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Abstract

The ability to hear and process sounds is crucial. For adults, the inevitable
ongoing aging process reduces the quality of the speech and sounds one per-
ceives. If this effect is allowed to evolve too far, social isolation may occur. For
infants, a disability in processing sounds results in an inappropriate develop-
ment of speech, language, and cognitive abilities. To reduce the handicap of
hearing loss in children, it is important to detect the hearing loss early and to
provide effective rehabilitation. As a result, hearing of all newborns needs to
be screened. If the outcome of the screening does not indicate normal hearing,
more detailed hearing assessment is required. However, standard behavioral
testing is not possible, so that assessment has to rely on objective physiological
techniques that are not influenced by sleep or sedation. The last few decades,
the use of auditory steady–state responses (ASSRs) has been investigated as
an objective technique to assess hearing thresholds at different frequencies.

In this research project, we focus on reducing the required recording time of the
ASSR technique and on improving its robustness against unwanted artifacts,
generated by e.g. muscle activity, eye blinks, and electrode cable movement.
This objective is achieved by processing multichannel electroencephalogram
(EEG) recordings. First, we build a setup that allows us to apply custom
made stimuli and to record multichannel EEG. Second, the effect of two mul-
tichannel processing techniques applied on these data is investigated. Both
an independent component analysis (ICA) based technique and a multichannel
Wiener filter (MWF) based approach show that a significant measurement time
reduction is possible when compared with standard single channel recordings.
Afterwards, the ICA– and MWF–based approaches are incorporated into a pro-
cedural multichannel framework that is constructed from elements of detection
theory. It is shown that this detection theory based approach increases the
number of detections significantly when compared with a noise–weighted single
channel technique, in the case of artifact–rich EEG. Finally, the optimal elec-
trode positions are determined for the recording of ASSRs originating mainly
from the brainstem (and the auditory cortex). After processing with the mul-
tichannel EEG processing techniques presented in this work, these positions
guarantee a close–to–optimal assessment of the subject’s hearing thresholds.
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Korte Inhoud

De mogelijkheid om geluiden te horen en te verwerken is cruciaal voor zowel
jong als oud. Voor kinderen betekent gehoorverlies een obstakel voor een nor-
male spraak– en taalontwikkeling. Vooral voor hen is het belangrijk om dit
gehoorverlies zo vroeg mogelijk op te sporen en er gepast op te reageren. Om
deze reden zou het gehoor van alle pasgeborenen moeten worden gecontroleerd.
Als het resultaat van deze ‘screening’ niet op een normaal gehoor wijst, is meer
gedetailleerde gehoorschatting nodig. Het probleem hier is wel dat de stan-
daard gebruikte gedragstesten niet kunnen gebruikt worden. Om deze reden
moeten deze testen terugvallen op objectieve fysiologische technieken die niet
bëınvloed worden door slaap of sedatie. De laatste decennia werd er gefocust op
een techniek die gebruikt maakt van auditieve steady–state responsen (ASSR)
om gehoordrempels te schatten op verschillende frequenties.

In dit onderzoeksproject proberen we de meettijd te verkorten van de ASSR–
techniek en zijn robuustheid te vergroten tegen ongewenste artefacten zoals
spieractiviteit. Dit doel wordt bereikt door meerkanaals verwerking van elek-
troencephalogram (EEG) metingen. Om te beginnen hebben we een opstelling
gebouwd waarmee het mogelijk is om zelfgemaakte stimuli aan te bieden aan
de proefpersoon en om meerkanaals EEG op te meten. Daarna wordt het ef-
fect van twee types meerkanaals signaalverwerking onderzocht die toegepast
worden op deze meerkanaals data. Zowel het gebruik van onafhankelijke com-
ponent analyse (ICA) als een meerkanaals Wiener filter (MWF) maakt het mo-
gelijk om een significante meettijdreductie te bekomen ten opzichte van de stan-
daard éénkanaals metingen. Nadien worden deze ICA– en MWF–gebaseerde
benaderingen samengesmolten in een proceduraal meerkanaals raamwerk dat
opgebouwd is met bouwstenen uit de detectietheorie. Er wordt aangetoond dat
deze benadering het aantal detecties significant vergroot vergeleken met een
ruisgewogen éénkanaals techniek wanneer EEG wordt gebruikt dat veel arte-
facten bevat. Om af te sluiten worden de optimale elektrodeposities bepaald
voor het opmeten van ASSR die hoofdzakelijk gegenereerd worden in de hersen-
stam (en de auditieve cortex). Deze posities garanderen een bijna–optimale
schatting van de gehoordrempels van de proefpersoon.
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Glossary

Mathematical Notation

a scalar a
v vector v
M matrix M
MT transpose of matrix M
M∗ complex conjugate of matrix M
MH = (M∗)T Hermitian transpose of matrix M
M−1 inverse of matrix M
X(k : l, :) rows k up to l of matrix X
X(:, k : l) colums k up to l of matrix X
x(i) element i of signal x
x(t) time domain representation of signal x
X(f) frequency domain representation of signal x
â, v̂, M̂ estimate of a scalar a, vector v, matrix M
round(x) round x ∈ IR to the nearest integer
a = b a is equal to b
a ∼ b a is similar to b
a < b a is smaller than b
A ≡ B matrix A is equivalent to matrix B
± approximately
| · | absolute value
|| · ||2 2–norm
⊗ Kronecker product
µx mean of x
σx standard deviation of x
GEVD(M,X) generalized eigenvalue decomposition of matrices M and X
E{·} expectation operator
vec(M) stacks the columns of matrix M into one column vector m
vmax{M} eigenvector associated with largest eigenvalue of matrix M
arg{max

a
f(x, a)} value of a for which the value of f(x, a) attains its maximum

v



vi Glossary

Fixed Symbols

α unknown (ASSR source) amplitude
β frequency modulation (FM) index
∆φ fixed phase difference
Λ(z) likelihood ratio
φ fixed phase
ϕ time variable phase
σ2 noise power
ω = 2πf pulsation
Υ(z) sufficient statistic
D duty cycle
f frequency–domain variable
fc carrier frequency
fm amplitude modulation (AM) frequency
f ′m frequency modulation (FM) frequency
fs sampling frequency
H hypothesis
m number of channels
M minimum set
n number of data points
p statistical p–value
Pr response power
q number of independent components
r correlation coefficient
rs Spearman correlation coefficient
t time–domain variable
U upper limit
0 zero vector or zero matrix
A mixing matrix
d steering vector
D steering matrix
I identity matrix
Kmn×mn mn×mn spatio–temporal noise covariance matrix
Kspat spatial noise covariance matrix
Ktemp temporal noise covariance matrix
n noise vector
N noise matrix
Q orthogonal matrix
R upper triangle matrix
s signal vector
S signal matrix
w weighting vector
wopt optimal weighting vector



vii

W separating matrix
z observation vector
Zn×m n×m observation matrix

Acronyms and Abbreviations

ABR Auditory Brainstem Response
AEP Auditory Evoked Potential
AM Amplitude Modulation
ALR Auditory Late Response
AMLR Auditory Middle–Latency Response
AMFR Amplitude Modulation Following Response
AUC Area Under the ROC–Curve
ASSR Auditory Steady–State Response
BOA Behavioral Observation Audiometry
cf. confer : compare with
CI Cochlear Implant
CT2 Circular T 2 statistic
Cz Vertex
dB decibel
DC Duty Cycle
eABR electrical ABR
eASSR electrical ASSR
eCochG Electrocochleogram
EEG Electroencephalogram
EFR Envelope Following Response
e.g. exempli gratia : for example
Fpz Forehead
FFR Frequency Following Response
FFT Fast Fourier Transform
FM Frequency Modulation
FN False Negative
FP False Positive
GEVD Generalized EigenValue Decomposition
GUI Graphical User Interface
HL Hearing Level
HT2 Hotelling T 2 statistic
i.e. id est : that is
IAFM Independent Amplitude and Frequency Modulation
IC Independent Component
ICA Independent Component Analysis
ICR Instrumental Conditional Reflex
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ISO International Organization for Standardization
JADE Joint Approximate Diagonalization of Eigenmatrices
JCIH Joint Committee on Infant Hearing
lMa Left Mastoid
MASTER Multiple Auditory STEady–state Responses
MINT Multiple INTensity
MM Mixed Modulation
MMSE Minimum Mean Square Error
MSC Magnitude Squared Coherence
MSE Mean Squared Error
MVDR Minimum Variance Distortionless Response
MWF Multichannel Wiener Filter
OAE Otoacoustic Emissions
Oz Occiput
P300 Auditory P300 Response
PC Phase Coherence
PCI Peripheral Component Interconnect
PCMCIA Personal Computer Memory Card International Association
peSPL peak–equivalent Sound Pressure Level
PSD Power Spectral Density
RECD Real–Ear–to–Coupler Difference
RESPL Real–Ear Sound Pressure Level
RLS Recursive Least Squares adaptive filter
rMa Right Mastoid
RMS Root Mean Square
ROC Receiver Operating Characteristic
SOMA Setup ORL for Multichannel ASSR
SNR Signal–to–Noise Ratio
SPL Sound Pressure Level
SSEP Steady–State Evoked Potential
TN True Negative
TP True Positive
VRA Visual Reinforcement Audiometry
w.r.t. with respect to
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Samenvatting

Snellere detectie van
auditory steady–state
responsen door meerkanaals
EEG–signaalverwerking

Motivatie

De mogelijkheid om geluiden te horen en te verwerken is cruciaal voor zowel
jong als oud. Wanneer volwassenen ouder worden, vermindert de kwaliteit van
het geluid en in het bijzonder van de spraak die men waarneemt. Dit effect
wordt omschreven als gehoorverlies. Als het gehoorverlies te ernstig wordt, kan
sociale isolatie optreden. Voor kinderen betekent dit verlies een obstakel voor
een normale spraak– en taalontwikkeling. Vooral voor hen is het belangrijk om
dit gehoorverlies zo vroeg mogelijk op te sporen en er gepast op te reageren.

Deze oproep tot vroege gehoorprobleemdetectie heeft in verschillende delen
van de wereld al navolging gekregen in de vorm van een systematische ‘screen-
ing’. In Vlaanderen wordt sinds 1998 ongeveer 97 % van de pasgeborenen op
gehoorverlies getest door Kind & Gezin. Dit komt overeen met zowat 60.000
kinderen per jaar. Zodra er iets abnormaals wordt opgemerkt, wordt het kind
doorverwezen naar gespecialiseerde centra voor een uitgebreide diagnose. In
deze centra wordt een meer gedetailleerde analyse uitgevoerd van het vermoede
gehoorverlies. Deze analyse wordt bekomen aan de hand van een aantal au-
diologische tests zoals tympanometrie, otoakoestische emissies en een methode
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xvi Samenvatting

om (frequentiespecifieke) gehoordrempels te bepalen. Voor dit laatste geval
zou normaalgezien gedragsaudiometrie gebruikt worden. Bij gedragsaudiome-
trie wordt aan de patiënt gevraagd of hij/zij een bepaalde stimulus al dan niet
gehoord heeft. Deze techniek kan in dit geval echter niet toegepast worden
gezien de jonge leeftijd van de doorgewezen patiënt. Om deze redenen is men
hier vooral aangewezen op objectieve technieken die geen medewerking vereisen
van de patiënt en die niet bëınvloed worden door slaap of sedatie.

De meest gebruikte objectieve techniek voor de schatting van gehoordrempels
is de techniek die gebruik maakt van de klikgeëvokeerde auditieve hersenstam-
respons (ABR – ‘auditory brainstem response’). Het nadeel van deze techniek
is dat gehoordrempels niet frequentiespecifiek kunnen worden bepaald. Deze
informatie kan echter heel nuttig zijn om hoorapparaten af te stellen of om te
beslissen of moet overgegaan worden tot cochleaire implantatie. Er bestaan
varianten van de ABR die frequentiespecifieke informatie leveren, maar deze
zijn zowel tijdrovend als veeleisend op het gebied van technische expertise.

Een mogelijke techniek die tegemoet komt aan dit probleem is de auditieve
steady–state respons techniek (ASSR – ‘auditory steady–state response’). Deze
benadering maakt gebruik van continue tonen in plaats van transiënte kliks.
Het is mogelijk om responsen op verschillende testfrequenties tegelijk te gene-
reren en op te meten. Op deze manier kan een frequentiespecifieke gehoor-
drempelbepaling uitgevoerd worden in minder dan een uur, wat niet mogelijk
is met een frequentiespecifieke ABR.

Natuurlijk zijn er niet enkel voordelen verbonden met de ASSR–techniek. De
responsen die met deze benadering worden opgewekt zijn grootteordes kleiner
dan de responsen opgewekt met de ABR–benadering. De techniek is gevoelig
voor ruis, en artefacten kunnen de meting grondig verstoren of zelfs onmogelijk
maken. Daarom is het denkbaar dat een ASSR–meting, en dus de hoordrem-
pelbepaling, nog altijd te lang kan duren.

Het werk dat u nu voor zich hebt liggen, stelt verscheidene methodes voor om de
meettijd te verkorten van deze ASSR–metingen. Het bespreekt de problemen
die zich voordoen ten gevolge van een overvloed aan ruis en artefacten, en toont
hoe deze in zekere mate kunnen worden verwijderd.

Hoofdstuk 1: Inleiding

Het gehoor is één van de vijf zintuigen en maakt het mogelijk om geluid te
detecteren. Sectie 1.2 beschrijft het auditief systeem en de mogelijkheid dat
het waarnemen van geluid en spraak gedeeltelijk of volledig wegvalt. Deze
conditie wordt gedefinieerd als gehoorverlies en moet zo snel mogelijk gede-
tecteerd worden (Sectie 1.3). Langdurige gehoorproblemen kunnen namelijk
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voor sociale isolatie zorgen bij volwassenen. Bij kinderen zorgt een vermin-
derde gehoorperceptie voor een vertraagde spraak– en taalontwikkeling, leer-
stoornissen en voor emotionele en sociale problemen. Volgens Yoshinaga-Itano
et al. (1998) hebben kinderen waarvan het gehoorverlies vóór de leeftijd van
zes maanden wordt gedetecteerd betere taalcapaciteiten dan kinderen met een
detectie ná de leeftijd van zes maanden. Aangezien ongeveer één op de duizend
kinderen geboren worden met permanent bilateraal gehoorverlies, is een ade-
quate ‘screening’ en interventie noodzakelijk. Daarom stelde de Amerikaanse
Joint Committee on Infant Hearing (2000) een globale standaard voor die aan-
gaf om alle kinderen te ‘screenen’ met objectieve fysiologische technieken vóór
de leeftijd van één maand. Wanneer een gehoorprobleem wordt gedetecteerd,
moet deze audiologisch en klinisch worden gediagnostikeerd vóór de leeftijd
van drie maanden, en multidisciplinair gëıntervenieerd vóór de leeftijd van zes
maanden. Als het permanent gehoorverlies niet chirurgisch of met medicatie
kan opgelost worden, kan gebruik gemaakt worden van een hoorapparaat of
een cochleair implantaat. Dit lost het probleem niet op, maar verlicht het wel.
Een hoorapparaat wordt ingezet bij matig tot zwaar gehoorverlies. Het ver-
sterkt en comprimeert het binnenkomend geluid. Bij zeer zwaar gehoorverlies
of doofheid wordt de auditieve zenuw rechtstreeks elektrisch gestimuleerd met
behulp van een cochleair implantaat. Het is belangrijk om de ernst van het
gehoorverlies te kennen alvorens men overgaat tot het gebruik van een hoorap-
paraat of tot cochleaire implantatie. Bij de keuze voor een hoorapparaat is een
correcte afstelling enkel mogelijk als zowel de ernst als de configuratie (de fre-
quentiespecifieke informatie) van het gehoorverlies gekend is. Deze informatie
wordt grafisch samengevat in een audiogram. Sectie 1.4 beschrijft verschil-
lende subjectieve en objectieve methodes om een audiogram te bepalen. Voor
dit manuscript is een specifieke objectieve categorie van belang, de auditieve
geëvokeerde potentialen.

Auditieve geëvokeerde potentialen (AEP – ‘auditory evoked potentials’) zijn res-
ponsen opgewekt door het auditief systeem, gaande van de oren, de auditieve
zenuw tot de auditieve gebieden in de hersenen. Deze responsen zijn een reac-
tie op een aangeboden auditieve of akoestische stimulus. Er zijn verschillende
types, die worden beschreven in Sectie 1.5. Een AEP wordt geregistreerd
door middel van een elektroencephalogram (EEG), waarbij elektroden op de
scalp worden aangebracht en hersenpotentialen worden opgemeten. Een be-
langrijke soort van AEP is de auditieve hersenstamrespons (ABR). Deze wordt
opgewekt in de hersenstam als reactie op een akoestische klik. Tegenwoordig
wordt de ABR gebruikt voor de bepaling van gehoordrempels, waarbij gekeken
wordt naar de aanwezigheid van een bepaalde golfvorm bij een gegeven klikin-
tensiteit. Indien deze golfvorm (golf V) aanwezig is in het EEG, dan werd de
klik waargenomen tot in de hersenstam. Door de intensiteit van de klik telkens
te verlagen tot er geen golf V meer waargenomen wordt, kan een gehoordrempel
bepaald worden. Een speciaal geval van de ABR is de auditieve steady–state
respons (ASSR). Door de kliks van de ABR–techniek snel op elkaar te laten
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volgen, vloeien de gegenereerde golfvormen in elkaar over, wat aanleiding geeft
tot een regimetoestand, namelijk een steady–state respons. Een uitgebreide
uiteenzetting van de ASSR wordt gegeven in Hoofdstuk 2.

Hoofdstuk 2: De auditory steady–state respons

De eerste auditieve responsen werden ongeveer zeventig jaar geleden gere-
gistreerd (Davis, 1939). In de veertig jaar nadien was het auditief onderzoek
vooral toegespitst op akoestische kliks en de reactie van het auditief systeem
hierop. Galambos et al. (1981) waren de eerste onderzoekers om significante
resultaten te behalen met gemoduleerde tonen. De algemene verzamelnaam
voor gemoduleerde tonen die een continue sinusöıdale respons uitlokken, zijn
auditieve steady–state responsen (ASSR).

Sectie 2.1 introduceert de ASSR en bespreekt alle facetten. Een stimulus die
een ASSR kan opwekken, bestaat meestal uit een draaggolf die gemoduleerd
wordt met een modulator. Deze draaggolf exciteert de cochlea op een speci-
fieke plaats tussen de apex (lage frequenties) en de basis (hoge frequenties).
Grof genomen wordt enkel de modulator doorgegeven aan de auditieve zenuw.
De responsen fluctueren mee aan de modulatiefrequentie van de modulator.
Afhankelijk van de modulatiefrequentie liggen de bronnen van deze respon-
sen grotendeels in de hersenstam (modulatiefrequenties vanaf ± 75 Hz) of in
de auditieve cortex (lagere modulatiefrequenties). Dit heeft interessante prak-
tische gevolgen. De ASSR met modulatiefrequenties vanaf 75 Hz zijn zeer
geschikt voor een frequentiespecifieke gehoordrempelbepaling. Hier fungeert
elke audiometrische testtoon (500, 1000, 2000 en 4000 Hz) als een draaggolf die
gemoduleerd wordt aan een bepaalde modulatiefrequentie.

Een frequentiespecifieke gehoordrempelbepaling gebruik makend van de ASSR–
techniek gaat als volgt. Er wordt vertrokken van een stimulusintensiteit die ver
genoeg boven de verwachte gehoordrempel ligt. De responsen op deze (gemo-
duleerde) stimuli worden geregistreerd door middel van een EEG. Deze respon-
sen zijn een soort van ‘label’ voor de akoestische stimuli. Als ze voorkomen in
het EEG geeft dit aan dat de gemoduleerde stimulus de cochlea op een specifieke
plaats heeft geëxciteerd, en dat de enveloppe (de modulator) van deze stimulus
tot in de hersenstam is geraakt, waar ze de overeenkomstige generatoren heeft
geactiveerd. Zodra deze respons wordt gedetecteerd in het EEG, kan de stimu-
lusintensiteit worden verlaagd. De intensiteit waarop er nog net een respons
aanwezig is, wordt gedefinieerd als de gehoordrempel. Het mooie aan deze tech-
niek is dat er meerdere audiometrische frequenties tegelijkertijd kunnen getest
worden, bijvoorbeeld vier aan het linkeroor en vier aan het rechteroor. Dit ver-
snelt een frequentiespecifieke gehoordrempelbepaling met een factor twee tot
drie vergeleken met het gebruik van een enkele stimulus (John et al., 2002a).
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Alhoewel de huidige ASSR–techniek reeds een verbetering betekent ten opzichte
van andere objectieve frequentiespecifieke gehoordrempelbepalingstechnieken,
is de meettijd van de methode nog altijd behoorlijk lang. Meettijden kunnen
in het optimale geval nog steeds oplopen tot één uur (Luts et al., 2006; Luts
and Wouters, 2004). Wanneer de meetcondities niet optimaal zijn, zoals bij-
voorbeeld bij een (jong) subject dat onrustig is, kan de duur van de meting
sterk verlengen door de talrijk aanwezige storingen of artefacten in het EEG–
signaal. Sectie 2.2 geeft een overzicht van de reeds beschikbare methodes
om de nodige meettijd te verkorten, wat belangrijk is om de ASSR–techniek
klinisch toepasbaar te maken. De voorgestelde methodes zijn echter niet ont-
wikkeld met meerkanaals EEG in gedachten. Daarom focust dit werk zich op
het ontwerp van signaalverwerkingstechnieken die zich richten op meerkanaals
EEG–signalen. Op deze manier kan zowel de meettijd verkort worden, en de
robuustheid tegen ongewenste storingen vergroot.

Hoofdstuk 3: Een flexibel onderzoeksplatform
voor meerkanaals ASSR–metingen

Alvorens kan overgegaan worden tot meerkanaals EEG–signaalverwerking, moet
er natuurlijk eerst meerkanaals EEG beschikbaar zijn om te verwerken. Dit kan
verzameld worden door onder andere zelf metingen te doen met behulp van
commerciële apparatuur. Spijtig genoeg zijn er geen commerciële opstellingen
beschikbaar die meer dan twee kanalen simultaan opmeten én tegelijkertijd
geschikt zijn voor het registreren van ASSR, mede door de zware eisen die
gesteld worden aan de kwaliteit van de EEG–versterker. Daarenboven laten
dergelijke opstellingen meestal niet toe om zelfgemaakte stimuli aan te bieden of
om een bepaalde stimulusintensiteit te overschrijden. Dit beschermt de patiënt
namelijk tegen ongeoorloofd gebruik, maar beide opties zijn echter wel noodza-
kelijk voor klinisch onderzoek. Om deze redenen werd beslist om een eigen
meerkanaals opstelling te bouwen die deze beperkingen niet heeft. Deze op-
stelling werd SOMA gedoopt, Setup ORL voor Meerkanaals ASSR. Deze in dit
werk voorgestelde setup kan metingen uitvoeren tot acht EEG–kanalen tegelijk.
Zelfgemaakte stimuli kunnen aangemaakt en binauraal aangeboden worden via
ingelezen bestanden. De opstelling is mobiel, wat testen mogelijk maakt op an-
dere locaties.

Sectie 3.2 beschrijft de hardware en de software in meer detail. De hardware
bestaat uit de relatief goedkope, maar kwalitatief uitstekende, meerkanaals
RME Hammerfall DSP Multiface II geluidskaart. EEG–signalen worden ver-
sterkt met een achtkanaals lage–ruis versterker van Jaeger–Toennies. De soft-
ware is geschreven in C++ en modulair uitbreidbaar. Naast de mogelijkheid
om zelfgeconstrueerde stimuli aan te bieden, is de optie beschikbaar om tijdens
een meting de intensiteiten van elke gemoduleerde draaggolf afzonderlijk aan
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te passen. De opstelling SOMA wordt geëvalueerd in Sectie 3.3. De gehoor-
drempels van negen normaalhorenden worden geschat door middel van SOMA
en een éénkanaals referentieopstelling van John and Picton (2000a). De re-
sultaten geven aan dat beide systemen gelijkwaardig zijn in het schatten van
gehoordrempels van normaalhorenden.

Momenteel wordt SOMA gebruikt in vier projecten binnen ExpORL, waarvan
de twee belangrijkste even aangehaald worden. Het eerste project wordt uit-
gevoerd in een klinische omgeving, meer specifiek de operatiezaal van het UZ
Leuven, waar buisjes in de oren worden geplaatst bij kinderen onder zes jaar.
Zowel ASSR– als ABR–gehoordrempelschattingen worden hier bepaald en met
elkaar vergeleken. Uiteindelijk is het de bedoeling te evalueren of de ASSR–
techniek in deze omgeving iets kan bijdragen. Het tweede onderzoek focust op
ASSR van gemoduleerde spraakachtige stimuli en de eventuele mogelijkheid tot
vroegtijdige detectie van sommige vormen van dyslexie (Alaerts et al., 2007a).

Hoofdstuk 4: Het verbeteren van ASSR–detectie
met onafhankelijke component analyse

In het verdere verloop van dit werk wordt ingegaan op de toepassing van
meerkanaals EEG–signaalverwerking op ASSR–data. Een eerste techniek die
wordt besproken, is gebaseerd op onafhankelijke component analyse (ICA –
‘independent component analysis’). ICA maakt het mogelijk om de onbekende
factoren van multivariate statistische data te bepalen. Hierbij wordt naar com-
ponenten gezocht die zowel statistisch onafhankelijk zijn als niet–Gaussisch
(Comon, 1994; Hyvärinen et al., 2001). Indien volledige statistische onafhanke-
lijkheid tussen de gevonden bronnen niet kan gegarandeerd worden, zoekt het
ICA–algoritme naar bronnen die statistisch gezien zo verschillend mogelijk zijn.
De rationale achter de toepassing van ICA op ASSR–data is gebaseerd op de
veronderstelling dat sinusöıdale (platykurtische) ASSR statistisch immens ver-
schillen van het bijna–Gaussische EEG. Mochten er ASSR aanwezig zijn in het
EEG, dan moet ICA in staat zijn deze te scheiden van de andere (ongewenste)
hersengolven in het EEG. Sectie 4.2 beschrijft dit model en deze assumpties.
Verder wordt een experimentele studie beschreven met acht normaalhorenden
om de tijdswinst te bepalen door ICA toe te passen op zowel éénkanaals als
meerkanaals ASSR–data. In dit hoofdstuk wordt voorlopig enkel gefocust op
ASSR–data die bekomen werd op intensiteiten aanzienlijk boven de gehoor-
drempel. Voor het effect van meerkanaals technieken op gehoordrempelbepa-
ling wordt verwezen naar Hoofdstuk 7.

Sectie 4.3 toont dat tussen -1 en 23 % snelheidswinst kan geboekt worden per
subject voor intensiteiten boven de gehoordrempel wanneer een éénkanaals pro-
cedure wordt toegepast op een standaard normaalgewogen referentiekanaal. In-
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dien de beschikbare data wordt uitgebreid naar meerdere kanalen, dan consta-
teert men het volgende. Er is een limiet op het maximaal aantal kanalen dat kan
toegevoegd worden tot de performantie niet meer stijgt per extra toegevoegd
kanaal. De limiet voor deze dataset komt overeen met vijf kanalen en de ac-
tieve elektroden worden best geplaatst op de achterkant van het hoofd. Deze
resultaten worden ook bevestigd in Hoofdstukken 5 en 7. Wanneer ICA wordt
toegepast in deze laatste elektrodenconfiguratie, bedraagt de tijdswinst per
subject tussen -2 en 63 % vergeleken met het standaard normaalgewogen refe-
rentiekanaal bij intensiteiten boven de gehoordrempel. Deze resultaten geven
aan dat de mogelijke tijdswinst sterk kan variëren tussen subjecten onderling,
iets wat typerend is voor ASSR–metingen in het algemeen. Dit betekent dat
EEG–kanalen die optimaal zijn voor het ene subject niet automatisch goede
ASSR–metingen opleveren voor een ander subject (Hoofdstuk 7). Door de
resultaten hierboven te combineren, kan nog een extra performantiestijging
bekomen worden. Wanneer de tijdswinst vergeleken wordt tussen metingen
aan hoge intensiteiten (met dus grote ASSR in het EEG) en metingen aan
lagere intensiteiten (met kleine ASSR), dan kan geconcludeerd worden dat de
tijdswinst in het laatste geval kleiner is. Dit wordt veroorzaakt door het slecht
presteren van de ICA–techniek bij lage signaal–ruis–verhoudingen (Hyvärinen
et al., 2001).

Hoofdstuk 5: Het verbeteren van ASSR–detectie
met meerkanaals Wiener filteren

In Hoofdstuk 4 werd meerkanaals EEG verwerkt door middel van ICA. Een
nadeel van ICA is dat deze techniek geen gebruik maakt van op voorhand
gekende informatie, behalve de veronderstelling dat de onbekende bronnen
onafhankelijk zouden zijn. Een meerkanaals techniek die wel gebruik maakt
van extra informatie is meerkanaals Wiener filteren (MWF), met voorafgaande
QR–factorisatie. Deze techniek neemt de gekende modulatiefrequentie mee in
rekening waarmee de ASSR–stimulus is gemoduleerd (Sectie 5.2). Hiervoor
wordt een fysisch ASSR–model beschreven dat het geregistreerde signaal aan de
scalpelektroden modelleert als een combinatie van een instantane en verzwakte
versie van een (vereenvoudigde) ASSR–bron in de hersenen, en ongewenste ruis
afkomstig van het EEG en andere processen. Er wordt aangetoond dat voor de
ASSR–toepassing beschreven in dit werk het meerkanaals Wiener filter identiek
is aan de oplossing van een uitgangs–SNR maximalisatie.

In Secties 5.3 en 5.4 wordt het experiment van Hoofdstuk 4 herhaald met
de MWF–gebaseerde techniek in plaats van de ICA–gebaseerde methode. De
resultaten zijn gelijkaardig. Deze overeenkomst wordt bevestigd in Parra and
Sajda (2003) en Hoofdstuk 6. De grootste verschillen tussen de twee technieken
is dat in het geval van ICA de data voorverwerkt moet worden door uitmid-
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deling om de initiële signaal–ruis–verhouding hoog genoeg te krijgen. Dit is
niet nodig bij de MWF–gebaseerde methode. Daarnaast vereist de MWF–
gebaseerde techniek geen kunst– en vliegwerk in de vorm van extra artificiële
‘kanalen’ om de variabiliteit van de resultaten onder controle te houden.

Hoofdstuk 6: Een proceduraal raamwerk voor
ASSR–detectie

Sectie 6.2 unificeert de technieken van Hoofdstuk 4 en 5 in een procedu-
raal raamwerk voor ASSR–detectie dat zijn inspiratie vindt in elementen van
de detectietheorie. Aan de hand van dit raamwerk kan een meerkanaals sig-
naalverwerkingsstrategie voor EEG worden ontwikkeld die geëvalueerd wordt
in Secties 6.3 en 6.4.

Sectie 6.2.1 introduceert het concept van de voldoende statistiek vanuit de de-
tectietheorie. Door dit domein te combineren met de wereld van de ASSR, leidt
Sectie 6.2.2 een voldoende statistiek af die geschikt is voor ASSR–detectie.
Deze statistiek maakt het mogelijk om voordeel te halen uit de spatiotemporele
karakteristieken van de EEG–ruis (Sectie 6.2.3), waarvan eventueel een betere
schatting kan bekomen worden met een aangepaste stimulus (Sectie 6.2.4). De
hier voorgestelde voldoende statistiek gebaseerde techniek kan gelinkt worden
aan zowel de ICA–gebaseerde afleiding uit Hoofdstuk 4 als de MWF–gebaseerde
techniek van Hoofdstuk 5 (Sectie 6.2.5).

Sectie 6.3 gebruikt simulaties met korte stukken EEG en artificiële ASSR
om de meerkanaals technieken van Hoofdstukken 4 en 5 te vergelijken met de
nieuwe, op het raamwerk gebaseerde, methode. De vergelijking met éénkanaals
methodes wordt beschreven in Sectie 6.4. Voor de artificiële simulaties wordt
zevenkanaals EEG zonder stimuli gebruikt van tien verschillende subjecten
voor een totale duur van ongeveer twee uur. Een ASSR wordt toegevoegd
met variabele amplitude en faze. De in dit hoofdstuk voorgestelde methode
is identiek aan de MWF–gebaseerde techniek van Hoofdstuk 5 en gelijkaardig
aan de ICA–gebaseerde methode van Hoofdstuk 4. Spatiaal gecorreleerde en
spatiaal ongecorreleerde reeksen van ruisstoten worden toegevoegd aan de arti-
ficiële ASSR+EEG combinatie om de robuustheid van de verscheidene metho-
des tegen ruis te beoordelen. Bij spatiaal gecorreleerde ruis presteren alle
meerkanaals technieken gelijkaardig. Bij spatiaal ongecorreleerde ruis daar-
entegen presteert de voorgestelde methode in dit hoofdstuk beter.

De simulaties in Sectie 6.3 geven nog geen correct beeld van de prestaties ten
opzichte van de bestaande éénkanaals technieken. Sectie 6.4 vergelijkt daarom
de meerkanaals technieken met een goed presterende éénkanaals techniek, de
ruisgewogen uitmiddeling van een éénkanaals EEG–signaal. Hiervoor wordt
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achtkanaals EEG gebruikt van tien normaalhorenden, opgenomen op twee ver-
schillende manieren. Eerst werd EEG opgenomen waarbij gevraagd werd om
zo rustig mogelijk te blijven liggen. Dit type EEG bevat weinig storingen
(of artefacten). Nadien werd EEG opgenomen waarbij de proefpersoon een
gecontroleerde reeks hoofdbewegingen moest uitvoeren. Dit geeft aanleiding
tot EEG met een grote hoeveelheid artefacten. Beide types EEG worden ge-
bruikt in de analyses. Meerkanaals en éénkanaals signaalverwerkingstechnieken
zijn gelijkaardig in performantie wanneer toegepast op EEG met weinig arte-
facten. Echter, wanneer de in dit werk voorgestelde meerkanaalstechnieken
worden toegepast op EEG met veel artefacten, stijgt het aantal responsdetec-
ties significant vergeleken met de ruisgewogen éénkanaals referentietechniek van
John et al. (2001a).

Hoofdstuk 7: Optimale elektrodenkeuze voor meer-
kanaals EEG gebaseerde detectie van hersenstam
en auditieve cortex ASSR

Na de validatie van het meerkanaals raamwerk in Hoofdstuk 6, wordt in dit
hoofstuk onderzocht waar de elektroden best geplaatst worden op de schedel.
Deze vraagstelling wordt beantwoord voor ASSR gegenereerd in de hersenstam
(met modulatiefrequenties tussen 80 en 110 Hz) en voor ASSR gegenereerd in
de auditieve cortex (met een modulatiefrequentie van 10 Hz). Hierbij wordt de
beste elektrodenpositie bepaald indien slechts één EEG–kanaal beschikbaar is,
en de beste elektrodenkeuze gezocht wanneer meerdere kanalen worden gecom-
bineerd door middel van meerkanaals signaalverwerking. Bij de uitwerking van
deze vragen wordt rekening gehouden met het voornemen om zo weinig mogelijk
elektroden te moeten gebruiken, en om de gehoordrempelschatting in het geval
van de hersenstam–ASSR zo goed mogelijk te benaderen voor zoveel mogelijk
subjecten. In het geval van auditieve cortex–ASSR wordt naar een zo groot
mogelijke signaal–ruis–verhouding gestreefd voor zoveel mogelijk subjecten.

Voor hersenstam–ASSR wordt aangetoond dat in het geval van een éénkanaals
systeem best geopteerd wordt voor de achterkant van het hoofd om elektro-
den te plaatsen, met voorkeur voor de vertex–occiput positie (Sectie 7.3.1).
Dit geeft aanleiding tot de beste schatting van de gemiddelde gehoordrempels
uitgemiddeld over alle proefpersonen. Wanneer meerdere elektroden kunnen
geplaatst worden, in combinatie met meerkanaals signaalverwerking, worden
deze best geplaatst op de Oz, P3 en de rechter mastöıd (samen met de vertex
als referentie). Deze combinatie garandeert voor alle proefpersonen in deze
studie een bijna–optimale schatting van de gehoordrempels. Deze combinatie
is ook significant robuuster tegen artefacten wanneer vergeleken wordt met een
ruisgewogen éénkanaals vertex–occiput referentie.



xxiv Samenvatting

Sectie 7.3.2 toont dat voor ASSR gegenereerd in de auditieve cortex de vol-
gende combinatie een bijna–optimale signaal–ruis–verhouding garandeert voor
80 % van de proefpersonen: de contralaterale mastoid, F4, F3 en het voorhoofd
(samen met de vertex als referentie). Dit zijn vooral elektroden aan de voor-
zijde van het hoofd. Wanneer slechts één kanaal beschikbaar is, wordt best
geopteerd voor elektroden op de achterkant van het hoofd, met voorkeur voor
de beide mastöıden. Dit lijkt een contradictie die wordt weerlegd in de volgende
paragraaf.

Sectie 7.4 haalt aan dat deze resultaten kunnen verklaard worden door de
achterliggende werking van de gebruikte meerkanaals techniek. Deze tech-
niek maximaliseert de signaal–ruis–verhouding van de ASSR waar naar gezocht
wordt door EEG–kanalen te combineren en gemeenschappelijke ruisinformatie
uit te buiten. Praktisch gezien wordt het EEG–kanaal gekozen met de groot-
ste signaal–ruis–verhouding voor de gezochte ASSR. Door extra kanalen toe
te voegen, wordt getracht de EEG–ruis te verlagen. In het geval van de audi-
tieve cortex–ASSR is dit snel in te zien. Hier wordt het kanaal gekozen met de
grootste signaal–ruis–verhouding (de contralaterale mastöıd). Extra kanalen
worden toegevoegd met weinig respons, maar met een hoge ruiscorrelatie. In
het geval van de metingen met hersenstam–ASSR wordt meestal de vertex–
occiput als eerste kanaal genomen. Deze wordt echter niet gecombineerd met
kanalen vooraan het hoofd, hoewel dit logischer zou geweest zijn. Vooraan het
hoofd zijn de ASSR inderdaad ook klein, maar de ruiscorrelatie tussen elektro-
den vooraan en achteraan het hoofd is echter te laag om van nut te zijn voor
de meerkanaals signaalverwerking.

Hoofdstuk 8: Besluit en suggesties voor verder
onderzoek

Dit werk onderneemt een zoektocht naar technieken die de meettijd van de
ASSR–techniek verkorten en de robuustheid van deze techniek tegen onver-
mijdelijke artefacten vergroten. Dit onderzoeksproject kan gesplitst worden in
drie onderdelen. Eerst wordt een meerkanaals meetplatform beschreven om
de ASSR te registreren, samen met het EEG, voor klinische en onderzoeks-
doeleinden. Aan de hand van dit meetplatform worden studies uitgevoerd die
meerkanaals signaalverwerkingstechnieken evalueren die voorgesteld worden in
het tweede deel van dit manuscript. Dit tweede deel focust vooral op meet-
tijdreductie. De meerkanaals technieken voorgesteld in het tweede deel wor-
den ondergebracht in een vereenvoudigd proceduraal raamwerk van het derde
deel. Dit raamwerk is opgebouwd vertrekkend vanuit de detectietheorie en het
biedt de mogelijkheid om een meerkanaals signaalverwerkingsstrategie te con-
strueren. Dit laatste deel is meer georiënteerd op optimale elektrodenplaatsing,
artefactrobuustheid en een verhoging van het aantal ASSR–detecties. Deze ver-
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beteringen impliceren natuurlijk eveneens een meettijdreductie.

De globale winst die mogelijk is met de bevindingen van dit onderzoekspro-
ject wordt in deze paragraaf samengevat. Deze winst kan volledig worden
toegeschreven aan het gebruik van meerdere EEG–kanalen, in combinatie met
geschikte meerkanaals signaalverwerkingstechnieken. Voor de duidelijkheid
wordt het globale resultaat hier beschreven voor EEG met weinig artefacten (bij
optimale meetcondities), en voor EEG met veel artefacten (te vermijden, maar
meer realistische meetcondities). In de praktijk zal een EEG–meting meestal
een combinatie zijn van deze twee EEG–vormen. Wanneer de meetcondities
optimaal zijn, is er een significante meettijdreductie (tot 60 %) mogelijk bij
intensiteiten boven de gehoordrempel. Wanneer de intensiteiten rond gehoor-
drempelniveau zweven, is er in principe geen gemiddelde meettijdvermindering
meer mogelijk, getuige de niet–significante verschillen tussen de gehoordrem-
pels bepaald met een éénkanaals EEG en met een meerkanaals EEG bij gelij-
ke meetduur. Het gebruik van meerdere EEG–kanalen tegelijk geeft hier wel
het voordeel dat voor elk individueel subject een bijna–optimale registratie
kan gegarandeerd worden van de gezochte respons. Wanneer het EEG gecon-
tamineerd is met artefacten, is de meettijdreductie bij intensiteiten boven de
gehoordrempel waarschijnlijk gelijkaardig of mogelijk nog groter dan bij EEG
met weinig artefacten, gezien de significante vermeerdering van het aantal res-
ponsdetecties door de meerkanaals techniek. Op gehoordrempelniveau zal deze
reductie nog steeds aanwezig zijn, aangezien artefacten er in het éénkanaals
geval voor zorgen dat EEG–data systematisch moet weggegooid worden, wat
onvermijdelijk langere metingen oplevert. In het meerkanaals geval kan de
EEG–data echter gewoon behouden worden.

Sectie 8.2.1 beschrijft een aantal mogelijke verbeteringen en uitbreidingen van
het meerkanaals meetplatform SOMA. De meerkanaals technieken beschreven
in dit werk zouden uiteindelijk in reële tijd kunnen worden berekend tijdens
een ASSR–meting. Op deze manier kan het werkelijke praktische voordeel van
deze technieken worden bepaald.

Momenteel worden de impedanties van de elektroden enkel bij het begin en het
einde van een testsessie gemeten. Deze zouden continu geobserveerd kunnen
worden. Dit is reeds mogelijk in commerciële produkten, en zou de kwaliteit
van de ASSR–metingen aardig kunnen verhogen. Hetzelfde argument kan
aangehaald worden voor het continu waarnemen van de geluidsintensiteit aan
het trommelvlies door middel van een microfoon. Aangezien deze intensiteit
varieert door het volume van het oorkanaal en de positie van de luidspreker, is
het voordelig om te weten wat nu de exacte intensiteit is waarmee de stimuli
worden aangeboden.

Het meetplatform SOMA kan uitgebreid worden voor eABR– en eASSR–me-
tingen. Op deze manier kunnen cochleaire implantaten (CI) eventueel objectief
ingesteld worden. De combinatie van ASSR en CI is wel uitzonderlijk uitdagend



xxvi Samenvatting

te noemen doordat de zwakke ASSR moeten gerecupereerd worden uit door het
CI gegenereerde elektrische artefacten die verscheidene grootteordes groter zijn.

Sectie 8.2.2 geeft aan dat het voorgestelde meerkanaals raamwerk significant
beter presteert met EEG dat veel artefacten bevat, vergeleken met éénkanaals
technieken. Toch zijn er een aantal aspecten voor verbetering vatbaar. Het
model dat het raamwerk gebruikt is een vereenvoudigde versie van de werke-
lijkheid. Er wordt uitgegaan van slechts één ASSR–bron in de hersenen, terwijl
er minstens twee aanwezig zijn bij normale volwassenen (Herdman et al., 2002).
De amplitude van de ASSR varieert onder invloed van de attentie van het sub-
ject, terwijl het model in dit werk uitgaat van een constante ASSR–amplitude.
Daarnaast kan de temporele ruiscovariantiematrix misschien nog preciezer wor-
den geschat, terwijl deze nu enkel een gescaleerde diagonaalmatrix is.

