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General Introduction

Introduction

This Ph.D. thesis focuses on financial transaction data and volatility. I start by explain-

ing the focus on transaction data, followed by the focus on volatility. Transaction data

capture the characteristics of financial transactions (e.g. transaction time, transaction

price, transaction volume, bid and ask price) as they take place on an exchange. Data-

bases for these transaction data, also called tick data, only became publicly available

in the 1990s. Before, financial research and analysis had been mainly based on daily

data, i.e. daily averages, closing prices, etc. It soon became clear that this new type of

data offered advantages and opened new research opportunities. For example, higher-

frequency data allow more accurate measurement of volatility. The thesis contributes to

the growing research on this issue. However, more is not always better. The new data

have their own features such as unequally-spaced observations, non-synchronous trad-

ing, intra-day seasonal effects, measurement errors due to bid-ask spreads, reporting

difficulties, etc., which brought new challenges. Only when these features are satisfac-

torily dealt with can the advantages of high-frequency data be fully exploited. The

thesis contributes to the literature that seeks solutions to this type of problems.

A second focus of this thesis is asset market volatility, i.e. the degree to which

financial prices tend to fluctuate. Volatility enters as an essential ingredient in many

financial computations, like portfolio optimisation, option pricing and risk assessment.

Despite its importance, volatility remains an ambiguous term for which there is no

unique, universally accepted definition. The main approaches to compute volatilities are

by historical indicators computed from daily squared returns, from econometric models

such as GARCH, or by indirect computation from option prices based on a pricing

model such as Black-Scholes’. Following the introduction of transaction databases, new

estimators that exploit intradaily price dynamics have been proposed in the literature.

The thesis also presents new estimators along this line. Before the attention switched

to measuring volatility, the financial econometrics literature already contained a lot of

1



2 General Introduction

research on the modelling of volatility. Since the 1980s, starting from the observation

of volatility clustering, i.e. periods of high volatility versus periods of low volatility,

many models of volatility have been developed that produce and improve forecasts. To

this end, Stochastic Volatility models were developed. These models treat volatility

as unobserved, driven by a separate process. Their very nature makes them hard to

estimate, however. The thesis points out that a simple estimation method (Generalized

Method of Moments, GMM) should be reconsidered to estimate stochastic volatility

models.

Outline

While the chapters of this thesis have a common theme, each chapter can be seen as a

separate entity addressing different well-defined issues within financial econometrics.

Chapter 1 proposes a new procedure to determine the time of the prevailing quote

relative to the time of the trade for New York Stock Exchange (NYSE) data. At the

NYSE, trades and quotes are recorded separately, receiving their own time stamp. As a

result, trades and quotes are subject to different and varying reporting lags, which makes

it hard to reconstruct the sequence of trades and quotes. For market microstructure

analysis that is based on trade and quote data at high frequency, it is important to be

able to reconstruct this sequence, as mismatching potentially affects the analysis. The

procedure put forward in chapter 1 tests whether the quote revision frequency around

a trade is contaminated by quote revisions triggered by a trade, and then determines

the smallest timing adjustment needed to eliminate this contamination. An application

to various stocks and sample periods shows that the time difference between trade and

quote reporting lags varies across stocks and time. The procedure takes this variation

into account and hence offers a stock- and time-specific update to the Lee and Ready

(1991) 5-second rule.

Chapter 2 contributes to the extensive literature on the estimation of stochastic

volatility (SV) models. Due to the fact that in SV models the mean and the volatility

are driven by separate stochastic processes (implying that volatility is unobservable),

SV models are hard to estimate. This chapter presents analytical results that may be

used to improve and assess the quality of GMM-based estimation of SV models. GMM,

while not asymptotically efficient, is still the simplest estimation method for SV models

currently available.

Chapter 3 proposes new estimators of volatility based on quantiles of the price series,
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under the assumption that prices are observed without noise. It develops unbiased

and consistent estimators of the diffusion coefficient based on quantiles of either the

Brownian motion or the Brownian bridge. These estimators are shown to be much more

efficient than the range-based estimators of Parkinson (1980) and Kunitomo (1992),

where the range is the difference between the supremum and infimum. In particular,

efficiency is improved by using more quantiles in the estimation. Moreover, two methods

are presented that turn any of the unbiased estimators into consistent estimators. One

way to obtain consistency is to apply the unbiased estimators to subintervals and then

to average the subinterval estimators. This corresponds to a generalization of the

realized range estimator of Christensen and Podolski (2005) and Martens and van Dijk

(2007). Furthermore, a new type of consistent estimator based on permuted subintervals

is presented. The quantile-based estimators provide an interesting alternative to the

existing realized volatility and realized range estimators.

Chapter 4 deals with the time-discreteness bias and noise bias of quantile-based

volatility estimators when applied to high-frequency data. The former bias is a result

of the estimators being derived in continuous-time, but applied to discrete-time obser-

vations. Despite being derived in continuous time, quantile-based volatility estimators

turn out to be fairly robust to the time-discreteness bias except if the estimator is

based on price extrema or the number of observations is very small. Analytical and

simulation-based bias corrections are presented to deal with the latter cases. Further-

more, attention is given to the bias introduced when the estimators are applied to a

price series perturbed by noise. In practice, this noise is due to market microstructure

effects, e.g. the transaction price bouncing between bid and ask prices, implying that

the ‘true’ price is not observed. A simulation-based noise-bias correction is proposed

that deals even with the case in which the noise distribution is unknown. The bias cor-

rections allow the practitioner to exploit the efficiency gain of quantile-based volatility

estimation at high frequency.





Chapter 1

How to Match Trades and Quotes
for NYSE Stocks

1.1 Introduction

The Trade and Quote (TAQ) database managed by NYSE Euronext is a common

source for tick data on NYSE stocks. The extraction programme of the TAQ database

produces separate files for trades and quotes, each with its own time stamp. For market

microstructure analysis that is based on variables from both sets at high frequency, e.g.

analysis of transaction prices versus quoted spreads, one needs to construct the sequence

of quotes and trades. The trade classification into buyer or seller initiated trades,

computation of the effective spread and estimation of the information content of trades

are important examples of such analysis. In principle, the job consists of merging both

data sets and ranking their records chronologically. This would be a straightforward

operation, were it not that trades and quotes can be subject to different reporting

lags, which complicates the identification of the prevailing quotes at the time of a

trade. If the matching of trades and quotes is not done appropriately, then this affects

certain measures as those mentioned above and can potentially alter the conclusions

of microstructure analysis. This problem was first reported by Lee and Ready (1991).

The authors found the difference between the lag of trade and quote reports to be on

average 5 seconds. Therefore, the solution suggested by these authors is to add five

seconds to the reported times of quotes. So far, most studies followed this suggestion

or did not adjust at all.

In this chapter it becomes clear, however, that the difference between trade and

quote reporting lags has changed over time and can vary between stocks. This implies

that the 5-second rule is too rigid. A procedure is proposed to identify the appropriate

timing adjustment per stock, period and type of trade, which is flexible enough to deal

5



6 How to Match Trades and Quotes for NYSE Stocks

with the varying difference in lags between trade and quote reports. The procedure

treats each stock individually and tests whether the quote revision frequency around

a trade is contaminated by quote revisions triggered by a trade, and then determines

the smallest timing adjustment needed to take this contamination into account. The

procedure is applied to several stocks and sample periods between 1993 and 2003.

The chapter is structured as follows. In Section 1.2, I start with a description of

the trade and quote reporting procedures at the NYSE, because these procedures are

known to drive the lags. Section 1.3 discusses the 5-second rule and related reporting

lags found in the literature. In Section 1.4, I discuss the data and have a preliminary look

at the quote revision frequency around a trade. Section 1.5 presents a new procedure

to determine the prevailing quote at the time of a trade. Section 1.6 concludes.

1.2 Trade and quote reporting procedures

Anyone who has noticed the rapid increase in market volume handled by the NYSE will

find it natural that trade and quote reporting procedures have evolved over time. The

subsequent sections show that changes to reporting procedures affected the difference

between trade and quote reporting lags. For later reference, this section contains a

short overview of the procedures, which is mainly based on Hasbrouck et al. (1993)

and NYSE documents.

The NYSE records trades via the Consolidated Tape System (CTS) and revisions

of the best quote via the Consolidated Quote System (CQS). The TAQ database is an

extraction of these systems. The way that trades and quotes reach CTS and CQS has

changed over the years.

After the 1987 market crash, electronic workstations were introduced to deal with

high volumes of trades and quotes. Until June 1989 the procedure was as follows.

The specialist calls out the details of trades and new quotes as they happen. These

trades and quotes are recorded by the specialist assistant or by floor reporters. It is

the specialist who determines whether a floor reporter is involved in the recording of

trades and quotes. The specialist assistant controls the Display Book, an electronic

workstation that keeps track of all limit orders and incoming market orders and assists

in the recording and dissemination of trades and quotation changes. The floor reporter,

employed by the exchange, records trades and quotes by filling in boxes on a mark-

sense card and feeding it into an optical reader. Trade reports travel through the Post

Support System (PSS) to the exchange’s Market Data System (MDS). MDS performs



1.3 Review of the literature 7

certain validation checks, before it sends the information to the CTS. Quote revisions

travel through PSS to MDS and then to the CQS.

On 19 June 1989 the exchange began to abandon quote reporting by floor reporters.

By September 1989, already 95% of quotes changed from the Display Book (Hasbrouck

et al., 1993). By 2000, 99.9% of all quotes were updated by the Display Book, the

exceptions being for trading halts and other related events (NYSE, 2000 and 2001).

Through the years 1987-2001, the floor reporter was also less frequently used for

recording trades, as trades were more and more Display Book reported. In 1994, the

mark-sense card system was abolished and the floor reporter began to use a hand-held

device to report trades, which can be expected to speed up recording. The Display Book

gained importance and by the year 2000, already 91% of all trades were Display Book

reported (NYSE, 2000). On 24 July 2001, the floor reporter position was eliminated

and since then all trade reporting has been done directly through the Display Book

(NYSE, 2001). Prior to the elimination 99% of all trades were Display Book reported.

The best quote was not updated automatically when a trade affected the best quote

until 27 May 2003, when the exchange introduced ‘auto-quoting’ for all stocks. This

procedure implies that the NYSE automatically updates the NYSE’s best bid or offer

whenever a limit order is transmitted to the Display Book at a better price than the

previous best bid or offer. When a trade occurs that involves the best bid or offer, the

NYSE automatically updates the best bid or offer, and the associated depths, according

to the specialist’s book. Auto-quoting also includes adding size to the best quote as

additional limit orders arrive and reducing size of the best quote as limit orders are

executed or cancelled. Only in cases where the specialist trades for his own account

are quotes not automatically updated. In other words, most quotes are automatically

updated following a trade (NYSE, 2003a,b). In 2003, still only 5 percent of the quoting

was performed manually on the Display Book (NYSE, 2003c).

1.3 Review of the literature

In an often-cited paper, Lee and Ready (1991) report a problem with the then existing

reporting procedure to reconstruct the sequence of trades and quote revisions. As they

point out, if the specialist assistant is faster in recording a quote revision than the

floor reporter in recording a trade, the corresponding quote update can be recorded

before the trade that triggered it. This is problematic if one seeks to determine the

prevailing quote at the time of a trade. Lee and Ready (1991) investigated the lag of
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trade reporting relative to quote reporting. Their results suggest using the prevailing

quote at five seconds prior to the trade as the prevailing quote at the time of a trade.

However, the dataset on which their analysis was based dates back to 1988 and the

result was an average obtained for a cross-section of 150 stocks, while we will see below

that the lags and required timing change can differ between stocks. Furthermore, the

reporting procedure changes pointed out in Section 1.2 undoubtedly affected reporting

lags and it seems unlikely that the 5-second rule is universal.

Although Lee and Ready (1991, footnote 10) realize that the delay can vary with

the sample period, their 5-second rule has been used in many studies based on TAQ

data of the nineties: see e.g. Ball and Chordia (2001), Busse and Green (2002), Chan

et al. (2002), Chordia et al. (2001, 2002), Easley et al. (2001), Edelen and Gervais

(2003), Engle and Patton (2004), Huang and Stoll (2001), Kryzanowski and Zhang

(2002), Nyholm (2003), Schultz (2000), Stoll (2000) and Venkataraman (2001). This

list is incomplete, but gives an idea of the popularity of the 5-second rule. Few studies

check the robustness of their results with respect to the 5-second rule.

Delays of NYSE trade reports have already been studied. Blume and Goldstein

(1997) report a median delay of sixteen seconds for NYSE trades between execution

and reporting, for the period July 1994 - June 1995. Peterson and Sirri (2003) use a

two-week sample of 1997 of the NYSE System Order Database Daily File (SOD file),

which contains details of order entry and execution. This allows them to compare

the execution time and the reporting time of trades. They report a median delay for

trades of only 2 seconds for NYSE stocks. Piwowar and Wei (2003) study the impact of

different trade and quote matching algorithms on estimates of the effective spread for

Nasdaq and NYSE stocks. In order to determine an optimal matching algorithm, they

search for the trade time adjustment that minimizes the rate of small trades occurring

outside the prevailing spread. Small trades are defined as 1000 shares or less. Their

results clearly show the sensitivity of the effective spread estimates to the algorithm

and that the sensitivity has increased over time. However, their statistics are averages

across several stocks. Henker and Wang (2006) computed the average adjustment rule

for a cross-section of stocks in the style of Lee and Ready (1991) for more recent datasets

between 1994 and 2002 and found a 1-second rule to be most appropriate. They also

pointed out how timing specifications have a significant impact on the estimates of the

adverse selection component of the spread. Bacidore et al. (2003) also report a series

of lags belonging to the NYSE system, but do not compute statistics which can be

used to account for reporting delays. Delays for Nasdaq stocks have been studied by
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Bessembinder (2003), Ellis et al. (2000) and Piwowar and Wei (2003). In general, there

is no consensus on how to deal with reporting delays.

1.4 Evidence on trade and quote reporting lags

It is intuitively clear that trade reporting lags depend on the way trades are reported.

Hasbrouck et al. (1993) already pointed out that Display Book reported trades have a

much smaller reporting delay than trades reported by floor reporters. They report 15%

of trades to be Display Book reported for a sample of five days in November 1990 and

this percentage to be increasing fast. As shown in Section 1.5, the increasing popularity

of the Display Book, as e.g. described in NYSE (2003c), has decreased the overall trade

reporting lag over time.

1.4.1 The data

I consider five 3-month samples, between 1993 and 2003, of NYSE trades and quotes

from the TAQ database. The periods are April - June 1993, April - June 1997, April -

June 2001, October - December 2001 and October - December 2003. In the discussion

below, I refer to the different 3-month periods by the year only (1993, 1997, 2001a,

2001b and 2003). Most of the papers that make use of the Lee and Ready (1991) 5-

second rule are based on samples that cover at least one of the first two sample periods.

The third and fourth sample periods are just before and after the abolition of floor

reporting. The last sample period is a period after auto-quoting was introduced.

I select five groups of five stocks based on the trading activity of the stocks, because

a priori one may expect a link between reporting lags and trading activity. Ranking the

stocks in ascending order according to dollar volume traded in 2001a, I first select three

groups starting from the three stocks found at the 33%, 67% and 100% quantiles and

each time moving down until I have five stocks that existed during the period 1993 -

2003. Secondly, I take two more groups of actively traded stocks, because floor reporters

were especially used for actively traded stocks, which allows us to have a better look at

non Display Book reported trades. More specifically, using the same procedure, I take

two more groups starting from the two stocks found at the 90% and 98% quantile. The

five groups of stocks are {GE, IBM, EMC, PFE, TYC}, {F, DD, BBY, HAL, ADI},

{NSC, BCR, MYL, LTD, JCI}, {KWD, NAB, NC, ACG, ESL} and {PYM, GTY, SAF,

NNJ, EY}. See Table 1.1 for the corresponding dollar volume. In Section 1.5, it turns

out that the choice of the groups based on the trading activity does not have any further
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implications, because the results are not significantly different between the groups. For

each stock only trades and quotes are selected that meet all of the following conditions:

- trades and quotes need to occur within the trading day: 9:30 - 16:00;

- trades need to be regular trades, which were not corrected, changed, or signified as

cancel or error; this is indicated by a zero value of the correction indicator (CORR);

- trades need to be regular way or NYSE Direct+ trades; this is indicated by a blank

or ‘E’ entry of the Condition indicator;

- quotes need to stem from normal trading conditions; this is indicated by the Mode

indicator taking the value 1, 2, 3, 6, 10, 12 or 18.

Another feature that is used below is whether trades are Display Book reported.

This is indicated by specific values of the G127 indicator; see the TAQ2 user’s guide

for more details.

Table 1.1: Dollar volume of selected stocks
Symbol 1997 2001a 2001b 2003 Symbol 1997 2001a 2001b 2003
GE 15735 52561 37078 28205 LTD 567 1558 1174 1825
IBM 25823 49375 45574 26646 JCI 535 1556 1798 2569
EMC 2753 31446 15246 9032 KWD 72 126 125 387
PFE 8735 27688 27540 28681 NAB 88 125 148 284
TYC 3109 26389 26189 10010 NC 84 123 60 75
F 5363 8029 4869 6501 ACG 17 121 272 107
DD 7733 7944 6776 7875 ESL 37 116 76 107
BBY 298 7683 11616 11661 PYM 9 9 10 22
HAL 3772 7657 7823 4457 GTY 13 9 79 67
ADI 1622 7606 8817 7676 SAF 18 9 6 30
NSC 986 1566 874 1673 NNJ 8 9 9 6
BCR 571 1565 1612 1529 EY 115 9 5 51
MYL 413 1563 2105 2973

Note: in millions of dollars; unavailable for 1993.

1.4.2 Quote revision frequencies around trades

In order to accurately determine the prevailing quote at the time of a trade, it is

necessary that each quote update triggered by a trade can be distinguished from other

quote revisions. If the quote update is recorded before the trade, then one would take

the prevailing quote at one second before the quote update as the prevailing quote at

the time of the trade. Unfortunately, the data does not contain a field that links trades

with the mechanic quote update they trigger, which would help to identify most quote

revisions except for submissions triggered by a trade. Moreover, it is not always possible
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to detect the link between a trade and its mechanic quote update from the trade and

quote sequence, by comparing trade sizes with changes in quote depth and trade prices

with quote prices. This is caused by active trading and cancellations of limit orders,

which complicate the interpretation of the trade and quote sequence.

Although we cannot distinguish a quote update triggered by a trade from other

quote revisions, we can compute the average timing of the quote updates relative to the

trades. For this purpose, I compute the frequency of quote revisions at each second of

a 30-second interval around a trade, for each stock and each 3-month period. If quote

revisions are triggered by trades, then one would expect to find a peak in this frequency

distribution at the time these quotes are reported. Quote revisions triggered by a trade

refer to both the mechanical update of the order book due to a trade and new orders

triggered by a trade. Other quote revisions are either the result of incoming orders or

cancelled orders and their timing should be approximately independent of the timing

of trades. The 30-second intervals [−15, 15] centred on trades are allowed to overlap,
which implies that some quote revisions are counted more than once. As a quote update

triggered by a non Display Book reported trade is expected to occur further away from

the trade, I look at 55-second intervals [−35, 20] around this type of trades.
As an example, Figures 1.1a and 1.1b display the frequency distribution for BBY

Display Book (DB) reported and non Display Book (NDB) reported trades of 2001a,

respectively. The horizontal axis shows the number of seconds before and after the

recording of a trade. The vertical bars represent the quote revision frequency around a

trade, computed as the number of quote revisions divided by the number of trades. We

notice a clear difference between both figures, which indicates that DB reported trades

and NDB reported trades are subject to different lags. Both figures show a hump, which

indicates the time relative to a trade at which quote revisions triggered by trades are

recorded. The humps are situated at different times relative to the time the trade is

recorded. In Figure 1.1a, the hump is steep and shows that quote revisions triggered

by trades are recorded at the time the trade is recorded or up to a few seconds later.

Hence, to avoid taking a quote update triggered by a trade as the prevailing quote at

the time of that trade, it would seem optimal to take the prevailing quote one second

before the trade (−1), i.e. just before the hump. The grey bar indicates the time of the
prevailing quote that results from the test described in Section 1.5. For the NDB trades

in Figure 1.1b, however, quote revisions triggered by a trade are also recorded before

the trade. Again, to avoid taking a quote update triggered by a trade as the prevailing

quote at the time of that trade, it appears to be a good choice to take the prevailing
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quote about ten seconds before the trade as the prevailing quote at the time of the trade

(−10). The marked difference between the two figures suggests that it is better to treat
the two types of trades separately when determining the prevailing quote.

Unfortunately, the quote revision frequencies in the figures above are biased if over-

lapping intervals around trades are used, because it implies that quote revisions due to

one trade can be counted as a quote revision around another trade. If the arrival of

trades around a trade were uniformly distributed, then the use of overlapping intervals

would have no side effects, because the quote revisions that the trades trigger would also

be uniformly distributed. Figure 1.1c gives an example of the frequency distribution of

trades around a DB trade. Across all stocks, this distribution is typically bimodal and

approximately symmetric around zero, with a steep slope between zero and the mode

at ±3 to 4 seconds away from the trade, and after the mode the frequency decays (often
to a higher level than that close to the trade).1 As a consequence, the quote revisions

that these trades trigger are not expected to be uniformly distributed, which causes a

bias in the frequency of quote revisions around a trade.

