBC and obfuscation. We have showed that
WBP and soundness are in general quite independent of each other by giving
some examples where one is satisfied and the other is not. Although the WBP is
defined for a particular (family, security notion)-pair, soundness is only defined
for a given family and is independent of the security notion. A natural question is
whether there exist non-trivial families for which the WBP with respect to every
security notion can be reduced to the soundness of an obfuscator for that family.
Loosely speaking, an obfuscator that achieves this is said to satisfy the Universal
White-Box Property (UWBP) for that family. We showed that the UWBP fails
for every family that is not approximate learnable, in the sense that there exists
a (contrived) security notion that is satisfied in a ‘black-box’ setting, but fails
when an adversary has white-box access to the obfuscated program. However, we
show that under reasonable assumptions there exists an obfuscator O satisfying
UWBP for a non-learnable but approximate learnable family.

Since the security notion used for our negative result is quite contrived, it
might seem reasonable to expect that a meaningful notion of security for WBC
based on WBP can still be achieved for ‘normal’ security notions. We have show
that under reasonable computational assumptions, there exists a non-learnable
family and an obfuscator that satisfies the WBP for that family under a mean-
ingful security notion. In particular, we described an obfuscator that turns a
IND-CPA secure symmetric scheme into an IND-CPA secure asymmetric en-
cryption scheme, hence proving that white-box cryptography does exist under
reasonable assumptions for reasonable families of functions and security notions.

122 CHAPTER 4. A THEORETICAL MODEL FOR WBC

Chapter 5

Applications

Cryptology is a tool to secure our information infrastructure. It is of importance
that academic results in the research of cryptology (even if they might be rather
theoretical), are conceived within a broad practical context. In this chapter we
wish to present a selection of applications and techniques, that can benefit from
and contribute to the research in white-box cryptography.

For some of the applications, we assume that reasonably secure white-box
implementations exist. That is, for the application that is elaborated upon, the
white-box implementation is sufficiently resistant against adversaries that target
that particular application. The discussion on feasibility and constructions are
the subjects of Chapter 3 and 4 respectively, and are taken for granted here.

Overview. There is a vast range of applications that can benefit from research
in white-box cryptography. This is natural due to the research problem that
white-box cryptography aims to address. In this chapter, we elaborate on a
selected set of applications, grouped into four different research domains that we
distinguish:

1. New and improved cryptographic primitives – The primary objective of
white-box cryptography is to hide key information. Hence it has a natural
behavior to convert symmetric primitives into asymmetric primitives.

2. Involvement of hardware – In many applications, hardware is deployed as
a secure device (e.g., for TV set-top boxes). Using software protection
techniques such as white-box cryptography, some tasks can be shifted to-
wards software implementations. On the other hand, hardware can be used
to address fundamental issues in a pure software model, in particular the

123

124 CHAPTER 5. APPLICATIONS

problem of cloneability. Secondly, the techniques used to protect hardware
implementations can benefit from white-box techniques, and vice versa.

3. Computing in the encrypted domain – We show that there exists a rela-
tion between white-box cryptography and techniques that are related to
computations on encrypted data. This includes homomorphic encryption
schemes and techniques for secure function evaluation.

4. Software protection – The objective of white-box cryptography is related
to code obfuscation research: both aim to protect information in software
implementations. Although we wish to distinguish between the two con-
cepts, we show how ideas from white-box cryptography can be leveraged
to software protection techniques including diversification, fingerprinting,
tamper resistance, and trustworthy execution of software.

We elaborate on each of these domains in the corresponding sections below,
and present some practical applications for each class. Remark that some ap-
plications can benefit from white-box cryptography from different directions. In
the final section, we present the Digital Rights Management (DRM) class, which
is a controversial application class of specific interest to white-box cryptography,
that benefits from WBC in different ways.

5.1 New and Improved Cryptographic Primitives

5.1.1 Asymmetric Encryption Schemes

One particular use that we have mentioned before, is the ability of white-box
cryptography to convert symmetric primitives into asymmetric primitives.

In 1986, Desmedt and Quisquater [56] suggested to simulate public key en-
cryption schemes in closed systems (e.g., smart cards). In particular, they pro-
pose to derive public key cryptography from symmetric schemes in a tamperproof
hardware model. This is hardware which has the property that one cannot get
the secret out.

When public-key cryptography was first proposed by Diffie and Hellman [59],
they suggested that one way to produce a public-key encryption scheme was to
obfuscate a secret-key scheme. This application of obfuscation was also suggested
by Barak et al. [6], while the transformation of a MAC into a signature scheme
was also suggested by Joye [102], and formally discussed by Hofheinz et al. [91],
Hohenberger et al. [93], and Saxena and Wyseur [165]. Concrete examples were
provided how to turn a symmetric cipher (E, D) into an asymmetric cipher, by
obfuscating the instantiated encryption algorithm Ek. As a result, all parties
that are in possession of the public key O(Ek) are able to encrypt, while only

5.1. NEW AND IMPROVED CRYPTOGRAPHIC PRIMITIVES 125

the party in possession of the private key k is able to decrypt. Similarly, a MAC
algorithm can be converted into a signature scheme.

Note that, in order to deploy such a transformation, the extended Definition 3
(see Sect. 3.1.3) needs to be adopted, and security notions such as IND-CPA
and IND-CCA need to be satisfied. In the proof of Theorem 4, we presented a
positive result on the obfuscation of a symmetric primitive that satisfies IND-
CPA and results into an asymmetric primitive that satisfies IND-CPA. However,
the example was obtained with building blocks that were asymmetric in the first
place. It remains an open question whether constructions can be proposed that
consist of building blocks that have not been used in asymmetric cryptosystems
before. Hence, it remains an open question if white-box cryptographic can be
used as a generic tool for generating innovative asymmetric cryptosystems. On
the other hand, white-box implementations might offer a great deal of flexibility.
For example, a white-boxed public key encryption scheme could be tweaked as
such that one part (e.g., the private decryption functionality) is small and efficient
(which could meet constraints of lightweight hardware devices), compensated by
a large counterpart for encryption.

5.1.2 Programmable Random Oracles

The Random Oracle Model (see Bellare and Rogaway [10]) is an idealized crypto-
graphic setting in which all parties (including the adversary) interact with each
other, and in addition can make oracle queries. All queries to the random oracle,
regardless of the identity of the party making them, are answered by a single
function that is selected uniformly at random from all possible functions. The
set of possible functions fs : {0, 1}∗ → {0, 1}lout(s) is determined by the output
length function lout and by the security parameter s. A more stringent notion
of a random oracle, is where the inputs are of a pre-determined (short) length.
That is, functions of the form fs : {0, 1}lin(s) → {0, 1}lout(s).

This is a very controversial model, since real-world systems do not have access
to such random oracles (there is an infinite amount of possible functions). Hence,
there is a need to implement the random oracle of the idealized setting. That is,
replace the random oracle by a easy-to-evaluate function that is directly available
to each party. It is hoped that cryptographic primitives that are designed in the
random oracle model, remain secure when the random oracle is replaced by this
efficient, public function. Denote a random oracle that can be implemented in
real-world systems as a programmable random oracle.

While the Random Oracle methodology is an abstraction of cryptographic
applications that offers great advantages towards security analysis, a great deal of
caution is needed when implementing the application in practice. Unfortunately,
it has been shown that schemes that are secure in the random oracle model have

126 CHAPTER 5. APPLICATIONS

insecure instantiations (e.g., by Canetti et al. [36]), while it remains unknown
if there exist programmable random oracles with strong enough properties for
specific primitives.

It has been proposed to implement random oracles by obfuscating a fam-
ily of pseudorandom functions (MAC algorithms or digital signature algorithms
for arbitrary input; encryption schemes for the stringent notion), whose input-
output behavior is by assumption computationally indistinguishable from that
of a truly random function. The pseurorandomness of the output in black-box
is transcended to the obfuscated implementation due to the functionality equiv-
alence requirement in Definition 5. Although the RO model does not by itself
provide any security guarantees for implementations in the standard model, one
might hope that the obfuscation of pseudorandom functions, leverages a notion
of security from the RO model to a notion in the standard model for a large class
of natural cryptographic applications.

The availability of programmable random oracles opens directions towards
practical access control systems (see Lynn et al. [122]), password managers (see
Wee [186]), and digital vaults (see Canetti [35]), because the programmable ran-
dom oracle can be used for secure point function obfuscation.

5.2 Hardware

A natural answer to the issue of hiding key information would be to deploy hard-
ware. Hardware devices can store sensitive data, and/or perform computations
in a location which is shielded from the adversary. Examples of hardware devices
that can be deployed are USB dongles, Smart Cards, Trusted Platform Mod-
ules (TPM), and cryptographic co-processors. In Table 5.1, we present a brief
overview of some of the advantages and disadvantages of deploying hardware in
practical applications.

Hardware-based solutions may be vulnerable to side-channel analysis (see
Sect. 2.3) and imply a cost in terms of flexibility, deployment, revocation and
replacement. We wish to address these issues by deploying software-only imple-
mentations, and protect them with obfuscation and white-box techniques. The
cost of software solutions is very small, since they can be transported electron-
ically. They also carry none of the administrative and physical limitations of
hardware solutions. However, software might have some disadvantages as well.
In a full access model (such as the white-box attack context), software can be
cloned and tampered with easily. Moreover, hardware is much more suitable to
address entity authentication issues.

Our main objective is to consider the security of cryptographic primitives in

5.2. HARDWARE 127

Table 5.1. Comparison between hardware and software

Pro hardware Contra hardware

“Safe” heaven
Tamper resistant (up to some level)
Enables authentication

• users (Smart Cards)

• platforms (Trusted Platform Mod-
ules)

Hard to clone.

Lack of flexibility
Cost
Possible malicious behavior
Only a partial solution, or even
inapplicable
Side-channel analysis

a software-only situation. Nevertheless, both fields of secure hardware implemen-
tations and white-box cryptography can benefit from each other.

Hardware-based solutions to enforce software protection techniques.
On the one hand, solutions that are developed for secure implementation of
algorithms (circuits) in hardware, can be inspiring for white-box cryptography.
Observe that the random bijections that are introduced to obfuscate the lookup
tables of the white-box DES and white-box AES implementations, can be seen
as an extension of masking techniques [131], developed to prevent side-channel
analysis.

Secondly, we might consider to re-introduce (lightweight) hardware to ad-
dress software-related issues. A particular motivation for the re-introduction is
to enable authentication, and to prevent code cloning. For example in [77], Gold-
wasser et al. proposed to use hardware, to introduce a constraint on the number
of uses of a (obfuscated) program. This is in particular useful in the case of DRM,
where a party could be allowed only up to t executions of an implementation.
Securely obfuscating some count-down functionality obviously contradicts with
the adversary’s capability to clone the functionality.

White-Box Cryptography to enforce hardware implementation pro-
tection techniques. Conversely, white-box cryptography might also aid in
the development of protection techniques against side channel attacks. As men-
tioned in Sect. 3.1, the white-box attack context is the worst-case attack model,
and therefore is a superset of any side-channel attack model. Hence, white-box
implementations wired into hardware devices are by definition resistant to any
side-channel analysis. Unfortunately, the footprint and efficiency in hardware of
current white-box implementations is dramatic. Weakened white-box implemen-

128 CHAPTER 5. APPLICATIONS

tations can be considered, such as implementations where only (critical) parts
are obfuscated, and white-box implementations of ciphers that have a smaller
footprint when obfuscated.

For example, a side-channel resistant vault on a smart card can be con-
structed, by implementing a (small) block cipher on the smart card, and storing
the lookup tables in the smart card’s EEPROM. Similarly, cryptographic opera-
tions on mobile devices (such as mobile phones and PDAs) and TV set-top boxes
can be protected. However, one should be very careful with such an approach,
since an adversary could deploy a strategy in two phases: (1) extract the lookup
tables from the EEPROM by side-channel analysis, and then (2) deploy a fully
privileged attack on the reconstructed implementation.

From a research point of view, it is of interest to investigate how design pro-
posals and analysis techniques for white-box implementations carry over to other
research areas in cryptology, such as side-channel cryptanalysis. For example, a
comparison between white-box AES implementations and protection techniques
against cache attacks has been identified in [12].

5.3 Computing in the Encrypted Domain

5.3.1 Homomorphic Encryption

Homomorphic encryption schemes refer to a special class of (probabilistic) asym-
metric encryption schemes, where algebraic operations on plaintexts can be per-
formed directly on the respective ciphertexts. That is, for some algebraic oper-
ation + on plaintexts p0, p1 ∈ P, one can perform an algebraic operation ⊗ on
E(p0), E(p1), such that

D(E(p0)⊕ E(p1)) = p0 + p1 .

Goldwasser and Micali [78] introduced a first homomorphic encryption
scheme, based on the Quadratic Residuosity Problem, where the modular ad-
dition of two bits can be performed in the encrypted domain by a multiplication
of the corresponding ciphertexts. Several improvements were presented to ad-
dress performance issues, and increase the bandwidth ratio.1 The most notable
scheme is the Paillier cryptosystem [144], on which many cryptographic schemes
for applications related to privacy-preserving cryptography are constructed. In
particular, Ostrovsky and Skeith [143] introduced a construction which imple-
ments a private information retrieval system that is in fact an obfuscation of a
filtering system.

1The bandwith ratio can be defined as the amount of information that is embedded in a
ciphertext.

5.3. COMPUTING IN THE ENCRYPTED DOMAIN 129

A long standing open problem is whether ring/algebraic homomorphisms ex-
ists. That is, an encryption scheme that satisfies the homomorphic property over
two operations +,×:

∀p0, p1 ∈ P : D(E(p0)⊕ E(p1)) = p0 + p1 ,

and D(E(p0)⊗ E(p1)) = p0 × p1 .