Dit werk bespreekt de optimale elektrodenkeuze voor ASSR met modulatiefre-
quenties tussen 80 en 110 Hz, en met een modulatiefrequentie van 10 Hz. Het
zou interessant zijn om ook andere modulatiefrequenties te exploreren, gaande
van een paar Hertz tot frequenties boven 110 Hz. De resultaten kunnen meer
inzicht verschaffen in de positie en grootte van de ASSR–bronnen. Nieuwe
signaalverwerkingstechnieken zouden kunnen ontwikkeld worden die niet het
verschil tussen ASSR– en gedragsdrempels minimaliseren, maar de variantie
op deze verschillen. Dit is gebaseerd op een andere interpretatie van het begrip
‘gehoordrempelschatting’, waarbij gekeken wordt naar de toegelaten afwijking.

Drie toepassingen in het bijzonder zouden aardig wat voordeel kunnen halen uit
een doordachte elektrodenplaatsing in combinatie met meerkanaals signaalver-
werking. In navolging van van der Reijden et al. (2005) zouden interessante
meerkanaals studies kunnen uitgevoerd worden op jonge kinderen. Door elek-
troden intelligent te plaatsen zouden storingen die vaak optreden bij metingen
bij jonge kinderen grotendeels verwijderd kunnen worden. Hetzelfde voordeel
kan behaald worden bij metingen met beengeleiders. Deze apparaten zorgen
voor veel stimulusartefacten. Optimale plaatsing van de elektroden zouden
deze artefacten kunnen reduceren. Zoals reeds aangehaald is de combinatie
van ASSR en cochleaire implantaten een bijzondere uitdaging door de sterke
aanwezigheid van elektrische CI–artefacten. Een geslaagde toepassing van de
meerkanaals technieken van dit werk zou een grote stap kunnen betekenen op
de weg naar CI–implantatie op (zeer) jonge leeftijd. Momenteel kunnen CI nog
bijna niet gefit worden op jonge leeftijd door de hoge moeilijkheidsgraad van
dit proces. Om deze reden wordt nu nog geopteerd voor een hoorapparaat.
Daarenboven is het uiterst belangrijk om een betrouwbare schatting te verkrij-
gen van de gehoordrempels van de jonge patiënt. Deze schatting stuurt de
beslissing om tot cochleaire implantatie over te gaan. Eénmaal gëımplanteerd
kan namelijk niet meer op deze beslissing worden teruggekomen.



Chapter 1

Introduction

In the first section of this introductory chapter a motivation is given for the
techniques that will be developed in the forthcoming chapters of the thesis.

In Section 1.2 a short overview of the auditory system is presented. If this
system does not function optimally, one refers to hearing impairment.

Hearing impairment needs to be detected as soon as possible. This is the case
for adults but especially for infants. Section 1.3 describes the need for early
detection and introduces some devices, hearing aids and cochlear implants, to
alleviate the permanent hearing problem when other approaches fail.

These devices need to be set up (‘fitted’) in a way that they compensate op-
timally for the hearing problem of the hearing impaired. This can be accom-
plished based on a reliable estimation of the hearing thresholds. Section 1.4
describes several subjective and objective techniques to obtain such a hearing
threshold estimation.

An important class of objective hearing threshold estimation techniques for
the topic of this thesis are auditory evoked potentials. Section 1.5 presents
a detailed overview of a response evoked in the auditory system by a click, a
short–duration stimulus or a stimulus with a periodic nature.

Section 1.6 will cover the research objectives of this thesis.

An outline and an overview of the different chapters of the thesis will be pre-
sented in Section 1.7.

1



2 Introduction

1.1 Motivation

The ability to hear and process sounds is crucial. For adults, the inevitable
ongoing aging process reduces the quality of the speech and sounds one per-
ceives. If this effect is allowed to evolve too far, social isolation may occur. For
infants, a disability in processing sounds results in an inappropriate develop-
ment of speech, language, and cognitive abilities. To reduce the handicap of
hearing loss in children, it is important to detect the hearing loss early and to
provide effective rehabilitation.

In the case of infants, the process of hearing problem detection (‘screening’)
has taken systematic forms in several parts of the world. In Flanders (Belgium)
for example, hearing of about 97 % of all newborns is screened by the Flemish
public agency Kind & Gezin, which accounts for about 60,000 infants a year.
If the outcome of the screening does not indicate normal hearing, the infant
is referred for further diagnosis. The hearing status of the referred infant has
to be determined more quantitatively, but standard behavioral techniques are
not yet sufficiently applicable at young age. Hearing assessment has to rely on
objective physiologic techniques that are not influenced by sleep or sedation.

In Belgium, the most commonly used technique for hearing threshold estima-
tion is the click–evoked auditory brainstem response (ABR). This technique is
limited however by the fact it only gives an indication of the degree of the hear-
ing loss. If frequency specific information is required, e.g. for the fitting of an
hearing aid or for the decision whether a cochlear implant is appropriate, the
standard ABR technique does not suffice. There are some variants of the ABR
that return more frequency specific information, but these are time consuming
and technically demanding.

In response to the shortcomings of the ABR technique, the auditory steady–
state response (ASSR) technique was developed. This technique uses con-
tinuous rather than transient stimuli and enables the recording of frequency
dependent responses to several carrier frequencies simultaneously. As a result,
it is possible to get a frequency specific hearing threshold estimation in less
than an hour. This is much faster than what is obtainable with a frequency
specific ABR. Moreover, an additional benefit is the objective detection that
facilitates interpretation.

Unfortunately, the ASSR technique also has its shortcomings. The electro-
physiological responses one likes to record are much smaller than those of the
ABR technique. The technique is very susceptible to noise and artifacts that
could disrupt the measurement. Therefore it still could take a very long time
to record responses and to give a reliable estimation of the patient’s hearing
thresholds. Time that generally is not available in standard clinical settings.
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This thesis will present several techniques that shorten the duration of auditory
steady–state response measurements. It addresses the problem of noise and
artifacts appearing in the measurements and shows how to discard these.

1.2 Hearing and hearing impairment

Hearing is one of the traditional five senses, and refers to the ability to detect
sound. In humans and other vertebrates, hearing is performed primarily by
the auditory system: sound is detected by the ear and transduced into nerve
impulses that are perceived by the brain. This section describes the most
important aspects of the auditory system and its possibility of malfunctioning,
also known as hearing impairment.

1.2.1 The auditory system

The auditory system can be divided into four parts: the outer ear, the middle
ear, the inner ear and the central auditory nervous system. The outer ear
consists of the pinna and the ear canal. Sound waves arrive at the pinna
and travel to the tympanic membrane through the ear canal. The middle ear
functions as a converter of sound waves into mechanical vibrations, using the
tympanic membrane, the malleus, the incus and the stapes. These mechanical
vibrations are transmitted to the fluid in the inner ear, by ways of the oval
window. The inner ear contains the vestibular system (the sensors for balance)
and the cochlea (the sensors for hearing). The central auditory system includes
all of the complex interconnections in the auditory system beyond the cochlea,
including the auditory cortex (Yost, 2000).

Figure 1.1 shows the cochlea, which roughly can be considered as an auditory
filter bank (Moore, 2003). The frequency specificity, or tonotopy, of this filter
bank is a result of the design of the basilar membrane, which divides the cochlea
along its length. The basilar membrane is narrower and stiffer near the base,
which makes it more susceptible to high frequencies. Lower frequencies tend
to excite the basilar membrane more at the apex side. Hair cells are aligned
over this membrane and the outer hair cells are in contact with the tectorial
membrane (Figure 1.2). When the basilar membrane moves up and down, the
hair cells are bent, which leads to the generation of action potentials in the
neurons of the auditory nerve.

The auditory nerve fibers form a highly organized system of connections which
connects the haircells in the inner ear with the brainstem and the auditory
cortex higher on. These fibers respond better to specific frequencies than to
others, which induces an extra aspect of frequency specificity. The nerve fibers
also show phase–locking (Rose et al., 1967). Neural firings tend to occur at a
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Figure 1.1: Diagrammatic longitudinal section of the cochlea. From Gray
(1918).

Figure 1.2: Haircells, the tectorial and the basilar membrane. From Gray
(1918).
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Figure 1.3: Highly schematic diagram of the ascending (afferent) pathways of
the central auditory system from both cochleas to the auditory cortex. From
Yost (2000).

particular phase of the stimulating waveform, so that there is temporal regu-
larity in the firing pattern of a neuron in response to a periodic stimulus.

Figure 1.3 illustrates in schematic form the principal connections of the as-
cending or afferent auditory system. These are auditory paths going from the
cochlea toward the cortex. The term ‘ascending’ implies that also descending
pathways from the auditory cortex to the cochlea exist. These pathways are
not discussed here, but descending fibers appear to have an inhibitory action
on electrophysiological responses of the cochlea. After the neural pulses leave
the cochlea, they travel to the cochlear nucleus. In the cochlear nucleus, the
cochlear partition is completely tonotopically duplicated from the base to the
apex. Its function is not clear yet, but it is assumed that the cochlear nucleus
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refines the code for sound provided by the auditory periphery, like e.g. pro-
cessing complex spectral information or echo suppression. From the cochlear
nucleus, pathways lead to the olivary complexes, both contralaterally (on the
opposite side of the brain compared to the side of stimulus application) as
ipsilaterally (on the same side). This implies most bilateral representation (in-
formation from both ears) occurs at this point and above, a feature needed for
e.g. localization of acoustic events in space. From the superior olive, neural
impulses are transmitted to the inferior colliculus, the medial geniculate body
and the auditory cortex. These regions are assumed to combine information
from different processes that occur lower at the brainstem, allowing to arrange
information for complex auditory pattern recognition (Yost, 2000).

1.2.2 Hearing impairment

Hearing impairment is generally described using three parameters, namely the
type, the degree and the configuration of the hearing loss.

Three types of hearing loss can be identified: conductive, sensorineural and
mixed. It refers to which part of the hearing system is damaged. With conduc-
tive hearing loss the outer or middle ear are obstructed. This causes a reduced
sound level reaching the inner ear. One speaks of sensorineural hearing loss
when the inner ear (i.e., cochlear hearing loss) or the auditory nerve pathway
(i.e., retrocochlear hearing loss) is damaged. Sounds are not only attenuated,
but also distorted. As broken hair cells or neural damage cannot be repaired,
surgery or medication will not remedy this type of hearing impairment. The
combination of conductive and sensorineural hearing loss is referred to as mixed
hearing loss.

Depending on the amount of outer/middle ear obstruction and/or hair cell
damage, the hearing loss varies from mild (26–45 dBHL), moderate (46–55
dBHL), moderately severe (56–70 dBHL), severe (71–90 dBHL), and profound
hearing loss or deafness (more than 90 dBHL). The hearing level (HL) suffix
is a relative scale with its zero defined by the standard audiograms of a group
of normal–hearing young adults (ISO 389, 1998).

The configuration of the hearing loss defines the degree of hearing loss at each
frequency. Possible configurations are high–frequency, low–frequency, flat or
cookie–bite hearing loss. This last configuration represents a loss at middle
frequencies. An extreme case is the notch hearing loss, caused by extreme
stimuli at a small frequency band (e.g. industrial noise). This research project
focuses on optimizing a method that determines the configuration of the hearing
loss objectively.
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1.3 Detection and intervention

In the unfortunate case of hearing impairment, the degree and the configu-
ration of the hearing loss needs to be determined to allow intervention in an
appropriate way. For children, an early detection is necessary. The longer a
hearing problem is not remedied, the larger the delay will become in language
development, together with other undesired developmental consequences. For
adults, hearing loss can result in social isolation and should also be detected as
soon as possible. This section treats the need for detection of hearing problems
and two possible ways of compensation, i.e. hearing aids and cochlear implants.

1.3.1 The need for early detection

The impact of hearing impairment is immense, both for (aging) adults as for
children (Morgan-Jones, 2001). For children however, hearing loss is a silent,
hidden handicap. If undetected and untreated, it can lead to delayed speech
and language development, learning problems, social and emotional problems
(Northern and Downs, 2001). Yoshinaga-Itano et al. (1998) show that chil-
dren whose hearing losses were identified by six months of age demonstrated
significantly better receptive and expressive language skills than did children
whose hearing losses were identified after the age of six months. As one in a
thousand newborns are affected by permanent bilateral hearing loss (Mason
and Herrmann, 1998; Mehl and Thomson, 2002), an adequate screening and
reaction are definitely necessary to avoid problems in later life.

In a response to the demand for a global standard recommendation concerning
early hearing problem detection with infants, the American Joint Committee
on Infant Hearing (2000) states that all neonates should be screened with ob-
jective physiologic measures before the age of one month. Moreover, in case
of failed hearing screening, an appropriate audiological and medical diagnosis
should be made before the age of three months. All infants with confirmed per-
manent hearing loss should receive multidisciplinary intervention by the age of
six months. Currently many regions in the world have implemented a highly
covering screening program. Since 1998, the Dutch speaking part of Belgium
(Flanders) is internationally leading in systematically screening, diagnosing and
intervening hearing problems with neonates (Van Kerschaver and Stappaerts,
2004).

1.3.2 Hearing aids and cochlear implants

Permanent hearing impairment can be repaired through surgery or medication
in some cases. If this approach fails, alternative solutions only can alleviate
the hearing problem, not solve it. Currently these alternatives are the use of a
hearing aid or a cochlear implant. A hearing aid is used in cases of mild to severe
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hearing loss by compensation through sound amplification and compression. A
cochlear implant actually bypasses the hair cells by stimulating the auditory
nerve directly in case of profound hearing loss or deafness.

The hearing aid records the sound signals in the acoustic environment through
one or more microphones (Dillon, 2001). These sound signals generally are
a mixture of a speech source, generated by the speaker the hearing aid user
is listening to, and one or more interfering sources (e.g., traffic noise, other
speakers, . . . ). The recorded signals are (digitally) processed e.g. by amplify-
ing the input signal’s frequency bands at which the user has elevated hearing
thresholds, or by noise reduction or compression. The resulting output signal
is applied to the ear canal using a loudspeaker.

The cochlear implant may restore the perception of sound for patients who
(almost) have no hearing left, in case the auditory nerve is still intact (Clark,
2003). The auditory nerve is stimulated directly by means of an intra–cochlear
electrode array, which is implanted by a surgeon. The acoustic sound signals
are recorded through one or more microphones, present in a behind–the–ear
hearing aid. The sound signals are digitized, processed in a digital sound
processor and decomposed in frequency bands. The filtered signal components
are transformed into electric current pulses, that are transmitted wirelessly to
the electrodes in the cochlea via a coil implanted under the mastoid of the
patient. These electrodes stimulate the auditory nerve electrically at different
places in the cochlea.

The decision whether a hearing aid or a cochlear implant should be applied
can only be made based on an estimation of the degree of the hearing loss. A
hearing aid can be fitted correctly only when sufficiently accurate information
is available about both the hearing loss degree and configuration. The next
section describes several ways to obtain a subjective or objective assessment of
these parameters that can be graphically represented by an audiogram.

1.4 Hearing threshold estimation

An audiogram is a graphical representation of how well a certain person can
perceive different sound frequencies. In an audiogram, a hearing threshold level
is defined for each audiometric frequency. A hearing threshold is theoretically
the level at which a (pure tone) stimulus is just sufficient to produce a sensa-
tion or an effect, in a noiseless environment. In practice however, determined
hearing thresholds can differ greatly from the actual thresholds, due to age of
the subject, the used method and the acoustic environment where the test is
conducted. In this section different methods of hearing threshold estimation
are described. These methods can be divided into two main classes: subjective
and objective methods.
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1.4.1 Subjective methods

Modern technology has greatly increased the number of options available to
test the hearing, as shown later on in Section 1.4.2. However, regardless of
how sophisticated testing techniques become, there will always be need for
the behavioral hearing evaluation, since many of the newer procedures require
expensive equipment or lengthy time commitment. For children two types of
subjective methods can be defined: techniques without reinforcement (behav-
ioral observation audiometry – BOA) and procedures based on reinforcement
of the subject’s responses (visual reinforcement audiometry – VRA) (Northern
and Downs, 2001). The behavioral thresholds of older children and adults are
determined using the modified Hughson–Westlake pure tone audiometry.

Behavioral observation audiometry

Behaviorial observation audiometry (BOA) is typically limited to infants be-
tween six and twelve months of age. Noisemakers and sound field signals as
acoustic stimuli are used to evoke an active response from an infant passively
involved in the task at hand. Benefits of this method exist in the efficiency
in time required and the lack of need for specialized equipment. Critics argue
that the technique is useful for initial hearing screening, but not for the estab-
lishment of specific hearing threshold data, as interest in the stimuli fades away
rapidly. A common type of BOA is the Ewing–test, generally administered to
infants with the age of eight months.

Visual reinforcement audiometry

To avoid the rapid loss of interest in the applied stimuli, visual reinforcement
audiometry (VRA) introduces a form of reward by flashing lights immediately
following the response of the child looking forward the light. As the test be-
comes more interesting, toddlers up to two years old can be tested this way.
For older children (up to the age of four), the instrumental conditioned reflex
(ICR) integrates audiometry with game situations.

Pure tone audiometry

When the observed subject is able to respond unambiguously to the question
whether a certain stimulus has been heard, one can use the modified Hughson–
Westlake pure tone technique as a means to determine the subject’s audiogram.
The method is applied for each separate audiometric frequency.
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1.4.2 Objective methods

Subjective methods have one big drawback. When a subject is not able or
does not want to cooperate actively, the possibility to get a reliable response
subjectively is marginal. In the former case a subject is not physically or men-
tally capable to respond, e.g. children younger than six months or the mentally
disabled. In the latter case, subjects who simulate or aggravate hearing loss
can modify their responses. To counteract this drawback, objective methods
can be used. These methods do not expect active cooperation of the tested
subject. In this section three objective ways to estimate hearing thresholds are
described. Tympanometry and oto–acoustic emissions (OAEs) measure objec-
tive parameters of the middle and inner ear. Auditory evoked potentials (AEPs)
are responses on the auditory path evoked by an acoustic stimulus. AEPs are
discussed in detail in Section 1.5.

Tympanometry

Tympanometry is an objective technique for measuring the compliance or mo-
bility of the tympanic membrane and middle ear as a function of mechanically
varied air pressures in the external auditory canal. The compliance of the tym-
panic membrane at specific air pressures is plotted on a graph known as a tym-
panogram. Tympanic membrane mobility is of particular interest, since almost
any pathology located on or medial to the eardrum will influence its movement.
The compliance of the tympanic membrane is at its maximum when air pres-
sures on both sides of the eardrum are equal. If these air pressures are unequal,
the eardrum’s mobility is lower and causes heightened hearing thresholds. Un-
equal pressures are explained by fluid in the middle ear or problems with the
eustachian tube (Northern and Downs, 2001). The 1000 Hz tympanogram is
especially relevant for the neonatal population (Alaerts et al., 2007b).

Otoacoustic emissions

Otoacoustic emissions (OAEs) are low–level, mostly inaudible sounds produced
by the inner ear and arise by a number of different cellular mechanisms. Kemp
(1978) shows that OAEs could be detected in the human external ear canal fol-
lowing stimulation with clicks. OAEs provide evidence of a normal functioning
cochlea and are reduced by or non–detectable with a hearing loss of more than
30 dBHL (Kemp et al., 1986). Nowadays, OAEs are widely used as a screening
test, as an alternative for the auditory brainstem response (ABR), which is
described in Section 1.5.2 (Berg et al., 2005; Capua et al., 2007; Norton et al.,
2000).
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Auditory evoked potentials

An auditory evoked potential (AEP) is “activity (a response) within the au-
ditory system (the ear, the auditory nerve, or auditory regions of the brain)
that is produced or stimulated (evoked) by sounds (auditory or acoustic stim-
uli)”(Hall, 2007). Basically an auditory stimulus is applied at the ear and the
(faint) response, together with other brain processes, is recorded through an
electroencephalogram (EEG) using electrodes on the scalp. By repeating this
procedure and using signal averaging, combined with the use of appropriate
filtering, activity different from the response can be reduced and the response
can be made visible.

A more extensive review of this type of objective audiometry is important for
the general structure of this manuscript and the comprehension of its motiva-
tion. Therefore the following section will focus on auditory evoked potentials
in detail.

1.5 Auditory evoked potentials

Five types of AEPs can be distinguished based on their latency, the delay be-
tween stimulus onset and response. The whole path of the auditory nerve can
be covered this way, ranging from responses in the cochlea itself to loci in the
auditory cortex far beyond the brainstem. An overview is given in Figure 1.4.
The electrocochleogram (eCochG) is the first AEP ever recorded (1930). The
response arises from the cochlea and the eighth (auditory) cranial nerve, close
to the cochlea. This results in a small latency, approximately two to three mil-
liseconds after stimulation. The auditory brainstem response (ABR), currently
mainly used for hearing screening and hearing threshold estimation, originates
from the eighth nerve and the brainstem and has a latency between 1.5 and 5.5
milliseconds. Age, gender and stimulus intensity affect these figures consider-
ably. The auditory middle–latency response (AMLR), 12 to about 60 millisec-
onds, the auditory late response (ALR), about 60 to 250 milliseconds and the
auditory P300 response (P300), around 300 milliseconds, are all electrophysio-
logical processes that give insight into higher–level auditory functioning. These
responses originate from the thalamus (early AMLR), auditory cortex (AMLR
and ALR) and beyond (P300), according to Hall (2007).

A special class of auditory evoked responses are auditory steady–state responses
(ASSRs). An auditory steady–state response is an envelope following response
(EFR), a physical response that falls into step with the periodic envelope of a
stimulus. The AEPs described in the previous paragraph are generally evoked
by a stimulus click or a short duration stimulus. By applying this stimulus at a
repetitive rate, responses overlap and a periodic response to the repetition fre-
quency is established. To make a distinction between responses evoked directly
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ECochG

EARLY MIDDLE LATE P300

Figure 1.4: Early, middle and late latency components of the auditory evoked
potential, together with the electrocochleogram and P300 component. Adapted
from McCormick (1993).

by a stimulus with a specific carrier frequency, or by the envelope (modula-
tor) of a certain carrier, we use the following nomenclature in this manuscript.
Responses evoked directly by a stimulus with a specific carrier frequency are
called frequency following responses (FFRs). If the response is evoked by the
modulator of a certain stimulus, we refer to envelope following responses, and
more specifically to auditory steady–state responses in the case the modulator
is constant in frequency.

Auditory steady–state responses have been discovered in the early eighties of
the previous century (Galambos et al., 1981). Since then, extensive research
has been conducted which resulted in a clinical applicable technique that can
test more than one frequency at both ears simultaneously (Lins and Picton,
1995). Nowadays, the ASSR technique is used as a diagnostic technique in
highly specialized clinical environments. The technique is not replacing, but
contributing to the standard audiological test bench including tympanometry,
OAE and ABR. A detailed overview of the ASSR is given in Chapter 2. The
following sections describe the five different AEP types. Where applicable,
the auditory steady–state response evoked by a repetitive application of the
stimulus evoking these AEPs is also presented.
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1.5.1 Electrocochleogram responses

The electrocochleogram (ECochG) response occurs within two to three millisec-
onds after an abrupt stimulus. It arises from the cochlea and the eighth (au-
ditory) cranial nerve. The ECochG response consists of three components, the
cochlear microphonic (CM), the summating potential (SP), and the most im-
portant component, the action potential (AP, the negative peak in Figure 1.4).
This potential is a combined action potential of many nerve fibers and equiv-
alent with wave I of the auditory brainstem response. A major difference be-
tween the ECochG response and all subsequent responses is that the site of the
recording electrode(s) is not on the scalp, but as close to the cochlea as possible.
Reason for this is that the ECochG is a near–field AEP. Medical applications
of the ECochG are the contribution to the diagnosis of Meniere’s disease and
intraoperative monitoring of cochlear and eighth nerve activity during surgery
that puts the auditory system at risk. It is not a test of hearing (Hall, 2007).

1.5.2 Auditory brainstem responses

Since the classic paper of Jewett and Williston (1971) published in Brain, re-
search focusing on the auditory brainstem response (ABR) has boomed. Nowa-
days the main application of the ABR are hearing threshold estimation, new-
born hearing screening and neurodiagnosis for problems with the auditory nerve
up to the brainstem.

When a sufficient number (1000 or more) of acoustic click stimuli is applied
to the ear, an ABR trace can be recorded with electrodes at the scalp by
averaging the responses to these clicks. Figure 1.5 shows several of these ABR
traces after stimulation by a number of clicks at different intensities. As soon a
click is presented to the ear, responses to this click are evoked in several nuclei
along the auditory nerve. Based on their latencies up to ten milliseconds,
the positive peaks have been chosen to be denoted with Roman numbers (I,
II, III, IV and V). Each peak is generated in a different part of the auditory
nerve or brainstem. Their latencies increase with decreasing intensities. For
audiological purposes, peak/wave V is the most prominent. It is the biggest
response present and its latency gives one information about the auditory nerve
up to the inferior colliculus (Moller, 1994).

The stimulus is applied to the ear using headphones, insert phones or bone
vibrators. The click stimulus, generally in the order of 100 microseconds long,
is applied several tens of times a second. As the physical response location is
dependent on the stimulated ear, the electrode placement varies accordingly.
The active electrode is placed on the forehead, the reference electrode on the ip-
silateral mastoid and the ground electrode on the contralateral mastoid. If one
tests the other ear, only the electrode leads of the reference and ground elec-
trodes need to be changed. This way, no extra electrodes have to be positioned
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Figure 1.5: Auditory brainstem response (ABR) traces as a reaction to a click
stimulus, here depicted at different intensities. The click stimulus intensities
are measured in decibel peak–equivalent Sound Pressure Level (dBpeSPL),
which lies roughly 35–40 dB above the decibel normal–Hearing Level (dBnHL)
unit. dBnHL is a biological calibration, taking the thresholds of normal–hearing
young adults obtained with the ABR–stimuli as a zero–reference (Stapells et al.,
1982).

on the skull. The recorded EEG is amplified by a factor of 100,000, bandpass
filtered between 30 and 3000 Hz and the first 15 milliseconds of the response
are withheld. By repeating the stimulus up to 4000 times, a noise–reduced
average of the response can be acquired (Hall, 2007).

By modifying the intensity of the click stimulus, hearing thresholds can be
determined (Figure 1.5). As long as the starting intensity is high enough,
wave V is clearly visible. By lowering the stimulus intensity until wave V is
not distinguishable anymore, the hearing threshold is determined by the last
intensity a wave V was still present. This method offers a relatively fast way to
determine hearing thresholds. Both ears can be reliably tested in 45 minutes or
less (Gorga et al., 2006; Picton et al., 1994; Stapells and Oates, 1997). On the
other hand, the ABR technique suffers from three serious drawbacks. A first
drawback is the lack of frequency specificity of the technique, which is necessary
for an accurate fitting of hearing aids and for general diagnostic purposes.
The click stimulus covers the whole frequency spectrum with the frequencies
containing the highest energy lying around 2000 to 4000 Hz (Gorga et al., 2006).
This fact avoids an accurate guess of the threshold at a specific frequency and,
worse, can underestimate hearing thresholds at lower frequencies around 500
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Hz (Gorga et al., 2006; Picton et al., 1994; Stapells and Oates, 1997). Secondly,
the maximum presentation level of a click stimulus is limited, which makes it
difficult to differentiate between severe and profound hearing losses. Thirdly,
the response detection is based on visual inspection of the waveforms. For
adequate response detection, decision–making of an experienced clinician is
required.

Over the years different modifications of the standard ABR method have evolved
to cope with the lack of frequency specificity. The use of tone bursts instead of
clicks concentrates the energy more in the frequency region of interest (Beattie
and Torre, 1997; Gorga et al., 2006; Johnson and Brown, 2005; Rance et al.,
2006). These methods give a better estimation of the hearing thresholds at
specific frequencies. However, measurement time increases as a hearing thres-
hold estimation procedure has to be conducted for each separate frequency.
Moreover, the spread of energy around each of these transient, sudden on-
set signals may become problematic. The spread of excitation to lower– and
higher–frequency regions will be greater when stimulus intensity is increased.
Secondly, the use of a chirp that evokes higher responses, is described in Dau
et al. (2000); Elberling et al. (2007); Fobel and Dau (2004); Junius and Dau
(2005); Wegner and Dau (2002). This modified stimulus compensates for the
travelling time of lower frequencies exciting the apex of the cochlea. All points
on the basilar membrane reach maximum excitation simultaneously for this
stimulus. A disadvantage of chirps is the fact that the stimulus is designed
based on theoretical models and therefore not necessarily optimal for any given
individual subject. The method is promising but needs further research, espe-
cially with extra studies on children.

A third alternative could be the use of noise masking. The noise, which is pre-
sented simultaneously with the click or tone burst, restricts the regions of the
basilar membrane that are capable of contributing to the ABR, by selectively
masking certain regions that are outside the region to be stimulated (Beattie
and Kennedy, 1992; Oates and Purdy, 2001). This procedure is subject to a lot
of discussion however. Three variants exist. First, clicks can be masked using
highpass noise. This way, all auditory fibers with a characteristic frequency
above the cutoff frequency do not contribute to the response. It works well
for a hearing sensitivity assessment around 500 Hz (Purdy et al., 1989), but at
higher frequencies estimates are not reliable as responses at lower frequencies
also contribute. This drawback can be avoided by the use of notched–noise
masking (Beattie and Kennedy, 1992; Stapells and Oates, 1997). The stimuli
are presented simultaneously with notch–filtered broadband noise. As a result,
the basilar membrane is only stimulated at the frequencies without noise. Un-
fortunately, by limiting the amount of stimulus effectively exciting the basilar
membrane, responses are small and a long measurement time is required. A
final technique makes use of derived responses (Oates and Stapells, 1997). The
response in highpass noise at one cutoff frequency is subtracted from the re-
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sponse obtained in the presence of highpass noise with a higher cutoff frequency.
The result is a derived response, representing the narrowband contributions to
the response from portions of the basilar membrane located between the two
cutoff frequencies. In general, noise masking results in several unknown techni-
cal and physiologic variables (Hall, 2007). Masking parts of the cochlea using
noise does not guarantee the stimulus not evoking a response at these masked
regions. The effect of masking noise in the region of stimulation is unknown,
together with the interactions between masking noise and stimulus. As a re-
sult, large scale application is prohibited by the long measurement times, the
procedure complexity and a required interpretation by trained clinicians.

By repeatedly applying the stimulus above, or by modulating noise or a pure
frequency tone, an auditory steady–state response pulsating at the modulation
frequency is generated. Depending on the modulation frequency, this response
is generated in the auditory cortex and/or the brainstem. For modulation
frequencies above about 75 Hz, most of the ASSR is generated in the brainstem.
Above 95 Hz, the source lies entirely in the brainstem. This is depicted in
Figure 1.6 of Purcell et al. (2004).

It is thus assumed that ASSRs generated at 75 Hz or above are mainly orig-
inating from the brainstem. As the brainstem generator’s true delay between
stimulus and response is estimated to be 7.3 ms (Figure 1.6), an ASSR at 75
Hz or above may mainly be considered as a (continuous) form of the ABR. The
physically measured delay of the response between 75 and 90 Hz lies between
11 and 19 milliseconds however (Picton et al., 2001; Purcell et al., 2004). This
can be explained by the fact that the true delay of part of the generators lying
in the auditory cortex is 29 milliseconds (Figure 1.6). As a result, the com-
bined ASSR (with frequencies of 75 Hz and higher) originating from generators
in the auditory cortex and/or brainstem has a delay somewhere in between 7.3
and 29 ms. The higher the modulation frequency, the smaller the physically
measured delay. These values are confirmed by Alaerts et al. (2008) with mean
latencies in adults between 24.3 ms (82 to 86 Hz) and 18.0 ms (106 to 110 Hz).
They also indicate that latencies in infants are on average 9.5 ms longer than in
adults, and that they decrease with age (on average 2.0 ms for infants between
3–8 weeks of age compared with infants ≤ 0 weeks of age).

1.5.3 Auditory middle–latency responses

The auditory middle–latency response (AMLR) is a response observed between
about 12 and 60 milliseconds, following the auditory brainstem response. The
major sequential peaks in Figure 1.4 are labelled N (negative voltage waves)
and P (positive voltage waves), and alphabetically in lowercase (Na, Pa and
Nb). P0 is not a true component of the AMLR. Generators are suggested to be
in the auditory thalamus and primary auditory cortex. Clinical applications are
based on detection possibilities of central nervous system dysfunctions above
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Figure 1.6: Model of ASSR amplitude and phase w.r.t. modulation frequency
resulting from the sum of two sources. Hypothetical cortical and brainstem
sources are shown with long dashed and short dashed lines, respectively. Am-
plitude is shown in panel A, and phase in panel B. The cortical source has a
true delay of 29 ms, and constant amplitude from 20 to 50 Hz. The amplitude
decreases linearly to zero from 50 to 95 Hz. The brainstem source has a true
delay of 7.3 ms and a constant amplitude. The continuous thick line indicates
the sum of the two sources as might be recorded at scalp electrodes. From
Purcell et al. (2004).

level of the brainstem (Hall, 2007).

Auditory steady–state responses generated around 40 Hz are mainly originating
in the auditory cortex. Delays are similar to those of the AMLR as the true de-
lay lies between 24.3 and 29.3 ms (Purcell et al., 2004). Findings of Bohórquez
and Ozdamar (2008) indicate that the generation of the 40 Hz ASSRs can be
explained successfully by the superposition of the ABR and MLR waves gener-
ated at that stimulation rate. Na – Pa and Nb – Pb components of the MLR
contribute about equally (45% each), while the wave V of the ABR contributes
a lesser amount (10%).
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1.5.4 Auditory late latency responses

Auditory late latency responses (ALRs) are recorded in a time period from
about 60 to 250 milliseconds after acoustic stimulation. In comparison to earlier
responses, the amplitude of the ALR is large. The response is composed of
waves P1, N1, P2 and N2. Exact generators are not known, but presumably
arise from the auditory cortex. A maximum response is typically obtained
for moderate versus high–intensity stimuli. It is susceptible to the state of
arousal of the subject, which means that sleep affects the response amplitude
significantly. ALRs are mainly used as an electrophysiological assessment of
higher–level auditory central nervous system functioning (Hall, 2007).

Assuming the presence of a pattern that the true delay in milliseconds of an
ASSR is the reciprocal of its frequency in Hertz, auditory steady–state re-
sponses evoked by a stimulus with a modulation of 10 Hz should have a true
delay of around 100 milliseconds. This delay value places 10 Hz ASSRs in the
region of the ALR. This value is confirmed by Stapells et al. (1987) with re-
ported latencies between 75 and 153 ms. A more recent study of Herdman et al.
(2002) shows that the 12 Hz response is a combination of brainstem responses
(with a latency varying between 21 and 58 ms depending on the direction of
projection) and the auditory cortex (delays ranging between 154 and 168 ms).
Here the cortical components of the response should be related to the P1, N1
and P2 components of the ALR. Whatever being the real delay value, the main
conclusion is that the 10 Hz response originates mainly somewhere from the
auditory cortex, but sources in the brainstem may still be present. The 10 Hz
response is a research topic in Chapter 7.

1.5.5 Auditory P300 responses

The auditory P300 response is the largest and latest AEP resulting from a click
stimulus. Its major peak is labelled P3 (as the third positive wave) or P300 (as
it appears about 300 milliseconds after stimulus). Its generator appears to be
in the medial temporal lobe, beyond the auditory cortex. The P300 response is
optimally evoked by unpredictable, infrequent acoustic stimuli presented ran-
domly with a probability of 15 to 20 %, in an ‘oddball’ test paradigm. This
type of test paradigm offers acoustic stimuli in a frequent condition, but occa-
sionally a different, oddball, stimulus is presented instead. The amplitude of
the P300 is subject to the oddball probability and the amount of attention the
subject is directing to the task. This way, electrophysiological assessment of
higher–level auditory processing can be achieved (Hall, 2007).
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1.6 Research objectives

It is possible to determine a frequency specific hearing threshold estimation
much faster using the auditory steady–state response technique than with the
(frequency specific) ABR technique. The possibility of objective detection fa-
cilitates the interpretation by using a detection algorithm instead of an ex-
perienced clinician. Unfortunately, the technique is very susceptible to noise
and artifacts that could disrupt the measurement. Therefore it still could take
a very long time to record responses and to give a reliable estimation of the
patient’s hearing thresholds. For these reasons, our interest shifted to the re-
search of auditory steady–state responses to exploit all the benefits the ASSR
technique offers and to reduce the impact of its flaws.

The intensity of use of the auditory steady–state response technique has in-
creased significantly over the last decade. More and more clinical environments
add ASSR–based hearing threshold assessment to their objective test batteries,
next to e.g. tympanometry, oto–acoustic emissions and the auditory brainstem
response. The technique still has its skeptics however. This skepticism is not
without any basis. Measuring auditory steady–state responses reliably requires
specialized equipment, trained personnel and lots of patience. Especially for the
target population of the ASSR technique, which are newborns and infants, mea-
surement conditions need to be optimal. This optimality mainly encompasses
a subject that is relaxed or sleeping. Awake subjects generate more muscle
artifacts, eye blinks, electrode cable movement. Unfortunately, this condition
is not fulfilled most of the time, and it gets more difficult with increasing age
of the young subject.

To address these problems, the ASSR technique basically needs to improve
on two points, while still guaranteeing precise and accurate frequency specific
audiogram estimations. First, the time that is needed to record the necessary
EEG data should be reduced as much as possible. The longer a measurement
lasts, the more difficult a subject can be kept quiet. This total duration of a test
is also very determining for widespread application in the clinical field. Second,
the robustness of ASSR recordings against artifacts should be increased. If the
majority of the data needs to be discarded because of too much noise in the
recordings, measurements are extended unnecessarily. In this research project,
an approach is presented that may provide an answer to both points.

More specifically, the following objectives were aimed for:

• To build and evaluate a robust experimental test platform for record-
ing auditory steady–state responses for research and clinical applications.
This platform should provide a means to record more information simul-
taneously compared to current single channel setups. This immediately
implies multichannel recordings with more than three electrodes.
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Figure 1.7: Overview of the thesis and the position of the chapters and sections
in the general picture.

• To develop and evaluate a multichannel processing scheme that improves
auditory steady–state response detection and thus reduces measurement
time.

• To develop and evaluate a multichannel processing scheme that improves
the robustness against artifacts of the ASSR technique and thus implicitly
reduces measurement time accordingly.

• To propose optimal electrode positions on the scalp for best assessment
of ASSR thresholds, subject to as few electrodes necessary as possible.

1.7 Thesis outline

Figure 1.7 shows a graphical overview of the structure of the thesis, positioning
the different chapters in the general picture.

In Chapter 2, an overview is given of the auditory steady–state response. Its
history, physiological model, stimulus and recording parameters are discussed.
Different existing ASSR recording time reduction techniques available are pre-
sented.

In Chapter 3, a research platform is developed for multichannel ASSR record-
ings. The setup allows multichannel measurements and the use of own custom
made stimuli which is a requirement for the studies described in the rest of
the thesis. The mobile setup is based on an inexpensive multichannel RME
soundcard and software is written in C++. Both hardware and software of the
setup are described. An evaluation study with nine normal–hearing adults will
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show that no significant performance differences exist between a reference and
the proposed platform for standard recordings. The material presented in this
chapter has been published in Van Dun et al. (2008c).

Chapter 4 presents the first multichannel processing technique that is inves-
tigated in this thesis, based on independent component analysis (ICA). This
multichannel technique basically allows one to find the underlying factors from
multivariate statistical data by looking for components that are both statisti-
cally independent, and non–Gaussian. As ASSRs are statistically different from
the surrounding EEG noise, it is expected that ASSR detection is improved af-
ter processing. ICA is applied to seven–channel data containing ASSRs from
eight normal–hearing adults. First, ICA–processed multichannel data contain-
ing ASSRs is compared with the most common single channel ASSR technique.
Second, the optimal number of input channels, the optimal electrode positions
and the optimal number of independent components are reported. Third, the
performance of an ICA–based procedure applied to single channel data is con-
sidered. Finally, a combination of previous techniques is presented, together
with the quantitative recording time reduction that is possible. The material
presented in this chapter has been published in Van Dun et al. (2006, 2007a).

Chapter 5 describes the results of the application of multichannel Wiener
filtering (MWF) – with QR factorization – to multichannel data containing
ASSRs. This approach adds extra information to the multichannel signal pro-
cessing equations. The sinusoidal nature of the ASSR makes it possible to
search for a specific frequency, equal to the modulation frequency used in the
stimulus. The MWF technique is applied to seven–channel data containing
ASSRs of eight normal–hearing adults. Results are compared with the most
common single channel ASSR technique and with multichannel data processed
using ICA. The possible measurement time reduction using this technique is
presented. The material presented in this chapter has been published in Van
Dun et al. (2007b).

In Chapter 6, a procedural framework for ASSR detection is worked out that
allows the development of a multichannel processing strategy, starting from a
detection theory approach. It is shown that a sufficient statistic can be cal-
culated that best captures the amount of useful signal in the recorded data.
The framework can be linked with multichannel Wiener filtering and inde-
pendent component analysis. First, simulations are conducted using seven–
channel EEG and artificial ASSRs to evaluate the performance of the different
multichannel techniques in this research project. Afterwards, eight–channel
data containing ASSRs from ten normal–hearing adults are used to evaluate
the framework practically and to compare its performance with existing single
channel processing approaches. For EEG containing numerous artifacts, multi-
channel techniques can clearly offer significant improvement over single channel
techniques. The material presented in this chapter has been published in Van
Dun et al. (2008b).
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Chapter 7 probes further on the framework presented in Chapter 6. Based
on eight–channel EEG measurements of ten normal–hearing adults, the EEG
derivation with the best estimation of the behavioral hearing thresholds for
ASSRs with modulation frequencies between 80 and 110 Hz (originating mainly
from the brainstem) is determined. For ASSRs originating mainly from the au-
ditory cortex (with a modulation frequency of 10 Hz), the EEG derivation with
the highest SNR is determined similarly. The EEG channel combination for
brainstem ASSRs with the best estimation of the behavioral hearing thres-
holds for as many subjects as possible is presented, taking into account that
the number of required electrodes should be as low as possible. For auditory
cortex ASSRs, the EEG channel combination with the highest SNR for a max-
imum number of subjects is given, with a similar restriction on the number of
used electrodes. Finally, the robustness of the proposed multichannel process-
ing technique against artifacts is evaluated when using this optimal channel
combination for brainstem responses. The material presented in this chapter
has been published in Van Dun et al. (2008a).

Chapter 8 comprises a general discussion of the results of this research. We
end with an overview of future research directions.



Chapter 2

Auditory Steady–State
Responses

This chapter covers the basic theory of auditory steady–state responses and
contains an overview of currently available recording techniques. Section 2.1
covers the theoretical aspects of the ASSR. It includes its history, assumed
model and the path from stimulus to response, recording and processing. Sec-
tion 2.2 focuses on seven different techniques currently available that were
proposed to reduce recording time. None of these techniques are developed
specifically for multichannel ASSR recordings however. Signal processing on
multichannel ASSR recordings is the main topic of this thesis. Chapter con-
clusions are provided in Section 2.3.

2.1 Theoretical overview of the ASSR

This section covers the theoretical aspects of the auditory steady–state re-
sponse. A much more detailed overview can be found in the review paper of
Picton et al. (2003). The PhD text of Luts (2005) also provides an interesting
overview, but focuses more on the clinical relevance of the ASSR technique for
newborns.

Section 2.1.1 introduces the auditory steady–state response by describing its
history. In Section 2.1.2, its physiological model and its sources in the brain are
given. ASSRs are evoked by stimuli, generally modulated carriers. By chang-
ing the stimulus parameters, different responses can be elicited (Section 2.1.3)
which are recorded using an electroencephalogram (Section 2.1.4). The ASSR
technique that currently is used the most is the multiple stimulus ASSR tech-

23



24 Auditory Steady–State Responses

nique from Section 2.1.5. Finally, Section 2.1.6 describes the advantages and
the drawbacks of the ASSR technique compared with the auditory brainstem
response technique.