One way to deal with the bias is to use non-overlapping intervals, i.e. isolated trades.

In order to avoid any overlap of the 20-second intervals for Display Book reported trades,

one would need to select trades that are at least 21 seconds away from any other trade.

For the non Display Book reported trades, trades isolated by about 56 seconds are more

appropriate, because a high quote revision frequency is found between 35 seconds before

the trade and 20 seconds after the trade. Compare e.g. Figure 1.1a with Figure 1.1d,

where the isolated trades in the latter figure have a lower frequency before (and after)

the trade compared to the frequency at the time of the trade. The problem with this

alternative is that it implies far fewer observations and less smooth figures, especially

for actively traded stocks.

The main results of this chapter, as summarized in Table 1.2 below, are based on a

better method to tackle the bias in the number of quote revisions around a trade. That

is to deconvolve the quote revision frequency around a trade. Let v be the perturbed

quote revision frequency around a trade, u the trade frequency around a trade and q

the ‘true’ quote revision frequency around a trade. It holds that v is the convolution

of u and q, i.e. v = u ∗ q. Let V , U and Q be the Fourier transformations of these

densities, e.g. V = F(v), then it holds that V = UQ and hence Q = V/U . Upon taking

the inverse Fourier transform, q = F−1(V/U), we obtain an estimate of the true quote

1For example order splitting leads to series of trades with short and similar durations, which can
affect the trade distribution around a trade.
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revision frequency around a trade that is based on all observations. In other words, if

we deconvolve v given u, we obtain an estimate of q. In the appendix, I explain that

this procedure meets certain difficulties due to the truncation of the densities at the

borders of the intervals, but forgetting about practicalities, this represents the main

idea about the method used below to compute the quote revision frequency around a

trade. Figure 1.2 presents examples of the quote revision frequency around a trade

computed in this way.

Figure 1.1: Quote revision and trade frequencies around BBY trades in 2001a.
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(a) DB trades
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(b) NDB trades
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(c) DB trades
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(d) DB trades, using 21−second isolated trades

Notes: no. of trades: 25264
           no. of quote revisions in interval: 90560

Notes: no. of trades: 52365
           no. of quote revisions in interval: 331203

Notes: no. of trades: 25264
           no. of trades in interval: 130713

Notes: no. of trades: 2072
           no. of quote revisions in interval: 4239

1.5 Towards new adjustment rules

The distribution of quote revisions around a trade typically shows an increase in the

frequency of quote revisions at some time before the trade. Thus, we seek a rule for
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determining the start of this increase, and then we can take the prevailing quote at one

second before the increase as the prevailing quote at the time of the trade.

I suggest the following rule. Let s be the elapsed time, in seconds, since a trade, e.g.

s = −15, ..., 15. Let t be the second in this interval at which quote revisions triggered
by a trade start to arrive. Then t− 1 is the second at which we can find the prevailing
quote. Assume that quote revisions that are not triggered by a trade arrive according to

a Poisson process with rate λs at s. This assumption is realistic and does not contradict

the literature on duration models that points to clustering in order flow, because order

arrival around a trade is a different concept. The arrival of quote revisions not triggered

by a trade can be treated as independent of the arrival of a trade. This can be seen from

the empirical quote revision frequency around a trade, which converges to a constant

level as we move away from the trade. Orders submitted in anticipation of a trade and

trades systematically filling incoming orders could in theory also lead to higher quote

revision frequencies before a trade. The fact that often hardly any distortion is observed

before DB trades, however, indicates that this type of effect must be minor.

A test can be developed based on the idea that λs is expected to remain approxi-

mately constant over time, while estimates of λs will be biased upward from t onward

due to the arrival of quote revisions triggered by trades. Let qs be the number of quote

revisions at s and n the total number of trades. Then, λs can be estimated by

λ̂s =
qs
n
.

Let λps, s = −11, ..., 15, be the mean of λs, s = −15, ..., 15, over the past 5 seconds, for
example

λp−5 =
λ−9 + ...+ λ−5

5
,

and let λ̂
p

s be the mean of λ̂s over the past five seconds. I will interpret a statistically

significant increase in λ̂s above λ̂
p

s as evidence that, at s, at least part of the quote

revisions are triggered by a trade.

To test the null hypothesis that λs is not higher than λps−1, or that s < t, I use the

test statistic
λ̂s − λ̂

p

s−1
s.e.

a∼ N(0, 1),

as n→∞. Under the null hypothesis (s < t), the standard error can be estimated as

s.e. =
³dVar³λ̂s´+dVar³λ̂ps−1´´1/2 =

Ã
λ̂s
n
+

1

25n

X5

j=1
λ̂s−j

!1/2
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In the analysis below, I use critical values from the standard normal distribution. The

true critical values are somewhat smaller than those from the standard normal distrib-

ution, because the finite sample distribution of the test statistic is left-skewed for small

n and λ. However, when I obtain such critical values by simulation and use these in

the test, then the resulting rule was different in only two of the cases considered in

Table 1.2. Therefore, for simplicity one can apply the critical values of the normal

distribution, while keeping in mind that the true p-value of the test is somewhat lower

than those implied by the normal distribution.

The null hypothesis H0 : λs ≤ λps−1 is sequentially tested for s = −10, ..., 15 and
a significance level of 2.5%. In addition, the null hypothesis H0 : λs+1 ≤ λps−1 is

sequentially tested for s = −10, ..., 14 and a significance level of 2.5%. The smallest s
for which both null hypotheses can be rejected is inferred as t. The prevailing quote can

be found at t− 1. The double test is motivated by the observation that a single null is
sometimes rejected too early within the interval compared to the big hump further in

the interval. The independence of λs and λs+1 implies that the double test corresponds

to the joint test with null hypothesis H0 : λs ≤ λps−1 and λs+1 ≤ λps−1, with an overall

significance level of approximately 5%.

I apply this method to determine the adjustment rule for all 25 stocks in all 5 periods

and for DB and NDB trades separately. In case of NDB trades, I let s = −35, ..., 35.
Figure 1.2 presents examples of the prevailing quote that results from the procedure,

which is indicated by a grey bar. Table 1.2 contains the derived time of the prevailing

quote relative to the time of the trade (in seconds) for all cases. A blank indicates that

there are no trades of that type, i.e. not even among the non-isolated trades. If there

are less than 100 DB trades, less than 500 NDB trades or less than 200 quote revisions,

then that case is ignored and is indicated by · . For the last two periods, non Display
Book reported trades are the exception and therefore they are not included in Table

1.2. The table also contains three cases indicated by × in which case the algorithm

selected a positive rule, either due to a relatively low number of observations or due to

a poor estimate of the quote frequency around a trade.

Table 1.2 shows that by 1993 the Display Book is well in use, because for quite a

few stocks all trades are Display Book reported. This is confirmed by Table 1.3, which

presents the percentage of DB trades. For the DB trades of 1993, depending on the

stock, the adjustment rules in Table 1.2 vary moderately between 0 and −3 seconds;
see e.g. Figure 1.2a for BCR. Contrary to DB trades, the adjustment rules for NDB

trades of 1993 are much larger and go up to 20 seconds; see e.g. Figure 1.2b for LTD.
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Table 1.2: Time of the prevailing quote relative to the time of the trade (in
seconds)

1993 1997 2001a 2001b 2003
DB NDB DB NDB DB NDB DB DB

GE · −9 · −2 −6 −16 −1 −2
IBM · −3 0 −9 −1 −4 −5 −4
EMC 0 −20 −1 −1 −1 −4
PFE · −17 · −6 −1 · −1 −4
TYC 0 −1 −2 × −2
F × × −1 −7 −1 −1 −2
DD −2 · −2 · −1 −2 −2
BBY −2 · −2 −11 −2 −8 −1 −4
HAL · −10 −1 −5 −1 −5 −1 −2
ADI · −14 −2 −26 −1 −1 −2
NSC 0 −2 · −1 −1 −2
BCR −1 −14 −2 −8 −2 · −2 −2
MYL 0 −1 −1 −1 −2
LTD · −19 · −11 −1 −1 −2
JCI 0 · −1 −1 −2 −2
KWD −1 −2 −1 −1 −2
NAB · · −1 −1 −1 −2
NC −1 −2 −2 −1 −2
ACG −3 −3 −2 −2 −2
ESL −2 · −2 −1 −6 −2
PYM · · −2 −4 −3 −3
GTY −1 −1 0 −1 −2
SAF −1 −2 −2 −3 −2
NNJ · −2 −1 −4 −5
EY 0 −2 −2 −8 −2

Notes: Blank = no trades; · = less than 100 DB trades, less than 500 NDB trades
or less than 200 quote revisions around a trade; × = algorithm failed to determine
a rule
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IBM is an exception to this, with an adjustment rule of −3. The reason is that the
distribution of quote revisions around NDB trades looks like the distribution around

DB trades. Presumably it does concern Display Book reported trades that, however,

have not been indicated as such in the TAQ database.

Table 1.3: Percentage of DB trades and average transaction volume

Average Transaction Volume
DB % DB NDB

1993 1997 2001a 1993 1997 2001a 1993 1997 2001a
GE 0 0 9 248 2248 1833 1569 2089 5891
IBM 0 2 53 243 1906 1432 2248 2482 2436
EMC 67 100 100 2271 2860 4555 2369
PFE 1 0 100 252 1305 2953 2333 1388 5007
TYC 100 100 100 1409 3002 2385
F 12 3 100 1365 11672 2882 3344 4148
DD 100 99 100 2260 1854 1339 5067 6337
BBY 93 3 33 1581 2582 1333 2000 3061 1956
HAL 5 4 95 468 1448 1330 2537 1660 3199
ADI 2 94 100 662 3883 1349 2398 5538
NSC 100 98 100 1639 916 1457 2099
BCR 31 82 97 2464 2638 1317 1814 3120 5414
MYL 100 100 100 2292 3546 1864
LTD 0 0 100 2014 1031 2093 4082 3219
JCI 79 100 100 1323 1545 593 1612
KWD 100 100 100 1531 1520 713
NAB 15 100 100 540 1058 719 611
NC 100 100 100 625 562 357
ACG 100 100 100 1476 1708 1792 200
ESL 100 100 100 886 842 752
PYM 7 100 100 1632 1643 1311 1648
GTY 100 100 100 1078 1557 314
SAF 100 100 100 798 1485 1306
NNJ 100 100 100 864 1130 1075
EY 100 100 100 2149 3786 2381

Note: In 2001b and 2003 trades are all DB reported.

In general, it is clear from these figures that the problem of reporting lags is severe

for NDB trades, and in fact accurately determining the prevailing quotes for these trades

is not really feasible. If a trade report can be delayed up to 20 seconds compared to the

associated quote report, then this demands a considerable adjustment. However, such

a large adjustment implies that we can be far too conservative for trade reports that

have no delay relative to the quote update report.

From Table 1.3 it can be seen that the average transaction volume of NDB trades is
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typically larger compared to DB trades. Given that floor brokers typically walk large

orders to the specialist post, apparently it are typically floor reporters who record the

trades associated with these orders instead of the specialist assistant.

For Display Book reported trades of 1997, depending on the stock, I mainly find that

the prevailing quote can be found 1 or 2 seconds before the trade. When we compare the

results for NDB trades of the same stock between the 1993 and 1997 periods, it appears

that the relative trade report delays have decreased, except in two cases. Apparently,

the switch from the mark-sense card system to a hand-held device for the floor reporter

decreased the trade reporting lags; see Section 1.2.

Figure 1.2: Quote revision frequency around trades and the timing adjustment
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(a) BCR DB trades, 1993
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(b) LTD NDB trades, 1993
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(c) IBM DB trades, 2001b
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(d) BCR DB trades, 2003

Notes: no. of trades: 1480
           no. of quote revisions in interval: 1269

Notes: no. of trades: 13187
           no. of quote revisions in interval: 17783

Notes: no. of trades: 281095
           no. of quote revisions in interval: 2637114

Notes: no. of trades: 50299
           no. of quote revisions in interval: 324315

For 2001a, the trades are predominantly Display Book reported, except for GE, for

which about 91% of trades are still non Display Book reported, see Table 1.3. All trades
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are Display Book reported from mid-2001 on, although a few exceptions can be found

in the TAQ data. For most stocks in 2001 and 2003, the prevailing quote for Display

Book reported trades is found at 1 or 2 seconds before the trade. There are a few cases,

however, where the algorithm stops early, e.g. at −6, because λs has already moved up
significantly, which is interpreted as contamination by quote revisions triggered by a

trade. Looking at these figure, see e.g. Figure 1.2c, one may want to ignore this small

amount of contamination and adopt a -2 or -1 rule.

In the year 2003 autoquoting is introduced and, as expected, we notice more quote

revisions at the time of the trade; see e.g. Figure 1.2d. It appears, however, that

quote updates can still be reported before a trade is reported, because a substantial

portion of the quote revisions is recorded one second before the trade is recorded. The

reason is not clear, but a small discrepancy between the clocks of CTS and CQS can

already have this effect. The optimal adjustment is therefore —2 seconds. Contrary

to the other periods, the shape of the figure and the adjustment rule are very stable

across stocks. The stabilising effect of autoquoting on the reporting of quotes makes

determining the prevailing quote easier. This result suggests a new adjustment rule

for NYSE stock data from mid-2003 onward. That is, to take the prevailing quote two

seconds before the trade as the prevailing quote at the time of the trade. The cases

where the algorithm stops earlier look like Figure 1.2c and the small contamination

before -2 could be ignored.

The improvement of changing the adjustment rule from five - as suggested by Lee

and Ready (1991) - to two seconds depends on whether there are actually changes in the

quote between five and two seconds prior to a trade. In order to study this I compute

the prevailing quote at the time of a trade based on the two rules separately, for each

stock in the 2003 sample. The two rules yield the same ask quote between 69% and

98% of the time (depending on the stock), the same bid quote between 70% and 96% of

the time, and the same spread between 62% and 94% of the time. Thus, the different

rules do lead to different quotes in a substantial number of cases. More interesting is to

know the potential consequences of such a difference in timing. One common measure

that depends on the correct timing is the effective spread. Let m be the prevailing

midquote at the time of a trade and p the transaction price, then the effective spread is

computed as 2 |m− p|. One can easily verify that the effective spread will typically be
overestimated if the absolute timing adjustment to determine the prevailing midquote

is too large, because the larger the time interval betweenm and p, the more p can move

away from m. For the cases in 2001b and 2003, the average effective spread at -5 was
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between -0.5% lower and 19% higher than the spread at -2, and can thus be significant

in size. If one would for example measure transaction costs of the stock exchange based

on effective spreads, then timing adjustments are important. Henker and Wang (2006)

discuss the impact of timing adjustments on a specific application more in depth.

1.6 Conclusion

This chapter proposed a new procedure to match trades and quotes of NYSE stocks.

The procedure tests whether the quote revision frequency around a trade is contami-

nated by quote revisions triggered by a trade, and then determines the smallest timing

adjustment needed to take this contamination into account. The procedure was ap-

plied to a sample of 25 stocks in 5 sample periods. The results show that the difference

between trade reporting lags and quote reporting lags varies across stocks and time.

The variation can be mainly explained by changes in the reporting procedures of the

NYSE and the co-existence of two reporting systems for trades, i.e. trades are Display

Book reported or not. The non Display Book reported trades usually require a larger

adjustment to match trade and quote times.

In summary, given a sample of NYSE stocks from the TAQ database, it is recom-

mended to take the following issues into account when applying the new procedure. For

samples prior to mid-2001 it is better to treat Display Book reported trades separately.

In case of large sample periods, it is better to split the sample in order to take further

differences across time into account. To sum up, it is recommended to determine a

separate adjustment rule for each trade type, each stock, and each sub-sample.

Finally, an interesting observation is that the system of auto-quoting, in which

quotes are automatically updated since mid-2003, has a stabilising effect on the report-

ing of quotes. In particular, taking the prevailing quote at two seconds before the trade

as the prevailing quote at the time of the trade appears to be an appropriate adjustment

rule for all stocks.

Appendix

Deconvolution of the quote frequency around a trade

Let v be the perturbed quote revision frequency around a trade, u the trade frequency

around a trade2 and q the ‘true’ quote revision frequency around a trade. The direct

2When computing the trade frequency around a trade, this trade should be counted too such that
the frequency is at least 1 at the time of the trade.
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deconvolution of v given u as explained in the main text has to be extended with some

rearranging of vector parts to obtain the correct deconvolution q. The reason is that

u, v and q are truncated at the borders of the interval around a trade; see Figures

1.1 and 1.2. For example, assume that we observe both u, q and v on the interval

[−15, 15] around a trade. The vector of the convolution v0 = u ∗ q will be of length
(2 × 31 − 1) = 61 and typically contains non-zero elements across the entire interval.
Thus, the convolution v0 is not equal to the observed v unless parts of the vector are

rearranged, i.e. v = [v02 + v04 v0m v01 + v03], where v
0
m is the element in the middle of the

vector v0 and v0i, i = 1, ..., 4, is the i-th 15-element part of the vector v
0 excluding v0m.

Similarly, when deconvolving v by u, the estimate q0 has to be rearranged.

In order to deconvolve v, first extend the vector on both sides with two vectors of

15 zeros to increase its length to 61 elements and extend the interval to [-30,30]. Let

V , U and Q be the Fourier transformations of the densities, e.g. V = F(v). Then it
holds that V = UQ and hence Q = V/U . Upon taking the inverse Fourier transform,

q0 = F−1(V/U), we obtain an estimate of the true quote revision frequency around a
trade. The result q0 has non-zero elements across the 61 elements interval. Its parts

have to be rearranged to obtain the truncated version q00 of q0 on the interval [-15,15]

as we would observe it, i.e. q00 = [q01+ q03 q0a q02+ q04], where q
0
a is the 16th element of q

0

plus the average of the 46th and 47th element and q0i, i = 1, ..., 4, is the i-th 15-element

part of the vector q0 excluding its 16th element.

Quote revision frequency computation by iteration

The estimate q00 can still be a poor estimate of the true quote revision frequency around

a trade, because we deconvolve the observed frequency v instead of the unknown v0.

However, the latter can be obtained by iteration, which allows better estimates of q.

Each iteration consists of the following steps:

1. Compute the convolution d = u ∗ q00.

2. Replace the middle part of the vector d (of 31 elements) by the middle part of v

minus the outer parts of d. That is, define z = [d1 v2−d4 vm v3−d1 d4], where

vm is the element in the middle of v plus the average of the first and last element

of d.

3. Deconvolve z by u using Fourier transformation as explained above to obtain a

new estimate q00.
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Step 1 computes the convolution implied by the estimate q00. In Step 2, the tails of

this convolution are imposed on the observed frequencies v. In step 3, this new vector

of frequencies is deconvolved and a new estimate of q is obtained. By iterating these

steps, z converges to v0 and q00 to q.



Chapter 2

Asymptotic Results for GMM
Estimators of Stochastic Volatility
Models

2.1 Introduction

Over the last two decades there has been an increasing interest in stochastic volatility

(SV), which was introduced by Clark (1973) and extended by Tauchen and Pitts (1983),

as a framework for the analysis of time-varying volatility in financial markets. This

interest is partly due to an important contribution by Hull and White (1987), where

SV models arise as discrete time approximations to continuous time volatility diffusions

used in option pricing. More generally, it is recognized that SV models constitute a

valuable alternative to GARCH-type models for analysing financial time series (Ghysels,

Harvey, and Renault (1996), Shephard (1996)).

Due to the fact that in SV models the mean and the volatility are driven by sep-

arate stochastic processes (implying that volatility is unobservable), SV models are

much harder to estimate than GARCH models. This chapter presents analytical re-

sults that may be used to improve and assess the quality of GMM-based estimation of

SV models. GMM, while not asymptotically efficient, is still the simplest estimation

method for SV models currently available. It has been proposed by Taylor (1986) and

Melino and Turnbull (1990), and its properties have been studied using Monte Carlo

methods by Jacquier, Polson, and Rossi (1994), Andersen and Sørensen (1996, 1997),

and Andersen, Chung, and Sørensen (1999). Other available estimation methods for

SV models include quasi-maximum likelihood (Nelson (1988), Harvey, Ruiz, and Shep-

hard (1994), Ruiz (1994)), simulated maximum likelihood (Danielsson and Richard

(1993), Danielsson (1994)), simulation-based GMM (Duffie and Singleton (1993)), indi-

rect inference (Gouriéroux, Monfort, and Renault (1993), Monfardini (1998)), Markov

23



24 Asymptotic Results for GMM Estimators of SV Models

chain Monte Carlo methods (Jacquier, Polson, and Rossi (1994), Kim, Shephard, and

Chib (1998), Chib, Nardari, and Shephard (2002)), efficient method of moments (Gal-

lant, Hsieh, and Tauchen (1997), Andersen, Chung, and Sørensen (1999)), Monte Carlo

maximum likelihood (Sandmann and Koopman (1998)), and (approximate) maximum

likelihood (Fridman and Harris (1998)). Apart from quasi-maximum likelihood, all of

these methods are computationally more demanding, as they rely — often quite heavily

— on numerical simulation and/or integration techniques both for obtaining point esti-

mates and for assessing the accuracy of the latter. In view of its simplicity, we consider

GMM estimation as a useful alternative to the more elaborate methods.

