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neuronen bij rhesusapen 
Promotor: Prof. Dr. Rufin Vogels Laboratorium voor Neuro- en Psychofysiologie 
Proefschrift ingediend tot het behalen van de graad van Doctor in de Psychologie 

De laatste decennia hebben verschillende studies de tradionele visie op corticale 
veranderingen in de volwassen cortex ten gevolge van visuele ervaringen, die erg 
gelimiteerd zijn na de ‘kritische periode’, ondergraven. In verschillende corticale 
gebieden werden namelijk ervaringsgerelateerde veranderingen in de functionele 
organisatie en in de eigenschappen van neuronale responsen gevonden. In dit 
proefschrift onderzochten we veranderingen in stimulusselectiviteit van neuronen in 
the inferio-temporale (IT) cortex bij rhesusapen ten gevolge van veranderingen in de 
stimulus statistieken, categorizatie-leren en adaptatie. 
Om na te gaan hoe de stimulusselectiviteit van IT neuronen, die gevoelig zijn voor 
objecteigenschappen als vorm, kleur of textuur, zich aanpast aan veranderingen in de 
stimulusdistributie statistieken, werd het stimulusbereik op een bepaalde dimensie 
gemoduleerd, resulterend in twee vormsets die in twee opeenvolgende blokken 
werden gepresenteerd. De stimuli werden gepresenteerd in een Rapid Serial Visual 
Presentation (RSVP) paradigma waarvan de validiteit in het bestuderen van vorm-
selectiviteit van IT neuronen binnen parametrische vormsets eerst werd aangetoond. 
De neuronale vormdiscriminatie verbeterde wanneer een vormset met een smaller 
stimulusbereik (wat onlosmakelijk verbonden was met minder variantie, grotere 
densiteit en meer inter-stimulus similariteit op pixel-niveau) werd aangeboden. Dit 
suggereert dat de selectiviteit van IT neuronen zich aanpast aan de stimulusdistributie 
statistieken bij het snel aanbieden van een beperkte set van stimuli. 
In een tweede deel onderzochten we de effecten van categorizatie-leren op de 
neuronale representatie van complexe vormen in IT cortex. Door registraties voor en 
na het categorizatie-leren en contrabalancering van de relevante dimensie over apen 
konden we de categorie-gerelateerde effecten onderscheiden van de stimulus-
gerelateerde selectiviteitseffecten. We vonden een expansie van de relevante dimensie 
en een iets gelijkaardiger neuronaal antwoordpatroon voor exemplaren van dezelfde 
categorie in vergelijking met een verschillende categorie als gevolg van de 
categorizatie-training. Deze resultaten suggereren dat vorm categorizatie-leren enkel 
kleine categorie-gerelateerde veranderingen kan induceren in de vormselectiviteit van 
IT neuronen in volwassen apen. 
In het laatste deel onderzochten we, zowel met extracellulair gemeten aktiepotentialen 
van enkelvoudige neuronen als met lokale veld potentialen (LFPs), de effecten van 
adaptatie op de stimulusselectiviteit van IT neuronen. Voor zowel de aktiepotentialen 
als de LFP gamma power (61-100Hz) verlaagden de neuronale responses met 
stimulusrepetitie, zonder dat de tuningbreedte veranderde. De mate van adaptatie was 
niet enkel afhankelijk van de antwoordsterkte maar werd ook beïnvloed door de 
relatie tussen adapter en test stimulus, zowel voor veranderingen in 
vormeigenschappen als positieveranderingen: er was meer adaptatie wanneer de 
adapter en test stimulus identieke vormeigenschappen hadden en beiden op dezelfde 
positie gepresenteerd werden in vergelijking met wanneer deze stimuli verschilden in 
vorm of positie. We vonden ook een dalend adaptatieniveau met dalende adapter-test 
stimulus similariteit. Deze resultaten suggereren dat adaptatie plaatsvindt voor of op 
het niveau van de synapse.  
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Dissertation submitted to obtain the degree of Doctor in the Psychology 

In the last few decennia, experience-related changes in the functional organization and 
in the neuronal response properties were observed over a wide range of time scales in 
different cortical areas in adults, undermining the traditional view that cortical 
changes dependent on visual experience were limited after the critical period. In this 
dissertation, we studied changes in stimulus selectivity of neurons in the macaque 
inferior temporal (IT) cortex as an effect of changes in the stimulus statistics, 
categorization learning and adaptation.  
To examine how the stimulus selectivity of IT neurons, which are strongly selective 
for object attributes as shape, color or texture, adapts to changes in the stimulus 
distribution statistics, we constructed two shape sets which were presented in two 
subsequent blocks by modulating the stimulus range on a particular dimension. The 
shapes were presented in a Rapid Serial Visual Presentation (RSVP) paradigm, of 
which the validity to study the shape selectivity of IT neurons within parametric shape 
sets was ascertained first. When a shape set with a narrower stimulus range (which 
was inextricably bound up with less variance, less (pixel-based) dissimilarity and 
higher density) was presented, the neural shape discrimination improved, suggesting 
that the tuning of IT neurons adapts to the stimulus distribution statistics when a 
restricted set of shapes is presented at a high rate. 
In a second part, we examined the effects of categorization learning on the neuronal 
representation of complex shapes in IT cortex. By comparing the IT responses in two 
monkeys before and after categorization learning, while counterbalancing the relevant 
categorization dimension across animals, we could disentangle the learned category-
related effects from the pre-learned stimulus selectivity effects. We found that 
categorization learning resulted in an expansion of the representation of the trained 
dimension and that the responses of the neurons were somewhat more similar for 
exemplars that belong to the same, compared to different, categories. These results 
suggest that learning to categorize shapes can only induce minor category-related 
changes in the shape selectivity of IT neurons in adult monkeys.  
In the last part, we examined the effects of adaptation on the stimulus selectivity of IT 
neurons, both with single-cell spiking activity and local field potentials (LFPs). Both 
for the spiking activity and the LFP gamma (61-100Hz) power, stimulus repetition 
scaled down the neuronal responses without changing the tuning width. The degree of 
adaptation was not only response strength dependent but was affected by the 
relationship between adapter and test stimulus for both shape feature and position 
changes: more adaptation was found when adapter and test stimulus had identical 
shape features and were presented at the same position than when these stimuli 
differed in shape or position. We also found that the degree of adaptation decreased 
with decreasing similarity between adapter and test stimulus. Our results suggest that 
adaptation occurs at or before the level of the synapses onto the neuron.  
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CHAPTER 1 
EXPERIENCE-RELATED CHANGES IN NEURONAL 

TUNING OF IT NEURONS: AN OVERVIEW 

Traditionally, it was thought that cortical changes dependent on visual 

experience could only occur in narrow time epochs in early animal life. The 

discovery of this ‘critical period’ suggested a limited potential for the adult 

cortex to change its properties (Wiesel and Hubel 1963, 1965; Van der Loos 

and Woolsey 1973; Dawson and Killackey 1987). Although some properties 

(e.g. ocular dominance) are indeed fixed in adulthood (Hubel and Wiesel 

1977), recent evidence pointed out that experience-related changes in the 

functional organization and in the neuronal response properties can arise in all 

cortical areas over a wide range of time scales (from seconds up to months).  

From a theoretical point of view, investigations of experience-related changes 

are important to learn how neuronal responses depend on the stimulation 

history, which can increase our understanding of the information processing 

of neurons in a natural environment. The importance of this research, 

however, goes beyond potential theoretical contributions (e.g. to models of 

adaptation). Knowledge of how experience affects the brain is critical as the 

functional changes that occur with experience possibly also underlie the 

recovery following brain damage. This knowledge might thus help in our 

understanding of the mechanisms of repair and recovery in damaged or 

malfunctioning brains. Understanding the neural correlates of categorization 

and categorization learning, for instance, can assist the diagnosis and 

revalidation of some brain dysfunctions that affect categorization or 

categorization learning, such as Parkinson disease (e.g. Brown and Marsden 

1988; Ashby et al. 2003) or Alzheimer disease (e.g. Keri et al. 1999). 
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In this introductory chapter, I will give an overview of the major findings on 

experience-related changes in neuronal tuning in the macaque brain. Because 

this review, like the dissertation itself, is mostly confined to neuronal changes 

in the inferior temporal cortex, I will introduce this brain region first. This 

chapter ends with the presentation of the research issues addressed in this 

present dissertation. 

 

INFERIOR TEMPORAL CORTEX 

The macaque Inferior Temporal (IT) cortex is located in the anterior ventral 

part of the temporal lobe and is the endpoint of the ventral visual stream1, also 

known as the ‘What Pathway’, which extends from primary visual cortex 

(V1) over V2 and V4 to culminate in the IT cortex and mediates object 

recognition and long-term memory. IT cortex is also interconnected with 

various brain areas, including perirhinal cortex, prefrontal cortex, parietal 

cortex, amygdala and striatum (Ungerleider and Mishkin 1982; Ungerleider et 

al. 1989; Webster et al. 1994; Murray et al. 2000). IT cortex can be divided 

into different subregions (e.g. posterior and anterior IT) based on, for 

instance, functional properties (Tanaka et al. 1991). Posterior and anterior IT 

roughly correspond to the cytoarchitectural areas TEO and TE, respectively 

(von Bonin and Bailey 1947; Iwai and Mishkin, 1969; see Figure 1). As TE 

seems to be the essential part for the flexible properties of visual object 

recognition (Tanaka 1996), the focus in this dissertation is on the anterior part 

of IT cortex. 

                                                 
1 As opposed to the dorsal visual stream or “Where Pathway”, extending from V1 over V2 
and MT to the parietal cortex, which is associated with motion, representation of object 
locations and spatial perception in general. The view on the function of this dorsal stream 
has evolved throughout the years towards processing of visual information to control 
actions (Goodale and Milner 1992) 
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Figure 1. Lateral view on the macaque cerebral cortex with the approximate positioning of several 
visual areas (Figure from Komatsu 2006) 

Neurons in the IT cortex are strongly selective for object attributes as shape, 

color or texture and are involved in visual object identification and 

categorization (Gross et al. 1969; Dean 1976; Tanaka 1996; Logothetis and 

Sheinberg 1996; Afraz et al. 2006). The shape selectivity of IT neurons shows 

considerable invariance despite drastic stimulus transformations: the 

preference for a particular shape over other shapes is largely unaffected by 

changes in the position or size of the object, by the defining cue or by partial 

occlusion (for a review, see Vogels and Orban 1996; Logothetis and 

Sheinberg 1996; Tanaka 1996; Riesenhuber and Poggio 2002). 

Although some IT neurons have small receptive fields (Op de Beeck and 

Vogels 2000; Di Carlo and Maunsell 2003), in general, IT neurons tend to 

have larger receptive fields compared to more posterior areas of the ventral 

visual stream in awake monkeys. Additionally, IT neurons show a general 

preference for the foveal position with a bias towards the contralateral visual 

field (Schwartz et al. 1983, Komatsu and Ideura 1993; Tovee et al. 1994; 

Logothetis et al. 1995; Missal et al. 1999; Op de Beeck and Vogels 2000). 
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LEARNING EFFECTS IN IT CORTEX 

Several studies have suggested that the representations of familiar, trained 

stimuli in IT cortex are enhanced. Kobatake et al. (1998) trained their 

monkeys to discriminate complex shapes and examined the IT stimulus 

selectivity. They found that the proportion of IT cells which were responsive 

to some of the trained stimuli was greater in the trained monkeys compared to 

that in untrained control monkeys. Kobatake et al. (1998) also found that a 

proportion of the IT cells responded more strongly to some of the learned 

objects compared to the control stimuli. A similar increase in neuronal 

responses to learned forms compared to altered versions of these forms in IT 

cortex was reported by Sakai and Miyashita (1994).  

Also Freedman et al. (2006) showed a sharpening of neuronal tuning in IT for 

familiar compared to novel stimuli in monkeys who were passively fixating. 

They trained their monkeys in a visual categorization task and compared the 

stimulus selectivity for the trained stimuli and for the image-plain rotated 

versions of these same stimuli. The selectivity for the stimuli presented in the 

trained orientation was stronger than for these stimuli presented at the 

untrained, rotated orientation. Baker et al. (2002) trained their monkeys in 

discriminating between two-part stimuli. The two parts of these so-called 

‘baton’-stimuli were manipulated independently. They found a sharpened 

selectivity of IT cells for combinations of parts that were experienced 

together during training compared to unlearned batons. Also the selectivity 

for the individual parts of the learned batons was enhanced. In contrast with 

Kobatake et al. (1998), the increase in stimulus selectivity with training in the 

studies of Freedman et al. (2006) and Baker et al. (2002) was not 

accompanied by an increased response strength to the learned objects, but by 

a reduced firing strength to the trained, but ineffective shapes. A similar 

combination of increased selectivity and reduced response strength with 
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extensive exposure in IT cortex was observed by Mruczek and Sheinberg 

(2007) and Anderson et al. (2008). Op de Beeck et al. (2007) also found some 

evidence for increased selectivity in IT for the relevant (backward-masked) 

objects, but only in one of their two monkeys. Additionally, this increased 

selectivity for the relevant objects was combined with a reduction of the 

neuronal responses to the interfering irrelevant masking patterns. Some 

studies only reported decreases in firing strength to objects to which the 

monkeys had been extensively exposed (e.g. Fahy et al. 1993; Li et al. 1993), 

without reporting changes in stimulus selectivity. 

Instead of focusing on the effects of familiarity or of extensive object 

discrimination training on the selectivity and responsiveness of IT cells, few 

studies focused on the effect of categorization learning on the neuronal tuning 

in IT neurons. The results of these few studies were diverse. In one study 

(Vogels 1999), monkeys were trained to categorize trees versus non-trees and 

fish versus non-fish. Some of the recorded IT neurons responded well to 

many of the stimuli from the trained category, while their response to 

untrained distractors was weak. In addition to this between-category 

selectivity, IT cells also displayed within-category selectivity: the responses 

were not sufficiently invariant to accommodate all variability present within a 

given category. These results suggested that object categories are not 

represented at the single cell level in IT cortex. Freedman et al. (2003), 

however, reported category effects for IT cells after training their monkeys to 

categorize their stimuli into a ‘cat’ and ‘dog’ category using a category-

matching task. These effects, however, were very weak: responses to shapes 

from within one learned category were slightly more similar than responses to 

shapes from different learned categories. Since no pre-training measurements 

of selectivity were obtained in this study, this small effect could result from 

physical differences amongst the stimuli instead of differences in category 

membership. Sigala and Logothetis (2002) compared the IT representation for 
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features that were diagnostic for distinguishing between two learned stimulus 

categories with the representation of non-diagnostic features. They found an 

enhanced representation of the shape features that were relevant to categorize 

the stimuli. Sigala and Logothetis (2002), however, obtained no pre-training 

selectivity measurements either. As a consequence, the reported effect of 

categorization relevant feature selectivity could be due to mere stimulus 

selectivity, unrelated to categorization learning, all the more since the 

diagnostic feature was identical in both trained monkeys. Op de Beeck et al. 

(2001) studied the effect of applying different categorization rules based on 

integral dimensions on the selectivity of IT cells. Contrary to Sigala and 

Logothetis (2002), they found no expansion of the relevant dimension or any 

other metric changes. 

 

ADAPTATION EFFECTS IN IT CORTEX 

One of the most robust experience-related changes in neuronal responses is 

apparent when stimuli are repeated: in many cortical areas, the neuronal 

activity decreases with stimulus repetition. This phenomenon has been 

referred to as, among other things, adaptation (e.g. Ringo 1996; Krekelberg et 

al. 2006), repetition suppression (e.g. Desimone 1996; Grill-Spector et al. 

2006), attenuation (Yi et al. 2006) or neural priming (Maccotta and Buckner 

2004). Adaptation effects can occur at multiple time scales, from milliseconds 

(e.g. Sobotka and Ringo 1996), over minutes (e.g. Henson et al. 2000), up to 

days (van Turennout et al. 2000) and are believed to underlie several 

behavioral phenomena like perceptual aftereffects and priming (Schacter and 

Buckner 1998; Clifford and Rhodes 2005; but see McMahon and Olson 

2007).  
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Adaptation was also observed in IT cortex: various single-cell studies have 

shown that stimulus repetition commonly reduces the firing rate of IT neurons 

(Gross et al. 1967, 1969; Baylis and Rolls 1987; Miller et al. 1991a; Riches et 

al. 1991; Sobotka and Ringo 1993; Vogels et al. 1995), even despite many 

intervening presentations of other stimuli (e.g. Brown et al. 1987; Miller et al. 

1991b; Li et al. 1993; Miller and Desimone 1994; Xiang and Brown 1998; 

Sawamura et al. 2006). This adaptation effect was found in both awake 

behaving animals performing various visual tasks as well as in anesthetized 

animals. 

Aside its fundamental scientific importance (e.g. to understand the underlying 

principles of perceptual aftereffects), studying the adaptation of neuronal 

responses is also important from a more practical, methodological point of 

view, since adaptation paradigms are being used to infer the stimulus 

selectivity of neuronal populations in humans employing functional imaging 

techniques (fMRI; MEG). Because of the invasive nature of the commonly 

used single unit recordings to study stimulus selectivity of neurons in 

macaques, an alternative method had to be found to study the neuronal 

stimulus selectivity in humans. The classical fMRI technique could not serve 

as an alternative, as studies using this technique could only show differences 

in brain region activation when presenting different stimuli (e.g. moving 

versus static stimuli) but did not provide any insight in the selectivity for 

stimulus parameters in the activated regions (e.g. direction selectivity). With 

the development of the fMRI-adaptation technique (fMR-A; Grill-Spector 

and Malach 2001; Nacache and Dehaene 2001), this problem has been 



Chapter 1 
 

24 

overcome and the non-invasive fMRI technique could serve as an alternative 

to study the stimulus selectivity of neuronal populations in humans2.  

At present, several different fMR-A paradigms have been developed but, 

contrary to the single unit recording studies in macaques in which stimulus 

selectivity can be assessed in a direct way, all the fMR-A paradigms need to 

infer the neuronal stimulus selectivity from cross-adaptation. The principle of 

cross-adaptation can be explained as follows: Consider 3 stimuli (A, B and C) 

and that the same neurons respond to stimulus A and B, but not to stimulus C. 

As mentioned before, adaptation will occur when stimulus A is repeated (A-A 

sequence). Because the same neurons are responsive for stimulus A and B, 

one expects also that activation is decreased when B is followed by A (cross-

adaptation; B-A sequence). However, since different neurons respond to 

stimulus A and C, one does not expect cross-adaptation for the C-A sequence. 

The degree of cross-adaptation can thus be used to infer the stimulus 

selectivity of a neuronal population. 

Because the cross-adaptation principle is fundamental to all fMR-A 

paradigms3, it is important to examine the match between the stimulus 

selectivity of the neuronal responses and the stimulus selectivity of the 

adaptation effect. Sawamura et al. (2006) tested this match by performing a 

single-cell study on cross-adaptation in IT cortex. They selected for each IT 

neuron three stimuli: two to which the neuron responded (stimulus A and B), 

and one to which the neuron responded much less or not (stimulus C). They 

found little or no cross-adaptation for the C-A sequences, whereas the degree 

                                                 
2 Note that fMR-A is not the only method used to measure selectivity of fMRI. Recently, 
multi-voxel pattern analysis methods have been employed on fMRI data, with some 
promising results (for a review, see Norman et al. 2006). 
3 Note that the validity of the fMR-A technique for inferring neuronal stimulus selectivity 
is also dependent on the link between neuronal signals and the hemodynamic BOLD 
response measured with fMRI. This fundamental link is currently also subject of intense 
research (e.g. Logothetis et al. 2001; Kim et al. 2004; Logothetis and Wandell 2004; 
Mukamel et al. 2005; Niessing et al. 2005). 
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of cross-adaptation for the B-A sequence was less than expected from the 

similarity of the responses to B and A. This implies a greater stimulus 

selectivity of the adaptation effect compared to the stimulus selectivity of the 

responses in IT. This mismatch between the stimulus selectivity and the 

adaptation effect of IT neurons implies that the fMR-A method may 

overestimate the selectivity of the neurons. 