No convincing algebraic homomorphic encryption scheme has been found yet.
One of the best results so far, is a scheme by Boneh et al. [26], where additions
can be (almost) freely performed in the encrypted domain, and one multiplica-
tion. As such, polynomials of degree 2 (and hence circuits of depth 2) can be
computed in the encrypted domain. The construction by Boneh et al. is based
on pairings, and it seems hard to extend this to higher degree computations.
Recently, Gentry [69] presented a homomorphic encryption for circuits, based
on Lattice theory [155]. It remains to be seen up to what extent this is a step
towards a ring homomorphism.

White-box cryptography could be used in practice to obtain a weak asymmet-
ric encryption scheme that can be used as an algebraic homomorphism. Weak
in the sense that we should not hope this results in strong IND-CCA2 secure
schemes. This could be achieved by white-boxing some special re-encryption
scheme such that

Hom(c0, c1, r) := (EK(Dk(c0)×Dk(c1), r)) ,

where k is the private decryption key that needs to be protected, and the Hom
operation denotes the operation in the encrypted domain, corresponding to ×.
We acknowledge that this approach is subject to a lot of criticism. However,
its deployment within some larger application can be beneficial to raise the bar
against adversaries.

5.3.2 Secure Function Evaluation

In Sect. 3.2.2, the concept of Secure Function Evaluation was introduced as a
related concept. Its objective is to compute some given function f , on the inputs
(xA, xB) of two parties A and B, where both parties want to keep their inputs
secret. To achieve this, one party (Alice) creates a garbled circuit, and sends it
to the other party (Bob). A garbled circuit is constructed as follows: consider a
circuit that computes the function f , and assign random (garbled) values to each
value of every wire. Then, construct garbled tables that compute some gate, given
garbled input values, and computes a garbled value of the corresponding output.
Bob is able to evaluate this garbled circuit with his private inputs and compute
the result. This process of evaluation requires that Bob receives the (garbled)

130 CHAPTER 5. APPLICATIONS

values of Alice, without revealing any private information to each other. This
is achieved via Oblivious Transfer (OT) [152]. For the initial constructions [73],
OT operations were required for every evaluation of a ∧ gate (∨ gates could be
performed via a homomorphic operation). Moreover, these constructions were
designed within the context of an honest-but-curious adversary. Subsequent work
addressed these issues by introducing a cut-and-paste technique to enforce honest
behavior, and reduce the number of communication rounds [164, 111, 117].

White-box cryptography aims to achieve something similar; namely, to gener-
ate an implementation that is randomized (garbled), contains some confidential
input k (xA), and can be evaluated securely by another party on its input p (xB)
with a minimal of communication (preferably none, besides the delivery of the
obfuscated program). Similar to the universal circuit trick by Valiant [182], we
wish to construct the garbled circuit for f(k, ·) = Ek(·).

Unfortunately, such circuits seem to be difficult to obtain for block ciphers.
The fundamental problem is that garbled circuits should be able to evaluate any
input (x1, x2). Hence, within the context of encryption functions Ek, such circuits
should be able to encrypt plaintexts p for any k. In the case of a garbled white-
box AES implementation, all garbled S-boxes alone would already occupy 10 ·295

bit = 10 · 262 GByte of memory size, far beyond our reach. Moreover, white-
box cryptography demands standalone solutions. Nevertheless, Secure Function
Evaluation remains a very interesting topic of study, where further collaboration
with research on white-box cryptography might result in innovative results.

5.4 Software Protection

White-box cryptography can be seen as a particular instance of code obfuscation.
Where in code obfuscation, the goal is to hide the make it hard for an adversary
to understand the code (mainly against reverse engineering), white-box cryptog-
raphy aims in the first place to hide secret keys in software implementations of
cryptographic algorithms.

The techniques that have been developed to achieve this goal can be deployed
in a context beyond cryptographic primitives, and can be beneficial for a large
range of software protection techniques. Obviously, they can be deployed to im-
prove the protection of data values, and to randomize the internal data flow for
a generic class of programs. Furthermore, white-box techniques can contribute
to software protection techniques such as software tamper resistance, software
diversity, data flow obfuscation, and so forth. For an overview of protection tech-
niques, we refer to our survey in [38]. Below, we present some software protection
techniques, and introduce how they can benefit from white-box cryptography
techniques.

5.4. SOFTWARE PROTECTION 131

5.4.1 Software Tamper Resistance

One of the major problems in software protection is to develop tamper resistant
software (TRS). The objective is to protect the assets of a software implementa-
tion against illegitimate use. Assets include the program code, partial function-
ality (e.g., an internal decryption routine), internal variables, and cryptographic
keys. In [137], Nagra, Wyseur, and Herlea present a formal study on the assets
and goals of such an adversary. In order to defend these assets, typically, code
obfuscation techniques are deployed [179].

However, in contrast to code obfuscation techniques, which prevent against
reverse engineering, tamper resistant techniques need to prevent against targeted
modifications that aim to eliminate functionality of a program (e.g., disable some
verification routine), or change operating parameters. Obfuscation only supports
TRS, in making it harder for an adversary to find out where exactly to tamper
program code.

Software self-checking. Two main families of tamper resistance techniques
can be identified. A first family includes techniques that introduce verification
techniques (based on hashing). Software self-checking techniques introduce soft-
ware guards that frequently verify the integrity of the code. Horne et al. [95]
suggested to introduce a complex network of small software guards that (besides
the code) also verify each other’s integrity, hence making it hard to remove the
protection technique.

Unfortunately, all self-checking suffers from the cloning attack [183]. Observe
that at execution of a program, code is executed, while in a verification process,
code is read. In the cloning attack, the original program is cloned before its code
is tampered with, and the code read processes are redirected to the (untampered)
cloned program, hence the tampered program can execute without tamper de-
tection. This can be achieved easily on Von Neumann architecture machines
(which most modern computers are), which has a natural distinction between
code-read(/write) and code-execute. One countermeasure, presented by Giffin
et al. [70], is to strengthen software self-checking by introducing self-modifying
code. This issue can be solved in a networked scenario, within the context of
trustworthy execution (see Sect. 5.4.3).

Tamper resistance by software hardening. A second family of tamper re-
sistance techniques does not include verification, but aims to make sure that
upon tampering, the execution results are useless. This family is in particular
interesting when a cryptographic primitive is included in the application. Con-
sider a DRM client, where encrypted content is processed by a decryption routine
after authentication. In such an application, the decryption routine would return

132 CHAPTER 5. APPLICATIONS

random junk instead of valuable content upon tampering (of the authentication
code).

In [134], Michiels and Gorissen presented Medusa; this technique takes advan-
tage of the redundancy introduced by the annihilating encodings in white-box
implementations, to achieve some degree of software tamper resistance. The
main idea is to make a binary program code tamper resistant by incorporating
the code into the descriptions of the lookup tables of a white-box implementation.
As a result, the code of a protected application has a dual interpretation: it is
both program code as decryption key. Hence, tampering of the code results in a
modification of the decryption key. Note that techniques like this only verify the
integrity when a encryption/decryption is performed, which is in particular in-
teresting for DRM applications. Once the final encryption/decryption has been
performed, this technique does not add any protection to the remaining code.
Other limitations are that an adversary can attempt to repair the key, by intro-
ducing new annihilating encodings, or that an adversary tries to break the dual
interpretation by tampering addresses to point to a cloned (untampered) white-
box decryption routine, similar to the strategy described in [183]. Nevertheless,
this remains an interesting study subject.

5.4.2 Diversity

In the battle against malware, an important tool is diversification of software
implementations. Diversification produces different (orthogonal) instances with
a similar functionality, such that a crack on one instance, cannot be mounted on
another instance. The injection of annihilating encodings introduced diversity of
white-box implementations, and might bring diversification techniques to other
natural classes of programs. For example, consider a DRM client introduced
above, where the decryption routine is white-boxed and includes an external input
encoding that is annihilated in the preceding authentication code. If different
instances of the DRM client are compiled by choosing different external input
encodings, the client becomes resistant to cracks that attempt to disable the
authentication code (up to some extent). Further research is required to explore
the full capabilities of white-box cryptography for software diversity.

5.4.3 Trustworthy Execution

One of the principle challenges in software protection, is the problem of trustwor-
thy execution of software on an untrusted platform, where a verification entity
is able to assure correct execution of software. We define the problem of remote
code integrity verification as the act of delivering attestations (proofs) to a veri-
fication entity that guarantee code executes untampered on a remote entrusting
platform. On such a platform, an adversary has administrative privileges and can

5.4. SOFTWARE PROTECTION 133

tamper with all the software including the operating system; this is the white-box
attack model.

So far, establishing a trusted execution environment on an untrusted platform
has been an open research challenge. An adversary having complete control over
an untrusted platform also has control over its input and output traffic. This
makes it difficult for a verifier to be assured of communicating with a particular
environment on an untrusted platform. Even more: to be guaranteed software is
actually running in that environment.

Trusted Computing

A first approach is to introduce hardware tailored specifically to provide assur-
ance on an untrusted platform. The Trusted Computing Group (TCG) defines
the addition of a Trusted Platform Module (TPM). A trusted computing plat-
form reliably measures the software (i.e., BIOS, bootloader, operating system
components and user applications) that get loaded during startup of the plat-
form [160], and can later report its configuration to a remote entity with an
attestation protocol.

The TCG attestation process has deployment issues (see Sadeghi and
Stüble [159]) and requires a secure operating system. Virtualization technol-
ogy like Intel Trusted Execution Technology (TXT) [83] and Hypervisor [49]
can overcome some of these shortcomings. Virtualization is an emerging trend,
supported by the increased availability of communication networks and open
computing platforms.

TPM Hardware

VM1 VM2

Trusted OS

Figure 5.1. The Hypervisor Architecture

134 CHAPTER 5. APPLICATIONS

Fig. 5.1 depicts the basic Hypervisor architecture, where several virtual machines
(VM) can run on a single platform. The core of the Hypervisor architecture is
a trusted operating system, enforced by a TPM, which makes sure the virtual
machines remain isolated and can perform their operations as specified. This
(mini) operating system does not have any root access, and is obfuscated. To
guarantee trustworthy execution of the trusted operating system, attestation
techniques are deployed (which require network access). An interesting direction,
which is subject of current research on Hypervisor systems, is the ‘free’ migration
of virtual machines from one computing platform to another. Unfortunately, this
remains a difficult task to achieve, because this also implies that secret keys
(which are bound to the TPM of the computing platform) need to be able to
migrate also. Therefore, an interesting subject of further research is to investigate
how white-box cryptography can aid in the protection of secret keys for the
trusted OS, by shifting some tasks from the TPM to a software level, and aid in
the migration of virtual machines.

Another direction is to use white-box cryptography as a fall-back for a
TPM [158]. The main idea is that when a TPM breaks down, the content that
was encrypted with the TPM can still be decrypted by means of the white-box
implementation, which has embedded the cryptographic key of the TPM (that
was instantiated when the TPM was instantiated). To make sure an adversary
cannot call the white-boxed decryption oracle, authentication needs to be added.
In the current state of the art, when a TPM breaks down, the manufacturer needs
to be requested for the decryption key, which could involve a difficult procedure.
Also the manufacturer would prefer not to be bothered with this, or could ask
for a service fee.

Remote Entrusting

In the RE-TRUST project [154], the problem of trustworthy execution of software
is addressed in a pure-software scenario. The context is a network scenario, where
a continuous network connection between a trusted server and the untrusted
platform is available. The objective is to enable the trusted server to verify
(at execution time) whether or not software running on a remote platform is
executing as specified. If malicious behavior is detected (e.g., an adversary is
tampering with the software), appropriate actions can take place (e.g., the trusted
server can shut down its service, or force the client software to stop its execution).
This paradigm was coined remote entrusting.

White-box cryptography is a cornerstone in this remote entrusting paradigm,
because cryptographic primitives (accompanied by secret keys) need to be de-
ployed in the client software implementation, and attestations need to be signed.

5.4. SOFTWARE PROTECTION 135

Other techniques that are deployed include dynamic updating, to make sure that
the software cannot execute without the network connection. Hence, the network
connection can be seen as a sort of ‘lifeline’.

The remote entrusting paradigma is of growing importance, given the in-
creased availability of communication networks and a trend towards open com-
puting platforms. Since standalone solutions often do not suffice to achieve the
high security requiments of new software applications, it is of great value to de-
velop networked solutions. Target applications include health care applications,
banking applications, and on-line games. In practice, a trusted entity would
monitor the execution of client applications to verify its trustworthyness. Such
technology is currently deployed in the gaming industry, e.g., in the popular
game World of Warcraft (WoW), where a game server would only accept game
clients to connect, when these clients are trustworthy. We refer to McGraw and
Hoglund [128, 92] for an extensive study on the threats on online games (applied
to WoW), and software security technologies that are deployed to protect them.

Remote attestation on legacy operating systems with trusted plat-
form modules. Pure software-based solutions have been proposed to address
the cloning attack in a remote verification scenario. Examples are Pioneer [170]
and TEAS [68], which incorporate time measurements in the verification pro-
cess. Unfortunately, these suffer from network delay. On the other hand, TCG
attestation techniques require the deployment of TPMs and custom operating
systems. In [166], Schellekens, Wyseur, and Preneel proposed a remote attesta-
tion technique for legacy operating systems that aim to address the disadvantages
of pure software-based solutions and TCG-based solutions. Our assumption is
the availability of a TPM, which we claim is a reasonable assumption because
new modern computing platforms are usually equipped with a TPM.