In this chapter we derive closed-form expressions for the optimal weighting matrix for

GMM estimation of the basic SVmodel, and for the asymptotic covariance matrix of the

optimal GMM estimator, for a large class of moment conditions. To date, applications of

GMM in this context have typically relied on a nonparametrically estimated weighting

matrix, because an expression for the optimal weighting matrix (as a function of the

parameters) was not available. For the SV model, such weighting matrix estimates

(and hence the estimates of the covariance matrix of the GMM estimator) can be very

imprecise even for relatively large sample sizes (Andersen and Sørensen (1996)). Using

the exact expressions eliminates this problem. Furthermore, the accuracy of the GMM

estimator can now be assessed by analytical means, which is currently not possible for

any of the other estimators.

The moment conditions that we consider fall into two categories. The first set of

conditions is obtained by considering the first two moments and the autocovariances

of any order of the log-squared observations. These conditions have recently been

considered by Wright (1999), in connection with the fractionally integrated SV model.

The second set of moment conditions are derived from the absolute observations and are

more standard in this literature. We study moment conditions that involve the product

of any number of absolute observations, each one raised to any positive real power

and lagged any number of periods. This set considerably extends the set of moment

conditions that have been employed so far. The results that we present pertain to any

selection of moment conditions from these two sets.

The expressions for the asymptotic covariance matrix of the GMM estimator allow

us to compare the relative efficiency of GMM estimators based on various sets of moment

conditions, and to compare these efficiencies with those of other estimators, reported

earlier in Monte Carlo studies. One of the conclusions from this comparison is that a

judicious selection of a very small number of moment conditions yields a GMM estimator
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with only a small efficiency loss compared to the MCMC estimator (which is known to

be asymptotically efficient).

The analytical results regarding the optimal weighting matrix allow us to fastly and

accurately assess the information content of any subset of moment conditions consid-

ered. This, in turn, permits the optimal selection of a small set of highly informative

moment conditions from very large sets, and subsequent GMM estimates to be based on

the optimal selection of moments. We propose a general four-step data-based procedure

for the optimal selection of moment conditions, and apply it in the SV context.

In Section 2.2, we present the basic SV model and the moment conditions. Ex-

pressions for the optimal weighting matrix and the asymptotic covariance matrix of

the GMM estimator are derived in Section 2.3. Section 2.4 presents some comparative

evidence on the relative efficiencies of the GMM and other estimators (partly compiled

from the literature). The moment selection procedure is given in Section 2.5. Section

2.6 compares the performance in moderate to large samples of the iterated GMM es-

timator using Bartlett weights to estimate the optimal weighting matrix versus using

analytical expressions for the optimal weighting matrix. Section 2.7 concludes. Proofs

are given in the Appendix.

2.2 Moment conditions for the SV model

The basic SV model is given by

yt = exp (ht/2)ut, (2.1)

ht+1 = µ+ φ(ht − µ) + σ

q
1− φ2vt, (2.2)

where yt is observable, ht is latent log-volatility, (ut, vt) is i.i.d.N(0, I), and θ = (µ, φ, σ)0

is a vector of parameters. The restriction |φ| < 1 is imposed, ensuring that yt is

stationary and ergodic. While it is more common to parameterise the model in terms

of λ = (α, φ, ω)0, with α = µ(1−φ) and ω = σ
p
1− φ2, we prefer the parameterisation

in terms of θ for algebraic reasons and because of an invariance with respect to µ given

below. For comparison with earlier studies, however, numerical standard errors will be

presented in terms of λ.

From the point of view of inference, the fundamental problem with the SV model is

the latent character of ht, which makes it difficult to compute the values of the likelihood

function and hence to estimate θ by maximum likelihood. It is easy, however, to derive

moment conditions implied by the SV model and then to apply the Generalized Method
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of Moments (Hansen, 1982). The moment conditions considered in this chapter relate

either to the log-squared observations, log y2t , or to the absolute observations, |yt|. The
latter class of moment conditions constitutes the standard approach to GMM estimation

of SV models (Taylor (1986), Melino and Turnbull (1990), Jacquier, Polson, and Rossi

(1994), Andersen and Sørensen (1996, 1997), Andersen, Chung, and Sørensen (1999)).

The former class of moment conditions is suggested in passing by Jacquier, Polson,

and Rossi (1994), and is effectively employed by Wright (1999) in the context of the

fractionally integrated SV model.

Moment conditions related to log y2t are easily obtained. It follows from (2.1) that

log y2t = ht+log u
2
t . The mean and variance of log u

2
t are known to be c1 = − log 2−γ =

−1. 270 4 and c2 =
1
2
π2 = 4. 934 8, respectively, where γ = 0.577 2 is Euler’s constant.

Let

zt = log y
2
t − µ− c1

= ht − µ+ log u2t − c1.

Since ht ∼ N(µ, σ2), Cov(ht, ht−i) = φ|i|σ2, and ut is i.i.d. and independent of ht, it

follows that

E [zt] = 0, (2.3)

E [ztzt−i] = φiσ2 + I(i=0)c2, i ≥ 0, (2.4)

where I(·) is the indicator function. It can be shown that none of these conditions is

redundant in the sense of Breusch et al. (1999).

We now derive the class of moment conditions generated by the expectation of

|yr1t1 ...y
rp
tp |, where r1, ..., rp are positive real numbers and t1 > ... > tp. Let νr be the r-th

absolute moment of a standard normal random variate, i.e.

νr = E|ut|r =
2r/2√
π
Γ

µ
r + 1

2

¶
where Γ(z) is the gamma function. Then, because t1 > ... > tp,

E

pY
j=1

¯̄̄
ν−1rj u

rj
tj

¯̄̄
= 1.

Furthermore,
Pp

j=1 rjhtj is normally distributed with mean µ
Pp

j=1 rj and variance

σ2
Pp

j,j0=1 rjrj0φ
|tj−tj0 |. So, by property that E exp(X) = exp(a + 1

2
b2) when X ∼

N(a, b2), we have

E exp

Ã
1

2

pX
j=1

rjhtj

!
= exp

¡
δ
r1,...,rp
t1,...,tp

¢
,
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where

δ
r1,...,rp
t1,...,tp =

µ

2

pX
j=1

rj +
σ2

8

pX
j,j0=1

rjrj0φ
|tj−tj0 |.

Hence, defining

Y
r1,...,rp
t1,...,tp = exp

¡
−δr1,...,rpt1,...,tp

¢ pY
j=1

¯̄̄
ν−1rj y

rj
tj

¯̄̄
= exp

¡
−δr1,...,rpt1,...,tp

¢
exp

Ã
1

2

pX
j=1

rjhtj

!
pY

j=1

¯̄̄
ν−1rj u

rj
tj

¯̄̄
,

it follows that

E
£
Y

r1,...,rp
t1,...,tp

¤
= 1, r1, ..., rp > 0; t1 > ... > tp. (2.5)

It is obvious that adding the same integer to t1, ..., tp yields the same moment condition.

As far as we know, within the class of moment conditions defined by (2.5), only moment

conditions where p = 1 or where p = 2 and r1 = r2 ∈ {1, 2} have so far been considered
in the literature.

2.3 Optimal GMM

Let E(ft) = f be a finite selection of the set of moment conditions given by (2.3)—(2.5)

that identifies θ. Let gt = ft − f . By assumption, the observations on yt permit us

to calculate g1, ..., gT as functions of θ. The optimal GMM estimator (Hansen (1982))

of θ based on this selection is θ̂ = argminθ ḡ
0V̂ −1ḡ, where ḡ = T−1

PT
t=1 gt and V̂

consistently estimates V , where

V =
∞X

l=−∞
E(gtg

0
t−l) =

∞X
l=−∞

Cov(ft, f
0
t−l).

The asymptotic covariance matrix of
√
T (θ̂ − θ) is (D0V −1D)−1, where D = E(∂gt

∂θ0 ).

Expressions for D and V , for an arbitrary selection of moment conditions, are presented

below. These expressions make it possible to compute the optimal weighting matrix

V −1 and the asymptotic covariance matrix (D0V −1D)−1 of the GMM estimator as

functions of the parameter values. Substituting estimates for these parameter values

yields estimates of V −1 and (D0V −1D)−1, which will generally be more precise than the

nonparametric estimator based on Bartlett weights that is routinely used in a GMM

context. The Monte Carlo results of Andersen and Sørensen (1996) show that the latter

estimator of V may be imprecise even in samples of size 50, 000. Using the expressions

presented here avoids such problems. Furthermore, the expression for V makes it also
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possible to estimate θ by the continuous-updating GMM estimator of Hansen, Heaton,

and Yaron (1996), that is, by solving minθ ḡ0V −1ḡ.

Some straightforward calculus shows that the rows ofD are to be selected (according

to the selection of moments) from⎛⎜⎜⎜⎜⎝
−1 0 0

0 −iφi−1σ2 −2φiσ

−∇µδ
r1,...,rp
t1,...,tp −∇φδ

r1,...,rp
t1,...,tp −∇σδ

r1,...,rp
t1,...,tp

⎞⎟⎟⎟⎟⎠ i ≥ 0;

r1, ..., rp > 0; t1 > ... > tp;

where

∇µδ
r1,...,rp
t1,...,tp =

1

2

pX
j=1

rj,

∇φδ
r1,...,rp
t1,...,tp =

σ2

8

pX
j,j0=1

rjrj0|tj − tj0|φ|tj−tj0 |−1,

∇σδ
r1,...,rp
t1,...,tp =

σ

4

pX
j,j0=1

rjrj0φ
|tj−tj0 |.

The main result of this chapter is an expression for the elements of V , given in Theorem

1 below. Let ci = E(log u2t − c1)
i, i = 3, 4. It is shown in the Appendix that

c3 = −14ζ (3) = −16. 829,

c4 =
7
4
π4 = 170. 47,

where ζ (z) is the Riemann zeta function. For r > 0, let

κr = log 2 + ψ

µ
r + 1

2

¶
− c1,

ξr = κ2r + ψ0
µ
r + 1

2

¶
− c2,

where ψ(z) = d
dz
logΓ(z), the digamma function, and ψ0(z) = d

dz
ψ(z), the trigamma

function.

Theorem 1 For any at and bt, let V (at, bt) =
P∞

l=−∞Cov(at, bt−l). Let i, j ≥ 0. Then

V (zt, zt) =
1 + φ

1− φ
σ2 + c2, (2.6)

V (zt, ztzt−j) = I(j=0)c3, (2.7)

V (ztzt−i, ztzt−j) = A1σ
4 +A2c2σ

2 + I(i=j 6=0)c
2
2 + I(i=j=0)(c4 − c22), (2.8)
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where

A1 = |i− j|φ|i−j| + |i+ j|φ|i+j| +
³
φ|i−j| + φ|i+j|

´ 1 + φ2

1− φ2
,

A2 = 2
³
φ|i−j| + φ|i+j|

´
.

Let r1, ..., rp+q > 0; t1 > ... > tp; tp+1 > ... > tp+q; and let

L = {l| {t1, ..., tp} ∩ {tp+1 − l, ..., tp+q − l} 6= ∅} .

Then

V
¡
Y

r1,...,rp
t1,...,tp , Y

rp+1,...,rp+q
tp+1,...,tp+q

¢
= B +

X
l∈L
(Bl + 1)Cl, (2.9)

where

B =
∞X

l=−∞
Bl, Bl = exp

Ã
σ2

4

pX
j=1

p+qX
j0=p+1

rjrj0φ
|tj−tj0+l|

!
− 1,

Cl =

Ã
p+qY
j=1

ν−1rj

!
E

Ã
pY

j=1

¯̄̄
u
rj
tj

¯̄̄ p+qY
j=p+1

¯̄̄
u
rj
tj−l

¯̄̄!
− 1,

and

V
¡
zt, Y

r1,...,rp
t1,...,tp

¢
= D1σ

2 +D2, (2.10)

V
¡
ztzt−i, Y

r1,...,rp
t1,...,tp

¢
= D0

1σ
4 +D0

2σ
2 +D0

3, (2.11)

where

D1 =
1

2

µ
1 + φ

1− φ

¶ pX
j=1

rj, D2 =

pX
j=1

κrj ,

D0
1 =

1

4

pX
j,j0=1

rjrj0φ
|tj−tj0+i|

µ
|tj − tj0 + i|+ 1 + φ2

1− φ2

¶
,

D0
2 =

1

2

pX
j,j0=1

rjκrj0

³
φ|tj−tj0+i| + φ|tj−tj0−i|

´
,

D0
3 = I(i=0)

pX
j=1

ξrj +

pX
j,j0=1

I(i=tj−tj0 6=0)
κrjκrj0 .

We see that, not unexpectedly, the optimal weighting matrix, V −1, and the GMM

asymptotic covariance matrix, (D0V −1D)−1, do not depend on µ. From a computational

point of view, notice that L has at most pq elements, so computing
P

l∈L(Bl + 1)Cl

requires a finite number of steps. Furthermore, B can be approximated by B(I) =PI
l=−I Bl, where I is a positive integer. As the following lemma shows, the error of

approximation |B −B(I)| is bounded by an exponentially decaying function in I, and

this bound can be inverted to determine I as a function of the desired accuracy of the

approximation.



30 Asymptotic Results for GMM Estimators of SV Models

Lemma 2 Let r1, ..., rp+q > 0; t1 > ... > tp; tp+1 > ... > tp+q; and let I be a positive

integer. Then

|B −B(I)| ≤ 2exp(a|φ|
I)− 1

1− |φ| ,

where

a =
σ2

4

pX
j=1

p+qX
j0=p+1

rjrj0 |φ|−|tj−tj0 | .

If one is interested in λ rather than θ, one may apply the transformation θ 7−→ λ(θ)

to yield λ̂ = λ(θ̂), the optimal GMM estimator of λ, which has asymptotic covariance

matrix ( ∂λ
∂θ0 )(D

0V −1D)−1( ∂λ
∂θ0 )

0, with

∂λ

∂θ0
=

⎛⎝ 1− φ −µ 0
0 1 0
0 −σφ(1− φ2)−1/2 (1− φ2)1/2

⎞⎠ .

2.4 Comparison of GMM and other estimators

In this section we first compare the relative efficiencies of GMM and other estimators,

for two sets of values of λ, namely (α, φ, ω) = (−0.736, 0.90, 0.363) and (α, φ, ω) =
(−0.1472, 0.98, 0.1657). These parameter values have been used in earlier Monte Carlo
studies (Jacquier, Polson, and Rossi (1994), Andersen and Sørensen (1996), Fridman

and Harris (1998), Sandmann and Koopman (1998), Andersen, Chung, and Sørensen

(1999)). Tables 2.1 and 2.2 present the results. The asymptotic standard errors of the

GMM estimators were computed using the expressions derived above. The moment

conditions were selected from the set related to the log-squared observations, or from

the set related to the absolute observations, or from both. For comparability with other

studies, from (2.5) we only selected moment conditions for which p = 1 or for which

p = 2 and r1 = r2 ∈ {1, 2}. The (finite sample) standard errors of the other estimators
were taken from the aforementioned Monte Carlo studies and multiplied by

√
T . The

relative asymptotic efficiency of the GMM estimators is seen to increase rapidly with

the number of moments, at least when this number is small. Using a large number of

moment conditions yields asymptotic standard errors slightly above those of the MCMC

method, which is known to be asymptotically efficient. In this respect, it appears that

some of the published standard errors regarding ML and Monte Carlo ML are not in

line with those of the MCMC method.
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Table 2.1: Standard errors of
√
T λ̂

T # Moments Method of estimation Standard Error of√
T α̂

√
T φ̂

√
T ω̂

∞ 3 GMM (log-moments)a 127.52 17.31 32.66
∞ 12 GMM (log-moments)a 12.04 1.63 3.80
∞ 27 GMM (log-moments)a 10.06 1.36 3.22
∞ 102 GMM (log-moments)a 10.04 1.36 3.22
∞ 3 GMM (absolute moments)b 178.46 24.18 46.78
∞ 15 GMM (absolute moments)b 11.34 1.53 2.96
∞ 30 GMM (absolute moments)b 8.14 1.10 2.18
∞ 75 GMM (absolute moments)b 7.55 1.02 2.03
∞ 14 GMM (joint moments)c 16.92 2.29 4.27
∞ 22 GMM (joint moments)c 11.30 1.53 2.92
∞ 42 GMM (joint moments)c 8.12 1.10 2.14
∞ 102 GMM (joint moments)c 7.53 1.02 1.99
10000 14 Infeasible GMMd (true weight) 11.4 1.6 3.1
4000 14 Infeasible GMMd (true weight) 10.6 1.5 3.1
4000 4 EMM: GARCH(1,1)e 9.51 1.2 3.1
4000 6 EMM: GARCH(1,1) - Kz(2)e 9.68 1.3 3.2
4000 8 EMM: GARCH(1,1) - Kz(4)e 8.28 1.1 2.1
2000 24 GMMf 18 3 3.8
2000 - Quasi-MLf 20 3 4.8
2000 - MCMCf 6.6 1 1.5
500 - MLg 9.1 1 2
500 - Monte Carlo MLh 0.5 2.2 2

Parameter values: (α, φ, ω) = (−0.736, 0.90, 0.363).
GMM conditions are selected from Eqs. (2.3)—(2.5), as indicated below. Most
footnotes refer to multiple lines in the Table.
a. Eqs. (2.3)—(2.4) with i running from 0 to 1, 10, 25, and 100, respectively.
b. Eqs. (2.5) with p = 1, r1 running from 1 to 1, 5, 10, and 25 respectively; and
Eq. (2.5) with p = 2, r1 = r2 ∈ {1, 2}, t1 − t2 running from 1 to 1, 5, 10, and 25
respectively.
c. Eqs. (2.3)—(2.4) with i running from 0 to 3, 5, 10, and 25, respectively; Eq. (2.5)
with p = 1, r1 running from 1 to 3, 5, 10, and 25, respectively; and Eq. (2.5) with
p = 2, r1 = r2 ∈ {1, 2}, t1 − t2 running from 1 to 3, 5, 10, and 25, respectively.
d. Andersen and Sørensen (1996), Table 3: Eq. (2.5) with p = 1, r1 running from
1 to 4; Eq. (2.5) with p = 2, r1 = r2 = 1, t1 − t2 ∈ {6, 8, 10, 12, 14}; and Eq.
(2.5) with p = 2, r1 = r2 = 2, t1 − t2 ∈ {15, 17, 19, 21, 23}. ‘Infeasible GMM’
uses a nonparametric estimate of the weighting matrix based on a large sample of
simulated data using true parameter values.
e. Andersen, Chung, and Sørensen (1999), Table 3.
f . Jacquier, Polson, and Rossi (1994), Tables 5—7. For GMM: Eq. (2.5) with p = 1,
r1 running from 1 to 4; and Eq. (2.5) with p = 2, r1 = r2 ∈ {1, 2}, t1 − t2 running
from 1 to 10.
g. Fridman and Harris (1998), Table 1.
h. Sandmann and Koopman (1998), Table 2.
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Table 2.2: Standard errors of
√
T λ̂

T # Moments Method of estimation Standard Error of√
T α̂

√
T φ̂

√
T ω̂

∞ 3 GMM (log-moments)a 136.37 18.53 77.30
∞ 12 GMM (log-moments)a 6.67 0.90 4.00
∞ 27 GMM (log-moments)a 2.96 0.40 1.71
∞ 52 GMM (log-moments)a 2.51 0.34 1.39
∞ 102 GMM (log-moments)a 2.49 0.34 1.37
∞ 3 GMM (absolute moments)b 264.71 35.95 150.79
∞ 15 GMM (absolute moments)b 8.49 1.15 4.79
∞ 30 GMM (absolute moments)b 4.15 0.56 2.28
∞ 75 GMM (absolute moments)b 2.48 0.34 1.23
∞ 14 GMM (joint moments)c 14.95 2.03 8.43
∞ 22 GMM (joint moments)c 8.45 1.15 4.76
∞ 42 GMM (joint moments)c 4.12 0.56 2.26
∞ 102 GMM (joint moments)c 2.44 0.33 1.20
4000 4 EMM: GARCH(1,1)d 2.8 0.37 1.3
4000 4 EMM: GARCH(1,1) - Kz(2)d 2.9 0.39 1.8
4000 6 EMM: GARCH(1,1) - Kz(4)d 2.7 0.36 1.0
500 24 GMMe 5.8 0.80 2
500 - Quasi-MLe 12 2 3.1
500 - MCMCe 2.7 0.4 1
500 - MLf 0.4 0.30 0.8
500 - Monte Carlo MLg 0.2 2 1

Parameter values: (α, φ, ω) = (−0.1472, 0.98, 0.1657).
GMM conditions are selected from Eqs. (2.3)—(2.5), as indicated below. Most
footnotes refer to multiple lines in the Table.
a. Eqs. (2.3)—(2.4) with i running from 0 to 1, 10, 25, 50, and 100, respectively.
b. Eq. (2.5) with p = 1, r1 running from 1 to 1, 5, 10, and 25 respectively; and
Eq. (2.5) with p = 2, r1 = r2 ∈ {1, 2}, t1 − t2 running from 1 to 1, 5, 10, and 25
respectively.
c. Eqs. (2.3)—(2.4) with i running from 0 to 3, 5, 10, and 25, respectively; Eq. (2.5)
with p = 1, r1 running from 1 to 3, 5, 10, and 25, respectively; and Eq. (2.5) with
p = 2, r1 = r2 ∈ {1, 2}, t1 − t2 running from 1 to 3, 5, 10, and 25, respectively.
d. Andersen, Chung, and Sørensen (1999), Table 3.
e. Jacquier, Polson, and Rossi (1994), Tables 5—7. For GMM: Eq. (2.5) with p = 1,
r1 running from 1 to 4; and Eq. (2.5) with p = 2, r1 = r2 ∈ {1, 2}, t1 − t2 running
from 1 to 10.
f . Fridman and Harris (1998), Table 1.
g. Sandmann and Koopman (1998), Table 2.
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2.5 Data-based selection of moment conditions

In Monte Carlo studies it is often found that the small sample bias of the GMM estima-

tor grows with the number of moment conditions. Newey and Smith (2000, 2001) show

that the number of terms of the second-order bias increases linearly with the number

of moment conditions. Thus, rather than using a large number of moment conditions

(relative to the sample size), it is in terms of bias often safer to select only a small

number of them. It is important, then, to choose the moments judiciously, in the sense

that they contain as much information as possible for the estimand. Several authors

have addressed the question of how to select the moment conditions to estimate the SV

model, essentially by resorting to Monte Carlo simulation of the accuracy of the GMM

estimator for any given choice of moments. The results of the previous section provide

a more precise and much faster tool to guide the choice of moments.