2.1.1 How it started . . .

Responses to acoustic stimuli in general have been recorded for about 70 years
(Davis, 1939). In these early days, rather straightforward averaging procedures
were developed to lower the background EEG and to improve the ratio between
the observed signal and noise (Geisler, 1960). The cited work describes a direct
link between acoustic clicks and scalp recorded potentials, with the use of an
‘average–response computer’, as these responses are generally too small to be
detected in the electroencephalogram (EEG) directly. When high–frequency
sinusoids are modulated with a lower modulation frequency and applied to the
ear, the auditory neuron fibers fire ‘phase locked’ (in synchrony) to the envelope
(Moller, 1974). The first significant auditory potential study with modulated
tones was conducted by Galambos et al. (1981) on modulation frequencies of 40
Hz. From that moment on numerous studies have been conducted. Definitions
that are being used are the amplitude modulation following response (AMFR by
Kuwada et al. (1986)), the steady–state evoked potential (SSEP by Cohen et al.
(1991)) and the envelope following response (EFR by Dolphin and Mountain
(1992)). The currently most popular term is the auditory steady–state response
(ASSR) and will be used throughout this manuscript. A steady–state response
is a response ‘whose constituent discrete frequency components remain constant
in amplitude and phase over an infinitely long time period’ (Regan, 1989).
Whereas transient responses (e.g. auditory brainstem responses) are evoked by
stimuli that do not have a periodic nature, steady–state responses are evoked
by repetitive stimuli that are presented continuously or at a stimulus rate that
is fast enough to cause an overlap of the consecutive responses.

2.1.2 Physiological model

A physiological model for auditory steady–state responses is described in Lins
and Picton (1995). The clear presentation of the model in this key paper
provides a good way to understand the underlying properties of the ASSR and
its generation (Figure 2.1).

When a modulated sinusoid with a certain carrier frequency arrives at its cor-
responding frequency region of the basilar membrane, the hairs of the inner
hair cells attached to this specific part of the basilar membrane are bent. The
bending of these hair cells modify their membrane potential. The transfer func-
tion of this potential is asymmetric and nonlinear: larger when bending away
from the basal body (depolarization) than when bending towards it (polariza-
tion). For large deflections, saturation occurs. The inner hair cells activate the
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Figure 2.1: A simple model for compressive rectification. Time and frequency
domain of an amplitude modulated signal and its rectification are provided for
two types of intensity (soft and loud). The rectification causes the output of
the cochlea to have a spectral component at the modulation frequency. Com-
pression occurs when depolarization saturates because of loud stimuli. From
Lins et al. (1995).

ganglion cells that compose the auditory nerve. Here a complete rectification
occurs as only depolarization of the inner hair cells activates the action poten-
tials in the ganglion cell. Larger deflections cause faster firing of these cells.
This way, the resulting transfer function is nonlinear and saturating towards
high deflections. The nonlinear transfer function of the hair cells immediately
explains the transfer of the envelope of the modulated signal to the auditory
nerve, as a rectified AM signal also carries energy on its modulation frequency.
The carrier frequency itself is also transmitted to the auditory nerve, but the
phase–locked firing capability of the auditory nerve cells deteriorates fast above
1000 Hz (Batra et al., 1986).
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The exact sources of the auditory steady–state response and their location are
still subject of discussion. It is assumed that roughly two separate sources
compose the ASSR recorded at the scalp. The relative contribution of each
source depends on the modulation frequency of the stimulus. Generally ASSR
generated by stimuli with a modulation frequency below ±60 Hz originate
mainly from the auditory cortex while ASSRs above ±80 Hz have their main
source in the brainstem. Purcell et al. (2004) nicely illustrate this in their
Figure 1.6 together with a possible explanation of the observations. The cortical
source, with a declining amplitude for increasing frequencies, constructively
interferes (around 40 and 90 Hz) and destructively interferes (around 20 and
70 Hz) with the brainstem source. These findings are backed by other studies.
At high modulations, ASSRs are not affected by state of arousal (Aoyagi et al.,
1993; Cohen et al., 1991). However at lower modulation frequencies, amplitude
decreases during sleep or sedation (Kuwada et al., 1986). This implies a cortical
generator. Several dipole source analyses show indeed that 88 Hz responses are
generated for the most part in the brainstem and 39–40 Hz responses in the
cortex (Herdman et al., 2002; Purcell et al., 2004; Reyes et al., 2005; Ross and
Pantev, 2004). The low–frequency 10 Hz response originates mainly somewhere
from the auditory cortex, but sources in the brainstem may still be present
(Herdman et al., 2002).

The usefulness of this knowledge becomes apparent when auditory functions
have to be evaluated up to a certain point of the auditory pathway. Responses
to stimuli with higher modulations only suggest normality up to the brainstem,
while those at lower modulation frequencies imply normal function at higher
parts of the auditory nerve (Herdman et al., 2002).

2.1.3 Stimulus parameters

Auditory steady–state responses are evoked by any signal that is modulated
by a sinusoid. For matter of convenience we refer to such a modulated signal
as an ASSR stimulus. Examples of signals that can be modulated, and that
are currently subject to research, are other sinusoids, (speech weighted) noise
and babble noise (Alaerts et al., 2007a). The following theoretical derivation
is valid for a sinusoid (the carrier) that is modulated by another sinusoid (the
modulator). When other signals like e.g. noise are modulated, the following
formulae still can be used. These signals can be decomposed in their composing
sinusoids and thus can be seen as different carriers modulated by the same
modulator, eliciting a composed ASSR with that modulation frequency.

A standard single–carrier ASSR stimulus xASSR consists of a sinusoidal carrier
with carrier frequency fc = ωc

2π that is amplitude modulated with a modulation
rate ωm = 2πfm and/or frequency modulated with a modulation rate ω′m =
2πf ′m. It can be represented by
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xASSR = [1 + m sin(ωmt + φ)︸ ︷︷ ︸
AM component

] · sin(ωct + ϕ)︸ ︷︷ ︸
modulated carrier

(2.1)

with

ϕ = β sin(ω′mt + φ′)︸ ︷︷ ︸
FM component

(2.2)

and

β =
∆ω

ω′m
(2.3)

A maximum AM depth m (0 ≤ m ≤ 1) implies a full amplitude modulation
with a modulation rate ωm. For frequency modulation, the modulation index
β is the maximal change in frequency ∆ω from the carrier modulation rate ωc,
relative to the modulation rate ω′m. In general the AM frequency fm = ωm

2π and
FM frequency f ′m = ω′m

2π are taken identical. When in this case ∆φ = φ′ − φ
is taken equal to −π

2 , the maxima of AM and FM coincide and the dynamic
range of the modulated carrier ωc is maximal.

In this section, the effect of these parameters is discussed.

Carrier frequency fc

The carrier frequency fc of an ASSR stimulus defines the location where the
cochlea is excited. The major part of all ASSR studies covered in the references
of this thesis investigates the audiological frequencies between 500 and 4000
Hz because of the major relevance for communication, speech understanding
and speech recognition. Some recent studies also try to cover the frequencies
beyond those used in classical audiometry, more specifically at 250 and 12000
Hz. The results here attest to the ability to record ASSRs to a wide range
of carrier frequencies but also suggest that accuracy of threshold estimation
suffers toward the audiometric extremes (Petitot et al., 2005; Tlumak et al.,
2007).

Modulation frequency fm

The modulation frequency fm modulates the carrier frequency fc and acts as
a ‘label’ by which the effect of the carrier frequency up to the brainstem (or
cortical regions) is recognized, as described in Section 2.1.2. The studied range
of modulation frequencies for ASSR purposes varies between 2 and 600 Hz
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(Alaerts et al., 2007a; Dimitrijevic et al., 2004; Kuwada et al., 1986; Picton
et al., 1987; Purcell et al., 2004; Rees et al., 1986). It is shown in the earlier
studies that the magnitude of the ASSR decreases with increasing modulation
frequency, except for the presence of two local increases at 40 and 90 Hz (Fig-
ure 1.6). The EEG noise also drops with higher modulation frequencies, which
indicates that these 40 and 90 Hz regions are interesting as the SNR increases
(Picton et al., 2003).

The first modulation frequency zone to be investigated thoroughly was around
40 Hz (Galambos et al., 1981). In adults, the responses in this modulation
frequency region were the largest and could be detected easier than those in
the 90 Hz region. However, sleep and sedation affects the magnitude of the
response (Cohen et al., 1991; Plourde and Picton, 1990). Moreover, responses
at 40 Hz are difficult to measure in neonates, as parts of the 40 Hz response are
generated more cortically compared to 90 Hz responses. Cortical responses need
a longer maturation and are generally not fully present at the earliest stages
of human development in the first few months after birth (Maurizi et al., 1990;
Stapells et al., 1988).

For this reason, focus was shifted more to modulation frequencies of 90 Hz.
Responses are smaller, but less influenced by sleep (Cohen et al., 1991; Plourde
and Picton, 1990). Reliable measurements in children, especially used for au-
diometry, are possible (Aoyagi et al., 1993, 1994; Cohen et al., 1991; Rance
et al., 1995; Rickards et al., 1994). However, one has to keep in mind that
ASSR at 90 Hz still are not mature up to the age of six weeks and thus are dif-
ferent from those observed in older subjects (Alaerts et al., 2008; Cone-Wesson
et al., 2002; Rance and Tomlin, 2006; Savio et al., 2001).

Modulation type (AM / FM) and depth (m) or index (β)

The simplest ASSR stimuli are sinusoidal tones that are only amplitude modu-
lated. This is the case for ϕ being constant in (2.1). The larger the AM depth
m in (2.1), the greater the response that the stimulus elicits.

The use of only FM stimuli is possible too (Maiste and Picton, 1989; Picton
et al., 1987). When m is taken equal to zero in (2.1), only the modulation
index β in (2.3) determines the amount of modulation. The larger β, the
larger the responses the stimulus generates. However, when taken too large,
the frequency specificity of the stimulus decreases as the width of the stimulus
in the frequency spectrum transcends one critical band of the cochlea.

The mixed modulation (MM) technique involves both the use of amplitude and
frequency modulation at the same modulation frequency fm = f ′m. Each mod-
ulation type excites independent responses which are added together. When
∆φ = φ′−φ is taken equal to −π

2 , the largest responses are obtained (John and
Picton, 2000a). Currently the combination of both AM (maximum of m = 100
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Figure 2.2: The international 10–20 EEG system for electrode placement. From
Malmivuo and Plonsey (1995).

%) and FM (∆ω = 20–25 % of ωc

2 ) stimuli is mostly used as this parameter set-
ting induces the largest responses without losing frequency specificity (Cohen
et al., 1991; John et al., 2001b). When fm 6= f ′m, one speaks of independent
amplitude and frequency modulation (IAFM) according to Dimitrijevic et al.
(2001).

2.1.4 Recording EEG

Potential differences are generated between electrodes positioned on the scalp
surface when areas in the brain are active. The EEG records these potential
differences as a function of time using electrodes that are placed in standard
positions. Figure 2.2 presents the 10–20 international system electrode place-
ment (Malmivuo and Plonsey, 1995). The electrode positions are constructed
by dividing the line between the nasion and inion into 10 % or 20 % intervals.
The line between the preauricular points is divided similarly. In this work we
apply the 10–20 international system of electrode placement, extended with
two positions behind the ears, the mastoids (lMa and rMa).

For standard single channel ASSR recordings, the active electrode (+) is mostly
placed at the vertex (Cz) or at the high forehead (Fpz). The reference electrode
(-) is placed at the neck or occiput (Oz). The place of the ground electrode is
more variable: one of the mastoids, the right clavicle or Pz (John et al., 2001a;
Lins and Picton, 1995; Luts and Wouters, 2005; van der Reijden et al., 2004).
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2.1.5 Multiple stimulus ASSR

Lins and Picton (1995) were the first to publish a key paper that describes
the possibility to evoke more than one ASSR at a time. Figure 2.3 shows
different carriers that can be applied simultaneously to one or both ears when
modulating each carrier with a different modulation frequency. The responses
that appear in the EEG can be considered as labels. These labels identify
the fact that the modulation frequency corresponding to a certain carrier has
generated a response on the auditory path. This knowledge opened the way
for relatively fast objective audiometry (Lins et al., 1996).

The major benefit of this multiple stimulus technique is the measurement time
reduction that is possible. Although one would expect a time reduction by a
factor of eight in the case of eight simultaneously tested carriers, this number
more comes down to a factor of two or three, which is still a significant im-
provement (John et al., 2002a). The reason for this phenomenon lies in the
loss of ASSR amplitude because of the interaction of the combined stimuli in
the auditory nerve (Lins and Picton, 1995) or overlap on the basilar membrane
(Picton et al., 2003). These effects are amplified when using stimuli with in-
tensities above 75 dBSPL (John et al., 1998; Lins and Picton, 1995; Lins et al.,
1996). When modulation frequencies are used that are less than 1.3 Hz apart
or carrier frequencies closer together than one octave, the same effect applies,
even at lower intensities (John et al., 1998).

Modulation frequencies around 40 Hz give much greater interactions and this
indicates that the dichotic multiple stimulus technique is not useful for this
frequency range (John et al., 1998). More recent data however, with a multiple
stimulus applied at only one ear, shows an advantage compared to a single
stimulus application at low and moderate intensities (Fontaine and Stapells,
2007). When applying at even lower modulation rates, e.g. 14 Hz, the amount
of interaction between stimuli even decreases again (Armstrong and Stapells,
2007). Although the earlier studies may lead to the premature conclusion
that the interaction between adjacent frequencies is greater at higher levels of
the auditory system (Picton et al., 2003), this tendency for lower modulation
frequencies should not be generalized without additional research.

2.1.6 Comparison with the auditory brainstem response

Auditory steady–state responses are often compared to the auditory brainstem
response. Reason for this is the similarity of both techniques in assessing
hearing thresholds. Four advantages for the ASSR compared to the ABR can
be found.

• ASSRs are frequency specific. A tested frequency only needs to be mod-
ulated with a predefined modulation frequency that acts as a label to be
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Figure 2.3: Multiple stimulus ASSR. Both ears are stimulated simultaneously
by a combined stimulus that consists of four carriers per ear. Each carrier is
modulated with a different modulation frequency fm. Each separate carrier
excites the cochlea at its corresponding carrier frequency. The modulation
is passed through to the auditory nerve. The response appears in the EEG,
originating mainly in the brainstem for the current example. Each separate
modulation frequency acts as a label for its corresponding carrier. From Luts
(2005).
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retrieved in the EEG. The carrier frequency excites the corresponding
part of the cochlea to be tested. The resulting response thus only gives
information about the frequency of interest. As the standard ABR tech-
nique concerns a click–evoked response, the entire cochlea is excited and
no frequency specific information can be retrieved from the response. In
a special case of ABR however, tone bursts can be used as stimuli, as
described in Section 1.5.2. This technique improves the frequency speci-
ficity, but as a trade–off measurement time significantly increases. With
the ASSR technique, it is technically possible to test a specific audio-
metric frequency without the need of filtering part of the signal (as with
ABR). In practice however, highpass and lowpass filters are still applied
to the signal to reduce amplifier overloads due to artifacts.

• Different carrier stimuli can be applied simultaneously, as long as different
modulation frequencies are chosen to distinguish (Lins and Picton, 1995).
This induces a possible time reduction of a factor two to three (John et al.,
2002a).

• The maximum test intensity of the ASSR stimulus can be higher than
the maximum intensity of the ABR stimulus. ASSRs involve continuous
stimuli, that generate less peak energies than its ABR counterparts, us-
ing clicks. Hearing thresholds can be determined at higher intensities,
allowing differentiation between deafness and severe hearing loss.

• ASSRs emerge in the frequency spectrum as solitary peaks compared
to surrounding noise in neighboring frequency bins. By comparing the
response power with the mean noise power in those adjacent bins, an
objective statistical method can be used. The ABR technique still relies
on the subjective evaluation of experienced clinicians.

This is not the complete picture however, as the ABR also has its benefits
compared to the ASSR technique.

• ASSRs are faint responses (order of nanoVolts) compared to ABR (order
of hundreds of nanoVolts). Therefore, ASSRs are much more difficult to
detect what results in longer measurement times and technically more
specialized measurements.

2.2 Techniques reducing recording time

The largest drawback of the ASSR technique is the extensive recording time
needed for reliable hearing threshold estimation. Generally measurements last
between 45 minutes and one hour (Luts et al., 2006; Luts and Wouters, 2004).
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It would be of general interest if this duration could be lowered significantly.
Literature shows several efforts to accomplish this goal. A general overview is
provided in Figure 1.7 and situates some techniques in the general picture and
the structure of the thesis. This section covers these techniques. In Sections
2.2.1 and 2.2.2, new stimuli are discussed that evoke larger responses or make
use of the available recording time more intelligently. Next, these responses
should be recorded optimally using an appropriate electrode placement (Sec-
tion 2.2.3). Sections 2.2.4 and 2.2.5 review a couple of basic single channel
signal processing techniques to enhance the recorded signal. Section 2.2.6 de-
scribes the statistics that can be used for detection. Section 2.2.7 uses the
acquired information to assess the hearing thresholds one is looking for.

2.2.1 Stimuli eliciting higher responses

A common stimulus used for ASSR generation is the 100 % AM stimulus, with
m = 1 and β = 0 in (2.1), (2.2) and (2.3). Other stimuli have been proposed
that evoke higher responses than this basic stimulus.

A more efficient stimulus that already has been mentioned in Section 2.1.3,
is the mixed modulation (MM) stimulus that combines both AM and FM.
Generally m is taken equal to 1 and ∆ω = 0.2ωc

2 . The modulation may also
follow an exponential sine function (John et al., 2002a). For this purpose, the
AM component of (2.1) can be extended to

AM component = 1 + 2m

((
1 + sin(ωmt + φ)

2

)N

− 0.5

)
(2.4)

When the exponent N is taken equal to 2, together with m = 1 and β = 0 in
(2.2), the use of the so called exponential modulation also increases response
amplitudes. Both methods, mixed and exponential modulation, boost ASSR
amplitudes between 15 and 30 % individually. This is the case for adults (John
et al., 2001b, 2002a) as well as for infants (John et al., 2004). When β en
N are further increased, the frequency specificity of the stimulus lowers and
neighboring frequency bands in the cochlea are stimulated. A recurring theme
in most of the studies that search for better stimuli is the increase of side
bands neighboring the investigated carrier frequency. Both FM as exponential
modulation increase the number of side bands. Other stimuli that seriously
exploit this technique are described in Elberling et al. (2007), Riquelme et al.
(2006), and Stürzebecher et al. (2001). The latter study claims to increase
ASSR amplitudes by 65 %.
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2.2.2 Independent stimuli with multiple stimulus ASSR

If the intensities of the stimuli can be manipulated individually within a max-
imum mutual range of 20 dB, a shorter measurement session is possible. This
technique is referred to as the multiple intensity (MINT) technique (John et al.,
2002b). Larger differences in intensity cause interactions between stimuli. With
this manipulation, the measurement protocol has the possibility to stop collect-
ing data for a certain carrier frequency when its response is already significant.
This can occur before the predefined amount of data for the current inten-
sity is collected or before all other responses to their corresponding frequencies
have become significant. The intensity of the specific carrier frequency is im-
mediately reduced as soon as a response is detected (Mühler et al., 2005).
An extensive study covering the amount of time reduction that is practically
possible using this method has not been published yet at this moment. A re-
search project in our lab environment is currently studying this topic using the
SOMA program described in Chapter 3, which has the capability of changing
individual intensities at runtime.

2.2.3 Intelligent placement of electrodes

The Cz–Oz or Cz–neck derivations are commonly the derivations mostly used
for adults to record the responses evoked by the type of stimuli described in the
previous section (John et al., 2001a; Lins and Picton, 1995; Luts and Wouters,
2005). The choice for these derivations lies in the general experience that
the mean ASSR thresholds are lower with this EEG derivation compared to
other derivations. This experience is confirmed for the Cz–Oz derivation by
van der Reijden et al. (2004), who use a multichannel setup to search for the
EEG derivations offering the highest signal–to–noise (SNR) values and thus
the lowest ASSR thresholds. van der Reijden et al. (2004) also indicate that
this Cz–Oz derivation does not always guarantee the highest SNR and that
sometimes other derivations (like e.g. Cz–mastoid, Cz–Pz and Cz–neck) could
offer better SNRs. This is backed by the observation that ASSR thresholds
(and their SNRs) are largely variable across subjects (John et al., 2001a; Lins
and Picton, 1995; Luts and Wouters, 2005). According to van der Reijden
et al. (2005), the highest SNR for infants younger than six months are mainly
recorded from the mastoids ipsilateral to the ear of stimulation referenced to
Cz. Thus, the derivation with the highest SNR is subject dependent and cannot
be predicted beforehand. Recording EEG using multiple derivations simulta-
neously, combined with an appropriate algorithm to process these recordings,
should be able to select the ‘best’ channel (or combination of channels) for as
many subjects as possible. Appropriate multichannel processing schemes for
this matter are described in Chapters 5 and 6. A practical evaluation of these
schemes is described in Chapter 6. An efficient electrode placement is proposed
in Chapter 7.
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2.2.4 Averaging

After recording EEG data, the data need to be processed as already described
shortly in the previous section. ASSR processing, and evoked potential pro-
cessing in general, mostly involves a basic form of averaging after splitting up
the available EEG data stream into smaller blocks (e.g. sweeps) to increase the
SNR of the observed signal. The oldest technique is mean averaging, while over
the years several new techniques have emerged that try to take into account
the level of noise in each data block.

Mean averaging assumes that recorded single sweeps contain a stationary sig-
nal superimposed on randomly occurring noise. Therefore, the synchronous
summation of responses improves the signal component while reducing noise.
The averaging process is a consistent estimator of a signal in noise because it
has no bias and the variance decreases by increasing the number of sweeps av-
eraged. This approach has some limitations however. Mean averaging is based
on the principle that the signal in a response is constant and phase locked to
the stimulus, whereas the noise is stationary and random with no phase locking
to the stimulus. Unfortunately, noise is nonstationary as well. Depending on
the severity of deviations from these normal assumptions, mean averaging may
produce suboptimal extraction of the signal from noise. In mean averaging,
each sweep is treated as having the same amount of noise and contributing
equally to the final average. During recording however, owing to the patient’s
changes in position or relaxation state, the level of noise in some sweeps may
be higher than in others. Mean averaging disregards this fact. This problem is
especially apparent when averages are disturbed by data blocks with extremely
high noise levels (artifacts).

A rough, but effective, solution for artifacts is the use of artifact rejection
(Pantev and Khvoles, 1984; Picton et al., 1983). Small data blocks exceeding
a certain amplitude level are not used for analysis. This reject level can be
determined beforehand and kept fixed throughout the measurements. Alter-
natively, the reject level can be calculated afterwards as a certain percentile of
the noise distribution of the dataset. Real–time analysis is not possible in this
case however, but the reject level is more tailored to the subject (John et al.,
2001a).

Sample–weighted averaging copes with the abrupt processing of artifact rejec-
tion (Hoke et al., 1984; Lütkenhöner et al., 1985). Small data blocks, epochs,
are weighted with the variance of the epoch in the time domain. The whole
sample (response + noise) is taken into account. The idea behind this method
is that noise in an epoch produces a bigger variance compared to a response in
that epoch. Epochs are taken instead of whole sweeps to better characterize the
individual variances of the epochs and to follow sudden changes in the signal.
In the end the epochs are combined to a sweep and the sweeps are summed
together. Each epoch is divided by the sum of the weights of the epoch the



36 Auditory Steady–State Responses

final epoch is composed with. This can be expressed as follows (adapted from
Lütkenhöner et al. (1985) by John et al. (2001a)):

a(t) =
N∑

j=1

wjxj(t) (2.5)

where a(t) is the weighted average waveform across the time points of the
epoch xj(t), N is the number of epochs being summed together, and wj is the
weighting factor for the j–th epoch,

wj = ξ̂−2
j (

N∑

k=1

ξ̂−2
k )−1 (2.6)

where ξ̂2
k is an estimate of the variance of the epoch xk,

ξ̂2
k =

∑M
i=1 x2

k(i)
M

(2.7)

where M is the number of data points in the epoch xk.

A variant of sample weighted averaging is noise–weighted averaging. Whereas
the former takes both response and noise power into account, the latter only
estimates the noise power in the frequency region of interest. Both techniques
are similar (Dobie and Wilson, 1994), although some reports show a benefit for
sample–weighted averaging (John et al., 2001a). It is indicated anyway that
weighted averaging is preferred above normal averaging or artifact rejection.

Theoretically, an approximation of the optimal weights ŵopt for averaging can
be deduced (Davila and Mobin, 1992),

ŵopt =
X̄XT

||X̄XT || (2.8)

with XT being an array of M single sweep waveforms xi(t) = si(t) +ni(t) and
X̄ = µσs(t) + µn with

µσ =
1
M

M∑

i=1

σ2
i (2.9)

µn =
1
M

M∑

i=1

ni(t) (2.10)
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σ2
i are the variances of the signals si. This result is based on a SNR max-

imization by means of the generalized eigenvalue decomposition (GEVD) of
the signal and the noise correlation matrices. Its approach is similar to the
application of the multichannel Wiener filter in Chapter 5.

2.2.5 Adaptive filtering

Another way of processing data is the use of adaptive filtering. Tang and Norcia
(1995) show through simulations that a significant improvement is possible
when applying an adaptive recursive least–squares (RLS) filter to EEG data.
An input EEG signal containing an artificial signal is used as the primary input.
Two reference signals (sinusoid and cosinusoid) are weighted so as to minimize
the squared error between the primary input and the predicted response, which
is the difference between the primary input and the weighted reference signals.
The amplitude and phase of the evoked response are estimated by coherent
averaging of the weights. They both are compared to a threshold to decide for
detection.

2.2.6 Statistics

The processing in the previous subsections will return an output that may or
may not contain a response. The decision whether a response is present in the
processed recorded data is made using statistical techniques. Myriads of studies
have been conducted to determine which statistical evaluation method achieves
the highest detection performance for steady–state evoked potentials. The
three most important statistical methods are the F–test, magnitude squared
coherence (MSC) and phase coherence (PC). Other methods exist like circular
T 2 (CT2) and Hotelling T 2 (HT2), but these are merely deviations from one
of the three approaches. An overview of the important three is given below.

• F–test. The F–test is a statistical test in which the test statistic has
an F-distribution if the null hypothesis is true. It is a measure of the
ratio of the variation explained by the model (systematic variation) and
the variation explained by unsystematic factors (unsystematic variation).
More specifically applied to ASSR, it is assumed that the activity in the
adjacent frequency bins around the response is random and uncorrelated,
with an equal variance and a mean of zero in the real and imaginary
dimensions. The surrounding frequency bins are only assumed to be
uncorrelated asymptotically in the case of colored noise (Brillinger, 2001;
Van Trees, 2001). The power of the response relative to the mean power
of the adjacent frequency bins is denoted as the F–ratio. If this F–ratio
transcends a predefined threshold of a F(2, 2N) distribution, a response
is considered to be present (2 and 2N being the degrees of freedom with
N the number of noise bins) (Lins et al., 1996).
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Figure 2.4: Frequency domain representation of an observed ASSR in the EEG.

In most ASSR studies, an FFT analysis is carried out prior to response
detection (John and Picton, 2000a; Lins and Picton, 1995; Luts et al.,
2006; Valdes et al., 1997). An example of an FFT from EEG data con-
taining an ASSR is displayed in Figure 2.4. aresponse is the amplitude of
the observed response, which is a vectorial summation of both the am-
plitude of the real (unknown) ASSR response aassr and the amplitude of
the noise in the same frequency bin anoise. By calculating the mean noise
power σ2 in the adjacent noise bins p with p = 1 . . . N , the noise power
in the frequency bin that also contains the ASSR is estimated.

The detection is based on the ratio between the response power Pr at
the modulation frequency and the mean noise power σ2 in N neighboring
frequency bins at each side,

Fratio =
Pr

σ2
=

a2
response

1
N

∑N
p=1 a2

noise,p

(2.11)

with aresponse the amplitude of the modulation frequency bin and anoise,p

the noise amplitude in the p–th adjacent frequency bin (John and Picton,
2000a).

• Magnitude squared coherence (MSC). The MSC technique is a measure
of the degree to which system output (such as an AEP) is determined by
a specified input, as a function of frequency. For a linear system, MSC



2.2. Techniques reducing recording time 39

measures the proportion of response power attributable to a given stim-
ulus. For non–linear systems, e.g. the topic of this thesis, the technique
still can be used since the main interest is not in measuring coherence
per se, but in determining whether a response is present. An estimated
coherence value above the appropriate critical value does this, whether
the response is linear or not. MSC is calculated as γ2

xy(f) and is com-
pared to a predefined threshold to determine response detection (Dobie
and Wilson, 1989),

γ2
xy(f) =

|Gxy(f)|2
Gxx(f)Gyy(f)

(2.12)

with Gxx(f), Gyy(f) and Gxy(f) the (cross) power spectral density (PSD)
of input x(t) and output y(t),

Gxx(f) = |X(f)|2 (2.13)

Gxy(f) = X∗(f)Y (f) (2.14)

• Phase Coherence (PC). Opposite to the F–test and the MSC, which use
both phase and magnitude information of the signal, this test only cal-
culates the phase coherence Rθ by taking into account phase information
θresponse of the response (Figure 2.4). Higher values indicate a lower prob-
ability that the phase is changing randomly over q data blocks (Picton
et al., 2001; Stapells et al., 1987).

Rθ =
1
q

√√√√(
q∑

i=1

cos θresponse,i)2 + (
q∑

i=1

sin θresponse,i)2 (2.15)

It can be concluded that all these different methods have essentially the same
performance (Dobie and Wilson, 1994, 1996; Valdes et al., 1997). If a study
claims to show a significant difference however, the improvement is marginal.

2.2.7 Smarter guesses of hearing thresholds

This last category does not exactly reduce measurement time, but suggests to
use the time available in a smarter way, allocating relatively more interest on
intensities near hearing thresholds.

The common way to determine hearing thresholds is the use of threshold brack-
eting. Discrete intensities are applied for a predefined period or until a response
has been found for that specific intensity. The examination starts at an inten-
sity high enough to evoke a response. The intensity is decreased until a response
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can no longer be recognized. The threshold is defined as the lowest intensity
where the response can be detected.

A second method records responses at one or more intensities above threshold.
When the response amplitude is plotted as a function of stimulus intensity, this
relation may be extended towards zero response amplitude through extrapola-
tion.

When applying sweeps with continuously varying intensities, one refers to the
intensity sweep technique (Picton et al., 2007). The response is recorded as
the intensity is slowly but continuously swept from below to above hearing
threshold levels. By decreasing the slope of the ‘stimulus intensity over time’
function at hearing threshold intensities, relatively more time is attributed to
this critical region.

The main problem of the extrapolation and intensity sweep techniques is that
the relationship between response amplitude and intensity is non–linear. Lins
et al. (1995) show that the amplitude–intensity functions in normal subjects
have different slopes for different intensity ranges. This effect is even greater in
subjects with sensorineural hearing loss. It might be possible to prevent these
mistakes by limiting the extrapolation to near–threshold data and eliminating
data where the slope changes significantly (Picton et al., 2003).

To finalize it should be stressed that any deviation from a test protocol one
is familiar testing with needs to be investigated thoroughly before being used
clinically. It should be checked whether the false detection rate (the error
rate) does not increase significantly when altering the test protocol. Accord-
ing to Luts et al. (2008), even the change from measurements with a fixed
length to measurements with variable lengths can give rise to an explosion of
the error rate. Measurements with variable lengths stop the measurement af-
ter a certain number of significant data blocks (‘sweeps’) have been recorded.
This way, recordings seem to speed up. However, in most variations of this
paradigm the detection threshold should be made more stringent accordingly
which will reduce or cancel out the benefit of the possibility to stop earlier in
a measurement.

2.3 Conclusions

This chapter describes both the ASSR technique, its applications and ways to
increase efficiency in determining a subject’s hearing thresholds.

Sections 2.1.1 and 2.1.2 review the history of the auditory steady–state response
and its physiological model. ASSRs are generated along the auditory path as
a response to auditory stimuli applied to the ear. These stimuli are basically



2.3. Conclusions 41

modulated sinusoids, with the modulation frequencies emerging in the EEG,
indicating that the modulated carrier has been perceived up to the response
generator. These generators lie in the auditory cortex and/or the brainstem,
depending on the modulation frequency of the stimuli (Section 2.1.3). Sec-
tion 2.1.4 shows how the responses they generate are recorded using electrodes
on the scalp in the form of an EEG. By varying the stimulus parameters larger
responses can be evoked. A combined stimulus, containing more than one
modulated carrier at a time, can reduce measurement time significantly (Sec-
tion 2.1.5). This way more than one carrier frequency can be tested simulta-
neously. Section 2.1.6 concludes with a comparison between the ASSR and the
auditory brainstem response.

Section 2.2 covers different ways of increasing test efficiency. According to Sec-
tion 2.2.1, the stimulus itself can be optimized. By modifying its parameters
such that more energy is concentrated within the frequency band of interest,
larger responses can be evoked. When the separate components of a combined
stimulus are modified independently, intensities can be lowered per stimulus
component to better match the audiometric configuration of the test subject
(Section 2.2.2). Section 2.2.3 discusses the smart placement of electrodes on
positions like the Cz–Oz configuration for adults or the mastoid–Cz combina-
tion for infants. This will increase the chance of picking up larger responses
compared to other electrode positions. After recording the responses, some
basic techniques for signal improvement and detection have been used like sig-
nal averaging and statistics. In Section 2.2.4, it can be concluded that the
best choice is noise–weighted averaging combined with any detection statistic
(Section 2.2.6). Also, adaptive filtering can improve detection of sinusoids in
EEG noise (Section 2.2.5). Section 2.2.7 shows that hearing threshold estima-
tion may be more efficient when using amplitude extrapolation or sweeps of
continuously changing intensity. The positive effects of all these methods can
be summarized into a general measurement time reduction. They were not de-
veloped with multichannel recordings in mind however. This thesis will focus
on multichannel signal processing strategies for auditory steady–state response
measurements.
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Chapter 3

A Flexible Research
Platform for Multichannel
ASSR Measurements

The current possibilities of commercially available auditory steady–state re-
sponse recording devices are mostly limited to avoid unintentional misuse and
to guarantee patient safety as such. Some setups e.g. do not allow the ap-
plication of high intensities or the use of custom generated stimuli via files.
Moreover, most devices generally only allow data collection using maximum
two EEG channels. The freedom to modify and extend the accompanying soft-
ware and hardware is very restricted or nonexistent. As a result, these devices
are not well suited for research and several clinically diagnostic purposes. In
this chapter, a research platform for multichannel ASSR measurements is pre-
sented, referred to as SOMA (Setup ORL for Multichannel ASSR). The setup
allows multichannel measurements and the use of custom made stimuli which
is a requirement for the studies described in the rest of this thesis. The mobile
setup is based on an inexpensive multichannel RME soundcard and software is
written in C++.

Section 3.1 describes the general background and the motivation for build-
ing the setup. In Section 3.2, both hardware and software of the setup are
described. Section 3.3 presents the results of an evaluation study with nine
normal–hearing subjects that will show that no significant performance differ-

The material presented in this chapter has been published in ‘Van Dun, B., Verstraeten,
S., Alaerts, J., Luts, H., Moonen, M., and Wouters, J. (2008), “A flexible research platform
for multi–channel auditory steady–state response measurements,”J. Neurosci. Meth., 169,
239–248’.
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ences exist between a reference and the proposed platform. These observations
are discussed in Section 3.4. Section 3.5 ends this chapter with some conclu-
sions.

3.1 Introduction

Currently available devices use different implementations and features but ba-
sically they are all based on one of the following two techniques. Firstly, the
binaural multistimulus MASTER–technique (Multiple Auditory STEady–state
Responses) developed by and based on the research of John and Picton (2000a)
at the Rotman Research Institute, University of Toronto. The MASTER–
technique was firstly implemented in the MASTER–system of Natus Medical
Inc. (formerly Bio–logic Systems Corp.). Secondly, the monaural single stimu-
lus Audera–technique, based on research at the Department of Otolaryngology,
The University of Melbourne (Rickards, Rance and Cone–Wesson, et al). First
implementation of the Audera–technique occurred in equipment manufactured
by ERA Systems, Ltd., and Grason–Stadler Inc. (GSI) afterwards. The re-
search platform described in this chapter is based on the binaural multistim-
ulus MASTER–technique; however, it does away with some of the limitations
of commercial devices. These limitations sometimes prevent the use of specific
functionalities that are necessary for advanced clinical diagnostic and research
studies (like testing more than one modulated stimulus simultaneously at in-
tensities above 80 dBSPL, the use of self–created stimuli or multichannel EEG
recording). The research platform for multichannel ASSR measurements de-
scribed here, is referred to as SOMA (Setup ORL for Multichannel ASSR).
SOMA uses a standard high–quality multichannel RME soundcard and is writ-
ten in C++.

The possibility to use custom made stimuli is included. The need for stimuli
other than the standard multiple stimulus ASSR is demonstrated by the fol-
lowing studies. Stürzebecher et al. (2006) compensate the travelling wave delay
on the basilar membrane by a combined stimulus. Alaerts et al. (2007a) use
modulated speech–type stimuli and Picton et al. (2007) work with amplitude
modulated tones that vary their intensity over time. SOMA offers the feature
to independently modify intensities of multiple carrier frequency stimuli during
measurement. Each time an independent stimulus is altered, its corresponding
buffer is cleared and the EEG collection for that specific stimulus is started over
again. This feature was described first by John et al. (2002b) in Section 2.2.2
and makes a significant measurement time reduction possible (Mühler et al.,
2005). The use of multichannel measurements offers extra benefits as fixed sin-
gle channel electrode positions do not guarantee maximum response recording.
van der Reijden et al. (2004, 2005) describe that one should consider different
electrode positions for adults and infants. Additional features can be added
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with little effort to SOMA. This makes the platform flexible and modularly ex-
tensible. Multichannel signal processing, as described in Chapters 4 to 7, can
eventually be carried out during measurement. Automatic decision protocols,
suggested by John et al. (2002b), can be implemented to make a fully auto-
matic hearing threshold determination possible. The setup is kept portable
as the external multichannel RME soundcard is able to cover the needed dy-
namic range for stimulus presentation, without the need for extra attenuators
or audiometers.

Currently, the SOMA setup is being used in four applications. Firstly, SOMA
is in use in a clinical environment, more specifically in an operation room
during ear tube surgery with sedated young children (age < six years old).
Both ASSR and auditory brainstem response (ABR) measurements are carried
out. Based on the results of both techniques the subject’s hearing thresholds
can be estimated objectively. SOMA is also being used in ongoing research.
In a second application, SOMA is used for research focusing on the presence
of ASSRs evoked by modulated speech–type stimuli (Alaerts et al., 2007a).
Thirdly, the possibility to alter stimuli independently during measurement from
Section 2.2.2 is investigated. Fourthly, SOMA is used for research purposes on
multichannel evoked potentials, as described in Chapters 4 to 7.

3.2 Materials and methods

This section describes the hardware and software used for the SOMA setup
(Sections 3.2.1 and 3.2.2), its internal structure (Section 3.2.3) and the method
of evaluation (Section 3.2.4).

3.2.1 Hardware setup

The core of the hardware setup is the RME Hammerfall DSP Multiface II
soundcard (www.rme–audio.com). The choice for this device instead of a stan-
dard data acquisition card was driven by the needs to have an inexpensive,
multichannel, portable, high–end, and plug–and–play device. To illustrate,
EEG measurements already can be conducted without much effort using the
Adobe Audition program. Moreover, the presence yet of several devices in the
author’s research environment, the available experience and the reusability of
C++ software code added to the decision factors.

The RME device is equipped with eight input and eight output channels that
can be used simultaneously for playback and recording. It is able to sample
up to 96 kHz per channel. For the SOMA setup, the lowest possible sam-
pling rate of 32 kHz was chosen, as both the acoustic stimuli and the EEG
data can be represented using even lower sampling rates. The solid lines in
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Figure 3.1: Overview of the hardware in solid lines. The SOMA software
generates the 64 bit stimuli online or reads in a custom made 64 bit .sbin–file
and sends these to the multichannel RME soundcard after conversion to 24
bit precision. The first two output channels operate the acoustic transducers.
Maximum ten electrodes placed on the skull collect the subject’s EEG. The ten
EEG potentials are converted such that amplification is possible by a eight–
channel differential amplifier. The amplified EEG channels are read in through
the RME soundcard inputs and sent back to the SOMA software for further
analysis. For a single channel setup only three electrodes, no connection box
and a single channel differential amplifier are needed. The dashed lines show the
acoustic calibration of the right one of two output channels using a 2cc–coupler,
an artificial ear, and a sound level meter (for insert phones in this case). The
dotted lines indicate EEG calibration in three steps: (1) voltage measurement
of full scale calibration signal out of left output channel, (2) calibration of
selected input channel, (3) calibration of connection box / amplifier loop using
an attenuated signal.

Figure 3.1 depict the RME soundcard in combination with other hardware.
The SOMA software generates the 64 bit stimuli online or reads in a 64 bit
.sbin–file constructed earlier in e.g. Matlab. The .sbin–format was chosen
instead of 24 bit .wav–files as conversion errors between SOMA software and
Matlab were experienced. Depending on the use of a PC or a laptop, the
stimuli are reduced to 24 bit precision and are sent to the external RME mul-
tichannel soundcard through a PCI or PCMCIA cardbus and a Firewire link.
The first two of the eight output channels operate the acoustic transducers,
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left and right. In the multichannel case, the subject’s EEG is collected using
maximum ten electrodes (eight active, one reference and one ground) placed
on the skull. A connection box converts the ten EEG potentials to eight chan-
nels to be amplified by an eight–channel low–noise differential amplifier. As
each differential amplifier channel requires an active, a reference and a ground
input, the connection box just distributes the potentials on the reference and
ground electrodes to the eight channels. The eight active electrode potentials
are guided directly to the active input of each amplifier channel. In the case
of a single channel measurement, only three electrodes are sufficient and no
connection box is needed. As an example Stanford Research Systems, Grass or
Nicolet single channel low–noise differential amplifiers have been used in dif-
ferent ASSR–studies (Luts et al., 2006; Picton et al., 2007; Small and Stapells,
2006). For multichannel recordings, e.g. Jaeger–Toennies (Chapters 4 to 7)
or Nihon Kohden (van der Reijden et al., 2005) amplifiers are available. The
amplified EEG signals are read in by the RME soundcard inputs as a 24 bit
signal. This signal is sent back to the SOMA program via the Firewire link
and PCI / PCMCIA cardbus for further real–time processing. The raw EEG
is stored in a 64 bit .sbin–format and can be processed offline in e.g. Matlab.

The dynamic range (112 dB(A)) of the output channels, used for stimulus pre-
sentation, seems rather low to provide an accurate stimulus to external trans-
ducers at all desired intensities (10 – 100 dBSPL). It is considered sufficient for
the current application however. The maximum intensity per AM/FM mod-
ulated carrier is set to 100 dBSPL (Etymotic Research ER–3A insert phones
calibrated acoustically using a Brüel & Kjær Sound Level Meter 2260 in com-
bination with a 2–cc coupler DB0138 and an artificial ear 4152 (see Sections
3.2.2 and 3.2.4). Each carrier can be attenuated to 0 dBSPL in the software
(see Section 3.2.3). In practice, an attenuation of 100 dB can pose a threat to
accurate signal presentation due to the proximity of the noise floor. Figure 3.2
shows the power spectral density of a 100 % amplitude modulated (89.84 Hz)
1000 Hz carrier at an intensity of 10 dBSPL (calibrated), which signifies a 90
dB attenuation from maximum intensity. The effective dynamic range for this
signal, defined by the magnitude of the side bands compared to the magnitude
of the highest peak of the noise floor in the one–third octave band around the 1
kHz carrier, is more than 25 dB. It can be argued that the dynamic range of 25
dB is still too low, as appropriate speech (42 dB) or music (75 dB) presentation
needs a much higher dynamic range (Everest, 2001). The application described
here makes use of modulated carriers, exciting particular places on the basilar
membrane of the cochlea. The noise in the same one–third octave band is likely
masked by the stimulus (Moore, 2003). Moreover, the noise within the one–
third octave band of the modulated carrier lies below the hearing threshold of
most subjects. The noise in the other one–third octave bands does not influence
the perception of the signal by the ear. To summarize, no extra attenuators
are necessary to ensure an accurate stimulus presentation between 10 and 100
dBSPL. This improves the mobility of the setup. A stimulus intensity of 0
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Figure 3.2: Power spectral density of a 100 % amplitude modulated (89.84 Hz)
1000 Hz carrier at an intensity of 10 dBSPL (calibrated) using 128 ms blocks
(sampling rate 32 kHz). An unmodulated 1000 Hz sinusoid at 100 dBSPL has
its peak at 0 dB.

dBSPL is possible. However one cannot claim for sure that the dynamic range
of 15 dB is sufficient for stimuli at this intensity. For audiometric purposes,
and especially hearing threshold determination, the possibility for testing at
0 dBSPL is not highly required. In a similar way, 110 dBSPL testing inten-
sities are not really needed either and is a maximum intensity of 100 dBSPL
considered as sufficient.