In Fig. 5.2, we present a time overview of our TPM-based remote attestation
technique. The main idea is to use the TPM clock ticker to time the duration of
the software verification. When the adversary (A) performs other operations dur-
ing the verification process (such as redirecting read operations to an untampered
version), the verifier (V) should be able to detect this. To avoid pre-computation
or replay, the adversary challenges the verification process by sending a random
nonce n. The nonce is used by the TPM to create a timestamp TS1, which is
used as a seed for the self-checksumming operation (chksum()). The result c is
timestamped again by the TPM (TS2), and sent to the verifier, who will trust
the result only when

t2 − t1 < ∆texpected = ∆tchksum + ∆tsign + δt ,

136 CHAPTER 5. APPLICATIONS

Sign()

c

Sign()

TS1

t2 − t1

cksum()

n

n TS1 TS2

TS2

TPM

V

A

Figure 5.2. Time Overview of the Improved Pioneer Protocol

where ∆tchksum depends on the specifications of the execution platform. To avoid
hardware upgrades (e.g., a faster computation of chksum might give the adver-
sary sufficient time to introduce redirections of read instructions), a benchmark
verification can be computed at boot time (initiated by a trusted bootloader).
We refer to [166] for technical details and further improvements.

White-Box Remote Program Execution (WBRPE)

In [89] Herzberg et al. present a new model for secure remote execution of soft-
ware, where the the remote execution platform is subject to white-box attacks.
The research on white-box remote program execution (WBRPE) was motivated
and inspired by the theoretical impossibility results on obfuscation. The results
on WBRPE are rather theoretical as well at this point, but nevertheless intended
for practical deployment. The main idea is to circumvent the negative results on
obfuscation [6] by relaxing the functionality requirement.

Roughly speaking, the architecture (depicted in Fig. 5.3) is specified as fol-
lows: on the untrusted host, an Obfuscated Virtual Machine (OVM) is deployed.
The OVM is able to process encrypted input from the trusted server (the specifi-
cation of a program P , optionally with some additional confidential input), and
an input a from the untrusted host. The OVM outputs the encrypted result
of the evaluation of P with the corresponding inputs. We refer to Herzberg et
al. [89] for a more detailed specification.

The adversary has white-box access on the untrusted host, that is, full control
over the OVM (and its execution platform), the encrypted input E(P) and the

5.4. SOFTWARE PROTECTION 137

E ′(P (a))

aE

D′

OVM

“E(P)”P

P (a)

Trusted Server Untrusted Host

Figure 5.3. White-Box Remote Program Execution Architecture

encrypted result E′(P (a)). The aim of the architecture is to achieve trustworthy
execution on the untrusted host, that is, to achieve confidentiality on the program
P (the objective of obfuscation) and the result P (a), and to detect tampering.
Confidentiality of P is achieved by means of encrypting P , and the assumption
of a secure implementation of the virtual machine (therefore denoted as obfus-
cated virtual machine). Tamper resistance is obtained by the authenticity of the
result P (a), achieved by encryption of the result using an encryption scheme that
provides data authentication (e.g., encrypt + MAC). Authenticated encryption
schemes are encryption schemes that simultaneously protect the confidentiality
and authenticity (integrity) of data. When tampering occurs (modification of
E(P), tampering of the OVM, or modification of E′(P (a))), the trusted server
should be able to detect this when verifying the authenticity of the result (up to
some negligible probability).

In other words, the goal is to capture that WBRPE is as secure as the un-
derlying encryption schemes used, provided that the obfuscation (of the OVM)
is secure. The standard notion of confidentiality is defined using indistinguisha-
bility. A similar notion is used in WBRPE, while a definition of integrity is used
to capture tamper resistance. Other definitions that are introduced include “pri-
vacy of remote inputs”, “validity of programs before execution”. We refer to [89]
for further details.

Because the functionality of the ‘obfuscated’ program is modified to encrypted
output instead, the impossibility results of Barak et al. do not apply. Hence,
one can hope that any program can be executed securely on the untrusted host,
based on this architecture. A positive result towards generic ‘obfuscation’ within
this model, is the theory on robust combiners for white-box security by Herzberg
and Shulman [88]. The main idea is to consider the OVM, instantiated with an
input E(P1), as a program P2, and parse it with another OVM.

138 CHAPTER 5. APPLICATIONS

Obfuscated Virtual Machine

The most important step in the practical realization of the architecture as de-
picted in Fig. 5.3, is the development of an Obfuscated Virtual Machine, that
meets the security requirements of confidentiality (of the program and result)
and integrity (of the result). All the other components are executed on a trusted
server, and can be constructed using existing technology such as block ciphers
and digital signature schemes. One of the motivations for the theoretical model
described in Chapter 4, is to investigate the feasibility to achieve both security
requirements (captured by security notions) at the same time for some suitable
schemes.

The OVM needs to contain a set of secret keys for decryption of P , and
authenticated encryption of the result, process the input (decrypt), and evaluate
the obtained program P with a given input a without leaking the behavior of the
program. The latter is the main challenge, because operations performed by the
OVM are directly visible to the adversary.

Moreover, the aim is to enable the OVM to evaluate any given program,
and hence faces similar problems as secure function evaluation. Namely, that
obfuscated (garbled) circuits tend to be too large when they need to be able
to compute programs of significant complexity and size. Moreover, the require-
ment to perform an authenticated encryption at the output enforces even more
constraints towards implementation size and performance.

A generic approach would be to construct some hypothetical obfuscated Tur-
ing Machine, that is able to perform secure computations, or circuits that contain
obfuscated gates as a basic building block. These are custom gates, that com-
prise of two or more standard gates (e.g., ∧, ∨,

⊕
). Besides the input to these

standard gates, the new gate should also accept some input that selects which
standard gate needs to be evaluated. For example, a ∧,∨ gate is defined by the
truth table in Table 5.2, and we denote such a gate as SG{∧,∨}.

Observe that b2 denotes which gate needs to be evaluated, and b0, b1 are the
input to that respective gate.

Obfuscating such a special gate could be done as follows (inspired by white-
box cryptography): choose a random permutation πin over GF(23), and a per-
mutation πout over GF(2). Then, we denote an obfuscated gate as

O(SG{∧,∨}) := πout ◦ SG{∧,∨} ◦ πin .

We claim that an obfuscated gate is locally secure when the entropy of the
output bits is 1

2 . With local security, we capture that an adversary is unable to
distinguish which gate is evaluated (hence, an adversary cannot obtain knowledge
of b2), and that the input bits b0, b1 remain hidden (garbled).

A major research question is the composition of such gates. Similar to Barak
et al ’s result, the impossibility of function composition presented by Lynn et

5.5. DIGITAL RIGHTS MANAGEMENT 139

Table 5.2. The SG{∧,∨} gate

b0 b1 b2 result
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

al. [122, Theorem 5] does not carry to the composition of obfuscated gates due
to the modification in functionality caused by the random permutations. For
specific classes of programs (with limited depth), we are able to present a secure
implementation that can be extended towards an implementation of an OVM.

An extensive study and comparison with secure function evaluation (using
garbled circuits) is subject to future work.

5.5 Digital Rights Management

One of the most controversial, but nevertheless one of the most attractive appli-
cation domains, is the area of Digital Rights Management (DRM). Digital Rights
Management refers to technology that aims to enforce conditional access to, and
restricted usage of data (content), programs, and devices. In this section, we
show how the different research domains described above can be applied this
particular class of applications.

The DRM threat model is similar to the white-box model, in the sense that
the usage restrictions need to take place on the adversary’s platform. The data,
programs, and devices that need to be protected are under control of the ad-
versary. In order to disable direct access, the data, programs, and devices need
to be protected. This is achieved by encrypting content, and deploying tam-
per resistant devices. To enforce the conditional access and restricted usage, a
wide range of techniques are typically needed, including access control systems,
content protection schemes, trustworthy execution, secure storage, and tamper
resistant software.

Popular DRM schemes include Apple’s FairPlay system, which is used by the
online iTunes store [97], and Microsoft’s Windows Media DRM (WMDRM) [136].
These schemes use cryptographic schemes in their implementation to protect the

140 CHAPTER 5. APPLICATIONS

multimedia content against illegitimate use.

A typical DRM scenario addresses conditional access to multimedia content,
where (encrypted) content is publicly available (e.g., in a broadcasting setting),
while only a set of legitimate users should be able to access the content. Access
to content is achieved by means of decryption, while the decryption routine and
secret keys are embedded in the client DRM application (executing on a hostile
platform), or hardware tokens (e.g., smart cards). The decryption key must be
secret and inaccessible to the adversary. Recovery of the decryption key allows
decryption of the content without any restriction, hence defeating the DRM
protection (see Sect. 1.2.2). This is a major problem, and many so-called secure
DRM schemes have failed to live up to their expectations because they neglect to
keep the keys confidential. Examples of schemes that have been breached include
the CSS copy protection schemes for DVDs, and the AACS content protection
scheme that is used for the HDDVD format [66].

A second threat is the isolation of the decryption routine (code lifting). In-
stead of extracting the decryption key, an adversary can use the isolated decryp-
tion routine to decrypt content, circumventing any authentication and rights
verification. Here too, white-box cryptography is a candidate technology, where
external encodings (see Sect. 3.2.3) can be used to interweave a decryption rou-
tine with authentication code. We can formalize the objective of WBC within
the context of DRM as follows:

The objective of white-box cryptography is the guarantee that an adversary
has no other option but to ‘execute’ the software implementation in order to
access content, hence enforcing authentication verification and conditional access
enforcement.

This objective is related to our Definition 3 (see Sect. 3.1.3), in the sense that
we state that white-box cryptography aims to guarantee that an adversary has
no other option but to resort to black-box attacks.

In [122], Lynn et al. presented access control systems as an application of
their positive result on obfuscation, while Goldwasser and Kalai [76] presented
obfuscation within the context of controlled delegation of authority and access.
The use of white-box cryptography to enable DRM was suggested already from
the very start [43], and it has been presented as a key technology for the design of
DRM architectures in [193, 133, 185]. In the mean time, white-box cryptography
has been commercially deployed to secure DRM applications [175] and TV set-top
boxes [44].

5.6. CONCLUSIONS 141

5.5.1 Traitor Tracing

Besides enforcing conditional access, an interesting direction in DRM is to dis-
courage users to behave maliciously. This involves the topic of traitor tracing [28],
where a decryption implementation is augmented by some fingerprint such that
the implementation can be traced back to the user to whom it was originally
provided. Consider the above described DRM scenario. A major threat is where
legitimate users present their decryption keys, or decryption software (along with
authentication codes) to unauthorized users, thus giving them the ability to de-
crypt the protected content. This is by far a bigger threat than re-distribution
of decrypted content, in particular for short-lived content (e.g., hyped TV pro-
ductions).

Traditionally, traitor tracing schemes are designed such that a large set of user
decryption keys can be derived from a master key, where every user key can be
used to decrypt the same content (when some extra conditions are met). A traitor
tracing scheme is called t-secure when an adversary cannot create a new decryp-
tion key when given up to t existing user decryption keys, without revealing one
of the keys it is derived from. Instead of adding traceability to keys, white-box
cryptography can be used to force a traitor to distribute the entire decryption
implementation (with embedded decryption key), providing a larger data set to
implement traceability. A specific white-box instance was introduced by Billet
and Gilbert [20], who proposed a new family of block ciphers with traceability ca-
pabilities, based on the Isomorphisms of Polynomials (IP) problem [145, 147, 50].
Unfortunately, the underlying building block was cryptanalyzed by Faugère and
Perret [64], but a repair presented by Bringer et al. [31], based on a perturbation
idea that was introduced to re-enforce the IP-based cryptosystems [60].

5.6 Conclusions

In this Chapter, we have described applications and research domains that might
benefit from the white-box cryptography, and vice versa. We have shown that
white-box cryptography can be used as a tool to create new cryptographic
schemes. In particular, asymmetric schemes are of interest, since the obfusca-
tion of a symmetric encryption function naturally yields an asymmetric behavior.
However, as discussed in Chapter 4, this is not staightforward to achieve, since
it must be careful investigated if cryptographic properties (e.g., security notions)
remain maintained.

A slightly weaker attack model, is the side-channel attack model (see also
Sect. 2.3.2). Solutions for white-box cryptography naturally offer protection tech-
niques for circuits, when they are suitable to be implemented in hardware (there
might be size and performance restrictions). We have elaborated on the use of

142 CHAPTER 5. APPLICATIONS

white-box cryptography for hardware devices.
The original strategy to white-box cryptography algorithms by transforming

them into a encoded network of lookup tables, originates from data flow obfus-
cation research, where values in a program are computed with in encoded form.
Implementing the subsequent decoding, computing and re-encoding of the val-
ues into small lookup tables is the preceding idea of white-boxing as proposed
by Chow et al.. We elaborate on the use of white-box cryptography for com-
puting on encoded values. We also make a connection towards secure function
evaluation, another technique to compute on encoded values.

A fourth application domain we elaborate upon, is that of software protection.
This includes techniques to prevent tampering of software implementations, by
means of self-cheking techniques, or software hardening techniques. Within the
context of networked applications, trustworthy execution is becoming a basic
requirement. We discuss various technologies that are being developed, in order
to offer a certain degree of guarantee to an entity that software is executed
trustworthy on untrusted machines. One specific architecture that describes this
setting is the White-Box Remote Program Execution model.

To conclude, we introduce the concept of Digital Rights Management, and
discuss traitor tracing.

Chapter 6

Conclusions and Further
Research

6.1 Conclusions

Cryptographic algorithms are tools to protect the information infrastructure in
our rapidly evolving information society. We become increasingly dependent
on the exchange of data, and the deployment of complex software applications,
supported by the growing availability of communication networks and open com-
puting platforms. The trend towards increased access to software applications
offers new opportunities on the one hand, but poses new threats on the other
hand.