 

EFFECTS OF STIMULUS STATISTICS 

The effect of stimulus presentation history on neuronal response 

characteristics is not only evident in learning or in adaptation effects. Recent 

work has demonstrated that early visual and auditory neurons adapt to recent 

stimulus statistics so that information transmission is enhanced (e.g. 

Smirnakis et al. 1997; Brenner et al. 2000; Fairhall et al. 2001; Sharpee et al. 

2006; Dean et al. 2005, 2008). Brenner et al. (2000) and Dean et al. (2005), 

for instance, demonstrated an adaptive rescaling of neuronal responses in, 

respectively, the fly visual system and the guinea pig inferior colliculus when 

the variance of the stimulus distribution was altered. No similar effects of 

stimulus distribution statistics on the tuning of IT neurons have been reported. 

However, similar adaptive mechanisms might operate in IT cortex or effects 

of such adaptive mechanisms at earlier visual levels might be inherited in IT. 
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SINGLE CELL AND LOCAL FIELD POTENTIALS 

By filtering the extracellular voltage in two different ways, the recorded 

signal can be split into spiking activity (by high-pass filtering, typically above 

~300 Hz) and Local Field Potentials or LFPs (by low-pass filtering, e.g. 

below 300 Hz). The contribution from spikes to the LFPs is thought to be 

relatively small, except in the 100 to 300 Hz frequency range. This frequency 

band likely contains power resulting from nearby action potentials.  

Spiking activity reflects local neural processing and the neuronal output of a 

single cell or multiple neurons near the tip of the electrode to other brain 

regions. LFPs, in contrast, arise largely from dendritic activity over large 

brain regions (Mitzdorf 1985, 1987; Juergens et al. 1999; Cruikshank et al. 

2002; Kaur et al. 2004; Logothetis and Wandell 2004; Kreiman et al. 2006; 

Nielsen et al. 2006; Chen et al. 2007) and thus provide a measure of the 

synaptic input from other brain regions to and local processing, mediated by 

interneurons, within an area within 0.5-3 mm of the electrode tip (Mitzdorf 

1985, 1987; Juergens et al. 1999). For IT cells, the synaptic input is largely 

composed of (a) feedforward signals from earlier areas (e.g. V4); (b) 

feedback signals (e.g. from prefrontal cortex); and (c) local connectivity 

(Kreimann et al. 2006). 

Simultaneous recordings of LFPs and spiking activity can add to our 

understanding of the transformation of neural signals from one processing 

stage to the next (Kreiman et al. 2006; Nielsen et al. 2006). One assumption 

in comparing LFPs with single cell activity is that spiking activity will show 

response modulations prior to LFPs only in those brain areas where the 

processing occurs. In the brain areas receiving this information from other 

regions, the response modulations in the LFPs will be seen before or 
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simultaneously with the modulations in the spiking activity (Nielsen et al. 

2006; Monosov et al. 2008). 

Another reason to measure LFPs in addition to single unit spiking activity is 

that the fMRI BOLD response seems to correlate more strongly with LFPs 

than with spiking activity (Logothetis et al. 2001; Viswanathan and Freeman 

2007), possibly because the LFPs, as does the BOLD response, reflect an 

energetically expensive activity (Logothetis et al. 2001; Rauch et al. 2008). 

LFPs recorded in monkeys could thus be an important link between monkey 

single cell and human EEG and fMRI data (Logothetis and Wandell 2004; 

Woodman et al. 2007). 

Despite the great opportunities provided by the simultaneous recordings of 

LFPs and spiking activity, as yet, only few studies, especially in IT cortex, 

took advantage of this possibility. Nielsen et al. (2006) studied the effect of 

occlusion of parts of a scene with different behavioral relevance4 on neuronal 

responses in IT cortex with single cells and LFPs. They found a dissociation 

between LFPs and spiking activity as a function of the anatomical recording 

area: For the spiking activity, a preference for the diagnostic over the 

nondiagnostic objects was observed in both the posterior and anterior parts of 

IT. For the LFPs, however, this preference for diagnostic parts was only 

found in the anterior recording part of IT. Kreiman et al. (2006) showed that 

LFPs in IT are stimulus selective and scale- and position-invariant. Compared 

to the spiking activity, the selectivity of LFPs was less pronounced: fewer 

sites showed stimulus selectivity and the selectivity was less sharp. In 

general, Kreiman et al. (2006) did not find a correlation between the LFPs 

stimulus selectivity and the single unit stimulus selectivity measured with the 

same electrode.  

                                                 
4 Note that the behavioral relevance might be confounded with contrast level in this study. 
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THE PRESENT DISSERTATION 

In this dissertation, I will present several studies which are aimed at exploring 

one of the above-mentioned experience-related effects on tuning of IT 

neurons. The three following parts of this dissertation deal, respectively, with 

effects of stimulus distribution statistics, effects of categorization learning 

and effects of adaptation. After the third empirical part, I will bring this 

dissertation to a close in Chapter 5 with a presentation of the general 

conclusions which can be drawn from the previous chapters. In this final 

chapter, I will also propose some directions for future experimental 

investigations. 

 

FIRST PART: VALIDITY OF THE RSVP TECHNIQUE AND ADAPTATION 

TO CHANGES IN THE STIMULUS STATISTICS 

Given recent demonstrations in the fly visual system and the guinea pig 

inferior colliculus (Brenner et al. 2000; Dean et al. 2005, respectively) of an 

adaptive rescaling of neuronal responses when the variance of the stimulus 

distribution is altered, we examined whether the tuning of IT neurons adapts 

to the properties of the stimulus distribution other than the mean in the first 

part (Chapter 2) of this dissertation. To this end, we measured the responses 

of single IT neurons to a set of shapes that varied parametrically along a 

single dimension. The neurons were tested in two successive blocks using 

stimuli that differed in stimulus variance and density between blocks. One 

important prerequisite to manipulate the stimulus distribution properties is the 

use of parameterized sets of stimuli because they allow examining how the 

neuronal responses to stimuli are related to the parametric variation built into 

the stimulus sets (e.g. Op de Beeck et al. 2001; Sigala and Logothetis 2002; 

Brincat and Connor 2004; Kayaert et al. 2005). 
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To study the effects of changes in the stimulus distribution statistics, we opted 

to use the Rapid Serial Visual Presentation (RSVP) paradigm. In RSVP, 

images are presented sequentially and continuously at a high pace with each 

image replacing the previous one at the same location. Although Keysers et 

al. (2001) and Földiák et al. (2004) pioneered the use of the RSVP paradigm 

to examine the selectivity of neurons in the superior temporal sulcus (STS) 

for sharply differing, complex images, this paradigm has rarely been used in 

combination with single-cell recordings in the higher visual cortex. As a high 

number of stimuli are presented repeatedly, this paradigm might be more 

sensitive to adaptive effects than classical testing paradigms. The validity of 

the RSVP technique to study shape selectivity for parametric sets, however, is 

not obvious since the differences among the shapes in such sets are much 

smaller compared to the stimulus differences employed in previous studies 

using RSVP (Keysers et al. 2001; Földiák et al. 2004; Kiani et al. 2005). As a 

result, we first wanted to determine whether the RSVP technique is a useful 

tool for this purpose. 

 

SECOND PART: EFFECTS OF CATEGORIZATION LEARNING 

In the second part of this dissertation (Chapter 3), we reexamined the effects 

of category learning of complex shapes on the neuronal representation in IT 

cortex. Contrary to previous studies (Op de Beeck et al. 2001; Sigala and 

Logothetis 2002; Freedman et al. 2003), which reported diverse and 

conflicting results, we incorporated the possibility to disentangle pre-learned 

stimulus selectivity effects from learned category-related effects in two ways.  

First, we recorded the responses of IT neurons in two monkeys before and 

after categorization learning. Before categorization learning, we recorded the 

responses of single IT neurons while presenting all shapes randomly 
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intermixed in an RSVP paradigm while the monkeys were passively fixating. 

After categorization training, we again recorded the responses of single IT 

neurons to the shapes while the monkeys were categorizing the images. 

Second, we counterbalanced the relevant categorization dimension across 

animals: In between the two recording phases, we trained the monkeys to 

group the stimuli into two categories with curvature and aspect ratio as the 

relevant dimension for the first and second monkey, respectively. 

We chose to manipulate the shape dimensions aspect ratio and curvature 

because these were previously shown to be largely separable in human 

psychophysical studies (e.g. Op de Beeck et al. 2003; Wagemans et al. 2006). 

This separability of the dimensions5 is important as a human psychophysical 

study (Op de Beeck et al. 2003) reported a dimension-specific gain in 

perceptual similarity induced by categorization learning for shapes varying 

along separable, but not integral dimensions. This effect of separability could 

possibly also explain the discrepancy between the results of Op de Beeck et 

al. (2001) and Sigala and Logothetis (2002): in the latter study, separable 

dimensions were manipulated whereas in the former study, integral 

dimensions were employed.  

 

THIRD PART: ADAPTATION EFFECTS 

The main research questions in the third and last empirical part of this 

dissertation (Chapter 4) are related to the effects of adaptation on the stimulus 

selectivity or tuning of IT neurons. These issues could not be addressed in the 

study of Sawamura et al. (2006) since they only presented one test stimulus. 

                                                 
5 Separable dimensions can be attended to separately. By contrast, for integral dimensions, 
it is difficult, if not impossible, to ignore variations along one dimension while attending to 
the other (Garner 1976). Classical examples of separable dimensions are size and 
brightness, whereas saturation and brightness are classical examples of integral dimensions 
(Garner 1976; Foard and Kemler 1984; Melara et al. 1993). 
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A prerequisite to measure neuronal tuning functions, however, is the use of 

sets of stimuli that vary systematically according to a particular parameter so 

one can plot the neuronal responses as a function of the parametric values. As 

mentioned before, it is possible to measure tunings of IT neurons by using 

shapes that vary systematically along particular shape dimensions (e.g. Op de 

Beeck et al. 2001; Kayaert et al. 2005). 

Using a fully crossed design in which all stimuli could serve as an adapter 

and as a test stimulus and in which all possible combinations of these stimuli 

were presented, we could assess the effect of adaptation on the tuning of IT 

neurons as a function of the similarity between the adapter and the test 

stimulus, both with single-cell spiking activity and Local Field Potentials 

(LFPs). Knowledge about this effect is crucial in order to interpret fMR-A 

results. A common assumption here is that the effect of adaptation reduces 

with increasing dissimilarity between adapter and test stimulus (Jiang et al. 

2006). It is also important to know the degree to which the adaptation and its 

effect on selectivity depend on the stimulus effectiveness, i.e. on how 

strongly the stimuli drive the neuron. According to a model linking fMR-A to 

neuronal tuning (Piazza et al. 2004), the degree of adaptation demonstrated by 

a neuron is proportional to the strength of its initial response to a stimulus. 

Changes in selectivity following adaptation can be used to distinguish two 

models of adaptation (Grill-Spector et al. 2006): the ‘fatigue’ model (Grill-

Spector and Malach 2001) and the ‘sharpening’ model (Desimone 1996; 

Wiggs and Martin 1998). The fatigue model predicts that stimulus repetition 

reduces the response in proportion to the original response, but predicts no 

change in selectivity with adaptation. The sharpening model, by contrast, 

predicts that adaptation causes a sharpening of the tuning curves, thus an 

increased selectivity after adaptation. This results in a sparser representation 

of the stimuli. 
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CHAPTER 2 
PROPERTIES OF SHAPE TUNING OF MACAQUE 

INFERIOR TEMPORAL NEURONS EXAMINED USING 
RAPID SERIAL VISUAL PRESENTATION 

Journal of Neurophysiology, 2007, 97, 2900-29161,2 

We used rapid serial visual presentation (RSVP) to examine the tuning of 

macaque inferior temporal cortical (IT) neurons to five sets of 25 shapes each 

that varied systematically along predefined shape dimensions. A comparison 

of the RSVP technique using 100-ms presentations with that using a longer 

duration showed that shape preference can be determined with RSVP. Using 

relatively complex shapes that vary along relatively simple shape dimensions, 

we found that the large majority of neurons preferred extremes of the shape 

configuration, extending the results of a previous study using simpler shapes 

and a standard testing paradigm. A population analysis of the neuronal 

responses demonstrated that, in general, IT neurons can represent the 

similarities among the shapes at an ordinal level, extending a previous study 

that used a smaller number of shapes and a categorization task. However, the 

same analysis showed that IT neurons do not faithfully represent the physical 

similarities among the shapes. The responses to the two-part shapes could be 

predicted, virtually perfectly, from the average of the responses to the 

respective two parts presented in isolation. We also showed that IT neurons 

adapt to the stimulus distribution statistics. The neural shape discrimination 

improved when a shape set with a narrower stimulus range was presented, 

suggesting that the tuning of IT neurons is not static but adapts to the stimulus 

distribution statistics, at least when stimulated at a high rate with a restricted 

set of stimuli. 

                                                 
1 This paper was co-authored by Elsie Premereur and Rufin Vogels 
2 The authors are indebted to Steve Raiguel and three anonymous reviewers for critical 
comments on an earlier draft of this manuscript. 
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INTRODUCTION 

Visual object recognition and categorization are extremely difficult for 

artificial vision systems, although they seem to be accomplished effortlessly 

by the brain. In macaques, these processes are thought to depend on the 

highest stage of the ventral stream: the inferior temporal (IT) cortex (Dean 

1976; Logothetis and Sheinberg 1996). Single IT neurons can be strongly 

selective for object attributes such as shape, texture, and color, while 

remaining tolerant to some transformations such as object position and scale 

(for a review, see Logothetis and Sheinberg 1996; Riesenhuber and Poggio 

2002; Tanaka 1996). 

In contrast with its extensive use in behavioral research (e.g., Chun and Potter 

1995; Potter and Levi 1969; Subramaniam et al. 2000), the rapid serial visual 

presentation (RSVP) paradigm has rarely been used in combination with 

single-cell recordings in the higher visual cortex. In RSVP, images are 

presented sequentially and continuously (with no interstimulus interval or ISI) 

with each image replacing the previous one at the same location on the 

screen. Keysers et al. (2001) and Földiák et al. (2004) pioneered the use of the 

RSVP paradigm to examine the selectivity for complex images of neurons in 

the superior temporal sulcus (STS). Although an increasing presentation rate 

resulted in a flattening of the neuronal tuning, the stimulus-coding ability of 

the population of STS neurons recorded was preserved even at the highest 

presentation rates (14 ms/image), suggesting that RSVP is a useful technique 

for studying the stimulus selectivity of STS neurons with a large number of 

stimuli. However, in that and another study (Kiani et al. 2005) using RSVP, 

stimuli were highly complex and differed sharply. 

In studying the stimulus selectivity of IT cells, several researchers (e.g., 

Brincat and Connor 2004; Kayaert et al. 2005a; Op de Beeck et al. 2001; 
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Sigala and Logothetis 2002) opted for the use of parametric shape 

configurations principally because it allows examining how the responses of 

IT neurons to complex stimuli are related to the parametric variation built into 

the stimulus sets. The use of all shapes to search for and test responsive 

neurons is a prerequisite for obtaining an unbiased measure of the responses 

and tuning of an IT neuron population to a set of parameterized shapes. 

However, the total experimental time available is limited when using the 

conventional presentation techniques, thus limiting the number of stimuli that 

could be presented in most of these studies. This drawback to use parametric 

shape sets can be overcome by the application of the RSVP paradigm because 

it allows the presentation of many stimuli. Thus one aim of the present study 

was to determine whether the RSVP technique is useful for studying the 

shape selectivity of IT neurons using parameterized sets of shapes (Kayaert et 

al. 2005a; Op de Beeck et al. 2001). The validity of the RSVP technique to 

study shape selectivity for parametric sets is not obvious since the differences 

among the shapes in such sets are much smaller than the stimulus differences 

employed in the previous IT studies using RSVP (Földiák et al. 2004; 

Keysers et al. 2001; Kiani et al. 2005). 

Kayaert et al. (2005a) recorded from IT cells while showing simple shapes 

(e.g., a rectangle or triangle) parametrically manipulated along simple shape 

dimensions (e.g., taper or axis curvature). They found systematic response 

modulation along these simple dimensions with the largest response, on 

average, to the extreme values along a given dimension. The findings of 

Kayaert et al. (2005a), which suggest monotonic tuning in IT cortex for 

simple shapes, raise questions concerning the tuning curves for other, more 

complex shapes. Op de Beeck et al. (2001) used more complex shapes, but 

their squared configurations, consisting of merely eight shapes, did not allow 

disentangling preferences for extreme values on a given dimension from 

preferences for intermediate values along that dimension. Because of the 
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nature of their configuration, every shape corresponded a priori to an extreme 

value on a dimension. Hence in a first experiment, our primary aim was to 

examine the neural representation in IT cortex of complex shapes that vary 

systematically along shape dimensions using the RSVP paradigm. The 

application of the RSVP method provided an opportunity to increase the 

number of shapes per configuration. Thanks to this, we could also examine 

the extent to which the similarity among complex shapes is also represented 

on an ordinal and metrical level in IT cells when configurations are used that 

consist of a larger number of shapes than those employed by Op de Beeck et 

al. (2001). 

As in the Kayaert et al. (2005a) study, the major portion of the neurons 

recorded in the present study showed a preference for the extreme values of 

the parametric space, at least within the range of values tested. One important 

issue, discussed by Kayaert et al. (2005a), is the degree to which the tuning 

for the extremities of the space is due to the repeated presentation of a 

restricted set of stimuli, i.e., the statistics of the stimulation history. Recent 

work has demonstrated that early visual and auditory neurons adapt to recent 

stimulus statistics so that information transmission is enhanced (e.g., Brenner 

et al. 2000; Dean et al. 2005; Fairhall et al. 2001; Sharpee et al. 2006; 

Smirnakis et al. 1997). Similar adaptive mechanisms might be operating at 

higher levels of the visual system or the effects of such adaptive mechanisms 

at earlier levels of the visual system could be inherited in IT. It is known that 

the responses of IT neurons can depend on previous stimulus presentations, 

e.g., stimulus repetition commonly reduces the responses of IT neurons 

(Baylis and Rolls 1987; Gross et al. 1967, 1969; Miller et al. 1991a; Riches et 

al. 1991; Sobotka and Ringo 1993), even with intervening presentations of 

other stimuli (e.g., Brown et al. 1987; Miller et al. 1991b; Sawamura et al. 