Table 2.3: Asymptotic standard errors of
√
T φ̂ for parsimoniously selected

moments
Moment set k Selected moments Standard Error of√

Tα̂
√
T φ̂

√
Tω̂

ML 3 zt; ztzt−1; ztzt−11 18.31 2.49 5.41

MA 3 Y 2
t ;Y

1,2
t,t−7;Y

1,1,1
t,t−5,t−14 10.59 1.44 4.72

ML∪MA 3 ztzt−10;Y
2
t ;Y

1,1,1
t,t−7,t−15 10.08 1.37 4.07

ML 4 zt; ztzt−1; ztzt−10; ztzt−12 14.78 2.01 4.62

MA 4 Y 1
t ;Y

2
t ;Y

1,1
t,t−10;Y

1,1,1
t,t−8,t−15 9.65 1.31 2.55

ML∪MA 4 ztzt−10;Y
2
t ;Y

1,1,1
t,t−5,t−14;Y

1,1,1
t,t−7,t−13 9.46 1.28 4.16

ML 5 zt; ztzt−1; ztzt−9; ztzt−11; ztzt−14 13.37 1.82 4.31

MA 5 Y 1
t ;Y

2
t ;Y

1,1
t,t−7;Y

1,1
t,t−9;Y

1,1
t,t−13 9.07 1.23 2.47

ML∪MA 5 Y 1
t ;Y

2
t ;Y

1,1
t,t−7;Y

1,1
t,t−9;Y

1,1
t,t−13 9.07 1.23 2.47

Parameter values: (α, φ, ω) = (−0.736, 0.90, 0.363).

We first discuss ‘parameter-based’ optimal selection of moments–which requires

the parameters to be known–and then data-based optimal selection, which does not

require the parameters to be known. The method has general applicability and the

SV model can be viewed as an application here. Consider the sets ML and MA of
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log-moment and absolute moment conditions, respectively, defined as

ML : (2.3)—(2.4) with integers i ≤ 50,

MA : (2.5) with max
j,j0

|tj − tj0| ≤ 15 and integers rj with
pP

j=1

rj ≤

⎧⎨⎩ 20 for p = 1,

4 for p = 2, 3, 4.

The sets ML and MA comprise 52 and 985 moment conditions, respectively. We per-

formed a search for the set of k moment conditions, selected from either ML, MA, or

ML ∪MA, that yield the smallest asymptotic standard error of φ̂. Global optimisation,

by enumeration, was performed over ML for k = 3, 4, 5, and over MA and ML ∪MA

for k = 3. Global optimisation over MA and ML ∪MA for k = 4 and k = 5 turned

out to be infeasible in terms of computation time, and in these cases we experimented

with the Point Exchange algorithm (Fedorov (1972)). This algorithm does not neces-

sarily yield the global optimum, and its output depends on the starting selection of

moment conditions as input. By picking the starting selection at random and repeating

this a couple of times, the algorithm was able to reproduce the global optimum in all

cases where enumeration was possible. We therefore applied it in those cases where

global optimisation was not feasible, without the guarantee of having found the glob-

ally optimal selection of moments from the specified sets. The parameter values were

fixed at (α, φ, ω) = (−0.736, 0.90, 0.363), as in Table 2.1. Table 2.3 reports the selected
moments and the asymptotic standard errors of the corresponding GMM estimators.

Comparing Table 2.3 with Table 2.1 yields the following conclusions: (i) there is a dra-

matic increase in efficiency by selecting the moments in an optimal way; (ii) given that

the efficiency bound for the asymptotic standard error of
√
Tφ̂ (which is asymptotically

attained by the MCMC estimator) appears to be around 1, the efficiency loss of the

GMM estimator with optimal moment selection fromML∪MA is not excessively large,

even in the just-identified case (k = 3); (iii) while MA contains a richer (also a much

larger) set of moment conditions than ML — as is reflected by the smaller asymptotic

standard errors — the combination ofMA andML may yield an improvement uponMA,

as is the case here for k = 3 and k = 4.

The optimal selection of moment conditions from any given set, as described above,

depends on the parameter values. The following four-step data-based procedure gives,

asymptotically, the optimal selection independently of the parameter values. In step

1, the parameters are consistently estimated, for example by GMM using a large set

of moment conditions. In step 2, the optimal selection of moment conditions is made
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for parameter values set equal to the estimates obtained. In step 3, the parameters

are re-estimated by GMM using the moment conditions selected in step 2. In step 4,

steps 2 and 3 are repeated once. Steps 1—3 and steps 1—4 are asymptotically equivalent

procedures and the resulting GMM estimates based on the selected moments are asymp-

totically equivalent to the GMM estimates that use the optimal selection of moments.

Step 4 is added to ensure that the final selection of moments is based on estimates that

are relatively efficient while typically less biased than those obtained in step 1.

2.6 Finite sample properties

So far, we discussed the asymptotic properties of the GMM estimator based on the

analytical results (3.1)—(2.11). In this section we report Monte Carlo results that com-

pare, for fixed sets of moment conditions, the iterated GMM estimator based on the

analytically derived optimal weighting matrix and the iterated GMM estimator based

on an estimate, using Bartlett weights with lag parameter set to T 1/3, of the optimal

weighting matrix. We also present results on the performance of the former estimator

with optimally selected moments according to the four-step procedure given in Section

5. The results are used to double-check the asymptotic results, to assess their usefulness

in improving the estimates, and to explore the finite sample properties of the moment

selection procedure.

All simulation results are based on 1, 000 replications, with data generated by the SV

model (2.1)—(2.2) and parameter values as in Table 2.1, i.e. (α, φ, ω) = (−0.736, 0.90,
0.363). Table 2.4 presents, for T = 10, 000 and the same sets of moment conditions as in

Table 2.1, the Monte Carlo average and standard deviation of the estimates along with

the ratio of the standard deviation and the asymptotic standard error (std/ase). The

estimates based on the analytical optimal weighting matrix have standard deviations

that are in line with Table 2.1, with std/ase close to 1. For the two sets of 3 moment

conditions the standard deviation is smaller than the analytically derived standard

error. This is due to the fact that the boundary condition |φ| < 1 is imposed on the

estimates, which reduces std in finite samples compared to the asymptotic standard

error. For large sets of moment conditions, the estimates are more efficient, hit the

boundary much less often, and as a result std/ase is close to 1. As expected, the

results for iterated GMM based on Bartlett weights show that estimating the optimal

weighting matrix has an efficiency cost compared to knowing the optimal weighting

matrix. Table 2.4 lacks results for Bartlett-based iterated GMM estimation with many
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Table 2.4: iterated GMM estimates based on the analytical versus the esti-
mated optimal weighting matrix in large samples (T = 10, 000)

analytical weights Bartlett weights
Moments α̂ φ̂ ω̂ α̂ φ̂ ω̂

3 log-momentsa mean -0.834 0.887 0.366 -0.891 0.879 0.351√
Tstd 59.0 7.99 13.6 82.3 11.2 21.1

std/ase 0.463 0.462 0.418 0.645 0.644 0.647
12 log-momentsa mean -0.742 0.899 0.363 -0.736 0.900 0.360√

Tstd 12.3 1.67 3.90 12.4 1.68 3.95
std/ase 1.02 1.02 1.02 1.03 1.03 1.04

27 log-momentsa mean -0.748 0.898 0.365 -0.735 0.900 0.359√
Tstd 9.99 1.35 3.24 9.93 1.35 3.27

std/ase 0.993 0.995 1.01 0.987 0.988 1.01
102 log-momentsa mean -0.748 0.898 0.365 -0.706 0.904 0.344√

Tstd 9.96 1.35 3.23 10.0 1.35 3.32
std/ase 0.992 0.993 1.01 1.00 0.995 1.03

3 absolute momentsb mean -0.864 0.883 0.387 -0.663 0.910 0.308√
Tstd 53.6 7.15 11.4 63.4 8.51 17.6

std/ase 0.300 0.295 0.243 0.355 0.352 0.376
15 absolute momentsb mean -0.719 0.902 0.361 -0.742 0.899 0.350√

Tstd 11.5 1.56 3.02 17.96 2.34 91.23
std/ase 1.02 1.02 1.02 1.58 1.52 30.8

30 absolute momentsb mean -0711 0.903 0.362 - - -√
Tstd 8.35 1.13 2.20 - - -

std/ase 1.03 1.02 1.01 - - -
75 absolute momentsb mean -0.676 0.907 0.359 - - -√

Tstd 7.91 1.06 2.06 - - -
std/ase 1.05 1.04 1.02 - - -

14 joint momentsc mean -0.724 0.902 0.359 -0.780 0.894 0.355√
Tstd 17.7 2.40 4.60 21.57 2.92 5.11

std/ase 1.05 1.05 1.08 1.28 1.28 1.20
22 joint momentsc mean -0.720 0.902 0.360 -0.711 0.903 0.313√

Tstd 11.5 1.56 2.99 17.9 2.43 6.12
std/ase 1.02 1.02 1.02 1.59 1.59 2.09

42 joint momentsc mean -0.713 0.903 0.361 - - -√
Tstd 8.30 1.12 2.16 - - -

std/ase 1.02 1.02 1.01 - - -
102 joint momentsc mean -0.682 0.906 0.359 - - -√

Tstd 7.79 1.05 2.02 - - -
std/ase 1.03 1.03 1.02 - - -

std = standard deviation; ase = asymptotic standard error.
Parameter values: (α, φ, ω) = (−0.736, 0.90, 0.363). Footnotes a, b and c are as in Table 2.1.
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moment conditions, because then estimation is difficult due to numerical problems with

the scaling and near-singularity of the weighting matrix. This problem is particularly

severe in the case of absolute (or joint) moments. There may be ways to overcome

the problem, but in any case we found the estimates based on the analytical weighting

matrix, in addition to being more efficient, easier to compute.

The efficiency gain of iterated GMM based on the analytical optimal weighting

matrix relative to iterated GMM based on an estimate of the optimal weighting matrix

is larger in small samples. Table 2.5 presents results for the two estimators based on the

parsimoniously selected set of 5 moments as in Table 2.3, i.e. Y 1
t , Y

2
t , Y

1,1
t,t−7, Y

1,1
t,t−9 and

Y 1,1
t,t−13, for T = 500, 2000, 4000, and 10000. As required, the ratio std/ase shrinks to 1

as T grows, but it does so much faster for the estimator based on the analytical weight

matrix. For this design and choice of moments, the latter estimator is much more

efficient. In addition, the asymptotic standard errors are reliable when T ≥ 4, 000,

while it requires T ≥ 10, 000 with estimates of the optimal weighting matrix. Note also
that, when T = 500, the mean of the estimates points to a bias of both estimators, in

particular for µ, which appears somewhat bigger when Bartlett weights are used.

Table 2.5: iterated GMM estimates based on the analytical versus the esti-
mated optimal weighting matrix in small samples

analytical weights Bartlett weights
T α̂ φ̂ ω̂ α̂ φ̂ ω̂

500 mean -1.09 0.852 0.379 -1.375 0.814 0.394√
Tstd 25.4 3.45 3.11 32.3 4.39 3.83

std/ase 2.80 2.82 1.26 3.58 3.58 1.55
2, 000 mean -0.769 0.895 0.361 -0.853 0.884 0.368√

Tstd 12.9 1.77 2.58 23.4 3.19 3.50
std/ase 1.43 1.44 1.04 2.58 2.60 1.41

4, 000 mean -0.750 0.898 0.362 -0.773 0.895 0.363√
Tstd 9.54 1.29 2.47 15.1 2.04 2.90

std/ase 1.05 1.05 0.996 1.67 1.66 1.17
10, 000 mean -0.742 0.899 0.363 -0.748 0.898 0.362√

Tstd 9.019 1.221 2.409 10.187 1.383 2.646
std/ase 0.995 0.996 0.974 1.123 1.128 1.070

Parameter values: (α, φ, ω) = (−0.736, 0.90, 0.363).
GMM conditions are Y 1

t , Y 2
t , Y

1,1
t,t−7, Y

1,1
t,t−9 and Y

1,1
t,t−13 (see Table 2.3, bottom line).

Finally, we experimented with the data-based selection of moment conditions. Step

1 was implemented with 12 log-moments, trying to strike a balance between efficiency,

bias, and ease of computation. In step 2, five moments were selected from the set of
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102 joint moments considered in Table 2.1. Steps 3 and 4 were executed as described

above. Throughout we used iterated GMM based on the analytical optimal weighting

matrix. Table 2.6 reports results for T = 500, 2000, 4000, and 10000.

Table 2.6: iterated GMM estimation based on the analytical optimal weight-
ing matrix with data-based selection of 5 moments

T α̂ φ̂ ω̂

500 mean -1.18 0.839 0.388√
Tstd 27.1 3.69 4.52

std/ase 2.99 3.01 1.83
2, 000 mean -0.796 0.892 0.366√

Tstd 13.3 1.82 3.03
std/ase 1.47 1.48 1.22

4, 000 mean -0.752 0.898 0.362√
Tstd 9.94 1.35 2.69

std/ase 1.10 1.10 1.09
10, 000 mean -0.743 0.899 0.363√

Tstd 9.80 1.33 2.75
std/ase 1.08 1.08 1.11

Parameter values: (α, φ, ω) = (−0.736, 0.90, 0.363).

If we compare Tables 2.5 and 2.6, then we notice that the data-based search for

the optimal set of moment conditions comes at a relatively small efficiency cost com-

pared to the case where the optimal set of moment conditions is known. The four-step

procedure is also easy to implement and limits the bias via a parsimonious selection of

moments. Moreover, it achieves high efficiency via the optimal selection of moments

and its reliance on the analytically derived optimal weighting matrix.

2.7 Conclusion

The standard approach in the literature on GMM estimation of SV models has been to

derive closed-form moment conditions from the expectations of |yrt |, |yt1yt2 | and |y2t1y2t2|
for any r, t1, and t2. We have extended this class of conditions to include the expec-

tation of |yr1t1 ...y
rp
tp | for arbitrary r1, ..., rp and t1, ..., tp, and, following Wright (1999),

the first two moments and the autocovariances of log y2t . A closed-form expression for

the optimal weighting matrix for any subset of those conditions has been derived and,

as a by-product, an expression for the GMM asymptotic covariance matrix. These

expressions can be used for improved GMM estimation of the SV model with AR(1)

log-volatility and to compute GMM standard errors more accurately. It is also of in-

terest to note that, upon redefining ci, νr, κr, and ξr appropriately, all expressions are
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generalised to SV models where the multiplicative shocks in the mean equation (1) are

non-normal.

The comparison to other estimators showed the relatively small efficiency loss of

the GMM estimator compared to the MCMC method. Monte Carlo results illustrate

the efficiency gain of iterated GMM based on the analytical optimal weighting matrix

compared to iterated GMM based on estimation of the optimal weighting matrix. The

analytical results regarding the optimal weighting matrix allow us to fastly and accu-

rately assess the information content of any subset of moment conditions considered.

This, in turn, permits the optimal selection of a small set of highly informative moment

conditions from very large sets, and subsequent GMM estimates to be based on the

optimal selection of moments. We proposed a four-step data-based procedure for the

optimal selection of moment conditions. It was found that the search for the optimal

selection of moment conditions comes at a small efficiency cost compared to when this

selection is known.

Appendix

Calculation of c3 and c4. For any positive integer n, upon substituting t = x2/2,Z ∞

−∞

³
log x2

2

´n ³
1√
2π

´
e−x

2/2dx = 2

Z ∞

0

³
log x2

2

´n ³
1√
2π

´
e−x

2/2dx

= 1√
π

Z ∞

0

(log t)n t−1/2e−tdt

=
Γ(n)

¡
1
2

¢
Γ
¡
1
2

¢ ,

where Γ(n)(z) is the n-th derivative of Γ(z). See Abramowitz and Stegun (1970) for

properties and values of the gamma and related functions that are used below. Now,

c1 = − log 2− γ = ψ
¡
1
2

¢
+ log 2, where ψ(z) = d

dz
logΓ(z) = Γ(1)(z)

Γ(z)
. Hence, for n = 3, 4,

cn =

Z ∞

−∞
(log x2 − c1)

n
³

1√
2π
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e−x

2/2dx

=

Z ∞
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2
− ψ
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1
2

¢´n ³
1√
2π
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e−x

2/2dx

= gn
¡
1
2

¢
,

where

gn (z) =
nX
i=0

µ
n

i

¶
Γ(i) (z)

Γ (z)
(−ψ (z))n−i . (2.12)
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Taking successive derivatives of Γ(1) (z) = Γ (z)ψ (z) gives, upon rewriting,

Γ(2) (z) = Γ (z)
©
ψ0 (z) + [ψ (z)]2

ª
,

Γ(3) (z) = Γ (z)
©
ψ00 (z) + 3ψ0 (z)ψ (z) + [ψ (z)]3

ª
,

Γ(4) (z) = Γ (z)
©
ψ000 (z) + 4ψ00 (z) + 3ψ0 (z)

£
ψ0 (z) + 2 [ψ (z)]2

¤
+ [ψ (z)]3

ª
,

where primes denote derivatives. Substituting these expressions into (2.12) yields

g3 (z) = ψ00 (z)

and

g4 (z) = ψ000 (z) + 3 [ψ0 (z)]
2
.

Now, ψ0
¡
1
2

¢
= π2

2
, ψ00

¡
1
2

¢
= −14ζ(3), and ψ000

¡
1
2

¢
= π4, where ζ(3) = 1.202. Hence

c3 = −14ζ (3) = −16.83 and c4 =
7
4
π4 = 170.5.

The proof of Theorem 1 makes use of the following lemmas.

Lemma 3 Let X ∼ N(0, 1) and let a be a positive real number. Then

Cov(logX2, |Xa|) = νaκa (2.13)

and

Cov((logX2 − c1)
2, |Xa|) = νaξa. (2.14)

Proof . Upon substituting z = x2/2,

Cov(logX2, |Xa|) = 2
Z ∞
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and, using Γ00(z)
Γ(z)

= ψ0(z) + (ψ(z))2 (with primes denoting derivatives),
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Lemma 4 Let X1, X2, andX3 be jointly normal with µi = EXi and σij = Cov(Xi,Xj).

Then

Cov(X1, expX3) = σ13 exp
¡
µ3 +

1
2
σ33
¢

(2.15)

and

Cov(X1X2, expX3) = (σ13σ23 + µ1σ23 + µ2σ13) exp
¡
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1
2
σ33
¢
. (2.16)

Proof . Assume first that µi = 0 and σii > 0 for all i. Let µi|j = σijσ
−1
jj Xj be the

conditional mean of Xi, given Xj, and σij|k = σij−σikσjkσ−1kk the conditional covariance
between Xi and Xj, given Xk. Then,
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1
2
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¢
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2
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,

using the fact that, for a standard normal variate X,

Cov(X, exp(bX)) =
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The extension to the case where µi 6= 0 for some i is straightforward, and any degenerate
case follows upon taking the appropriate limit in the non-degenerate case.