In many applications, an adversary can obtain access to the implementation
of cryptosystems, and reveal certain aspects of an algorithm, that eventually can
lead to the extraction of confidential information. We have described a novel at-
tack model, coined the white-box attack model, in which an adversary has access
to the software implementation of cryptographic primitives, and administrative
privileges on its execution platform.

In this thesis, we studied the subject of white-box cryptography, which ad-
dresses implementation issues of cryptographic primitives that are subject to
white-box attacks. We have investigated three major approaches to the topic of
white-box cryptography.

White-box implementations. The central failing of black-box security mod-
els is that the specific implementation of the software algorithm is considered to
be irrelevant for security. However, when considered within a white-box attack

143

144 CHAPTER 6. CONCLUSIONS AND FURTHER RESEARCH

context, the choice of implementation is the only line of defense.
In [43, 42], Chow et al. introduced white-box cryptography and proposed

white-box implementations for the DES and the AES respectively. These con-
structions were hard to evaluate and only indicative metrics were presented. In
subsequent work, improved implementations were presented, and their robust-
ness were investigated by a cryptanalytic process. We have presented the main
cryptanalytic results, that consist of truncated differential fault injection attacks
and algebraic attacks. In conclusion to this work, it appears that widely used
block ciphers are weak against attacks on their software implementation, and it
seems difficult to improve their strength. In particular, the algebraic attacks are
surprisingly effective. Up to some extent, there even seems to be an orthogonality
between traditional (black-box) design criteria for block ciphers, and white-box
design criteria.

Hence, we suggest that a new family of block ciphers needs to be designed,
which take white-box design criteria into consideration. Suggestions towards
new constructions were formulated, based on generalized cryptanalysis results
and analysis of basic building blocks.

Theoretical foundations. A theoretical model for white-box cryptography is
presented, inspired by theoretical models for code obfuscation. WBC requires
that some given scheme remains secure even if the adversary is given white-box
access to a functionality instead of just black-box access. This is closely related
to research in code obfuscation.

We present different models of code obfuscation and their respective theoret-
ical results. Unfortunately, different notions of code-obfuscation imply distinct
(im)possibility results. Moreover, it is difficult to fix one single suitable notion of
obfuscation, that is neither too strong (such that positive results can be achieved)
and neither too weak (such that results are meaningful).

We conceive a slightly different approach, and capture the requirements of
white-box cryptography using a white-box property (WBP). The WBP is defined
for some cryptographic scheme and an appropriate security notion, and implies
that with respect to the security notion, an obfuscation does not leak any “useful”
information, even though it may leak some “useless” non-black-box information.
This way, we aim to achieve a meaningful notion of obfuscation, and obtain
positive results for obfuscators of specific classes of interesting programs (such as
cryptographic primitives). The main result is a negative one – we show that for
every non approximately learnable family, there exist certain (contrived) security
notions for which the WBP fails. On the positive side, we show that under
reasonable computational assumptions, there exist obfuscators that are able to
implement cryptographic primitives in a secure way. E.g., an obfuscation of a
symmetric encryption is presented, that is IND-CPA secure under the bilinear

6.2. FUTURE WORK 145

Diffie-Hellman assumption.

Applications. The white-box attack model reflects the attack model of many
practical applications. As a result, research in white-box cryptography is bene-
ficial for a vast range of applications. This includes digital rights management
applications, cryptographic software deployed on several devices such as mobile
phones and set-top boxes, gaming platforms, and mobile agents. Moreover, tech-
niques developed for white-box cryptography carry over to other topics related to
cryptology, and vice versa. This includes the deployment of white-box techniques
as a countermeasure for side-channel cryptanalysis, e.g., to obtain secure imple-
mentations for mobile devices. Also, while white-box implementations mainly
focus on the secure implementation of standalone applications (e.g., implemen-
tation of encryption functions), we can extent the results towards a networked
scenario. This is of interest within a context of trustworthy execution of software,
and has its applications in the gaming industry and in grid computing.

6.2 Future Work

White-box cryptography is a novel, challenging research topic that aims for solu-
tions in the most powerful attack model. It also has connections to a substantial
number of other topics (e.g., secure function evaluation). We have explored three
major approaches in this thesis, and have identified a broad range of future re-
search directions. We present an assessment of the most important directions for
future research.

Design of a new block cipher. In Chapter 3, we discussed the state of the
art white-box implementations, and have presented cryptanalysis results on each
of them. Similar to the research in block ciphers in the past decades, a process
of scrutinizing needs to be initialized. New block ciphers that satisfy both black-
box and white-box design criteria need to be presented, and analyzed in a public
context. This should lead to improved analysis techniques, metrics, and design
criteria. In Sect. 3.9.1, suggestions for the construction of such a block cipher
are presented. One idea would consist in implementing lookup tables that use
several non-compatible operators to thwart algebraic analysis, and make sure the
implementation consists of lookup tables with small input size, while their output
size can be arbitrary.

In the theoretical approach, we have presented some positive results on the
existence of secure white-box implementations. However, the constructions are
subject to discussion. The symmetric primitive that is obfuscated (and hence
results into an asymmetric primitive), is deduced from a primitive that was orig-

146 CHAPTER 6. CONCLUSIONS AND FURTHER RESEARCH

inally asymmetric. This observation indicates that a new block ciphers could
involve building blocks that are originally designed for asymmetric schemes, from
areas including Multivariate Cryptography (Hidden Field Equations (HFE), Iso-
morphic Polymorphisms, and C∗; see Wolf [188]) for an overview.

Design criteria. Closely related to the study for a new block cipher, is the
study on design criteria. These should go beyond metrics, and include design
criteria obtained from cryptanalysis results. Preferable, up to some extent they
should also agree with design criteria for block ciphers. The algebraic crypt-
analysis results naturally extend from equivalence solving, due to the nature of
the obfuscation process (injection of random annihilating encodings). Hence the
research on equivalence solvers is an interesting related study subject. The fol-
lowing equivalence solvers have been used in algebraic cryptanalysis of white-box
implementations (see also Sect. 3.6.2):

• Billet et al. [21]: extraction of the non-linear part of the encodings that
have some (known) double bijective behaviour,

• Biryukov et al. [22]: linear and affine equivalence solvers for S-boxes,

• Michiels et al. [135]: equivalence solvers for matrics,

• Faugère et al. [64]: equivalence solvers for isomorphic polymorfisms.

Theoretical results. We have shown a positive result on obfuscation by pre-
senting an obfuscatable encryption scheme that satisfies IND-CPA security, based
on the bilinear Diffie-Hellman hardness assumption. An interesting direction is
to formulate other meaningful constructions that can be shown secure for some
security notion, such as a family of obfuscatable signature schemes that satisfies
an appropriate security notion. A similar result has been obtained by Hofheinz
et al. [91] under their notion of obfuscation, where the obfuscation of a message
authentication code (MAC) that satisfies MAC-CMA (chosen message attack),
results into a signature scheme that satisfies SIG-CMA.

A second interesting theoretical research direction is the reduction of WBP to
IND-soundness. Such a simplified definition might be more appealing, however
it is possible that IND-soundness is too strong to be satisfied. Remark that this
direction is only interesting for the obfuscation of probabilistic functions. It has
been shown (in Wee [186], Hofheinz et al. [91], and by Proposition 2) that deter-
ministic functions satisfy IND-soundness when they are (approximately) learn-
able, hence ruling out interesting families of functions (such as cryptographic
primitives). We also wish to emphasize that probabilistic (symmetric) primi-
tives are also a much more interesting subject of study from a practical point

6.2. FUTURE WORK 147

of view (where the randomness is part of the input), because their obfuscation
then results into probabilistic asymmetric primitives (deterministic asymmetric
primitives have some drawbacks).

Applications. In Chapter 5, we have presented some interesting directions
for further research. These include directions towards the practical deployment
of white-box techniques within the context of software protection (e.g., for the
gaming industry), and the deployment on hardware and constrained devices;
the development of new cryptographic primitives such as asymmetric schemes,
programmable random oracles, and homomorphic encryption schemes; augment-
ing white-box techniques to enable extra functionality such as traitor tracing,
software tamper resistance, and watermarking; and the aid towards trustworthy
execution, and virtualization.

Conversably, there are related application domains and research topics that
might be beneficial for white-box techniques such as masking techniques against
side-channel cryptanalysis, asymmetric cryptosystems (e.g., multivariate cryp-
tography), and techniques for secure function evaluation.

148 CHAPTER 6. CONCLUSIONS AND FURTHER RESEARCH

Bibliography

[1] Carlisle M. Adams and Stafford E. Tavares. Designing S-boxes for ciphers resistant
to differential cryptanalysis. In Proceedings of the 3rd Symposium on State and
Progress of Research in Cryptography, pages 181–190, 1993. 18

[2] Ben Adida and Douglas Wikström. How to Shuffle in Public. In Proceedings
of 4th Theory of Cryptography Conference (TCC 2007), volume 4392 of Lecture
Notes in Computer Science, pages 555–574. Springer-Verlag, 2007. 95

[3] Ibrahim A. Al-Kadi. The origins of cryptology: The Arab contributions, volume
16(2) of Cryptologia, pages 97–126. April 1992. 4

[4] ATMExpress. Understanding ATM Security: Tripe DES Technology, Remote Key
Entry, and EPP’s. https://www.atmexpress.com/downloads/tripledes.pdf. 21

[5] Boaz Barak. How to Go Beyond the Black-Box Simulation Barrier. In Proceedings
of the 42nd symposium on Foundations of Computer Science (FOCS 2001), IEEE
Computer Society, pages 106–115, Washington, DC, USA, 2001. IEEE Computer
Society. 86

[6] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai,
Salil Vadhan, and Ke Yang. On the (Im)possibility of Obfuscating Programs.
In Advances in Cryptology - CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 1–18. Springer-Verlag, 2001. 81, 84, 85, 86, 87, 89, 90,
91, 93, 95, 96, 100, 103, 104, 110, 124, 136

[7] P. Barreto and V. Rijmen. The Khazad legacy-level block cipher. In First open
NESSIE Workshop, page 15. 13-14 November 2000. 62

[8] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway. A Concrete Security
Treatment of Symmetric Encryption. In Proceedings of the 38th Symposium on
Foundations of Computer Science (FOCS 1997), IEEE Computer Society, pages
394–403, 1997. 97, 98, 99

[9] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations
Among Notions of Security for Public-Key Encryption Schemes. In Advances in
Cryptology - CRYPTO 1998, volume 1462 of Lecture Notes in Computer Science,
pages 26–45. Springer-Verlag, 1998. 96, 97

149

https://www.atmexpress.com/downloads/tripledes.pdf

150 Bibliography

[10] Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A Paradigm
for Designing Efficient Protocols. In Proceedings of the 1st ACM Conference on
Computer and Communications Security (CCS 1993), pages 62–73. ACM Press,
1993. 84, 93, 125

[11] Mihir Bellare and Phillip Rogaway. The Security of Triple Encryption and a
Framework for Code-Based Game-Playing Proofs. In Advances in Cryptology -
EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages
409–426. Springer-Verlag, 2006. 96, 97

[12] Ryad Benadjila, Olivier Billet, and Stanislas Francfort. Drm to counter side-
channel attacks? In Proceedings of 7th ACM Workshop on Digital Rights Man-
agement (DRM 2007), pages 23–32, New York, NY, USA, 2007. ACM Press.
128

[13] Eli Biham. New types of cryptanalytic attacks using related keys. In Advances
in Cryptology - EUROCRYPT 1993, volume 765 of Lecture Notes in Computer
Science, pages 398–409, Secaucus, NJ, USA, 1994. Springer-Verlag. 28

[14] Eli Biham. Cryptanalysis of Patarin’s 2-Round Public Key System with S Boxes
(2R). In Advances in Cryptology - EUROCRYPT 2000, volume 1807 of Lecture
Notes in Computer Science, pages 408–416. Springer-Verlag, 2000. 41

[15] Eli Biham, Ross J. Anderson, and Lars R. Knudsen. Serpent: A New Block Cipher
Proposal. In Proceedings of the 5th International Workshop on Fast Software
Encryption (FSE 1998), volume 1372 of Lecture Notes in Computer Science, pages
222–238, London, UK, 1998. Springer-Verlag. 62

[16] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosystems.
In Advances in Cryptology - CRYPTO 1990, volume 537 of Lecture Notes in
Computer Science, pages 2–21. Springer-Verlag, 1990. 21, 27

[17] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Data Encryption
Standard. Springer-Verlag, London, UK, 1993. 27

[18] Eli Biham and Adi Shamir. Differential Fault Analysis of Secret Key Cryptosys-
tems. In Advances in Cryptology - CRYPTO 1997, volume 1294 of Lecture Notes
in Computer Science, pages 513–525. Springer-Verlag, 1997. 55

[19] Eli Biham and Adi Shamir. Power Analysis of the Key Scheduling of the AES
Candidates. Presented at the 2nd AES Candidate Conference, Rome, March
22–23, 1999. 36, 37

[20] Olivier Billet and Henri Gilbert. A Traceable Block Cipher. In Advances in Cryp-
tology - ASIACRYPT 2003, volume 2894 of Lecture Notes in Computer Science,
pages 331–346. Springer-Verlag, 2003. 41, 63, 81, 141

[21] Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi. Cryptanalysis of a White
Box AES Implementation. In Proceedings of the 11th International Workshop
on Selected Areas in Cryptography (SAC 2004), volume 3357 of Lecture Notes in
Computer Science, pages 227–240. Springer-Verlag, 2004. 44, 59, 60, 65, 82, 83,
146

Bibliography 151

[22] Alex Biryukov, Christophe De Cannière, An Braeken, and Bart Preneel. A Tool-
box for Cryptanalysis: Linear and Affine Equivalence Algorithms. In Advances
in Cryptology - EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer
Science, pages 33–50. Springer-Verlag, 2003. 61, 62, 65, 146