2006). Because a high number of stimuli are presented repeatedly in RSVP, 

this paradigm might be more sensitive to adaptive effects than classical 
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testing paradigms in which one stimulus is presented per trial after acquisition 

of fixation and the intertrial interval is relatively long. This also implies that 

RSVP might be a useful technique with which to demonstrate the effect of 

stimulus statistics on neuronal tuning. Given recent demonstrations of an 

adaptive rescaling of neuronal responses in the fly visual system (Brenner et 

al. 2000) and guinea pig inferior colliculus (Dean et al. 2005) when the 

variance of the stimulus distribution is altered, we used RSVP to examine 

whether the tuning of IT neurons adapts to the properties of the stimulus 

distribution other than the mean. Note that the manipulation of stimulus 

distribution properties is possible only when parameterized sets of stimuli are 

used. Thus in a second experiment, we measured the responses of IT neurons 

to a set of shapes that varied along a single dimension. The neurons were 

tested in two successive blocks using stimuli that differed in stimulus 

variance and density between blocks. Parts of the results of the present study 

have been published in abstract form (De Baene and Vogels 2005). 

 

METHODS 

SUBJECTS 

Two male rhesus monkeys (Macaca mulatta; monkeys J and B) served as 

subjects. Before conducting the experiments, aseptic surgery under isoflurane 

anesthesia was performed to attach a fixation post to the skull and to 

stereotactically implant a plastic recording chamber. The recording chambers 

were positioned dorsal to IT, allowing a vertical approach, as described by 

Janssen et al. (2000). During the course of the recordings, we took a structural 

magnetic resonance (MRI) image, with a copper sulfate filled tube inserted in 

the grid at one of the recording positions. The recording positions were 
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estimated by comparing this MRI with depth readings of the white and gray 

matter transitions and of the skull base during the recordings. 

All animal care and experimental and surgical procedures followed national 

and European guidelines and were approved by the K.U. Leuven Ethical 

Committee for animal experiments. 

STIMULI 

All shapes (maximum size: 7.1°) were filled with pixel noise and were 

presented foveally in continuous rapid random sequences at a rate of 100 

ms/image on a gray background on a monitor positioned 60 cm from the 

monkeys (60-Hz frame rate; 1,024 x 768 pixels). A trial started after 250 ms 

of stable fixation and ended when the monkey broke fixation or when every 

stimulus had been presented twice (for experiment 1) or 20 times (for 

experiment 2). Different visual stimuli were used in each experiment (see 

following text). 

Experiment 1.  

We generated five parametric sets in which shapes were varied systematically 

along two dimensions, permuting into 25 combinations of values of the two 

dimensions per set in a circular configuration (see Figure 1). The range of the 

dimensions of the parametric configurations was restricted in two ways. First, 

within a set, the pixel-based dissimilarities (cf. see following text, Eq. 3) 

between the shapes along a given dimension had to be largely similar to the 

pixel-based dissimilarities between the shapes along the other dimension. 

Second, these pixel-based dissimilarities, as calculated per set, had to be 

similar across sets.  
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Figure 1. Visual stimuli 
experiment 1. The parametric 
configurations consisted of 5 sets 
of 25 shapes each. For each of 
these 5 stimulus sets, the 
parametric configuration of the 
stimuli was circular. The 
manipulated dimensions for sets 1 
and 2 were taper and aspect ratio 
(respectively, horizontal and 
vertical axis). The amplitude of 2 
radial frequency components 
were varied in sets 3 and 4. In set 
5, the taper of the bottom and the 
top part (respectively, vertical and 
horizontal axis) of the shape was 
manipulated. The isolated upper 
parts of the shapes on the vertical 
axis of set 5 together with the 
isolated lower parts of the shapes 
on the horizontal axis of set 5 
constituted set 6. 

 

For sets 1 and 2, the dimensions taper and aspect ratio were manipulated. 

The amplitude of two radial frequency components were varied in sets 3 and 

4, whereas the taper of the bottom and the top part of a two-part shape were 

independently manipulated in set 5. The isolated upper parts of the stimuli on 

the vertical axis of set 5 as well as the isolated lower parts of the stimuli on 

the horizontal axis of set 5 constituted a sixth set (Figure 1). The shapes of set 

6 were presented at the same positions as when presented in combination (set 

5). The resulting 135 stimuli were presented in a random order. 
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Experiment 2.  

In experiment 2, the parametric dimension showing the maximal response 

modulation in experiment 1 was chosen for each of the five circular 

parametric sets of experiment 1 (i.e., without set 6). Based on these five 

dimensions, we created two one-dimensional configurations of nine shapes 

each per set (Figure 2) and labeled these the “narrow-range” and the “wide-

range” configurations. The parametric distances between the subsequent 

stimuli of the wide-range configurations were chosen such that no additional 

features were introduced for the shapes at the extremes. The narrow-range 

configurations were obtained by halving parametric distances between 

subsequent stimuli in the wide ranges. This resulted in a fourfold increase in 

variance and in an increase in the mean (pixel-based) dissimilarity (cf. 

following text, Eq. 3) between stimuli in the wide-range sets compared with 

the narrow-range sets, as well as in a lower density of the wide-range 

stimulus configurations. 

Figure 2. Visual stimuli experiment 2. For each of the 5 shape sets of experiment 1, 2 range 
configurations of each 9 shapes were generated for the parametric dimension showing maximal 
response modulation in experiment 1. The wide-range configurations were derived from the 
narrow-range configurations by doubling the parametric distance between the stimuli of these 
narrow-range configurations. The shapes denoted by the letters A to E are common to both 
ranges. Identical, matching stimuli are connected (—). 
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PROCEDURE 

In both experiments, eye position was monitored through the pupil position 

using an infrared eye tracking system (ISCAN, EC-240A) at a sampling rate 

of 120 Hz. Monkeys were rewarded with a drop of fruit juice at an increasing 

pace as long as they kept their gaze within 3° (monkey J) or 1.5° (monkey B) 

of a black fixation target (0.17° diam) in the center of the display. 

Experiment 1.  

We searched for responsive neurons by presenting the 135 stimuli in a 

random order at a continuous rate (no ISI) of 3.3 images/s (27 neurons) or 10 

images/s (57 neurons) in trials of maximally 270 stimuli while the monkey 

was passively fixating.  

We visualized the responses of the cell in a peristimulus time histogram 

(PSTH) averaged over trials and all stimuli. If this PSTH showed that the cell 

responded, we continued presenting the stimuli for ~15 min. If the PSTH 

indicated that the cell did not respond to any of the stimuli, we abandoned this 

cell and searched for another. All 27 neurons that were initially tested with 

the slow presentation rate of 3.3 images/s (stimulus presentation duration = 

300 ms) were subsequently tested with the short, standard 100-ms 

presentation times, allowing a comparison of the responses for the two 

presentation rates. 

Experiment 2.  

Search test. We searched for responsive neurons with the nine stimuli of 

every shape set presented for 300 ms, randomly intermixed, with an ISI of 

700 ms. For half of the recorded cells, the wide-range configurations were 

used in the search test; for the other half, the narrow-range configurations 
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were used. When we found a neuron responsive to ≥1 of these 45 stimuli 

(based on the visual inspection of the PSTHs), the shape set with the largest 

neuronal responses was selected for the subsequent test. 

RSVP test. The stimuli from the selected shape set with the same range 

configuration as that in the search task were presented randomly intermixed at 

a rate of 10 images/s (with no ISI) in trials of no more than 180 stimuli for a 

total duration of ~15 min. Afterward, the stimuli of the other range 

configuration of the same shape set were presented in a similar fashion for 

~30 min. The second range was presented twice as long as the first range. 

This enables us to examine the temporal evolution of the adaptation to the 

stimulus statistics even when this adaptation process was slow. The order of 

the wide- and narrow-range configurations was counterbalanced across 

neurons. 

RECORDINGS 

Standard extracellular recordings were performed with Tungsten 

microelectrodes, lowered in a guiding tube, into the lower bank of the 

superior temporal sulcus and lateral convexity of IT during a passive fixation 

task. The signals of the electrode were amplified and filtered using 

conventional single-cell recording equipment. Spikes from individual neurons 

were isolated on-line using Plexon software (Plexon, Dallas, TX). The timing 

of the single units and the stimulus and behavioral events were stored with 1-

ms resolution on a personal computer for later off-line analysis. 

DATA ANALYSIS AND TESTS 

In both experiments 1 and 2, the response of the neuron was defined as the 

mean number of spikes in a 50- to 200-ms analysis window relative to 

stimulus onset. Alternative analysis windows (50–250 ms and 100–200 ms) 
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showed highly similar results. The first three stimuli of every trial were 

excluded from all analyses because the responses of the majority of the 

recorded neurons were characterized by a burst at the start of every trial, 

lasting for ~300 ms (i.e., the total presentation duration of 3 stimuli at a rate 

of 100 ms/image). The last stimulus of every trial was also excluded from all 

analyses. This last stimulus differed from all others in the trial in that it was 

not followed by any other stimulus, excluding any potential backward 

masking effect that could have been present for all other stimuli. 

Experiment 1.  

All analyses were performed on those neurons showing shape selectivity 

within one or more shape sets. The shape selectivity of the neurons was 

examined by assessing the statistical significance of the observed variance of 

neuronal mean responses to stimuli within a shape set by using a permutation 

test. The range of variances per shape set expected by chance was determined 

by calculating new variances from the data after permuting the order of the 

stimuli within each trial while maintaining the actual spike counts. A 

distribution of 1,000 permuted variances was generated, representing the 

distribution of variances that would have been expected to occur by a chance 

association between stimulus and neuronal firing. If the observed variance of 

the neuronal mean responses to stimuli within a shape set was larger than the 

95th percentile of the values in its own variance distribution, that neuron was 

considered to be shape selective within that shape set (p < 0.05, 1-tailed). The 

shape selectivity for the 10 shapes of set 6 (the isolated parts of the shapes on 

the axes of set 5) was also tested with this permutation test. 

As a measure of the selectivity for the shapes of a set, we computed the depth 

of selectivity (DOS) (Rainer and Miller 2000) for every neuron and shape set. 
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This measure of the degree of tuning of a neuron to a given stimulus set is 

defined as 

 )1/()]/([ max −− ∑ nRRn i  (1) 

where n = number of shapes of a set, Ri = mean firing rate to ith shape and 

Rmax = max{Ri}. The DOS can vary between 0 (when the neuron responds 

equally to all shapes) and 1 (when there is a response to only one shape). 

To estimate the reliability of our procedures in measuring the degree of 

selectivity, we employed an odd-even split half method. First we computed 

for each neuron the DOS indices separately for the odd and even repetitions 

of the stimuli and correlated these DOS indices across neurons. Because the 

split-half correlation is based on only half of the data, this was corrected by 

computing the Spearman-Brown split-half coefficient (Lord and Novick 

1968): 

 )1/(2 xyxysb rrr +=  (2) 

where rsb = corrected split-half reliability coefficient and rxy = correlation 

between the DOS-indices for the odd and even repetitions. 

To investigate whether the population responses of IT neurons can reveal 

low-dimensional representations of similarity in the parametrically configured 

shapes, we compared the within-set configurations obtained from position 

corrected pixel-based similarities with the neuronal representation space in IT 

cortex. Pixel-based similarities between two shapes were computed for each 

of 99x99 relative positions. The positions of one shape corresponded to a 

99x99-square grid (step size = 1 pixel) that was centered on the other shape. 

As the pixel-based dissimilarity measure, we computed the Euclidean 

distance between the gray-level values of the pixels of two shapes. This 
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procedure was done for each of the 99x99 relative positions, according to the 

formula 

 2/1221 ]/))([( nGG ii

n

i
−∑  (3) 

where G
1 and G

2
 = gray levels of pixel i for shape 1 and 2 and n = number of 

pixels. The similarity of a stimulus pair was defined as the smallest value of 

the 99 × 99 positions.  

The representation of shape similarities at the neuronal population level was 

analyzed by computing the Euclidean distance between a pair of stimuli i and 

j in the multidimensional space spanned by the responses of all neurons 
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where n = cell number and p = number of recorded cells.  

For each stimulus group, the different sets of similarity data were analyzed 

with nonmetric multidimensional scaling (MDS) using Statistica software. 

To determine whether a systematic relationship existed between responses to 

the nine stimuli on the axes of set 5 (further referred to as the compound 

stimuli; there are 5 stimuli per axis, but the 2 orthogonal axes have the central 

stimulus in common, producing 9 distinct stimuli) and responses to the 

isolated parts of these stimuli (further referred to as the constituent stimuli; 

set 6), we performed a linear regression analysis per cell with the responses to 

the compound stimuli as the dependent variable and with the sums of the 

responses to the respective constituent stimuli as the predictor variable. 

Additionally, we ran the same regression analysis after pooling the responses 

of all cells showing shape selectivity for the 10 constituent stimuli to examine 
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the relationship between the responses to the constituent stimuli and to the 

compound stimuli at a population level. In these regression analyses, a slope 

of 0.5 would indicate that the responses to the compound stimuli are the 

averages of the responses to the constituent stimuli, presented in isolation, 

whereas a slope of 1.0 indicates that the responses to the compound stimuli 

are the sum of the responses to the constituent stimuli. 

We examined the temporal dynamics of both the selectivity among the shapes 

from different stimulus sets and discrimination among the shapes within one 

stimulus set at a population level using an information-theoretic approach (cf. 

Sugase et al. 1999). According to this approach, each predictable piece of 

information associated with an occurrence of a neuronal response [I(S;R)] is 

quantified as the decrease in entropy of the stimulus occurrence [H(S)] 
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where S = set of stimuli s, R = set of signals r (i.e. spike counts), p(s|r) = 

conditional probability of stimulus s given an observed spike count r and p(s) 

= a priori probability of stimulus s. The brackets indicate the average of the 

signal distribution p(r).  

The use of a small number of trials induces an upward bias in the estimation 

of transmitted information. To correct for this, we subtracted the first-order 

correction term (C1) from the value calculated using Eq. 5, as C1 represents 

almost all the error due to limited sampling (Panzeri and Treves 1996) 
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where N = total number of stimulus presentations, Bs
~

 = number of non-zero 

response bins for the presentations of stimulus s, B = total number of bins and 

S = number of stimuli. Thus, the corrected transmitted information, Ic, is 

defined as follows: 

 CI RSIc 1);( −=   (7) 

To examine the time course of the transmitted information, we computed the 

neuronal responses using sliding windows of different durations. The results 

shown in Figure 9 are based on a window duration of 50 ms and the middle of 

the window was moved in 8-ms steps beginning 5 ms after the stimulus onset, 

up to 277 ms. These values are identical to those used by Sugase et al. (1999), 

facilitating a comparison of our with their results. A shorter time window of 

10 ms produced highly similar results. The temporal evolution of the 

selectivity among shapes from different sets was examined by computing, for 

each time window, the information transmitted by the neuronal responses to 

four randomly selected stimuli, each from a different set (for the selection of 

the 4 stimulus sets, see following text), using Eq. 7. This was repeated 1,000 

times. The temporal dynamics of the discrimination among the shapes of one 

stimulus set was examined by computing, again per time window, the 

information transmitted by the neuronal responses to four randomly selected 

stimuli from within that set. This was also repeated 1,000 times per set. This 

procedure permits excluding a potential bias due to a different number of 

stimuli or a different number of trials when comparing the transmitted 

information for stimuli within one set with the transmitted information for 

stimuli from different sets. 

For both selectivity between sets and within sets, the information latency was 

measured from the stimulus onset to the center of the first of at least three 

consecutive windows for which the information differed significantly (using a 
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paired t-test) from the information in the window with the center at 5 ms after 

stimulus onset. The peak was defined as the center of the window in which 

the transmitted information, averaged across cells, reached a maximum. 

Stimulus sets were chosen for this selectivity time course analysis based on a 

cluster analysis (Ward’s method; Statistica) of the neural similarity matrix of 

all neurons and all stimuli (see RESULTS). This clustering algorithm starts 

from a configuration with as many clusters as stimuli and groups similar 

stimuli in a series of steps (starting with the most similar ones) until all 

stimuli are clustered together. 

Experiment 2.  

All analyses were performed on those neurons showing shape selectivity in 

the RSVP test for at least one of the two range configurations, as tested by a 

one-way ANOVA (p < 0.05) for each range configuration (of 9 stimuli each). 

To compare the neuronal selectivity at the population level for the shapes 

from the narrow- and wide-range configurations, the stimuli were first ranked 

based on the difference between the mean response to stimuli A and B, 

averaged across the two ranges, and the mean response to stimuli D and E of 

both ranges (see Figure 2 for definitions of stimuli A, B, etc.). If the former 

average response was larger than the latter, the stimuli were ranked in 

ascending order (i.e., A B C D E). If the opposite was true, a descending 

ranking was used (i.e., E D C B A). The same ranking was used for the nine 

stimuli. The responses to the nine stimuli of the wide- and narrow-range 

configurations were fitted with a second-order polynomial least-squares fit. 

For all further analyses, we focused on the shapes common to the two ranges, 

i.e., the A to E stimuli of Figure 2, to study the effect of stimulus context on 

the responses and selectivity of our cells. For every cell, the depth of 

selectivity index (DOS, Eq. 1) was calculated for both the narrow and wide 
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range to quantify the degree of selectivity for the common shapes. To show 

the evolution of the neuronal selectivity over time, the data were subdivided 

into blocks of 10 presentations per stimulus and for each range configuration, 

DOS indices were calculated per block. 

To quantify the neuronal ability to discriminate among shapes, we employed 

receiver operator characteristic (ROC) analysis (e.g., Cohn et al. 1975; Vogels 

and Orban 1990). For each neuron, ROC curves were generated by computing 

the distribution of the responses in the different presentations of a stimulus 

and then computing the proportion of spikes that exceeded a particular 

response criterion (in steps of 1 spike). The ROC analysis was done using the 

middle stimulus C and one of the extreme stimuli, either A or E (i.e., the one 

ranked as having the maximum response for that cell), of experiment 2. The 

area under the ROC curve generated by the neuronal response distributions 

for this pair of stimuli yields a score for the neuronal discrimination ability. 

Perfect discrimination results in an area of 1; random discrimination produces 

an area of 0.5. Because we were interested in discriminability per se, the 

lowest value -chance performance- is 0.5. Thus values < 0.5 were corrected 

by subtracting these from 1. 

To examine whether the stimulus statistics altered the amount of information 

carried by the responses of the cells, the information transmitted by the 

neuronal responses regarding the presentation of shapes A to E (in a 50- to 

200-ms time window) was quantified per cell for both the narrow and the 

wide range using Eq. 7. 
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RESULTS 

EXPERIMENT 1 

We recorded from 84 neurons (67 from monkey J; 17 from monkey B) using 

the RSVP procedure with a 100 ms/image presentation rate. Eighty neurons 

showed shape selectivity within one or more shape sets as measured with a 

permutation test (see METHODS), resulting in a significant response 

modulation for a total of 240 shape sets. For each cell, there was an average 

of 76.52 presentations per stimulus (minimum = 12, maximum = 151). 

Across animals, the recording positions were estimated to range from 12 to 16 

mm anterior to the external auditory meatus and included the lower bank of 

the superior temporal sulcus and the cortical convexity lateral to the anterior 

middle temporal sulcus.  

Comparison of short and long presentation rates. 