3.2.2 Overview of the software

Basically the process can be divided into four steps: calibration, experiment
configuration, measurement and real–time analysis. All configuration and cali-
bration files are stored in .m–files from the Matlab environment. Custom made
stimuli and recorded EEG files are stored in a 64 bit .sbin–format. These
files can be used for setting up experiments without the SOMA program and
automatic offline data analysis afterwards.

Calibration

Before starting any measurements, it is necessary to calibrate all data that is
sent out (the acoustic stimuli) and read in (the amplified EEG). The dashed
lines in Figure 3.1 indicate the acoustic calibration setup. For insert earphones,
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a sound level meter is used in combination with a 2–cc coupler and an artificial
ear. For headphones, the meter is connected to an artificial ear only. Two
types of stimuli can be calibrated and used: stimuli generated by the soft-
ware and custom made stimuli. The generated stimuli have a fixed range of
parameter types, but are suitable to perform standard ASSR measurements.
These stimuli are a combination of up to four separate components per ear.
For each component, carrier frequency, modulation frequency, AM depth, FM
depth and phase difference between the AM maximum and the FM maximum
can be chosen. After parameter setting, each separate component is calibrated
acoustically at 70 dBSPL. Internally, this calibration factor is stored as the
amount of attenuation (dB) needed for a stimulus at full scale intensity to
reach 70 dBSPL. All parameter and calibration data are stored in a .m–file.
During stimulus presentation while running an experiment, a 64 bit combined
stimulus is created online based on the stimulus parameters of the different
components in this file. Each component is multiplied individually with its
calibration factor and the intensity factor given up by the user in the experi-
ment. Finally the individual components are summed to a combined stimulus
per ear. The 64 bit stimulus is then reduced to 24 bit precision and sent to the
external RME soundcard. Custom made stimuli need to be provided in the 64
bit .sbin format. The calibration process is similar to the technique above.
The stimulus is played back through the insert or head phones and its intensity
is calibrated acoustically at 70 dBSPL. The calibration value is stored for each
custom made stimulus together with other stimuli and their calibration values
in a single .m–file.

The dotted lines in Figure 3.1 show the three steps of the calibration process
for EEG potentials.

1. The left output channel was arbitrarily chosen to produce the calibration
signal. As an EEG signal is generally expressed in Volt, the calibration
signal also should be expressed in this unit. At full scale intensity (0
dB attenuation), the RME outputs produce a 4.86 V zero–to–peak signal
when a sinusoid with a calibration frequency of 89.84 Hz is applied. This
calibration frequency lies in the center of the frequency range of interest
for brainstem evoked auditory steady–state responses. For stimuli with
other modulation frequencies, different calibration frequencies should be
chosen.

2. A calibration factor is a way to compensate for a difference between the
signal one expects and the signal one measures after propagation through
an uncalibrated system. The output channel in step (1) generates a
stimulus with a known magnitude. This step checks how a full scale signal
is perceived by one of the input channels by sending a signal directly from
the output channel to the tested input channel.
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3. If the reference magnitude (e.g 4.86 V zero–to–peak) of a full scale stim-
ulus is known at the tested input channel, the magnitude of all other
signals arriving at the input channel can be derived. The final step at-
tenuates a full scale signal from the output channel by a factor of 10−6.
The attenuated signal propagates through the connection box and the
amplifier to the tested input channel. If the amplifier uses an amplifica-
tion factor of 50,000, the expected signal magnitude at the input channel
should be one–twentieth of the full scale magnitude. All deviations from
this value can be compensated using the calibration factor.

Both the full scale magnitude of the calibration signal (Volt) and the calibration
factor the input signal has to be multiplied with to reach its correct value are
stored in a .m Matlab file. The duration of the calibration signal should be
taken long enough (e.g. one minute) to average out noise influences.

Both calibration files (stimulus and EEG) keep track of a history with cali-
bration values at a certain time. This way abnormal changes in calibration
parameters can be detected more easily. Different hardware profiles can be
stored in the same file. A hardware profile is a predefined combination of hard-
ware, e.g. amplifier, connection box, RME device, insert phones. This way one
can easily switch between different hardware configurations when necessary
without having to recalibrate by selecting a default hardware profile.

Experiment configuration

Figure 3.3 shows the experiment configuration screen. Two different stimulus
types can be chosen. Firstly, SOMA can generate stimuli online. All parameter
and calibration data stored in a .m–file from Section 3.2.2 are loaded. Only
initial signal component intensities still have to be selected before starting the
experiment. Secondly, one can choose to use custom made stimuli from any 64
bit .sbin source file on disk (left and/or right). If the corresponding calibration
factor is not present in the calibration file constructed in Section 3.2.2, a warn-
ing will be given and application of the custom stimulus will not be possible. A
separate stimulus calibration file, identical to the one used for stimulus genera-
tion, has to be constructed beforehand to indicate which frequencies have to be
examined in the online analysis. Here, other parameters in the configuration
file are discarded. All intensities are in dBSPL when properly calibrated. The
appropriate EEG calibration can be selected. Other parameters that can be set
are the number of recorded EEG channels (up to eight, the maximum number
of RME soundcard input channels), the artifact rejection level (in nanoVolt),
the possibility to change carrier intensities online during measurement, and the
number of sweeps to be recorded. Patient information can be entered.
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Figure 3.3: The experiment configuration screen allows the user to select the
used stimuli, their intensity, calibration and other relevant parameters, as well
as to enter subject information.

Measurement and real–time analysis

During the experiment, visual information is returned by the SOMA software
in four windows.

Figure 3.4 displays the most recently recorded EEG epoch. An epoch is a data
block unit of 1.024 seconds, as defined in John and Picton (2000a). Epochs that
do not meet the artifact rejection criterion are rejected. Additional information
about the amplifier is given. The monitored EEG channel can be selected. An
option is included to view all EEG channels at once.

Figure 3.5 shows the frequency spectrum of the average of all recorded sweeps.
A sweep consists of a predefined number of accepted epochs, e.g. 16, which
defines a sweep at 16.384 seconds. This window provides a visual represen-
tation, with the modulation frequencies of interest, next to the surrounding
(noise) frequencies. The displayed EEG channel can be selected. A RMS noise
value is calculated in a certain frequency range to make noise level monitoring
possible.

Figure 3.6 shows a frame with statistical information. Analysis measures are
displayed for each applied modulated carrier. The modulated carriers that are
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Figure 3.4: The most recently collected EEG epoch. An epoch not meeting the
artifact rejection criterion is rejected for further analysis. The monitored EEG
channel can be selected. Additional information about the amplifier is given.

examined are the same carriers that are used in the calibration file for stimulus
generation from Section 3.2.2. These analyses include phase and amplitude of
the modulation frequency, the RMS amplitude of the surrounding noise bins,
and their corresponding SNR value. The p–values on the eighth row are the
most important figures that determine the statistical presence of a response.
p–values below a certain criterium (generally p = 0.05 for a standard single
channel measurement) are considered to indicate that an auditory steady–state
response at that specific modulation frequency is present. An interesting fea-
ture makes it possible to alter intensities of modulated carriers independently
while running the experiment. For this reason, a separate EEG buffer for each
carrier is implemented. This way the intensity of a single modulated carrier
can be altered without influencing other carriers. The upper row of Figure 3.6
shows eight spin boxes, each one corresponding to the intensity of its modu-
lated carrier. Once the spin box of a modulated carrier is modified (e.g. when
significance has been reached and the user changes the spin box in response),
the carrier’s intensity changes the moment the next sweep starts. The buffer of
the specific modified carrier is cleared and a new EEG data stream starts filling
the buffer. EEG data of previous intensities is not used for the calculation of
the spectrum or statistical information. The EEG buffers of the other carri-
ers are kept unchanged. The bottom row of Figure 3.6 indicates the number
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Figure 3.5: The spectrum of the average of all measured sweeps. Highlighted
frequencies correspond to the modulation frequencies of interest. These fre-
quencies can be observed in higher detail. The displayed EEG channel can
be chosen. The RMS noise level between a certain predefined frequency range
makes it possible to monitor the amount of noise in the current experiment.

of sweeps that have been averaged for a specific intensity. The moment the
intensity of the modulated carrier changes, its value is reset to zero.

The fourth window functions as the main screen (not displayed here). Besides
the basic navigational and recording functions it is possible to replay experi-
ments conducted earlier, to reset or redo a current experiment and to show a
p–value tracker over time.

3.2.3 Internal structure

The SOMA program is written in C++, with focus on object–oriented design,
modularity and testability. Three frameworks are used: the commercial Qt
library (www.trolltech.com) for the main graphical interface, the Qwt library
(qwt.sourceforge.net) for the plots, and the internally developed streamapp li-
brary which provides a general event handling interface, multi–threading and
hardware (soundcard, file) abstraction.
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Figure 3.6: Statistical information of the modulation frequencies of interest.
If a p–value is smaller than 0.05 in a standard single channel measurement, a
response is decided to be significant. The intensities of the modulated carrier
frequencies can be modified while running an experiment. The bottom row
indicates the number of sweeps that have been collected thus far for the cor-
responding modulated carrier frequencies. It resets to zero the moment the
intensity of the individual carrier changes, independently from the intensity of
other carriers.

The general design strategy is kept as simple as possible (Figure 3.7). All
SOMA classes (called modules further on) derive from the SomaModule inter-
face. This interface defines methods for event–based communication; an event
consists of an event ID and event data. When a module wants to communicate,
it sends an event to the router. The router looks up the receivers for the given
event ID and delivers the event to them. This modular approach allows for
easy extensibility. A new module only has to be registered with the router for
the events it wants to receive. It can send any event to the router without
having to know the modules that will receive the event.

The signal flow can be described as follows. The graphical interface (GUI
modules), soundcard and threads are initialized on application startup using
settings from the main configuration file. When an experiment has been config-
ured, all modules are initialized. During the experiment, the soundcard mod-
ule plays stimuli through the soundcard, while recording the EEG signal. The
recorded signal is downsampled and placed in a buffer. When the buffer is full,
the data is sent to the epoch module. This module uses a processor to amplify
the collected epoch (sent to the epoch GUI for display) and to decide whether
the epoch is accepted or not. An accepted epoch is placed in an epoch buffer.
When this epoch buffer is full, the data is sent to the sweep module, which
calculates the spectrum and statistical parameters. Results are sent to sweep
and statistical GUIs for display. Additional modules save all data and user in-
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Figure 3.7: Overview of the internal software structure. All modules are de-
picted together with the threads executing their code. The actual (EEG) signal
flow is displayed using dashed lines; the dash–dotted line correspond to audio
signals. Full lines show event communication between modules. A dotted line
indicates that a module ’uses’ its created processor. Letter codes are used for
the building blocks: T (thread), M (module), GM (GUI module), P (processor
or input/output stream). The epoch GUI corresponds to Figure 3.4, the sweep
GUI to Figure 3.5, the Ftest GUI to Figure 3.6 and the main GUI to the not–
displayed main window. The pvalues GUI shows the p–value as a function of
the number of processed sweeps, when activated.

teractions (e.g. changed intensities and epoch rejection levels), allowing offline
analysis. SOMA can load a recorded experiment and review it one epoch at
a time. This makes it possible to fine–tune results and signifies a great aid in
in–depth analysis.

In combination with the buffers, the organization in five threads assures that
the audio thread runs in parallel with the processing load from epoch, sweep and
save threads, or the screen updates in the main thread, without interference.
This setup ensures that no collected samples are lost during the switching of
the buffers, calculation of the statistics or updating of the display.
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3.2.4 Evaluation

A single channel study has been set up to evaluate SOMA. Hearing thres-
holds estimated with SOMA were compared with those estimated using the
MASTER software research version (John and Picton, 2000a), installed on a
PC in combination with a National Instruments NIDAQ PCI–card and a clin-
ical audiometer Madsen Orbiter 922. This setup may be considered as a gold
standard. Based on this study the practical use and benefits of the SOMA
program in combination with the RME soundcard are evaluated.

Nine normal hearing subjects (age range 20–29 years) participated in the study.
Behavioral thresholds were determined at 0.5, 1, 2 and 4 kHz with a 5 up–10
down Hughson–Westlake method using a clinical audiometer Madsen Orbiter
922 and identical ASSR stimuli as in the actual test. The MASTER–software
provided the calibrated stimuli as an input for the audiometer. The behavioral
thresholds were less than or equal to 20 dBHL. All experiments were carried
out in a double–walled soundproof room with Faraday–cage. Subjects were
asked to lie down on a bed with eyes closed and to relax or sleep.

Two combined stimuli with four 100% amplitude modulated (AM) & 20%
frequency modulated (FM) carrier frequencies each, were applied to each ear.
The carrier frequencies were the same for both ears, namely 0.5, 1, 2 and
4 kHz. The modulation frequencies were taken close to respectively 82, 90,
98 and 106 Hz for the left ear, and 86, 94, 102 and 110 Hz for the right
ear. The stimuli were applied to Etymotic Research ER–3A insert phones for
acoustic subject stimulation. The eight separate signals were calibrated at 70
dBSPL, using a Brüel & Kjær Sound Level Meter 2260 in combination with
a 2–cc coupler DB0138 and an artificial ear 4152. Stimuli were applied at an
intensity of 50 dBSPL and lowered by 10 dB after a trial of approximately 10
minutes per intensity (32 sweeps, each sweep corresponding to 16.384 seconds).
If no response was found at 50 dBSPL, one additional trial was carried out at
60 dBSPL. MASTER and SOMA measurements were conducted in the same
session and were randomized to avoid influence of test order.

3M Red Dot electrodes were placed on the Cz–Pz–Oz positions (active, ground,
reference electrode) according to the international 10–20 system from Figure 2.2
(Malmivuo and Plonsey, 1995). They were placed on the subject’s scalp after
the skin was abraded with Nuprep abrasive skin prepping gel. A conductive
paste was used to keep the electrodes in place and to avoid that inter–electrode
impedances exceeded 5 kΩ at 30 Hz. The electrodes were connected to a low–
noise Stanford Research Systems SR560 amplifier. The single EEG channel
was amplified (× 50,000) and bandpass filtered between 30 and 300 Hz (6
dB/octave). The sampling rate was set equal to 1000 Hz for SOMA and 1250
Hz for MASTER. Artifact rejection was set initially at 20 µV , so that approx-
imately 5% of the recorded data was discarded. The acquired signals were
divided into data blocks of 16.384 seconds (one sweep) and normally averaged.
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An FFT analysis was carried out and a response was considered present if the
F–ratio statistic of (2.11) showed a significant difference (F–test with 2 and 2N
degrees of freedom, p < 0.05) between the response power and the mean noise
power of N = 120 neighboring frequency bins, approximately 3.7 Hz (60 bins)
at each side (John and Picton, 2000a).

3.3 Results

3.3.1 Amplitude and noise levels

Figure 3.8 shows the response and noise amplitudes per carrier frequency av-
eraged over all nine subjects for a stimulus intensity of 40 dBSPL for mea-
surements of 32 sweeps. The noise amplitude per carrier frequency is esti-
mated around its corresponding modulation frequency using the RMS value of
N = 120 neighboring frequency bins, approximately 3.7 Hz (60 bins) at each
side. Response and noise values of the same carrier frequency (left and right)
are taken together for analysis, e.g. 1 kHz in the figure shows both response and
noise values of modulation frequencies 90 and 94 Hz. Lower stimulus intensities
show a similar behavior.

To estimate the general noise level during measurement, complementary to the
calculation of the noise levels around each modulation frequency conducted
above, RMS noise values over a greater frequency range (70 – 110 Hz) and
over all completely available intensities (10 – 40 dBSPL) were calculated for 32
sweep measurements. Their means and standard deviations are 5.06 (1.68) nV
and 4.99 (1.82) nV for the MASTER and SOMA setup respectively, showing no
significant difference using a paired samples t–test, p > 0.05. Signal–to–noise
ratios do not show significant differences using a paired samples t–test for each
separate frequency between the two methods, p > 0.05.

3.3.2 Hearing threshold difference scores

Table 3.1 presents the mean differences between the measured ASSR thresholds
and the corresponding behavioral thresholds. A paired samples t–test does not
show any significant differences for each separate frequency between the two
methods, p > 0.05.
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Figure 3.8: Mean ASSR and noise amplitudes (nV) for 40 dBSPL data of nine
subjects for measurements of 32 sweeps. MASTER: solid line & square marker.
SOMA: dotted line & circle marker. The noise amplitude per frequency is
estimated around its corresponding modulation frequency using the RMS value
of N = 120 neighboring frequency bins, approximately 3.7 Hz (60 bins) at each
side. Response and noise values of the same carrier frequency (left and right)
are taken together for analysis, e.g. 1 kHz in the figure shows both response and
noise values of modulation frequencies 90 and 94 Hz. Error bars are omitted
for clarity. Standard deviations (nV) are 11.9, 16.5, 16.1, 8.7 and 8.9, 11.9,
14.3, 9.1 for MASTER and SOMA response amplitudes respectively. For noise
amplitudes the standard deviations (nV) are 2.5, 2.6, 2.6, 2.6 and 2.5, 2.6, 2.7,
2.9 for MASTER and SOMA respectively.

3.4 Discussion

This chapter focusses on the development of a setup for multichannel auditory
steady–state response measurements, called SOMA – Setup ORL for Multi-
channel ASSR. Both the hardware and software implementation are described,
together with an evaluation study on nine normal–hearing subjects.

The urge for the development of an alternative research setup, next to the
currently available commercial devices, was created by the need for a mobile,
multichannel, inexpensive, flexible and modular extensible research platform,
capable of processing custom made stimuli and changing carrier frequency in-
tensities on the fly. Most commercial devices do not provide more than two–
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channel EEG measurements. The possibility to read in own stimuli or to alter
stimulus and recording parameters is very limited or non–existent. Adding
extra functionalities without referring to the manufacturer is not possible. If
research is the main purpose, commercial devices often do not fulfill the re-
searcher’s expectations although these devices are highly suitable in their re-
spect for use in clinical environments.

SOMA uses a standard high–quality multichannel RME soundcard. This sound-
card based choice is motivated by the fact that the RME soundcard is relatively
inexpensive compared to standard multichannel data acquisition cards, by the
use of several RME devices in the author’s research environment, the available
experience built up through this presence and the availability of C++ soft-
ware code for the device. A portable SOMA prototype setup using a RME
soundcard was built up in a very short time in combination with multichannel
recording software, like e.g. Adobe Audition. The prototype showed that stim-
ulus presentation over a wide dynamic range needed for ASSR measurements
was possible using the RME soundcard and that is was capable of recording
multichannel amplified EEG potentials. The sufficient dynamic range makes it
possible to avoid the use of attenuators or audiometers which keeps the setup
portable.

The most important advantages of the setup are the use of multiple EEG
channels, the use of custom stimuli and the flexibility for research studies.
Two–channel measurements are available in the most recent ASSR devices of
e.g. Natus, Interacoustics, Grason–Stadler Inc. or Intelligent Hearing Systems.
The use of more than two channels however, is not available commercially.
Some devices are more flexible than others, but in general the possibilities to
change experiment stimuli or parameters is limited. Minor advantages are the
portability, the possibility to change independent intensities on the fly (also
implemented by Interacoustics) and the modular extensibility, which makes
the user independent from a commercial supplier. The biggest limitation of
the SOMA setup is the intensity range of 10 to 100 dBSPL (90 dB dynamic
range). This seems rather low compared to other devices, but it is consid-
ered sufficient for hearing threshold determination for both normal–hearing as
severely hearing impaired subjects.

Table 3.1 can be compared to studies with other multiple frequency ASSR
thresholds in normal hearing subjects (Dimitrijevic et al., 2002; Herdman and
Stapells, 2001; Luts and Wouters, 2005; Perez-Abalo et al., 2001), that use the
same MASTER–system as in this study, except for Perez-Abalo et al. (2001)
who use the Audix system from Neuronic S.A. Standard deviations of the
difference scores are comparable to the current data. The difference scores
are lower than those achieved by MASTER and SOMA in the present study,
except for the data in Luts and Wouters (2005), which are similar. Reasons for
the lower difference scores in the other three studies can be found in elevated
hearing thresholds or longer test durations (Luts and Wouters, 2005).
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Table 3.1: Mean difference scores and standard deviations of the ASSR thres-
hold (measured at 10 dB precision) and the corresponding behavioral threshold
(measured at 5 dB precision) for 18 normal–hearing ears. Intensities of 50, 40,
30, 20 and 10 dBSPL have been applied in experiments of 32 sweeps each (ap-
proximately 10 minutes). In some cases, a 60 dBSPL intensity has been used
to confirm a threshold.

Carrier (Hz) 500 1000 2000 4000 All
MASTER (dB) 22 ± 11 15 ± 8 14 ± 7 17 ± 8 17 ± 9

SOMA (dB) 24 ± 9 19 ± 9 15 ± 8 16 ± 9 18 ± 9

3.5 Conclusions

Section 3.1 describes the general background and the motivation for building
the setup. Commercially available setups do not provide the specifications re-
quired for the studies in this thesis. Therefore it is decided to build a custom
setup. In Section 3.2, both hardware and software of the setup are described.
SOMA makes use of an inexpensive multichannel soundcard that is controlled
by software written in C++. Section 3.3 presents the results of an evaluation
study with nine normal–hearing subjects that shows that no significant perfor-
mance differences exist between the proposed platform and a reference platform
(the MASTER platform from John and Picton (2000a)). These observations
are discussed in Section 3.4.

It can be concluded that the SOMA program, in combination with the RME
multichannel soundcard, can be used to assess ASSR hearing thresholds re-
liably. SOMA presents a flexible and modularly extensible high–end mobile
ASSR test platform, that allows multichannel measurements, the use of own
stimuli and independent intensity changes. It is not restricted by the limita-
tions of commercial software and is thus suited for research and several clini-
cally diagnostic purposes. Although the validation study was conducted using
only single channel measurements, an extension to multiple channels will not
compromise these conclusions.

In the following chapters the SOMA setup is used to apply generated and
custom made stimuli and to record multichannel EEG. This multichannel EEG
is processed using different multichannel signal processing techniques.



Chapter 4

Improving ASSR Detection
Using Independent
Component Analysis

Section 2.1 showed that auditory steady–state responses are a reliable assess-
ment technique for hearing threshold estimation. Unfortunately, ASSR mea-
surements can last a long time. To reduce recording time to about 45 to 60
minutes, Section 2.2 offered several solutions. Although being effective in most
of the cases, these methods were not developed with multichannel EEG mea-
surements in mind. The following chapters will address the processing of multi-
channel EEG data. This way, measurement times can be reduced significantly
and robustness against artifacts can be increased.

The first multichannel processing technique discussed in this thesis is inde-
pendent component analysis (ICA). After a short introduction in Section 4.1,
Section 4.2 introduces the theory of ICA, its assumed ASSR model, the ex-
perimental setup and the used evaluation method. In Section 4.3, the theory
is applied to real–life EEG data. Firstly, the available seven–channel data of
eight normal–hearing subjects are processed based on ICA (using the JADE
algorithm) and results are compared to those from the most common single
channel ASSR technique (John and Picton, 2000a). It will be shown that ICA
significantly improves detection for measurements between 30 and 60 dBSPL.
Secondly, the optimal number of input channels, the optimal electrode positions

The material presented in this chapter has been published in ‘Van Dun, B., Wouters,
J., and Moonen, M. (2007), “Improving auditory steady–state response detection using in-
dependent component analysis on multi–channel EEG data,”IEEE Trans. Biomed. Eng.,
54(7), 1220–1230’.
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and the optimal number of independent components are reported. Thirdly,
by fixing the separating matrix W, calculated from data with a high SNR,
a performance improvement may be expected. This assumption is evaluated.
Fourthly, the performance of an ICA–based procedure applied to single channel
data is considered. Finally, a combination of previous techniques is presented.
Section 4.4 discusses these results. Section 4.5 ends this chapter with some
conclusions.

4.1 Introduction

Over the last decade, independent component analysis (Hyvärinen et al., 2001)
has appeared as a powerful signal analysis tool for a variety of industrial, med-
ical and even financial applications (Back and Weigend, 1997; Bounkong et al.,
2003; De Lathauwer et al., 2000; Fang and De-Shuang, 2005). ICA allows
finding the underlying factors from multivariate statistical data by looking for
components that are both statistically independent, and non–Gaussian. In this
chapter, the possible use of ICA in ASSR detection is investigated.

4.2 Methods

This section describes the methods used in this study. In Section 4.2.1, the
theory of independent component analysis is presented. When ICA is applied
to the recorded multichannel EEG containing ASSRs, a model needs to be
assumed (Section 4.2.2). Sections 4.2.3 and 4.2.4 describe the used setup and
stimuli for the evaluation study. The single channel reference method and the
way the multichannel EEG is processed using ICA is described in Section 4.2.5.
Finally, the used performance evaluation procedure is described in Section 4.2.6.

4.2.1 Independent component analysis

Independent component analysis (ICA) is a blind source separation technique
that is used to find a latent structure underneath a set of observations (Comon,
1994; Hyvärinen et al., 2001). This underlying structure comes in the form of
unknown sources or independent components (ICs). The ICA general model is

X = f(θ,S) (4.1)

with XT = [x1 x2 . . . xm] a matrix with m observations xi and f an unknown
function with parameters θ that operates on statistically independent underly-
ing variables ST = [s1 s2 . . . sq] with q ≤ m. If f is a linear function, a special
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case of the above equation is obtained, namely

X = AS (4.2)

with A an m × q mixing matrix. The pseudoinverse of A is defined as the
separating matrix W,

W = A+ (4.3)

This formula states that each of the observations xi is a linear combination of
a set of q underlying ICs sj :

xi = ai1s1 + . . . + aiqsq for i = 1 . . . m (4.4)

ICA–algorithms estimate both S and A.

The most important assumption of ICA is that the components, linearly com-
bining into observations, are mutually independent of each other. The funda-
mental problem is how to assess the independence of the components. The
more common approach assumes the distributions of the ICs to be as far from
normal Gaussian as possible. This idea is fed by the inverse of the central limit
theorem, which states that the distribution of a sum of independent variables
shifts to a normal (Gaussian) distribution when the number of variables goes to
infinity (Trotter, 1959). To make this approach practically usable, different ap-
proximate measures of non–Gaussianity have been developed. By maximizing
such a measure, a matrix S can be constructed numerically. The ICA–algorithm
that has been used in the rest of this study is the joint approximate diagonaliza-
tion of eigenmatrices (JADE) algorithm (Cardoso and Soloumiac, 1993). This
algorithm has advantages over e.g. FastICA (Hyvärinen, 1999) that practically
suffers much more from local optima, leading to the calculation of different ICs
and separating matrices W when the algorithm is run several times over the
same dataset. However, alternative algorithms could have returned a higher
performance than JADE, like the recent MILCA algorithm (Stögbauer et al.,
2004). It is possible to tailor the ICA–algorithm to specific needs of the problem
using the Bayes theorem (Knuth, 1999). An extension of ICA to underdeter-
mined mixtures is also a possible approach (Comon, 2004; Deville et al., 2004).
At the time of this research, JADE was considered a proven technique that
was tested on several applications, while the new methods above did not have
those benefits that much.

4.2.2 Assumed model

In Section 4.2.3, a seven–channel setup will be described that records linear
combinations of an unknown number Q of latent sources. When eight ASSRs
are present one can assume eight latent sources to be ASSRs, as these sources
are assumed to be independent from each other. This assumption is not correct
anatomically when intensity, number of responses, carrier– and modulation fre-
quency are varied (Lins and Picton, 1995). However, when all these parameters
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are kept fixed, the assumption holds as each modulation frequency excites a
different part of the brainstem (Picton et al., 2003). This assumption is also
supported by our own experience that ICA–application on real EEG data shows
that not all ASSRs are projected on one single independent component.

It is assumed in this model that each ASSR is generated by only one source.
If not, the number of ASSR sources will be larger than eight. This however
does not impact on the model and conclusions. Condensing this in a generative
model, one obtains X = BS + N:
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...
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where sASSRi (i = 1, . . . , 8) are ASSR sources, snoisej (j = 1, . . . , Q − 8) are
muscle artifacts, eye blinks, brain processes, . . . and nk (k = 1, . . . , 7) are
external noise sources like amplifier noise and e.g. line noise picked up by the
electrode cables.

When observing (4.5), each row k in B gives information about the SNR of a
certain ASSR in the corresponding observation xk. Therefore, it is possible to
look for the xk with the highest SNR for each ASSR source. After application of
ICA (Ŝ = WX), B is replaced by B̂ = WB. The simulations from Section 4.3
are expected to show that B̂ returns a better SNR for an ASSR in certain
components from Ŝ than B for an ASSR in the observation matrix X. It
is likely that the ICA–technique can assess components Ŝ this way that will
be more useful for detection than the original observations X, based on the
assumption that ASSR sources have a platykurtic distribution, while the EEG
noise sources have a more mesokurtic one (close to Gaussian).

4.2.3 Experimental setup

The ASSR measurements were conducted in a sound–proof Faraday cage. The
recording electrode placement can be found in Table 4.1, in accordance with
the international 10–20 system of Figure 2.2 (Malmivuo and Plonsey, 1995).
All seven active electrodes were referenced to the common electrode, which
was placed on the forehead. The Kendall electrodes were placed on the sub-
ject’s scalp after the skin was abraded with Nuprep abrasive skin prepping
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Table 4.1: Recording electrode positions for a seven–channel setup. All chan-
nels are referenced to the common electrode on the forehead. The configuration
for the single channel reference method is denoted using bold typeface.

Channel Position
1 Oz
2 P4
3 P3
4 Cz
5 F4
6 F3
7 Pz

common forehead
ground left mastoid

gel. A conductive paste was used to keep the electrodes in place and to avoid
that inter–electrode impedances exceeded 5 kΩ at 30 Hz. The electrodes were
connected to a low–noise Jaeger–Toennies multichannel amplifier. Each EEG
channel was amplified (× 10,000), bandpass filtered between 70 and 120 Hz (6
dB/octave) and finally software highpass filtered at 75 Hz (60 dB/octave). The
amplified EEG signals were read using an RME Hammerfall DSP Multiface
multichannel sound card and recorded using Adobe Audition 1.0 at a sampling
rate of 32 kHz and downsampled to 250 Hz. Downsampling does not influence
the performance of the ICA–algorithm, but greatly improves its efficiency. An
alternative for downsampling could exist in the use of these extra samples to
create additional artificial channels. All offline processing was performed us-
ing Matlab R14. The sound card was also used to generate the stimuli (see
below). In the end, the stimulation and recording equipment used here is an
older version of, but very similar to, the setup described in Chapter 3. An arti-
fact rejection protocol was used, where all epochs (data blocks of 256 samples)
greater than 20 µV in absolute value were rejected.

Eight normal–hearing volunteers (age range 22–33 years) participated in the
study. Their behavioral hearing thresholds were less than 20 dBSPL for octave
audiometric frequencies between 500 and 4000 Hz. Subjects were asked to lie
down on a bed with eyes closed and to relax or sleep. Four trials with a length
of 48 sweeps each (approximately 13 minutes) were conducted: at 60, 50, 40
and 30 dBSPL respectively. These intensities were chosen as the main goal of
the study was to decrease the measurement duration, and not hearing threshold
assessment in general. At the end of the session, behavioral thresholds were
determined at 0.5, 1, 2 and 4 kHz with a 5 up–10 down method using modulated
sinusoids.
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4.2.4 Stimuli

Two stimuli with four 100% amplitude modulated (AM) carrier frequencies
each, were applied to each ear. The carrier frequencies were the same for both
ears, namely 0.5, 1, 2 and 4 kHz. The modulation frequencies were taken close
to respectively 82, 90, 98 and 106 Hz for the left ear, and 86, 94, 102 and 110 Hz
for the right ear. To obtain an integer number of modulation frequency cycles
in one data block of 256 samples (1.024 seconds), the previous values had to
be corrected slightly (John and Picton, 2000a). This stimulus configuration
was used with four out of eight subjects. The other four subjects received a
reduced stimulus set, with only 0.5 & 4 kHz applied to the left ear and 1 &
2 kHz to the right ear. This difference in stimulus sets does not influence the
following results.

Stimuli were created using Matlab R14 and played using Adobe Audition 1.0 at
a sampling rate of 32 kHz. An RME Hammerfall DSP Multiface multichannel
sound card sent the stimuli to Etymotic Research ER–3A insert phones for
subject stimulation. The eight separate signals were calibrated at 70 dBSPL,
using a Brüel & Kjær Sound Level Meter 2260 in combination with a 2–cc
coupler DB138.

4.2.5 Five ways to process the available EEG dataset

This subsection describes five different ways to process the available multichan-
nel EEG. These methods are all evaluated in this chapter. The first method
serves as the (standard) reference method all other methods are compared with.
The third method is a combination of the first and the second method. The
fifth method is a combination of methods 1, 2 and 4. It will be shown that
these combinations of methods will increase performance compared with the
individual methods.

Method 1: Single channel reference method

All ICA–processed EEG data in this chapter is compared with a gold stan-
dard, a single channel reference method that is most commonly used in clinical
practice and described in literature (for an extensive review of single channel
recording techniques, we refer to Picton et al. (2003)). For adults this single
channel reference technique is the placement of the active and reference elec-
trodes at Cz (inion) on top of the head and Oz (occiput) at the back of the
head just above the base of the skull. The ground electrode position is not
relevant.

According to Table 4.1, channel 1 (Oz) and channel 4 (Cz) are both referenced
to the common electrode at the forehead. When channel 1 (Oz–forehead)
is subtracted from channel 4 (Cz–forehead), a new EEG channel is obtained
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between electrodes Cz and Oz. This new channel is defined as the reference
channel for single channel measurements. The EEG data in channels 1 and
4 were artifact rejected (20 µV ) according to Section 4.2.3 before taking the
difference of both channels.

Enough data was collected such that the data stream could be divided into N
= 48 sweeps. One sweep is exactly 16.384 seconds long (or M = 4096 samples),
based on parameters also used in John and Picton (2000a). Initial recording
lengths were such that the division in 48 sweeps was always possible after
artifact rejection. This implies that measurements with subjects generating a
lot of artifacts are longer compared with measurements with subjects that do
not produce that many artifacts. Data is averaged over N sweeps with equal
weights (normal averaging) according to the steps below.

• The single channel EEG recordings are divided in 48 data blocks (sweeps)
with a length of 4096 samples (16.384 seconds).

• Each sweep sn (n = 1 . . . 48) is averaged together with all preceding
sweeps s1 to sn−1. This creates 48 averaged sweeps s̄n (n = 1 . . . 48) with
a length of 4096 samples. Averaged sweep s̄1 is identical to sweep s1.
Averaged sweep s̄48 is an average of all sweeps s1 to s48. This averaging
step is necessary to increase the SNR of the ASSR to an acceptable level.

• For each processed (averaged) sweep s̄n, the F–ratio (SNR) of each mod-
ulation frequency is determined using (2.11). When 8 modulation fre-
quencies are used, 8 F–ratios are calculated.

All ICA–processed results in this chapter (and the results obtained after MWF–
processing in Chapter 5) are compared with this reference method.

Method 2: Multichannel ICA

The sketchy algorithm below processes m–channel EEG data with a length
of NM samples. N is the number of sweeps (data blocks) the data will be
divided into. In this chapter the data is divided into N = 48 sweeps. One
sweep is 16.384 seconds long (or M = 4096 samples), based on parameters also
used in John and Picton (2000a). This m × NM EEG data matrix is, after
artifact rejection and an averaging step, processed using the ICA–technique
from Section 4.2.1 to obtain q independent components (ICs). For clarity, the
description will explicitly show the process using N = 48 sweeps and M = 4096
samples. The number of channels m and the number of ICs q are kept variable.

• The m–channel EEG recordings are divided in 48 m–channel data blocks
(sweeps) with a length of 4096 samples (16.384 seconds).
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• Each m–channel sweep sn (n = 1 . . . 48) is averaged together with all
preceding sweeps s1 to sn−1. This creates 48 averaged m–channel sweeps
s̄n (n = 1 . . . 48) with a length of 4096 samples. Averaged sweep s̄1 is
identical to sweep s1. Averaged sweep s̄48 is an average of all sweeps s1

to s48. This averaging step is necessary to increase the SNR of the ASSR
to an acceptable level. Without averaging, the ICA–technique will fail,
in contrast with the MWF–method from Chapter 5 that actually does
not need prior averaging.

• The JADE algorithm takes one averaged m–channel sweep s̄n as an input.

• q ICs are calculated based on the m–channel averaged sweep s̄n (with a
length of 4096 samples). Each IC also has a length of 4096 samples.

• For each IC in a processed (averaged) sweep, the F–ratio (SNR) of each
modulation frequency is determined using (2.11). When 8 modulation
frequencies are used, 8 F–ratios are calculated. Consequently, when q
ICs are available, 8q F–ratios are calculated for each processed (averaged)
sweep s̄n.

• For each modulation frequency within the same processed (averaged)
sweep s̄n, the largest F–ratio is taken out of q calculated F–ratios.

This procedure is not used directly in this chapter, but is improved first as
described by method 3.

Method 3: Multichannel ICA combined with single channel reference
method (method 1 + 2)

The first simulations using method 2 show a major variation over the different
subjects, with several subjects performing worse than the single channel refer-
ence (method 1). The general improvement is marginal. To avoid this effect,
methods 1 and 2 are combined. In particular, the best F–ratio out of q + 1
F–ratios for each modulation frequency is taken: q F–ratios from the q ICs
calculated using method 2 with m EEG–channels as an input and one extra
F–ratio from the original single channel reference using method 1.

One should be aware that this combination of both the single– and multichan-
nel approach does not necessarily ensure a better performance, compared to
the single channel reference using method 1. As it is important to keep the
specificity of the combined processing (method 3) equal to the specificity of
the reference (method 1), the single channel data should truly be viewed as
an extra channel, which raises the detection threshold accordingly due to the
multiple testing aspect (Section 4.3.1).

The results obtained by applying this procedure on multichannel EEG data is
described in Sections 4.3.1, 4.3.2 and 4.3.3.



4.2. Methods 69

Method 4: Single channel ICA combined with single channel refer-
ence (method 1)

Some research already has been conducted on the single channel case of inde-
pendent component analysis (Davies and James, 2007; James and Lowe, 2003;
Warner and Proudler, 2003). Single channel ICA contradicts the intuition that
ICA is only suitable for processing of multichannel measurements. Recently,
it has been suggested by Davies and James (2007) that single channel ICA
(SCICA) can identify and separate sources successfully only when these sources
have disjoint spectral support. However, if one–channel data is divided in dif-
ferent channels (say, two), it may still be worth the effort to check whether the
algorithm may be able to extract two components with the following charac-
teristics. The first component may be the ASSR of interest, which is presumed
to be present in both (divided) channels, in the form of a sinusoid at a certain
frequency. The second component may be the background EEG noise. One
may argue that the non–stationary EEG noise varies too much over the two
created channels. However, the chance that the statistical properties of the
EEG noise from the first channel are totally different from those of the EEG
noise of the second channel, is considered low.

A limitation of the ICA–technique is that the number of q ICs cannot exceed
the number of m observations or channels. Otherwise the ICs are not iden-
tifiable because A is not invertible. Therefore, no more than one IC can be
estimated from single channel data, and then – quite trivially – this IC would
be equal to the original data. To avoid this problem, the available data has
to be split up to create m− 1 extra artificial channels, so that m channels are
available to calculate q ICs. Other approaches may also be used to create extra
channels. First, when the available single channel EEG data is oversampled,
extra channels can be created by downsampling the data multiple times, with a
shift by an integer number of samples for each new downsampling step. Second,
an interesting procedure is described in Davies and James (2007). Extra chan-
nels are created by shifting the available single EEG channel a couple of times
by one sample each (thus creating a Toeplitz matrix with ‘EEG channels’).
After application of a multichannel ICA–algorithm, the ICs are clustered with
a clustering algorithm. Based on the acquired clusters, reconstruction filters
are calculated that can be applied on the original single channel EEG data.

A schematic overview is shown in Figure 4.1 of the used single channel ICA–
technique applied to a one–channel EEG data stream with a length of NM
samples. This EEG data stream is the same (reference) channel (Cz–Oz) as
used in method 1. N is the number of sweeps (data blocks) the data will
be divided into, after artefact rejection (20 µV ). In this chapter the data is
divided into N = 48 sweeps. One sweep is 16.384 seconds long (or M = 4096
samples), based on parameters also used in John and Picton (2000a). For the
sake of simplicity, the description will explicitly show the process using N =
48 sweeps and M = 4096 samples per sweep. The number of channels m and
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ICs q is taken equal to 2. This has been observed to be the optimal number of
channels and ICs for the single channel case (Section 4.3.4). Other values for
m and q degrade performance significantly.

The single channel procedure is as follows:

• Step 1) An 48×4096 matrix is constructed from the data stream originat-
ing from the single channel recording system described in Section 4.2.3.
No averaging has been carried out yet. This matrix is divided in m = 2
parts (‘channels’ or ‘observations’), by interleaving the odd and even
sweeps, with N

m = 24 sweeps per part, each sweep 4096 samples long.
Part 1 contains sweeps s1, s3, . . . , s47 and Part 2 contains all even–
numbered sweeps.

• Step 2) Sweeps s1, s3, . . . , s2k−1 from Part 1 are averaged and stored
in sweep sk of an averaged matrix (k = 1, . . . , 24). Sweeps s2, s4, . . . ,
s2k from Part 2 are averaged and stored in sweep s24+k of that averaged
matrix (k = 1, . . . , 24). The resulting averaged matrix has the same
structure as the matrix from Step 1.

• Step 3) Independent component analysis is performed 24 times, each time
using a group of m = 2 sweeps sk and s24+k from the matrix from Step
2 with k = 1, . . . , 24. Each element from this group of sweeps shares
the property that the element is constructed by averaging k sweeps from
the matrix from Step 1. For each k, the JADE algorithm takes in m = 2
observations and returns q = 2 ICs, which are linear combinations of
sweeps sk and s24+k.

• Step 4) For each k, every IC from Step 3 is Fourier transformed and the
F–ratio (SNR) is calculated of the modulation frequency of interest using
(2.11). Because ICA does not order its components in any way (rows in
A can be permuted randomly), it is unknown which component has the
highest F–ratio of a certain modulation frequency. For each modulation
frequency, all F–ratios (SNR) from all q = 2 ICs are calculated and the
largest one is chosen.

• Step 5) After the largest F–ratio is chosen, a dimension problem arises. If
only one F–ratio is calculated out of m = 2 sweeps from an N = 48–sweep
data stream, only N

m = 24 F–ratios are available. To compensate for this,
each IC has to be copied 2 times to make comparison possible with the
single channel reference from method 1, which still contains 48 sweeps
after averaging. As such, the resulting sweep from an ICA–operation on
2 sweeps replaces those 2 sweeps by the resulting sweep and its copy.