[23] Dan Boneh, Richard A. Demillo, and Richard J. Lipton. On the importance
of eliminating errors in cryptographic computations. Journal of Cryptology,
14(2):101–119, 2001. 36, 37

[24] Dan Boneh and Matthew K. Franklin. Identity-Based Encryption from the Weil
Pairing. In Advances in Cryptology - CRYPTO 2001, volume 2139 of Lecture
Notes in Computer Science, pages 213–229. Springer-Verlag, 2001. 113, 114, 115

[25] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and Ver-
ifiably Encrypted Signatures from Bilinear Maps. In Advances in Cryptology -
EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages
416–432. Springer-Verlag, 2003. 113

[26] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF Formulas on Ci-
phertexts. In Proceedings of 2th Theory of Cryptography Conference (TCC 2005),
volume 3378 of Lecture Notes in Computer Science, pages 325–341. Springer-
Verlag, 2005. 40, 129

[27] Dan Boneh, Ben Lynn, and Hovav Shacham. Short Signatures from the Weil
Pairing. In Advances in Cryptology - ASIACRYPT 2001, volume 2248 of Lecture
Notes in Computer Science, pages 514–532, London, UK, 2001. Springer-Verlag.
113

[28] Dan Boneh and James Shaw. Collusion-Secure Fingerprinting for Digital Data
(Extended Abstract). In Advances in Cryptology - CRYPTO 1995, volume 963 of
Lecture Notes in Computer Science, pages 452–465, London, UK, 1995. Springer-
Verlag. 141

[29] Johan Borst, Bart Preneel, and V Joos. On the time-memory tradeoff between
exhaustive key search and table precomputation. In Proceedings of the 19th Sym-
posium in Information Theory in the Benelux, WIC, pages 111–118, 1998. 26

[30] An Braeken. Cryptographic Properties of Boolean Functions and S-Boxes. PhD
thesis, Katholieke Universiteit Leuven, 2006. 80

[31] Julien Bringer, Hervé Chabanne, and Emmanuelle Dottax. Perturbing and Pro-
tecting a Traceable Block Cipher. In Proceedings of the 10th Communications
and Multimedia Security (CMS 2006), volume 4237 of Lecture Notes in Computer
Science, pages 109–119. Springer-Verlag, 2006. 41, 141

[32] Julien Bringer, Herve Chabanne, and Emmanuelle Dottax. White box cryptog-
raphy: Another attempt. Cryptology ePrint Archive, Report 2006/468, 2006.
http://eprint.iacr.org/. 41, 81

[33] Lawrence Brown and Jennifer Seberry. On the design of permutation P in DES
type cryptosystems. In Advances in Cryptology - EUROCRYPT 1989, volume
434 of Lecture Notes in Computer Science, pages 696–705, New York, NY, USA,
1990. Springer-Verlag. 74

http://eprint.iacr.org/

152 Bibliography

[34] Ran Canetti. Towards Realizing Random Oracles: Hash Functions That Hide
All Partial Information. In Advances in Cryptology - CRYPTO 1997, volume
1294 of Lecture Notes in Computer Science, pages 455–469, London, UK, 1997.
Springer-Verlag. 86, 93, 94, 96, 117

[35] Ran Canetti and Ronny Ramzi Dakdouk. Obfuscating Point Functions with
Multibit Output. In Advances in Cryptology - EUROCRYPT 2008, volume 4965
of Lecture Notes in Computer Science, pages 489–508. Springer-Verlag, 2008. 84,
94, 112, 126

[36] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. Journal of the ACM, 51(4):557–594, 2004. 126

[37] Ran Canetti, Daniele Micciancio, and Omer Reingold. Perfectly One-Way Prob-
abilistic Hash Functions (Preliminary Version). In Proceedings of the 30th ACM
Symposium on Theory of Computing (STOC 1998), pages 131–140. ACM Press,
1998. 93, 96

[38] Jan Cappaert, Brecht Wyseur, and Bart Preneel. Software security techniques.
COSIC internal report, Katholieke Universiteit Leuven, 2004. 86, 130

[39] Vincent Carlier, Herve Chabanne, and Emmanuelle Dottax. Grey-Box Implemen-
tation of Block Ciphers Preserving the Confidentiality of their Design. Cryptology
ePrint Archive, Report 2004/188, 2004. http://eprint.iacr.org/. 41

[40] Suresh Chari, Charanjit Jutla, Josyula R. Rao, and Pankaj Rohatgi. A cautionary
note regarding evaluation of AES candidates on smart-cards. In 2nd Advanced
Encryption Standard Candidate Conference, pages 133–147, 1999. 36, 37

[41] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template Attacks. In Pro-
ceedings of 4th International Workshop on Cryptographic Hardware and Embedded
Systems (CHES 2002), volume 2523, pages 13–28, London, UK, 2003. Springer-
Verlag. 30

[42] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot.
White-Box Cryptography and an AES Implementation. In Proceedings of the
9th International Workshop on Selected Areas in Cryptography (SAC 2002), vol-
ume 2595 of Lecture Notes in Computer Science, pages 250–270. Springer, 2002.
xxiv, 14, 34, 36, 40, 43, 44, 45, 50, 51, 54, 61, 83, 144

[43] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot. A
white-box DES implementation for DRM applications. In Proceedings of the ACM
Workshop on Security and Privacy in Digital Rights Management (DRM 2002),
volume 2696 of Lecture Notes in Computer Science, pages 1–15. Springer, 2002.
xxiv, 14, 36, 38, 40, 43, 44, 45, 46, 50, 54, 61, 77, 83, 140, 144

[44] Cloakware. Cloakware Introduces High-Security Software Solutions for
North American Cable Operators. http://security.cloakware.com/news/

press-releases-details.php?id=116, December 3 2008. 140

[45] Christian Collberg, Clark Thomborson, and Douglas Low. A Taxonomy of Ob-
fuscating Transformations. Technical Report 148, July 1997. 43, 85

http://eprint.iacr.org/
http://security.cloakware.com/news/press-releases-details.php?id=116
http://security.cloakware.com/news/press-releases-details.php?id=116

Bibliography 153

[46] Christian Collberg, Clark Thomborson, and Douglas Low. Manufacturing Cheap,
Resilient, and Stealthy Opaque Constructs. In Principles of Programming Lan-
guages (POPL 1998), San Diego, CA, January 1998. 43

[47] Christian S. Collberg, Clark D. Thomborson, and Douglas Low. Breaking Ab-
stractions and Unstructuring Data Structures. In Proceedings of the 1998 In-
ternational Conference on Computer Languages (ICCL 1998), IEEE Computer
Society, pages 28–38, 1998. 11

[48] D. Coppersmith. The Data Encryption Standard (DES) and its strength against
attacks. IBM J. Res. Dev., 38(3):243–250, 1994. 72

[49] IBM Corporation. IBM Systems Virtualization - description of basic con-
cepts. available online at http://publib.boulder.ibm.com/infocenter/

eserver/v1r2/topic/eicay/eicay.pdf, 2005. 133

[50] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Efficient
Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equa-
tions. In Advances in Cryptology - EUROCRYPT 2000, volume 1807 of Lecture
Notes in Computer Science, pages 392–407. Springer-Verlag, 2000. 41, 141

[51] Nicolas Courtois and Josef Pieprzyk. Cryptanalysis of Block Ciphers with Overde-
fined Systems of Equations. In Advances in Cryptology - ASIACRYPT 2002, vol-
ume 2501 of Lecture Notes in Computer Science, pages 267–287, London, UK,
2002. Springer-Verlag. 28

[52] Joan Daemen, Michael Peeters, and Gilles Van Assche. Bitslice Ciphers and
Power Analysis Attacks. In Proceedings of the 7th International Workshop on
Fast Software Encryption (FSE 2000), volume 1978 of Lecture Notes in Computer
Science, pages 134–149, London, UK, 2001. Springer-Verlag. 36, 37

[53] Joan Daemen and Vincent Rijmen. Resistance against implementation attacks: a
comparative study of the AES proposals. In Proceedings of the 2nd AES Candidate
Conference, pages 122–132, 1999. 36, 37

[54] Joan Daemen and Vincent Rijmen. The Design of Rijndael. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2002. 23, 25

[55] Alexander W. Dent. Fundamental problems in provable security and cryptogra-
phy. Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 364(1849):3215–3230, 2006. 96

[56] Yvo Desmedt and Jean-Jacques Quisquater. Public-Key Systems Based on the
Difficulty of Tampering (Is There a Difference Between DES and RSA?). In Ad-
vances in Cryptology - CRYPTO 1986, volume 263 of Lecture Notes in Computer
Science, pages 111–117. Springer-Verlag, 1987. 124

[57] Yvo Desmedt, Jean-Jacques Quisquater, and M. Davio. Dependence of output
on input in DES. Small avalanche characteristics. In Advances in Cryptology -
CRYPTO 1984, volume 196 of Lecture Notes in Computer Science, pages 359–376.
Springer-Verlag, 1985. 57

http://publib.boulder.ibm.com/infocenter/eserver/v1r2/topic/eicay/eicay.pdf
http://publib.boulder.ibm.com/infocenter/eserver/v1r2/topic/eicay/eicay.pdf

154 Bibliography

[58] Leonard Eugene Dickson. Linear Groups with an Exposition of the Galois Field
Theory. New York: Dover Publications, 1958. With an introduction by Wilhelm
Magnus. 43

[59] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, IT-22(6):644–654, 1976. 16, 124

[60] Jintai Ding. A New Variant of the Matsumoto-Imai Cryptosystem through Per-
turbation. In Proceedings of the 7th International Workshop on Theory and Prac-
tice in Public Key Cryptography (PKC 2004), volume 2947 of Lecture Notes in
Computer Science, pages 305–318. Springer-Verlag, 2004. 41, 141

[61] Yevgeniy Dodis and Adam Smith. Correcting errors without leaking partial in-
formation. In Proceedings of the 37th ACM Symposium on Theory of Computing
(STOC 2005), pages 654–663. ACM Press, 2005. 94

[62] Electronic Frontier Foundation DES Cracker Press Release, July 17,
1998. http://w2.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/HTML/

19980716_eff_descracker_pressrel.html. 21

[63] Engadget. FairUse4WM strips Windows Media DRM! http://www.engadget.

com/2006/08/25/fairuse4wm-strips-windows-media-drm, August 25 2006. 9

[64] Jean-Charles Faugère and Ludovic Perret. Polynomial Equivalence Problems:
Algorithmic and Theoretical Aspects. In Advances in Cryptology - EUROCRYPT
2006, volume 4004 of Lecture Notes in Computer Science, pages 30–47. Springer-
Verlag, 2006. 41, 63, 141, 146

[65] Sebastian Faust, Brecht Wyseur, and Gregory Neven. Pin-Based Digital Lockers.
COSIC internal report, 2007. 94

[66] Ed Felten. AACS: Extracting and Using Keys. http://www.freedom-to-tinker.
com/?p=1106, January 10, 2007. 9, 140

[67] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic Anal-
ysis: Concrete Results. In Proceedings of 3rd International Workshop on Cryp-
tographic Hardware and Embedded Systems (CHES 2001), volume 2162, pages
251–261, London, UK, 2001. Springer-Verlag. 30

[68] Juan A. Garay and Lorenz Huelsbergen. Software integrity protection using timed
executable agents. In Proceedings of the ACM Symposium on Information, com-
puter and communications security (ASIACCS 2006), pages 189–200, New York,
NY, USA, 2006. ACM. 135

[69] Craig Gentry. On Homomorphic Encryption over Circuits over Arbitrary Depth.
In Proceedings of the 41th ACM Symposium on Theory of Computing (STOC
2009), New York, NY, USA, 2009. ACM Press. 129

[70] Jonathon T. Giffin, Mihai Christodorescu, and Louis Kruger. Strengthening Soft-
ware Self-Checksumming via Self-Modifying Code. In Proceedings of the 21st An-
nual Computer Security Applications Conference (ACSAC 2005), pages 23–32,
Washington, DC, USA, 2005. IEEE Computer Society. 131

http://w2.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/HTML/19980716_eff_descracker_pressrel.html
http://w2.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/HTML/19980716_eff_descracker_pressrel.html
http://www.engadget.com/2006/08/25/fairuse4wm-strips-windows-media-drm
http://www.engadget.com/2006/08/25/fairuse4wm-strips-windows-media-drm
http://www.freedom-to-tinker.com/?p=1106
http://www.freedom-to-tinker.com/?p=1106

Bibliography 155

[71] Oded Goldreich. A uniform complexity treatment of encryption and zero-
knowledge. Journal of Cryptology, 6:21–53, 1993. 98

[72] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge Univer-
sity Press, New York, NY, USA, 2000. 23, 84

[73] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to Play any Mental Game
or A Completeness Theorem for Protocols with Honest Majority. In Proceedings
of the 19th ACM Symposium on Theory of Computing (STOC 1987), pages 218–
229. ACM Press, 1987. 40, 130

[74] S Goldwasser, S Micali, and C Rackoff. The knowledge complexity of interactive
proof-systems. In Proceedings of the 17th annual ACM Symposium on Theory
of Computing (STOC 1985), pages 291–304, New York, NY, USA, 1985. ACM
Press. 86

[75] Shafi Goldwasser and Mihir Bellare. Lecture Notes on Cryptography. http:

//www-cse.ucsd.edu/~mihir/papers/gb.html, August 2001. 283 pages. 84

[76] Shafi Goldwasser and Yael Tauman Kalai. On the Impossibility of Obfuscation
with Auxiliary Input. In Proceedings of the 46th Symposium on Foundations of
Computer Science (FOCS 2005), IEEE Computer Society, pages 553–562, Wash-
ington, DC, USA, 2005. IEEE Computer Society. 84, 91, 93, 96, 100, 103, 140