For 27 of the 80 cells that were selective at a 100-ms presentation rate, stimuli 

were first presented in an RSVP procedure using 300-ms presentation 

duration before using the regular 100-ms/image presentation rate. Thus for 

this sample of neurons, one can correlate the shape selectivity for the fast, 

100-ms and slow, 300-ms presentation durations. For both presentation rates, 

responses were computed using the 50- to 200-ms analysis window. We 

analyzed the responses to the shapes of those sets (n = 83) for which there 

was a significant modulation for the standard, fast presentation rate. To 

qualitatively compare the responses for the two presentation rates, for each 

neuron, the 25 stimuli within a set were ranked according to the size of their 

responses in the 300-ms presentation condition. The same ranking was then 

used to order the stimuli presented at 100 ms/image. As shown in Figure 3A, 

the mean response in the 100-ms/image presentation rate condition, averaged 
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across neurons, decreased as a function of stimulus rank. A general linear 

model (GLM) repeated-measures ANOVA with rank as within-neuron factor 

showed that this modulation for the 100-ms/image sequences was significant 

[F(24,1968) = 29.71, p < 0.001], indicating that the overall ranking was 

preserved at this fast presentation rate. A similar overall preservation of shape 

rank was obtained when the stimuli were ranked using the responses of the 

fast presentation rate [Figure 3B; F(24, 1968) = 30.39, p < 0.001]. To 

quantify the similarity of the selectivity patterns under both presentation 

duration conditions, we correlated for each neuron the responses to the 25 

shapes in the fast presentation rate with those to the same shapes in the slow 

presentation rate. 

 

 

 

 

 
Figure 3. Ranking by response 
strength of all shapes of the sets 
showing significant response 
modulation (n = 83) averaged across 
all 27 cells for which the stimuli 
were presented both at a 300-
ms/image rate (— with SEs) and at a 
100-ms/image rate (- - - with SEs). A: 
shape ranking obtained from the 
neuronal responses in the 300-ms 
presentation duration condition was 
used to order the responses to the 
stimuli presented at the 100-
ms/image presentation rate. B: 
shapes were first ranked based on the 
neuronal responses in the 100-ms 
presentation duration condition (- - - 
with SEs). This ranking was then 
used to order the responses to the 
stimuli when presented for 300 ms 
(— with SEs). 
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The median percent of variance in the response pattern measured at the fast 

presentation rate that could be explained by the response pattern measured at 

the slow rate was 0.32 (1st quartile = 0.13; 3rd quartile = 0.56), which 

corresponds to a correlation coefficient of 0.57. The preceding correlation 

analysis (as well as the ranking) was performed on the 25 stimuli of a set for 

which the neuron responded selectively. When the responses to all 135 

stimuli were correlated instead, the median correlation between responses to 

the fast and slow rates was even higher: r = 0.75 (explained variance = 0.57). 

The degree of shape selectivity within a set, as measured by the depth of 

selectivity (DOS; see METHODS), obtained at the fast presentation rate was 

highly correlated with that for the slow rate: r = 0.81 (explained variance = 

0.66). Although highly correlated, the DOS for the slowest rate was 

significantly higher than for the 100-ms/image rate (averages of 0.45 and 

0.34, respectively; Wilcoxon matched pairs test, p < 0.001). The Spearman-

Brown split-half reliability coefficients (see METHODS) for the DOS indices 

were 0.89 and 0.96 for the slow and fast presentation rate conditions, 

respectively. The drop in selectivity with increasing presentation pace cannot 

be attributed to a possible higher noise level for the fast presentation rate 

condition because the Spearman-Brown split-half reliability coefficient for 

the fast presentation rate condition was not lower than that for the slow 

presentation rate condition. This difference in DOS, however, was due to 

smaller responses to the best shapes and larger responses to the nonpreferred 

shapes in the fast presentation condition. This can be appreciated by 

comparing the responses for stimulus ranks 1 and 25 for the 300-ms 

presentation duration in Figure 3A with those for the 100-ms presentation 

duration of Figure 3B (stimulus rank 1: 25 vs. 23 spikes/s; stimulus rank 25: 7 

vs. 10 spikes/s). This suggests an underestimation of the degree of stimulus 

selectivity at the fastest presentation pace. 
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Note that the ranking curves for the fast and slow presentation of Figure 3 are 

more similar for the fast rate reference ranking (Figure 3B) than when the 

slow rate is used as a reference (Figure 3A). This can be explained as follows. 

Given the imperfect correlation of the responses in the two presentation 

conditions, the ranking curve for the slow rate will flatten if the shape ranks 

are based on the fast rate (compare — in Figure 3, A and B). Also, the ranking 

curve for the fast rate will flatten when the slow rate is used as the reference 

(compare - - - in Figure 3, B and A). Given the higher selectivity for the slow 

compared with the fast rate, the flattened curve for the slow rate will become 

somewhat similar to the ranking curve for the fast rate when the latter is used 

as reference (Figure 3B), whereas the curves for the two rates become more 

dissimilar when the slow rate is used as a reference (Figure 3A). 

Tuning within parametric shape spaces. 

Most of the neurons recorded showed a preference (i.e., the largest response) 

for the extreme values of the parametric space (see Figure 4 for a 

representative neuron).  

 

 
 
 
 
 

Figure 4. Schematic representation of 
the mean response strength (mean 
number of spikes in hertz counted in a 
50- to 200-ms time window after 
stimulus onset) of an example neuron 
to all shapes of the shape sets. The 
ordering of the shapes is the same as in 
Figure 1 for sets 1–5. For set 6, the 
shapes are ordered from top to bottom 
(i.c. for both the stars and the 
pentagons, stimulus 1 is the upper 
shape shown for set 6 in Figure 1; 
stimulus 5 is the lower one). 
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Instead of showing a uniform distribution across the parametric shape space, 

the neuronal shape preferences across the population of recorded neurons 

were concentrated at the extremes of the stimulus dimensions (Figure 5A). 

This preference for the extremes was significantly higher than expected by 

chance: in 215 of the 240 tested shape sets, the maximum response was for an 

extreme value of the parametric configuration [p < 0.001 as tested with a 

Binomial test over all sets; null hypothesis with expected relative frequency = 

0.64 (16/25 extreme stimuli); all p < 0.002 for separate Binomial tests per 

parametric set].  

Figure 5. Population responses. Every row shows the results for a different shape set (from set 1 to set 
6, as labeled in Figure 1). A: distribution of the relative frequency of the preferred shape (shape 
producing the maximum response) for each of the sets. Only cells showing a significant modulation 
for that set are included (number of cells per set is shown). B: schematic representation of the mean 
normalized responses to all shapes per set, averaged over all cells showing a significant modulation 
for that set. Responses were normalized to the maximum response per cell. For set 6, the SE is shown 
for each stimulus. 
 

We further tested whether the mean normalized responses of the cells 

showing shape selectivity for that shape set were uniformly distributed using 

a one-way ANOVA per shape set. For each set, the analyses showed that the 

mean responses were not uniformly distributed over cells (p < 0.01 for sets 2 

and 4; p < 0.001 for sets 1, 3, and 5). Indeed Figure 5B shows that the 
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neurons responded more strongly to the extreme values of a shape 

configuration. 

The tuning for the extremities of the shape configuration was present for each 

of the five shape spaces and thus not just for the simple shape dimensions 

(aspect ratio and taper; shape sets 1, 2, and 5) manipulated by Kayaert et al. 

(2005a). However, it should be noted that the radial frequency components 

we manipulated resulted in a systematic variation in the degree of indentation 

along the horizontal and vertical dimensions of sets 3 and 4, respectively. It is 

apparent from the response profiles that the latter change resulted in the 

strongest modulation. 

We used the responses of the 80 neurons to those shape sets with significant 

modulation (240 sets) to compute the neuronbased (dis)similarity between 

each pair of stimuli. To determine how the neurons represent the similarities 

among the shapes, we analyzed the neural-based Euclidean distances (see 

METHODS) between the stimuli using MDS and compared the obtained 

neural-based configurations with the parametric, position corrected pixel-

based stimulus configurations (Figure 6). Note that the pixel-based 

configurations preserved the stimulus order of the parametric configurations 

(Figure 1) and, in addition, showed that the physical distances among the 

shapes were similar along the two dimensions in each of the five 

configurations. Two-dimensional configurations explained most of the 

variance in the neural similarities for stimulus sets 1–5 [averaged across 

monkeys: 86% (n = 32 neurons), 91% (n = 52), 88% (n = 59), 87% (n = 61) 

and 92% (n = 36) for stimulus sets 1–5, respectively]. 
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Figure 6. Multidimensional scaling (MDS-derived 2-dimensional) configurations of stimuli for sets 
1–5. The numbers refer to the stimuli as they are labeled in Figure 1 (set 1). - - - and —, stimuli 
positioned on the horizontal and vertical meridian, respectively, of the parametric configurations 
(Figure 1). Top panels: configurations based on the position-corrected pixel-based similarity between 
stimuli. Bottom panels: configurations based on the neural-based similarity between stimuli. To aid in 
a visual comparison of the pixel-based with the neuron-based configurations, the latter were 
Procrustes transformed (i.e., a combination of translation, scaling, rotation, and reflection). A–E: 
configurations for sets 1–5, respectively. 

 

An inspection of the configurations shown in Figure 6 clearly suggests that 

single stimulus dimensions unrelated to shape, such as area, cannot solely 

explain the observed stimulus selectivity. If, for example, this selectivity 

could be explained solely by area, for both sets 1 and 2, shapes 1, 5, 9, 17, 

and 25 (see Figure 1) should be clustered together, shape 11 should be 

clustered with shape 15, and shape 19 should be clustered together with shape 

23. The configurations of Figure 6 clearly show that this is not the case. 

The stimulus order in the neuron-based two-dimensional (2D) configurations 

matched the order of the pixel-based configurations for sets 2 and 3. The 

neuron-based 2D configuration for stimulus set 1 deviated from that of the 

pixel-based configuration for two stimulus pairs, again demonstrating a good 

overall fit between physical and neural similarities. Note that for set 3, the 

neurons represented the horizontal dimension, i.e., “indentation”, more 

acutely than the vertical one, which fits the distribution of the tuning shown 

in Figure 5A. An even more striking difference in sensitivity for the two 

radial frequency dimensions was present for stimulus set 4. For the latter 

stimulus set, the sensitivity along the horizontal dimension was much weaker 
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than along the vertical, indentation dimension, resulting in a highly 

anisotropic distribution of the stimuli in the two-dimensional space. However, 

note that along the vertical dimension, the stimulus order is relatively well 

preserved, indicating that the neurons represent variations along this 

dimension at the ordinal level. 

Stimulus set 5 is a special case because the shapes were compound stimuli 

consisting of two shapes, each of which was varied systematically along one 

dimension. Figure 6E shows the 2D configuration for shape set 5 and 

indicates that there was an overall correspondence between the parametric 

space and the neural configuration, albeit not as clear as that for sets 1–3. 

Also this set displayed a strong difference in sensitivity for the two stimulus 

dimensions: the neurons were more sensitive to variations along the vertical 

“star” dimension than along the horizontal “pentagon” dimension. 

Comparison of responses to two-part shapes and their single parts. 

An important question regarding the shapes in set 5 is how the responses to 

these two-parts shapes relate to the responses to the single parts, i.e., the 

constituent stimuli. We quantified this relationship for 59 neurons that 

showed significant shape selectivity for the 10 constituent stimuli (set 6; see 

METHODS) or for the compound stimuli (set 5) as tested with a permutation 

test. Figure 7A shows a scatter plot for one of these cells in which the 

responses to the nine compound stimuli are plotted against the sum of the 

responses to the constituent stimuli presented in isolation. The responses to 

the compound stimuli were much smaller than the sum of the responses to the 

constituent stimuli, indicating a strongly nonadditive relationship between 

responses to the two-part and single shapes. The slope of the regression line 

relating the sum of the responses to the constituent stimuli and the responses 

to the compound stimuli was 0.51. Thus for this neuron, the responses to the 
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compound stimuli were very close to the average of the responses to the 

constituent stimuli presented in isolation. As expected from such averaging, 

the responses to the two-part shape were significantly lower than the 

responses to the part eliciting the best response when presented alone [paired 

t-test; t(8) = 2.34, p < 0.05; Figure 7B] and significantly higher than the 

responses to the part eliciting the worst response [paired t-test; t(8) = -7.14, p 

< 0.001; Figure 7C] when presented alone. 

 
Figure 7. Responses to compound, 2-part shapes as a function of the responses to their respective 
constituent parts. A and D: responses to compound stimuli (in spike/s) are plotted against the sum of 
the responses to the constituent stimuli presented in isolation. - - - and —, respectively, the sum (slope 
= 1) and the average (slope = 0.5) of the responses to the constituent stimuli. B and E: responses to 
compound stimuli are plotted against the best of responses of the respective constituent stimuli. C and 
F: responses to compound stimuli are plotted against the worst of responses of the respective 
constituent stimuli. A–C: example data from a single cell. Each point corresponds to a different 2-part 
shape. D–F: scatter plots showing the responses of all 59 neurons showing response modulation for 
set 5 or 6 (n = 9 2-part shapes X 59 neurons). 
 

For the population of 59 neurons, the mean slope of the regressions was 0.47 

± 0.51 (SD), suggesting that this averaging effect was present at the 
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population level. To examine this further, we pooled the data from all 59 

neurons and performed the regression analysis on the pooled data. As shown 

in Figure 7D, the responses to the compound stimuli were highly correlated 

with the sum of responses to the constituent stimuli presented alone (r = 

0.94). The slope of the regression for the pooled data set was 0.51, which 

indicates that the responses of a population of IT neurons to the compound 

stimuli can be predicted, virtually perfectly, as the average of its responses to 

the constituent stimuli presented in isolation. Again as expected, the 

responses to the compound stimuli were significantly lower than the 

responses to the respective best constituent shape [paired t-test; t(530) = 5.44, 

p < 0.001; Figure 7E] and significantly higher than the responses to the 

respective worst constituent shape [paired t-test; t(530) = -7.26, p < 0.001; 

Figure 7F]. 

As discussed in detail by Zoccolan et al. (2005), who reported a similar 

averaging effect, shifts in attention might explain such an effect. According to 

this attention hypothesis, the mean response to the compound stimuli will 

correspond to the average of the responses to the constituent stimuli presented 

in isolation if the attention of the monkey was directed toward one part (e.g., 

upper part) for approximately half of the presentations and the other part (e.g., 

lower part) for the rest of the presentations. This hypothesis assumes that the 

response distribution across all presentations of each compound stimulus is 

drawn more or less equally from the distributions of responses to the two 

constituent shapes. Thus the attention hypothesis predicts that the variance of 

the distribution of responses to each compound stimulus equals the variance 

of the distribution that is obtained by combining the response distributions to 

the constituent shapes when the latter are presented in isolation. Following 

Zoccolan et al. (2005), we computed the Fano factors, i.e., the ratio of the 

response variance to the mean response, for the response distributions of each 

of the compound shapes (observed Fano factor) and compared those to the 



Chapter 2 
 

68 

Fano factors computed for the distributions obtained by combining the 

responses to the constituent shapes, i.e., the response distributions predicted 

by the attention hypothesis. In performing this analysis for all 59 neurons, we 

found that the observed mean Fano factor (1.42) was significantly smaller 

than the value predicted by the attention hypothesis [1.69; paired t-test, t(530) 

= 12.16, p < 0.001]. When only those compound stimuli were included for 

which the responses of the neuron to the respective two constituent stimuli 

differed by a factor of two or more (i.e., where 1 constituent stimulus was 

much more effective than the other), similar results were found [observed 

mean Fano factor = 1.34 vs. Fano factor predicted by the attention hypothesis 

= 1.87; paired t-test, t(101) = 8.84, p < 0.001]. These results indicate that the 

reported average effect is not likely to be merely the result of shifts in 

attention. 

Time course of shape selectivity. 

The RSVP paradigm is similar to reverse correlation paradigms that have 

been used to examine the time course of e.g., orientation and spatial 

frequency selectivities in earlier visual areas such as V1 (e.g., Bredfeldt and 

Ringach 2002; Ringach et al. 1997, 2003). As in the latter studies, the present 

RSVP data can be used to examine the time course of shape selectivity. 

Because we used different shape sets, we can compare the time course of the 

selectivity for the shapes belonging to different sets with that of the 

selectivity for the shapes of a single set. If shapes from different sets are, at 

least on average, less similar than shapes from the same set, we could use this 

characteristic to address the question of whether the onset of selectivity 

depends on shape similarity because we would therefore expect earlier 

between-set than within-set selectivity. 
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To assess whether this prerequisite of greater within-set versus between-set 

similarity had been met, we first performed a hierarchical cluster analysis on 

the neuron-based similarities that were computed between all possible pairs of 

stimuli using the responses of all 80 neurons (neural-based Euclidean 

distances; see METHODS). As shown in Figure 8, all stimuli from set 1 were 

assigned to the same cluster before being clustered with stimuli from other 

shape sets. The stimuli from set 2 were also clustered together first as well as 

the stimuli from set 5. However, the stimuli of sets 3 and 4 were not cleanly 

assigned to two separate clusters. Some stimuli from both sets were clustered 

with one another before being clustered with other stimuli from their 

respective sets. This is illustrated in more detail in Figure 8, inset, in which 

the shapes of the different sets that were clustered are indicated by colored 

squares. Interestingly, the clustered shapes of the two sets are similar 

regarding their “blobby” nature. When either set 3 or 4 was excluded from the 

cluster analysis, the results showed the expected clustering: all stimuli from a 

set were first assigned to the same cluster before being clustered with stimuli 

from the other three sets. Therefore, to examine whether the onset of 

selectivity is earlier for the between-set compared with the within-set 

selectivity and to meet the prerequisite of larger within-set versus between-set 

similarity, we excluded shape set 4 from further analyses (exclusion of set 3 

instead of set 4 resulted in highly similar findings). 

The temporal dynamics of the selectivity within and between shape sets was 

examined at the population level by evaluating the information about the 

stimuli that was available in the neuronal responses using a 50-ms sliding 

window, in steps of 8 ms (highly similar results were found using a 10-ms 

sliding window and steps of 5 ms). Figure 9 shows the time course of the 

mean transmitted information measures computed within each of the four sets 

and between the four sets. The average between-sets transmitted information 

was, as expected, larger than the within-set transmitted information.  
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Figure 8. Results of a 
hierarchical cluster analysis on 
the responses of 80 cells for the 
135 shapes of experiment 1. 
Stimuli presented in the same 
color belong to the same shape 
set (i.c. set 1 = red; set 2 = 
turquoise; set 3 = green; set 4 = 
blue; set 5 = orange; stars = 
pink; pentagons = black). 
Stimuli of sets 1, 2, and 5 were 
first clustered together with all 
other stimuli of their respective 
set before being clustered with 
stimuli from other sets. Stimuli 
from sets 3 and 4, however, 
were not successfully assigned 
to 2 separate clusters: some 
stimuli were first clustered with 
stimuli from the other set before 
being clustered with other 
stimuli from their respective set. 
Inset: schematic representation 
of shapes of sets 3 and 4. Shapes 
of both sets that were clustered 
together are indicated by the 
same color: in the first step, the 
shapes in red are clustered 
together. In the next step, these 
red shapes are clustered together 
with the blue shapes. Finally, the 
purple shapes join the others in a 
single cluster. 
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Note that at the population level, the average within-set transmitted 

information differed among sets with sets 1 and 5 showing the least 

information and sets 2 and 3 the most. This fits with the larger number of 

neurons showing shape selectivity as assessed by the permutation test (see 

preceding text) for sets 2 and 3 compared with sets 1 and 5. To compare the 

within and between sets transmission rates, we analyzed both the latencies 

and the peaks of the curves. The between-sets information peaked at 149 ms. 