The first simulations using single channel ICA only show no performance in-
crease. However, when the single channel ICA–approach is combined with
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Figure 4.1: Data flow for ICA applied on single channel data. Artificial input
channels are created by splitting the available data in m = 2 different parts.
These parts are used to calculate q = 2 independent components.

method 1, there is some improvement (we refer to Section 4.3.4 for the re-
sults). In particular, the best F–ratio out of 3 F–ratios for each modulation
frequency is taken: 2 F–ratios from the 2 ICs calculated using the method
described in this subsection with the single channel reference (Cz–Oz) as an
input and one extra F–ratio from the original single channel reference (Cz–Oz)
using method 1.

The results obtained after application of this procedure are described in Sec-
tion 4.3.4.

Method 5: Multichannel ICA combined with single channel reference
method and single channel ICA (method 1 + 2 + 4)

The procedures from method 3 (which itself is a combination of methods 1
and 2, results described in Sections 4.3.1, 4.3.2 and 4.3.3) and method 4 (re-
sults in Section 4.3.4) are combined. The best F–ratio out of q + 3 F–ratios
for each modulation frequency is taken: q F–ratios from the q ICs calculated
using method 2, one F–ratio from the original single channel reference using
method 1, and two F–ratios obtained with method 4 (here, 2 ICs are extracted
from single channel EEG data).

The results obtained by applying this procedure on multichannel EEG data is
described in Section 4.3.5.
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4.2.6 Performance measures

For evaluation of the proposed techniques, two methods have been chosen.
The first one uses receiver operating characteristic (ROC) curves. It has the
possibility to indicate statistically significant differences between techniques.
However, ROC–curves do not give insight in the absolute benefit from one
method compared to another one in terms of measurement time. Therefore, a
second measure represents the amount of time that is needed to obtain a signif-
icant response. The drawback here is that the results do not have a statistical
meaning and only give an indication for what is possible for an individual sub-
ject.

ROC–curves

In order to evaluate the above described techniques, receiver operating charac-
teristic (ROC) curves were calculated from 8 subjects (Green and Swets, 1966;
Hanley and McNeil, 1982). The curves were constructed as follows for a certain
number of averaged sweeps:

1. Select 50 decision criteria pi, represented by p–values that vary between
0.9 and 10−15.

2. For each decision criterium pi, calculate the sensitivity TP
TP+FN and speci-

ficity TN
FP+TN over all measurements (4 intensities per subject), using

16 modulation frequencies of which 8 were used as control frequencies,
as in these frequencies it was assured that only noise was present. A
true–positive (TP) is a correct assessment from the algorithm that a re-
sponse is present in reality. A false–negative (FN) is an uncorrect as-
sessment that no response is present, while in reality a response is there.
True–negatives (TN) and false–positives (FP) are the dual cases. All TP,
TN, FP and FN are summed together over the same decision criterium
pi and used in the above equations.

3. The ROC–curve is built up plotting the ‘sensitivity’ as a function of ‘1-
specificity’. Each pi defines a new point of the curve.

After plotting all 50 points of the ROC–curve, the area below the curve is
calculated. The area under the curve was used as a measure of detection
accuracy. This procedure is carried out for each evaluated method. These
calculations were carried out each time an additional sweep was collected and
averaged with previous sweeps, so that the performance could also be analyzed
on a time based scale.
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To statistically compare different ROC–areas, a Z–test was carried out. The
z–value can be calculated using (Hanley and McNeil, 1983):

z =
A1 −A2√

σ2
1 + σ2

2 − 2rσ1σ2

(4.6)

with A1 the ROC–area calculated for method 1 (the single channel reference)
and A2 the ROC–area calculated for all other methods (single– or multichannel
ICA). Here, σi is the standard deviation of Ai and r is the correlation coefficient
between the data obtained from method 1 and the other methods. The σi are
calculated using

σi =
√

X1 + X2 + X3

nAnN
(4.7)

with
X1 = Ai(1−Ai)
X2 = (nA − 1)(Q1 −A2

i )
X3 = (nN − 1)(Q2 −A2

i )
nN = TP + FN
nA = TN + FP
Q1 = Ai

2−Ai

Q2 = 2A2
i

1+Ai

where nA are all ‘abnormal’ (negative in reality) cases and nN all ‘normal’
(positive in reality) cases. To find r, a value must be looked up in Table I of
(Hanley and McNeil, 1983) using rN , rA, A1 and A2. Here, rN is the Pear-
son Product–moment correlation between all processed normal data (nN ) from
method 1 and the other methods. In the same way rA is calculated with all
abnormal data (nA). As an alternative, r can be taken as the mean of rA and
rN which produces a maximum error on r of 10 %.

Effective measurement time reduction

ROC–curves provide a theoretical means to assess different methods. To eval-
uate the practical applicability of a method, a measure for the effective benefit
can be obtained by counting the number of processed sweeps until a response
is first–detected. The difference between these numbers obtained with the
two methods is an indication for a practical improvement or decline. In this
study, we define a first–detection to be valid when the response is significantly
present for 3 consecutive sweeps for methods 3 and 4, and 6 consecutive sweeps
for method 5. In Chapter 5, this evaluation method is also used for an MWF–
based approach. Here, 8 consecutive sweeps are required for detection. This
quantity is based on the condition that there is no improvement allowed for
noise frequencies when comparing methods 3, 4, 5 and the MWF–based ap-
proach from Chapter 5, with the single channel reference (method 1).
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Due to the statistical multiple testing effect, the detection threshold (a p–value
which is calculated by applying an F–test as described in Section 2.2.6 on the
finally selected (maximum) F–ratio) needs to be made more stringent when
adding more ICs for detection. The p–values for detection are the following:
p = 0.050 (method 1), p = 0.0065 (method 3), p = 0.020 (method 4), p = 0.0053
(method 5), and p = 0.00025 (MWF–based approach of Chapter 5). One needs
to keep in mind this evaluation method is patient dependent and relies much
on the used detection criterion.

4.3 Results

This section presents the results when applying ICA to the recorded single– and
multichannel EEG. Section 4.3.1 will show the effect of extracting seven inde-
pendent components out of seven EEG channels. Section 4.3.2 describes what
happens when the number of EEG channels and the number of independent
components are varied. Section 4.3.3 introduces the fixed separation matrix.
These sections describe the results obtained using implementations of method 3,
with method 1 used for comparison purposes. Section 4.3.4 shows ICA applied
to only one EEG channel, an application of method 4. Finally, multichannel
and single channel ICA are combined using method 5 in Section 4.3.5.

Figures 4.2, 4.4, 4.5, 4.6 and 4.7 show the area under the ROC–curve as a
function of the number of averaged sweeps for different methods, compared
with the single channel reference (method 1). The reference method is the
standard single channel MASTER setup (John and Picton, 2000a) with artifact
rejection at 20µV and with the amplified difference between Cz and Oz as EEG
signal. This setup is described in more detail in the first part of Section 4.2.5. A
paired Z–test was carried out (Section 4.2.6) to compare the different techniques
statistically using ROC–curves. The dotted lines in Figures 4.2, 4.6 and 4.7
denote two standard deviations of the ROC–areas. When they do not overlap,
a significant difference is present (94.7 % significance interval, two standard
deviations). Important for clinical application is the fact that, with the current
sampling rate of 250 Hz, a real–time calculation during measurement is possible.
Every 16.384 seconds, a new sweep is read. On a high–end PC (Pentium 4),
the calculation time of the seven–channel ICA does not exceed five seconds. As
a result, each new sweep can be downsampled, processed online and visualized
before the next one is collected.
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Figure 4.2: ‘area under ROC–curve’ versus ‘number of averaged sweeps’:
Method 3 with q = 7 independent components and m = 7 channels (dashed);
Method 1, single channel reference (solid). The dotted lines denote two stan-
dard deviations.

4.3.1 Multichannel ICA (method 3): seven channels and
seven extracted components

ROC

Figure 4.2 shows the results of method 3 with q = 7 independent components
and m = 7 channels. A significant difference (two standard deviations) between
the single channel reference (method 1) and multichannel ICA–configuration
(method 3) is present from sweep 11 on. The best performance of the single
channel reference (method 1) is obtained after 48 sweeps of data collection. In
contrast, a significantly better performance than the single channel reference
(method 1) will ever achieve, is reached after 23 sweeps by the multichannel
ICA–technique (method 3). This can be interpreted as a measurement time
reduction of 52 %, in terms of ROC–area.

It is important to know that this improvement is only caused by the use of
the ICA–technique, and not by the benefit of just using multiple channels
instead of one. If the ICA–technique is omitted, for example by substituting
the separating matrix W by the identity matrix I, the ROC–areas of methods 1
and 3 in Figure 4.2 will coincide. This condition represents similar performance,
which of course needs to be avoided.
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Figure 4.3: ‘sensitivity’ versus ‘number of averaged sweeps’: Method 3 with
q = 7 independent components and m = 7 channels (dashed, p = 0.0065);
Method 1, single channel reference (solid, p = 0.050). The specificity is taken
equal to 95.0 %.

Specificity and sensitivity

Because ROC–areas are a global evaluation using an integration over a range of
decision criteria (p–values), a biased representation is possible. Therefore, the
sensitivity and specificity is checked for a fixed p–value most used in literature.
Using the single channel reference method, a p–value of 5 % corresponds to a
specificity, or true–negative rate, of 95 %. This means that from 100 situations
without a response, five will still be interpreted as if a response is present,
due to noise influences (5% false–positive rate). If more channels are evaluated
simultaneously, which is the case for the ICA–technique, the multiple testing
aspect raises the number of false–positives if the p–value is kept constant. To
avoid this, the decision criterion for response detection is made more stringent
to achieve the same sensitivity. In the case of method 3, the effect of selecting
the best out of 7 ICs and 1 reference channel forces the p–value to be lowered
by a factor of 7.7 (from p = 0.050 to p = 0.0065). The reason for not applying
a full Bonferroni correction (Bland and Altman, 1995) of a factor of eight
can be explained by the fact that there is still some dependence left between
the different ICs and the additional channel. This dependence causes the full
correction by a factor of eight to be too extreme (Stürzebecher et al., 2005).
Figure 4.3 shows the sensitivity for both methods at a specificity of 95 %,
which provides a more realistic view of detection performance. The detection
criterion is lowered to p = 0.0065 for method 3, which still outperforms the
reference method.
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Table 4.2: Time reduction (in %) per subject for methods 3, 4, 5, and the
MWF–approach of Chapter 5. Figures relative to the single channel reference
(method 1). Conditions of detection are described in Section 4.2.6.

Subject 1 2 3 4 5 6 7 8 mean
method 3 8 -1 30 -2 13 8 63 19 17
method 4 -1 16 10 8 23 23 4 2 11
method 5 13 13 30 24 18 6 58 15 22

MWF (Chap 5) 9 4 12 5 2 -9 62 22 13

Table 4.3: Time reduction (in %) per intensity for methods 3, 4, 5, and the
MWF–approach of Chapter 5. Figures relative to the single channel reference
(method 1). Conditions of detection are described in Section 4.2.6.

Intensity (dBSPL) 30 40 50 60
method 3 25 8 22 32
method 4 7 4 19 29
method 5 16 15 41 45

MWF (Chap 5) 9 14 14 37

Effective measurement time reduction

A comparison of method 3 with method 1, per subject, intensity and carrier
frequency, is shown in Tables 4.2, 4.3 and 4.4. On average a mean detection
time decrease of 17 % is obtained. The use of method 3 yields a major decrease
of the detection time for one subject (63 %). For two subjects no improvement
is obtained, taking into account that the standard deviation on the measure-
ment time difference for noise frequencies is almost 5 % (with a mean of 0 %).
This shows that these numbers vary considerably between subjects. They can
be used to indicate some underlying trends. The data concerning intensity and
carrier frequency dependencies show a possible correlation between detection
time reduction and signal–to–noise ratio (SNR). Higher intensities and frequen-
cies with physically larger responses (like 1 and 2 kHz carriers) are more prone
to faster detection using ICA.

4.3.2 Multichannel ICA (method 3): variable number of
channels and extracted components

Figure 4.4 shows the performance of a seven–channel system decomposed into
q ICs using method 3. It is observed that performance is maximized when the
number of ICs is taken as large as possible (q = 7) and decreases when the
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Table 4.4: Time reduction (in %) per carrier frequency for methods 3, 4, 5,
and the MWF–approach of Chapter 5. Figures relative to the single channel
reference (method 1). Conditions of detection are described in Section 4.2.6.

Carrier (Hz) 500 1000 2000 4000
method 3 15 25 31 12
method 4 8 9 3 27
method 5 10 33 31 25

MWF (Chap 5) 1 25 23 15

number of ICs goes down. The number of responses present in the data set
does not influence this observation.

Figure 4.5 shows the obtained results as a function of the number of channels
used in method 3. The order of Table 4.1 is respected to construct the figure,
except for the two–channel case (usage of channel 1 and channel 4, correspond-
ing to channel 4 minus channel 1 of the single channel reference method). An
m–channel ICA thus uses the first m channels of Table 4.1. It can be observed
that a saturation effect appears after 5 channels. There is no improvement
when using a multichannel recording with more than 5 channels (or 7 elec-
trodes). After permuting through all possible combinations of 5 channels in
Table 4.1, the most optimal combination is obtained if 4 electrodes are located
on the back of the head (Oz, P4, P3, Cz). According to the current dataset,
the fifth electrode should be placed at F4. When other combinations are cho-
sen, performance significantly degrades. Focussing on individual subjects in
terms of effective measurement time reduction, only 2 out of 8 show a slightly
(non–significantly) better performance when the contralateral electrode F3 is
taken instead of F4. The same result is noticed for 1 out of 4 frequencies and
for 1 out of 4 intensities. This does not imply an interaction between electrode
position and intensity or frequency is present.

4.3.3 Multichannel ICA (method 3): effects of fixed sep-
arating matrix

This section illustrates the effects of keeping separating matrix W fixed per
subject or for all subjects. ICA is performed once and W is calculated at
highest intensity (60 dBSPL) and after a measurement of 48 sweeps. Afterwards
no ICA is applied and the same W is used for all other calculations of the ICs.
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Figure 4.4: ‘area under ROC–curve’ versus ‘number of averaged sweeps’.
Method 3 with m = 7 channels and q independent components: q = 7 (solid),
q = 6 (dashed), q = 4 (dashdot), q = 2 (dotted); Method 1, single channel
reference (solid–circle).
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Figure 4.5: ‘area under ROC–curve’ versus ‘number of averaged sweeps’.
Method 3 with m = q channels and m = q independent components: m = 7
(solid), m = 5 (dashed), m = 4 (dashdot), m = 2 (dotted); Method 1, single
channel reference (solid–circle).
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Number of Averaged Sweeps

Figure 4.6: ‘area under ROC–curve’ versus ‘number of averaged sweeps’:
Method 4 (dashed); Method 1, single channel reference (solid). The dotted
lines denote two standard deviations.

Fixed separating matrix for all subjects

One fixed W matrix (random subject, 60 dBSPL, 48 sweeps) is used to compute
the ICs of all subjects. In general, no improvement is noticed compared to the
single channel reference (method 1). However, for the dataset used here, some
W matrices (e.g. W calculated from subject 3), return a significantly better
result close to the performance of method 3 from Section 4.3.1. However, it is
not possible to predict a priori an optimal W matrix (or a subject that provides
this matrix) that maximizes the performance of multichannel ICA.

Fixed separating matrix for one subject

The effect of keeping W fixed for each subject separately is significant for
some cases. However, performance is significantly worse than the results from
Section 4.3.1.

Fixed IC for one subject

By additionally fixing the component with the highest SNR for a certain mod-
ulation frequency and for the same subject (together with a fixed W), the
multiple testing aspect is avoided. The detection criterion for data processed
with method 3 rose from p = 0.0065 to p = 0.03 (fixed IC with largest F–
ratio together with the F–ratio of the single channel reference (method 1)) for
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Figure 4.7: ‘area under ROC–curve’ versus ‘number of averaged sweeps’:
Method 5 with q = 7 independent components and m = 7 channels (dashed);
Method 1, single channel reference (solid). The dotted lines denote two stan-
dard deviations.

a specificity of 95.0 %. However, no significant gain compared to the single
channel reference (method 1) is observed.

4.3.4 Single channel ICA combined with method 1

Following only the single channel ICA–technique, no improvement compared
to the single channel reference (method 1) is observed. However, when the
F–ratios obtained with the single channel ICA–technique are combined with
the F–ratio obtained from the single channel reference (method 1), a significant
benefit is visible for a lower number of averaged sweeps. Further investigation
shows that the use of ICA is not even necessary here. If the separating matrix
W is replaced by an identity matrix I, results are almost identical. One can
conclude that for a single channel setup it is sufficient to divide the available
channel in two parts, add the single channel reference (method 1) and then
take the best result. The ICA–contribution can be removed here.

Figure 4.6 displays the results for method 4. The best results are achieved with
division into m = 2 parts. A severe degradation of performance is observed
when the signal is divided in more than two parts. When one of two parts
originates from a different simultaneous channel, no improvement is noticed
anymore. The first 9 sweeps show a significant improvement. A drawback
of this method is the significantly worse performance for a higher number of
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averaged sweeps. For a more practical approach, Tables 4.2, 4.3 and 4.4 show
a comparison of method 4 with method 1 per subject, intensity and carrier
frequency. A measurement time reduction of almost 11 % is possible.

4.3.5 Combining single channel and multichannel tech-
niques

ROC

Comparing Figure 4.2 and Figure 4.6, the idea of combining both methods
comes forward. Figure 4.7 shows the ROC–curve of method 5 that combines
methods 1, 2 and 4. The benefits of both methods merge into a scheme that
provides significant improvement over the whole range of averaged sweeps.

Effective measurement time reduction

When comparing method 5 with method 3, the detection criterion is reduced
from p = 0.0065 to p = 0.0053. This corrected decision criterion is used to
construct the result for method 5 in Tables 4.2, 4.3 and 4.4. It confirms a
further reduction of measurement time. For this dataset, the responses for
all individual subjects can be detected up to 58 % and on average about 22
% faster. No negative values are present which however does not imply that
negative values are not possible anymore. All conclusions from Section 4.3.2,
stating that the optimal number of channels is equal to five, still hold.

4.4 Discussion

This section discusses the results from Section 4.3. The structure of the first
four subsections (Sections 4.4.1 to 4.4.4) is identical to the structure of the
previous section. Section 4.4.5 discusses the effect of artifact rejection on inde-
pendent component analysis.

4.4.1 Multichannel ICA (method 3): seven channels and
seven extracted components

A major improvement in detection speed is possible when recorded multichan-
nel EEG data is preprocessed using the ICA–technique. ASSRs are sinusoidal
which is characterized by a platykurtic distribution, while EEG noise sources
can be considered to have mesokurtic, or Gaussian, distributions. This is in line
with the central limit theorem explaining that the combined sum of all noise
sources will take on a Gaussian distribution if the number of noise sources
goes to infinity (Trotter, 1959). As ICA is trying to separate the sources that
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have optimally different distributions (statistical independence), it is proba-
ble that the algorithm is indeed able to separate the sources because of these
characteristics. This separation ability is influenced by the amount of noise
that is present in the used measurements. ICA performs better when less
noise is present (Hyvärinen et al., 2001). The lower the SNR, the smaller the
measurement time reduction. This is reflected in Tables 4.3 and 4.4, where
especially measurements at higher intensities and with carrier frequencies that
evoke larger responses (1 and 2 kHz) tend to return a larger measurement time
reduction. More noise induces a worse estimation of the separating matrix W.
This is especially obvious when not using the averaging step which initially pre-
processes the data solely to increase the SNR. This indicates that ICA would
only be useful when applied to data with high SNR, like data obtained at
relatively high intensities above hearing threshold.

Two observations can be deduced from Table 4.2: the possibility to perform
worse than the single channel reference (method 1) for some subjects and the
large variance on the individual subject measurement time reduction. Firstly, it
is clearly possible that the SNR of a response can trigger a detection criterion for
the single channel case, but not the criterion for the multichannel case, which is
much more stringent. This behavior can be considered as a sort of ‘noise floor’
which could even result in a measurement time reduction for frequencies with
no response present. As such, response measurement time increases which lie
within the noise floor variance (± 5 %) can be neglected. Secondly, the large
variance (data ranging from -2 to 63 % and already mentioned in Section 4.2.5)
is caused by the sometimes failing ability of the single channel method to detect
responses, even at high intensities. In practice, this can happen from time to
time. It is generally assumed that the Cz–Oz electrode combination is the best
one for detecting responses, as confirmed by the numerous studies using this
electrode combination described in the review paper of Picton et al. (2003).
However, this assumption is not always correct and should be investigated
further, as shown in van der Reijden et al. (2004, 2005) and Chapter 7.

4.4.2 Multichannel ICA (method 3): variable number of
channels and extracted components

Connecting many electrodes to the subject’s head, is not very practical. To
reduce preparation time, it is considered an advantage if a method requires
fewer measurement electrodes. For this dataset, the ICA–technique applied to
EEG containing ASSRs reaches a saturation level at 5 channels (7 electrodes).
This could indicate that it is sufficient to condense all estimated sources Ŝ
from Section 4.2.2 in only five major components ŝi, each component being a
combination of several ASSRs and noise sources. If more channels are used, no
performance improvement is observed anymore. This effect can be explained
by the fact that a sixth channel still adds extra information to the complete
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system, but this additional gain is annihilated by the extra increase of false–
positives (false detections) caused by the addition of an extra channel. The
best electrode positions are located on the back of the head. This is expected
because of the higher SNR that is obtained at these positions (van der Reijden
et al., 2005). For this dataset, the additional fifth channel should be located
in between the four channels on the back of the head and the forehead, more
specifically on position F4. The choice for the symmetrical electrode position
F3 degenerates the performance.

4.4.3 Multichannel ICA (method 3): effects of fixed sep-
arating matrix

Variability of the separating matrix

The reconstruction of the assumed underlying generators Ŝ from Section 4.2.2
is performed by multiplying the computed separating matrix W with the signal
matrix X. As a result, the obtained ICs are an optimal linear combination of
the recorded signals in a non–Gaussian and independent sense. The elements
of matrix W are determined by several factors, like the position and quality
of the electrodes, the location and orientation of the underlying sources inside,
and the physical properties of the subject’s skull. During one subject session
with different intensities, these parameters are sufficiently stationary. This is
reflected in reoccurring ICs with similar structure (combinations of different
responses) for the same intensity and even for different intensities, as long
as one and the same subject is considered. Almost the same holds for the
separating matrices W. When comparing two W matrices that originate from
different datasets, but close to each other on a time scale, the matrix coefficients
differ only slightly with sometimes permuted rows. The similarities of these
matrices are caused by the high correlation between an averaged sweep and its
successor. This behavior is not observed when comparing W matrices from the
same subject but at different intensities.

Fixed separating matrix for all subjects

Keeping W fixed for all subjects yields good performance as long as the cor-
rect W is chosen. However, the major problem is the choice of W. For some
separating matrices, a performance close to that of the standard use of ICA is
reached. This could indicate that an optimal separating matrix can be calcu-
lated a priori for a multichannel setup. However, this matrix can only be used
for a certain electrode configuration and data set, if it already can be found
in the first place. If so, the calculation for each new averaged sweep of the W
coefficients will likely perform better.
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Fixed separating matrix for one subject

The ROC–curves show that fixing W calculated from data with the largest
assumed SNR from each subject, can reduce detection time significantly. How-
ever, this improvement is still significantly smaller than the improvement ob-
tained when ICA is applied every time to each collected, averaged, sweep. The
former results show that the derived ICs represent corresponding real physical
entities that change between subjects and intensities, but stay rather constant
for the same intensity.

Fixed IC for one subject

Fixing ICs per modulation frequency should be avoided. Although it seems
interesting without the multiple testing aspect (and therefore a less stringent
detection criterion needs to be used), it is not advisable to link a component to
a modulation frequency immediately. ICA does not order its ICs. Therefore,
a fixed IC cannot be chosen beforehand. One can try to solve this problem
by introducing an ordering system, like sorting ICs according to their energy.
This will not always work, especially at lower SNRs. This observation can be
explained by (4.5). Depending on the variable composition of S, fixed ICs or
fixed W will give variable results, without the existence of an optimal solution.

4.4.4 Single channel ICA combined with method 1

In general, ICA does not work on single channel data. This is expected be-
cause ICA is essentially a multichannel technique. When multiple channels are
recorded simultaneously, ICA uses the relatively high correlation between the
different channels to separate mesokurtic background noise and leptokurtic re-
sponses. When only one channel is available, the different parts apparently do
almost not have any correlation at all because EEG signals are non–stationary.
Our assumption in Section 4.2.5 does not seem to be valid. This is confirmed
by Davies and James (2007) who show that independent processes must be
bandlimited with disjoint spectral support. This is not the case with ASSRs
that are superimposed on the EEG and thus overlap. The better performance
at lower SNRs when splitting the single channel data cannot be explained yet.

4.4.5 Multichannel ICA: the use of artifact rejection

In this chapter, artifact rejection is used to define the reference approach as
close as possible to the clinically standard single channel technique. However,
no noise–weighted averaging is used already. This is done in Chapters 6 and 7.
For all methods from Section 4.2.5, epochs that contain samples with a value
higher than 20 µV in absolute value, are rejected. In theory, ICA can separate
external sources (muscles, eye blinks, . . . ) easily from the actual EEG that is



86 Improving ASSR Detection Using ICA

being monitored. In practice, the benefits of ICA have already been confirmed
when noisy subject data are considered, as long as enough channels are used
(Jung et al., 2000). It seems that the number of channels is quite low for this
purpose in the used setup of this manuscript. It seems better to use artifact re-
jection instead of separating artifacts into separate components. However, the
single channel reference method is generally incapable of extracting any useful
information from data contaminated with much noise and artifacts, which is
indeed experienced e.g. by clinical people who have to test restless babies.
When multichannel recordings are used, we observe that even the noisiest in-
put data to some extent still can be processed to usable ASSRs, even with a
relatively small number of available channels. The robustness against artifacts
is investigated in Chapters 6 and 7, using other techniques.

4.5 Conclusions

In this chapter it is shown that ICA is a valuable tool to separate the additive
background noise from the EEG–waveform of interest, namely the ASSR. After
a short introduction in Section 4.1, Section 4.2 describes the theoretical aspects
of independent component analysis, the used evaluation setup and stimuli. A
specific model is assumed and performance measures are described.

Section 4.3 shows that ICA applied on single and multichannel recordings yields
a significantly better performance than the clinically used single channel ref-
erence technique for data obtained at intensities above hearing threshold. For
single channel measurements a time reduction up to 23 % for a single subject
has been acquired. For multichannel EEG measurements there is a signifi-
cant measurement time reduction possible of 52 % for 48–sweep measurements
compared to the single channel reference technique. For individual subjects,
an improvement up to 63 % in measurement time has been recorded. When
both single– and multichannel techniques are combined, performance can be
improved even more. This ultimate combination generally guarantees a sig-
nificant improvement for all measurement durations. However, multichannel
ICA is not always capable of reducing measurement time for each individual
subject, illustrating variability between subjects of ICA applied to ASSR and
of ASSR in general. Five–channel ICA yields the same performance as the
seven–channel ICA. Electrodes are best placed on the back of the head. This
is important for the clinical applicability of the described technique. When
the separating matrix W is kept fixed for each subject separately, a significant
improvement is observed for some cases. Keeping W fixed for all subjects im-
proves detection speed significantly, as long as an optimal W is found a priori.
This, however, is not always guaranteed. Section 4.4 discusses the results found
in Section 4.3.



Chapter 5

Improving ASSR Detection
Using Multichannel Wiener
Filtering

This chapter is organized as follows. After a short introduction in Section 5.1,
the theoretical background of this chapter is described in Section 5.2. In Sec-
tion 5.3, the used experimental setup and analysis methods are described. Sec-
tion 5.4 is dedicated to the obtained results. In Section 5.5, a comparison is
made with independent component analysis applied to the same data set in the
previous chapter. Finally, conclusions are given in Section 5.6.

5.1 Introduction

In the previous chapter, it was shown that the use of independent component
analysis (ICA) could reduce measurement time significantly compared to single
channel methods. One drawback of the ICA–technique is that ICA does not
use any prior information except for the assumption of independence of the un-
derlying non–Gaussian sources. Another technique is proposed in this chapter
that incorporates a priori knowledge: multichannel Wiener filtering with QR
factorization. The sinusoidal nature of the ASSR makes it possible to search for
a specific frequency, equal to the modulation frequency used in the stimulus.

The material presented in this chapter has been published in ‘Van Dun, B., Wouters,
J., and Moonen, M. (2007), “Multi–channel Wiener filtering based auditory steady–state
response detection,”Proc. of the 32nd IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Honolulu, HI, USA, vol. 2, 929–932’.
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5.2 Theoretical background

In this section, a general ASSR signal model is presented in Section 5.2.1,
together with the simplifications it assumes (Section 5.2.2). Section 5.2.3 in-
troduces the concept of SNR–maximization for ASSRs. This concept can be
linked with the multichannel Wiener filter, as explained in Section 5.2.4.

5.2.1 ASSR signal model

A simplified ASSR signal model can be given as

Z = αSDT + N (5.1)

with Zn×m an observation matrix, α a scalar representing the ASSR source
amplitude proportional to the applied stimulus intensity, Sn×2 a desired signal
matrix with columns representing the ASSR (sinusoid & cosinusoid, oscillating
at the known modulation frequency), Dm×2 a steering matrix, Nn×m an addi-
tive noise matrix, n the number of data points and m the number of measured
EEG channels.

In (5.1), given only Z and S, αD and N can be estimated using a QR–
factorization:

S︷ ︸︸ ︷[
sn×1
1 sn×1

2 Zn×m
]

= Qn×(m+2)R(m+2)×(m+2) (5.2)

with

Q =
[

s1 s2 Qn×m
∗

]
, R =




1 0 d̂T
1

0 1 d̂T
2

0 0 Rm×m
∗


 (5.3)

Z can then be written as

Z =

S︷ ︸︸ ︷[
s1 s2

]
D̂T

︷ ︸︸ ︷[
d̂T

1

d̂T
2

]
+

N̂︷ ︸︸ ︷
Q∗R∗ (5.4)

When S contains an integer number of periods of the ASSR, S is orthogonal.
This is guaranteed in e.g. the experimental Section 5.3 by correcting the used
modulation frequencies such that an integer number of ASSR periods is present
in each column of the measurement matrix Z in (5.1). From this orthogonality
of S, it follows that

D̂T = (ST S)−1ST Z = ST Z (5.5)
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which corresponds to a least–squares estimation of αDT ,

D̂ = arg
{

min
D̂

‖Z− SD̂T ‖22
}

(5.6)

The ASSR generator has an unknown source amplitude α which depends on
the stimulus level. After propagation through the skull, the distribution of the
recorded ASSR on the electrodes, present in the observation matrix Z, can be
described by the steering matrix D. The steering matrix D, in contrast with
the additive EEG noise, is usually assumed to be stationary as it is merely a
representation of the source position, its directivity pattern, the electrode posi-
tions and the propagation attenuation from source to electrode. Physically no
measurable delay occurs between the ASSR source and the electrodes (order of
nanoseconds). Therefore the ASSR delay difference and hence the ASSR phase
difference between electrodes is considered zero. On the other hand, the delay
between ASSR stimulus and response is measurable (order of milliseconds) but
is unknown to the observer due to several physical parameters of the subject.
The ASSR phase ϕ at the electrodes is thus unknown but equal in all channels.
The assumptions above may be simplifications of reality. Any consequences
hereof are discussed in Section 5.2.2.

Under these assumptions the (exact) steering matrix D is a rank–1 matrix

DT︸︷︷︸
2×m

=
[

cos ϕ
sin ϕ

]
dT︸︷︷︸
1×m

(5.7)

so that (5.1) can be rewritten as

Z = αS
[

cosϕ
sin ϕ

]
dT + N (5.8)

and taking

s = S
[

cos ϕ
sinϕ

]
(5.9)

such that
Z = αsdT + N (5.10)

where now s and d are vectors, and ϕ corresponds to the ASSR phase, which
needs to be estimated.

Based on (5.10), a joint least–squares minimization of ϕ and d can be given as

ϕ̂ = arg
{

min
ϕ̂,d̂

‖Z− ŝd̂T ‖22
}

(5.11)

with d̂ corresponding to a least–squares estimation of αdT ,

d̂T = (sT s)−1sT Z = sT Z (5.12)
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For a given (optimal) ϕ̂, the corresponding optimal d̂ is the solution of a least–
squares problem,

d̂T =
[

cos ϕ̂
sin ϕ̂

]T

ST Z (5.13)

Substituting (5.9) and (5.13) in (5.11), gives

ϕ̂ = arg
{

min
ϕ̂

‖Z− S
[

cos ϕ̂
sin ϕ̂

] [
cos ϕ̂
sin ϕ̂

]T

ST Z‖22
}

(5.14)

= arg
{

min
ϕ̂

‖ (I− S
[

cos ϕ̂
sin ϕ̂

] [
cos ϕ̂
sin ϕ̂

]T

ST )
︸ ︷︷ ︸

projection matrix

Z‖22
}

(5.15)

The factor between brackets is a projection matrix P (PT = P and PT P = P),
such that

ϕ̂ = arg
{

min
ϕ̂

‖ZT (I− S
[

cos ϕ̂
sin ϕ̂

] [
cos ϕ̂
sin ϕ̂

]T

ST )Z‖2
}

(5.16)

= arg
{

min
ϕ̂

‖ZT Z− D̂
[

cos ϕ̂
sin ϕ̂

] [
cos ϕ̂
sin ϕ̂

]T

D̂T ‖2
}

(5.17)

= arg
{

max
ϕ̂

‖D̂
[

cos ϕ̂
sin ϕ̂

] [
cos ϕ̂
sin ϕ̂

]T

D̂T ‖2
}

(5.18)

= arg
{

max
ϕ̂

‖D̂
[

cos ϕ̂
sin ϕ̂

]
‖22

}
(5.19)

or alternatively, including a prewhitening transformation

ϕ̂ = arg
{

max
ϕ̂

‖(N̂T N̂)−
1
2 D̂

[
cos ϕ̂
sin ϕ̂

]
‖22

}
(5.20)

Based on ϕ̂, one can then compute

d̂ = D̂
[

cos ϕ̂
sin ϕ̂

]
(5.21)

A spatio–temporal noise covariance matrix Kmn×mn can be defined as

K = E{nnT } (5.22)

with n = vec(N). Here E{·} is the expected value operator and the vec(·)
operator stacks the columns of a matrix X into one column vector x = vec(X).

If the spatial and temporal correlations are separable, as will be observed here,
the spatio–temporal noise covariance matrix K can be written as (Johnson and
Dudgeon, 1993)

K = Kspat ⊗Ktemp (5.23)



5.2. Theoretical background 91

where ⊗ represents the Kronecker product, with a spatial noise covariance
matrix

Kspat = E{NT N} (5.24)

and a temporal noise covariance matrix

Ktemp = E{NNT } (5.25)

Based on (5.4) the noise covariance matrices can be estimated as

K̂spat = N̂T N̂, K̂temp = N̂N̂T (5.26)

5.2.2 Simplifications of the model compared with real–life

The model presented in this chapter is a simplification of reality. It assumes
only one intracranial source. Healthy adults, however, have at least two in-
tracranial sources (Herdman et al., 2002; Purcell et al., 2004). This has some
implications. Formula (5.8) should then be reformulated as

Z =
Q∑

i=1

αi(t)S
[

cos ϕi(t)
sin ϕi(t)

]
dT

i + N (5.27)

with the observation matrix Z containing Q sources from an ASSR with a
specific modulation frequency. It is assumed in (5.8) that an ASSR source is
constant in amplitude α and phase ϕ over time. This cannot be guaranteed
however. For example, ASSR amplitudes mainly originating from the auditory
cortex vary significantly with the state of arousal (Galambos et al., 1981). With
more than one ASSR source, the assumption that the resulting phase ϕ is equal
at all electrodes is not valid either, unless these sources are exactly in phase.

The concerns above are assumed to have only a small effect. According to
Purcell et al. (2004), the general two sources from an ASSR with a specific
modulation frequency are a main source in the brainstem and a main source in
the auditory cortex. The modulation frequencies used in this study are chosen
in an extreme region: the region with the brainstem source being dominant
(80–110 Hz). Therefore, the approximation by the model is assumed to have
reasonable validity.

The biggest concern is the estimation of the ASSR amplitude αi(t), being
incorporated in the least–square estimation of αi(t)Di, as αi(t) is estimated on
the entire observation matrix Z using (5.1). This way, fluctuating amplitudes
cannot be captured. However, using less data compromises the assessment of
αi(t), as the ASSR amplitude is already small compared to the noise.
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5.2.3 Maximizing the output–SNR of the ASSR

A possible way to improve the detection possibility of an ASSR, is to increase
its signal–to–noise ratio (SNR). Assuming equal phase ϕ over all electrodes,
the weight vector w is searched for that jointly maximizes the energy of the
projection of the observation matrix Z on the plane formed by the desired signal
vector S (the signal plane), together with a minimization of the projection of
Z on the plane orthogonal to S (the noise plane),

max
w

‖SST (Zw)‖22
‖(I− SST )(Zw)‖22

(5.28)

Note that we have assumed that ST S = I such that

max
w

‖ST (Zw)‖22
‖(I− SST )(Zw)‖22

= max
w

‖(ST Z)w)‖22
‖(Z− SST Z)w)‖22

(5.29)

By knowing that N̂ = Z− SST Z, and by using (5.4) and (5.5), one can write

max
w

‖D̂T w‖22
‖R∗w‖22

= max
w

wT D̂D̂T w
wT RT∗R∗w

(5.30)

= max
w

wT R−T
∗ D̂D̂T R−1

∗ w
wT w

(5.31)

A solution for w = R∗w can be found as the eigenvector corresponding to the
largest eigenvalue of R−T

∗ DDT R−1
∗ in (5.31). The multichannel observation

matrix Z can now be transformed to a single channel measurement vector
z = Zw with

w = R−1
∗ vmax

{
R−T
∗ D̂D̂T R−1

∗
}

(5.32)

with vmax{·} the eigenvector associated with the largest eigenvalue.

The weight vector w thus recombines the rows of observation matrix Z into one
channel that maximizes the SNR for the signal component S with the specified
modulation frequency f .

This method can be extended to more than one modulation frequency. By
introducing extra si with other frequencies fi in (5.4), the output channel can
be optimized in SNR–sense for all defined si. For example, when I − 1 extra
modulation frequencies fi are added, Q becomes an n× (m + 2I) matrix and
R an (m + 2I)× (m + 2I) matrix,

Q =
[

s1 . . . s2I Qn×m
∗

]
, R =




d̂T
1

I2I×2I
...

d̂T
2I

0 · · · 0 Rm×m
∗


 (5.33)



5.2. Theoretical background 93

R∗ does not contain information on the modulation frequencies fi. The steer-
ing matrix D is an (m×2I) matrix. To calculate the optimal weight vector wi

for a desired signal matrix Si containing a (co)sinusoid with modulation fre-
quency fi, (5.32) is recomputed with R∗ from (5.33) and with selected columns
D(:, 2i− 1 : 2i).

5.2.4 Linking output–SNR maximization with the multi-
channel Wiener filter

If the phase ϕ is estimated, steering matrix D can be reduced to a steering
vector d according to (5.21), and the desired signal matrix S to a desired
signal vector s based on (5.9),

d̂ = D̂
[

cos ϕ̂
sin ϕ̂

]
, ŝ = S

[
cos ϕ̂
sin ϕ̂

]
(5.34)

Using (5.4) and (5.34), a Wiener filter wMSE can be constructed,

wMSE = R−1
zz rzs (5.35)

with Rzz = E{ZT Z} and rzs = E{ZT s} = E{d}. Because the signal component
S and the noise component N from (5.4) are considered to be uncorrelated,
Rzz = Rdd + Kspat with Rdd = E{ddT } and Kspat = E{NT N} according to
(5.24).

ŵMSE = (R̂dd + K̂spat)−1d̂ (5.36)

The Wiener filter solution wMSE can be rewritten as the product of a real–
valued scalar and the solution of an output–SNR maximization problem wSNR

(Monzingo and Miller, 1980; Simmer et al., 2001). By applying the Sherman–
Morrison–Woodbury formula,

(BC−1BT + A−1)−1 ≡ A−AB(C + BT AB)−1BT A (5.37)

which is also known as the matrix inversion lemma, with A = K−1
spat, B = d̂

and C = 1, the following identity can be written,

ŵMSE =

(
K̂−1

spat −
K̂−1

spatd̂d̂T K̂−1
spat

1 + d̂T K̂−1
spatd̂

)
d̂ (5.38)

=

(
1− d̂T K̂−1

spatd̂

1 + d̂T K̂−1
spatd̂

)
K̂−1

spatd̂ (5.39)

=
1

1 + d̂T K̂−1
spatd̂︸ ︷︷ ︸

real–valued scalar

ŵSNR (5.40)
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with
ŵSNR = K̂−1

spatd̂ (5.41)

As a result, the solution of the SNR–maximization expressed by (5.32) is also
a multichannel Wiener filter. This is only valid when the steering matrix D
is a rank–1 matrix, as expressed by (5.7). Otherwise the factor in (5.40) is
no scalar anymore, but becomes a subband or frequency domain post–filter
(Simmer et al., 2001). When this happens, the SNRs of the filtered results by
applying wSNR and wMSE to the observation matrix Z are not equal anymore.

5.3 Experimental setup

The setup and stimuli used in this study are identical to those described in
Sections 4.2.3 and 4.2.4. The applied procedure is similar to method 2 from
Section 4.2.5. No need for the addition of extra components or channels as in
method 3 from Section 4.2.5 is necessary. This immediately shows the benefit
of the MWF–technique compared with the ICA–technique from Chapter 4.

The sketchy algorithm below processes m–channel EEG data with a length of
NM samples. N is the number of sweeps (data blocks) the data will be divided
into. In this chapter the data is divided into N = 48 sweeps. One sweep is
16.384 seconds long (or M = 4096 samples), based on parameters also used in
John and Picton (2000a). This EEG data matrix is, after artifact rejection and
an averaging step, processed using the MWF–technique (equivalent to a SNR
maximization) from Section 5.2.3 to obtain one combined EEG channel that
maximizes the SNR of the modulation frequency one is looking for. For clarity,
the description will explicitly show the process using N = 48 sweeps and M =
4096 samples. The number of channels m is kept variable.

• The m–channel EEG recordings are divided in 48 m–channel data blocks
(sweeps) with a length of 4096 samples (16.384 seconds).

• Each m–channel sweep sn (n = 1 . . . 48) is averaged together with all
preceding sweeps s1 to sn−1. This creates 48 averaged m–channel sweeps
s̄n (n = 1 . . . 48) with a length of 4096 samples. Averaged sweep s̄1 is
identical to sweep s1. Averaged sweep s̄48 is an average of all sweeps s1

to s48.

• The MWF–technique represented by (5.32) takes one averaged m–channel
sweep s̄n as an input.

• One resulting combined sweep is calculated based on the m–channel av-
eraged sweep s̄n (with a length of 4096 samples).
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Figure 5.1: ‘area under ROC–curve’ versus ‘number of averaged sweeps’:
MWF–procedure applied to a seven–channel data set (dashed); Method 1, sin-
gle channel reference (solid). The dotted lines denote two standard deviations.

• For each processed (averaged) sweep, the F–ratio (SNR) of each modula-
tion frequency is determined using (2.11). When 8 modulation frequencies
are used, 8 F–ratios are calculated for each processed (averaged) sweep
s̄n.

In order to evaluate the single channel and multichannel technique, receiver
operating characteristic (ROC) curves and the effective measurement time re-
duction are calculated from 8 subjects as described in Section 4.2.6.

5.4 Results

Figure 5.1 shows the results of the MWF–procedure on a seven–channel EEG
data set. For a sufficiently large number of sweeps, a significant performance
increase is obtained compared to the single channel reference (method 1 from
Chapter 4). A problem with this configuration is its poor performance for a
small number of sweeps (left–hand side of Figure 5.1). The calculation of the
eigenvectors is found to be sensitive to noise.