[77] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-Time Pro-
grams. In Advances in Cryptology - CRYPTO 2008, volume 5157 of Lecture Notes
in Computer Science, pages 39–56. Springer-Verlag, 2008. 127

[78] Shafi Goldwasser and Silvio Micali. Probabilistic Encryption and How to Play
Mental Poker Keeping Secret All Partial Information. In Proceedings of the 14th
ACM Symposium on Theory of Computing (STOC 1982), pages 365–377. ACM
Press, 1982. 96, 97, 128

[79] Shafi Goldwasser and Silvio Micali. Probabilistic Encryption. Journal of Com-
puter and System Sciences, 28(2):270–299, 1984. 41, 96, 97

[80] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A Digital Signature Scheme
Secure Against Adaptive Chosen-Message Attacks. SIAM Journal on Computing,
17(2):281–308, 1988. 97

[81] Shafi Goldwasser and Guy N. Rothblum. On Best-Possible Obfuscation. In Pro-
ceedings of 4th Theory of Cryptography Conference (TCC 2007), volume 4392 of
Lecture Notes in Computer Science, pages 194–213. Springer-Verlag, 2007. 84, 93

[82] Louis Goubin, Jean-Michel Masereel, and Michaël Quisquater. Cryptanalysis
of White Box DES Implementations. In Proceedings of the 14th International
Workshop on Selected Areas in Cryptography (SAC 2007), volume 4876 of Lecture
Notes in Computer Science, pages 278–295. Springer-Verlag, 2007. 44, 54, 57, 68,
83

[83] David Grawrock. The Intel Safer Computing Initiative – Building Blocks for
Trusted Computing. Intel Press, 2006. 133

http://www-cse.ucsd.edu/~mihir/papers/gb.html
http://www-cse.ucsd.edu/~mihir/papers/gb.html

156 Bibliography

[84] Satoshi Hada. Zero-Knowledge and Code Obfuscation. In Tatsuaki Okamoto,
editor, Advances in Cryptology - ASIACRYPT 2000, volume 1976 of Lecture Notes
in Computer Science, pages 443–457, London, UK, 2000. Springer-Verlag. 84, 86,
89, 91, 92

[85] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W.
Felten. Lest we remember: cold boot attacks on encryption keys. In Proceedings
of the 17th USENIX Security Symposium (USENIX 2008), pages 45–60, 2008. 10

[86] Colin G. Harrison, David M. Chess, and Aaron Kershenbaum. Mobile Agents:
Are they a good idea? Technical report, IBM T.J. Watson Research Center,
P.O.Box 704, Yorktown Heights, NY 10598, 1985. 7

[87] M. Hellman. A cryptanalytic time-memory trade off. IEEE Transactions on
Information Theory, IT–26(4):401–406, 1980. 26

[88] Amir Herzberg and Haya Shulman. Robust combiners for white-box security.
Cryptology ePrint Archive, Report 2008/150, 2008. http://eprint.iacr.org/.
137

[89] Amir Herzberg, Haya Shulman, Amitabh Saxena, and Bruno Crispo. Towards a
theory of white-box security. Cryptology ePrint Archive, Report 2008/087, 2008.
http://eprint.iacr.org/. 84, 95, 136, 137

[90] Hex-Rays. The IDA Pro Dissasembler and Debugger. http://www.hex-rays.

com/idapro/. 11, 34

[91] Dennis Hofheinz, John Malone-Lee, and Martijn Stam. Obfuscation for Cryp-
tographic Purposes. In Proceedings of 4th Theory of Cryptography Conference
(TCC 2007), volume 4392 of Lecture Notes in Computer Science, pages 214–232.
Springer-Verlag, 2007. 84, 88, 89, 91, 92, 94, 95, 96, 100, 103, 112, 113, 117, 119,
124, 146

[92] Greg Hoglund and Gary McGraw. Exploiting online games: cheating massively
distributed systems. Addison-Wesley Professional, 2007. 135

[93] Susan Hohenberger, Guy Rothblum, Abhi Shelat, and Vinod Vaikuntanathan.
Securely Obfuscating Re-Encryption. In Proceedings of 4th Theory of Cryptogra-
phy Conference (TCC 2007), volume 4392 of Lecture Notes in Computer Science,
pages 233–252. Springer-Verlag, 2007. 37, 84, 87, 89, 92, 94, 95, 96, 100, 103, 104,
112, 115, 117, 119, 120, 124

[94] Fritz Hohl. Time Limited Blackbox Security: Protecting Mobile Agents From
Malicious Hosts. In Mobile Agents and Security, volume 1419, pages 92–113,
London, UK, 1998. Springer-Verlag. 7, 34, 44, 83

[95] Bill Horne, Lesley R. Matheson, Casey Sheehan, and Robert Endre Tarjan. Dy-
namic self-checking techniques for improved tamper resistance. In DRM ’01: Re-
vised Papers from the ACM CCS-8 Workshop on Security and Privacy in Digital
Rights Management, pages 141–159, London, UK, 2002. Springer-Verlag. 131

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.hex-rays.com/idapro/
http://www.hex-rays.com/idapro/

Bibliography 157

[96] Russell Impagliazzo and Michael Luby. One-way Functions are Essential for Com-
plexity Based Cryptography (Extended Abstract). In Proceedings of the 30th
Symposium on Foundations of Computer Science (FOCS 1989), IEEE Computer
Society, pages 230–235, 1989. 91

[97] Apple Inc. iTunes home page. http://www.apple.com/itunes/. 8, 139

[98] Intel. Advanced Encryption Standard (AES) Instruc-
tion Set. http://software.intel.com/en-us/articles/

advanced-encryption-standard-aes-instructions-set, August 25 2008.
23

[99] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private Cir-
cuits II: Keeping Secrets in Tamperable Circuits. In Advances in Cryptology -
EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages
308–327. Springer-Verlag, 2006. 30

[100] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware
against probing attacks. In In Proceedings of CRYPTO 2003, pages 463–481.
Springer-Verlag, 2003. 30

[101] Matthias Jacob, Dan Boneh, and Edward W. Felten. Attacking an Obfuscated
Cipher by Injecting Faults. In Proceedings of the ACM Workshop on Security
and Privacy in Digital Rights Management (DRM 2002), volume 2696 of Lecture
Notes in Computer Science, pages 16–31. Springer, 2002. 44, 50, 54, 55

[102] Marc Joye. On White-Box Cryptography. In Atilla Elci, S. Berna Ors, and Bart
Preneel, editors, First International Conference on Security of Information and
Networks (SIN 2007), Security of Information and Networks, pages 7–12. Trafford
Publishing, May 7-11 2007. 124

[103] David Kahn. The Codebreakers: The Story of Secret Writing. New York: Macmil-
lan, 1967. 3, 4, 5

[104] Auguste Kerckhoffs. La cryptography militaire. Journal des sciences militaires,
IX:5–38, Janvier 1883. 4, 16

[105] Tim Kerins and Klaus Kursawe. A cautionary note on weak implementations
of block ciphers. In 1st Benelux Workshop on Information and System Security
(WISSec 2006), page 12, Antwerp, BE, 2006. 11

[106] Joe Kilian and Phillip Rogaway. How to Protect DES Against Exhaustive Key
Search. In Advances in Cryptology - CRYPTO 1996, volume 1109 of Lecture Notes
in Computer Science, pages 252–267, London, UK, 1996. Springer-Verlag. 12

[107] Jongsung Kim, Seokhie Hong, and Bart Preneel. Related-Key Rectangle Attacks
on Reduced AES-192 and AES-256. In Proceedings of the 14th International
Workshop on Fast Software Encryption (FSE 2007), volume 4593 of Lecture Notes
in Computer Science. Springer-Verlag, 2007. 28

[108] Lars R. Knudsen. Truncated and Higher Order Differentials. In Proceedings of
the 2nd International Workshop on Fast Software Encryption (FSE 1994), volume
1008 of Lecture Notes in Computer Science, pages 196–211. Springer-Verlag, 1994.
27

http://www.apple.com/itunes/
http://software.intel.com/en-us/articles/advanced-encryption-standard-aes-instructions-set
http://software.intel.com/en-us/articles/advanced-encryption-standard-aes-instructions-set

158 Bibliography

[109] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In Advances in Cryptology - CRYPTO 1996, volume
1109 of Lecture Notes in Computer Science, pages 104–113, London, UK, 1996.
Springer-Verlag. 28, 29

[110] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In Advances in Cryptology - CRYPTO 1999, volume 1666 of Lecture Notes in
Computer Science, pages 388–397, London, UK, 1999. Springer-Verlag. 29

[111] Vladimir Kolesnikov. Gate evaluation secret sharing and secure one-round
twoparty computation. In Advances in Cryptology - ASIACRYPT 2005, vol-
ume 3788 of Lecture Notes in Computer Science, pages 136–155. Springer-Verlag,
2005. 40, 130

[112] Boris Köpf and David Basin. An information-theoretic model for adaptive side-
channel attacks. In Proceedings of the 14th ACM conference on Computer and
communications security (CCS 2007), pages 286–296, New York, NY, USA, 2007.
ACM Press. 30

[113] Advanced Access Content System Licensing Administrator (AACS LA). AACS
– Advances Access Content System. http://www.aacsla.com/. 9

[114] RSA Laboratories. Pkcs #5 v2.1: Password-based cryptography standard. http:
//www.rsa.com/rsalabs/node.asp?id=2127, October 5, 2006. 94

[115] Xuejia Lai and James L. Massey. A Proposal for a New Block Encryption Stan-
dard. In Advances in Cryptology - EUROCRYPT 1990, volume 473 of Lecture
Notes in Computer Science, pages 389–404. Springer-Verlag, 1990. 81

[116] Alan C. Lin. Software Obfuscation with Symmetric Cryptography. Master’s
thesis, Air Force Institute of Technology (AFIT), Wright-Patterson Air Force
Base, Ohio, 2008. 44

[117] Yehuda Lindell and Benny Pinkas. An Efficient Protocol for Secure Two-Party
Computation in the Presence of Malicious Adversaries. In Advances in Cryptology
- EUROCRYPT 2007, volume 4515 of Lecture Notes in Computer Science, pages
52–78. Springer-Verlag, 2007. 40, 130

[118] Hamilton E. Link and William D. Neumann. Clarifying Obfuscation: Improving
the Security of White-Box DES. In Proceedings of the International Conference on
Information Technology: Coding and Computing (ITCC 2005), volume 1, pages
679–684, Washington, DC, USA, 2005. IEEE Computer Society. 44, 45, 46, 48,
50, 54, 56

[119] Richard Lipton and Tomas Sander. An Additively Homomorphic Encryp- tion
Scheme or How to Introduce a Partial Trapdoor in the Discrete Log, November
1997. 41

[120] Michael Luby and Charles Rackoff. How to Construct Pseudorandom Permuta-
tions from Pseudorandom Functions. SIAM Journal on Computing, 17(2):373–
386, 1988. 23

[121] Dennis Luciano and Gordon Prichett. Cryptology: From caesar ciphers to public-
key cryptosystems. The College Mathematics Journal, Vol, 18:2–17, 1987. 3

http://www.aacsla.com/
http://www.rsa.com/rsalabs/node.asp?id=2127
http://www.rsa.com/rsalabs/node.asp?id=2127

Bibliography 159

[122] B. Lynn, M. Prabhakaran, and A. Sahai. Positive Results and Techniques for
Obfuscation. In Advances in Cryptology - EUROCRYPT 2004, volume 3027 of
Lecture Notes in Computer Science, pages 20–39. Springer-Verlag, 2004. 84, 93,
96, 103, 112, 117, 126, 139, 140

[123] A. Main and Paul C. van Oorschot. Software Protection and Application Security:
Understanding the Battleground. In International Course on State of the Art and
Evolution of Computer Security and Industrial Cryptography, volume LNCS, June
2003. 34

[124] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Advances in
Cryptology - EUROCRYPT 1993, volume 765 of Lecture Notes in Computer Sci-
ence, pages 386–397, Secaucus, NJ, USA, 1994. Springer-Verlag. 21, 26, 27

[125] Mitsuru Matsui. The First Experimental Cryptanalysis of the Data Encryption
Standard. In Advances in Cryptology - CRYPTO 1994, volume 839 of Lecture
Notes in Computer Science, pages 1–11, London, UK, 1994. Springer-Verlag. 27

[126] Mitsuru Matsui and Atsuhiro Yamagishi. A New Method for Known Plaintext
Attack of FEAL Cipher. In Advances in Cryptology - EUROCRYPT 1992, Lecture
Notes in Computer Science. Springer-Verlag, 1992. 27

[127] Brian Matt, Andrew Reisse, Tom Van Vleck, Steve Schwab, and Patrick Leblanc.
Self-protecting mobile agents obfuscation report - final report, network associates
laboratories, report #03-015. Technical report, 2003. 7

[128] Gary McGraw and Greg Hoglund. Online games and security. IEEE Security and
Privacy, 5(5):76–79, 2007. 135

[129] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of
Applied Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1996. 5, 11, 17

[130] Ralph C. Merkle. Fast Software Encryption Functions. In Advances in Cryptology
- CRYPTO 1990, volume 537 of Lecture Notes in Computer Science, pages 476–
501, London, UK, 1991. Springer-Verlag. 12

[131] Thomas S. Messerges. Securing the AES Finalists Against Power Analysis At-
tacks. In Proceedings of the 7th International Workshop on Fast Software En-
cryption (FSE 2000), volume 1978 of Lecture Notes in Computer Science, pages
150–164, London, UK, 2001. Springer-Verlag. 127