Proof of Theorem 1. Write zt = kt+wt, where kt = ht−µ and wt = log u
2
t−c1. Then,

wt and kt have zero mean and are independent, and, for any integers i, j, l, we have
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Cov(kt, kt−i) = φ|i|σ2, Cov(ktkt−i, kt−j) = 0, and Cov(ktkt−i, kt−jkt−l) = (φ|j|+|i−l| +

φ|l|+|i−j|)σ4. Using these properties and the equalities

∞X
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,
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¶
,

we obtain, for i, j ≥ 0,
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giving (3.1)—(3.3). To establish (2.9), recall the definition of Y r1,...,rp
t1,...,tp , from which
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Summing over l gives (2.9), because Cl = 0 whenever l /∈ L. Furthermore, by (2.13)
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which, upon summing over l, gives (2.10). Finally,
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say, with, using Lemma 2 and Lemma 3,
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Summing over l gives (2.11), which concludes the proof.

Proof of Lemma 1. Since |φ||tj−tj0+l| ≤ |φ|−|tj−tj0 |+|l|,

Bl ≤ exp
Ã
σ2

4

pX
j=1

p+qX
j0=p+1

rjrj0|φ||tj−tj0+l|
!
− 1 ≤ exp(a|φ||l|)− 1.

By an argument of symmetry,

exp(−a|φ||l|)− 1 ≤ Bl ≤ exp(a|φ||l|)− 1

and so, because exp(z)− 1 ≥ 1− exp(−z) for any z,

|Bl| ≤ exp(a|φ||l|)− 1.

Therefore,

|B −B(I)| ≤
∞X

l=I+1

(|B−l|+ |Bl|) ≤ 2
∞X
l=I

¡
exp

¡
a|φ|l

¢
− 1
¢

= 2
∞X
l=I

∞X
k=1

ak|φ|kl
k!

= 2
∞X
k=1

µ
ak

k!

¶µ
|φ|kI
1− |φ|k

¶

<
2

1− |φ|

∞X
k=1

¡
a|φ|I

¢k
k!

= 2
exp(a|φ|I)− 1

1− |φ| .



Chapter 3

Quantile-Based Estimation of
Volatility

3.1 Introduction

Let Pt be the price of an asset at time t. Assume that pt = log(Pt) is a driftless

Brownian motion with constant diffusion coefficient σ, hence following the stochastic

differential equation

dpt = σdBt,

where Bt is a standard Brownian motion. For 0 ≤ t ≤ 1, let bt be the Brownian bridge
corresponding to pt, that is,

bt = pt − tp1 = σBt − tσB1 = σ (Bt − tB1) .

This chapter develops unbiased estimators of σ and σ2 based on quantiles of pt and bt,

0 ≤ t ≤ 1.
If the price process is observed in continuous time, then quadratic variation of-

fers a simple consistent estimator of σ2, which quantile-based estimators cannot beat.

However, if the ‘true’ price process is perturbed by noise and hence not observed, then

quadratic variation is biased and the returns need to be sampled at a lower frequency to

make the sum of squared returns more robust. Quantiles are more robust to noise and

can still be based on all observations. Moreover, for any given time interval, quantile-

based estimators are often more efficient. That is, the return measured over a given

time interval is less efficient than e.g. the range over the same interval (Parkinson,

1980). Thus, in a setting with high-frequency observations perturbed by noise, it be-

comes worthwhile to consider quantile-based estimators. In this chapter, it is assumed

that pt is observed without noise. Noise is introduced in the next chapter.

45
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So far, the only existing quantile-based estimators for the diffusion coefficient are the

range-based estimators, where the range is the difference between the supremum and

the infimum of either pt or bt. The distribution of the range of pt was derived by Feller

(1951) and was introduced as an asset price volatility estimator by Parkinson (1980).

From then on range-based estimators received considerable attention in applications

and several extensions have been proposed; see e.g. Garman and Klass (1980), Rogers

and Satchell (1991) and Alizadeh et al. (2001). However, as shown in this chapter, other

quantiles than the supremum and the infimum can also be used to estimate volatility.

Volatility estimators are receiving new attention since ultra-high frequency data

became available, because volatility estimators that exploit the information present in

these data achieve higher efficiency. The realized volatility estimator, the sum of squared

high frequency returns, was proposed as the first consistent estimator of this kind; see

e.g. Andersen et al. (2001). However, much of the literature that followed deals with

correcting the realized volatility estimator for the bias that market microstructure noise

introduces at high frequency. At the same time, the range has been found to be fairly

robust to such noise (see e.g. Alizadeh et al. (2002)), a property that holds for all

quantiles. This finding motivates the search for quantile-based estimators that exploit

this property. One approach is the realized range estimator of Christensen and Podol-

ski (2005) and Martens and van Dijk (2007), which replaces the squared returns of the

realized volatility estimator by squared ranges. This estimator is consistent and more

efficient than realized volatility for a given sampling scheme. The estimator is based on

the range measured over very short intervals, at which quantiles are seriously biased by

market microstructure noise. Therefore, the estimators require bias-corrections, which

the authors also provide. In this chapter, I present a generalization of their consis-

tent range-based estimator, by using more quantiles in the estimation. Furthermore, I

present a new consistent estimator that is based on permutations of subintervals. This

estimator promises to be fairly robust to market microstructure noise, because it uses

quantiles measured over the unit interval.

This chapter presents the estimators assuming ideal conditions of continuous-time

observations and in the absence of noise. An assesment of the new estimators in discrete

time and in the presence of market microstructure noise is provided in the next chapter.

The chapter is structured as follows. In Section 3.2, I develop unbiased estimators of σ

and σ2 based on quantiles of a Brownian motion. Section 3.3 does the same based on

quantiles of a Brownian bridge. In Section 3.4, I show how consistent estimators are

obtained from the unbiased estimators. Section 3.5 concludes.
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3.2 Unbiased estimators based on quantiles of Brown-
ian motion

3.2.1 Quantiles of Brownian motion

I start from the following distributional results for Brownian quantiles. For α ∈ [0, 1]
let

M(α) =

⎧⎨⎩ inf
0≤t≤1

pt α = 0

inf
n
x :
R 1
0
1(pt≤x)dt ≥ α

o
0 < α ≤ 1

be the α-quantile of pt, t ∈ [0, 1]. The density of M(α) was derived by Yor (1995) and
for a Brownian motion with drift by Dassios (1995). Dassios (1995) also obtained the

identity in law

M(α)
(law)
= sup

0≤t≤α
pt + inf

0≤t≤1−α
p̃t,

where p̃t is an independent copy of pt. Wendel (1960) already stated this identity in

characteristic function form for the random walk case and it was extended with the

time the quantile is reached by Port (1963). Due to the symmetry of Brownian motion

it also holds that

inf
0≤t≤1−α

p̃t
(law)
= − sup

0≤t≤1−α
p̃t.

Thus

M(α)
(law)
= sup

0≤t≤α
pt − sup

0≤t≤1−α
p̃t. (3.1)

Further, it is known that

sup pt
0≤t≤1

∼
¯̄
N
¡
0, σ2

¢¯̄
,

and so, by the scaling property of Brownian motion,

sup pt
0≤t≤α

∼
¯̄
N
¡
0, ασ2

¢¯̄
.

Hence, for i ≥ 1,

E

µ
sup pt
0≤t≤α

¶i

= Γ

µ
i+ 1

2

¶r
(2ασ2)i

π
, (3.2)
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where Γ(·) is the Gamma function. The moments of M(α) follow easily from (3.1) and
(3.2), e.g.

E [M(α)] =

r
2

π
σ
¡√

α−
√
1− α

¢
, (3.3)

Var(M(α)) =

µ
1− 2

π

¶
σ2, (3.4)

E
£
M(α)2

¤
=

Ã
1− 4

p
α(1− α)

π

!
σ2, (3.5)

Var(M(α)2) =

⎡⎣3−Ã1 + 4pα(1− α)

π

!2⎤⎦σ4. (3.6)

Invoking the scaling property of Brownian motion again, for α1, α2 ∈ [0, 1], it holds
that

Cov (M(α1),M(α2)) = C (α1, α2)σ
2, (3.7)

where C(α1, α2) is the covariance between the α1-quantile and the α2-quantile of a

standard Brownian motion, i.e. with σ = 1. Obtaining C(α1, α2) in closed form for

α1 6= α2 is difficult. A direct way to derive these covariances would be to use the

joint density of two quantiles. This density has been studied by Fujita (2000), but

it appears not to have a closed form. I have not been able to derive a closed-form

expression for C(α1, α2). However, the covariances can be obtained by simulation. I

computed C(α1, α2) by simulating 1 million standard Brownian motions, each with 1

million increments on the unit interval. Furthermore, we do have an expression for the

variance of any quantile, i.e. (3.4), and we can derive the covariance betweenM(1) and

M(0) from the variance of the range and the variance of a quantile. Parkinson (1980),

based on Feller (1951), shows that the range,

R =M(1)−M(0),

has variance

Var(R) = 4

µ
log 2− 2

π

¶
σ2. (3.8)

Hence, because Var(M(1)) = Var(M(0)), we get Var(R) = 2Var(M(1)) − 2C(0, 1)σ2

and so

C(0, 1) = (Var(M(1))−Var(R)/2)σ−2

= 1− 2
π
− 2

µ
log 2− 2

π

¶
= 1− 2

µ
log 2− 1

π

¶
.
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Moreover, by the symmetry of Brownian motion, C(αi, αj) = C(1 − αi, 1 − αj) =

C(αj, αi) = C(1 − αj, 1 − αi). In order to avoid small discrepancies between the

simulation-based estimates of these covariances, I replace each by their average. The

covariances between Brownian quantiles, thus obtained by simulation, are graphed in

Figure 3.1. The symmetry also implies that for a quick estimate of the covariance

matrix only one in four covariances needs to be computed.

Figure 3.1: Covariances between Brownian quantiles (σ = 1)
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The following subsections present quantile-based unbiased estimators of σ and σ2,

respectively. The estimators are method of moment or generalized method of moment

estimators, derived from (3.3), (3.5) and similar moment conditions.

3.2.2 Quantile-based unbiased estimators of σ

Unbiased estimators of σ can be developed from one or more Brownian quantiles. I

start with an estimator based on one quantile and then present extensions.
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One quantile

Except for the median, all quantiles are informative for σ. For any α ∈ [0, 1] except
α = 1/2, an unbiased estimator of σ follows from (3.3) as

σ̃(α) =

r
π

2

M(α)√
α−
√
1− α

.

Using (3.4), it follows that

Var(σ̃(α)) =
(π − 2)σ2

2
¡√

α−
√
1− α

¢2 .
This variance is minimized for α = 0 and for α = 1, yielding Var(σ̃(0)) = Var(σ̃(1)) =

(π/2− 1)σ2 = 0.571σ2. Thus σ̃(0) and σ̃(1) are the minimum variance unbiased esti-

mators based on moment condition (3.3) for a single quantile.

Several quantiles

It is possible to construct unbiased estimators of σ based on more than one quantile.

The best-known estimator of this type is the range, i.e. the difference between the

‘high’, M(1) = max
0≤t≤1

pt, and the ‘low’, M(0) = min
0≤t≤1

pt, over the trading day. This

estimator has received considerable attention and ‘high-low’ figures are reported in

business newspapers as an indication of volatility since long. So far, no attention has

been paid to the fact that, next to the range, we can also consider any other combination

of quantiles.

Fix a set of distinct values α1, ..., αn ∈ [0, 1], with corresponding quantilesM(α1), ...,
M(αn) and unbiased estimates σ̃(α1), ..., σ̃(αn). Let s̃ = (σ̃(α1), ..., σ̃(αn))

0 and let ι be

an n × 1 vector of ones. Then, for any vector of weights w satisfying ι0w = 1, the

estimator

σ̂(w) = w0s̃

is unbiased for σ. This estimator has variance w0V w, where V = Var(s̃) with (i, j)-th

element given by

Vij =
πC(αi, αj)σ

2

2
¡√

αi −
√
1− αi

¢ ¡√
αj −

p
1− αj

¢ .
This variance is minimized by taking w = (ι0V −1ι)−1V −1ι, yielding

σ̂ = (ι0V −1ι)−1ι0V −1s̃

as the minimum-variance unbiased estimator of σ based on condition (3.3) for the chosen

quantiles, with variance

Var (σ̂) = (ι0V −1ι)−1.
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The optimal weights are scale invariant, which implies for applications that w can be

computed without knowing σ.

Table 3.1 presents the variance of σ̂ for different choices of α1, ..., αn. The elements

αi are each time chosen to be equally spaced over the interval [0, 1], but with 1/2

removed, becauseM(1/2) is uninformative for σ. For example, in the case of 4 quantiles

α1, ..., α4 = 0, 0.25, 0.75, 1. A comparison of the variances of the optimal one-quantile

estimators, Var(σ̃(0)) = Var(σ̃(1)) = 0.571σ2, with the variances reported in Table 3.1,

shows that using more than one quantile dramatically improves the efficiency of the

estimator.

Table 3.1: Variance of σ̂
Number of quantiles 2 4 6 10 20 40
Var (σ̂) σ2× 0.089 0.074 0.071 0.061 0.053 0.047

Notes: The quantiles are equally spaced, e.g. 2 = high and low, 4 = quartiles, etc.
The median is not used, because it is uninformative.

As expected the efficiency increases with the number of quantiles at a decreasing

rate, because the smaller the distance between the quantiles is, the less additional

information they contain.

A special case: Interquantile ranges

Let 0 ≤ α < 1/2 and consider σ̃(α) and σ̃(1− α). The optimal weights to combine the

estimates σ̃(α) and σ̃(1− α) are

w = V −1ι(ι0V −1ι)−1 =

µ
1/2
1/2

¶
,

because the diagonal elements of V are equal. Thus, the minimum-variance unbiased

linear combination of σ̃(α) and σ̃(1−α) is the interquantile range (IQR) based estimator

σ̂IQR(α) =

√
π [M(1− α)−M(α)]√
8
¡√
1− α−√α

¢ ; α ∈ [0, 0.5[,

and its variance can be derived using (3.4) and (3.7) as

Var (σ̂IQR(α)) =
π(1− C(α, 1− α))− 2
4
³
1− 2

p
α(1− α)

´ σ2.

A special case is Parkinson’s (1980) range-based estimator

σ̂R =

r
π

8
[M(1)−M(0)] ,
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which, by (3.8), has variance

Var(σ̂R) =
³π
2
log 2− 1

´
σ2 = 0.0889σ2,

which corresponds with the simulation result in Table 3.1.

Table 3.2 presents the variances of σ̂IQR(α) for various choices of α. It is clear that

the further apart the quantiles, the higher the efficiency. The range (corresponding to

α = 0) provides the most efficient IQR-based estimator. Yet, as Table 3.1 shows, the

range itself is less efficient than estimators that are based on many quantiles.

Table 3.2: Variance of σ̂IQR(α)

α 0.000 0.025 0.050 0.100 0.125 0.150 0.175 0.200 0.225
Var (σ̂IQR(α)) σ2× 0.089 0.122 0.139 0.170 0.185 0.200 0.217 0.234 0.253

α 0.250 0.275 0.300 0.350 0.375 0.400 0.425 0.450 0.475
Var (σ̂IQR(α)) σ2× 0.274 0.297 0.322 0.385 0.427 0.478 0.547 0.645 0.817

Absolute quantiles

Instead of developing an estimator based on raw quantiles, one can also consider ab-

solute quantiles. From the density of a quantile as presented in Yor (1995), it follows

that

E [|M(α)|] =
r
2

π
σ
¡
2−
√
α−
√
1− α

¢
, (3.9)

Var(|M(α)|) =

µ
1− 2

π
− 8

π

¡
1−
√
α
¢ ¡
1−
√
1− α

¢¶
σ2. (3.10)

For any α ∈ [0, 1] an unbiased estimator of σ follows from (3.9) as

σ̆(α) =

r
π

2

|M(α)|¡
2−√α−

√
1− α

¢ ,
and using (3.10) it follows that

Var(σ̆(α)) =

Ã
π − 4

p
α(1− α)

2
¡
2−√α−

√
1− α

¢2 − 1
!
σ2.

The variance is minimized for α = 0 and α = 1, and equal to the case when raw

quantiles are used as the estimator is the same for the extrema. For any other quantile,

the estimator based on one absolute quantile is more efficient than its raw quantile

counterpart. Note that the median is now also informative. However, the estimator

based on the optimal combination of several absolute quantiles performs worse than
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its raw quantile counterpart. For example, the variance of the estimator based on 41

absolute quantiles (including the absolute median) has a variance of 0.062σ2 compared

to 0.047σ2 in the case of raw quantiles (see Table 3.1). Therefore, this chapter focusses

on raw quantiles instead of absolute quantiles.

3.2.3 Quantile-based unbiased estimators of σ2

Unbiased estimators of σ2 can be constructed in a similar manner as for σ. For

α1, α2, α3, α4 ∈ [0, 1] it holds, by the scaling property of Brownian motion, that

Cov (M(α1)M(α2),M(α3)M(α4)) = D(α1, α2, α3, α4)σ
4, (3.11)

whereD(α1, α2, α3, α4) is the covariance between the product of the α1- and α2-quantiles

and the product of the α3- and α4-quantiles of a standard Brownian motion. Obtain-

ing D(α1, α2, α3, α4) is difficult, except for D(α1, α1, α1, α1) = Var(M(α1)
2), which is

given by (3.6). The other covariances can be obtained by simulation. I computed

D(α1, α2, α3, α4) by simulating 1 million standard Brownian motions, each with 1 mil-

lion increments on the unit interval. Furthermore, due to the symmetry of Brownian

motion,

D (α1, α2, α3, α4) = D(1− α1, 1− α2, 1− α3, 1− α4). (3.12)

Therefore I replaced the estimates of both sides of (3.12) by their average to avoid small

discrepancies.

The product of two quantiles

Let αi, αj ∈ [0, 1] and consider the quantiles M(αi) and M(αj). From (3.3) and (3.7)

it follows that

E [M(αi)M(αj)] = Cov(M(αi),M(αj)) +E [M(αi)]E [M(αj)]

= C(αi, αj)σ
2 +

2

π

¡√
αi −

√
1− αi

¢ ¡√
αj −

p
1− αj

¢
σ2.(3.13)

The expected value of the product of two quantiles is depicted in the left panel of Figure

3.2 for the case σ = 1.

Provided αi and αj are such that E [M(αi)M(αj)] 6= 0, an unbiased estimator of σ2

follows as

σ̃2(αi, αj) =
M(αi)M(αj)

C(αi, αj) +
2
π

¡√
αi −

√
1− αi

¢ ¡√
αj −

p
1− αj

¢ , (3.14)
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with variance

Var
¡
σ̃2(αi, αj)

¢
=

D(αi, αj, αi, αj)σ
4£

C(αi, αj) +
2
π

¡√
αi −

√
1− αi

¢ ¡√
αj −

p
1− αj

¢¤2 .

Figure 3.2: Expected value of the product of two quantiles (left panel) and the variance
of σ̃2(αi, αj) (right panel) when σ = 1

Combinations of αi and αj for which E [M(αi)M(αj)] is zero or close to zero have

to be avoided, because then σ̃2(αi, αj) is either not defined or has a very large variance.

However, since C(αi, αj) is not known analytically, neither is an expression describing

these combinations. Thus one has to resort to numerical analysis.

The variance of σ̃2(αi, αj) can be computed using the numerical results for C(αi, αj)

and D(αi, αj, αi, αj). For σ = 1, the right panel of Figure 3.2 shows the variances for

different choices of αi, αj ∈ [0, 1]. It turns out that σ̃2(0, 1) is the minimum variance

unbiased estimator, with variance 0.524σ4. Obviously, if E [M(αi)M(αj)] is close to

zero, then σ̃2(αi, αj) is very inefficient, e.g. E [M(0)M(0.8)] = −0.0078σ2 and σ̃2(0, 0.8)
has variance 3401σ4.

For the one-quantile case (αi = αj), by (3.5) the estimator is

σ̃2(αi, αi) =
M(αi)

2

1− 4
√

αi(1−αi)
π

. (3.15)

Upon rewriting (3.6) as

Var(M(α)2) =

⎡⎣3− 16pα(1− α)

π
−
Ã
1− 4

p
α(1− α)

π

!2⎤⎦σ4,
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it follows that

Var
¡
σ̃2(αi, αi)

¢
=

⎡⎢⎢⎢⎣ 3− 16
√

αi(1−αi)
πµ

1− 4
√

αi(1−αi)
π

¶2 − 1
⎤⎥⎥⎥⎦σ4.

This variance is minimized for αi = 0 and for αi = 1, yielding σ̃2(0, 0) = M(0)2 and

σ̃2(1, 1) =M(1)2 as the minimum variance unbiased estimators of σ2 (within the class

defined by (3.15)), with Var
¡
σ̃2(0, 0)

¢
= Var

¡
σ̃2(1, 1)

¢
= 2σ4.