The information for set 2 peaked at the same time, whereas for the other 

shape sets, the peak was reached slightly later (at 173 ms, 157 ms and 173 ms 

for sets 1, 3, and 5, respectively, resulting in a mean within-sets peak of 163 

ms). The latency for the between-set transmitted information was 69 ms, 

whereas the latencies for the within-sets information were 109, 77, 85, and 

109 ms for sets 1-3 and 5, respectively (resulting in a mean within-set latency 

of 95 ms). 

 

 

Figure 9. Transmitted information 
of the neuronal population 
computed within and between 
shape sets (between sets: thick 
solid line; set 1: solid line; set 2: 
dashed line; set 3: dash dot line; set 
5: dotted line; maximum 
information transmission rate 
possible = 2 bits). The transmitted 
information (mean of 80 neurons, 
with SEs) is plotted against the 
center of the 50-ms sliding window 
(in steps of 8 ms). 
 

Similar results were obtained if the within-sets transmission rates were 

computed on only those cells showing significant response modulation 

(instead of on all 80 recorded cells). The latencies for the within-sets 

transmitted information were 101, 77, 85, and 109 ms (mean within-sets 

latency = 93 ms), whereas the peaks were reached after 173, 149, 157, and 
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165 ms for sets 1-3 and 5, respectively (mean within-sets peak = 161 ms). 

When we compare these values to the between set latency and peak of 69 and 

149 ms, respectively, then it is clear that although overall the within-set 

selectivity takes somewhat longer to develop than the between-set selectivity, 

this difference can be rather small [minimum latency difference of 8 ms (set 

2) and minimum peak difference of 0 ms (set 2)]. 

EXPERIMENT 2 

We recorded from 46 neurons (26 from monkey J; 20 from monkey B), 40 of 

which showed shape-selectivity within at least one of the two range 

configurations. For 22 neurons, the wide-range configuration was presented 

first. For the remaining 18 cells, the narrow-range configuration was 

presented first. For the stimuli of the first-presented configurations, an 

average of 808.31 presentations per stimulus was obtained per cell (minimum 

= 595, maximum = 961). For the stimuli of the configurations presented 

second, 1,513.48 presentations were shown on average per cell (minimum = 

590, maximum = 4,027). 

Across animals, the recording positions were estimated to range from 12 to 16 

mm anterior to the external auditory meatus. All neurons, except one that was 

recorded from the lower bank of the STS, were from the cortical convexity 

lateral to the anterior middle temporal sulcus or from the lip of the STS (area 

TEm) (Seltzer and Pandya 1978). 

Comparison of RSVP and slow, intermittent stimulus presentation. 

As in experiment 1, we wanted to check whether stimulus selectivity is 

preserved at the fast RSVP rate of 100 ms/image. Each neuron was tested in 

the search test using the same stimuli as in the subsequent RSVP condition. In 

that search test, stimuli were presented for 300 ms with an ISI of ≥ 700 ms. 
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These are standard procedures for testing the responses of visual neurons. As 

for experiment 1, we used a ranking procedure to qualitatively compare the 

selectivity in the two testing procedures. It is important to note that in the 

search test, a minimum number of trials were presented per stimulus, just 

enough to check which shape set elicited the best responses. We compared 

the responses in the two testing procedures for those neurons (n = 39) for 

which in the search test, the stimuli were presented at least twice (median 

number of presentations = 3; 1st quartile = 2; 3rd quartile = 4). For both 

testing procedures, the responses were quantified using an identical 50- to 

200-ms analysis window. We therefore ranked the responses to the stimuli of 

a given shape set in the RSVP test according to the responses in the search 

test. As shown in Figure 10, the responses to the stimuli presented in the 

RSVP test monotonically decreased as a function of the stimulus rank 

determined in the search test. This effect of stimulus rank was significant 

[repeated-measures ANOVA; F(8,304) = 10.01, p < 0.001], demonstrating 

that, at the population level, the stimulus preference at the 100-ms/image 

RSVP rate was overall similar to that obtained when using the intermittent 

presentations.  

 

 
 

Figure 10. Experiment 2: ranking of 
the 9 shapes of the shape set with 
best neuronal responses in the search 
test by response strength (— with 
SEs). This stimulus rank, determined 
from the neuronal responses in the 
search test, was used to order the 
responses to the stimuli of the same 
shape set (with the same range) 
measured in the rapid serial visual 
presentation (RSVP) test (- - - with 
SEs). 

 



Chapter 2 
 

74 

Note that the average response level was considerably lower for the RSVP 

than for the intermittent presentations. The stronger forward and backward 

masking and stronger repetition suppression (see following text) in the RSVP 

compared with the slow intermittent presentations are the most likely factors 

contributing to this difference in the overall responsiveness. 

To quantify the similarity of the selectivity patterns under both presentation 

duration conditions, we correlated for each neuron the responses to the nine 

shapes in the search test with those to the same shapes in the RSVP test. The 

median correlation coefficient was 0.52 which corresponds to a median 

explained variance of 0.27 (1st quartile = 0.03; 3rd quartile = 0.70). 

The DOS indices obtained in the search test correlated significantly with 

those obtained in the RSVP test [r = 0.35 (p < 0.05; n = 39)]. The Spearman-

Brown split-half reliability coefficients for the DOS-indices were 0.87 and 

0.97 for the search test and RSVP test, respectively. Thus the low correlation 

between the DOS of the search and RSVP tests is not due to a low reliability 

of the DOS measure in the tests but reflects a genuine change in the degree of 

selectivity. The mean DOS for the search test was significantly higher than 

for the RSVP test (0.32 and 0.18, respectively; Wilcoxon matched pairs test, 

p < 0.001). 

Effect of stimulus statistics on stimulus selectivity. We performed analyses on 

the stimuli common to the two range configurations (stimuli A-E in Figure 2) 

to study the effect of the stimulus distribution statistics, i.e., stimulus context, 

on the responses and selectivity of all tested cells. First, we performed a 

repeated-measures ANOVA on the neuronal responses for these common 

shapes with order of sets as a between-neurons variable (wide range first or 

narrow range first) and stimulus rank and range (wide or narrow) as within-

neurons variables. 
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Stimulus rank was determined as described in METHODS. As expected from 

the stimulus ranking procedure, the main effect of rank was significant 

[F(4,152) = 24.77, p < 0.001]. There was no main effect of range (F < 1), but 

more importantly, the interaction range x rank was significant [F(4,152) = 

7.53, p < 0.001], indicating a difference in selectivity between the sets with 

different ranges. 

To elaborate on this result, we compared the slopes of the polynomial fits to 

the population responses (n = 40 neurons) for the nine stimuli (Figure 11A): 

the slope of the polynomial fit for the narrow range was steeper than the slope 

of the polynomial fit for the wide range (narrow range: y = 0.29x² - 3.87x + 

32.03; wide range: y = 0.10x² - 1.82x + 27.35), indicating that the narrower 

range increased the selectivity of the same shapes. The polynomial fits for the 

two set orders are shown separately in Figure 11A, insets. For both orders, the 

slope of the polynomial fit for the narrow range was steeper than the slope of 

the polynomial fit for the wide range (narrow range first: narrow range: y = 

0.21x² - 2.89x + 28.67; wide range: y = 0.04x² - 1.15x + 25.93; wide range 

first: narrow range: y = 0.38x² - 4.86x + 35.39; wide range: y = 0.16x² - 2.50x 

+ 28.77). Additional repeated-measures ANOVAs on the neuronal responses 

for the common shapes for both orders separately with stimulus rank and 

range (wide or narrow) as within-neurons variables confirmed that, for both 

orders, the main effect of rank and the interaction range x rank were 

significant [wide range first: rank: F(4,84) = 19.25, p < 0.001, range x rank: 

F(4,84) = 4.78, p < 0.002; narrow range first: rank: F(4,68) = 8.07, p < 0.001, 

range x rank: F(4,68) = 3.31, p < 0.02], whereas the main effect of range did 

not reach significance [F < 1 and F(1,17) = 2.42, p > 0.10 for, respectively, 

the wide range and narrow range first]. Note that the overall response level 

appears to depend on the order (compare Figure 11A, insets a and b), but 

statistical testing showed that this interaction between range and order did not 

reach significance [range x order: F(1,38) = 2.77, p > 0.10]. In fact, there was 
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no significant main effect of order of sets (F < 1), and no interaction-effects 

with order were significant (rank x order: F < 1; range x rank x order: F < 1). 

 
Figure 11. Shape selectivity compared for 2 stimulus ranges (experiment 2) at the population level. A: 
comparison of the ranked responses to stimuli from the 2 range configurations (narrow range:  wide 
range: ▲ both with SEs). — and - - -, 2nd-order polynomial fit for the narrow (R² = 0.998) and wide 
range (R² = 0.993), respectively. Second-order polynomial fits for the split data, based on whether the 
narrow range or the wide range was tested first, are shown in the insets Aa and Ab, respectively 
(narrow range first: R² narrow range = 0.995, R² wide range = 0.988; wide range first: R² narrow range 
= 0.994, R² wide range = 0.993). B: depth of selectivity (DOS) indices for the wide-range 
configuration as a function of the DOS indices for the narrow-range configuration. Each point 
represents 1 neuron. , neurons for which the narrow-range configuration was presented before the 
wide-range configuration. ▲, neurons for which the opposite stimulation order was used. —, equal 
DOS indices for both range configurations. C: ROC values for the wide-range configuration are 
plotted against the ROC values for the narrow-range configurations. For both ranges, ROC analyses 
were performed using 1 of the extreme stimuli (either A or E, depending on which 1 was ranked as 
having the maximum response) and the middle stimulus (C). Same conventions as in B. D: 
information transmission rates (Ic’s) for the wide-range configuration are plotted against the Ic’s for 
the narrow-range configurations (maximum information transmission rate possible = 2.32 bits). Same 
conventions as in B. 
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This difference between selectivities for the two range configurations could 

also be demonstrated by the significantly smaller (Wilcoxon matched pairs 

test, p < 0.001) DOS index for the wide range (mean = 0.12) compared with 

the narrow range (mean = 0.16; Figure 11B). A separate analysis for the two 

set orders excluded the possibility that the difference in the DOS indices of 

the two range configurations is merely a presentation order effect: for each 

presentation order, the DOS index for the wide-range configuration was 

significantly smaller compared with the narrow range (Wilcoxon matched 

pairs test, narrow range first: p < 0.01; wide range first: p < 0.05; Figure 11B). 

To show that not only is selectivity increased for the narrower range 

configuration but that the discriminability of the shapes is also improved, we 

employed ROC analysis. The goal of the ROC analysis was to measure the 

ability of the neurons to discriminate between the middle stimulus C and one 

of the extreme stimuli A or E (Figure 2), depending on which of both stimuli 

was ranked as having the best response. The ROC analysis takes into account 

not only mean differences in firing rate - as the DOS index does - but also 

considers the variability of the spike counts for the presentations of a 

stimulus. For each range configuration, this analysis was applied to the 

responses of each cell to the stimuli C and A or E of Figure 2. The ROC 

values obtained for the narrow-range configuration were significantly larger 

than for the wide-range configuration (Wilcoxon matched pairs test, p < 

0.001), indicating that the discriminability of the same shapes was larger for 

the narrow-range stimulus distribution than for the wide-range stimulus 

distribution (Figure 11C). A separate analysis for the two orders excluded the 

possibility that the difference in the ROC values of the two range 

configurations is merely a presentation order effect: for each presentation 

order, the mean ROC value for the wide-range configuration was significantly 

smaller compared with the narrow range (Wilcoxon matched pairs test, both 

orders: p < 0.01; Figure 11C). 
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If discriminability of the shapes is improved for the narrow-range 

configuration over the wide range, one would expect the neurons to transmit 

more information about the stimuli in the narrow-range configuration as well. 

For both range configurations, we calculated the information available in the 

neuronal responses to the five stimuli common to the two configurations in a 

50- to 200-ms time window. A Wilcoxon matched pairs test showed that 

significantly more information was indeed transmitted by the neurons in the 

narrow-range compared with the wide-range configuration (p < 0.02; mean Ic 

narrow range = 0.025 bits; mean Ic wide range = 0.018 bits; Figure 11D). 

If the increase in selectivity for the narrow compared with the wide range 

results from an adaptation to the stimulus statistics, one would expect this 

difference to evolve during stimulus exposure. Thus we computed DOS 

indices in succeeding blocks of 10 presentations per stimulus and did this for 

the first 30 blocks. These analyses, examining the evolution of the DOS index 

over time, were performed on the stimuli common to the two range 

configurations (A-E of Figure 2). A GLM repeated-measures ANOVA with 

range (wide or narrow) and presentation block as within-neurons variables 

showed a significant main effect of range [F(1,39) = 5.51, p < 0.05], 

confirming a selectivity difference between the two range sets. The main 

effect of presentation block was also significant [F(29,1131)  = 26.72, p < 

0.001], showing a decrease in selectivity with an increasing number of 

presentations of the stimuli. Importantly, the interaction between range and 

presentation block was significant [F(29,1131) = 2.54, p < 0.001], revealing a 

different evolution of the neuronal selectivity over time for the two range 

configurations. To evaluate this interaction, we performed post hoc 

comparisons (Bonferroni test) between the two ranges for every presentation 

block. Initially, there were no significant differences between the ranges 

(blocks 1-7: p = 1). After ~70 presentations/stimulus (block 8), the first 

difference began to appear: the DOS for the narrow-range set was larger than 



Stimulus distribution statistics 
 

79 

for the wide-range set (p < 0.05). Up to 150 presentations, most blocks 

showed this pattern (block 10: p < 0.001; block 12 up to 14: p < 0.01; but 

block 9: p > 0.5 and block 11: p > 0.14). After >150 presentations, the 

differences in DOS between the two ranges failed to reach significance (block 

15: p > 0.07; block 16 up to 30: p = 1), although the DOS indices were still 

consistently greater for the narrow compared with the wider range. Thus as 

shown in Figure 12, the higher DOS for the narrow compared with the wide 

range was not present from the start but evolved during the successive 

presentations, suggesting that this effect indeed resulted from an adaptation to 

the stimulus statistics.  

 
Figure 12. Temporal evolution of the DOS index and the response strength for the narrow- and wide-
range configurations (experiment 2). The computations were performed for the first 300 
presentations/stimulus in succeeding blocks of 10 presentations/stimulus for the common shapes of 
the 2 range configurations (shapes A–E as labeled in Figure 2). Population data for the narrow- and 
wide-range configuration are depicted by gray and black lines, respectively. The evolution of the 
response strength (in the range depicted on the left y axis) is represented by dotted lines. The evolution 
of the DOS index (in the range depicted on the right y axis) is represented by solid lines (with SEs). 
 

Using the same subdivision in presentation blocks of the data, we also 

analyzed the evolution in time of the neuronal mean response strengths of the 

common shapes (A-E; Figure 2) of the two range configurations (Figure 12) 
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using a GLM repeated-measures ANOVA with range (wide or narrow) and 

presentation block as within-subjects variables. Neither the main effect of 

range, nor the interaction effect of range x presentation block reached 

significance (F < 1 for both). The main effect of presentation block was 

significant [F(29,1131) = 9.00, p < 0.001]): the neuronal responses to the 

stimuli decreased with repetition, an effect typical for IT neurons (Baylis and 

Rolls 1987; Gross et al. 1967, 1969; Miller et al. 1991a; Riches et al. 1991; 

Sobotka and Ringo 1993).  

 

DISCUSSION 

The present study used RSVP to investigate the tuning of macaque IT cortical 

neurons to shapes that varied systematically along predefined shape 

dimensions. A comparison of the RSVP technique using 100-ms 

presentations with that using longer presentation durations and an ISI showed 

that the shape preference can indeed be determined using RSVP. Using 

relatively complex shapes that vary along relatively simple shape dimensions, 

we found that the large majority of neurons preferred the extremes of the 

shape configuration, extending the results of a previous study using very 

simple shapes and standard stimulation procedures (Kayaert et al. 2005a). In 

addition, a population analysis using MDS showed that for some stimulus 

sets, the neurons can represent the similarities among the shapes at an ordinal 

level, extending a previous study that used a much smaller number of shapes 

and a categorization task (Op de Beeck et al. 2001). However, the same 

analysis demonstrated that the IT neurons do not faithfully represent the 

physical similarities among the shapes: the sensitivity of IT neurons can 

depend strongly on the particular stimulus dimension. We also showed that 

the IT neurons adapt to properties of the stimulus distribution other than the 

mean. The degree of shape discrimination by a population of neurons 
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depended on the stimulus distribution statistics. Although the latter effect was 

small, it was significant and suggests that the tuning of IT neurons is not fixed 

but adapts to the stimulus statistics at least when stimulated at a high rate with 

a restricted set of stimuli. The implications of these and other findings of the 

present study will be discussed in more detail in the following text. 

RSVP VERSUS TRADITIONAL TESTING 

RSVP-methods have been used in the retina, LGN, and early visual areas 

with success (e.g., Berry et al. 1997; Jones and Palmer 1987; Reid and 

Shapley 2002; Ringach et al. 1997). In these studies, stimuli were shown for 

short durations (< 50 ms) without ISIs, and regression methods (reverse 

correlation) were used to obtain receptive field maps and stimulus 

selectivities. Fewer studies have employed this method in higher visual 

cortex, especially in the ventral visual stream. Studies using backward 

masking in IT (Kovács et al. 1995; Rolls and Tovee 1994) showed that 

although the response level declines with decreasing stimulus onset 

asynchrony, the stimulus preference is preserved. This suggests that fast 

RSVP can be used to show the stimulus preferences of IT neurons and 

indeed, subsequent studies by Keysers and colleagues (2001) demonstrated 

that the stimulus preference of STS neurons is relatively well preserved for 

fast RSVP sequences. We show in the present study that even for stimuli that 

are much more similar than those used by Keysers et al. (2001), the shape 

preference at fast RSVP sequences correlate with those obtained using longer 

presentation durations (experiment 1) or standard testing procedures 

(experiment 2). This suggests that RSVP is a useful method for studying the 

shape tuning of IT neurons. 

However, four caveats should be taken into account when using RSVP to 

study the shape selectivity of IT neurons. First, pilot work using presentation 
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durations shorter than 100 ms produced less reliable results and weaker 

responses, but this might have been specific to the sort of stimuli used. Thus 

one should perform control studies with longer stimulus durationswhen using 

presentation times < 100 ms in IT. Second, we found that the degree of 

stimulus selectivity was on average somewhat smaller with shorter 

presentations; this agrees with the finding of Keysers et al. (2001) that 

increasing the presentation rate results in a flattening of the neuronal tuning. 

These results thus imply that RSVP might underestimate the degree of shape 

selectivity. Third, RSVP implies the occurrence of forward and backward 

masking effects as well as effects of repetition. Each of these three factors 

will result in decreased responses, and the suppression arising from repetition 

is likely to be stronger when stimulus similarity within the stimulus sets is 

larger. The latter is a likely explanation for the large difference in response 

levels between the standard and RSVP paradigms that we observed for the 

highly similar shapes of experiment 2. Such repetition-based suppression 

effects can be reduced by using interleaved presentations of highly different 

stimulus sets as we did in experiment 1. Fourth, adaptation to stimulus 

statistics might be more prominent when RSVP is used, given the high 

number of repeated presentations of a given stimulus set within a short time 

span. Indeed, we could demonstrate effects of the stimulus distribution on the 

measured neuronal selectivity (experiment 2) although the significant effects 

were relatively small and restricted to the degree of shape selectivity and did 

not extend to shape preference. Thus in general, the present data suggest that 

although the RSVP method is well suited to studying stimulus preferences 

(stimulus ranking), estimates of the degree of selectivity (tuning bandwidth) 

should be made with some caution because these appear to depend on the 

specifics of the measurement procedure.  
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TUNING FOR EXTREMITIES OF SHAPE CONFIGURATIONS 

The very large majority of neurons responded most strongly to a shape 

located at an extremity of the explored shape spaces. This sort of tuning for 

extremities was observed for each of the five shape sets in experiment 1. 