When the results per subject are considered in Table 4.2, an average measure-
ment duration reduction of 13 % is observed, varying between a 9 % measure-
ment duration increase and a possible 62 % decrease. Higher intensities and
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Figure 5.2: ‘area under ROC–curve’ versus ‘number of averaged sweeps’.
MWF–procedure applied to an m–channel data sets: m = 7 (solid), m = 5
(dashed), m = 4 (dashdot), m = 2 (dotted); Method 1, single channel reference
(solid–circle).

frequencies with physically larger responses (e.g. with 1 and 2 kHz carriers)
are more prone to faster detection (Tables 4.3 and 4.4). The one case with
the measurement duration increase lies closely to the noise floor of 6.6 % (2σ
around mean measurement duration reduction of 0 % for noise frequencies).

While measurement duration can be reduced significantly with the multichan-
nel approach, connecting many electrodes to the subject’s head is not very
practical. To reduce preparation time, it is considered an advantage if a method
requires fewer measurement electrodes. Figure 5.2 shows that performance is
only marginally compromised by using five instead of seven channels for this
data set. Adding extra (i.e. more than five) simultaneous EEG channels does
not further reduce measurement duration. It is expected that a more efficient
electrode placement may increase performance beyond five channels. This as-
sumption is investigated in Chapter 7.

5.5 Discussion

Chapter 4 showed already that the application of independent component anal-
ysis (ICA) on ASSR measurements provides performance benefits over single
channel methods. In contrast with the MWF–procedure, that exploits the
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known modulation frequency, ICA does not use any prior information except
for the assumption of independence of the underlying non–Gaussian sources.
Nevertheless, it cannot be proven with this data set that the MWF–procedure
performs significantly better than ICA. However, when both techniques are
compared, the huge difference between the ICA– and the MWF–based method
is that the former needs additional components to keep the variability of the
results under control. This is not necessary for the MWF–technique, which
can be applied directly to the EEG–data. Additionally, the ICA–technique
needs prior averaging. It will be shown in Chapter 6 that the MWF–procedure
does not need averaging of the signal before processing. Another benefit of the
MWF–technique is that a considerably smaller number of code lines is needed
and thus less operations per processed sweep. This is appealing for real–time
processing.

As both techniques are essentially source separation techniques, they are rather
similar. In literature, the link between (generalized) eigenvalue decomposition
and blind source separation is already known (Parra and Sajda, 2003). This
is also confirmed in Chapter 6. The poor performance for lower SNR values
can be observed from the results of both methods and is confirmed by ICA–
theory (Hyvärinen et al., 2001). This effect is worse however for ICA–based
processing. The saturation effect for five channels is also present in the same,
ICA–processed, data set described in Chapter 4. Similar behavior is observed
with the MWF–procedure. These similarities are further investigated and con-
firmed in the theoretical analysis and simulations of Chapter 6.

5.6 Conclusion

After a short introduction in Section 5.1, Section 5.2 presents an ASSR sig-
nal model that is used to derive the multichannel Wiener filter technique. In
Section 5.3, the used experimental setup and analysis methods are described.
Section 5.4 shows that a significant improvement in detection speed with a
mean of 13 % is possible when recorded multichannel EEG data at intensities
above hearing threshold are preprocessed using a multichannel Wiener filtering
(MWF) based technique with a priori knowledge through QR factorization.
However, the MWF–technique is performing poorly when applied to low SNR
data. For this data set, a saturation level is reached at five channels (seven
electrodes). Results are similar to those from the same, ICA–processed, data
set described in the previous chapter. In Section 5.5, a comparison is made
with independent component analysis applied to the same data set in the pre-
vious chapter. The next chapter will explain these similarities by fitting them
in a theoretical framework and will confirm them using simulations.
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Chapter 6

A Procedural Framework
for ASSR Detection

In Chapters 4 and 5, two multichannel techniques were introduced that pro-
cessed the recorded multichannel EEG with the main goal to reduce recording
time. Results from both techniques were found to be similar. This chapter
derives a general procedural multichannel framework for auditory steady–state
response detection, originating from the realms of detection theory. Based on
this framework, a multichannel processing strategy can be developed starting
from a detection theory approach.

Section 6.1 covers a short introduction. It will be shown in Section 6.2 that a
sufficient statistic can be calculated that best captures the amount of ASSR
in the recorded data. This sufficient statistic can exploit spatio–temporal in-
formation present in the EEG measurements. The resulting approach can be
linked with the multichannel Wiener filter (MWF) approach and independent
component analysis (ICA) approach from Chapters 4 and 5. This detection
theory based technique is investigated in detail in two ways.

First, simulations are conducted using multichannel EEG combined with artifi-
cial ASSRs. These simulations in Section 6.3 are an intermediary step towards
the practical evaluation of the approach in Section 6.4. The effects of varying re-
sponse amplitudes, of ASSRs with a duty–cycle, and of spatially (un)correlated
noise bursts appearing in the EEG channels are presented.

The material presented in this chapter has been accepted for publication in IEEE Trans.
Biomed. Eng. as Van Dun, B., Rombouts, G., Wouters, J., and Moonen, M., “A procedural
framework for ASSR detection”.
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Second, the practical evaluation of the newly developed sufficient statistic based
approach is conducted in Section 6.4 using multichannel data from ten normal–
hearing adults. Two types of EEG are used: EEG with few artifacts and EEG
with a significant number of (controlled) artifacts. The performance is evalu-
ated and compared with an efficient single channel processing technique, which
is noise–weighted averaging from John et al. (2001a), and with multichannel
approaches as MWF and ICA.

Section 6.5 discusses the results and Section 6.6 finishes this chapter with some
conclusions.

6.1 Introduction

Responses to acoustic stimuli in general are being recorded for about 80 years
(Davis, 1939). In these early days, rather straightforward averaging procedures
were developed to lower the background EEG and to improve the ratio be-
tween the observed signal and noise (Geisler, 1960). Nowadays, more advanced
detection techniques for certain classes of auditory responses have been con-
sidered, like those based on e.g. wavelets and Bayesian networks for auditory
brainstem responses (Bradley and Wilson, 2004; Zhang et al., 2006). When it
comes to auditory steady–state response detection however, only a relatively
small number of studies is available. Improvements have been achieved with
techniques like adaptive regularized least–squares (RLS) filtering (Tang and
Norcia, 1995), noise–weighted averaging (John et al., 2001a), and independent
component analysis / multichannel Wiener filtering on multichannel EEG data
(Chapters 4 and 5). However, a general procedural approach for the detection
of auditory steady–state responses in EEG noise has never been presented.

6.2 Theoretical background

This section presents a short overview of detection theory (Section 6.2.1) and
its application to ASSR detection (Section 6.2.2), including the exploitation of
the spatio–temporal structure of the multichannel EEG (Section 6.2.3). A new
type of ASSR, using a duty cycle stimulus, is introduced in Section 6.2.4. Links
with other multichannel techniques are presented in Section 6.2.5. Finally,
Section 6.2.6 describes the performance measurement of the different processing
schemes in the simulations of Section 6.3.
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6.2.1 Detection theory: detecting signals with unknown
amplitude in noise

Detection theory is a means to quantify the ability to discern between signal
and noise (Green and Swets, 1966). As the auditory steady–state response is
buried in noise, originating from sources both inside and outside the skull, an
approach that finds its origins in the realm of detection theory seems to be a
valid one.

Assume that a target signal s̃ has an unknown amplitude α. The hypotheses
Hi can be stated as

H0 : z = n (6.1)

H1 : z = αs̃ + n, α =? (6.2)

with z a vector containing a number of observations. As the signal’s waveform
s̃ is known exactly, the noise n is the only stochastic component,

pz|Hi
(z|Hi) = pn(z− s̃i) (6.3)

where s̃0 = 0 and s̃1 = αs̃.

This way, only the distribution of the noise is of importance. Assume the noise
is colored and Gaussian with a distribution

pn(n) =
1√

det(2πK)
exp(−1

2
nT K−1n) (6.4)

The likelihood ratio Λ(z) can be defined as

Λ(z) =
pn(z− αs̃)

pn(z)
(6.5)

=
exp(− 1

2 (z− αs̃)T K−1(z− αs̃))
exp(− 1

2z
T K−1z)

(6.6)

This likelihood ratio is compared to a certain threshold η for detection.

Λ(z)
H1

≷
H0

η (6.7)

If the left hand side is larger than η, H1 is chosen, and H0 otherwise.
The logarithm of both sides is taken and after simplification, assuming that
α > 0, one can write (Johnson and Dudgeon, 1993)

zT K−1s̃
H1

≷
H0

1
α

ln η + αs̃T K−1s̃ (6.8)

The left hand side of (6.8) is defined as the sufficient statistic Υ(z),

Υ(z) = zT K−1s̃ (6.9)
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The right hand side of (6.8) is the threshold term. Despite its explicit depen-
dence on a variety of factors, it is sufficient to determine the threshold term
by specifying a false–alarm probability only, as a uniformly most powerful test
exists. This special case arises when (as in the current case) both the suffi-
cient statistic and one of the hypotheses (here H0) does not depend on the
unknown parameter α. Otherwise, the detection problem cannot be solved
without inserting some value for α (Johnson and Dudgeon, 1993).

6.2.2 A detection theory framework for ASSR processing

The ASSR signal model of (5.10), can be rewritten as

z = α

s̃︷ ︸︸ ︷
d⊗ s+n (6.10)

with z = vec(Z) and n = vec(N) respectively.

The sufficient statistic formula (6.9) can be applied here (by identifying (6.10)
with (6.2)),

ΥA(z) = zT K−1s̃ (6.11)

Replacing K, by using (5.23), and s̃ by using (6.10), one can write

ΥA(z) = zT (Kspat ⊗Ktemp)−1(d⊗ s) (6.12)

= vec(Z)T [(K−1
spatd)⊗ (K−1

temps)] (6.13)

= vec[(K−1
temps)

T Z(K−1
spatd)] (6.14)

= sT K−T
tempZK−1

spatd (6.15)

Substituting the estimates based on (5.4), (5.20) and (5.26) then leads to a
sufficient statistic Υ̂A(z) suitable for ASSR detection,

Υ̂A(z) =
[

cos ϕ̂ sin ϕ̂
]
ST K̂−T

tempZK̂−1
spatD̂

[
cos ϕ̂
sin ϕ̂

]
(6.16)

6.2.3 Exploiting ASSR stationarity and spatio–temporal
EEG stationarity

In the following paragraphs, both Kspat and Ktemp are discussed. Different
assumptions on the stationarity of the EEG noise lead to different detection
procedures. In the first two paragraphs, two approaches to determine Kspat are
considered. In the third and last paragraph, the structure of Ktemp is studied.
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Kspat constant throughout the experiment

The steering vector d may be assumed constant during the same experiment,
as described in Section 5.2.1. When the EEG noise is stationary over all chan-
nels throughout the experiment, Kspat is constant too. The factor K−1

spatd in
(6.15) then represents an optimal weight vector wopt that combines the m
EEG channels (columns of observation matrix Z) into one channel, such that
the signal–to–noise ratio (SNR) of the combined signal Zwopt is maximized,

wopt = K−1
spatd (6.17)

In (6.16), an estimate of wopt is used, namely

ŵopt = K̂−1
spatD̂

[
cos ϕ̂
sin ϕ̂

]
(6.18)

When ϕ̂ is computed with (5.20), this ŵopt corresponds to the multichannel
Wiener filter (MWF) solution in (5.32), where Kspat is equal to RT

∗R∗.

This optimal weight vector can be expressed alternatively as

wopt = vmax

{
GEVD(DDT ,Kspat)

}
(6.19)

with GEVD(·) the generalized eigenvalue decomposition and vmax{·} the eigen-
vector associated with the largest eigenvalue (see also Section 6.2.5).

Kspat varying during an experiment

When it is assumed that noise sources emerge and disappear uncorrelated over
time on the different recorded channels during an experiment, Kspat cannot be
considered constant anymore and so (6.16) needs to be modified. If the noise in
Z is stationary only in blocks of T samples (rows) and if the noise is assumed
uncorrelated between such blocks, then ΥA(z) can be calculated as the sum of
the sufficient statistics ΥA,i(zi), with each block Zi processed separately,

ΥA(z) =

n
T∑

i=1

sT
i K−T

temp,iZiK−1
spat,id (6.20)

=

n
T∑

i=1

ΥA,i(zi) (6.21)

For each ΥA,i(zi) an approximation as in (6.16) can then be substituted. An
indication for the length of T could be 64 or 128 milliseconds as will be calcu-
lated in Section 6.3.3, which may be a good guess of the stationarity of EEG
in the frequency region of brainstem ASSRs.
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When implemented practically, the steering vector d is estimated on the en-
tire observation matrix Z as in (5.4), (5.20) and (5.21) to exploit the ASSR
stationarity, encompassing ASSR source position, directivity pattern, electrode
positions and propagation attenuation. Each stationary block Zi generates a
Kspat,i, as it is assumed that the spatial covariance matrix of each block Zi

is different. An optimal weight vector wopt,i is calculated for each stationary
block Zi separately, and (6.21) sums all Υ̂A,i(z) into one sufficient statistic
Υ̂A(z).

Structure of Ktemp

The temporal noise covariance matrix Ktemp expresses the correlation of noise
samples within the same channel. The simplest case is when Ktemp is a diagonal
matrix σI, i.e. when it is assumed that the noise is white with power σ2,
uncorrelated and stationary within the data block. In a more general case
Ktemp is not a diagonal matrix, but assumed to have a Toeplitz structure, such
that the correlation between noise samples, and thus the ‘color’ of the noise
spectrum, can be incorporated. If an experiment is not entirely stationary,
it can be divided in stationary blocks. The practical calculation of Ktemp is
described in Sections 6.3.3 and 6.4.2.

6.2.4 Better estimates of K using a duty cycle stimulus

In the previous section, K is calculated using (5.22) with the estimates of N
based on a QR–factorization in (5.2) to remove the influence of the ASSR
present in the observation matrix Z in (5.1). However, a better assessment of
N is available in parts of the data without any stimulus present. To obtain this
type of observation matrix, with an ASSR not present at all times, the desired
signal matrix S in (5.1), representing the ASSR, is modified. S̆ is defined as

S̆n×2 =




S̄τ×2

0(T−τ)×2

S̄τ×2

...


 (6.22)

with τ the duration that the desired signal is non–zero and S̄ the desired signal
matrix S with reduced length τ . Hence, T is the length of one block containing
exactly one duty cycle period [S̄T 0T ]T of the duty cycle (DC–)ASSR S̆. The
duty cycle D = τ

T is the proportion of time during which the desired signal
is active (not to be confused with the signal covariance matrix D from (5.1)).
One has to take care S̆ stays orthogonal, even at small values of τ , by checking
whether the active part of the desired signal S̄ contains an integer number
of periods. In the simulations of Section 6.3.4, T will be taken equal to 128
milliseconds and τ varies between 0 and 1 with steps of 1

12 , or consequently
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steps of one signal period (in the simulations, the modulation frequency fm is
taken equal to 93.75 Hz, or 12 periods in 128 milliseconds).

The observation vector Z in (5.1) can be rewritten as

Z = αS̆DT + N (6.23)

= α




S̄
0
S̄
...


DT +




N̄k

N̄k−1

N̄k−2

...


 (6.24)

with N̄k−j an m–column additive noise matrix with the number of rows pro-
portional to the duty cycle D of S̆. Subscript k − j (with j = 0, . . . , 2n

T − 1) is
the index of one of two parts of a block Zi (out of n

T blocks).

While it is not obvious to produce a covariance matrix estimate for this prob-
lem, an estimate for a covariance matrix for a similar problem is easy to obtain.
The observation vector Z is split into two parts: Zs containing the components
in which the desired signal vector is present, and Zn in which only noise com-
ponents are present.

Zs = α




S̄
S̄
S̄
...


DT +




N̄k

N̄k−2

N̄k−4

...


 (6.25)

Zn = α




0
0
0
...


DT +




N̄k−1

N̄k−3

N̄k−5

...


 (6.26)

Under the similar assumption as in the previous section that each T ×m data
block Zi is uncorrelated with its neighboring blocks, the covariance matrix Kn

of Zn can be calculated as

Kn =




n̄k−1n̄T
k−1 0 0 0

0 n̄k−3n̄T
k−3 0 0

0 0 n̄k−5n̄T
k−5 0

0 0 0
. . .


 (6.27)

with n̄ = vec(N̄).

Due to the stationarity assumption for a T ×m data block Zi, also assumed in
the previous section, Kn of Zn is equal to the noise covariance matrix Ks of Zs.
The noise characteristics can be determined in the parts where no desired signal
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is present, and because of a block assumed to be stationary for T samples, they
remain valid during the adjacent ‘response+noise’ and ‘noise only’ parts of one
block Zi. Now, (6.20) can be reformulated as

ΥA(z) =

n
T∑

i=1

s̄T
i K−T

n,temp,iZs,iK−1
n,spat,id (6.28)

with Kn,temp,i and Kn,spat,i the estimates of the temporal and spatial noise
covariance matrices for each block Zi (with Kn,temp,i ⊗Kn,spat,i = Kn,i).

For each ‘signal+noise’ subblock (with length τ) of block Zi, being stationary
and uncorrelated with other blocks, Kn,spat can be calculated based on the
noise–only data with length T − τ in that block Zi. This estimate of K should
be more precise than the estimates of K in (5.22).

The practical calculation of D, Kspat and Ktemp for the DC–ASSR approach
is described in Section 6.3.4.

6.2.5 Alternative approaches for the calculation of wopt

The weight vector wopt, as defined in (6.17), combines the m–channel EEG
signal into one channel. It is interesting to note that there exist alternative
approaches to calculate a weight vector w′

opt, while still reflecting a high degree
of similarity with (6.17). For example, an optimal weight vector can also be
expressed by

w′
opt = WU (6.29)

with U a ‘selection matrix’ selecting the weight column w′
opt. Here, w′

opt

is defined as the column of W that produces a combined signal (independent
component) with the largest SNR, computed using (2.11). Matrix W represents
the separating matrix from (4.3) for an independent component analysis (ICA)
approach (Hyvärinen et al., 2001) and can be calculated using (Parra and
Sajda, 2003),

W = GEVD(Q,Kspat) (6.30)

with Qm×m a ‘cross statistics’ matrix containing the sum of the fourth order
cumulants of observation matrix Z,

Q = E{ZHZZHZ} − ZT Z
∑

diag(ZT Z)− E{ZT Z}E{ZHZ∗} − ZT ZZT Z
(6.31)

Here, (6.31) is valid if the sources are assumed to be non–Gaussian and inde-
pendent. For other assumptions about the sources, the expression for Q takes
on different forms (Parra and Sajda, 2003).

The observations in (6.19) and (6.30) show that both approaches can be ex-
pressed by a GEVD. They seem to link the theoretical aspects of independent
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component analysis (Hyvärinen et al., 2001) and multichannel Wiener filtering
(Simmer et al., 2001), and are a possible explanation for the similar results
when applying ICA and MWF on e.g. auditory steady–state responses (Chap-
ters 4 and 5).

6.2.6 Performance measures

A possible metric for the evaluation of detection performance is the area un-
der the receiver operating characteristic (ROC) curve, described in detail in
Section 4.2.6. An ROC–curve is a graphical plot of the proportion of correct
detections (sensitivity) versus the proportion of false alarms (1 - specificity)
for a binary classifier system as its discrimination threshold is varied. The
area under the ROC–curve (AUC) has an important statistical property: the
AUC of a classifier is equivalent to the probability that the classifier will rank
a randomly chosen positive instance higher than a randomly chosen negative
instance (Fawcett, 2004). A first advantage of the AUC is that it can be cal-
culated, together with its standard deviations, by means of a small amount
of data, as e.g. applied in Chapters 4 and 5. A second advantage is the fact
that the AUC does not assume any predefined form of the ROC–curve or,
equivalently, the signal and noise distributions.

A major drawback however is the need for experiments with the whole range
of discrimination thresholds to construct the ROC–curve. Especially for the
problem of ASSR detection a well–founded objection can be raised that only
a false alarm rate of 5% and its corresponding specificity are relevant (Picton
et al., 2003). The use of other points in the ROC–space only skews the in-
terpretation of the results. As an alternative, the AUC can be linked with an
equivalent evaluation method, based on d–prime, which is a distance measure
between the noise and the signal distribution (Green and Swets, 1966; Macmil-
lan and Creelman, 1991). Generally d–prime is taken as the distance between
the means of normal signal and noise distributions, normalized by (a combi-
nation of) their standard deviations, but definitions may vary. In the case of
non–normal distributions however, the use of means and standard deviations
becomes insufficient. For the evaluation of the simulations in Section 6.3, a
custom tailored d–prime is used. The 95 percentile of the noise distribution
acts as the decision threshold to determine the P percentile of the signal dis-
tribution (Figure 6.1). All noise values above the 95 noise percentile are falsely
categorized as a signal. All signal values below this threshold are not detected,
although definitely present. The lower the value P , the higher the detection
performance of the observed method to detect a signal in noise, while keeping
the chance level for false detections equal to 5%.
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Figure 6.1: Performance evaluation using a custom tailored d–prime. X is an
observation value with a certain probability density. The 95 percentile of the
noise distribution acts as the decision threshold to determine the P percentile
of the signal distribution. All noise values above the 95 noise percentile are
falsely categorized as a signal. All signal values below this criterium are not
detected, although definitely present. The lower the value P , the higher the
detection performance of the observed method to detect a signal in noise, while
keeping the chance level for false detections equal to 5%.

6.3 Simulations using multichannel EEG with
artificial ASSRs

This section describes a simulation setup in Section 6.3.1 that evaluates the
framework and the sufficient statistic based ASSR detection approach devel-
oped in Section 6.2. Using varying assumptions on its parameters from Sec-
tion 6.3.2, its performance is compared in Section 6.3.3 with the indepen-
dent component analysis based approach from Chapter 4 and the multichannel
Wiener filtering based approach from Chapter 5. The possible benefits of duty
cycle ASSR are discussed in Section 6.3.4. Section 6.3.5 describes the effect
of the presence of spatially (un)correlated noise bursts. As a first, incomplete,
comparison with a single channel setup, the EEG channel with the largest
ASSR SNR is taken without artifact rejection. To complete single channel
comparison, Section 6.4 proposes an evaluation setup based on real–life mul-
tichannel measurements on subjects, evaluating the framework’s performance
compared with similar multichannel techniques and a noise–weighted common
EEG channel.
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6.3.1 Simulation design

A seven–channel EEG from ten normal–hearing adults was recorded without
any acoustic stimulus. Subjects were asked to lie down on a bed with eyes
closed and to relax or sleep to minimize the number of artifacts. The electrodes
were placed as depicted in Table 4.1, in accordance with the international 10–
20 system from Figure 2.2 (Malmivuo and Plonsey, 1995). Recordings were
made using a sampling rate of fs = 1000 Hz and a low–noise Jaeger–Toennies
multichannel amplifier with an amplification of 10,000 or 50,000, with bandpass
filtering between 70 and 120 Hz (6 dB/octave).

The available EEG (∼ 13 minutes per subject, about 2 hours of EEG data in
total) is divided into 950 seven–channel experiments of 8192 samples (8.192
seconds) per channel. A single reference frequency of 93.75 Hz (96 periods in
each 1.024 seconds) with varying source amplitude α, a fixed steering vector d
throughout all experiments, and a fixed ASSR phase ϕ within one experiment,
is used to construct all artificial ‘EEG + ASSR’ data in this study.

The amplitudes of the ASSR αd (at the scalp electrodes) are scaled versions of
the following steering vector d = [−0.238 0.327 0.175 − 0.187 0.726 −
0.588 1.000]T for all experiments. The values were chosen randomly in a
uniform [−1, 1] range, and scaled to fix the largest channel amplitude equal to
1. The choice of the values in d does not represent realistic distributions of
the auditory steady–state response on the scalp. However, results are similar
when other instances of d are taken, meaning that the performance order is
similar. The ASSR phases ϕ were constant over the seven channels. For each
experiment however, ϕ was varied randomly in a uniform [0, 2π] range (for the
rationale, we refer to Section 6.2.3).

6.3.2 Processing schemes

Ten different processing schemes are evaluated in this chapter. Five of them
are based on the sufficient statistic ΥA(z) of (6.20), with varying restrictions on
Kspat and Ktemp. In this simulation section, some schemes are not evaluated
yet (schemes 1, 2, 8 and 9). They will be covered in Section 6.4 but are already
included in the list here to concentrate all schemes into one place.

Single channel, without artifact rejection – Scheme 0

The channel with the largest SNR (channel 7 according to Section 6.3.1) is used
as a reference to define the best single channel performance possible without
artifact rejection. Detection is managed using the FFT analysis from (2.11).
This scheme is only evaluated in Section 6.3.
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Single channel, with artifact rejection – Scheme 1

This is the standard approach to process data containing ASSRs (John and
Picton, 2000a; Lins and Picton, 1995; Luts et al., 2006). The provided EEG
data stream is divided into 32 sweeps (data blocks of 16.384 seconds) and aver-
aged. Detection is managed using the FFT analysis from (2.11). This scheme
is only evaluated in Section 6.4 as artifact rejection cannot be incorporated in
the simulations of Section 6.3 due to the short data segments.

Single channel, noise–weighted averaging – Scheme 2

Each unfiltered epoch (data block of 1.024 seconds) is transformed to the fre-
quency domain using an FFT. The average power Pi between 77 and 115 Hz
is computed after removing the power at the 8 frequencies at which responses
occurred. The time domain epoch is then weighted with the average power Pi

and concatenated with the preceding epochs to form sweeps. Each epoch of the
final summed sweep is then divided by the sum of the weights P =

∑
P−1

i of
the epochs that has been combined to form that particular epoch (adapted from
John et al. (2001a)). A more detailed description of the basics is available in
Section 2.2.4. Detection is managed using the FFT analysis from (2.11). This
scheme is only evaluated in Section 6.4 as noise–weighted averaging cannot be
incorporated in the simulations of Section 6.3 due to the short data segments.

Independent component analysis – Scheme 3

This approach is presented in Chapter 4. The weight vector w′
opt is calculated

using (6.29). The selection matrix U selects the independent component with
the largest SNR, computed using (2.11). As a substitute for (6.30), however,
the joint approximate diagonalization of eigenmatrices (JADE) algorithm has
been used for better numerical stability (Cardoso and Soloumiac, 1993). Be-
fore application of the algorithm, data is filtered between 77 and 115 Hz and
averaged into one sweep (Section 6.4 only) to increase the SNR of the auditory
steady–state responses as ICA does not perform well under conditions with low
SNR (Hyvärinen et al., 2001). After reducing the eight channels to one channel
Zw′

opt, detection is managed using the FFT analysis from (2.11). This scheme
is evaluated in Sections 6.3 and 6.4.

Multichannel Wiener filter – Scheme 4

This approach is presented in Chapter 5. The weight vector wopt is calculated
on the entire observation matrix Z using (6.19), which is equal to (5.32). After
reducing the eight channels to one channel Zwopt, detection is managed using
the FFT analysis from (2.11). This scheme is evaluated in Sections 6.3 and 6.4.
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ΥA(z), Kspat fixed, Ktemp = I fixed – Scheme 5

In (6.20), Kspat is estimated only once on the entire observation matrix Z using
(5.26), or equivalently, Kspat,i = Kspat in (6.20). Ktemp is assumed to be equal
to the identity matrix I, implying that the EEG noise is assumed to be white,
uncorrelated and with constant noise power σ2 = 1. This scheme is evaluated
in Sections 6.3 and 6.4.

ΥA(z), Kspat fixed, Ktemp = σI fixed – Scheme 6

Kspat is estimated only once on the entire observation matrix Z using (5.26).
Ktemp is now scaled by the square root of the noise power σ2, calculated by
applying an FFT to the single channel result Zwopt, using wopt from (6.18),
and applying (2.11) afterwards. This way, Ktemp = σI accounts for the noise
power that is varying from observation to observation. It is important to note
that only the noise power of the local spectrum near to the ASSR frequency is
relevant, providing an estimate of the noise power at the reference frequency.
Estimation of Ktemp using (5.26) is inferior, as useless information of other
frequency bands is taken into account. Note that when Ktemp is chosen to be
a Toeplitz matrix (and thus sample correlation is incorporated), performance
is found to degrade significantly. While in theory, a corresponding adequate
estimation of Ktemp should increase performance, practically this type of esti-
mation is found to be difficult. This scheme is evaluated in Sections 6.3 and
6.4.

ΥA(z), Kspat,i variable, Ktemp = I fixed – Scheme 7

In (6.20), Kspat,i is estimated for each block Zi, based on (5.26),

K̂spat,i = N̂T
i N̂i (6.32)

This scheme is evaluated in Sections 6.3 and 6.4.

ΥA(z), Kspat,i variable, Ktemp,i = σiI variable – Scheme 8

Kspat,i is estimated for each block Zi using (6.32). Ktemp,i is scaled by the
square root of the noise power σ2

i , calculated by applying (2.11) to the sin-
gle channel result Ziŵopt,i, using ŵopt,i = vmax

{
GEVD(dT d, K̂spat,i)

}
from

(6.19). The noise region of 2 × 3.7 Hz for the calculation of σ2 is kept con-
stant. The number of noise frequency bins M used for the estimate of σ2 thus
decreases with smaller block lengths of Zi. This scheme is only evaluated in
Section 6.4 as the data segments are too short to obtain a reliable assessment
of σ2.
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Figure 6.2: Performance (‘1-P’ in Figure 6.1) with relation to ASSR source
amplitude α of the processing schemes 0, 3, 4, 5, 6, and 7 of Section 6.3.2.
The performances obtained for schemes 4 and 6 (depicted with dotted lines)
coincide.

ΥA(z), Kspat fixed, Ktemp,i = PiPσnI variable – Scheme 9

Ktemp,i is calculated based on the rationale of noise–weighted averaging and
recalculated for each block Zi. Pi is the average power between 77 and 115
Hz of Ziwopt, with wopt calculated using (6.17). P is the sum of the recip-
rocals of Pi, i.e. P =

∑
P−1

i . A more detailed description of the basics is
available in Section 2.2.4. The mean noise power σ2

n is calculated using (2.11)
on a noise–weighted average of Zwopt. This scheme is only evaluated in Sec-
tion 6.4 as noise–weighted averaging cannot be incorporated in the simulations
of Section 6.3 due to the short data segments.

6.3.3 Comparison of the different schemes

When observing Figure 6.2, it is apparent that all multichannel detection
schemes are performing better than the single channel approach (scheme 0).
This is not surprising, as this scheme does not apply any artifact rejection or
noise–weighted averaging. Section 6.4 copes with this problem and describes
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a realistic comparison with single channel techniques. The main focus in this
section is the performance of the several multichannel techniques described in
this research project and their robustness against two types of noise bursts:
spatially correlated and uncorrelated noise bursts.

For the construction of the graph of scheme 7 in Figure 6.2, the optimal block
size of Zi needs to be determined. Block sizes of 32, 64, 128, 256 and 512
milliseconds are investigated. The ASSR amplitude α is determined at the
P = 50% performance point in Figure 6.2 for every block size. α is equal
to respectively 36.4, 33.9, 37.2, 40.0 and 42.6 nV. The optimal block size of
Zi in scheme 7 thus is T = 64 milliseconds. It probably corresponds to the
time frame in which EEG is still stationary in the 80–120 Hz range. Blocks
Zi with larger lengths return a worse estimation of Kspat as stationarity is not
guaranteed anymore within the same block. Shorter time windows will likely
violate the assumption of no correlation between adjacent blocks in (6.21).

When all available channels are used, detection performance is immediately
improved. It is important to keep in mind what available information is used
however. When Ktemp is kept equal to the identity matrix (schemes 5 and 7),
performance is suboptimal. If the noise amplitude σ is introduced into Ktemp

(scheme 6), the performance increases. Scheme 6 is a special case as the noise
amplitude σ used here is identical to σ of (2.11) applied to the multichannel
Wiener filter weighted result. As an effect, scheme 6 performs identically com-
pared with multichannel Wiener filtering (scheme 4). A better assessment of
Ktemp in (6.16) and (6.20) could probably improve detection even more. Ktemp

in the simulations is set equal to a noise–scaled identity matrix, as this setting
currently seems best. Any other practical estimate of Ktemp currently degrade
performance significantly. Firstly, if the noise power σ2 is calculated on a part
of the spectrum that is taken too broad around the reference frequency, per-
formance degrades. Secondly, if correlation between samples (the ‘color’ of
the frequency spectrum) can be incorporated, Ktemp becomes non–diagonal
and a better estimate, theoretically. However, all efforts to add non–diagonal
non–zero elements to Ktemp do not improve performance.

The multichannel Wiener filter (scheme 4) performance is similar to the inde-
pendent component analysis performance (scheme 3). However, as ICA process-
ing does not take into account any a priori information, except the assumption
of independent sources, it was expected that the MWF approach, incorporat-
ing a known reference frequency, would perform better. This can indicate that
the ICA approach is a model sufficient enough for ASSR detection. Results
using real subjects already indicated large similarities between MWF and ICA
processing in Chapters 4 and 5. This is confirmed in Section 6.4.
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Figure 6.3: ASSR source amplitude α at P = 50% with relation to a varying
duty cycle D for a Zi block size of T = 128 milliseconds. D increases with steps
of 1

12 . The horizontal solid line represents the single channel reference with
D = 100% (scheme 0). The dotted line shows the multichannel Wiener filter
approach with D = 100% (scheme 4) and ΥA(z) processing with D = 100%
(scheme 6). The solid line indicates the performance of ΥA(z) processing with
a variable duty cycle D (scheme 6 with a modified desired signal S̆). The dash–
dotted line shows a variant of scheme 8, with Kspat,i calculated on noise–only
periods and σ assessed on the weighted observation matrix Z. The diamond
shows the lowest ASSR amplitude achieved for this last approach (38.3 nV at
D = 9

12 ). The triangles indicate the range ( 2
12 ≤ D ≤ 6

12 ) for which the last
approach improves detection compared to ΥA(z) processing with a variable
duty cycle D for scheme 6.

6.3.4 Varying the duty cycle D

Figure 6.3 shows the source amplitude α of the ASSR that will be detected
in 50 % of the experiments, as a function of the duty cycle D of the desired
signal S̆ in (6.22). The horizontal lines indicate the P = 50 % thresholds
(in nV) of schemes 0, 4 and 6 from Figure 6.2 for a duty cycle D = 100 %.
Scheme 6 with a variable D and a variant of scheme 8 are shown as continuous
graphs, based on a desired signal S̆ with a duty cycle D. Orthogonality of S̆ is
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required, implying the use of an integer number of periods of the active desired
signal S̄. This makes an increased Zi block size necessary, compared with the
previous subsection, to guarantee enough data points for the construction of
Figure 6.3. Block sizes of T = 128 milliseconds are now used, which makes
12 data points available for Figure 6.3 instead of 6 data points, as T = 128
milliseconds contains 12 periods of the modulation frequency fm = 93.75 Hz.

The variant of scheme 8 implements the theory described in Section 6.2.4.
Kn,spat,i is estimated on the noise–only periods, with no desired signal active,
as opposed to Kspat,i = NT

i Ni of the original scheme 8. Kn,spat,i is practically
calculated using the noise–only parts of both blocks Zi and Zi−1, or equiva-
lently, referring to (6.24), N̄k is assessed using both N̄k−1 and N̄k+1. This
use of adjacent noise–only parts improves the assessment of Kn,spat,i and is
justified as N̄k is assumed to be both stationary ‘with’ N̄k−1 and N̄k+1 as a
result of the small block size T .

Similar to scheme 8, Kn,temp,i is taken equal to σiI with σ2
i the noise power.

Unfortunately, the block size T of Zi is too small to obtain a reliable assessment
of σ2

i . Therefore, σ2
i is calculated by applying (2.11) on the single channel result

Ziwopt,i, using wopt,i = vmax{GEVD(DDT ,Kn,spat,i)}. The steering matrix
D is calculated using (5.4) with S̆ from (6.22) as the desired signal.

The best performance using the duty cycle ASSR S̆ is achieved for D = 75 % at
α = 38.3 nV. For duty cycles D between 2

12 and 6
12 , calculating Kn,spat,i on the

noise–only parts of data blocks Zi and Zi−1, improves performance compared
to the calculation of Kspat on the entire observation matrix Z. By introducing
less desired signal in (5.1) by means of S̆ from (6.22) with a specific duty cycle
D, less energy of the desired signal S̄ is available for detection. Consequently
detection performance degrades. This detection performance loss is compen-
sated by the better noise estimates Kn,spat,i using the noise–only parts that
become available. However, this effect is not large enough to compensate fully
for the loss of desired signal. Stationarity in one single data block Zi is present,
but it is not strong enough.

These results are inferior to those of the multichannel experiments using a
D = 100 % duty cycle desired signal S. It indicates that full cycle ASSR stimuli
are preferred even if the DC–ASSR technique would be physically possible. At
these small block sizes T it is impossible to generate responses with such steep
rise and fall times.

6.3.5 Robustness against noise bursts

In this section, a series of noise bursts was added to all channels. The noise
bursts disrupt the EEG recordings. In the simulations, two types are used:
uncorrelated and correlated noise bursts. Uncorrelated noise bursts are added



116 A Procedural Framework for ASSR detection

0 2 4 6 8 10 12

-50
0

50

Time (s)

A
m

p
lit

u
d

e
 (

  
 V

)

Figure 6.4: Series of spatially uncorrelated noise bursts across 7 EEG channels
(first 12 seconds). Each noise burst consists of uniformly distributed white
noise. Each noise burst has a maximum length of 512 milliseconds. The dis-
tance between two noise bursts is minimally 256 milliseconds and maximally
1024 milliseconds.

that appear spatially uncorrelated on all channels, as shown in Figure 6.4. The
noise bursts per channel are maximally 512 milliseconds long, with a jitter
period between 256 and 1024 milliseconds. For the correlated noise bursts, the
first series of noise bursts is taken and added scaled to the seven EEG channels.
Block sizes of Zi are T = 64 milliseconds.

Figure 6.5 shows the simulation results for the seven–channel EEG contami-
nated with spatially uncorrelated noise bursts from Figure 6.4. Note the differ-
ence in ASSR amplitude scale with Figure 6.2. The performance of all schemes
except scheme 7 collapses due to the addition of the noise bursts. The impact
of spatially uncorrelated noise bursts can thus only be countered when the
weight vectors used to combine the available data channels are varied locally
within blocks Zi. If this is not the case, the weight vector is not able to select a
burst–free channel, and therefore inevitably introduces severe noise corruption
in the final result. All schemes that do not introduce a spatial noise covariance
matrix Kspat,i, varying for each block Zi, collapse due to noise influences.

In contrast with the simulations without noise bursts in Section 6.3.3, the
multichannel Wiener filter based approach (schemes 4 and 6) now performs
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Figure 6.5: Performance (‘1-P’ in Figure 6.1) with relation to ASSR source
amplitude α for schemes 0, 3, 4, 5, 6 and 7 of Section 6.3.2 when imposing
spatially uncorrelated noise bursts, as depicted in Figure 6.4. The performances
obtained for schemes 4 and 6 (depicted with dotted lines) coincide.

better than the independent component analysis based approach (scheme 3).
This shows that ICA does not perform well under conditions with low SNR
(Hyvärinen et al., 2001).

Figure 6.6 shows the effects of spatially correlated noise bursts appearing on
the different EEG channels. Scaled versions from the first noise burst series
in Figure 6.4 are superimposed on all EEG channels. The most important ob-
servation is that the benefit of scheme 7 disappears and that the multichannel
Wiener filter based approach (schemes 4 and 6) actually performs best. This
means that in this case a Kspat calculated on the entire observation matrix is
sufficient, as the weights are determined such that as much of the noise bursts
are eliminated. The performance of the single channel method is obviously
poor, but without any artifact rejection or noise–weighted averaging any com-
parisons are unfair. This issue is covered in Section 6.4. That section will also
give an idea which model of noise bursts represents reality best.
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Figure 6.6: Performance (‘1-P’ in Figure 6.1) with relation to ASSR source
amplitude α for schemes 0, 3, 4, 5, 6 and 7 of Section 6.3.2 when imposing
spatially correlated noise bursts. The performances obtained for schemes 4
and 6 (depicted with dotted lines) coincide.

6.4 Practical evaluation using real–life multi-
channel EEG

This section describes an evaluation setup in Section 6.4.1 that is conducted
using multichannel data from ten normal–hearing adults. It is a practical
extension of the simulations conducted in Section 6.3. Two types of EEG are
used: EEG with few artifacts and EEG with a significant number of (controlled)
artifacts. The performance of the newly developed sufficient statistic based
approach from Section 6.4.2 is evaluated in Section 6.4.3 and compared with
an efficient single channel processing technique, noise–weighted averaging from
John et al. (2001a), and with multichannel approaches as MWF and ICA from
Chapters 4 and 5.
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6.4.1 Evaluation design

Ten normal hearing subjects (eight male, two female) with mean age 28.2 years
(range 22–32 years) were selected. Their hearing thresholds did not exceed 20
dBHL on the octave audiometric frequencies. All experiments were carried
out in a double–walled soundproof room with Faraday–cage. Subjects were
asked to lie down on a bed and relax or sleep. Lights were switched off. All
experiments were identically carried out a second time several days or weeks
after the first experiment. This way test–retest comparisons could be done.

Kendall jelly snap electrodes were placed on the positions described in Ta-
ble 6.1 according to the international 10–20 system from Figure 2.2 (Malmivuo
and Plonsey, 1995). This configuration was chosen similar to van der Rei-
jden et al. (2004) with some extra channels added to ensure a symmetrical
configuration of all electrodes. They were placed on the subject’s scalp after
the skin was abraded with Nuprep abrasive skin prepping gel. A conductive
paste was used to keep the electrodes in place and to avoid that inter–electrode
impedances exceeded 5 kΩ at 30 Hz. The electrodes were connected to a low–
noise eight–channel Jaeger–Toennies amplifier. Each EEG channel was ampli-
fied (× 50,000) and bandpass filtered between 70 and 170 Hz (6 dB/octave).
The sampling rate was set equal to 1000 Hz and downsampled later on to 250
Hz. No artifact rejection was applied initially, but a threshold was determined
offline that rejected around 10 % of the recorded data blocks (‘epochs’) that
exceeded this threshold. All separate acoustic stimuli were calibrated at 70
dBSPL, using a Brüel & Kjær Sound Level Meter 2260 in combination with
a 2–cc coupler DB0138 and an artificial ear 4152. All stimuli were presented
to the subject and amplified EEG signals recorded using the SOMA program
from Chapter 3 and a RME multichannel soundcard.

Two combined stimuli with four 100% amplitude modulated (AM) & 20% fre-
quency modulated (FM) carrier frequencies each, were applied to each ear.
The carrier frequencies were the same for both ears, namely 0.5, 1, 2, and 4
kHz. The modulation frequencies were taken close to respectively 82, 90, 98,
and 106 Hz for the left ear, and 86, 94, 102, and 110 Hz for the right ear.
These modulation frequencies were adjusted to ensure that a non–fractional
number of modulation cycles fitted into one data block (‘epoch’) of 1.024 sec-
onds. For example, 82 Hz is converted into round(82∗1.024)

1.024 Hz (John and Picton,
2000a). Throughout the rest of the chapter, one will refer to the non–adjusted
frequencies for reasons of conciseness.

Stimuli were applied at 30 dBSPL (36 sweeps, each sweep lasting 16.384 sec-
onds). After EEG data collection, each separate channel, or each combination
of channels, was reduced to 32 sweeps, using an artifact rejection threshold
that removed exactly 4 sweeps per channel (or per combination of channels).
Artifact rejection for multichannel data (i.e. a combination of channels) implies
the removal of all simultaneous epochs over different channels. Otherwise, any
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Table 6.1: Recording electrode positions for a eight–channel setup according
to the international 10–20 system (Malmivuo and Plonsey, 1995). All channels
are referenced to the reference electrode on top of the head (Cz).