[132] Silvio Micali and Leonid Reyzin. Physically Observable Cryptography (Ex-
tended Abstract). In Proceedings of the 1st Theory of Cryptography Conference
(TCC 2004), volume 2951 of Lecture Notes in Computer Science, pages 278–296.
Springer-Verlag, 2004. 30

[133] Sam Michiels, Kristof Verslype, Wouter Joosen, and Bart De Decker. Towards a
software architecture for DRM. In Proceedings of 5th ACM Workshop on Digital
Rights Management (DRM 2005), pages 65–74. ACM Press, 2005. 140

[134] Wil Michiels and Paul Gorissen. Mechanism for software tamper resistance: an
application of white-box cryptography. In Proceedings of 7th ACM Workshop on
Digital Rights Management (DRM 2007), pages 82–89. ACM Press, 2007. 132

160 Bibliography

[135] Wil Michiels, Paul Gorissen, and Henk D.L. Hollmann. Cryptanalysis of a Generic
Class of White-Box Implementations. In Proceedings of the 15th International
Workshop on Selected Areas in Cryptography (SAC 2008), Lecture Notes in Com-
puter Science. Springer-Verlag, 2008. 44, 61, 67, 79, 80, 146

[136] Microsoft. Microsoft Windows Media DRM home page. http://www.microsoft.
com/windows/windowsmedia/forpros/drm/default.mspx. 8, 139

[137] Jasvir Nagra, Brecht Wyseur, and Thomas Herlea. Trust Model for Software And
Hardware-based TR methods. RE-TRUST Deliverable D2.1/D3.1, 2007. 131

[138] National Institute of Standards and Technology: Advanced encryption stan-
dard. FIPS publication 197 (2001). http://csrc.nist.gov/publications/fips/
fips197/fips-197.pdf. 23, 62

[139] NIST. National Institute of Standards and Technology. http://www.nist.gov/.
21

[140] Roman Novak. SPA-Based Adaptive Chosen-Ciphertext Attack on RSA Imple-
mentation. In Proceedings of the 5th International Workshop on Practice and
Theory in Public Key Cryptosystems (PKC 2002), pages 252–262, London, UK,
2002. Springer-Verlag. 29

[141] Philippe Oechslin. Making a Faster Cryptanalytic Time-Memory Trade-Off. In
Advances in Cryptology - CRYPTO 2003, volume 2729 of Lecture Notes in Com-
puter Science, pages 617–630, 2003. 26

[142] National Institute of Standards and Technology: Data Encryption Stan-
dard. FIPS publication 46-3 (1977). http://csrc.nist.gov/publications/

fips/fips46-3/fips46-3.pdf. 21

[143] Rafail Ostrovsky and William E. Skeith III. Private Searching on Streaming
Data. In Advances in Cryptology - CRYPTO 2005, volume 3621 of Lecture Notes
in Computer Science, pages 223–240. Springer-Verlag, 2005. Full version appeared
in Journal of Cryptology, 20(4):397-400, 2007. 95, 128

[144] Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree Residu-
osity Classes. In Advances in Cryptology - EUROCRYPT 1999, volume 1592 of
Lecture Notes in Computer Science, pages 223–238. Springer-Verlag, 1999. 40,
128

[145] Jacques Patarin. Hidden Fields Equations (HFE) and Isomorphisms of Polynomi-
als (IP): Two New Families of Asymmetric Algorithms. In Advances in Cryptology
- EUROCRYPT 1996, volume 1070 of Lecture Notes in Computer Science, pages
33–48. Springer-Verlag, 1996. 41, 81, 141

[146] Jacques Patarin and Louis Goubin. Asymmetric cryptography with S-Boxes. In
Proceedings of the First International Conference on Information and Communi-
cation Security (ICICS 1997), pages 369–380, London, UK, 1997. Springer-Verlag.
40, 41

[147] Jacques Patarin, Louis Goubin, and Nicolas Courtois. Improved Algorithms for
Isomorphisms of Polynomials. In Advances in Cryptology - EUROCRYPT 1998,

http://www.microsoft.com/windows/windowsmedia/forpros/drm/default.mspx
http://www.microsoft.com/windows/windowsmedia/forpros/drm/default.mspx
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.nist.gov/
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

Bibliography 161

volume 1403 of Lecture Notes in Computer Science, pages 184–200. Springer-
Verlag, 1998. 41, 141

[148] Charles P. Pfleeger. Security in Computing. Prentice-Hall, Englewood Cliffs,
New-Jersey, 1989. 76

[149] Raphael C.-W. Phan. Related-Key Attacks on Triple-DES and DESX Variants.
In Topics in Cryptology - The Cryptographers’ Track at RSA Conference (CT-
RSA 2004), volume 2694 of Lecture Notes in Computer Science, pages 15–24.
Springer-Verlag, 1994. 21

[150] ECRYPT Stream Cipher Project. AES-CTR benchmark performance. http://

www.ecrypt.eu.org/stream/perf/pentium-m/benchmarks/aes-ctr/aes-128/.
53

[151] Jean-Jacques Quisquater and David Samyde. ElectroMagnetic Analysis (EMA):
Measures and Counter-Measures for Smart Cards. In Proceedings of the Interna-
tional Conference on Research in Smart Cards (E-SMART 2001), pages 200–210,
London, UK, 2001. Springer-Verlag. 30

[152] Michael O. Rabin. How to Exchange Secrets by Oblivious Transfer. Harvard
Center for Research in Computer Technology, manuscript (1981). 40, 130

[153] Charles Rackoff and Daniel R. Simon. Non-Interactive Zero-Knowledge Proof of
Knowledge and Chosen Ciphertext Attack. In Advances in Cryptology - CRYPTO
1991, volume 576 of Lecture Notes in Computer Science, pages 433–444. Springer-
Verlag, 1992. 97, 98

[154] RE-TRUST. Remote EnTrusting by RUn-time Software auThentication . http:

//www.re-trust.org. 134

[155] Oded Regev. Lattice-Based Cryptography. In Advances in Cryptology - CRYPTO
2006, volume 4117 of Lecture Notes in Computer Science, pages 131–141.
Springer-Verlag, 2006. 129

[156] Vincent Rijmen and Bart Preneel. On weaknesses of non-surjective round func-
tions. Designs, Codes, and Cryptography, 12:253–266, 1997. 20

[157] Ronald L. Rivest. Cryptography. In Handbook of Theoretical Computer Science,
Volume A: Algorithms and Complexity (A), pages 717–755. 1990. 3

[158] Ahmad-Reza Sadeghi. private communication, March 15 2008. 134

[159] Ahmad-Reza Sadeghi and Christian Stüble. Property-based Attestation for Com-
puting Platforms: Caring about properties, not mechanisms. In New Security
Paradigms Workshop 2004, pages 67–77. ACM, 2004. 133

[160] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn. Design
and Implementation of a TCG-based Integrity Measurement Architecture. In
Proceedings of the 13th USENIX Security Symposium (USENIX 2004), pages 223–
238, 2004. 133

[161] Tomas Sander and Christian F. Tschudin. On Software Protection via Function
Hiding. In Proceedings of the Second International Workshop on Information
Hiding (IH 1998), volume 1525 of Lecture Notes in Computer Science, pages
111–123, London, UK, 1998. Springer-Verlag. 41

http://www.ecrypt.eu.org/stream/perf/pentium-m/benchmarks/aes-ctr/aes-128/
http://www.ecrypt.eu.org/stream/perf/pentium-m/benchmarks/aes-ctr/aes-128/
http://www.re-trust.org
http://www.re-trust.org

162 Bibliography

[162] Tomas Sander and Christian F. Tschudin. Protecting Mobile Agents Against
Malicious Hosts. In Mobile Agents and Security, volume 1419 of Lecture Notes in
Computer Science, pages 44–60, London, UK, 1998. Springer-Verlag. 7, 34, 44,
83

[163] Tomas Sander and Christian F. Tschudin. Towards Mobile Cryptography. In
Proceedings of the IEEE Symposium on Security and Privacy, pages 215–224,
1998. 7, 34, 44, 83

[164] Tomas Sander, Adam Young, and Moti Yung. Non-Interactive CryptoComputing

For NC1. In Proceedings of the 40th Symposium on Foundations of Computer
Science (FOCS 1999), IEEE Computer Society, pages 554–567, 1999. 40, 130

[165] Amitabh Saxena and Brecht Wyseur. On White-Box Cryptography and Obfusca-
tion. Cryptology ePrint Archive, Report 2008/273, 2008. http://eprint.iacr.

org/. 84, 91, 124

[166] Dries Schellekens, Brecht Wyseur, and Bart Preneel. Remote attestation on legacy
operating systems with trusted platform modules. In 1st International Workshop
on Run Time Enforcement for Mobile and Distributed Systems (REM 2007), vol-
ume 197(1) of Electronic Notes in Theoretical Computer Science, pages 59–72,
Dresden,Germany, 2008. Elsevier. 135, 136

[167] Werner Schindler, Kerstin Lemke, and Christof Paar. A Stochastic Model for Dif-
ferential Side Channel Cryptanalysis. In Proceedings of 7th International Work-
shop on Cryptographic Hardware and Embedded Systems (CHES 2005), volume
3659 of Lecture Notes in Computer Science, pages 30–46. Springer-Verlag, 2005.
30

[168] Bruce Schneier. Description of a New Variable-Length Key, 64-bit Block Cipher
(Blowfish). In Proceedings of the International Workshop on Fast Software En-
cryption (FSE 1993), volume 809 of Lecture Notes in Computer Science, pages
191–204, London, UK, 1994. Springer-Verlag. 12

[169] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, and Chris Hall. On
the Twofish Key Schedule. In Proceedings of the 5th International Workshop on
Selected Areas in Cryptography (SAC 1998), volume 1556 of Lecture Notes in
Computer Science, pages 27–42. Springer-Verlag, 1998. 23

[170] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van Doorn, and
Pradeep K. Khosla. Pioneer: Verifying Code Integrity and Enforcing Untampered
Code Execution on Legacy Systems. In Proceedings of the 20th ACM Symposium
on Operating Systems Principles 2005 (SOSP 2005), pages 1–16. ACM Press,
2005. 135

[171] Adi Shamir. On the Security of DES. In Advances in Cryptology - CRYPTO
1985, volume 218 of Lecture Notes in Computer Science, pages 280–281. Springer-
Verlag, 1986. 27

[172] Adi Shamir and Nicko van Someren. Playing “Hide and Seek” with Stored Keys.
In Proceedings of the Third International Conference on Financial Cryptography
(FC 1999), volume 1648 of Lecture Notes in Computer Science, pages 118–124.
Springer-Verlag, 1999. xiii, 10

http://eprint.iacr.org/
http://eprint.iacr.org/

Bibliography 163

[173] Claude E. Shannon. A mathematical theory of communication. The Bell System
Technical Journal, 27:379–423, 623–, july, october 1948. 2, 4, 9, 15

[174] Claude E. Shannon. Communication theory of secrecy systems. Bell Systems
Technical Journal, 28(4):656—-715, 1949. 18, 19

[175] Symantec. DRM and White-Box Cryptography. https://forums.symantec.com/
syment/blog/article?message.uid=305948, June 26 2007. 140

[176] Sysersoft. Syser debugger. http://www.sysersoft.com/. 34

[177] Anne Tardy-Corfdir and Henri Gilbert. A Known Plaintext Attack of FEAL-4
and FEAL-6. In Advances in Cryptology - CRYPTO 1991, volume 576 of Lecture
Notes in Computer Science. Springer-Verlag, 1992. 27

[178] The COPACOBANA project. http://www.copacobana.org/. 21

[179] W. Thompson. Cryptomorphic Programming: A Random Program Concept.
Florida State University, C.S. Dept., Advanced Cryptography, 2005. 131

[180] Joachim Trescher and Paul Gorissen. Key distribution in unsafe environments.
Philips research laboratories. 42

[181] A. M. Turing. On computable numbers, with an application to the entschei-
dungsproblem. Proc. London Math. Soc., 2(42):230–265, 1936. 85

[182] Leslie G. Valiant. Universal Circuits (Preliminary Report). In Proceedings of
the 8th ACM Symposium on Theory of Computing (STOC 1976), pages 196–203.
ACM Press, 1976. 130

[183] Paul C. van Oorschot, Anil Somayaji, and Glenn Wurster. Hardware-Assisted
Circumvention of Self-Hashing Software Tamper Resistance. IEEE Transactions
on Dependable and Secure Computing, 2(2):82–92, 2005. 13, 131, 132

[184] Paul C. van Oorschot and Michael J. Wiener. Improving Implementable Meet-
in-the-Middle Attacks by Orders of Magnitude. In Advances in Cryptology -
CRYPTO 1996, volume 1109 of Lecture Notes in Computer Science, pages 229–
236, London, UK, 1996. Springer-Verlag. 28

[185] Kristof Verslype and Bart De Decker. A Flexible and Open DRM Framework. In
Proceedings of the 10th Communications and Multimedia Security (CMS 2006),
volume 4237 of Lecture Notes in Computer Science, pages 173–184. Springer-
Verlag, 2006. 140

[186] Hoeteck Wee. On Obfuscating Point Functions. In Proceedings of the 37th ACM
Symposium on Theory of Computing (STOC 2005), pages 523–532, New York,
NY, USA, 2005. ACM Press. 84, 88, 89, 91, 92, 94, 95, 96, 100, 103, 104, 112,
117, 126, 146

[187] D. J. Wheeler and R. M. Needham. TEA, a tiny encryption algorithm. In Proceed-
ings of the 2nd International Workshop on Fast Software Encryption (FSE 1994),
volume 1008 of Lecture Notes in Computer Science, pages 363–366. Springer-
Verlag, 1995. 23