Tuning for the extremities of parametric shape spaces has been described 

before by Kayaert et al. (2005a), but in that study, the stimuli were much 

simpler (variations of a triangle and rectangle) than in the present 

investigation. The present study shows that tuning for extremities is also 

present for complex shapes when dimensions such as taper, aspect ratio, and 

“indentation” (amplitude of Fourier descriptor) are varied, at least within the 

stimulus range explored in the present study. 

Kayaert et al. (2005a) suggested that IT neurons show dimension-specific 

shape tuning and tend to prefer the extremes of these dimensions, i.e., 

monotonic tuning. Similar monotonic tunings have been reported in IT 

neurons for faces varying along dimensions such as caricaturization, aspect 

ratio, and inter-eye distance (Freiwald et al. 2005; Leopold et al. 2006). As 

yet, the significance of tunings for extremities is unclear (for further 

discussion, see Kayaert et al. 2005a; Leopold et al. 2006). One might 

conjecture that IT neurons represent shapes in terms of their distance with 

respect to extremities along specific shape dimensions. One issue to consider 

regarding the interpretation of the observed stronger responses for extreme 

stimuli is that the employed stimuli are likely to be suboptimal for the tested 

IT neurons. The critical question here is why the extreme stimuli are less 

suboptimal than the other stimuli given the likely high-dimensional space in 

which IT neurons are tuned. A satisfactory answer to this important question 

will require a full description of the nature of the tuning functions of IT 

neurons as well as knowledge about the relative position and range of the 

stimulus set with respect to these tuning functions. 
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The possibility cannot be excluded that IT neurons learn the stimulus 

statistics of the parametric shape spaces and thus that the observed tunings 

depend on the stimulation history and the specific stimulus spaces. 

Experiment 2 demonstrated that the responses of IT neurons can indeed be 

modified by changes in input statistics. These effects were small in 

comparison to the degree of monotonic tuning, but stimulus statistics might 

exert a more profound effect with more extensive daily repetition of the same 

stimulus spaces as is the common practice in single-cell recording 

experiments. 

The MDS results clearly show that IT neurons are more sensitive for some 

stimulus variations (e.g., indentation; stimulus sets 3 and 4) than for others. 

This is in agreement with previous studies using calibrated sets of shapes 

(Kayaert et al. 2005a,b). This sort of differential sensitivity for stimulus 

dimensions is difficult to explain by stimulation-history-dependent 

mechanisms because the stimulation frequency was equal for the different 

dimensions. This does not mean that IT tunings are not modifiable by 

experience: indeed, several studies show that the degree of selectivity of IT 

neurons is greater for extensively trained than for novel stimuli (Baker et al. 

2002; Freedman et al. 2006; Kobatake et al. 1998). 

RESPONSES TO TWO-PART SHAPES AND THEIR SINGLE PARTS 

COMPARED 

The shapes of set 5 consisted of two parts connected by a thin line, similar to 

the stimuli used by Baker et al. (2002). Using these so-called “baton stimuli”, 

Baker et al. (2002) found nonlinear interactions between the constituent parts 

of the compound stimuli in animals that were trained to discriminate between 

the compound shapes. In our study, the responses to the two-part shapes 

could be predicted surprisingly well from the responses to the constituent 
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shapes (set 6) presented at the same visual field locations. In fact, the 

response to the two-parts shapes was the average of the individual responses 

to the constituent shapes, which agrees extremely well with Zoccolan et al. 

(2005). In both studies, the constituent shapes were relatively small (~2°), 

both shapes were presented close to each other and short presentation 

durations (100 ms) were employed (although with a 100-ms ISI in the 

Zoccolan et al. study) while the monkeys were passively fixating. So it 

appears that under the behavioral conditions and for the small stimulus 

variations used in our and the Zoccolan et al. study (2005), the shape 

interactions do not depend on shape identity but depend mainly on response. 

However, Missal et al. (1999) found that in some IT neurons, shape 

interactions can depend on the shape. In that study though, the interacting 

shapes differed more than in the present study, were much larger and were 

presented at greater eccentricities. The role of these stimulus factors needs to 

be addressed in further studies. The animals in ours and the Zoccolan et al. 

study were not trained to discriminate between the compound stimuli. This 

might be of importance because Baker et al. (2002) demonstrated that the 

response and selectivity for compound shapes can be affected by the training 

history of the subjects. 

TIME COURSE OF SHAPE SELECTIVITY AND SHAPE SIMILARITY 

Sugase et al. (1999) and Matsumoto et al. (2004) investigated how well single 

IT responses could categorize stimuli consisting of geometric shapes and 

monkey or human faces with various expressions. At the population level, 

global categorization (i.e., categorizing the stimuli as shapes, monkey faces, 

or human faces) started in the earliest part of the responses, whereas fine 

categorization (i.e., categorization within a global category, e.g., based on 

facial expression) occurred, on average, 51 ms later. Tsao et al. (2006) 

obtained similar results by comparing face categorization (faces vs. objects) 
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and face identification. We examined whether this difference in the time of 

onset of stimulus selectivity is also present when the stimuli differ in only 

shape but not in other features and are not biologically relevant categories 

(such as faces). If the difference in the onset of stimulus selectivity in 

between- versus within-categories is merely related to average differences in 

similarity, then one should observe a similar effect for groups of shapes, 

although in the latter case, all stimuli belong to the global biologically 

irrelevant category of geometrical shapes. We defined the shape categories 

using cluster analysis of the neural responses. We found that shape categories 

thus defined were differentiated slightly faster than the individual shapes of a 

single set. Because the procedure that we used to compute the latencies 

differed from the one used by Sugase et al. (1999), we can compare only the 

relative difference in the onset of stimulus selectivity in between- versus 

within-categories between both studies. The average between- versus within-

category latency difference (26 ms, minimum: 8 ms, maximum: 40 ms) found 

in the present study was only half the mean latency difference of 51 ms 

between the global and fine categorization reported by Sugase et al. (1999). It 

cannot be excluded that this discrepancy between ours and Sugase et al.’s 

result might be due to a possible smaller difference in the average similarity 

between stimuli from the same versus a different category in our study. This 

conjecture is difficult to verify given the large dissimilarities between the 

stimulus sets of the two studies. 

The shape selectivity peaked at about 150 ms, which fits the peak of the shape 

discrimination of IT neurons reported by Rollenhagen and Olson (2000) and 

obtained with a classical testing paradigm. However, it lies between the two 

values obtained by Tsao et al. (2006) for face categorization (133 ms) and 

identification (192 ms) and is later than the human versus animals face 

classification obtained in IT using a similar RSVP technique (Kiani et al. 
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2005). Thus it is possible that biologically relevant stimuli are discriminated 

faster by IT neurons than abstract, meaningless shapes, but this should be 

examined with stimuli calibrated for contrast, luminance and other low-level 

confounding variables. 

ADAPTATION TO STIMULUS DISTRIBUTION STATISTICS 

Experiment 2 is to our knowledge the first demonstration that the measured 

tuning of IT neurons is influenced by the stimulus distribution statistics: 

extensive stimulation using very similar stimuli increased the selectivity of IT 

neurons for these stimuli compared with stimulation with less similar stimuli. 

This suggests that the selectivity of IT neurons is not fixed but can be 

dynamically adjusted based on the input statistics. Note that this effect 

occurred for highly familiar stimuli and thus differs from changes in 

selectivity observed with the introduction of novel stimuli (Rolls et al. 1989).  

Adaptation to input statistics is seen in the visual system of widely different 

animal species, such as the fly (Brenner et al. 2000) or the guinea pig (Dean 

et al. 2005). The time course as well as the size of our effect differs, however, 

from that observed in the fly visual system (Fairhall et al. 2001). The latter 

adapts much faster (over a time scale of seconds) and to much a larger degree 

than that seen in IT, suggesting different underlying mechanisms. The end-

result, however, is qualitatively similar: an adaptive rescaling of the input 

with respect to the stimulus range. Further studies are needed to determine 

whether IT neurons adapt to other measures of the stimulus distribution such 

as the mean or higher-order statistics, and whether similar adaptive effects are 

observed using other stimulation protocols (e.g., with ISIs). 

Our experimental design does not allow disentangling the effect of variance 

from that of the density of the stimuli in a block because we kept the number 

of stimuli constant in the two ranges. In the narrow-range condition, shapes 
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are packed at higher density and thus are more similar than in the wide-range 

condition. Repetition suppression for a particular stimulus may depend on the 

mean similarity of that stimulus to other recently presented stimuli and 

because the mean similarity was larger for the narrow compared with the 

wide range, stronger repetition suppression in the narrow condition might 

have caused the increased selectivity in the latter condition. However, as 

shown in Figure 12, there was no clear difference in either the time course or 

size of the overall response decrease between the two ranges, which does not 

fit with stronger repetition suppression in the narrow compared with the wide 

range. One could argue, however, that the change in selectivity results from a 

similarity-based repetition suppression mechanism that depends on the last 

one to five or so presentations: by nature of the design, these will have a 

greater average similarity for the narrow compared with the wide range. Such 

an explanation runs counter to the observation, shown in Figure 12, that the 

difference in selectivity between the two ranges needs ≥ 50 stimulus 

presentations to develop. However, it cannot be excluded that similarity-

based repetition suppression on a longer time scale produces the observed 

differences in selectivity between the two ranges. Indeed, whatever the 

underlying mechanisms, the present data suggest that the observed change in 

selectivity takes quite a number of presentations to develop, implying a 

relatively slow adaptation to a change in the input statistics. 

Although the effect of stimulus statistics on selectivity was significant, it was 

rather small. This is a comforting observation since any large effect of 

stimulus set statistics on neural measures would produce serious 

methodological problems in assessing neuronal selectivity. Nevertheless, one 

should be aware of such issues, especially when using high-rate stimulations 

of frequently reoccurring stimuli. 
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CHAPTER 3 
EFFECTS OF CATEGORY LEARNING ON THE 

STIMULUS SELECTIVITY OF MACAQUE INFERIOR 
TEMPORAL NEURONS  

Learning and Memory (in press)1,2 

Primates can learn to categorize complex shapes, but as yet it is unclear how 

this categorization learning affects the representation of shape in visual 

cortex. Previous studies that have examined the effect of categorization 

learning on shape representation in macaque inferior temporal (IT) cortex 

have produced diverse and conflicting results that are difficult to interpret 

owing to inadequacies in design. The present study overcomes these issues by 

recording IT responses before and after categorization learning. We employed 

parameterized shapes that varied along two shape dimensions. Monkeys were 

extensively trained to categorize the shapes along one of the two dimensions. 

Unlike previous studies, our paradigm counterbalanced the relevant 

categorization dimension across animals. We found that categorization 

learning increased selectivity specifically for the category-relevant stimulus 

dimension (i.e. an expanded representation of the trained dimension) and that 

the ratio of within-category response similarities to between-category 

response similarities increased for the relevant dimension (i.e. category 

tuning). These small effects were only evident when the learned category-

related effects were disentangled from the pre-learned stimulus selectivity. 

These results suggest that shape-categorization learning can induce minor 

category-related changes in the shape tuning of IT neurons in adults, 

suggesting that learned, category-related changes in neuronal response mainly 

occur downstream from IT. 

                                                 
1 This paper was co-authored by Bart Ons, Johan Wagemans and Rufin Vogels 
2 The authors are indebted to Steve Raiguel and five anonymous reviewers for critical 
comments on an earlier draft of this manuscript. 
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INTRODUCTION 

Lesion (Dean 1976), microstimulation (Afraz et al. 2006) and single cell 

studies (Gross et al. 1969; Logothetis and Sheinberg 1996; Tanaka 1996) 

indicate that the inferior temporal (IT) cortex is involved in the processing of 

features necessary for the identification and categorization of objects. Single 

cell studies of category encoding by IT neurons (Vogels 1999b; Sigala and 

Logothetis 2002; Freedman et al. 2003; Kiani et al. 2007) reported that, while 

some single IT neurons responded selectively to exemplars of a particular 

category, these single IT neurons still showed selectivity for different 

exemplars within that category. The output of a population of IT neurons can 

be used to classify exemplars of different categories (Thomas et al. 2001; 

Kayaert et al. 2005; Kiani et al. 2007) suggesting a population-coding of 

features that is biased towards category-relevant distinctions between stimuli. 

Here we address the question of whether this sort of category-related bias in 

IT neuronal sensitivity can be induced by categorization learning. Indeed, the 

tuning of IT neurons could be susceptible to categorization learning, as 

neuronal responses in IT cortex can reflect the perceptual similarity across 

stimuli (Kayaert et al. 2003; Op de Beeck et al. 2001) and the latter can be 

affected by categorization (Goldstone 1994; Goldstone et al. 2001; Livingston 

et al. 1998).  

Previous studies of the effect of categorization learning on the tunings of IT 

neurons have obtained diverse results. Sigala and Logothetis (2002) reported 

enhanced selectivity for shape features that were relevant (compared to 

irrelevant) for the categorization. However, the relatively large effect of 

categorization-relevant feature selectivity could merely be due to stimulus 

selectivity, unrelated to categorization learning, since no pre-training 

selectivity measurements were obtained, and the diagnostic features were 

identical in both monkeys. Freedman et al. (2003) found that responses to 
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shapes within a learned category were slightly more similar than responses to 

shapes from different categories. However, this small effect could also have 

resulted from physical differences amongst the stimuli rather then differences 

in category membership. Finally, Op de Beeck et al. (2001) found no effect of 

a learned categorization rule upon the selectivities of IT neurons. A possible 

explanation for the discrepancy between the Op de Beeck et al. and Sigala 

and Logothetis studies could be that Sigala and Logothetis manipulated 

separable dimensions while Op de Beeck et al. employed integral dimensions. 

Separable dimensions, but not integral dimensions, can be attended to 

separately (Garner 1976). Indeed, a human psychophysical study (Op de 

Beeck et al. 2003) found that categorization learning induced a dimension-

specific gain in perceptual similarity for shapes that varied along separable, 

but not integral, dimensions. Given these discrepant results, we revisited the 

effect of categorization learning on IT shape selectivity. We controlled for 

pre-learned stimulus-selectivity effects by measuring the selectivities of IT 

neurons both before and after learning, and by counterbalancing the relevant 

categorization dimensions across animals. We manipulated shape dimensions 

that had previously been shown to be separable in human psychophysical 

studies (e.g. Op de Beeck et al. 2003; Wagemans et al. 2006).  

 

RESULTS 

Before starting the categorization training, we measured pre-training 

“baseline” IT responses to 4 different parametric sets of 16 shapes each. In 

each set, the 16 shapes differed along a “curvature” and “aspect ratio” 

dimension (Figure 1). Responses were measured using a rapid serial visual 

presentation (RSVP) paradigm while the monkeys were passively fixating.  
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Figure 1. Visual stimuli. The 
square parametric configurations 
consisted of 4 sets of 16 shapes 
each. The manipulated 
dimensions were curvature and 
aspect ratio (vertical and 
horizontal axis, respectively). 
Curvature was modulated by 
manipulating the turning angle of 
the tangents at the shape ends on 
the vertical axis. Aspect ratio was 
modulated by manipulating shape 
width. 
 

In a subsequent categorization training phase, one monkey was trained to 

group stimuli into 2 categories based on the curvature dimension (monkey C; 

training duration: 53 days); the other monkey was trained to use the aspect 

ratio dimension (monkey A; training duration: 80 days) to categorize the 

shapes. After this training phase, we recorded IT responses while the 

monkeys were categorizing the shapes (post-training recordings). 

BEHAVIORAL RESULTS 

The behavioral results of the two monkeys during the last 10 days of training 

(Figure 2) indicate that both animals were fairly adept at categorizing the 

shapes that were used in the post-training recordings. While shapes close to 

the extreme parametric values (0 or 100%) were categorized almost perfectly, 

these subjects reached a performance level of about 85% correct for shapes 

with moderate parametric values (around 33 and 66%). 

Averaged over all post-training recording sessions, monkey C, who used 

curvature as the relevant dimension, reached a performance of 98% in 

categorizing the 16 shapes of Figure 1. For the position- and size-control 
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shapes (see Materials and Methods), categorization was correct in 99% and 

97% of the trials respectively. Monkey A, who used aspect ratio as the 

relevant dimension, categorized the 16 shapes correctly on 97% of the trials. 

He reached a performance of 96% for the position control shapes and 95% for 

the size control shapes. Thus. both animals performed with a high accuracy in 

the categorization task during the recording-sessions.  

 
Figure 2. Behavioral performance during the last 10 days of the categorization training phase. The X-
axis indicates the parametric values along the relevant dimension, with the black markers on the 0, 33, 
66 and 100% values. The Y-axis represents the average proportion of rightward saccades. The gray 
solid line in the middle shows the category boundary. Shapes on the left of this boundary were 
associated with a leftward saccade; shapes on the right with a rightward saccade. The gray and black 
curves show the mean performance of monkey C and monkey A respectively, averaged in 20 
consecutive bins, for the shapes with random parametric values used during the last 10 days of 
training. 
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NEURONAL RESULTS 

Neuronal results  

Database. 

Pre-training recording phase. We recorded from 214 neurons (109 cells in 

monkey C; 105 cells in monkey A), 201 of which showed significant shape 

selectivity within one or more shape sets (101 cells in monkey C; 100 cells in 

monkey A). This resulted in a significant response modulation for 479 non-

rotated shape sets, as tested with a permutation test (see Materials and 

Methods). For each cell, there was an average of 98.66 presentations per 

stimulus (minimum = 36; maximum = 152). 

Post-training recording phase. We recorded from 137 neurons (70 cells in 

monkey C, 67 in monkey A) using the same stimulus centering as in the pre-

training recording phase (center type 1; see Materials and Methods). All of 

these neurons were responsive to at least one set, as tested with a split-plot 

design analysis of variance (ANOVA; Kirk, 1995). These 137 responsive 

cells provided us with 283 sets for which a significant response occurred 

(further denoted as responsive sets). For 215 of these 283 sets, there was 

significant shape selectivity (further denoted as selective sets). We recorded 

an additional 100 responsive neurons (48 and 52 cells in monkey C and 

monkey A, respectively) using stimuli positioned according to center type 2 

(see Materials and Methods), This resulted in 206 responsive sets, 123 of 

which were shape selective. Additionally, we recorded from 44 responsive 

neurons using center type 2 in the left hemisphere of monkey A resulting in 

74 selective sets of a total of 94 responsive sets. 

As all further analyses were performed on trials with a correct response, only 

sets with at least 1 (for the computation of the Depth of Selectivity (DOS)) or 
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2 (for category tuning indices) correct trials for each stimulus were included. 

As a consequence, 2 responsive sets (both selective; center type 1) were 

excluded from further analyses. This resulted in an average of 8.84 correct 

trials per stimulus per cell (minimum = 4; maximum = 15). 

Comparison of pre- and post-training.  

When comparing pre- and post-training data, we only included neurons in the 

analysis that showed a significant shape selectivity for stimulus sets recorded 

using the same centering (type 1) in the two training phases.  