Channel Position
1 occiput (Oz)
2 P4
3 P3
4 right mastoid (rMa)
5 left mastoid (lMa)
6 F4
7 F3
8 forehead (Fpz)

reference vertex (Cz)
ground right clavicle

correlation over simultaneous channels will be removed. This EEG dataset is
referred to as clean EEG throughout the rest of the chapter.

For the performance analysis of the different processing schemes in Section 6.3.2,
the number of ASSR detections is counted. It is assumed that all responses to
the applied stimuli are present in the EEG as the stimulus application intensity
is 30 dBSPL and well above subject’s hearing thresholds. There are thus 16
responses per subject (test and retest) available for detection. This way, the
maximum number of detections is 160. For single channel measurements, the
detection threshold is fixed at 4.82 dB SNR using (2.11), which corresponds
to 5 % allowed false detections. To calculate a detection threshold for multi-
channel data, all multichannel processing methods are applied on frequencies
without a response (e.g. 1 Hz below the modulation frequencies that could con-
tain a response) of the artifact–free multichannel EEG on the current intensity
of 30 dBSPL, extended with extra multichannel EEG from the same subjects.
The total EEG data length used here was six times longer than the EEG data
length for the detection of the responses. Afterwards, the 95 percentile of this
noise distribution is defined as the detection threshold.

For the analysis of robustness against artifacts, the EEG data from the previ-
ous paragraph is used together with extra measurements that encouraged the
generation of artifacts. Subjects were asked to sit on a chair. They carried
out a repeating series of movements in cycles of approximately 6 seconds while
the two combined stimuli described above were applied at an intensity of 30
dBSPL. Measurements were 32 sweeps long. No artifact rejection was applied.
The movements were carried out in the following order: turn the head up,
down, left, and right. This procedure served as a controlled generator of arti-
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facts on all channels due to muscle activity and electrode cable movement. This
EEG dataset is referred to as dirty EEG throughout the rest of the chapter.

6.4.2 Processing schemes for evaluation

Processing schemes 1 to 9 from Section 6.3.2 are practically evaluated in this
section. Five of them are based on the sufficient statistic ΥA(z) of (6.20), with
varying restrictions on Kspat and Ktemp. Optimal channels, channel combina-
tions and block sizes are determined in Section 6.4.3.

6.4.3 Results

Before the different processing schemes of Section 6.3.2 are evaluated all to-
gether for both ‘clean’ and ‘dirty’ EEG, the channel (combination) with the
maximum number of ASSR detections is determined so that comparisons are
done correctly. This is done for single channel EEG and for the combination
of multiple EEG channels.

Table 6.2 shows the number of detections for each of the eight separate channels
of Table 6.1. The test–retest statistic for the ‘clean EEG’ (with few artifacts)
over all channels is not significant (p = 0.129, no interactions). The data for the
‘dirty EEG’ (with a significant number of artifacts) is not normally distributed.
Based on Table 6.2 it is decided to take channel 1 (vertex–occiput) as the
reference channel for the ‘clean EEG’ in the global evaluation further on, as this
channel returns the most ASSR detections of all channels. For the ‘dirty EEG’,
channel 4 (vertex–right mastoid) is withheld as the reference channel. These
optimal EEG derivations are confirmed by van der Reijden et al. (2004), who
quote that a small set of 3 derivations (Cz–Oz combined with the right mastoid–
Cz and left mastoid–Cz) yield the best SNRs in a larger number of participants
than would be expected if all derivations were equally efficient. If one discards
channel Cz–P4 from the detection top–four list in Table 6.2, a channel not
being used by van der Reijden et al. (2004), the top three from this referenced
paper (channels 1, 4 and 5) correspond to their recommended channels. The
table finally shows the effect of applying the same artifact rejection level of
the ‘clean’ EEG channels to the ‘dirty’ EEG channels. The number of ASSR
detections degrades as only few EEG data sweeps are withheld. This shows
artifact rejection in the presence of many artifacts is not recommended.

Similarly, Table 6.3 shows the number of detections for a specific set of chan-
nels that are combined using (6.16). The ‘clean’ and ‘dirty’ EEG test–retest
statistics are not significant (p = 0.413 and p = 0.155 respectively, no interac-
tions). Channels are added incrementally using the order of decreasing number
of ASSR detections from the second column of Table 6.2. Due to the statistical
multiple testing syndrome, each added channel increases the number of false
detections. Therefore, the detection threshold needs to be made more strict,
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Table 6.2: Number of ASSR detections for each separate channel from Table 6.1
for three types of EEG. First, ‘clean EEG’ generated by relaxed subjects with
about 10 % of epochs removed exceeding a custom rejection threshold. Sec-
ond, ‘dirty EEG’ generated by controlled head movement without any artifact
rejection. Third, ‘dirty EEG’ with the same rejection threshold as for ‘clean
EEG’, resulting in a serious length reduction (depicted in the most right col-
umn). The channels in bold are the channels with the highest number of ASSR
detections for ‘clean EEG’ and ‘dirty EEG’ respectively.

Channel ‘clean EEG’ ‘dirty EEG’ ‘dirty EEG’ Sweeps X
(w art rej) (wo art rej) (w art rej) after art rej
36 → 32 sw 32 → 32 sw 32 → X sw µ̂X ± σ̂X

1 (Oz) 116 17 8 4.9 ± 8.1
2 (P4) 104 36 37 11.0 ± 10.5
3 (P3) 90 19 25 13.2 ± 10.9

4 (rMa) 104 523 14 5.2 ± 7.5
5 (lMa) 100 27 16 4.8 ± 5.9
6 (F4) 461 13 4 3.8 ± 6.8
7 (F3) 622 8 3 5.8 ± 8.0
8 (Fpz) 552 12 2 3.0 ± 5.5

which is depicted in the fourth column of Table 6.3 for p–values and SNR.
Channel combination 1-3 (121 detections for clean EEG, 23 for dirty EEG)
and channel combination 2-3-4-5 (114 detections for clean EEG, 69 for dirty
EEG) have the highest number of detections for clean and dirty EEG respec-
tively for all possible combinations (not shown in the table). It is opted for
the combination 1-2-3-4-5 however, as this channel combination contains both
channels 1 and 4.

For the overall comparison between single channel and multichannel techniques
in the rest of this chapter, channels 1 and 4 are used together with channel
combination 1-2-3-4-5.

The optimal lengths for partial observation matrices Zi for schemes 7, 8 and
9 are determined in Table 6.4. Block sizes of Zi are varied and the number of
ASSR detections are calculated. This way, it is concluded that for schemes 7
to 9, the optimal block length is 8.192 seconds (or 2048 samples) to guarantee
the highest number of detections for both ‘clean EEG’ (with few artifacts) and

1Significantly different from channel 1 (p < 0.01) after pairwise comparison with Bonfer-
roni correction.

2Significantly different from channel 1 (p < 0.05) after pairwise comparison with Bonfer-
roni correction.

3Data not normally distributed. A significant difference (p < 0.001) between channels
exists.
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Table 6.3: Number of ASSR detections in ‘clean’ and ‘dirty’ EEG for indi-
vidual channels 1 and 4 from Table 6.1 and for specific channel combinations
constructed using a decreasing detection order from Table 6.2. Channel combi-
nations are processed using (6.16). The most right column shows the detection
thresholds used for each channel (combination). The individual channels in
bold are the channels with the highest number of ASSR detections for ‘clean
EEG’ and ‘dirty EEG’ respectively. The channel combination in bold returns
the most ASSR detections in general.

Channel ‘Clean EEG’ ‘Dirty EEG’ p–value (%)
combination (w art rej) (wo art rej) <SNR (dB)>

1 116 175 5.0 <4.82>
4 104 52 5.0 <4.82>

1-4 117 466 1.6 <6.28>
1-2-4 111 57 0.97 <6.75>

1-2-4-5 110 56 0.51 <7.32>
1-2-3-4-5 1144 66 0.37 <7.58>
1-2-3-4-5-7 111 66 0.23 <7.94>

1-2-3-4-5-7-8 105 63 0.10 <8.52>
1-2-3-4-5-6-7-8 101 65 0.063 <8.81>

‘dirty EEG’ (with a significant number of artifacts). For ‘clean EEG’, this
block length could correspond to the stationarity period of the EEG, but 8
seconds seems rather long for EEG stationarity in a frequency window of 70
to 170 Hz (Section 6.4.1). Detection differences between block lengths are not
large anyway. Practically the same performance is obtained for data blocks of
256 milliseconds, which could be more plausible (Section 6.3.3). In the case
of ‘dirty EEG’ (with the repeated controlled artifact generation), the 8 second
period corresponds to the period of repetition. The detection values for this
specific block length of 8.192 seconds are used in the overall comparison.

Table 6.5 shows the performance of the schemes, with statistical comparisons,
for measurement lengths of 32 sweeps (approximately 9 minutes, one sweep
being 16.384 seconds). ‘Clean’ EEG (with few artifacts) and ‘dirty’ EEG (with
a significant number of artifacts) as described in Section 6.4.1 are used.

Noise–weighted averaging improves ASSR detection for both single channel as
multichannel approaches, especially in the case of ‘dirty EEG’, where a signifi-
cant number of artifacts is present. This improvement is obtained for channel 1

4No significant differences with other channel combinations in the same column.
5Significantly different from combination 1-2-3-4-5 (p < 0.01) after pairwise comparison

with Bonferroni correction.
6Significantly different from combination 1-2-3-4-5 (p < 0.05) after pairwise comparison

with Bonferroni correction.
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Table 6.4: Number of ASSR detections in ‘clean’ and ‘dirty’ EEG for schemes
7, 8 and 9 from Section 6.3.2, while varying the block sizes of the partial obser-
vation matrices Zi. The block size in bold returns the most ASSR detections
in general.

Samples 32 64 128 256 512 1024 2048 4096
Seconds 0.128 0.256 0.512 1.024 2.048 4.096 8.192 16.384
7 (clean) 69 73 70 74 73 74 74 75
7 (dirty) 54 58 66 71 75 75 82 79
8 (clean) 92 98 96 100 101 104 104 105
8 (dirty) 36 48 49 47 46 46 55 52
9 (clean) 91 117 116 113 116 114 114 115
9 (dirty) 27 61 60 64 69 73 82 78

(17 detections for scheme 1a → 35 detections for scheme 2a) and channel 4 (52
detections for scheme 1b → 65 detections for scheme 2b), and the multichannel
combination 1-2-3-4-5 (66 detections for scheme 6 → 82 detections for scheme
9). The differences are not always significant.

For the dataset used in this study, the number of ASSR detections is the highest
for channel 1 compared with channel 4 for ‘clean EEG’ with few artifacts (116
detections for scheme 1a versus 104 detections for scheme 1b). Channel 1 is
the Cz–Oz (vertex–occiput) derivation that is used in several studies (Luts
and Wouters, 2005; van der Reijden et al., 2004) and it is similar to the Cz–
neck derivation used in other studies (Herdman and Stapells, 2001; John and
Picton, 2000b; Lins and Picton, 1995; van der Reijden et al., 2004). However,
the number of ASSR detections in channel 1 for ‘dirty EEG’ is lower than the
number of ASSR detections in channel 4 (17 detections for scheme 1a versus 52
detections for scheme 1b). Based on this dataset, a difficult choice needs to be
made if only three electrodes are available. Channel 1 (vertex–occiput) from
literature or channel 4 (vertex–right mastoid) which is more robust against
artifacts. If more than three electrodes are available, this choice could be
avoided using more channels and applying multichannel signal processing to
the recorded data. Moreover, the optimal channels with the highest number
of ASSR detections cannot be determined beforehand, together with the fact
whether the subject will be relaxed (few artifacts) or stressed (lots of artifacts)
during the measurement (or both).
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Table 6.5: Number of ASSR detections in ‘clean’ and ‘dirty’ EEG for the
schemes from Section 6.3.2. Schemes 7, 8 and 9 use block sizes of 8.192 seconds
for Zi, according to Table 6.4. The single channel schemes in bold are the
schemes with the highest number of ASSR detections for ‘clean EEG’ and
‘dirty EEG’ respectively. The multichannel scheme in bold returns the most
ASSR detections in general.

Scheme Description ‘Clean EEG’ ‘Dirty EEG’
1a normal averaging (ch 1) 116 179

1b normal averaging (ch 4) 104 5210

2a weighted averaging (ch 1) 120 3511

2b weighted averaging (ch 4) 109 65
3 ICA 1248 53
47 MWF 114 66
5 Kspat fixed, Ktemp = I fixed 78 98
67 Kspat fixed, Ktemp = σI fixed 114 66
7 Kspat,i var, Ktemp,i = I fixed 74 82
8 Kspat,i var, Ktemp,i = σiI var 104 5510

9 Kspat fixed, Ktemp,i = PiPσnI var 114 82

The best single channel results (schemes 2a and 2b) can be compared separately
with the best multichannel result (scheme 9), thus discarding the pairwise com-
parisons and the Bonferroni correction. For the ‘dirty EEG’, scheme 9 produces
significantly (p < 0.001) more ASSR detections (82 detections) than scheme 2a
(35 detections), which corresponds to the noise–weighted averaging of channel
1. Compared with the noise–weighted averaging of channel 4 (65 detections
for scheme 2b), the increased number of ASSR detections (82 detections for
scheme 9) is close to significance (p = 0.063). Thus, when the reference chan-
nel is taken as channel 1 (Cz–Oz) for most single channel measurements, the
application of scheme 9 to channel combination 1-2-3-4-5 outperforms a noise–
weighted version of channel 1 (scheme 2a) significantly for EEG corrupted with
artifacts. For EEG with few artifacts, the difference between approaches is not
significant.

7The results from schemes 4 and 6 are identical.
8Significantly different from scheme 8 (p < 0.05) after pairwise comparison with Bonferroni

correction.
9Significantly different from schemes 2b, 7 and 8 (p < 0.05), schemes 4, 5 and 6 (p < 0.01)

and scheme 9 (p < 0.001) after pairwise comparison with Bonferroni correction.
10Significantly different from scheme 9 (p < 0.01) after pairwise comparison with Bonferroni

correction.
11Significantly different from schemes 5 and 9 (p < 0.05) after pairwise comparison with

Bonferroni correction.
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Independent component analysis (scheme 3) and multichannel Wiener filtering
(scheme 4) are similar in performance. However, as ICA processing does not
take into account any a priori information, except the strong assumption of
independent sources, it was expected that the MWF approach, incorporating a
known reference frequency, would perform better. This could indicate that the
ICA approach is sufficient for ASSR detection. Results in previous chapters
already indicated large similarities between MWF and ICA processing (Chap-
ters 4 and 5). The biggest drawback of the ICA approach is that the available
data needs to be filtered and averaged into smaller data blocks first. Other-
wise, ASSR amplitudes are too small in the observation matrix and the ICA
algorithm cannot separate them from the noise. This shows that ICA does not
perform well under conditions with low SNR (Hyvärinen et al., 2001).

The multichannel Wiener filtering approach (scheme 4) and scheme 6 (Kspat

fixed, Ktemp = σI) are identical in performance. The approaches are charac-
terized entirely by the optimal weight vector wopt and the (square root of the)
noise power σ2.

Varying Kspat reduces detection performance for multichannel EEG recordings
(scheme 5→ scheme 7, scheme 6→ scheme 8). This is rather unexpected. Pilot
simulations from Section 6.3 using data containing artificial ASSRs showed that
spatially uncorrelated high–intensity noise bursts scattered over different EEG
channels containing ASSRs could only be processed efficiently using a varying
Kspat,i per data block Zi. Within this data block, an uncorrupted channel
could be selected from the several channels of the multichannel data block.
Additional pilot simulations in Section 6.3 with spatially correlated noise bursts
across channels indicated however that the effect of varying Kspat performed
similar or even worse than keeping Kspat fixed. The results on EEG data from
real subjects provided in this chapter show that the second assumption may
be correct. High–intensity noise bursts in the form of muscle or movement
artifacts emerge spatially correlated on the different EEG channels and can be
reduced by choosing an appropriate Kspat ∼ wopt for the entire observation
matrix.

Ktemp models the (local) characteristics of the EEG signal. Increasing the
precision of the estimation of Ktemp improves ASSR detection performance.
When considering schemes 5, 6 and 9, a gradual increase in the total number
of detections (‘clean EEG’ + ‘dirty EEG’) is observed. Scheme 5 does not
incorporate any noise information at all in Ktemp. Its total number of detections
is the lowest (78 + 98 = 176 detections). The high value (98 detections for
scheme 5) of the ‘dirty EEG’ dataset indicates that EEG with a significant
number of artifacts is better of without any noise power estimation as the
power of the artifacts (noise bursts) is also present in σ2 (98 detections for
scheme 5 → 66 detections for scheme 6). Omitting σ2 has a negative effect on
‘clean EEG’ however (114 detections for scheme 6 → 78 detections for scheme
5). This opposing effect can be solved by a noise–weighted approach, weighting
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each data block Zi with the noise Pi in that block. The effect of the noise bursts
protruding in σ2 is still present (98 detections for scheme 5 → 82 detections
for scheme 9), but better assessed locally by the PiP terms (66 detections for
scheme 6 → 82 detections for scheme 9).

A more precise assessment of Ktemp probably can be achieved by making Ktemp

non–diagonal, incorporating any frequency domain information (the ‘color’ of
the noise). Perhaps the fine–structured information of the EEG can be mod-
elled too, taking blocks Zi with a length close to dimensions where EEG sta-
tionarity may be assumed (e.g. less than 100 milliseconds). Neither approach
succeeds on the EEG dataset used in this study however.

6.5 General discussion

Most results have already been discussed in Section 6.4.3. Some general re-
marks are discussed below.

This is the first time the authors know of that a detection theory approach is in-
vestigated for the processing of multichannel EEG data with the main purpose
of improving ASSR detection. The presented results support the (simplified)
framework and the detection theory approach described in this chapter. When
appropriate multichannel processing is applied (multichannel Wiener filter-
ing, independent component analysis or the newly proposed procedural frame-
work based on detection theory), multichannel measurements demonstrate an
improvement compared to (noise–weighted) single channel ASSR recordings.
When its performance is compared to a noise–weighted version of a standard
electrode configuration for single channel measurements (vertex–occiput from
Luts et al. (2006) and from van der Reijden et al. (2004)), this improvement is
significant. The observations above are only valid when the available EEG is
corrupted by artifacts originating from realistic head movements. Otherwise,
performance is similar.

When focussing on situations where hearing threshold determination is of clin-
ical relevance, the proposed method ΥA(z) implies a serious improvement for
its robustness against artifacts. Unless the subject is sedated, ASSR measure-
ments are difficult to conduct in a short period of time because of a large
number of artifacts due to movement, distress and agitation, particularly in
the patient population where nowadays ASSRs are mostly being applied (in
neonates and young children). This type of recording sessions are rarely de-
scribed in literature, but are unfortunately very current in clinical settings.
The proposed procedural framework in this chapter could be highly useful in
these cases.
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6.6 Conclusions

After a small introduction in Section 6.1, a simplified procedural framework
is proposed in Section 6.2 that allows the development of a multichannel pro-
cessing strategy for ASSR detection starting from a detection theory approach.
It is shown that a sufficient statistic can be calculated that best captures the
amount of ASSR in the observation matrix. This sufficient statistic based
approach can exploit spatio–temporal stationarity present in the EEG mea-
surements and can be linked with the development and application of the mul-
tichannel Wiener filter (MWF) approach and independent component analysis
(ICA) based approach to ASSR detection.

Section 6.3 describes simulations that are conducted using EEG data from 10
subjects and artificial ASSRs with varying amplitude and phase. Comparisons
between several multichannel approaches are made. The proposed sufficient
statistic based approach is identical to the MWF based approach from Chap-
ter 5, and similar to the ICA based approach from Chapter 4 for uncontami-
nated EEG. A stimulus with a duty cycle of 100 % is preferred. When the EEG
is contaminated by spatially uncorrelated artifacts, the proposed technique is
performing better than the ICA and MWF based approach. When contami-
nation occurs by spatially correlated artifacts, all multichannel techniques are
performing similar.

Section 6.4 works out a practical evaluation using multichannel EEG data from
ten normal–hearing adults. Two types of EEG are used: EEG with few artifacts
and with a significant number of (controlled) artifacts. It is concluded that most
single– and multichannel approaches are similar in performance when applied to
uncontaminated EEG. When artifact–rich EEG is used, the proposed detection
theory based approach improves the number of ASSR detections compared
with the noise–weighted average of the best channel of this dataset (vertex–
right mastoid). In general this best electrode configuration cannot be known
beforehand. When compared with a noise–weighted common EEG channel
derivation (vertex–occiput), the proposed approach improves ASSR detection
significantly.

Although the optimal electrode configuration for each individual subject is
impossible to know a priori, Chapter 7 determines a minimum set of electrodes
that guarantees to deliver a close–to–optimal electrode configuration in terms
of response detection for as many subjects as possible.



Chapter 7

Optimal electrode selection
for multichannel EEG
based detection of auditory
cortex and brainstem
ASSRs

Chapter 6 presented a multichannel processing technique for more than one
EEG channel that improved the number of ASSR detections compared with
single channel measurements. In the previous chapter it was not addressed
however which multiple channels should be used for optimal detection. This
chapter evaluates the practical performance with adults of the multichannel
processing strategy proposed in Chapter 6. Its results should serve as an inter-
mediate step for application of the multichannel technique to infants.

Section 7.1 starts this chapter with a small introduction. Sections 7.2 and
7.3 describe a setup using eight–channel EEG measurements from ten normal–
hearing adults. First, the EEG derivation with the best estimation of the be-
havioral hearing threshold for ASSRs originating mainly from the brainstem is
determined (modulation frequencies between 80 and 110 Hz). For ASSRs orig-
inating mainly from the auditory cortex (here, with a modulation frequency
of 10 Hz), the minimum EEG derivation with the largest SNR is determined
similarly. Afterwards, the minimum EEG channel combination for brainstem

The material presented in this chapter has been submitted for publication (Van Dun
et al., 2008a).
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ASSRs with a close–to–optimal estimation of the behavioral hearing threshold
for as many subjects as possible is presented. For auditory cortex ASSRs, the
EEG channel combination with the close–to–largest SNR for a maximum num-
ber of subjects is presented. Finally, the robustness of the proposed multichan-
nel processing technique against artifacts is evaluated. Section 7.4 discusses
the results and Section 7.5 ends this chapter with the conclusions.

7.1 Introduction

Many research studies have focused on optimizing detection of ASSRs. First,
different stimulus types have been investigated. Amplitude and/or frequency
modulated stimuli are most widely accepted (John et al., 2001b). In addition,
the application of other stimuli has been studied, such as stimuli with exponen-
tial modulation envelopes (John et al., 2002a), broadband and band–limited
noise (John et al., 2003), stimuli composed of several carriers modulated with
the same modulation frequency (Stürzebecher et al., 2001), and complex stim-
uli with broader frequency spectra (Riquelme et al., 2006; Stürzebecher et al.,
2006). In general, responses are more difficult to detect as the stimuli become
more frequency specific. Second, normal averaging has been compared with
weighted averaging and artifact rejection (John et al., 2001a). Third, the pos-
sibility of increasing the efficiency of ASSR detection by means of multichannel
EEG recordings has been evaluated (van der Reijden et al., 2004). Finally,
several statistical decision criteria have been studied: tests that use spectral
phase information, spectral amplitude information, or both; tests that evaluate
only the first harmonic of the response (Cebulla et al., 2001; Dobie and Wilson,
1996) and recently, tests that include higher harmonics for response detection
(Cebulla et al., 2006). Most of these techniques have been discussed in detail
in Section 2.2.

Most of these studies however are based on EEG obtained from subjects who
were instructed to relax or sleep. These experiment conditions can be consid-
ered as almost ideal. In practice, however, and especially when e.g. newborns
are tested, numerous artifacts prevent a successful measurement unless one
takes appropriate measures against these artifacts. This can be achieved by
using artifact rejection or weighted averaging (John et al., 2001a). The down-
side of these techniques is the unacceptably long measurement time in the case
only one EEG channel is used for EEG signal recording, as data blocks severely
corrupted with artifacts are entirely discarded or are not allowed to contribute
much to the final result. Therefore, other techniques have been investigated
that are more robust against artifacts. These techniques should allow to detect
significantly more responses in artifactual EEG without extending measure-
ment time.
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The Cz–Oz or Cz–neck derivations are the most commonly used derivations
for adults (John et al., 2001a; Lins and Picton, 1995; Luts and Wouters, 2005).
The choice for these derivations lies in the general experience that the mean
ASSR thresholds are smaller for these EEG derivations. This experience is
confirmed for the Cz–Oz derivation by van der Reijden et al. (2004), who
use a multichannel setup to search for the EEG derivations offering the largest
signal–to–noise (SNR) values and thus the smallest ASSR thresholds for adults.
van der Reijden et al. (2004) also indicate that this Cz–Oz derivation does
not always guarantee the largest SNR and that sometimes other derivations
(like e.g. Cz–mastoid, Cz–Pz, and Cz–neck) could offer larger SNRs. This is
backed by the observation that ASSR thresholds (and their SNRs) show large
variations across subjects (John et al., 2001a; Lins and Picton, 1995; Luts and
Wouters, 2005). The problem is that the derivation with the largest SNR is
subject dependent and cannot be predicted beforehand. Recording EEG using
multiple derivations simultaneously, combined with appropriate multichannel
processing, is required to select the ‘best’ channel (or combination of channels)
for as many subjects as possible.

7.2 Methods

Two types of studies will be described here: one based on ASSRs mainly evoked
in the brainstem (modulation frequencies between 80 and 110 Hz) and one
based on ASSRs mainly evoked in the auditory cortex (10 Hz). The theoretical
background for this chapter is entirely described in Section 6.2.

The 80–110 Hz range is the frequency region of interest for hearing threshold
determination (Picton et al., 2003). Several studies focus on the sources of these
ASSRs. Herdman et al. (2002) suggest that 88 Hz ASSRs are mainly generated
in the brainstem. Kuwada et al. (2002) indicate that ASSRs with modulation
frequencies below 80 Hz mainly originate in the auditory cortex. Above 80 Hz,
there appears to be at least two generators that are likely subcortical. This
is confirmed by Purcell et al. (2004) who use response latencies to derive the
source locations. They conclude that for modulation frequencies above about
75 Hz, most of the ASSR is generated in the brainstem. Above 95 Hz, the source
lies entirely in the brainstem. As a result, responses to stimuli modulated with
frequencies between 80 and 110 Hz are referred to as ‘responses mainly evoked
in the brainstem’.

The modulation frequency of 10 Hz is chosen because its relevance for speech
envelope modulations and speech perception (Shannon et al., 1995). When
lowering the modulation frequency of the stimulus, the main source of the
auditory steady–state response shifts more to the auditory cortex. According
to Herdman et al. (2002), the main source can be found in the auditory cortex,
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but a source originating from the brainstem may still be present. This is
supported by Purcell et al. (2004), showing that the brainstem still contributes
at lower modulation frequencies, but with the main source of the low–frequency
ASSR placed in the auditory cortex. Responses to 10 Hz–modulated stimuli
are therefore referred to as ‘responses mainly evoked in the auditory cortex’.

For both studies, 10 normal hearing subjects (8 male, 2 female) with mean age
28.2 years (range 22–32 years) were selected. Their hearing thresholds did not
exceed 20 dBHL on the octave audiometric frequencies. All experiments were
carried out in a double–walled soundproof room with Faraday–cage. Subjects
were asked to lie down on a bed and relax or sleep for the brainstem study in
Section 7.2.1, and to stay awake by watching a movie for the auditory cortex
study in Section 7.2.2. Lights were switched off. This procedure was repeated
a number of weeks later to collect both test and retest data.

The used setup is identical to the setup of Section 6.4.1. Kendall jelly snap
electrodes were placed on the positions described in Table 7.1 according to
the international 10–20 system from Figure 2.2 (Malmivuo and Plonsey, 1995).
This configuration was chosen similar to van der Reijden et al. (2004) with some
extra channels added to ensure a symmetrical configuration of all electrodes.
They were placed on the subject’s scalp after the skin was abraded with Nuprep
abrasive skin prepping gel. A conductive paste was used to keep the electrodes
in place and to avoid that inter–electrode impedances exceeded 5 kΩ at 30 Hz.
The electrodes were connected to a low–noise eight–channel Jaeger–Toennies
amplifier. Each EEG channel was amplified (× 50,000) and bandpass filtered
between 70 and 170 Hz (6 dB/octave) for the brainstem study in Section 7.2.1,
and between 1 and 30 Hz (6 dB/octave) for the auditory cortex study in Sec-
tion 7.2.2. The sampling rate was set equal to 1000 Hz, and downsampled
afterwards to 250 Hz. No artifact rejection was applied initially, but a thres-
hold was determined offline that rejected around 10 % of the recorded data
blocks (‘epochs’) that exceeded this threshold. All separate acoustic stimuli
were calibrated at 70 dBSPL, using a Brüel & Kjær Sound Level Meter 2260 in
combination with a 2–cc coupler DB0138 and an artificial ear 4152. All stimuli
were presented to the subject and amplified EEG were signals recorded using
the SOMA program from Chapter 3 and an RME multichannel soundcard.

It is stressed that all possible measures have been taken to avoid false responses
not originating from statistical noise effects (the relative number of false re-
sponses originating from statistical noise is allowed to be 5 %). Measures to
avoid additional false responses include appropriate shielding of stimulus de-
vices and electrodes, filtering prior to downsampling, and adequate separation
of stimulus and electrode cables. The absence of false responses was regularly
checked by applying the stimuli to a simulated ‘deaf’ subject (by blocking the
ear canal of the subject using ear plugs).
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Table 7.1: Recording electrode positions for an eight–channel setup according
to the international 10–20 system (Malmivuo and Plonsey, 1995). All channels
are referenced to the reference electrode on top of the head (Cz). The term
‘Side’ indicates on which hemisphere of the head the electrode is placed in the
case it is not positioned on the middle line from front to back. In general, the
sides can be ‘Left’ or ‘Right’. However, for ASSRs from the auditory cortex,
being described in Section 7.3.2 (with stimuli referenced to the right ear), one
refers to the sides as ‘Ipsilateral’ and ‘Contralateral’. The ipsilateral side is the
side of stimulation.

Channel Position Side
1 occiput (Oz)
2 P4 R / I
3 P3 L / C
4 right mastoid (rMa) R / I
5 left mastoid (lMa) L / C
6 F4 R / I
7 F3 L / C
8 forehead (Fpz)

reference vertex (Cz)
ground right clavicle

7.2.1 Brainstem stimulation

Two combined stimuli with four 100% amplitude modulated (AM) and 20%
frequency modulated (FM) carrier frequencies each, were applied to each ear.
The carrier frequencies were the same for both ears, namely 0.5, 1, 2, and 4
kHz. The modulation frequencies were chosen close to respectively 82, 90, 98,
and 106 Hz for the left ear, and 86, 94, 102, and 110 Hz for the right ear.
These modulation frequencies were adjusted to ensure that a non–fractional
number of modulation cycles fitted into one data block (‘epoch’) of 1.024 sec-
onds. For example, 82 Hz is converted into round(82∗1.024)

1.024 Hz (John and Picton,
2000a). Throughout the rest of the chapter, one will refer to the non–adjusted
frequencies for conciseness.

For Section 7.3.1, stimuli were applied at a stepwise decreasing intensity from
60 to 10 dBSPL, and lowered by 10 dB after a trial of approximately 10 min-
utes per intensity (36 sweeps, each sweep lasting 16.384 seconds). After EEG
data collection, each separate channel, or each combination of channels, was
reduced to 32 sweeps, using an artifact rejection threshold that removed ex-
actly 4 sweeps per channel (or per combination of channels). Artifact rejection
for multichannel data (i.e. a combination of channels) implies the removal
of all simultaneous epochs over different channels to preserve correlation over
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simultaneous channels.

For the analysis of robustness against artifacts in Section 7.3.1, the EEG data
from the previous paragraph is used together with extra measurements that
emphasized the occurrence of artifacts. Subjects were instructed to sit on a
chair, and carried out a repeated series of movements in cycles of approximately
6 seconds while the two combined stimuli described above were applied at an
intensity of 30 dBSPL. Measurements were 32 sweeps long. No artifact rejection
was applied. The movements were carried out in the following order: turn the
head up, down, left, and right. This procedure served as a controlled generator
of artifacts on all channels due to muscle activity and electrode cable movement.

7.2.2 Auditory cortex stimulation

In contrast with the ASSRs generated mainly in the brainstem (Dimitrijevic
et al., 2002; Herdman and Stapells, 2001; Luts and Wouters, 2005), the use
(and consequently their mutual interactions) of simultaneous stimuli with dif-
ferent modulation frequencies at 40 Hz and below has not yet been thoroughly
documented (Armstrong and Stapells, 2007). Therefore, only one carrier was
modulated (instead of eight as in Section 7.2.1), which implies that only one
ear was stimulated.

White noise was spectrally weighted to conform to the average spectrum of
spoken Flemish sentences, which was available as the Leuven intelligibility sen-
tences test (LIST) from Van Wieringen and Wouters (2008). This speech–
weighted noise was 100 % amplitude modulated with an adjusted modulation
frequency close to 10 Hz. The resulting stimulus was applied to the ear with the
smallest pure–tone average (PTA), with an intensity of 50 and of 70 dBSPL.
Multichannel EEG recordings had a length of 23 sweeps, reduced to 20 sweeps
by removing epochs that exceeded the calculated artifact rejection threshold
(per channel or per combination of channels), similar to Section 7.2.1.

7.3 Results

This section addresses the following questions:

• What is the most appropriate single EEG channel to record brainstem
ASSRs and auditory cortex ASSRs respectively?

• What is the most appropriate combination of multiple EEG channels to
record brainstem ASSRs and auditory cortex ASSRs respectively?

• Does the side of stimulation influence the conclusions resulting from the
questions stated above?
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7.3.1 Brainstem stimulation

All results in this section are based on the concept of difference scores. A
difference score is the difference (in dB) between ASSR thresholds (in dBSPL)
and behavioral thresholds (in dBSPL). The difference score is used in various
ASSR studies (Dimitrijevic et al., 2002; Herdman and Stapells, 2001; Luts and
Wouters, 2005). In this study, it allows to combine the available SNR data at
six different intensities into one quantitative value. It averages out the variation
in behavioral thresholds between subjects and between test sessions within the
same subject.

The ASSR threshold is defined as the lowest intensity that still produces an
auditory steady–state response at the corresponding modulation frequency. In
the current study this definition is more strict to avoid false detections. A
threshold (in dBSPL) is only accepted as threshold if at more than half of the
levels (in steps of 10 dBSPL) up to 60 dBSPL a threshold is obtained. For
example, one does not define a threshold at 30 dBSPL in the case stimulus
levels at 30 and 40 dBSPL show a response, but those at 50 and 60 dBSPL
do not. However, if a response is found at 20, 30, and 40 dBSPL, the ASSR
threshold is defined at 20 dBSPL. If no threshold is found at 60 dBSPL, the
ASSR threshold in this case is defined at 70 dBSPL.

First, parts of the EEG data are presented using SNRs. Then, the conversion
to difference scores is justified. The rest of this section will present the results
using difference scores.

Separate channels

For each EEG channel, Table 7.2 displays the mean SNRs (and standard devia-
tions) of the eight modulation frequencies, together with the root–mean–square
(RMS) values of the noise between 77 and 115 Hz with the modulation frequen-
cies omitted, when stimulating at 30 dBSPL. It shows the means over 10 sub-
jects, with the test and retest data averaged out for each subject (test–retest
not significant over all intensities, p = 0.404, no interactions). For conciseness,
the values at other intensities (60 to 40, 20, and 10 dBSPL) are not shown.

When the difference scores over all frequencies and all subjects are compared
with the SNRs over all frequencies and all subjects, the following Spearman
correlations rs are obtained per stimulus intensity (p < 0.001): rs = −0.110
(10 dBSPL), rs = −0.378 (20 dBSPL), rs = −0.676 (30 dBSPL), rs = −0.707
(40 dBSPL), rs = −0.678 (50 dBSPL), and rs = −0.573 (60 dBSPL). The
strong correlations just above ASSR hearing threshold seem to justify the use
of difference scores instead of SNRs per intensity. The test–retest statistic for
difference scores is not significant (p = 0.439, no interactions), similar to the
test–retest statistic of the SNRs. Difference scores obtained from the same
subject can thus be averaged.
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Figure 7.1: For each channel from Table 7.1, the mean difference scores (and
standard deviations) are displayed for all modulated carriers (500, 1000, 2000,
and 4000 Hz, left and right). Above each cluster of bars, the relation between
carriers applied to the left ear (L) and the right ear (R) is shown. Under each
cluster of bars, a comparison between channels is displayed. If a statistical
difference is present, this is indicated with * (0.05 > p ≥ 0.01) and ** (0.01 >
p ≥ 0.001). A trend is considered present if 0.1 > p ≥ 0.05.

Figure 7.1 shows the mean difference scores (and their standard deviations) per
EEG channel for all eight modulated carrier frequencies. Difference scores vary
significantly over channels (p = 0.004). Comparing pairwise (with Bonferroni
correction, p < 0.05), channel 1 has significantly better difference scores than
channels 3, 6, 7, and 8, channel 3 has significantly better difference scores than
channel 6, channel 4 has significantly better difference scores than channels
7 and 8. There is an interaction between subjects and channels (p = 0.028).
This indicates a significant difference is present between the best channels of one
subject compared to the best channels of another subject. Optimal recording
results at one particular predefined EEG channel will not be obtained for all
subjects.
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There is no significant difference (p ≥ 0.05) between frequencies and between
left–right presentation over all channels. Only one other interaction effect is
present, namely between channels and left–right application (p = 0.006). In
Figure 7.1 it is indicated within which channels a significant difference between
application on the left ear and application on the right ear is present. Elec-
trodes placed on the right hemisphere will produce difference thresholds that
are significantly smaller for carrier frequencies that are applied to the right ear.
A similar, but somewhat smaller effect can be observed for the left hemisphere.
The effects described here, significantly present on channels 2, 3, 4, and 6, are
confirmed on all these channels by six out of ten subjects. Nine out of ten
subjects show these effects on at least three of the four significant channels.

If only three electrodes are available for placement, according to Table 7.1, the
best positions for the active and the reference electrodes would be the vertex
(Cz) and the occiput (Oz), which corresponds to channel 1. This channel re-
turns significantly smaller difference scores than four other channels, including
all channels with electrodes on the front side of the head. The side of stimula-
tion is not of significant importance for this channel.

Combination of channels

The previous section presented the data of all individual channels from Ta-
ble 7.1 and resulted in an appropriate single channel for smallest difference
scores. This section will show the optimal combination of these channels for
maximum detection performance (in terms of smallest difference scores), valid
for as many subjects as possible and with the restriction that as few electrodes
as possible are actually employed. Channels are combined using the detection
theory based multichannel processing technique described in Section 6.2.

All 255 (28 − 1) combinations of the eight EEG channels in Table 7.1 are
subject to analysis. Channels are combined using (6.16). Adding extra channels
increases the number of detections. The number of extra channels to be added
is limited however, as the number of both true and false detections increases.
To keep under control the number of false detections, i.e. detections originating
from noise only (kept at 5 % in this study), detection decision thresholds have to
be tightened accordingly. In theory, a Bonferroni correction should be applied.
Practically, this correction is too strict. A detection threshold η is calculated
using ‘noise’ frequencies with no response present. These ‘noise’ frequencies
are selected close to the modulation frequencies that could contain a response
(e.g. 1 Hz smaller). For calculation of the noise estimate, frequency bins with
a response are removed. By selecting the 95 percentile of this distribution of
ΥA(z) values that are calculated on ‘noise’ frequencies, the practical detection
threshold η is found. This is done for each of the 255 combinations.
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Figure 7.2: Channel combinations appearing in the top–ten list of more than
two subjects are represented by the dark bars. Channel combinations appearing
only twice in the lists are displayed using light bars. 56 combinations appear
only once and are not shown here. Channels are combined using (6.16). Only
the combinations with the dark bars are withheld as these exceed the upper
level U = 2 of the 95 % confidence interval of the 95 percentile of the distribu-
tion of appearances in top–ten lists, determined using Monte Carlo simulations.
The inset represents a scalp viewed from above showing the electrode positions
from Table 7.1.

For each of the 10 subjects (both test and retest), difference scores of eight
modulated carrier frequencies are calculated for all 255 combinations. No sig-
nificant difference between test and retest is found (p = 0.754). Therefore,
for each subject a difference score average is available per frequency and per
combination (10 × 255 × 8 difference scores in total).

The difference scores of most combinations do not have a normal distribution
across subjects. Multivariate analysis requires data with a normal distribu-
tion. We follow the nonparametric analysis described in van der Reijden et al.
(2005), in which outliers are not an issue and equal weights are given to the
combinations from each subject regardless of his/her average difference scores.

Constructing a top–ten list of combinations
For each of ten subjects, a top–ten list is made of ten combinations with the
smallest frequency–averaged difference scores. Five ties are included, limited
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to the same number of combined channels. This implies that when e.g. chan-
nel combination [1,4,8] is ranked 10th, channel combination [3,6,7] with the
same difference score is still included, while channel combination [2,3,4,5] (also
with the same difference score) is not, as this combination requires one extra
electrode which would be less practical. In this particular case, the top–ten
list thus contains 105 combinations. Next, the number of times a particular
combination appears in the lists is summed over the subjects. The numbers of
times the combinations occur are summarized into the histogram in Figure 7.2.
This histogram is then subjected to further analysis to identify any highrank-
ing combinations that are dominant in these subjects and that will therefore
suffice to record the ASSR efficiently.

The average chance level d̄ to appear in the top–ten list is d̄ = 105
255 = 0.412.

Monte Carlo simulations are used to find the upper limit U of the 95 % con-
fidence interval of the 95 percentile of this distribution d (Press et al., 1992).
Therefore, with a reliability of 95 %, a specific combination can only appear
more than U times by chance in less than 5 % of the cases. Practically, 1000 dis-
tributions di are constructed. From each distribution di, the 95 percentile P 95

i

is determined. This returns 1000 values P 95
i . A 95 % confidence interval (and

its upper limit U) can be calculated of its mean value P̄ 95. Each distribution
di, containing 5000 instances Nj , is constructed as follows. Out of 255 possible
combinations (represented by values between 1 and 255, each corresponding to
a particular combination), a selection Sj of 105 random combinations is made.
An arbitrary combination cj is chosen and the number of appearances Nj of
this combination cj among selection Sj is counted. Instance Nj is one of the
5000 instances that the distribution di is built up with. As a validation, the
mean values d̄i are indeed all close to 105

255 . The upper limit U is equal to 2. All
values above U = 2 in the histogram of Figure 7.2 (depicted by the dark bars)
are thus particular combinations not appearing by chance (p = 0.05), with a
confidence of 95 %.

The channel combinations in Figure 7.2 that appear more than U = 2 times
in the top–ten list with the smallest difference scores over all subjects, are: [1]
[1,3] [1,4] [1,5] [1,8] [4,5] [1,3,4] [1,3,8] [1,2,3,4,8]. This series is also displayed in
the fourth column of Table 7.3. This result seems promising as these combina-
tions generally appear to contain channels with the smallest difference scores
(Figure 7.1). However, a comparison of the test and retest data shows that the
test–retest reproducibility of individual combinations in the top–ten list is low.
For the test data the withheld combinations are: [2] [1,2] [1,3] [1,5] [1,6] [1,8]
[4,7] [1,2,4] [1,3,7] [1,2,3,4]. For the retest data these are: [1] [1,3] [1,4] [4,5]
[1,3,4]. This non–reproducibility effect is mainly caused by the fact that a large
number (i.e. 255) combinations are candidates for the top–ten list. By focus-
ing on the individual channels appearing in the combinations, this test–retest
difference may be reduced.