Several products of two quantiles

Similar to Subsection 3.2.2, we can construct optimal unbiased estimators of σ2 as linear

combinations of estimators given by (3.14). Any set of distinct values α1, ..., αn ∈ [0, 1]
corresponds with a set of n(n + 1)/2 distinct estimators σ̃2(αi, αj), where i = 1, ..., n

and j = 1, ..., i. Let s̃2 be the vector of these estimators. Then the minimum-variance

unbiased estimator of σ2 (within the class of linear combinations of those σ̃2(αi, αj)) is

σ̂2 = (ι0V −1ι)−1ι0V −1s̃2, (3.16)

where V = Var(s̃2) has elements

Cov
¡
σ̃2(αi, αj), σ̃

2(αk, αl)
¢
= d(αi, αj)D(αi, αj, αk, αl)d(αk, αl),

where

d(αi, αj) =
1

C(αi, αj) +
2
π

¡√
αi −

√
1− αi

¢ ¡√
αj −

p
1− αj

¢ .
Table 3.3 presents the variance of σ̂2 for different choices of α1, ..., αn. It shows how the

efficiency increases as the number of quantiles involved increases.

Table 3.3: Variance of σ̂2

Number of quantiles 2 3 5 6 11 21 41
Var(σ̂2) σ4× 0.341 0.330 0.267 0.253 0.214 0.183 0.159

Note: The quantiles are equally spaced.

Interquantile ranges

Unbiased IQR-based estimators of σ2 are easily derived. Let 0 ≤ α < 1/2. Then, by

symmetry,

E [M(1− α)−M(α)]2 = 2E
¡
M(α)2

¢
− 2E (M(α)M(1− α))

=

µ
2 +

4

π
− 16

π

p
α(1− α)− 2C(α, 1− α)

¶
σ2,
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using (3.5) and (3.13), and an unbiased estimator of σ2 follows as

σ̂2IQR(α) =
[M(1− α)−M(α)]2

2 + 4
π
− 16

π

p
α(1− α)− 2C(α, 1− α)

. (3.17)

Its variance can be derived using (3.6), (3.11) and (3.12), yielding

Var
¡
σ̂2IQR(α)

¢
=

⎛⎝ 3−
µ
1 +

4
√

α(1−α)
π

¶2
+D(1− α, 1− α, α, α)+

2D(1− α, α, 1− α, α)− 4D(α, α, 1− α, α)

⎞⎠σ4

2
³
1 + 2

π
− 8

π

p
α(1− α)− C(α, 1− α)

´2 .

The unbiased range-based estimator of σ2 is a special case of the IQR-based esti-

mator (corresponding to α = 0) and was derived by Parkinson (1980) as

σ̂2R =
R2

4 log(2)
,

with Var
¡
σ̂2R
¢
= 0.407σ4. Table 4 presents the variance of σ̂2IQR(α) for different choices

of α. From Table 3.4 it is clear that the range-based estimator is the most efficient

estimator among the unbiased IQR-based estimators.

Table 3.4: Variance of σ̂2IQR(α)

α 0.000 0.025 0.050 0.100 0.125 0.150 0.175 0.200 0.225
Var

¡
σ̂2IQR(α)

¢
σ4× 0.408 0.562 0.648 0.806 0.888 0.976 1.071 1.177 1.295

α 0.250 0.275 0.300 0.350 0.375 0.400 0.425 0.450 0.475
Var

¡
σ̂2IQR(α)

¢
σ4× 1.431 1.592 1.788 2.351 2.814 3.546 5.273 11.451 81.463

The estimator σ̂2IQR(α) is also a linear combination of the estimators σ̃2(α, α),

σ̃2(α, 1−α) and σ̃2(1−α, 1−α) and it can be checked using (3.14) and (3.15) that the

weights implicitly imposed by (3.17) are

w1 =
1− 4

√
α(1−α)
π

2 + 4
π
− 16

π

p
α(1− α)− 2C(α, 1− α)

= w3,

w2 = 1− 2w1.

It is worth pointing out that these weights are not optimal. As a consequence, σ̂2IQR(α) is

not the minimum-variance unbiased estimator (based on those quantiles). For example,

the range-based estimator, which has variance 0.407σ4, is less efficient than σ̂2 based

on the same quantiles, which has variance 0.341σ4 (see Table 3.3). In particular, it

can be checked that the weights imposed on the estimates
¡
σ̃2(0, 0), σ̃2(0, 1), σ̃2(1, 1)

¢0
by the range-based estimator are (0.361, 0.279, 0.361)0, while the optimal weigts are

(0.225, 0.550, 0.225)0, thus putting more weight on σ̃2(0, 1).
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3.3 Unbiased estimators based on quantiles of Brown-
ian bridge

3.3.1 Quantiles of Brownian bridge

For α ∈ [0, 1] let

Mb(α) =

⎧⎨⎩ inf
0≤t≤1

bt α = 0

inf
n
x :
R 1
0
1(bt≤x)dt ≥ α

o
0 < α

be the α-quantile of the Brownian bridge bt, t ∈ [0, 1]. The low order moments of

Mb(α) will be derived from the corresponding moments of Q(α), the α-quantile of the

standard Brownian bridge Bt− tB1, and the scaling property of Brownian bridge. The

density function, fα(·), of Q(α) can be derived from G(q, ·), the distribution function
of the occupation time of bt above the level q, using

fα(q) =
∂

∂q
P (Q(α) ≤ q)

=
∂

∂q
P

µZ 1

0

1(BBt<q)dt ≥ α

¶
=

∂

∂q
P

µZ 1

0

1(BBt>q)dt ≤ 1− α

¶
=

∂

∂q
G(q, 1− α).

G(q, ·) was derived by Takács (1999), but Theorem 2.1 in Hooghiemstra (2002) provides
a more convenient representation ofG(q, ·) to compute the moments from. In particular,
for 0 < α < 1

G(q, 1− α) =

⎧⎨⎩ 1− 2
√
1−α
π

R 1
1−α

√
u−(1−α)
u2
√
1−u exp

³
− 2q2

1−u

´
du q ≥ 0

2
√
α
π

R 1
α

√
u−α

u2
√
1−u exp

³
− 2q2

1−u

´
du q < 0,

and has derivative with respect to q

fα(q) =

⎧⎨⎩
8q
√
1−α
π

R 1
1−α

√
u−(1−α)

u2(1−u)3/2 exp
³
− 2q2

1−u

´
du q ≥ 0

−8q√α
π

R 1
α

√
u−α

u2(1−u)3/2 exp
³
− 2q2

1−u

´
du q < 0.

(3.18)

Define, for 0 < α < 1,

G(α) = −
√
α

Z 1

α

√
u− α

u2
du+

√
1− α

Z 1

1−α

p
u− (1− α)

u2
du,

H(α) =
√
α

Z 1

α

p
(u− α)(1− u)

u2
du+

√
1− α

Z 1

1−α

p
(u− (1− α))(1− u)

u2
du,

J(α) =
√
α

Z 1

α

p
(u− α)(1− u)3

u2
du+

√
1− α

Z 1

1−α

p
(u− (1− α))(1− u)3

u2
du.
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The integrals can easily be computed numerically. It can be checked that the functions

have the limits

− lim
α↓0

G(α) = lim
α↑1

G(α) = lim
α↓0

H(α) = lim
α↑1

H(α) = lim
α↓0

J(α) = lim
α↑1

J(α) =
π

2
, (3.19)

which are used to extend the definition of G, H and J to the boundary of the domain.

In the appendix the low order moments of Q(α) are derived using the density (3.18).

Using those moments, it follows from the scaling property of Brownian bridge that, for

0 ≤ α ≤ 1,

E[Mb(α)] =
G(α)√
2π

σ, (3.20)

Var (Mb(α)) =

µ
H(α)

π
− G(α)2

2π

¶
σ2, (3.21)

E[Mb(α)
2] =

H(α)

π
σ2, (3.22)

Var
¡
Mb(α)

2
¢
=

µ
J(α)

π
− H(α)2

π2

¶
σ4. (3.23)

In particular,

−E[Mb(0)] = E[Mb(1)] =

√
2π

4
σ, (3.24)

Var (Mb(0)) = Var (Mb(1)) =
4− π

8
σ2, (3.25)

E[Mb(0)
2] = E[Mb(1)

2] =
σ2

2
, (3.26)

Var
¡
Mb(0)

2
¢
= Var

¡
Mb(1)

2
¢
=

σ4

4
. (3.27)

It may be remarked that an alternative representation of the density fα(q) can be

obtained based on results in Dassios (1996a), but this representation does not lead to

closed-form expressions for the moments (3.20)-(3.23) either.

For α1, α2 ∈ [0, 1] it holds that

Cov (Mb(α1),Mb(α2)) = CQ (α1, α2)σ
2, (3.28)

where CQ(α1, α2) is the covariance between the α1-quantile and the α2-quantile of a

standard Brownian bridge. The latter can be obtained by simulation. I computed

CQ(α1, α2) by simulating 1 million standard Brownian bridges, each with 1 million

increments on the unit interval. Moreover, similar to the Brownian motion case we

replace the estimates of CQ(α1, α2) = CQ(1− α1, 1− α2) = CQ(α1, α2) = CQ(α2, α1) =

CQ(1 − α2, 1 − α1) by their average. Furthermore, we do have an expression for the
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variance of any quantile, i.e. (3.21), and we can derive the covariance between Mb(1)

and Mb(0) from the variance of the range, Rb, of bt, 0 ≤ t ≤ 1, and the variance of
Mb(1) given by (3.25). From Feller (1951),

Var (Rb) =

µ
π2

6
− π

2

¶
σ2.

Hence, because Var(Mb(1)) = Var(Mb(0)),

CQ(0, 1) = (Var(Mb(1))−Var(Rb)/2)σ
−2

=
4− π

8
− π2

12
+

π

4

= −π
2

12
+

π

8
+
1

2
.

The covariances between Brownian bridge quantiles are graphed in Figure 3.3.

Figure 3.3: Covariances between quantiles of a Brownian bridge (σ = 1)
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3.3.2 Quantile-based unbiased estimators of σ

One quantile

Except for the median, all quantiles are informative for σ. Note, e.g., that G(1/2) = 0,

so for α = 1/2 the right-hand side of (3.20) vanishes. For any other α in [0, 1], an

unbiased estimator of σ follows from (3.20) as

σ̃b(α) =

√
2πMb(α)

G(α)
,
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and by (3.21) its variance is

Var(σ̃b(α)) =

µ
2
H(α)

G(α)2
− 1
¶
σ2.

It can be checked numerically that this variance is minimized for α = 0 and for α = 1,

yielding Var(σ̃b(0)) = Var(σ̃b(1)) =
¡
4
π
− 1
¢
σ2 = 0.273σ2. Thus, σ̃b(0) and σ̃b(1) are

the minimum variance unbiased estimators based on moment condition (3.20) for a

single quantile. Note that these estimators are much more efficient than the Brownian

motion version with Var(σ̃(0)) = 0.571σ2.

Several quantiles

Unbiased estimators of σ can be constructed based on more than one quantile. Fix a

set of distinct values α1, ..., αn ∈ [0, 1]\{1/2}, with corresponding quantiles Mb(α1), ...,

M(αn) and unbiased estimates σ̃b(α1), ..., σ̃b(αn). Let s̃b = (σ̃b(α1), ..., σ̃b(αn))
0. Then

the minimum-variance unbiased estimator of σ is

σ̂b = (ι
0V −1ι)−1ι0V −1s̃b,

with variance (ι0V −1ι)−1, where V = Var(s̃b). The (i, j)-th element of V is

Vij = 2π
CQ(αi, αj)

G(αi)G(αj)
σ2.

Table 3.5 presents the variance of σ̂b for different choices of α1, ..., αn. Again, using

more than one quantile dramatically improves the efficiency of the estimator. Interest-

ingly, when we compare these results to Table 3.1, estimators based on two quantiles

of Brownian bridge, Mb(0) and Mb(1), are as efficient as estimators based on forty

quantiles of Brownian motion.

Table 3.5: Variance of σ̂b
Number of quantiles 2 4 6 10 20 40
Var (σ̂b) σ2× 0.047 0.041 0.039 0.035 0.032 0.029

Notes: The quantiles are equally spaced. The median is not used, because it is
uninformative.

A special case: Interquantile ranges

For 0 ≤ α < 1/2, the optimal weights to combine the estimates σ̃b(α) and σ̃b(1 − α)

are w = (1/2, 1/2)0. Consequently, the minimum-variance unbiased linear combination

of σ̃b(α) and σ̃b(1− α) is the IQR-based estimator

σ̂IQRb
(α) =

√
π [Mb(1− α)−Mb(α)]√

2G(1− α)
,
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(note that G(1− α) = −G(α)) and its variance can be derived using (3.21) and (3.28)
as

Var (σ̂IQRb
(α)) =

µ
H(α)

G(α)2
− 1
2
− πCQ(α, 1− α)

G(α)2

¶
σ2. (3.29)

For α = 0, we have Kunitomo’s (1992) range-based estimator of σ,

σ̂IQRb
(0) =

r
2

π
[Mb(1)−Mb(0)]

with variance
¡
π
3
− 1
¢
σ2 = 0.047σ2, corresponding with the simulation result in Table

3.5. Table 3.6 presents the variances of σ̂IQRb
(α) for various choices of α. The range

provides the most efficient IQR-based estimator. From (3.29) it follows that

lim
α→0.5

Var (σ̂IQRb
(α)) =∞.

Table 3.6: Variance of σ̂IQRb
(α)

α 0.000 0.025 0.050 0.100 0.125 0.150 0.175 0.200 0.225
Var (σ̂IQRb

(α)) σ2× 0.047 0.068 0.078 0.096 0.104 0.113 0.122 0.131 0.141

α 0.250 0.275 0.300 0.350 0.375 0.400 0.425 0.450 0.475
Var (σ̂IQRb

(α)) σ2× 0.151 0.163 0.176 0.207 0.227 0.251 0.280 0.321 0.383

3.3.3 Quantile-based unbiased estimators of σ2

Unbiased estimators of σ2 can be constructed from the product of two quantiles of a

Brownian bridge. For α1, α2, α3, α4 ∈ [0, 1] it holds, due to the scaling property of
Brownian motion, that

Cov (Mb(α1)Mb(α2),Mb(α3)Mb(α4)) = DQ(α1, α2, α3, α4)σ
4, (3.30)

where DQ(α1, α2, α3, α4) is the covariance between the product of the α1-quantile and

the α2-quantile and the product of the α3-quantile and the α4-quantile of a standard

Brownian bridge. Apart from DQ(α1, α1, α1, α1) = Var(Mb(α1)
2), which is given by

(3.23), the covariances need to be obtained by simulation. I computedDQ(α1, α2, α3, α4)

by simulating 1 million standard Brownian motions, each with 1 million increments on

the unit interval. Furthermore, since

DQ (α1, α2, α3, α4) = DQ(1− α1, 1− α2, 1− α3, 1− α4), (3.31)

both simulated covariances can be replaced by their average to avoid small discrepancies.
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The product of two quantiles

Let αi, αj ∈ [0, 1] and consider the quantiles Mb(αi) and Mb(αj). From (3.20) and

(3.28) it follows that

E [Mb(αi)Mb(αj)] = Cov(Mb(αi),Mb(αj)) +E [Mb(αi)]E [Mb(αj)]

= CQ(αi, αj)σ
2 +

G(αi)G(αj)

2π
σ2. (3.32)

The expected value of the product of two quantiles is depicted in the left panel of Figure

3.4 for the case σ = 1.

Provided αi and αj are such that E [Mb(αi)Mb(αj)] 6= 0, an unbiased estimator of
σ2 follows as

σ̃2b(αi, αj) =
Mb(αi)Mb(αj)

CQ(αi, αj) +
G(αi)G(αj)

2π
σ2

, (3.33)

with variance

Var
¡
σ̃2b(αi, αj)

¢
=

DQ(αi, αj, αi, αj)σ
4³

CQ(αi, αj) +
G(αi)G(αj)

2π
σ2
´2 .

Figure 3.4: Expected value of the product of two quantiles (left panel) and the variance
of σ̃2b(αi, αj) (right panel) when σ = 1

The variance of σ̃2b(αi, αj) can be computed using the numerical results forCQ(αi, αj)

and DQ(αi, αj, αi, αj). For σ = 1, the right panel of Figure 3.4 shows the variances for

different choices of αi, αj ∈ [0, 1]. The minimum variance unbiased estimator is σ̃2b(0, 1),
with variance 0.271σ4. If E [Mb(αi)Mb(αj)] is close to zero, then σ̃2b(αi, αj) is very

inefficient, e.g. E [Mb(0)Mb(0.65)] = 0.00026σ
2 and σ̃2b(0, 0.65) has variance 562, 019σ

4.
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For the one-quantile case (αi = αj), by (3.22) the estimator is

σ̃2b(αi, αi) = π
Mb(αi)

2

H(αi)
. (3.34)

Its variance follows from (3.23) as

Var
¡
σ̃2(αi, αi)

¢
=

µ
π
J(αi)

H(αi)2
− 1
¶
σ4.

This variance is minimized for αi = 0 and for αi = 1, yielding σ̃2b(0, 0) = 2Mb(0)
2 and

σ̃2b(1, 1) = 2Mb(1)
2 as the minimum variance unbiased estimators, with Var

¡
σ̃2b(0, 0)

¢
=

Var
¡
σ̃2b(1, 1)

¢
= σ4.

Several products of two quantiles

Unbiased estimators of σ2 can be constructed as linear combinations of estimators given

by (3.33). In general, a set of distinct values α1, ..., αn ∈ [0, 1] corresponds with a set of
n(n + 1)/2 distinct estimators σ̃2b(αi, αj), where i = 1, ..., n and j = 1, ..., i. Let s̃2b be

the vector of these estimators. Then the minimum-variance unbiased estimator of σ2 is

σ̂2b = (ι
0V −1ι)−1ι0V −1s̃2b , (3.35)

where V = Var(s̃2b) has elements

Cov
¡
σ̃2b(αi, αj), σ̃

2
b(αk, αl)

¢
= d(αi, αj)DQ(αi, αj, αk, αl)d(αk, αl),

where

d(αi, αj) =
1

CQ(αi, αj) +
G(αi)G(αj)

2π

.

Table 3.7 presents the variance of σ̂2b for different choices of α1, ..., αn. It shows that

the variance of quantile-based estimators can be brought down to 0.110σ4. Again the

estimator is much more efficient than the Brownian motion case.

Table 3.7: Variance of σ̂2b
Number of quantiles 2 3 5 6 11 21 41
Var(σ̂2b) σ4× 0.197 0.195 0.167 0.160 0.140 0.123 0.110

Note: The quantiles are equally spaced.
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A special case: Interquantile ranges

Unbiased IQR-based estimator of σ2 can be derived. Let 0 ≤ α < 1/2. Then, by

symmetry,

E [Mb(1− α)−Mb(α)]
2 = 2E

¡
Mb(α)

2
¢
− 2E (Mb(α)Mb(1− α))

=

µ
2H(α)

π
− 2CQ(α, 1− α) +

G(α)2

π

¶
σ2,

using (3.22) and (3.32), and an unbiased estimator of σ2 follows as

σ̂2IQRb
(α) =

[M(1− α)−M(α)]2

2H(α)
π
− 2CQ(α, 1− α) + G(α)2

π

. (3.36)

Its variance can be derived using (3.23), (3.30) and (3.31), yielding

Var
¡
σ̂2IQRb

(α)
¢
=

µ
2J(α)
π
− 2H(α)2

π2
+ 4DQ(α, 1− α, α, 1− α)

−8DQ(α, α, α, 1− α) + 2DQ(α, α, 1− α, 1− α)

¶
σ4³

2H(α)
π
− 2CQ(α, 1− α) + G(α)2

π

´2 .

For α = 0, we obtain the unbiased range-based estimator of σ2, which was derived

by Kunitomo (1992) as

σ̂2Rb
=
6R2b
π2

,

with Var
¡
σ̂2Rb

¢
= 0.2σ4. Table 3.8 presents the variance of σ̂2IQRb

(α) for different choices

of α. It shows that the range-based estimator is the most efficient estimator among the

unbiased IQR-based estimators.

Table 3.8: Variance of σ̂2IQRb
(α)

α 0.000 0.025 0.050 0.100 0.125 0.150 0.175 0.200 0.225
Var

¡
σ̂2IQRb

(α)
¢

σ4× 0.200 0.291 0.339 0.423 0.466 0.510 0.559 0.611 0.669

α 0.250 0.275 0.300 0.350 0.375 0.400 0.425 0.450 0.475
Var

¡
σ̂2IQRb

(α)
¢

σ4× 0.734 0.810 0.899 1.14 1.31 1.55 2.00 3.74 37.6

The estimator σ̂2IQRb
(α) is also a linear combination of the estimators σ̃2b(α, α),

σ̃2b(α, 1−α) and σ̃2b(1−α, 1−α) and it can be checked using (3.33) and (3.34) that the

weights implicitly imposed by (3.36) are

w1 = w3 =
H(α)

2H(α)− 2πCQ(α, 1− α) +G(α)2
,

w2 = 1− 2w1.
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These weights are not optimal and σ̂2IQRb
(α) is not the minimum-variance unbiased

estimator (based on these quantiles). For example, it can be checked that the weights

imposed on the estimates
¡
σ̃2b(0, 0), σ̃

2
b(0, 1), σ̃

2
b(1, 1)

¢0
by the range-based estimator are

(0.304, 0.392, 0.304)0, while the optimal weigts are (0.257, 0.486, 0.257)0, thus putting

more weight on σ̃2b(0, 1). However, the gain is minimal since the variance of the range-

based estimator of 0.200σ4 is only slightly decreased to 0.197σ4 (see Table 3.7).