Effect of categorization learning on selectivity along relevant and irrelevant 

dimensions. To examine whether categorization training affected the degree 

of selectivity for the relevant and irrelevant dimensions, we computed the 

Depth Of Selectivity (DOS) index using the mean responses for the 4 values 

of a dimension, irrespective of the 4 values of the other dimension. The larger 

the DOS, the greater the selectivity. We performed an ANOVA on the DOS 

values for the pre-and post-training phase. The variables shape set (sets 1 to 

4), recording phase (before or after categorization training) and monkey 

(monkey C or A) were included as between-neurons variables. Category 

dimension (aspect ratio or curvature) was included as a within-neuron 

variable. The main effect of recording phase was significant (F(1,676)=86.40, 

p < .001). More interestingly, the three-way interaction between category 

dimension, monkey, and recording phase was significant (F(1,676)=13.86, p 

< .001). The four-way interaction between category dimension, monkey, 

recording phase and shape set was not significant (F(3,676)=1.34, p > .25). 

Figure 3A shows that categorization training resulted in a selectivity increase 

for both dimensions, but this increase was larger for the relevant dimension 

than for the irrelevant dimension, and this observation held for both monkeys. 
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Thus categorization enhanced the selectivity more for the relevant dimension 

than for the irrelevant dimension (Figure 3B and 3C).  

Figure 3. Effect of categorization learning on degree of selectivity. In panel A, the DOS indices 
compared before and after categorization training are shown. The results for the monkey C using 
curvature as the relevant dimension are shown in the left panel; in the right panel, the results for 
monkey A using aspect ratio as the relevant dimension are shown. The results before and after training 
are depicted by dotted and solid lines, respectively (with SEs). In panel B, the DOS indices compared 
before and after categorization training for the relevant and irrelevant dimension, pooled across the 
two monkeys are shown. The results before and after training are depicted by dotted and solid lines, 
respectively (with SEs). In panel C, the DOS indices for the irrelevant dimension are plotted against 
the DOS indices for the relevant dimension, both for the data obtained before (black dots) and after 
categorization training (gray dots). Means are indicated by the colored symbols. In the marginal 
histograms, the relative frequencies of the DOS indices for the relevant and irrelevant dimension are 
shown. The indices obtained before training are depicted by black and gray bars, respectively. Grey 
dotted rectangles outline the results for the relevant dimension for each monkey. 



Category learning effects 
 

103 

Indeed, the percent of neurons with a greater DOS for the relevant compared 

to the irrelevant dimension was larger after (54%) compared to before 

training (33%; difference: p < .001, Binomial test; Figure 3C). Highly similar, 

statistically significant results were found when the best-worst selectivity 

index employed by Sigala and Logothetis (2002) was used instead of the 

DOS index. The latter selectivity index was defined as the difference between 

the maximum and the minimum response for a given dimension divided by 

their sum. Furthermore, similar statistical significant effects were obtained 

using a best-worst index normalized by trial-to-trial variability. For this, the 

differences between the maximum response (averaged across presentations of 

the same stimulus) for a set and the minimum mean response for the same 

value along the relevant or irrelevant dimension were computed followed by a 

division by the mean trial-to-trial standard deviation of the responses for the 

best and worst conditions. 

Effect of categorization learning on strength of category tuning. The above 

analyses determined whether categorization learning induced categorization-

dimension-specific changes in selectivity. Another possible categorization-

learning induced change in selectivity is related to the difference in responses 

to shapes belonging to the same versus different learned categories. Do 

neurons respond more similarly to shapes that belong to the same category 

than to shapes that belong to different categories? To examine this, we 

computed a category tuning index (see Materials and Methods) for each 

neuron. The category tuning index assesses the similarity between responses 

to shapes of the same category versus shapes of different categories, taking 

into account trial-to-trial variations in response strength (computed on d’; see 

Materials and Methods). The larger the category tuning index, the more 

similar are the responses of neurons to shapes of the same category compared 

to shapes belonging to different categories. We employed an ANOVA on the 

category tuning index values in the pre-and post-training phase. As between-



Chapter 3 
 

104 

neurons variables, we included shape set (set 1 to 4), recording phase (before 

or after categorization training) and monkey (monkey C or A). Category 

dimension (aspect ratio or curvature) was included as a within-neuron 

variable. The three-way interaction between category dimension, monkey and 

recording phase reached significance (F(1,673)=3.89, p < .05). The four-way 

interaction between category dimension, monkey, recording phase and shape 

set was not significant (F(3,673)=1.84, p > .13). Inspection of Figure 4A 

showed that the category tuning index increased with training for the relevant 

but not for the irrelevant dimension. This observation was confirmed by post-

hoc comparisons (Fisher LSD tests): for monkey C, the training effect was 

significant for the category tuning index along the relevant curvature 

dimension (p < .05). For the category tuning index along the aspect ratio 

dimension, however, there was no significant training effect (p > .11). The 

opposite was true for monkey A (p < .001 and p > .89 for the training effect 

along the aspect ratio and curvature dimension, respectively). Thus 

categorization learning affected the category tuning along the relevant 

dimension but not along the irrelevant dimension (Figure 4B and 4C). The 

distribution of the category tuning index also changed significantly with 

training for the relevant but not for the irrelevant dimension (p < .01 and p > 

.18, respectively, Kolmogorov-Smirnov test; Figure 4C). Similar trends were 

found when the analyses were applied using absolute response differences 

without normalizing by the response variance (as Freedman et al. (2003) did) 

instead of using d’ values.  

As the category tuning index reflects the ratio of within-category response 

differences (WCD’s) to between-category response differences (BCD’s), we 

zeroed in on the effect of training on both of these factors. To examine this, 

we employed an ANOVA on the between- and within category differences in 

the pre-and post-training phase, taking into account trial-to-trial variations in 

response strength (computed on d’). As between-neurons variables, we 
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included shape set (set 1 to 4), recording phase (before or after categorization 

training) and monkey (monkey C or A). Category dimension (relevant or 

irrelevant) and category difference (between or within) were included as 

within-neuron variables.  

Figure 4. Effect of category learning on category tuning A: Category tuning indices along the 
curvature and aspect ratio dimensions compared before and after categorization training. The results 
for the monkey using curvature as the relevant dimension are displayed on the left; on the right, the 
results for the monkey using aspect ratio as the relevant dimension are shown. The data obtained 
before and after training are depicted by dotted and solid lines, respectively (with SEs). In panel B, the 
category tuning indices compared before and after categorization training for the relevant and 
irrelevant dimension, pooled across the two monkeys, is shown. The data obtained before and after 
training are depicted by dotted and solid lines, respectively (with SEs). In panel C, the category tuning 
indices for the irrelevant dimension are plotted against the category tuning indices for the relevant 
dimension. Same conventions as in Figure 3. 
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The three-way interaction between category dimension, category difference 

and recording phase was significant (F(1,673)=7.34, p < .01). The training 

increased the between-category differences more for the relevant (post-pre 

training difference in mean between-category d’: 0.62) than for the irrelevant 

dimension (d’ difference: 0.57). For the within-category differences, the 

opposite was true: the increase for the relevant dimension (d’ difference: 

0.53) was smaller than for the irrelevant dimension (d’ difference: 0.56). 

Thus, with training, responses to shapes from the same category became more 

similar and responses to shapes from different categories became less similar. 

Comparison of responses for the relevant and irrelevant dimension after 

training.  

We also analyzed the post-training data separately, asking whether there was 

an interaction of stimulus dimension and monkey on the degree of selectivity 

and the category tuning index. These analyses are similar to those in previous 

studies that did not employ pre-training measures. The results reported below 

are for the selective sets only. Including all responsive sets did not change the 

results in any substantial way. 

Selectivity along the relevant and irrelevant dimensions after training. To 

examine whether selectivity for the relevant dimension was enhanced 

compared to the irrelevant dimension in the post-training recording phase, we 

performed an ANOVA on the DOS values for all selective sets in the post-

training phase with category dimension (aspect ratio or curvature) as a within-

neuron variable and shape set (set 1 to 4), center type (type 1 or 2) and 

monkey (monkey C or A) as between-neurons variables. The interaction 

between dimension and monkey did not reach significance (F(1,394)=1.80, p 

> .17), indicating that the selectivity for the relevant dimension was not 

significantly enhanced compared to the irrelevant dimension. This was the 
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case for both center types (DOS index for relevant dimension minus DOS 

index for irrelevant dimension: center type 1= .008; center type 2= -.034). 

The results for the best-worst selectivity index used by Sigala and Logothetis 

(2002) were, again, very similar.  

Strength of category tuning along the relevant versus irrelevant dimension 

after training. To examine whether the strength of the category tuning was 

greater along the relevant dimension than along the irrelevant dimension after 

training, we employed an ANOVA on the category tuning index values for all 

selective sets in the post-training phase. As between-neurons variables, we 

included shape set (set 1 to 4), center type (type 1 or 2) and monkey (monkey 

C or A). Category dimension (aspect ratio or curvature) was included as a 

within-neuron variable. Although the interaction between dimension and 

monkey did not reach significance (F(1,387)=1.29, p > .25), the category 

tuning along the relevant dimension was greater compared to the irrelevant 

dimension, which was the case for both center types (category tuning for 

relevant dimension minus category tuning for irrelevant dimension: center 

type 1 =.027; center type 2 = .019). A highly similar pattern of non-

significant results was found when the analysis was applied using the absolute 

response differences, as Freedman et al. (2003) did, instead of using the d’ 

values.  

 

DISCUSSION 

We examined the effects of categorization learning for shapes upon the 

selectivity of IT neurons for these shapes while we controlled for pre-learning 

stimulus selectivity effects versus learned category-related effects by 

recording the neuronal selectivity before and after categorization learning as 
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well as by counterbalancing the relevant categorization dimensions across 

animals.  

Unlike previous studies, our design allowed us to simultaneously examine 

two different possible effects of categorization learning on the tunings of IT 

neurons. First, IT neurons showed an increased sensitivity for shapes that 

varied along the trained dimension compared to shapes that varied along the 

irrelevant dimension. This categorization-relevant selectivity effect was 

relatively small and could only be demonstrated when comparing pre- and 

post-training data. Sigala and Logothetis (2002) reported a much stronger 

effect of categorization training on shape tuning. In the present study, only 

55% of the cells showed a larger selectivity (as quantified by the best-worst 

selectivity index employed by Sigala and Logothetis) for the relevant 

compared to the irrelevant dimension after training, which is much smaller 

than the ~75% found by Sigala and Logothetis (2002; quantified after visual 

inspection of the results in their Figure 4a and b). The discrepancy between 

the size of the effects in the present and the latter study is unlikely to be due 

to differences in the amount of training. Another reason for the discrepancy 

between the two studies might be that Sigala and Logothetis had only post-

training data and the dimensions actually relevant to the categorization were 

not counterbalanced across monkeys. Without proper counterbalancing, our 

results could have been as follows: If curvature had been the relevant 

dimension for both monkeys, the selectivity for this relevant dimension would 

have been larger than for the irrelevant aspect ratio dimension for 68% of the 

cells when using post-training data or 69% of the cells when using pre-

training data. These proportions are close to those reported by Sigala and 

Logothetis (2002). However, if aspect ratio would have been the relevant 

dimension for both monkeys, only 32% (post-training) or 31% (pre-training 

data) of the cells would have shown this result pattern. This exercise shows 

that without proper counterbalancing of the trained dimension, the 
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contribution of a genuine learning effect to the observed selectivity is 

impossible to assess. Thus, it is possible that if Sigala and Logothetis had 

counterbalanced the trained dimensions across their subjects, the size of the 

categorization effect on selectivity would have been much smaller and 

comparable to that of the present study. 

The present results disagree with Op de Beeck et al. (2001) who did not find 

an effect of categorization rules on IT response tunings. However, training 

was somewhat less extensive (~ 6 to 8 weeks) than that in the present study 

and, likely more critical, integral but not separable dimensions (as in the 

present study and in Sigala and Logothetis (2002)) were manipulated. Perhaps 

category selective effects on IT tuning occur only for separable dimensions, 

in line with a psychophysical study of category learning effects (Op de Beeck 

et al. 2003).  

In addition to the dimension-specific change in degree of selectivity, we 

observed a general increase in selectivity when comparing pre- and post 

training selectivity measures. As the procedures of the pre- and post-training 

recordings differed in several aspects (e.g. fixation vs categorization, different 

presentation durations), it is impossible to determine the source of the overall 

difference in selectivity between the pre- and post-training phases. De Baene 

et al. (2007) reported that a RSVP task with a fast presentation rate (100 

ms/image) can lead to an underestimation of the degree of stimulus 

selectivity. This suggests that the overall increase in selectivity with 

categorization training that was observed in the present study, can be, at least 

partially, explained by an initial underestimation of the stimulus selectivity 

caused by the use of a fast presentation rate RSVP task. However, given 

previously reported effects of learning on overall shape selectivity (Kobatake 

et al. 1998; Miyashita et al. 1993; Baker et al. 2002; Freedman et al. 2006), it 

seems very likely that at least part of the difference in selectivity observed 
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before and after the training is due to a genuine effect of categorization 

learning on shape selectivity. Note that the different paradigms when 

searching and testing responsive neurons before and after training cannot 

explain the dimension-specific changes in selectivity because the relevant 

dimension was counterbalanced across animals. 

Dimension-specific changes in perceptual sensitivity have been observed after 

categorization learning in humans using similar (Op de Beeck et al. 2003) or 

identical shapes (Wagemans et al. 2006) as those used in our study, and in 

monkeys using other shapes (Sigala et al. 2002). In those behavioral studies, 

the subjects were performing a task that was different from the trained 

categorization task when testing their perceptual sensitivity. In our study (as 

in other single cell categorization studies (e.g. Vogels 1999b; Sigala and 

Logothetis 2002; Op de Beeck et al. 2001; Freedman et al. 2003)) the animals 

were performing the categorization task during the post-training recordings, 

which raises the possibility that the selectivity change is only present when 

the animals are doing the categorization. Such a task-related selectivity 

change may reflect category-dimension specific attention as postulated in 

exemplar-based models of categorization (e.g. Nosofsky 1986; Kruschke 

1992). Note though that the present study would be the first one to show such 

stimulus dimension-dependent attention effect in the ventral visual stream, 

since previously studies that specifically examined such attention effects on 

tuning failed to find it (Mirabella et al. 2007; see Vogels 2007). Although the 

tuning changes observed in the present study agree with the attentional effect 

postulated in categorization models, it is possible that the dimension-specific 

selectivity effect is task-independent, and thus might, at least partially, 

underlie the task-independent changes in behavioral sensitivities that result 

from categorization learning. To ascertain this, post training RSVP measures 

would have been necessary which were unfortunately not possible in the 

present study (see Materials and Methods). 



Category learning effects 
 

111 

Second, IT neurons responded more similarly to shapes belonging to the same 

category than to shapes belonging to different categories. Since the 

categorization-related effect is a change in the similarity of the IT responses 

to shapes that belong to the same versus different categories and thus differs 

from a dimension-specific change in shape selectivity (see above), it is 

difficult to see how this category effect can be explained by an increased 

attention to the relevant dimension. However, since the two categories were 

associated with two different behavioral responses, one could argue that the 

category effect does not reflect a task-independent change in shape tuning, 

but instead reflects the upcoming behavioral response. Previous studies that 

used the same task as we have did not find evidence for such behavioral 

response-related responses in IT cortex (Op de Beeck et al. 2001; Baker et al. 

2002; Koida and Komatsu 2007; also see Mogami and Tanaka 2006). Given 

the lack of clear evidence for behavioral response-related effects in these IT 

studies, it is very unlikely that the category effect that we observed is related 

to the behavioral response. 

During the categorization training, a small region around the category 

boundary was spared which resulted in a slight difference in stimulus 

statistics for the two monkeys. As a consequence, an unsupervised learning 

process could have led to a clustering of responses according to the two 

categories. Although we cannot exclude a possible contribution of this 

unsupervised learning to the observed category effect, it is very unlikely that 

it is its sole or main cause. Indeed, the trained shapes near the category 

boundary were very similar as is evident from the poor classification 

performance for these shapes in both animals (about 70% correct 

classifications). 

Whatever the cause of the category tuning effect, it is numerically rather 

small. Freedman et al. (2003) reported a similar, small effect of categorization 
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learning upon category tuning of IT neurons (after > 6 months of training (D. 

Freedman, personal communication)), although, unlike that in our study, their 

effect could have been due to pre-training stimulus selectivities. Recent 

human fMRI studies did not find evidence for such category-related tuning in 

area LOC (believed to be the human homologue of monkey area IT (Denys et 

al. 2004)) using an adaptation protocol (Jiang et al. 2007) or pattern 

classification tool (Li et al. 2007). However, effects as small as those 

observed in the present study may easily be missed with fMRI. Given the 

modest size of the category-related tuning effect in IT, the question arises as 

to which area(s) more strongly encode the category membership of a stimulus 

after learning. Freedman et al. (2003) observed much stronger category tuning 

effects in prefrontal than in IT neurons when animals performed 

categorization in the context of a working memory task. Also, several human 

functional imaging studies of categorization (Jiang et al. 2007; Li et al. 2007; 

Vogels et al. 2002; for review see Keri (2003) and Ashby and Maddox 

(2005)) reported activation in prefrontal cortex during categorization. A 

recent study by Freedman and Assad (2006) reported strong category-related 

information in a working memory task in the intra-parietal sulcus. Because 

motion stimuli were used in this study, it remains unclear whether the parietal 

areas play a role in categorization tasks in general (thus also when static 

shapes are used), or only when categorizing motion stimuli (Li et al. 2007). 

Several functional imaging studies in humans also suggest an involvement of 

the striatum in categorization (Li et al. 2007; Vogels et al. 2002; for review 

see Keri (2003) and Ashby and Maddox (2005)). As the striatum can integrate 

the outputs of multiple IT neurons (Cheng et al. 1997), a striatal role in 

categorization is indeed possible. Note that we cannot exclude that at least 

part of the effect of category learning on the tuning of IT neurons is caused by 

feedback from one of the category-selective areas. 
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The present study suggests that shape-categorization learning in adults 

induces only minor category-related changes in the shape tuning of IT 

neurons. These changes are such that, at least when post-training responses 

during categorization are compared to pre-training responses in a fixation 

task, the representation of the categorization relevant stimulus features are 

enhanced and that the responses of the neurons are somewhat more similar for 

exemplars that belong to the same, compared to different, categories (Figure 3 

and 4, respectively). Our data support a two-stage model of categorization in 

adults in which IT neurons are tuned to exemplars, although in a category-

biased way, while learned categories become explicitly represented in extra-

visual cortical regions that read-out IT. Note that the two-stage model 

proposed here differs from the HMAX model (Riesenhuber and Poggio 1999; 

Jiang et al. 2007) by allowing a category related, biased object representation 

in IT, which is not present in HMAX. It is possible that during development, 

i.e. in animals younger than the ones used in the present study, categorization 

learning has much stronger category-related effects on the feature 

representations in the visual cortex and shapes the category-biased 

representation as was found by e.g. Kiani et al. (2007) for animate versus 

inanimate objects.  
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MATERIALS AND METHODS 

SUBJECTS 

Two male rhesus monkeys (Macaca mulatta; Monkey C and A) served as 

subjects. Before conducting the experiments, we performed aseptic surgery 

under isoflurane anesthesia to attach a plastic head-fixation post to the skull 

and to stereotactically implant a plastic recording chamber. To allow a 

vertical approach, we positioned the recording chambers dorsal to IT (see 

Janssen et al. 2000).  