7.3. Results 141

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

Channel

R
el

at
iv

e 
C

on
tr

ib
ut

io
n 

(%
)

1
2
3
4
5
6
7
8
9
10

23         13        15        16        10          9          6          9          TOTAL (%)

Subject

Oz P4 P3 rMa lMa F4 F3 Fpz

Figure 7.3: Relative contribution of each channel to the top–ten list from each
subject (and total relative contribution over all subjects). Brainstem responses
from both left and right stimulus presentation are used to construct this figure
(cf. fourth column of Table 7.3).

Relative contribution of each channel to a top–ten list
The relative contribution of each individual channel to the top–ten lists de-
scribed in the previous section is an indicator of the importance of each indi-
vidual channel. For each subject, the number of appearances of a particular
channel in the subject’s top–ten list is counted and divided by the number of
channels in the top–ten list. In this way, the test and retest are not signifi-
cantly different (p = 0.509, no interactions). The test–retest combined data
are displayed per subject in Figure 7.3, together with the total relative contri-
bution per channel over all subjects. The relative contribution figures can also
be found in the fourth column of Table 7.3. An interesting example shows that
‘unusable’ channels are discarded immediately. During the recording of the
data in the first (test) session, channel 4 from both subjects 2 and 4 suffered
severely from muscle artifacts at the right mastoid. No contribution is allowed
for channel 4 in these subjects.

Based on the total relative contribution over all subjects, a ranking can be
produced for the eight channels. For the current derivation the channel ranking
is 1 4 3 2 5 6 8 7 (cf. Table 7.3). Guided by this ranking, the minimum number
of channels can be determined to cover as many subjects’s top–ten lists as
possible. The step–by–step construction of this minimum channel set M is
displayed in Table 7.3. The minimum channel set M80 covering at least 80 %
of all subjects, is depicted in bold. In the fourth column of Table 7.3, at least
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one of the seven combinations that can be made from the set M80 = {1, 4, 3}
will appear in 10 out of 10 (i.e. all) top–ten lists.

When the minimum channel set M80 = {1, 4, 3} is determined, the list of
withheld combinations (U > 2) can be reduced. Channel combinations from
this list that can be formed by M80 are [1] [1,3] [1,4] [1,3,4]. Mean difference
scores from these channel combinations range between 18.5 and 19.1 dB (± 1.2
to 1.5 dB). The difference scores of all these combinations are not significantly
different and are significantly (p < 0.05) pairwise correlated. As a result, any
channel selection out of [1] [1,3] [1,4] or [1,3,4] will result statistically in a
minimum mean difference score. To be able to select a channel combination
that guarantees a difference score that is always in de top–ten of each subject,
the three active electrodes should be placed at position 1 (Oz), position 3 (P3),
and position 4 (right mastoid), a selection corresponding to minimum set M80.
Table 7.4 illustrates this by showing the difference scores of each of these four
combinations for each subject, together with their ranking compared with all
other combinations within that subject.

Splitting up the data in left and right stimulus application
To check whether the asymmetric setup of the previous section is asymmetric
for an underlying reason, the available data are split up corresponding to the
two sides of stimulation (left or right). In this way, the importance of the side
of stimulation for electrode placement is addressed.

Responses originating from stimuli applied to the left ear are considered sepa-
rately from those resulting from stimuli applied to the right ear. The procedures
from Section 7.3.1 are repeated identically.

As shown in the second column of Table 7.3, the minimum set ML
80 for stimuli

applied to the left ear is ML
80 = {1, 3}. This corresponds to active electrodes

placed at positions Oz and P3. MR
80 = {1, 4, 2} is taken as a minimum set

MR
80 for stimuli applied to the right ear. Active electrodes should be placed at

positions Oz, P4, and the right mastoid. In seven of ten subjects, electrodes
on the side of stimulation contribute relatively more to the top–ten lists than
the contralateral electrodes. In only one subject, this effect is inverted.

The resulting minimum set M80 = {1, 4, 3} of the simultaneous stimuli left and
right is a combination of the minimum sets ML

80 and MR
80 of stimuli applied

to left and right ear separately. No apparent reason for the asymmetry in M80

can be found however and can be mainly addressed to the used dataset. When
compared with symmetric sets {1, 2, 3} and {1, 4, 5}, the sum of the relative
contributions of the single channels from the asymmetric set {1, 4, 3} to the
top–ten lists is the largest in five of ten subjects. Only in one subject, this sum
is the smallest. In the individual subjects, this asymmetry is thus present.



144 Optimal Electrode Placement

T
able

7.4:
D

ifference
scores

(dB
)
averaged

over
alleight

frequencies
for

six
relevant

com
binations,w

ith
their

ranking
(betw

een
brackets)

com
pared

w
ith

all
other

com
binations

w
ithin

the
sam

e
sub

ject.
T

he
six

com
binations

displayed
are

the
best

(sm
allest

difference
score)

and
the

w
orst

com
bination,

and
the

four
com

binations
selected

in
Section

7.3.1.
C

om
binations

that
w

ere
in

a
sub

ject’s
top–ten,

are
highlighted

in
bold.

Sub
ject

1
2

3
4

5
6

7
8

9
10

B
est

14.4
(1)

20.9
(1)

18.1
(1)

13.1
(1)

13.1
(1)

12.5
(1)

16.9
(1)

20.3
(1)

18.4
(1)

10.0
(1)

[1]
21.9

(154)
22.8

(9)
18.1

(1)
17.5

(58)
14.4

(11)
17.5

(44)
19.3

(83)
25.3

(194)
20.9

(10)
10.0

(1)
[1

,3]
14.4

(1)
23.4

(15)
19.4

(3)
13.8

(3)
15.6

(52)
19.4

(114)
20.0

(134)
23.4

(91)
22.2

(35)
13.8

(23)
[1

,4]
20.0

(83)
22.8

(12)
20.6

(13)
20.0

(145)
14.4

(12)
15.0

(6)
18.1

(9)
22.2

(27)
24.1

(108)
11.3

(4)
[1

,3,4]
16.3

(6)
25.9

(90)
20.0

(6)
18.8

(103)
13.8

(6)
17.5

(47)
18.1

(15)
20.9

(3)
27.2

(188)
12.5

(10)
W

orst
41.3

(255)
37.2

(255)
53.8

(255)
30.0

(255)
29.4

(255)
33.8

(255)
41.9

(255)
45.9

(255)
52.2

(255)
42.5

(255)



7.3. Results 145

Artifact robustness

Four different processing methods are considered. Two processing methods are
single–channel methods. Two methods are multichannel. Channel 1 is taken
from Table 7.1 as the reference channel for single channel brainstem ASSR
measurements with adults (Luts and Wouters, 2005; van der Reijden et al.,
2001). Channels 1, 3, and 4 come forward as the minimum set in Section 7.3.1
and are combined using the multichannel processing scheme from Section 6.2.

The processing schemes are applied on two multichannel EEG datasets ob-
tained at an intensity of 30 dBSPL. Firstly, they are administered on an EEG
dataset with few artifacts (‘clean EEG’) that is identical to the EEG in Sec-
tion 7.3.1. Secondly, they are applied on an EEG dataset with a considerable
number of artifacts (‘dirty EEG’), generated as described in Section 7.2.1. To
calculate a detection threshold η, each of the four processing methods below
are applied on frequencies without a response (e.g. 1 Hz below the modula-
tion frequencies that could contain a response) of the artifact–free multichannel
EEG from Section 7.3.1 on all intensities. Then, the 95 percentile of this noise
distribution is defined as the detection threshold. In this way four different
detection thresholds are obtained for each processing method.

1. Channel 1, normal averaging. Channel 1 is divided into 32 sweeps (data
blocks of 16.384 seconds) and averaged. Detection is managed using
(2.11).

2. Channel 1, noise–weighted averaging. Each unfiltered epoch (data blocks
of 1.024 seconds) is transformed to the frequency domain by using an
FFT. The average power Pi between 77 and 115 Hz is computed after
removing the power at the 8 frequencies at which responses occurred.
The time domain epoch is then weighted with the average power Pi and
concatenated with the preceding epochs to form sweeps. Each epoch of
the final summed sweep is then divided by the sum of the weights P =∑

P−1
i of the epochs that have been combined to form that particular

epoch (adapted from John et al. (2001a)). A more detailed description
of the basics is available in Section 2.2.4. Detection is managed using
(2.11).

3. Channels 1, 3, and 4 are combined using (6.16) with Kspat fixed and
Ktemp = σI fixed. The mean noise power σ2 is calculated using (2.11)
on the combined channels 1, 3, and 4.

4. Channels 1, 3, and 4 are combined using (6.21) with Kspat fixed. Ktemp,i =
PiPσnI is variable and is recalculated for each block i of 8.192 seconds.
This choice of the block size returns the best results, similar to Table 6.4.
Ktemp,i is calculated based on the rationale of noise–weighted averaging.
A more detailed description of the basics is available in Section 2.2.4. Pi
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Table 7.5: Number of detections (with a maximum of 160) for each processing
method when applied to EEG with few artifacts (‘clean EEG’) and EEG with
a significant number of artifacts (‘dirty EEG’). For methods 1, 2, 3, and 4,
comparisons have been conducted pairwise with Bonferroni correction. Meth-
ods 3’, 3”, 4’, and 4” process two symmetric channel sets, but are not used for
the pairwise comparisons. They are only placed in this table for illustrative
purposes.

Method Description Clean EEG Dirty EEG
1 Normal averaging channel 1 117 17
2 Weighted averaging channel 1 122 35
3 Ktemp = σI fixed; [1,3,4] 117 571

4 Ktemp,i = PiPσnI var; [1,3,4] 122 722

3’ Ktemp = σI fixed; [1,2,3] 113 31
4’ Ktemp,i = PiPσnI var; [1,2,3] 122 50
3” Ktemp = σI fixed; [1,4,5] 108 44
4” Ktemp,i = PiPσnI var; [1,4,5] 112 66

is the average power between 77 and 115 Hz of data block i. P is the
sum of the reciprocals of Pi, i.e. P =

∑
P−1

i . The mean noise power σ2
n

is calculated using (2.11) on a noise–weighted average of the combined
channels 1, 3, and 4.

It is assumed that all responses to the applied stimuli are present in the EEG as
the stimulus intensity is 30 dBSPL and hence well above the subject’s hearing
thresholds. There are thus 16 responses for each of the ten subjects (test and
retest) available for detection. The maximum number of detections is 160.
Table 7.5 shows the number of detections for each approach for EEG with few
artifacts (‘clean EEG’) and EEG with a significant number of artifacts (‘dirty
EEG’). Test and retest data are not significantly different for both datasets
(p ≥ 0.67).

For EEG with few artifacts, best results are obtained when a noise–weighted
averaging approach is used. The improvement relative to normal averaging is
not significant however. It does not make a difference if multiple channels are
used for processing or just one (reference) channel.

Response detection in EEG with numerous artifacts is improved significantly
when using more than one channel for processing. This improvement can in-
crease significantly when using a noise–weighted averaging based approach.

1Significantly better than approach 1 (p < 0.01).
2Significantly better than approach 1 (p < 0.001), approach 2 (p < 0.01), and approach 3

(p < 0.05).
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In Section 7.4, it is discussed whether a symmetric minimum set would give a
more logical electrode placement compared with an asymmetric minimum set.
Therefore, for illustrative purposes, Table 7.5 adds four extra lines showing
the multichannel processing results of symmetric minimum sets {1, 2, 3} and
{1, 4, 5}.

7.3.2 Auditory cortex stimulation

This section will present results from stimulation at only one ear. Six out
of ten subjects are stimulated at the right ear. To preserve symmetry, all
electrode positions of the other four subjects are mirrored as if stimulation
occurred at the right ear. This swapping operation is allowed as no significant
difference (p = 0.904) in SNR between groups with left ear stimulation and
right ear stimulation is found. As a result, Table 7.1 refers for this section
to the (corrected) side of stimulation as ‘ipsilateral’ and the opposite side as
‘contralateral’.

Separate channels

Figure 7.4 shows the mean SNR (and standard deviation) of the 10 Hz ASSR
in all eight channels from Table 7.1 for intensities of 50 and 70 dBSPL. Test
and retest data are averaged per subject (p = 0.314, no interactions). There is
no significant difference between both intensities (p = 0.113, no interactions).
A main effect between channels is present (p = 0.003, no interactions). When
comparing pairwise (Bonferroni correction) in Figure 7.4 at 50 dBSPL, the
SNRs of channels 4 and 5 are significantly larger than those of channels 6, 7,
and 8. Channel 1 is significantly different from channels 6 and 7 and channel
3 only is significantly different from channel 7. At 70 dBSPL, only the SNRs
of channel 4 are significantly larger than those of channels 7 and 8. Between
subjects an interaction is present with the EEG channels (p = 0.044). This
indicates that the EEG channel with the largest SNR for one subject is not
necessarily the channel with the largest SNR for another subject. The best
EEG channel is subject dependent.

Due to the high variability of the SNRs, it is difficult to identify an optimal
electrode placement from Table 7.1 in the case of three electrodes available
for placement. From the pairwise comparisons above, channels 4 and 5 (both
mastoids) appear to be good choices.

Combination of channels

Although no significant difference is present between both intensities in the
previous subsection, only the results obtained at 50 dBSPL is focused on. The
structure of this section is similar to the structure of Section 7.3.1. Results
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Figure 7.4: For stimulus intensities 50 and 70 dBSPL, the mean SNR (and
standard deviation) of the 10 Hz response is displayed per channel from Ta-
ble 7.1. Stimulus application is at the right ear (next to channel 4). Above each
intensity, a comparison between channels is displayed. If a statistical difference
is present, this is indicated with * (0.05 > p ≥ 0.01), ** (0.01 > p ≥ 0.001),
and *** (0.001 > p).

at 70 dBSPL are similar and will only be described briefly whenever different
from those at 50 dBSPL.

In Section 7.3.1, difference scores between the ASSR threshold and the be-
havioral threshold were used to quantify performance. As no behaviorial data
at the stimuli are available, only signal–to–noise ratios are used in the anal-
ysis, with a minor modification. A response of e.g. 12 dB resulting from a
five–channel combination does not perform as well as a 12 dB response from a
three–channel combination. As a result, the concept of corrected SNR appears
to be applicable here. The corrected SNR is the difference between the response
SNR and a threshold SNR. This latter value increases when more channels are
added for combination. The threshold SNR is determined as the SNR that al-
lows 5 % false detections when observing a frequency bin without any response
present (e.g. 1 Hz below the stimulus frequency of 10 Hz). For calculation of
the noise estimate, frequency bins with a response are removed.

Again, all 255 combinations of the eight EEG channels in Table 7.1 are subject
to analysis. Channels are combined using (6.16) from Section 6.2. No signif-
icant difference between the corrected SNRs of test and retest data is found
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(p = 0.805). Therefore, for each subject an average corrected SNR is available
for the 10 Hz response and per combination (10 × 255 corrected SNRs in total).
The corrected SNRs of most combinations do not have a normal distribution
across subjects. Therefore, again a top–ten list is made for each of ten subjects.
Zero ties are included. The top–ten list thus contains 100 combinations. The
number of times a combination appears in this top–ten list is counted (with
a mean chance level of d̄ = 100

255 = 0.392). All combinations appearing more
than U = 2 times in the top–ten list (U as a result of Monte Carlo simula-
tions), are considered not appearing by chance (p = 0.05), with a confidence
of 95 %. The withheld combinations for the 10 Hz ASSR are: [5] [1,5] [4,6]
[5,7] [2,5,7] [4,5,7] [5,6,7] [5,7,8] [2,5,7,8] [5,6,7,8] [4,5,6,7,8] [2,4,5,6,7,8]. They
are also displayed in the fifth column of Table 7.3. Only combinations [5] [5,7]
[2,5,7] [5,7,8] can also be found in both test and retest results. To guarantee
test–retest reproducibility, the focus is on the individual channels appearing in
these combinations instead.

According to the fifth column of Table 7.3, channels 5 and 7 are by far the chan-
nels with highest occurrence in the subject’s top–ten lists. By adding channels
6 and 8, 90 % of all subjects are covered. The minimum channel set is thus
M80 = {5, 7, 6, 8}. However, when following the channel ranking of Table 7.3
exactly, the minimum set {5, 7, 6, 4} should be the first choice. This minimum
set offers the same amount of coverage as {5, 7, 6, 8}, but combination [5,7,6,4]
does not appear in the list of withheld combinations however, so channel 8 is
chosen instead, and consequently for minimum set {5, 7, 6, 8}.
Based on the minimum channel set M80, only channel combinations [5] [5,7]
[5,6,7] [5,7,8] [5,6,7,8] are considered from the list with withheld combinations.
Their mean corrected SNRs are between 8.2 and 9.0 dB (± 1.1 and 1.2 dB)
and not significantly different. They are all significantly pairwise correlated
(p < 0.05). As a result, any channel selection out of these five combinations
will result statistically in a maximum mean corrected SNR. To be able to select
a channel combination that guarantees a corrected SNR that is always in de
top–ten of each subject, however, the four active electrodes should be placed
at position 5 (contralateral mastoid), position 6 (F4), position 7 (F3), and
position 8 (forehead). When the data obtained at 70 dBSPL is analyzed, a
coverage of 80 % is possible with M80 = {5, 7, 6, 4}, which is similar to the
results at 50 dBSPL.

7.4 Discussion

All combinations of EEG channels in this chapter are processed using a suffi-
cient statistic that theoretically captures best the amount of useful ASSR target
signal present in these EEG channels. This sufficient statistic originates from
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the realm of detection theory (Green and Swets, 1966). It can be linked with
the multichannel Wiener filter (MWF), an optimal filtering technique which
computes an optimal (minimum mean square error) estimate of a reference
signal (Scharf, 1991). In the case of auditory steady–state response detection,
this comes down to a maximization of the signal–to–noise ratio of the combined
channels (Simmer et al., 2001). This point of view makes it easier to get an
idea of what happens when combining EEG data using (6.16).

Adding extra data channels will increase the amount of information that is
gathered in the same time period. However, to combine these channels, the use
of more advanced signal processing is necessary to truly achieve a performance
improvement. If multichannel data is combined using e.g. simple time domain
averaging over channels, the statistical multiple testing penalty will increase
the number of false detections proportionally to the number of extra correct
detections. By intelligently combining these channels, this multiple testing
problem can partly be avoided.

This section will discuss the results from the previous section for mainly stim-
ulating the brainstem and the auditory cortex respectively.

7.4.1 Brainstem stimulation

The transition from the clinical approach of difference scores to the practical
quantitative measures of signal–to–noise ratios seems to be allowed due to the
high correlations between both measures. It is assumed that results for one
measure can be used for the interpretation of the results of the other measure.

When observing the difference scores of reference channel 1 (Cz–Oz), two ob-
servations can be made. First, difference scores are slightly elevated compared
to other studies. Standard deviations are comparable however (Dimitrijevic
et al., 2002; Herdman and Stapells, 2001; Luts and Wouters, 2005; Picton et al.,
2003). This difference score gap may be caused by the fact that not as much
attention has been directed to the placement of all (i.e. more) electrodes. The
determination method of ASSR hearing thresholds also appears to be rather
strict in this study. However, this determination method is kept identical for
the whole study and final conclusions should not be influenced. Second, al-
though not significantly different, carrier frequencies of 500 and 4000 Hz show
a trend of having larger difference scores than 1 and 2 kHz at these intensities,
which is also observed in other studies (Dimitrijevic et al., 2002; Herdman and
Stapells, 2001; Luts and Wouters, 2004; Picton et al., 1998). Both observations
suggest the data in this study is representative for general brainstem ASSR
measurements.

As already indicated in Section 7.2, several studies focus on the sources of the
ASSR with frequencies between 80 and 110 Hz, the frequency region of interest
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for hearing threshold determination. They conclude that for modulation fre-
quencies above about 75 Hz, most of the ASSR is generated in the brainstem.
Above 95 Hz, the source lies entirely in the brainstem. These assumptions seem
to support the observations made in this chapter. With sources mainly in the
brainstem the smallest difference scores (and the largest SNRs consequently)
are recorded in electrodes close to the brainstem, on the back of the head and
the mastoids. The ipsilateral effect of larger SNRs and smaller difference scores
(and thus the optimal combination of electrodes) at the side of stimulus appli-
cation is partly confirmed by Small and Stapells (2008). They indicate that
ASSR amplitudes are significantly smaller at the contralateral side. Difference
scores with adults do not differ significantly however. For infants, this ipsi-
lateral effect is reported to be strongly present, both for ASSR amplitudes as
ASSR thresholds. This asymmetric effect is also confirmed by van der Reijden
et al. (2005). This could signify that the orientation of the ASSR sources is
stimulus side dependent for adults, and especially dependent in the case of
infants. The asymmetrical electrode positioning for binaural stimulation can-
not be confirmed in literature. We assume that the results in this chapter are
merely due to the used dataset and that a symmetrical electrode placement
is preferred. According to Table 7.5, a recommended symmetric minimum set
could be {1, 4, 5}, only slightly reducing the number of detections for EEG with
few artifacts as well for EEG with many artifacts. To conclude, van der Reij-
den et al. (2004) report that a small set of three derivations (Cz–Oz combined
with the right mastoid–Cz and the left mastoid–Cz, which corresponds to the
minimum set {1, 4, 5}) yields the best SNR in a larger number of adults than
would be expected if all derivations were equally efficient. This result is very
similar to the one obtained in this study.

Multichannel processing does not significantly improve detection performance
when it is applied to EEG that does not contain many artifacts. This shows
that most single channel studies using a Cz–Oz or Cz–neck electrode configu-
ration likely get close to the best obtainable result (for an extensive overview,
we refer to Picton et al. (2003)). The EEG in these studies is mostly obtained
from relaxing adults and sedated children. Studies that specifically incorporate
EEG with numerous artifacts are rare however. Unfortunately, these situations
reflect the conditions observed mostly in a clinical environment. The proposed
technique is significantly more robust against artifacts and may improve mea-
surements in these difficult conditions.

Further research should focus on the confirmation of the results in this study
and the manuscript of van der Reijden et al. (2004). Additionally, the meth-
ods proposed here should also be applied to multichannel data collected from
infants. The only studies that already cover part of this topic are the studies
of Small and Stapells (2008) and van der Reijden et al. (2005).
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7.4.2 Auditory cortex stimulation

As already indicated in Section 7.2, when lowering the modulation frequency
of the stimulus, the main source of the auditory steady–state response shifts
more to the auditory cortex, while still having a source in the brainstem. This
may explain the SNRs being largest on the electrodes close to the brainstem
(back of the head) and the auditory cortices (both mastoids).

Although no significant differences in SNR are found in Figure 7.4 between the
single electrodes at the ipsilateral and the contralateral mastoid (also reported
by Herdman et al. (2002)), the dominant channel (contralateral mastoid, chan-
nel 5) of the minimum set {5, 7, 6, 8} clearly is located at the opposite side
of stimulation. This could be explained by the crossing of the auditory paths
beyond the brainstem (Hall, 2007). The extra channels 6, 7, and 8 of the min-
imum set {5, 7, 6, 8} lie at the front of the head, in contrast with the channels
with the largest SNRs lying at the back of the head as shown in Figure 7.4.
This can be explained by the underlying mechanism of the multichannel pro-
cessing technique from Section 6.2. For responses originating mainly from the
auditory cortex, this result is likely obtained by taking the channel with the
largest response (channel 5), and by adding channels that have a small response
(channels 6, 7, and 8) and that have a high noise correlation with the noise in
the channel with the largest response. This observation is in contrast with the
conclusions in Section 7.4.1, that locates the minimum set {1, 4, 2} in the back
of the head for responses originating mainly from the brainstem. The dominant
channel for this minimum set is the occiput (channel 1). Any additional chan-
nels with small responses (channels 6, 7, and 8 in front of the head according
to Figure 7.1) appear to be too remote as noise correlation with these remote
channels is presumably too low in the frequency region of interest (80 – 110
Hz).

The trend in observing smaller SNRs for higher intensities of stimulation is in
agreement with Hall (2007) where it is stated that ‘maximum response typically
is obtained for moderate (50–60 dB) versus high–intensity stimuli’.

Further research should confirm that contralateral electrode placement is pre-
ferred to ipsilateral placement in the case of low–frequency ASSRs. It would
be interesting to determine optimal electrode placement for a range of modu-
lations, both at lower (e.g. 4 Hz) as at higher (e.g. 40 or 200 Hz) frequencies.

7.5 Conclusions

In this chapter, the practical performance of a multichannel EEG processing
strategy for ASSR detection based on a detection theory approach is evaluated.
After a short introduction in Sections 7.1, Sections 7.2, 7.3, and 7.4 describe
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a setup, its results and the discussion of eight–channel measurements from ten
normal–hearing adults. First, auditory steady–state responses mainly originat-
ing from the brainstem are considered. It is shown that electrodes should be
placed at the back of the head and at the mastoids to obtain the largest mean
SNRs and the smallest mean difference scores for individual electrodes. When
applying the multichannel processing strategy, the smallest difference scores
are found with all subjects when electrodes are placed at five positions: Oz,
P3, and right mastoid with Cz as a reference electrode and a ground electrode
at e.g. the right clavicle. This combination is significantly more robust against
artifacts when compared with a single channel, three electrode, setup. The
number of ASSR detections is more than doubled when EEG with artifacts
is considered. Second, auditory steady–state responses with a modulation fre-
quency of 10 Hz and mainly originating from the auditory cortex are studied.
Again, the largest mean SNRs are obtained at single electrodes located at the
back of the head and at both mastoids. When applying multichannel process-
ing, the largest mean SNRs for minimum 80% of the subjects are obtained when
placing electrodes at the contralateral mastoid, F4, F3, and the forehead with
Cz as a reference electrode and a ground electrode at e.g. the right clavicle.
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Chapter 8

General Conclusions and
Further Research

The auditory steady–state response technique is a reliable way to assess hearing
thresholds objectively. Its most important merit compared to other objective
hearing threshold estimation techniques, e.g. the auditory brainstem response,
is the frequency specificity. For each (audiometric) frequency, an ASSR thres-
hold can be determined that is an objective and reliable estimation of the
subject’s behavioral hearing thresholds.

The most important target group of the ASSR technique are infants, and more
specifically infants that are referred to a specialized clinical center after a failed
screening with oto–acoustic emissions or the auditory brainstem response tech-
nique. The use of auditory steady–state responses leads to important diagnostic
info: based on the acquired and additional frequency specific information, ap-
propriate measures can be taken. These measures include middle ear surgery,
the application of a hearing aid or the implantation of a cochlear implant.
Based on this frequency specific information, a hearing aid can be fitted in a
more optimal way for subjects with limited or no feedback.

Unfortunately, the ASSR technique has some disadvantages. The responses
are small (in the order of a couple of nanoVolts when close to the hearing
threshold) compared to the present EEG noise. Therefore, detection of ASSRs
is more difficult than the detection of e.g. auditory brainstem responses (with
amplitudes in the order of hundreds of nanoVolts). Recordings can take a long
time due to the nature of the responses and the presence of unwanted noise and
artifacts. As a result, even long measurement sessions of 45 to 60 minutes do
not always guarantee a reliable hearing threshold estimation, especially when
the subject is not relaxed or sleeping.

155
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This chapter is the final chapter of this thesis and presents its conclusions in
Section 8.1. It offers recommendations for further research in Section 8.2.

8.1 General conclusions

This research project focused on the search for techniques that reduce ASSR
recording time and that increase the robustness of the ASSR technique against
many inevitable artifacts. The project can be divided in three parts. The first
part focused on the development of a robust and multichannel experimental test
platform for recording auditory steady–state responses for research and clinical
applications (Section 8.1.1). Based on this setup, studies were conducted that
evaluated the multichannel processing techniques proposed in the second part
of the thesis. This second part focused especially on recording time reduction
(Section 8.1.2). The third part presented a simplified procedural framework
for ASSR detection that allowed the development of a multichannel process-
ing strategy starting from a detection theory approach (Section 8.1.3). The
multichannel techniques introduced in the second part could be fitted into this
framework. This final part was oriented more on optimal electrode placement,
the robustness against artifacts and increasing the number of ASSR detections
explicitly. Of course, this implicitly reduced measurement time too.

The global benefit that is possible using the findings of this research project
is summarized in this paragraph. This benefit can be ascribed entirely to the
use of multichannel EEG recordings, combined with multichannel EEG signal
processing techniques. The global result is described for two types of EEG,
namely EEG with few artifacts (optimal recording conditions) and EEG with
a significant number of artifacts (avoidable measurement conditions). Most
measurements are a combination of both types of EEG. When recording con-
ditions are optimal, a measurement time reduction of up to 60 % is possible for
intensities above hearing threshold. When the applied intensities are around
hearing threshold, no mean recording time reduction is possible anymore, given
the observation that hearing threshold estimations are not significantly differ-
ent for single channel and multichannel measurements with the same length.
Notwithstanding, the use of multiple EEG channels offers the benefit that for
each individual subject a close–to–optimal recording of the response of interest
is guaranteed. If the EEG is contaminated with artifacts, the measurement time
reduction for intensities above hearing threshold is probably equal to or even
larger than the reduction obtained for EEG with few artifacts. This assumption
can be supported by the significant number of extra response detections using
the multichannel technique. At hearing threshold, this reduction still will be
present, as artifacts force single channel measurements to discard EEG–data.
This immediately implies longer measurement times. In the multichannel case,
EEG data can be withheld however.
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8.1.1 A multichannel platform for ASSR measurements

Commercially available ASSR measurement platforms currently only record
up to two channels simultaneously. Multichannel ASSR recordings with more
than two channels are not possible using these devices unless one sequentially
repositions the available electrodes. This way, no simultaneous measurements
can be carried out however, which is necessary for the multichannel techniques
proposed in this thesis. Another drawback of the commercially available setups
is the non–availability of applying custom made stimuli to subjects. In the
study of Chapter 7, this function was required.

A possible critical remark could be why one not just uses a commercial system
with e.g. 64 EEG channels, with electrodes applied to the scalp using an
EEG–recording head cap. This could solve the problem of the non–availability
of enough channels and the requirement to build a setup oneself. First, such
a multichannel system could provide an overkill in channels as Chapters 4 and
5 indicate that five channels should suffice, which is confirmed in Chapters
6 and 7. This assumption should be investigated however. It is likely that
when measuring with more than eight channels a different maximum number
of channels is determined. Second, one has to take care that the quality of
the amplifiers is sufficient for auditory steady–state response amplification as
these responses are very faint. This implies the use of qualitative and expensive
low–noise amplifiers. Using a significant number of such EEG–amplifiers could
prove to be costly.

Chapter 3 presented a research platform for multichannel ASSR measure-
ments, referred to as SOMA (Setup ORL for Multichannel ASSR). The setup
allows multichannel measurements, the use of own stimuli and independent
intensity changes. It can be used to assess ASSR hearing thresholds reliably.
It is not restricted by the limitations of commercial software and is thus bet-
ter suited for research and several clinically diagnostic purposes. The mobile
setup is based on an inexpensive multichannel RME soundcard and software
is written in C++. Both hardware and software of the setup were described.
An evaluation study with nine normal–hearing subjects showed that no sig-
nificant performance differences exist between the proposed platform and the
MASTER setup from John and Picton (2000a). At present this experimental
system is being used in UZ Leuven for intra–operative ASSR measurements in
the operation room.

8.1.2 Development of multichannel signal processing tech-
niques improving ASSR detection

The moment the setup developed in Chapter 3 was up and running, the mul-
tichannel processing techniques worked out in this research project could be
evaluated using multichannel ASSR measurements from real–life subjects.
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The first multichannel processing technique proposed and evaluated in this
thesis was independent component analysis. Independent component analysis
(ICA) allows finding the underlying factors from multivariate statistical data
by looking for components that are both statistically independent, and non–
Gaussian. The auditory steady–state response, which is sinusoidal from nature
and has a platykurtic distribution, is statistically different from the surround-
ing EEG noise (mesokurtic, i.e. almost Gaussian). It was shown in Chapter 4
that this assumption indeed was correct and that ICA applied to multichannel
data containing ASSRs increased detection performance and reduced measure-
ment time. ICA applied on single– and multichannel recordings yielded a sig-
nificantly better performance than the clinically used single channel reference
technique for data obtained at intensities above hearing threshold. For single
channel measurements a time reduction up to 23 % for a single subject was
acquired. For multichannel EEG measurements there was a significant mea-
surement time reduction possible of 52 % for 48–sweep measurements compared
to the single channel reference technique. For individual subjects, an improve-
ment between -2 and 63 % in measurement time was recorded. When both
single– and multichannel techniques were combined, performance could be im-
proved even more. The huge variability in performance across subjects was
confirmed in Chapter 7, where it was shown that a predefined EEG channel
performing well statistically over an entire group does not guarantee good per-
formance for a single subject. Five–channel ICA yielded the same performance
as the seven–channel ICA for ASSRs generated mainly in the brainstem at
modulation frequencies between 80 and 110 Hz. This observation was repeated
in the practical evaluation study of Chapter 6 by applying the newly proposed
framework to another dataset. Electrodes were best placed on the back of the
head. These results were confirmed in Chapter 7.

According to Chapter 6, multichannel Wiener filtering (MWF) and indepen-
dent component analysis applied to multichannel data containing ASSRs were
comparable in performance. Both techniques could be linked together using
the framework that was developed in that chapter. Chapter 5 singled out
the multichannel Wiener filter technique (following QR factorization) applied
to multichannel data containing ASSRs by evaluating its performance based
on the same dataset that was used for the ICA evaluation. The MWF solution
was identical to the solution of an output–SNR maximization of the ASSR. Re-
sults were highly similar to the ICA–based results obtained in Chapter 4, which
was confirmed by the theory, the simulations and the evaluation in Chapter 6.
However, several benefits exist with the MWF–based technique compared with
the ICA–based technique. No artificially created ‘channels’ need to be added
to keep the variability under control. No prior averaging of the data is re-
quired. The MWF–based technique also can be implemented with significantly
less code lines, which improves the speed of execution.
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8.1.3 Unifying multichannel techniques into a simplified
framework for ASSR detection

Chapter 6 proposed a simplified procedural framework for ASSR detection
that allowed the development of a multichannel processing strategy starting
from a detection theory approach. It was shown that a sufficient statistic could
be calculated that best captured the amount of useful signal (ASSR) in the
observation matrix. This sufficient statistic based approach exploits spatio–
temporal stationarity present in the EEG measurements and could be linked
with the development and application of the independent component analysis
(ICA) based approach in Chapter 4 and the multichannel Wiener filter (MWF)
based technique in Chapter 5. First, simulations were conducted using EEG
data from 10 subjects and artificial ASSRs with varying amplitude and phase.
It was concluded that multichannel techniques are similar in performance when
applied to uncontaminated EEG. For this condition, the proposed sufficient
statistic based approach was similar to the MWF based approach (and similar
to an ICA based approach). It was not recommended to use a stimulus evoking
a response that had a duty cycle smaller than 100 %. Local EEG stationarity
thus could not be exploited. When the EEG was contaminated by spatially un-
correlated artifacts, the proposed technique (with a varying spatial covariance
matrix) was performing better than the multichannel techniques described in
Chapters 4 and 5. When spatially correlated noise bursts were superimposed
on the multichannel EEG, the multichannel techniques performed similar.

As the artificial simulations in the first part of Chapter 6 did not provide a
fully appropriate comparison with real–life recordings and single channel tech-
niques, the second part of that chapter focused on a realistic comparison be-
tween single– and multichannel processing techniques using multichannel EEG
data from ten normal–hearing adults. Two types of EEG were used: EEG
with few artifacts and with a significant number of (controlled) artifacts. It
was concluded that most single– and multichannel approaches were similar in
performance when applied to uncontaminated EEG. When artifact–rich EEG
is used, the proposed detection theory based approach improves the number of
ASSR detections compared with the noise–weighted average of the best channel
of this dataset (vertex–right mastoid). In general this best electrode configu-
ration can not be known beforehand. When compared with a noise–weighted
common EEG channel derivation (vertex–occiput), the proposed approach im-
proves ASSR detection significantly.

After the sufficient statistic based multichannel processing strategy was vali-
dated in Chapter 6, it was applied to two datasets for further evaluation in
Chapter 7. In this chapter, the optimal recording electrode sites were deter-
mined based on these datasets, in contrast with the algorithm evaluation of
Section 6.4 which used the same datasets for another end. One EEG dataset
contained auditory steady–state responses originating mainly from the brain-
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stem, another dataset mainly contained an ASSR from the auditory cortex.
The former were evoked using stimuli with modulation frequencies between 80
and 110 Hz (identical to the stimuli that are used to assess hearing thresholds).
The latter was a response with a modulation frequency of 10 Hz, with a longer
latency and thus mainly generated in the auditory cortex. For both types of
ASSRs, two research questions were investigated using eight–channel measure-
ments of ten normal–hearing adults. First, the EEG derivation with the best
estimation of the behavioral hearing thresholds (brainstem) and the highest
SNR (auditory cortex) was searched for. Second, the EEG channel combina-
tion with a close–to–optimal estimation of the behavioral hearing thresholds
(brainstem) and the close–to–highest SNR (auditory cortex) was determined
for as many subjects as possible, subject to as few electrodes as possible.

For brainstem ASSRs, it was shown that separate electrodes should be placed
at the back of the head and at the mastoids, with a preference for the Cz–Oz
derivation, to obtain the lowest mean difference scores for individual electrodes.
When applying the multichannel processing strategy, the close–to–lowest dif-
ference scores were obtained for all subjects when electrodes are placed at five
positions: Oz, P3, and right mastoid with Cz as a reference electrode and
a ground electrode at e.g. the right clavicle. This combination was signif-
icantly more robust against artifacts when compared with a noise–weighted
single channel, three electrode, reference setup (Cz–Oz). The number of ASSR
detections was more than doubled when EEG full of artifacts was considered.
Unfortunately the proposed optimal set is asymmetric. If one wants to opt for a
symmetric multiple electrode set, it was recommended to use the occiput (Oz)
combined with both mastoids as active electrodes. For auditory cortex ASSRs,
the close–to–highest mean SNRs were obtained at separate electrodes located
at the back of the head and at both mastoids. When applying multichannel
processing on a combined multiple electrode set, the highest mean SNRs for
minimum 80% of the subjects were obtained when placing six electrodes at the
contralateral mastoid, F4, F3, and the forehead with Cz as a reference electrode
and a ground electrode at e.g. the right clavicle.

8.2 Suggestions for further research

This section describes some ongoing projects and presents several suggestions
for further research concerning the recording platform and multichannel ASSR
processing.

8.2.1 The multichannel measurement platform

All studies in this research project were based on the data collected with the
recording setup SOMA. It was possible to record multichannel data (up to
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eight channels) and to present binaurally custom made stimuli, two features
that were required for the evaluation of the multichannel processing techniques
proposed in this thesis. Custom made stimuli are currently used in different
research projects. At present modulation frequencies below 40 Hz at inten-
sities above hearing threshold are investigated. It scans for ideal modulation
frequency candidates studying the possible link between low–modulation fre-
quency ASSRs, speech understanding, and dyslexia. SOMA can change the
intensity of different modulated carriers independently. By decreasing the in-
tensity of a carrier that already evokes a response, while other carriers do not,
measurement times can be decreased significantly. The moment an adequate
protocol with the right parameters is available, an automatic intensity modifi-
cation strategy could be implemented in SOMA. This way, frequency specific
hearing thresholds could be determined faster and entirely automatically (John
et al., 2002b; Mühler et al., 2005). This aspect is currently a topic of research.

Multichannel EEG could be processed real–time by algorithms based on the
findings in this thesis.

Electrode impedances are currently monitored before and after a measurement.
A continuous impedance monitoring in SOMA would increase the reliability of
the ASSR measurements to monitor the electrode contacts during the measure-
ments. This feature already exists in commercially available setups.

Constant monitoring of the stimulus intensity at the eardrum also could in-
crease the measurement reliability. It would be possible to know exactly what
the effective stimulus intensity is at the eardrum, which can vary greatly be-
tween subjects (especially infants). If the used insert phones are not placed
correctly, or move during measurement, this can be detected and compensated
for. The best practical solution for this would be the use of real–ear–to–coupler
differences (RECDs). The RECD is the difference between the sound pressure
level measured at the eardrum (the real–ear SPL or RESPL) and the sound
pressure level measured in a coupler for the same signal (Munro and Salisbury,
2002).

SOMA can be extended for eABR and eASSR measurements for CI subjects.
This is subject of current research. Measuring auditory steady–state responses
in CI subjects proves to be very challenging as the electrical artifacts generated
by the cochlear implant obscures the faint responses. Advanced multichannel
processing is certainly required for this purpose.

8.2.2 Multichannel EEG signal processing

Although the multichannel ASSR framework already improves detection sig-
nificantly for artifactual EEG compared to single channel measurements, there
is still room for improvement. The presented framework currently is a simpli-
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fied version of reality. Most auditory steady–state responses have at least two
sources at different places in the brain. This results in an ASSR with vary-
ing amplitude and phase. Moreover, ASSR amplitudes vary over time during
the measurement due to different levels of attention, especially with responses
consisting mainly of generators in the auditory cortex. The varying EEG noise
conditions may be better modelled by estimating the temporal covariance ma-
trix Ktemp more precisely.

Next to the optimal electrode positions for recordings with modulation frequen-
cies already studied in this research project (10 Hz and frequencies between 80
and 110 Hz), the study for optimal electrode positioning should be repeated for
other modulation frequencies, varying from a few Hertz (generators in and be-
yond the auditory cortex), over 40 Hz (mainly auditory cortex) to frequencies
above 110 Hz (brainstem only). This could increase the knowledge about the
position and the magnitude of the different ASSR sources, and could indicate
which electrode positions are preferred above other derivations.

It would be interesting to focus on the minimization of the variance of the
difference scores in Chapter 7, instead of the mean of these scores. The mini-
mization of the difference score means is widely used as a major criterion for
ASSR detection. However, except with functional hearing loss and particular
stimulus conditions (brief tones in patients with steep high frequency losses),
the physiological threshold will always be higher than the behavioral thres-
hold. One therefore usually just subtracts out the expected mean difference in
order to come up with an estimated behavioral threshold. If this is so, then
the physiological–behavioral difference is less important than the inter–subject
variability of that difference. It would therefore be worthwhile to compare this
variability across the different channels and channel combinations. The mini-
mization of difference scores is strongly correlated with the SNR of the ASSR.
As a result, the SNR–maximization criterion described in this research project
can be used for difference score minimization. Unfortunately, a small pilot
study showed that this criterion cannot be applied to difference score variance
minimization. Moreover, there even was only a small correlation between SNR
variance minimization and the minimization of difference score variances. A
totally new signal processing approach should be worked out that focuses on
reducing the variance of the difference score, or on a combined approach that
assigns predefinable weights to the importance of difference score means and
variances.

The determination of optimal electrode positions for three specific clinical ap-
plications should be highlighted too. Firstly, and highly important, the optimal
electrode positions for infants vary with age. van der Reijden et al. (2005) al-
ready suggested some preferred scalp locations for infants, but it would be of
clinical value to combine the proposed multichannel techniques in this thesis
with the EEG data collected from these electrodes. Especially the robustness
against artifacts and the benefits hereof should be investigated thoroughly. Sec-
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ondly, the previous results should be checked with bone conduction ASSR. Au-
ditory steady–state responses evoked by bone conductors suffer greatly from
stimulus artifacts, and optimal electrode placement combined with the pro-
posed multichannel techniques could reduce these artifacts. Finally, the holy
grail of cochlear implant fitting would be the objective determination of com-
fortable and threshold levels using ASSRs. Currently an adequate fitting of a
cochlear implant with (very) young children is extremely difficult, one of the
reasons why one relies on hearing aids at first in the early months of life. The
possibility to reliably determine the necessary thresholds for CI fitting objec-
tively would signify an extra argument for early implantation. Additionally,
the decision for early implantation depends on a hearing threshold estimation
using the ABR– and/or ASSR–technique, and this decision should be trustwor-
thy as cochlear implantation is currently not reversible. The ASSR–technique
applied to CI fitting supposedly could be made possible by removing electric
artifacts that a CI inevitably produces using smart electrode placement and
appropriate signal processing.
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