3.4 Consistent Estimators

The estimators I derived so far are not consistent despite the continuous-time obser-

vations. Even when we increase the number of quantiles used, the variance of the

estimators converges to some (unknown) limit value greater than zero. Yet, as I show

below, consistent estimators can be obtained.

So far, we have focused on estimation of volatility based on the unit interval as a

whole. Alternatively, we can split the unit interval into subintervals, estimate volatility

based on each of the subintervals and average these estimates to obtain a new estimate.

The underlying idea is to extract information from the quantiles in each subinterval

in order to attain higher efficiency of the volatility estimator. By yet another method

we take the average of estimates based on the unit interval, but where we permute the

subintervals each time.

There are several ways of defining and using subintervals and the efficiency of the

estimator will differ depending on the set of subintervals used.

3.4.1 Averaging subinterval estimates

Let us divide the unit interval into n non-overlapping subintervals of length 1/n and

define a new estimator of σ2 as

σ̌2 =
nX
i=1

σ̂2i ,

with σ̂2i as before, but applied to the i-th subinterval. Clearly, σ̂
2
i , i = 1, ..., n, are i.i.d.

and σ̂2i has the same distribution as σ̂
2/n. Therefore,

Var
¡
σ̌2
¢
=
Var

¡
σ̂2
¢

n
, (3.37)

and thus as n→∞

Var
¡
σ̌2
¢
→ 0.
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The variance of the estimator can be estimated from the subinterval estimates σ̂2i

dVar ¡σ̌2¢ = n

n− 1

nX
i=1

³
σ̂2i − σ̂2i

´2
.

The estimator σ̂2 is a linear combination of estimates based on the product of two

quantiles σ̃2(α1, α2). This implies that the subinterval estimates σ̃2i (α1, α2) and their

covariances (with subinterval estimates based on other quantiles σ̃2i (α3, α4)) allow us to

estimate the optimal weights w needed for the optimal linear combination. This esti-

mation of the optimal weights provides an alternative to the procedure proposed above

where the optimal weights are obtained based on simulation results for the covariances

of quantiles D(α1, α2, α3, α4).

We can generalize this case to overlapping intervals. For example, we can con-

sider a subinterval that moves through the sample as a moving window. For a given

subinterval length, this raises the number of subintervals considerably compared to the

non-overlapping case. Now, the estimator

σ̆2 =

Pm
i=1 σ̂

2
in

m
,

withm the number of overlapping intervals considered, each of length 1/n, has variance

Var
¡
σ̆2
¢
=

n2

m2
Var

Ã
mX
i=1

σ̂2i

!
=

n2

m2

⎛⎜⎜⎝ mX
i=1

Var
¡
σ̂2i
¢
+

mX
i=1

mX
j=1

i6=j

Cov
¡
σ̂2i , σ̂

2
j

¢⎞⎟⎟⎠
=

Var
¡
σ̂2
¢

m
+

n2

m2

mX
i=1

mX
j=1

i6=j

Cov
¡
σ̂2i , σ̂

2
j

¢
.

As n < m, the first term of the variance is smaller than (3.37), but since a lot of

the covariances are bigger than zero the gain is reduced. However, the estimator is

consistent, because as n → ∞, with n < m, Var
¡
σ̆2
¢
→ 0. We can estimate the

variance of the estimator from the covariances between subinterval estimates

dVar ¡σ̆2¢ =
n2

m2

mX
i=1

mX
j=1

dCov ¡σ̂2i , σ̂2j¢ ,
dCov ¡σ̂2i , σ̂2j¢ = Var

¡
σ̂2i
¢
Aijn,

where 0 ≤ Aij ≤ 1/n is the amount of overlap between the i-th and j-th subinterval.

3.4.2 Averaging estimates after permuting subintervals

An interesting case is when the time order of the subintervals is no longer fixed. Let us

divide the unit interval into n subintervals of length 1/n, take a permutation of these
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subintervals and glue the pieces of the series together according to the new order to

obtain a new series of unit length. The new series has the same start and end points as

the original series, but the path differs. This implies that the new series has different

quantiles and a new volatility estimate can be obtained. In particular, for n subsequent

subintervals we can obtain k = n! different permutations and estimates. Let σ̂2i be an

estimator based on the i-th permutation of n subintervals of a Brownian motion, then

a new estimator can be defined that takes the average of the estimates obtained from

the k different permutations

σ̊2 =

Pk
i=1 σ̂

2
i

k
,

Consider the limit of the permuted Brownian motion, as n→∞. For each fixed n,

and hence also in the limit, the permuted Brownian motion has the same end point as

the original series. This end point causes permuted Brownian motions, their quantiles

and volatility estimates from these quantiles to be correlated. For example, if the

endpoint is a large positive number, then the maximum will be at least this number

for any permutations taken from the original series. The correlation implies that as

we increase the number of permutations used in the estimation, the variance of the

estimator does not converge to zero and the estimator is not consistent. The estimator

has a variance that converges to

lim
k→∞

Var

ÃPk
i=1 σ̂

2
i

k

!
= lim

k→∞
Var

¡
σ̂2i
¢µ1

k
+

k(k − 1)
k2

ρ

¶
= ρVar

¡
σ̂2i
¢
> 0,

where ρ is the correlation between the estimates of two permuted Brownian motions.

On the contrary, a Brownian bridge removes the trend from its corresponding Brown-

ian motion and always ends at zero. If we again take the example of the maximum,

then the maximum of a Brownian bridge can be any (positive) number after permuting.

In other words, permutations of a Brownian motion that is transformed into a Brown-

ian bridge, its quantiles and quantile-based estimates are independent in the limit, as

k → ∞. This implies that the estimator that takes the average of estimates based on
the Brownian bridge version of permutations of a Brownian motion,

σ̊2b =

Pk
i=1 σ̂

2
b,i

k
,

is consistent, because as k →∞

Var
¡̊
σ2b
¢
→ 0.
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Let us now consider the case where the number of subintervals n is small. In that

case, permuted series will be dependent (even in the Brownian bridge case). It can be

checked by simulation, however, that permuted series quickly approach independence

as n (and hence k) increases.

3.5 Conclusion

In this chapter I have developed unbiased estimators of the diffusion coefficient based

on quantiles of either Brownian motion or Brownian bridge. Within each class of

estimators I have looked for the minimum-variance unbiased estimator. It turns out

that the estimators based on the quantiles of Brownian bridge are more efficient than

their Brownian motion counterparts. Furthermore, we can conclude that the supremum

and infimum are the quantiles that contain the most information, but when combined

with other quantiles more efficient estimators can be obtained. If we consider the class

of unbiased estimators based on only the supremum and the infimum, it turns out that

the range-based estimator of σ2 is not the minimum-variance unbiased estimator. This

implies that the historic ‘high-low’ data can be used more efficiently than standard

practice did so far.

I have also shown how consistent estimators are obtained by taking the average of

subinterval estimates. This approach corresponds with the realized volatility literature

where averages are taken of squared subinterval returns. A new approach is to take

averages of estimates from permutations of subintervals of the Brownian bridge. The

latter estimator is based on quantiles taken over the unit interval, which are fairly

robust to market microstructure noise. In this respect, the estimator promises to be

suited to estimate volatility from high frequency data.

Appendix

The i-th (non-central) moment of Q(α), for 0 < α < 1, is

E
£
Q(α)i

¤
=

0Z
−∞

qifα(q)dq +

∞Z
0

qifα(q)dq,
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with fα(q) given by (3.18). For 0 < α < 1, fα(q) is given by (3.18). The double integrals

easily reduce to single integrals, for example

0Z
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qfα(q)dq =
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Similarly, it can be derived that
∞Z
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qfα(q)dq =
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With the definitions of G(α), H(α) and J(α) one easily obtains

E[Q(α)] =
G(α)√
2π

,

E[Q(α)2] =
H(α)

π
,

E
£
Q(α)4

¤
=

J(α)

π
,

Var (Q(α)) =
H(α)

π
− G(α)2

2π
,

Var
¡
Q(α)2

¢
=

J(α)

π
− H(α)2

π2
.

A continuity argument shows that these expressions are valid for 0 ≤ α ≤ 1. Higher
moments of Q(α) can be obtained in a similar fashion.





Chapter 4

Quantile-Based Estimation of
Volatility in Discrete Time and in
the Presence of Market
Microstructure Noise

4.1 Introduction

In the previous chapter volatility estimators were derived assuming we have continuous-

time observations. In reality, prices are only observed in discrete time with the transac-

tion level as the highest frequency attainable. It is known from the literature on range-

based volatility estimators that time discreteness introduces a bias. In this chapter I

investigate whether this holds for quantile-based estimators in general. Furthermore,

the observed transaction price can differ from the “true” price due to market microstruc-

ture effects. It is known from the literature on realized volatility and realized range

estimators that this introduces a bias. This chapter investigates how this issue affects

the performance of the quantile-based estimators and proposes adjusted estimators if

needed. In Section 4.2, the discreteness bias is discussed and bias-corrected estima-

tors are presented. Section 4.3 discusses the noise bias and presents simulation-based

noise-bias corrections.

4.2 Quantile-based estimators in discrete time

Quantiles derived from discrete-time data typically differ from their continuous-time

counterparts. Therefore, we denote these quantiles differently. Let t1, ..., tn be the

sequence of sampling times of the continuous-time price process pt, 0 ≤ t ≤ 1. For

71
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α ∈ [0, 1], define the α-quantile of {pt1, ..., ptn} as

M(α, n) =

⎧⎨⎩ min {pt1 , ..., ptn} α = 0

inf

½
z : 1

1−t1

nP
i=1

(ti+1 − ti) (pti ≤ z) ≥ α

¾
0 < α ≤ 1 ,

where tn+1 = 1. According to this definition a price is weighted by the time it prevails

and thereby prevents overweighting active trading periods with lots of price changes.

4.2.1 Discreteness bias

It is known that discreteness introduces a bias for quantile estimators, i.e. E [M(α, n)] 6=
E [M(α)] for n <∞. As a result, continuous-time quantile-based volatility estimators
applied to discrete-time data will be biased. In particular, the bias of range-based

estimators has been studied starting with Garman and Klass (1980). The reason for

the bias of the range is intuitively clear, knowing that the sample range can only decrease

as n decreases. Consequently, the true range and volatility will be underestimated.

Figure 4.1: Expected value of 1-quantile based estimators of σ (top-panel) and σ2

(bottom panel) as a function of the number of observations (log-scale)

I start with a simulation exercise to study the discreteness bias of quantile-based
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estimators. For simplicity, the simulations are based on equally spaced observations.

I simulate 1 million standard random walks of 23, 401 observations each, representing

price series observed at each second of a 6.5 hours trading day as is for example the

case for the NYSE and Nasdaq. The expected values for estimators based on 1 quantile

of Brownian motion, with α ≥ 0.5 and σ = 1, are presented in Figure 4.1 as a function

of the number of observations, n ≤ 23, 401. The top panel shows the expected value
of estimators of σ, and the bottom panel those of σ2. It is clear that the estimator

based on the maximum is biased most (and via symmetry also the one based on the

minimum). The downward bias is already apparent for relatively high values of n.

Estimators based on any other quantile are much less affected by discreteness. Only

when the number of observations becomes very low things get out of hand. Note that

the expected value obtained by simulation when the number of observations is very

low is dependent on the algorithm used to compute quantiles. In particular, some

programs use interpolation techniques, while others do not. This affects the bias and

can lead to an upward bias. We can conclude that a number of observations of at least

one hundred guarantees a robust estimator for all but the estimator based on extrema.

Furthermore, time discreteness has hardly any effect on the variance of these estimators.

The simulation results showed that only the variance of the extrema-based estimator

of σ2 decreases somewhat with the number of observations; e.g. it has a variance of

1.852σ4 with 23, 401 observations and 1.701σ4 with 101 observations.

The question now remains what happens if we combine the extrema-based estima-

tors with other 1-quantile based estimators. Figure 4.2 presents the expected value of

different minimum-variance quantile-based estimators and the range-based estimator.

The expected value is not computed for cases in which the number of observations is

smaller than the number of quantiles used, because the estimator does not make much

sense in such cases.

The estimators are biased downwards and the log-scale clearly shows how the bias

becomes severe (only) for small numbers of observations. It is remarkable that the bias

increases with the number of quantiles used, while the range-based estimator is least

affected. This may appear counterintuitive, because one would expect that by adding

more and more quantiles that are less biased than the maximum and minimum the

overall estimator will be less biased than the range-based estimator. This turns out not

to be the case. The reason becomes apparent when we look at the optimal weights used

in the estimation. For example, when σ is estimated with more quantiles, more weight

is attached to the maximum and minimum (compensated by negative weights on other
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quantiles). Similarly, for σ2 more weight is attached to the product of the maximum

and minimum. Furthermore, time discreteness again has little impact on the variance

of the estimators. Only for the estimators of σ2 the variance decreases with the number

of observations. For example, the variance of the 41-quantile-based estimator is 0.154σ4

with 23, 401 observations, while 0.095σ4 with 101 observations. Given the observation

above that only the variance of the extrema-based estimator is somewhat affected by

time discreteness, the bias of the variance can be linked to the strong reliance of these

estimators on extrema.

Figure 4.2: Expected value of quantile-based estimators of σ (top-panel) and σ2 (bottom
panel) as a function of the number of observations (log-scale)

The simulation results make it clear that if the estimators are applied to a day

of observations of an actively traded stock, the bias is small independent of which

quantiles are used. This also holds for the consistent estimators based on permuted

Brownian bridge. The estimators that take the average of subinterval estimates are

robust except if the extrema are among the quantiles used and receive a considerable

weight or if the number of observations per subinterval is very low. The smaller the

number of observations per subinterval, the higher the discreteness bias. If we do
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not correct the bias, then there exists a trade-off between a bias that is increasing in

the number of subintervals and an efficiency loss that is decreasing in the number of

subintervals. Consequently, there exists an optimal subinterval size, which one could

determine by minimizing the root mean squared error of the estimates with respect to

the subinterval length. In the next subsection two bias corrections are proposed to deal

with the nonrobust cases.

4.2.2 Unbiased estimators

There are several ways to take the bias into account. Following Garman and Klass

(1980), one can simply divide volatility estimates by the corresponding simulated ex-

pected volatility of Figure 4.2 to correct the bias. These corrections are only suited for

equally spaced observations, however, while transaction data are not equally spaced.

The simulations can of course be adjusted to the sampling scheme.

Alternatively, one can derive bias-corrections for the quantiles analytically. Rogers

and Satchell (1991) derived a bias-corrected version of the range-based estimator as-

suming equidistant prices. However, it does not appear to be easily generalized to esti-

mators based on other quantiles. In this subsection, we use results of Dassios (1996b)

for Poisson distributed observations to derive bias-corrected estimators.

From Dassios (1996b) we can derive that Q (α, λ), the α-quantile of a standard

Brownian motion observed at a Poisson rate λ over the time interval [0, 1], satisfies
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where Φ (x) is the standard normal cumulative density function, Ir(x) is the modi-

fied Bessel function of the first kind and F (n, d, x) is the generalized hypergeometric

function. Since the expected value of M (α, λ), the α-quantile of a Brownian motion

with diffusion coefficient σ observed at a Poisson rate λ, is linear in σ, an unbiased

1-quantile-based estimator of σ follows from (4.1) as

σ̃(α, λ) =
M(α, λ)q
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where Var(Q (α, λ)) follows from (4.1) - (4.2). Linear combinations of the 1-quantile-

based estimator will also be unbiased. The optimal weights, w = (ι0V −1ι)−1V −1ι, can

be derived as before. Let C(αi, αj;λ) be the covariance between the αi- and αj-quantile

of a standard Brownian motion. Then the (i, j)-th element of V is

Vij =
C(αi, αj;λ)

E[Q(αi, λ)]E[Q(αj, λ)]
,

where E[Q(αi, λ)] is given by (4.1). The covariance between two quantiles is still un-

known and needs to be obtained by simulation.

Similarly, from the expected value of the product of two quantiles, we can derive

unbiased estimators of σ2, noting that

E[M (αi, λ)M (αj, λ)] = (C(αi, αj;λ) +E[Q(αi, λ)]E[Q(αj, λ)])σ
2.

Provided αi and αj are such that E[M (αi, λ)M (αj , λ)] 6= 0, an unbiased estimator of
σ2 follows as

σ̃2(αi, αj;λ) =
M(αi, λ)M(αj, λ)

C(αi, αj;λ) +E[Q(αi, λ)]E[Q(αj , λ)]
. (4.5)
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Let D(α1, α2, α3, α4;λ) be the covariance between the product of the α1- and α2-

quantiles and the product of the α3-and α4-quantiles of a standard Brownian motion

observed at Poisson rate λ, then

Var(σ̃2(αi, αj;λ)) =
D(αi, αj, αi, αj;λ)σ

4

(C(αi, αj;λ) +E[Q(αi, λ)]E[Q(αj, λ)])
2 .

Again linear combinations can be taken of the estimators based on the product of two

quantiles. The optimal weights for such estimators, w = (ι0V −1ι)−1V −1ι, can be derived

as before and V has elements
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The 1-quantile-based estimator of σ2 (αi = αj) is easily found analytically. From

(4.5) it follows that

σ̃2(αi, αi;λ) =
M(αi, λ)

2

E
£
Q (αi, λ)

2¤ , (4.6)

with

Var
¡
σ̃2(αi, αi;λ)

¢
=

"
E
£
Q (αi, λ)

4¤
E
£
Q (αi, λ)

2¤2 − 1
#
σ4,

where the moments are given by (4.2) and (4.3).

In practice, an estimate of λ is required. The natural choice is the maximum likeli-

hood estimator, λ̂ = n. The literature on duration between transactions points out that

the arrival of transactions is typically not Poisson distributed, but that durations are

time-varying, autocorrelated and follow an intradaily pattern. This may seem to inval-

idate the suggested bias correction. However, kernel densities of time-of-day adjusted

trade durations for a number of NYSE stocks presented in Bauwens and Giot (2001)

show, mostly, decreasing density functions and the exponential distribution would there-

fore provide a reasonable fit. If durations follow a seasonal pattern and λ varies, thenbλ will be an estimate of the average λ, which is representative for the interval. For
subintervals, λ can be re-estimated each time, thereby allowing variation of the Poisson

rate. Note, however, that this makes the estimation more simulation intensive if (4.5) is

used or optimal weights are computed, because both depend on the covariance between

two quantiles, which needs to be simulated and depends on λ. In order to avoid the

simulations needed to apply estimator (4.5), one can also use (4.6) and linear combi-

nations of it. Finally, it should be remarked that the results in Dassios (1996b) allow
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the derivation of estimators based on other trade arrival distributions than the Poisson

distribution.

4.3 Quantile-based estimators in the presence of mar-
ket microstructure noise

We need to deal with a second problem before we can apply quantile-based estimators

to high frequency data. At high frequency, certain market microstructure effects have

an impact on the price process. As a result, the observed price is said to differ from

the “true” price. The difference is market microstructure noise. While these market

microstructure effects are the matter of interest in much of the market microstructure

literature, for the estimation of volatility it is a nuisance and is treated as noise. First, I

discuss several sources of market microstructure noise. Secondly, I investigate the effect

of the presence of noise on our estimators by simulation. Finally, I propose noise-bias

corrections.

4.3.1 Sources of market microstructure noise

The transaction price and its variance heavily depend on the way trades are organized

by the market. Here I describe some of the effects reported in the literature.

Apart from time discreteness there is also price discreteness. As is well known,

prices can only change by a certain tick size. If we interpret the observed price as the

true price rounded to the nearest tick, then we observe the price with some error. This

measurement error would introduce a bias. Financial markets have decreased their tick

sizes through time, however, and at e.g. the NYSE the tick size is as small as one cent.

This type of discreteness should therefore loose importance, but is still relevant for

low-priced stocks. Alternatively, one can argue that a transaction will only occur when

both parties agree on the price such that deals can only occur on the price grid. In this

sense, price discreteness can only withhold or postpone trades and hence is transformed

into time discreteness.

A more important microstructure effect is the bid-ask bounce, which is caused by the

sequence of buys and sells and implies that the observed prices bounce between bid and

ask quotes (Roll, 1984). The latter causes negative autocorrelation in the returns and

artificially increases the volatility of high-frequency returns. As a result, the realized

volatility measure based on the sum of squared high-frequency returns has an upward

bias. This bias increases with the sampling frequency, because the microstructure effect
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becomes a dominant part of the observed return. As the data is sampled more finely,

the change in ‘true’ returns becomes smaller while the microstructure noise remains of

the same magnitude.