[188] Christopher Wolf. Multivariate Quadratic Polynomials in Public Key Cryptogra-
phy. PhD thesis, Katholieke Universiteit Leuven, 2005. 81, 146

https://forums.symantec.com/syment/blog/article?message.uid=305948
https://forums.symantec.com/syment/blog/article?message.uid=305948
http://www.sysersoft.com/
http://www.copacobana.org/

164 Bibliography

[189] Stefan Wolf. Unconditional Security in Cryptography. In Lectures on Data Se-
curity, Modern Cryptology in Theory and Practice, volume 1561 of Lecture Notes
in Computer Science, pages 217–250. Springer-Verlag, July 1998. 5

[190] Brecht Wyseur, Mina Deng, and Thomas Herlea. A survey of homomorphic
encryption schemes. COSIC internal report, Katholieke Universiteit Leuven, 2007.
40

[191] Brecht Wyseur, Wil Michiels, Paul Gorissen, and Bart Preneel. Cryptanalysis
of White-Box DES Implementations with Arbitrary External Encodings. In Pro-
ceedings of the 14th International Workshop on Selected Areas in Cryptography
(SAC 2007), volume 4876 of Lecture Notes in Computer Science, pages 264–277.
Springer-Verlag, 2007. 44, 54, 57, 58, 67, 79, 83

[192] Brecht Wyseur and Bart Preneel. Condensed White-Box Implementations.
In Proceedings of the 26th Symposium on Information Theory in the Benelux
(BSIT 2005), pages 296–301, Brussels, Belgium, 2005. Werkgemeenschap voor
Informatie- en Communicatietheorie. 46

[193] Brecht Wyseur, Karel Wouters, Mina Deng, Thomas Herlea, and Bart Preneel.
On the design of a secure multimedia archive. In 1st Benelux Workshop on In-
formation and System Security (WISSec 2006), page 14, Antwerp,BE, 2006. 140

[194] James Xiao and Yongxin Zhou. Generating large non-singular matrices over an ar-
bitrary field with blocks of full rank. Cryptology ePrint Archive, Report 2002/096,
2002. http://eprint.iacr.org/. 51

[195] Hiroki Yamauchi, Yuichiro Kanzaki, Akito Monden, Masahide Nakamura, and
Ken ichi Matsumoto. Software obfuscation from crackers’ viewpoint. In Pro-
ceedings of the 2nd IASTED international conference on Advances in computer
science and technology (ACST 2006), pages 286–291, Anaheim, CA, USA, 2006.
ACTA Press. 11

[196] Andrew Chi-Chih Yao. Protocols for Secure Computations (Extended Abstract).
In Proceedings of the 23rd Symposium on Foundations of Computer Science
(FOCS 1982), IEEE Computer Society, pages 160–164, 1982. 40

[197] Frances F. Yao and Yiqun Lisa Yin. Design and Analysis of Password-Based
Key Derivation Functions. In Topics in Cryptology - The Cryptographers’ Track
at RSA Conference (CT-RSA 2005), volume 3376 of Lecture Notes in Computer
Science, pages 245–261. Springer-Verlag, 2005. 94

[198] Dingfeng Ye, Kwok-Yan Lam, and Zong-Duo Dai. Cryptanalysis of “2R” Schemes.
In Advances in Cryptology - CRYPTO 1999, volume 1666 of Lecture Notes in
Computer Science, pages 315–325. Springer-Verlag, 1999. 41

http://eprint.iacr.org/

Index

AES cipher, 23
white-box implementation, 50

ambiguity, 43, 53
asymmetric cipher, 16
attestation, 131

bilinear pairing, 112
black-box model, 2
block cipher, 17

Caesar cipher, 3
cannibalistic function, 90
cloning attack, 129
code lifting, 41, 138
cold reboot attack, 10
composition, 93, 111, 136
computational security, 18
computing on encrypted data, 39
confidentiality, 16
confusion, 19
cryptanalysis, 25

algebraic, 28, 58
black-box, 25
differential, 27, 53
linear, 27
side-channel, 28

cryptology, 2

DES cipher, 21
white-box implementation, 45

DES-X cipher, 12
diffusion, 19
digital rights management, 7, 41, 137

digital signatures, 17
diversity, 43, 53

encodings
external, 41
internal, 38, 48

entropy attack, 9

fault injection attack, 55
Feistel cipher, 19

garbled circuits, 40, 127

homomorphic functions, 126

IND-CCA2 security, 106
IND-CPA security, 97, 114
integrity, 16

Kerckhoffs’ principle, 2, 4
key whitening attack, 11

leakage function, 29
learnable function, 90, 100
left-or-right security, 97
local security, 42
Luby-Rackoff, 23

matrix decomposition, 47
metrics, 43
mobile agents, 7
model

black-box, 6, 25, 33
side-channel, 28, 33

165

166 Index

white-box, 9, 34
modes of operation, 17

negligible function, 85
non-repudiation, 16
NP hardness, 5

obfuscation, 10
definitions, 86
formal definitions, 102
notions of –, 89

one-time pad, 4

partial evaluation, 38
perfect security, 5
physically observable crypto, 30
point function, 85
probabilistic function, 116
product cipher, 18
provable security, 5

random oracle model, 93, 123
remote program execution, 134

scrutiny, 6, 18
secure function evaluation, 127, 136
security notion, 96, 104
semantic security, 96
side-channel attack model, 125
SPN cipher, 20
symmetric cipher, 16

t-box, 46
tamper resistance, 128
tamperproof model, 122
traitor tracing, 138
Triple-DES cipher, 21
trusted computing, 131

unconditional security, 5
universal white-box property, 109

Vernam cipher, 4

Vigenère cipher, 3
virtualization, 131

white-box advantage, 108
white-box attack context, 34
white-box cryptography

objective, 7, 13, 31, 36, 138
white-box property, 109

List of Publications

International articles

1. Amitabh Saxena, and Brecht Wyseur. On White-Box Cryptography and Obfus-
cation. Sumbitted to IEEE Computer Security Foundations Symposium, 2009.

2. Dries Schellekens, Brecht Wyseur, and Bart Preneel. Remote attestation on
legacy operating systems with trusted platform modules. In Science of Computer
Programming, volume 74(1-2), pages 13-22, 2008.

3. Dries Schellekens, Brecht Wyseur, and Bart Preneel. Remote attestation on
legacy operating systems with trusted platform modules. In Run Time Enforce-
ment for Mobile and Distributed Systems, volume 197(1) of Electronic Notes in
Theoretical Computer Science, pages 59–72, Dresden,Germany, 2008. Elsevier.

4. Brecht Wyseur, Wil Michiels, Paul Gorissen, and Bart Preneel. Cryptanalysis of
White-Box DES Implementations with Arbitrary External Encodings. In Selected
Areas in Cryptography, volume 4876 of Lecture Notes in Computer Science, pages
264–277. Springer-Verlag, 2007.

5. Karel Wouters, Brecht Wyseur, and Bart Preneel. Security Model for a Shared
Multimedia Archive. In Automated Production of Cross Media Content for Multi-
Channel Distribution, IEEE Computer Society, pages 249–255, 2007.

6. Karel Wouters, Brecht Wyseur, and Bart Preneel. Lexical Natural Language
Steganography Systems with Human Interaction. In Information Warfare and
Security, pages 303–312, 2007.

National articles

7. Brecht Wyseur, Karel Wouters, Mina Deng, Thomas Herlea, and Bart Preneel.
On the design of a secure multimedia archive. In 1st Benelux Workshop on
Information and System Security (WISSec 2006), 14 pages, Antwerp, 2006.

8. Brecht Wyseur and Bart Preneel. Condensed White-Box Implementations. In
Proceedings of the 26th Symposium on Information Theory in the Benelux, Werk-
gemeenschap voor Informatie- en Communicatietheorie, pages 296–301, 2005.

167

Invited presentations

9. Brecht Wyseur. Introduction to White-Box Cryptography and White-Box DES
Implementations. ECRYPT Summer Course on Advanced Topics in Cryptogra-
phy, Fodele, Crete, Greece, 2008.

10. Brecht Wyseur. White-Box Cryptography. ASCURE Academy Event, Brussels,
Belgium, 2008.

Internal reports

11. Sebastian Faust, Brecht Wyseur, and Gregory Neven. PIN-based Digital Lockers.
COSIC Internal report, 14 pages, Katholieke Universiteit Leuven, 2008.

12. Brecht Wyseur, Mina Deng, and Thomas Herlea. A Survey on Homomorphic
Encryption Schemes. COSIC Internal report, 15 pages, Katholieke Universiteit
Leuven, 2007.

13. Jan Cappaert, Brecht Wyseur, and Bart Preneel. Software Security Techniques.
COSIC internal report, 42 pages, Katholieke Universiteit Leuven, 2004.

Project reports

14. Dries Schellekens and Brecht Wyseur. Comparative Analysis of RE-TRUST with
Trusted Computing. RE-TRUST Deliverable D4.5, 2009.

15. Aldo Basile, Yoram Ofek, Alessandro Zorat, Brecht Wyseur, Jerome DAnoville;
Igor Kotenko, and Paolo Falcarin. Trust and Security Analysis. RE-TRUST
Deliverable D4.x, 2009.

16. Brecht Wyseur. Encrypted Code Report. RE-TRUST Deliverable D3.3, 2009.

17. Jerome D’Annoville, Brecht Wyseur, Dries Schellekens, Mariano Ceccato, and
Stefano Di Carlo. First Analysis Encrypted Code and HW Assisted SW Protec-
tion. RE-TRUST Deliverable D3.2, 27 pages, 2008.

18. Brecht Wyseur, Jan Cappaert, Mariano Ceccato, and Stefano Di Carlo. Pro-
tection mechanisms for hardening the software application against analysis and
tampering. RE-TRUST Deliverable D2.4, 16 pages, 2008

19. Jasvir Nagra, Brecht Wyseur, and Thomas Herlea. Trust Model for Software
And Hardware-based TR methods. RE-TRUST Deliverable D2.1/D3.1, 12 pages,
2007.

20. Brecht Wyseur, Thomas Herlea, Dries Schellekens, and Jasvir Nagra. Hardware/
software-based method - initial architecture. RE-TRUST Deliverable D1.3, 9
pages, 2007.

21. Karel Wouters, and Brecht Wyseur. Security Model for a Multimedia Archive.
IBBT/IPEA Deliverable D.4, 27 pages, 2007

Brecht Wyseur was born on September 26, 1981 in Ypres, Belgium. He received
his degree of Master in Mathematics from K.U.Leuven, Belgium, in July 2003.
His Masters’ thesis dealt with the polynomial choice in the index calculus for
the discrete logarithm problem. In August 2003, Brecht started working in the
research group COSIC (Computer Security and Industrial Cryptography) at the
Department of Electrical Engineering (ESAT) of the K.U.Leuven. The first four
years of his research were sponsored by a grant from the IWT (Institute for the
Promotion of Innovation by Science and Technology in Flanders).

Updates, resources, and further progress in my research on white-box cryptogra-
phy can be followed on http://www.whiteboxcrypto.com/.

169

http://www.whiteboxcrypto.com/

	Acknowledgments
	Abstract
	Abstract in Dutch
	Contents
	List of Abbreviations
	List of Notation
	Summary in Dutch
	Introduction
	Cryptology
	The Caesar Cipher
	Kerckhoffs' Principle
	One-Time Pad
	Modern Cryptography

	Motivation
	Mobile Agents
	Digital Rights Management

	White-Box Model
	Entropy Attack
	Key Whitening Attack

	White-Box Cryptography
	Outline of this Thesis

	Block Ciphers
	Introduction
	Terminology
	Objectives and Definitions
	Design

	Block Ciphers
	The Data Encryption Standard (DES)
	The Advanced Encryption Standard (AES)

	Cryptanalysis
	Black-Box Cryptanalysis
	Side-Channel Cryptanalysis

	Conclusion

	White-Box Implementations
	Introduction
	Attack Models
	Comparison between Attack Models
	Objectives of WBC

	Obfuscation Strategy
	Initial White-Box Strategy
	Related Concepts
	Encoded Variants

	Security
	Local Security
	Metrics

	History
	Constructions
	White-Box DES Implementations
	White-Box AES Implementations

	White-Box Cryptanalysis
	Differential Cryptanalysis
	Algebraic Cryptanalysis

	Running White-box Implementations Backward
	Cryptanalysis of White-Box DES Implementations with External Encodings
	Finding Restricted Bit Flips
	Finding Single Bit Flips
	Obtain the Inputs to the S-boxes
	Key Recovery
	Recovery of the External Encodings

	Conclusion
	Further Research

	A Theoretical Model for White-Box Cryptography
	Introduction
	Related Work
	Terminology

	Code Obfuscation
	Definitions for Obfuscation
	Impossibility Results
	Positive Results
	Conclusion

	Security Notions
	Our Contribution
	Preliminaries
	Obfuscators
	Obfuscator (Correctness)
	Obfuscator (Soundness)

	White-Box Cryptography
	Black-Box Game
	White-Box Game

	(Im)possibility Results
	Negative Results
	Positive Results
	UWBP for Non-Trivial Families

	The Case of Probabilistic PTMFs
	An Open Question: WBP and Soundness

	Conclusion

	Applications
	New and Improved Cryptographic Primitives
	Asymmetric Encryption Schemes
	Programmable Random Oracles

	Hardware
	Computing in the Encrypted Domain
	Homomorphic Encryption
	Secure Function Evaluation

	Software Protection
	Software Tamper Resistance
	Diversity
	Trustworthy Execution

	Digital Rights Management
	Traitor Tracing

	Conclusions

	Conclusions and Further Research
	Conclusions
	Future Work

	Bibliography
	Index
	List of Publications
	About me