There are more effects that can cause measurement errors and dependence in re-

turns. For example, think of the strategic behaviour of market participants (inventory

control, informational asymmetries, etc.). Similarly, block trades and the process of

‘working an order’, i.e. traders who distribute their order over time, potentially create

positive autocorrelation in returns (Hasbrouck and Ho, 1987). Negative autocorrela-

tion in high frequency returns could also be explained by mean reversion of stock prices

after they were disturbed by trading behaviour (Poterba and Summers, 1988). Fur-

thermore, different trade and quote sizes imply differences in the representativeness of

prices, which introduces measurement errors.

4.3.2 Noise bias

In the presence of market microstructure noise the observed price differs from the true

price. Consequently, the observed quantiles also differ from the true quantiles. It is,

for example, intuitively clear that when we add random noise to the true price series

the observed maximum will be typically higher than the true maximum. The following

simulation excercise gives an idea about the bias of different 1-quantile based estimators.

Let st = pt + et be the observed price at time t, 0 ≤ t ≤ 1, with pt a Brownian motion

with diffusion coefficient σ representing the true price and et the noise process with

density g. A common assumption is that the noise is i.i.d. with

E[et] = 0, E[e2t ] = ω2, e ⊥ p. (4.7)

We also need to assume that the support of the density g is bounded. Otherwise it

implies that Pr[st > b] > 0 for any b, hence implying an infinite expected maximum

(and minimum) in continuous time. Interestingly, this suggests that the expected value

of any other quantile is finite despite an unbounded support for g. Unfortunately,

there are no analytical results available concerning quantiles in the presence of noise.

Some densities used in the literature are to treat et as Bernoulli distributed, uniformly

distributed or to ignore the bounded support condition and assume g is Gaussian.

I simulate price series st assuming a standard random walk for pt and a Bernoulli

distribution for et with Pr[et = ω] = Pr[et = −ω] = 1/2. The size of the noise and the
price signal are taken from the web-based appendices of Barndorff-Nielsen et al. (2007)

that contain estimates of the daily noise variance ω2, for the 30 Dow Jones Industrial
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Average stocks, ranging between 0.0005 and 0.0197, while estimates of daily integrated

volatility vary around σ = 1 percentage point. This implies that the noise is small

relative to the daily volatility for actively traded stocks. I consider three sizes for the

noise variance: ω2 = 0.0001, 0.001 and 0.01. Noise with variance ω2 = 0.01 should be

considered as really big. Figure 4.3 shows simulation results for the expected value of

1-quantile based estimators, with α between 0.5 and 1, when the number of observations

is large (n = 23, 401). We notice that the estimator based on the maximum is biased

most and as we move away from the maximum the bias drops sharply. As expected,

the bias increases with the noise, but remains relatively small for normal levels of noise.

Similarly, the simulation results in Alizadeh et al. (2002) show a small bias for the

range-based estimator.

Figure 4.3: Expected value of 1-quantile based estimators of σ (left panel) and σ2 (right
panel) for 3 noise levels when σ = 1

Note, however, that the robustness only holds for estimators that use quantiles

computed over a long interval like a day. In this case, the price signal dominates the

noise and the bias remains relatively small. On the contrary, the estimator based on

subintervals can be severely biased. The more subintervals we consider, the smaller

the price signal in each subinterval, while the size of the noise remains equal. The

dominance of the noise in each subinterval implies a severe bias for the estimator based

on averaging subinterval estimates, which increases in the number of subintervals. Note

that the discussion was based on simulation results for Brownian motion, but clearly

that Brownian bridge is affected in much the same way. This implies that the higher

efficiency achieved by estimation based on subintervals can only be exploited if we find
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a bias correction. Bias corrections are proposed in the next subsection.

Figure 4.4: Expected value of permuted Brownian bridge estimator of σ2 per quantile
for different noise levels (left panel) and different numbers of subintervals (right panel)

The estimator based on permuted Brownian bridge is biased, because the observed

start and end prices of the subintervals differ from the true prices. When the subintervals

are permuted and glued together, then there will typically be a noise-induced jump in

the new price series at the transition points. This increases the variance of the permuted

series artificially and implies a bias for our volatility estimators. The simulation results

in Figure 4.4 show how the bias increases with the variance of the noise (ω2) and the

number of subintervals (k). For three sizes of the noise, the left panel shows the expected

value of the estimator, which takes the average of 10 random permutations of k = 10

subintervals. The right panel shows what happens to the expected value if the noise

variance is kept at 0.001, but k varies. The rest of the simulation set-up is as before.

The results clearly show how the estimator based on the maximum is again much more

biased than those based on other quantiles. The bias also takes off for modest choices

of k. If the extrema are avoided and k is kept small, however, then the estimator is

reasonably robust to noise. For the other cases a bias correction is required.

4.3.3 Bias corrections

It is hard to derive properties of the quantiles in the presence of noise. Even the

simplest type of noise renders the path of the observed price discontinuous. The key

analytical results we built on to develop quantile-based estimators do not hold any
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longer when noise is superimposed and the probability literature does not seem to

contain the required extensions. As long as an analytically derived bias correction is

not available, I propose a simulation-based bias correction. Bias corrections for the

range-based estimator have been presented in the literature already and I discuss these

first.

Bias-corrected range-based volatility estimators

Christensen et al. (2006) propose bias corrections for the realized range estimator for a

few cases where the noise distribution has bounded support. For example, if the noise is

Bernoulli distributed on {−ω, ω}, then the bias of the range equals 2ω. Further, under
general noise distribution, we know from Zhang et al. (2005) and Oomen (2005) that

consistent estimators of the variance of the noise, ω2, are given by

bω2N =
1

2N

NX
i=1

r2i =
RV

2N

p→ ω2, (4.8)

eω2N = − 1

N − 1

N−1X
i=1

riri+1
p→ ω2,

as N → ∞, with r a high-frequency return, RV the realized volatility estimator and

N the number of returns. This allows one to obtain estimates of ω and to correct

the observed range. In order to deal with the discreteness bias of the bias-corrected

range-based estimator a scaling factor is obtained by simulation.

Martens and van Dijk (2007) propose another bias correction for the realized range

estimator of daily volatility. They exploit the fact that the daily range is robust to

noise relative to the range over shorter time intervals and define a scaling factor as the

average of the estimator based on the daily range divided by the average of the realized

range estimator. The average is taken over the previous q days. The estimator which is

otherwise upward biased now is scaled down appropriately. The approach of Martens

and van Dijk (2007) can be applied to other quantile-based estimators. The choice of

q remains arbitrary, however. Furthermore, with noise that varies in size from day to

day, a correction that depends on the past may not be reliable.

Simulation-based bias correction for quantile-based volatility estimators

The bias correction of the range proposed by Christensen et al. (2006) cannot be eas-

ily generalized to other quantiles. Given an estimate of ω, we do not know a priori

how much it affects a certain quantile. Below I describe simulation-based bias correc-

tions and make a distinction whether the type of noise distribution is known or not.
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Both methods can be applied to both averaging-subinterval-estimates and permuted-

Brownian-bridge estimators. I discuss the case of estimators of σ2, but bias corrections

for estimators of σ can be set up in a similar way.

The type of noise distribution is known

Let σ̌2s be a quantile-based estimator of σ
2 obtained from n observed prices from the

price process st, 0 ≤ t ≤ 1, which is subject to noise. Then given the noise described
above by (4.7), its bias is a function of ω, σ and the number of observations, n:

E[σ̌2s] = σ2 + fn (ω, σ) . (4.9)

By an equivariance argument,

fn (ω, σ) = fn (ω/σ, 1)σ
2 = gn (ω/σ)σ

2,

say. Hence, given estimates σ̌2s and ω̃, a bias-corrected estimator σ̂2s is obtained by

solving

σ̌2s = σ2 [1 + gn (ω̃/σ)]

for σ2. The values of gn(·) are obtained by simulation. Note that gn(0) ≈ 0 for large n,
and that gn(ω/σ) is increasing in ω/σ.

The type of noise distribution is unknown

The bias correction presented above is vulnerable to misspecification of the noise

distribution. Here, I develop a bias correction that assumes noise to be symmetrically

distributed about zero and to be independent over time, but does not require the noise to

be known. Instead, the noise density is estimated. The fact that high-frequency returns

of an actively traded stock are dominated by market microstructure noise allows us to

get a fairly good idea about the noise distribution. In fact, if we ignore the price signal

completely, then the return in period t is the sum of the noise in the periods t− 1 and
t, and the return density function (v) equals the self-convolution of the noise density

function (u), i.e. v = u ∗ u. This implies that by computing the (symmetric) self-
deconvolution of the high-frequency return density an estimate of the noise density is

obtained. In turn, this noise density estimate can be used to obtain values of fn(·) by
simulation, where fn (σ) is the bias of σ̌2s, i.e. E [σ̌2s] = σ2 + fn (σ). Thus, given the

estimate σ̌2s, a bias-corrected estimator σ̂
2
s is obtained by solving

σ̌2s = σ2 + fn (σ) (4.10)
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for σ2. A self-deconvolution method for density functions does, to my knowledge, not

exist in the literature. As part of the simulation exercise in the next subsection, I apply

a simple search algorithm that is described in appendix.

4.3.4 Simulation study

In this subsection, I analyse the performance of bias-corrected estimators when the

noise distribution is unknown.

Simulation design

The study takes 1, 000 replications of a standard randomwalk to replicate price processes.

Each random walk consists of 23, 400 intervals representing price series observed each

second of a 6.5-hour trading day. A process with time-varying volatility, as sometimes

used in the literature, would lead to similar results. As estimators of σ2, I consider

the estimator averaging 10-minute subinterval estimates (n = 39) and the permuted

Brownian bridge estimator based on 10-minute subintervals (k = 39) and 10 permuta-

tions. Both estimators are based on 2 quantiles (α = 0.1, 0.9) and let us denote the

estimators by SUB and PERM. Of course many other specifications of these estimators

could have been considered instead. The chosen estimators are based on a relatively

large number of subintervals, which implies a big noise bias, even more so for the SUB

estimator than the PERM estimator. The estimators are applied after perturbing the

random walk by noise. As noise distributions the Bernoulli and Normal distributions

are considered. In order to solve (4.10), Newton’s method is applied and at each iter-

ation fn(·) is obtained by simulation based on 1, 000 random walks perturbed by noise
drawn from the noise density estimate. The latter is obtained as the self-deconvolution

of the return distribution according to the method described in appendix.

First, each estimator (without noise bias correction) is applied to the true price

process to serve as a benchmark. Secondly, each noise-bias-corrected estimator is ap-

plied to the perturbed price series for the cases where the noise variance is ω2 = 0.001

or 0.01. This size of noise can be considered to be of respectively average and really big

order compared to the variance of the true price σ2 = 1. For each case, the average,

the standard error and the root mean squared error of the estimates are computed and

presented in Table 4.1.
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Results

The simulation results are presented in Table 4.1. The first column shows the mean,

standard deviation and root mean squared error of the SUB estimator and the PERM

estimator when there is no noise. The other columns show the results for the bias-

corrected versions of the estimators when the price is perturbed by Bernoulli or Nor-

mally distributed noise with variance (ω2) 0.001 or 0.01.

Table 4.1: Simulation results for noise-bias-corrected quantile-based estima-
tors

Noise - Bernoulli Normal
ω2 - 0.001 0.01 0.001 0.01
mean 1.002 1.031 1.010 0.998 0.998

SUB st.dev. 0.133 0.139 0.158 0.134 0.143
RMSE 0.133 0.142 0.158 0.134 0.143
mean 0.995 0.992 0.984 0.996 1.002

PERM st.dev. 0.269 0.284 0.459 0.289 0.492
RMSE 0.269 0.285 0.459 0.289 0.492

Presented are the mean, standard deviation and the root mean squared error (RMSE) of estimators
SUB and PERM. The estimator SUB is based on averaging 10-minute subinterval estimates (n = 39)
and the estimator PERM is based on 10-minute subintervals (k = 39) and averaging estimates from
10 permutations. Both estimators are based on 2 quantiles (α = 0.1, 0.9). The estimators are
applied to standard random walks and to the same series perturbed by Bernoulli distributed noise
or Gaussian noise. The variance of the noise (ω2) takes values 0.001 or 0.01.

In the case without noise, we notice that the SUB estimator is more efficient than

the PERM estimator, which purely depends on the specification of the estimator. An-

other specification of the PERM estimator based on more subintervals and permutations

would increase the estimator’s efficiency. However, our focus here is on how the noise-

bias-corrected estimators perform in the presence of noise. The average of the estimates

is very close to the expected value of 1 in all cases and hence the bias-corrected esti-

mators are nearly unbiased. The bias corrections are able to deal with both noise that

is Bernoulli and Normally distributed. The standard error of the bias-corrected SUB

estimator increases little with the size of the noise, while the variance of the PERM

estimator is considerably higher if the noise is big. The variance of the bias-corrected

estimators could, to a certain extent, be decreased by using a more precise bias estimate,

which could be obtained by increasing the number of simulations used to estimate the

bias fn(·).
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4.4 Conclusion

This chapter tackled the two main problems encountered when applying quantile-based

estimators, which are derived in continuous time, to noisy discrete-time data. First,

the chapter dealt with the time-discreteness bias. It turns out that most quantile-based

estimators are robust to discreteness and bias-corrections are not always needed in

practice unless the maximum and/or minimum are used in the estimation or the number

of observations is very small. In cases where a correction is needed, a scaling factor can

be obtained by simulation. Moreover, unbiased quantile-based estimators in discrete

time were derived in case the observations are Poisson distributed. Secondly, the bias

introduced by market microstructure noise was dealt with. The fact that the observed

price differs from the ‘true’ price due to market microstructure effects introduces a

bias for volatility estimators that increases with the number of subintervals used in the

estimation. Simulation-based bias corrections were presented both in case the noise

distribution is known and unknown.

Appendix

Noise density estimation

Let t1, ..., tn be the sampling times of the noise-perturbed continuous-time price process

st = pt+ et, 0 ≤ t ≤ 1, with pt the true price process and et i.i.d. noise with symmetric
density u. Let rt2 = st2 − st1, ..., rtn = stn − stn−1 be the returns corresponding to

the observed prices st1, ..., stn. The price signal decreases as the sampling frequency

increases, while the noise remains of the same size. That is, at high frequency the noise

dominates and a return mainly exists of two noise components, i.e. rti ≈ eti − eti−1,

i = 2, ..., n. Therefore, the higher the sampling frequency, the closer the return density

v is to the self-convolution of u, i.e. v ≈ u ∗ u. This implies that the noise density
can be estimated as the self-deconvolution of the return density. Note that, while v

is symmetric, the empirical return distribution is skewed (the skewness disappears as

maxi |ti − ti−1| → 0). Therefore, the empirical return distribution is symmetrized by

replacing the returns rt2, ..., rtn by the symmetrized returns ±|rt2| , ..., |rtn |. A standard
kernel estimator is used to estimate the density of symmetrized returns, with the Normal

density function as kernel smoother and a bandwidth parameter that is optimal for

estimating Normal densities. The self-deconvolution is then applied to the empirical

density v of the symmetrized returns.
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Self-deconvolution

The self-deconvolution applied in the simulation exercise of the main text is based on

a property of the Fourier transformation. Let U = F(u) and V = F(v) be the Fourier
transforms of u and v, with v = u ∗ u. It holds that V = UU and U = V 1/2, where

the operations are element-by-element, such that by the inverse Fourier transformation,

u = F−1(V 1/2). The latter expression implies that we can estimate the noise density

u by taking the empirical density v, taking its Fourier transform V , taking the square

root of the elements in V and applying the inverse Fourier transformation. However,

there is one problem. Each element in V has a positive and a negative square root. If

m is the number of elements in V , this leaves us with 2m possible sign combinations

and except for small m it is unfeasible to try them all out.

To solve this problem approximately, a search algorithm is applied to find the sign

combination of the elements in V 1/2 that offers the best estimate of u. The algorithm

starts from the vector with positive roots, Y = V 1/2, runs through the vector Y element-

by-element and each time decides on the sign of the element. The sign of an element

Yi, i ∈ {1, ..., z}, is changed if it decreases the criterion
Pz

i=1 |vi − (y ∗ y)i|, where
y = F−1(Y ). This criterion determines whether the convolution y ∗y fits v better when
the sign of Yi is changed. The algorithm stops at the end of vector Y if the criterion has

not been reduced by more than 10−5, otherwise it continues with another run through

Y .

The algorithm does not guarantee the best possible fit between y ∗ y and v and

hence not the optimal estimate y of u. In order to increase the likelihood of obtaining

a good fit I let the algorithm start from a second set of starting values, i.e. instead

of the positive roots V 1/2 it starts from randomly signed roots and checks whether the

criterion can be reduced further in this way.





Conclusions

This Ph.D. thesis presented research on financial transaction data and volatility. Chap-

ter 1 concentrated on the data and offered a solution to a particular matching problem,

while Chapter 2 focused on volatility, in particular the estimation of stochastic volatility

models. Chapters 3 and 4 focused on both transaction data and volatility and developed

volatility estimators that are meant to be applied to high-frequency data.

Chapter 1 dealt with the matching of trades and quotes of NYSE stocks. Inef-

ficient matching could, depending on the application, affect the outcome of market

microstructure analysis. A procedure was proposed that tests whether the quote revi-

sion frequency around a trade is contaminated by quote revisions triggered by a trade,

and then determines the smallest timing adjustment needed to take this contamination

into account. The procedure was applied to a sample of 25 stocks in 5 sample periods.

The results showed that the difference between trade reporting lags and quote report-

ing lags varies across stocks and time. The variation could be mainly explained by

changes in the reporting procedures of the NYSE and the co-existence of two reporting

systems for trades, i.e. trades are Display Book reported or not. The non Display Book

reported trades usually required a larger adjustment to match trade and quote times.

The procedure can be applied to each trade type, stock and subsample to determine

and implement the appropriate timing adjustment. Since mid-2003 the reporting of

lags stabilized and, from then on, taking the prevailing quote at two seconds before the

trade as the prevailing quote at the time of the trade appeared to be an appropriate

adjustment rule for all stocks.

Chapter 2 contributed to the literature on the GMM estimation of stochastic volatil-

ity models. The class of moment conditions has been extended and a closed-form ex-

pression for the optimal weighting matrix for any subset of those conditions has been

derived and, as a by-product, an expression for the GMM asymptotic covariance ma-

trix. These expressions can be used for improved GMM estimation of the SV model

with AR(1) log-volatility and to compute GMM standard errors more accurately. The

comparison to other estimators showed the relatively small efficiency loss of the GMM

89
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estimator compared to the asymptotically efficient MCMCmethod. Monte Carlo results

illustrated the efficiency gain of iterated GMM based on the analytical optimal weight-

ing matrix compared to iterated GMM based on estimation of the optimal weighting

matrix. The analytical results regarding the optimal weighting matrix allow us to fastly

and accurately assess the information content of any subset of moment conditions con-

sidered. This, in turn, permits the optimal selection of a small set of highly informative

moment conditions from very large sets, and subsequent GMM estimates to be based

on the optimal selection of moments. A four-step data-based procedure was proposed

for the optimal selection of moment conditions. It was found that the search for the

optimal selection of moment conditions comes at a small efficiency cost compared to

the situation where the optimal selection is known a priori. In other words, Chapter 2

pointed out that the relatively simple GMM estimator deserves to be reconsidered in

the SV context.

Chapter 3 developed quantile-based volatility estimators. It turned out that the

estimators based on the quantiles of Brownian bridge are more efficient than their

Brownian motion counterparts. Furthermore, we concluded that the supremum and

infimum are the quantiles that contain the most information, but when combined with

other quantiles more efficient estimators can be obtained. If we consider the class of

unbiased estimators based on only the supremum and the infimum, it turned out that

the range-based estimator is not (always) the minimum-variance unbiased estimator.

This implies that the historic ‘high-low’ data can be used more efficiently than standard

practice did so far. I have also shown how consistent estimators are obtained by taking

the average of subinterval estimates or, alternatively, by taking averages of estimates

from permutations of subintervals of the Brownian bridge. The quantile-based volatil-

ity estimators provide an interesting alternative to the existing realized volatility and

realized range estimators.

The estimators of Chapter 3 are biased, however, when applied to high-frequency

data. Chapter 4 tackled the underlying time-discreteness bias and noise bias. Time

discreteness turned out to be a problem only if the maximum and/or minimum were

used in the estimation or the number of observations was very small. In cases where

a correction was needed, a scaling factor could be obtained by simulation. Moreover,

unbiased quantile-based estimators in discrete time were derived in case the observa-

tions were Poisson distributed. The noise bias is due to market microstructure effects

blurring the ‘true’ price signal. Simulation-based bias corrections were presented both

in the case where the noise distribution is known and where it is unknown. The bias cor-
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rections allow the practitioner to exploit the efficiency gain of quantile-based volatility

estimation at high frequency.
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