All animal care and experimental and surgical procedures followed national 

and European guidelines and were approved by the K.U. Leuven Ethical 

Committee for animal experiments.  

STIMULI 

Starting with 4 “archetypical” 2D shapes, we generated 4 parameterized two-

dimensional shape sets by manipulating the dimensions “curvature” and 

“aspect ratio” (Figure 1). All archetypical shapes (not shown in Figure 1) 

were chosen so as to display vertical and horizontal symmetry.  

Aspect ratio was defined as the ratio between the width and the height of a 

stimulus. To manipulate this ratio, we modified the width of the archetypical 

shapes by a transformation which maintained horizontal and vertical 

symmetry. Curvature was manipulated by modifying the turning angle of the 

tangents at the lowest and highest point of the vertical axis of the symmetric 

archetypes (see Foster and Wagemans 1993). 

Before carrying out the aspect ratio transformation, we ran a human 

psychophysical study (N=6) on the basis of which the aspect ratio of the 

archetypical stimuli were set so as to be perceptually equal to the aspect ratio 
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of a rectangle with vertical sides twice the length of the horizontal sides. We 

performed a second pilot study with human participants (N=5) to calibrate the 

aspect ratio and curvature transformations to achieve perceptually equidistant 

steps for both stimulus dimensions (B.Ons, W.De Baene, and J.Wagemans 

submitted). A third pilot study with human participants (N=3) showed that the 

introduced shape transformations along the aspect ratio and curvature 

dimension were fairly perceptual separable, and we were therefore able to 

combine the two transformations in a linear way to create a two-dimensional 

stimulus set based on the previously-defined transformations (B.Ons, W.De 

Baene, and J.Wagemans submitted).  

To prevent the possibility that shape categorization might be performed on 

the basis of shape width instead of aspect ratio, we generated 3 different 

shape sizes by a scaling transformation. The mean heights of the large, 

intermediate and small sizes were 9.8° (min = 9.5°; max = 10.1°), 5.6° (min = 

5.4°; max = 5.8°) and 3.2° (min = 3.1°; max = 3.3°), respectively. As the 

turning angle is scale-invariant (Foster and Wagemans 1993), this scaling did 

not affect the curvature of the shapes. Note that it is still possible that the 

monkeys might have performed the categorization task on the basis of 

features that vary with the modulated dimensions, rather than using these 

dimensions themselves. However, as these changes are intertwined with 

variations in aspect ratio or curvature, we will use the labels “aspect ratio” 

and “curvature” for the remainder of this paper. 

All shapes were presented on a gray background on a monitor positioned 60 

cm from the monkeys (60 Hz frame rate; 1024 x 768 pixels) and were filled 

with pixel noise. The mean luminance of the shapes and background was 

equal.  
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PROCEDURE 

Eye position was monitored by virtue of an infrared eye tracking system 

(ISCAN, EC-240A) at a sampling rate of 120 Hz. An electronic fixation 

window insured that the monkeys maintained their gaze within 0.8° of a black 

fixation target (0.17° diameter) that was presented in the center of the display 

during the trials.  

Standard extracellular recordings were performed with Tungsten 

microelectrodes that were placed using a guiding tube fixed in a Crist 

(Hagerstown, MD) grid using previously published techniques (De Baene et 

al. 2007). Recording positions were estimated by comparing depth readings 

of the white and gray matter transitions, and that of the skull base during 

electrode penetrations, with structural magnetic resonance (MRI) images 

taken in between the recordings (using a copper-sulphate-filled tube inserted 

in the grid at one of the recording positions). In monkey C, we recorded from 

the left hemisphere; in monkey A, we recorded from the right hemisphere. 

Across animals, the recording positions in both pre- and post-training 

recording phases (see below) ranged from 15 to 22 mm anterior to the 

external auditory meatus and included the lower bank of the superior 

temporal sulcus (STS), the cortical convexity lateral to the anterior middle 

temporal sulcus (aMTS) and the lip of the STS (area TEm, Seltzer and 

Pandya 1978). The distribution of recording locations in the pre- and post-

training recording phases largely overlapped. Additionally, in the post-

training phase, we recorded from the left hemisphere in monkey A as a 

control. The recording positions in that hemisphere were within the same 

range as those for the other hemisphere. 
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Experimental phases.  

We planned 4 experimental phases: a pre-training “baseline” recording using 

a passive fixation task, a categorization training phase, a post-training 

recording during categorization and a post-training recording during passive 

fixation. However, monkey C died from a gastrointestinal disorder after the 

post-training recordings during categorization, precluding post-training 

measurements using the passive fixation task. Thus, the experimental design 

included only 3 phases which will be described below. 

Pre-training recordings.  

During the pre-training recordings, we used 16 stimuli of intermediate size of 

each of the 4 sets (= 64 stimuli in total; Figure 1). These stimuli were 

obtained by combining 4 fixed levels of the curvature parameter with 4 fixed 

levels of the aspect ratio parameter. The 4 fixed curvature levels were 

combined with each of the 4 levels of the aspect ratio, as shown in Figure 5.  

 

 
Figure 5. Schematic representation of how the 
shape sets were constructed. The numbers 1 to 16 
indicate the different shapes obtained by combining 
4 levels (0, 33, 66 and 100%; 0 and 100% being the 
extremes of the range tested on this dimension) of 
the relevant parameter with the same 4 levels of the 
irrelevant parameter. The letters A, B, C and D 
represent the 4 different quadrants of the 
configurations from which the position control 
shapes were chosen. The category boundary is 
depicted by the horizontal line. 

 

The 0%, 33%, 66% and 100% aspect ratios of Figure 5 corresponded to 

respective horizontal expansions of 1.75, 1.32, 0.99 and 0.75 times the 

archetypical shapes. The four curvature values corresponded to turning angles 
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of the vertical axis of 3.34, 2.23, 1.29 and 0.52 radians (Figure 5). The ranges 

used here were imposed by the intrinsic properties of the shape sets 

themselves. Higher values on any one of these dimensions would have 

introduced additional features for the respective stimuli. For every shape, a 

90° rotated version was generated, resulting in 128 (4 x 16 x 2) different 

stimuli. All these shapes were filled with 3 different pixel noise patterns, 

yielding a total of 384 stimuli. The position of the shapes on the screen was 

determined by the center of the archetypical shape of the respective set. This 

archetypical shape was centered so that the middle of the shape on the 

horizontal axis at middle height was at the center of the screen. The curvature 

and aspect ratio was modulated after this centering. This manner of centering 

is further referred to as center type 1. 

The 384 stimuli were presented in continuous, rapid, random sequences (no 

interstimulus interval) at a rate of 100 ms/image (as in De Baene et al. 2007). 

In this passive fixation task, a trial started after 500 ms of stable fixation and 

ended when the monkey broke fixation or when every stimulus had been 

presented once. Monkeys were rewarded with a drop of apple juice at an 

increasing pace until the end of the trial. This procedure was used to search 

for responsive neurons. If the online-generated peristimulus time histogram 

(PSTH; averaged across trials and all stimuli) of the responses indicated that 

the cell did not respond to any of the stimuli, we abandoned this cell and 

searched for another. Spikes from responsive cells were sampled for about 75 

trials. 

Categorization learning.  

In a second phase, the monkeys were trained to group the stimuli into 2 

categories, with curvature and aspect ratio as the relevant dimensions for 

monkeys C and A, respectively. Each category was associated with a saccade 
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direction: shapes with parametric values < 50% on the relevant dimension 

(below horizontal line, Figure 5) were associated with a leftward saccade, 

shapes with parametric values > 50% (above horizontal line, Figure 5) with a 

rightward saccade. In this categorization task, a trial started after 500 ms of 

stable fixation. A stimulus was presented for 300 ms and after another 200 ms 

of fixation, 2 black target spots (0.71° diameter) appeared to the left and right 

of the fixation point, at 9° eccentricity, as a response cue. Saccades in the 

correct direction and within 2000 ms after the onset of the target spots were 

rewarded with a drop of apple juice. The fixation point and target spots were 

turned off as the eye trace entered a target window. Trials in which the animal 

interrupted fixation before target spot onset or failed to saccade to one of the 

two target spots were counted as aborts, and were not included when 

computing categorization performance. In contrast to the stimuli in the first 

recording phase, which were presented at a fixed intermediate size, all shapes 

in the categorization learning phase were presented at three different sizes 

(see above). Each shape was presented at a random position within a 3.6° 

square region centered on the fixation point and was filled with one of three 

different pixel noise patterns, which were refreshed daily.  

The monkeys first learned to categorize the shapes of set 1 (Figure 1). 

Initially, only eight stimuli per size were presented, i.e. 4 of each extreme 

level (0 and 100%) of the irrelevant dimension (i.e. shapes 1 to 4 and 13 to 

16; shapes numbered as in Figure 5). We increased the number of shapes on a 

daily basis by adding shapes 8 and 9 on day 2, shapes 7 and 10 on day 3, 

shapes 5 and 12 on day 4 and shapes 6 and 11 on day 5.  

For each remaining day of the training phase, we generated 16 novel shapes 

for each size, 8 for each category, with random values along the two 

dimensions. These values were randomly picked from within the limits of the 

original shape configuration (Figure 1) but excluding a small range (having 
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an extent of approximately 1/6 of the total tested range) symmetrical around 

the category boundary of the relevant dimension. The category boundary for 

curvature was defined as the parametric value at the 50% level, referring to a 

turning angle of 1.74 radians. The category boundary for aspect ratio was 

defined as the parametric value generating shapes with a physical aspect ratio 

of 0.54. The reason for this will be discussed below. 

After the fifth day of training, we tested the transfer to the other 3 sets on 3 

consecutive days. For each of these sets, 16 transfer stimuli were generated 

for each of the 3 sizes by combining the 4 fixed levels (0, 33, 66 and 100%) 

of the curvature parameter with the 4 fixed levels of the aspect ratio 

parameter (see above). These 48 (3 x 16) transfer stimuli within a set were 

randomly intermixed with 16 randomly generated stimuli per size of set 1 

(each presented 9 times; 3 times per pixel noise pattern), and were presented 

twice, making up 10% of all trials presented on a given day. These transfer 

stimuli were always followed by reward, irrespective of the monkey’s 

response (Vogels 1999a). These transfer tests showed that monkey C was 

able to generalize the learned category boundary to novel sets, while monkey 

A had difficulty in doing this generalization: Monkey C achieved an average 

performance of 70% over the 3 novel sets and performed significantly better 

than chance for all 3 sets (tested with a Binomial test. Mean = 62.5%, p < 

0.05 for set 2; Mean = 71%, p < .001 for set 3; Mean = 77%, p < .001 for set 

4). Monkey A attained 61% correct averaged across the 3 novel sets and 

performed significantly above chance level only for set 3 (tested with a 

Binomial test; Mean = 60.5%, p > .05 for set 2; Mean = 65.5%, p < .01 for set 

3; Mean = 56%, p > .05 for set 4). It is difficult to know whether the 

difference in the degree of transfer to novel sets shown by two animals simply 

reflects a distinction between individual subjects or is instead related to the 

different trained dimensions.  
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After this transfer test, we presented stimuli from the 4 sets randomly 

intermixed. From this point on, the 16 shapes with fixed values (per size) of 

set 2, 3 and 4 were no longer used for the remainder of the training phase (as 

was already the case for set 1). Instead, every day, we randomly picked 16 

new stimuli (8 for each category) per size and per set with values from within 

the limits of the tested configuration. Again, these values could not lie within 

a small range symmetrical around the category boundary of the relevant 

dimension (see above). This range of values was identical for all sets for the 

curvature dimension. This was because shapes from different sets that had 

equal parametric curvature values indeed had equal curvature. As the 

archetypical shapes were calibrated to have perceptually equal aspect ratios, 

the shapes of different sets differed slightly in their physical aspect ratios. To 

induce category boundaries that were at an equivalent physical aspect ratio 

level for any given set, for each set we adapted the range around the boundary 

from which no values could be picked. The 16 shapes that were used in the 

post-training recording phase (see further) were assigned to the same category 

across the 4 sets. 

Because monkey C, who performed the categorization task with curvature as 

the relevant dimension, made very few errors, the range around the category 

boundary was halved (to 1/12 of the total tested range) for this monkey after 

the 4th day of performing to criterion level (see below).  

Once the monkeys (Monkey C: 16 days; Monkey A: 42 days) had learned to 

categorize the shapes to criterion performance (90% correct responses 

averaged across all stimuli of all sets and sizes), the training continued for 

another 37 or 38 days (for monkey C and monkey A, respectively).  
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Post-training recordings.  

In a third phase, we recorded from IT cortex while the monkeys were 

performing the categorization task (see above). We searched for responsive 

neurons with 16 randomly generated stimuli per size for each of the 4 sets 

(using the same randomization as during the training phase; see above) which 

were presented with 3 different pixel noise patterns at a random position 

within a square region of 3.6 deg centered at the fixation point. Every day, we 

generated new stimuli and renewed the pixel noise patterns. We visualized the 

responses of the cells in peristimulus time histograms (PSTHs) averaged 

across trials and shapes. We had a PSTH for each combination of the 4 sets 

and 3 sizes, resulting in 12 different PSTHs. Based on a visual inspection of 

these PSTHs, we selected the sets for which a neuron was judged to be 

responsive, for the subsequent main test. Note that this selection of responsive 

neurons and stimulus sets was unbiased with respect to the tuning for the 

curvature or aspect ratio dimensions.  

To maximize the data collected on a given recording day, we selected a 

maximum of 2 shape sets for the subsequent test. If the neuron responded to 

shapes from more than 2 sets, we randomly chose 2 sets from these 

possibilities and started the subsequent test with the randomly intermixed 

presentation of the shapes of these 2 sets. The remaining sets were introduced 

only in a subsequent test once we had sampled enough trials (i.e. minimally 

10 trials per stimulus) for the first two chosen sets. The recording of a cell 

was aborted when all shapes of all selected sets had been presented about 10 

times, when it became impossible to isolate the cell’s responses from the 

other neuronal activity, or when the monkey simply stopped working.  



Category learning effects 
 

123 

In this main test, we presented, per selected set, the 16 shapes with fixed 

parametric levels (as in Figure 1 & 5) filled with one pixel noise pattern 

(which was refreshed every day) at an intermediate size at a fixed position.  

Given the inherent difficulty of centering stimuli that vary in curvature and 

the fact that the animals were trained to categorize the stimuli at randomly 

chosen positions, we also tested neurons with a second type of centering (in 

addition to the one used in the pre-training recording phase (center type 1)). 

This allowed us to generalize the (absence of) effects of categorization on 

neural selectivity for different positioning of the stimuli (see Results). For this 

center type 2, the middle of the vertical, curved medial axis was centered on 

the screen. This center type 2 was used in about half of all cells recorded in 

the post-training phase and for all cells recorded in the left (control) 

hemisphere in monkey A. Note that all analyses that compare pre- and post-

training responses utilized only data obtained with the same centering (center 

type 1). The difference between the two types of centering was such that the 

aspect ratio or curvature transformations were first applied before the shape 

was centered in center type 2, while the shape was centered before application 

of the stimulus transformations in center type 1.  

In addition to the 16 fixed shapes per selected set, eight catch stimuli per set 

were added for behavioral control only: 4 size controls and 4 position 

controls. The size control stimuli included 2 large and 2 small shapes, with 

random parametric values lying within the limits of the tested configuration 

and with the constraint that each category was chosen with equal frequency. 

From each quadrant of the 16-shape configuration (A to D; Figure 5), one 

shape of intermediate size was presented at a control position. The maximum 

difference between the position control shapes and their corresponding 

reference shapes was 1.5°.  
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DATA ANALYSIS AND TESTS 

In both pre- and post-training recordings, the response of the neuron was 

defined as the mean number of spikes in a 70-200 ms analysis window 

relative to stimulus onset. The selection of the analysis window was based on 

an analysis of the monkeys’ eye movements during the categorization task in 

the post-training phase (Figure 6).  

 
Figure 6. Eye positions averaged over trials for monkey C (A and C) and monkey A (B and D) during 
the categorization task in the post-training recording phase. In the upper part (A and B), the mean 
horizontal eye positions (in visual degrees) are displayed. In the lower part (C and D), the mean 
vertical eye positions are presented. On the X-axis, the stimulus presentation time relative to stimulus 
onset is plotted; on the Y-axis, the eye position within the fixation window is plotted. Values 0.8, 0 
and -0.8° (from top to bottom) represent the left/upper (A and B/C and D) boundary, the center and 
the right/lower (A and B/C and D) boundary of the average fixation window, respectively. Eye 
positions for shapes associated with a rightward or leftward saccade are plotted in grey and black, 
respectively. Eye positions for shapes close to the category boundary (i.e. with a parametric value of 
33 or 66%) are displayed in dotted lines. Solid lines are used for shapes with extreme parametric 
values (i.e. 0 or 100%, and thus not close to the category boundary).  
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After about 150 ms, one of the monkeys made small, preparatory saccades 

towards the correct-response side, but still within the fixation window (Figure 

6). These small saccades can, in principle, alter the visual input to the retina, 

which could in turn affect the neuronal responses in IT. To avoid any possible 

effect that this altered retinal input might have on the responses of the IT cells 

(which could occur after about 220 ms, given that the minimum latency of IT 

neurons is approximately 70 ms; see Vogels 1999b), we chose an analysis 

window up to 200 ms after stimulus onset.  

The response of a neuron recorded in the pre-training phase was measured 

using the same procedure as in De Baene et al. (2007), excluding the first 

three stimuli as well as the last stimulus of a trial sequence. However, a 

response window of 70-200 ms poststimulus onset was used (instead of 50-

200 ms in De Baene et al.). All analyses in the pre-training phase were 

performed on neurons showing shape selectivity. For every cell recorded in 

the pre-training phase, we tested the shape selectivity for each stimulus set 

using a permutation test to asses the statistical significance of the observed 

variance within a given shape set in the mean neuronal responses to stimuli. 

For each shape set, the distribution of the variances expected by chance was 

determined by calculating new variances of the data after permuting the order 

of the stimuli within each trial while maintaining the actual spike counts. We 

generated a distribution of 1,000 permuted variances, representing the 

distribution of variances that would have been expected to occur by a chance 

association between stimulus and neuronal firing. A neuron was considered to 

be shape selective within a shape set if the observed variance for responses 

within that shape set was larger than the 95th percentile of the values in its 

own permuted variance distribution (p < 0.05, 1-tailed).  

The responsiveness of cells in the post-training phase was assessed per set by 

a split-plot-design analysis of variance (ANOVA; Kirk 1995) comparing 
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baseline activity, measured in a -130 to 0 ms time window relative to stimulus 

onset, with stimulus-driven activity measured in a 70-200 ms time window, 

relative to stimulus onset. All analyses in the post-training phase were 

performed on the sets for which at least a main effect of this response variable 

(p < 0.05) was found. A significant interaction (p < 0.05) between this 

response variable and shape indicated that the cell was selective within this 

set. Comparisons between pre- and post-training phase were performed only 

for these shape selective neurons. 

In both pre- and post-training recording phases, we calculated several indices 

for both the relevant and irrelevant dimension (thus for both the learned and 

unlearned categories, respectively) per tested set. Only trials with correct 

responses were included in these analyses. As a measure of the selectivity for 

the relevant versus the irrelevant dimension, we computed per set the depth of 

selectivity (DOS; Rainer and Miller 2000) for each dimension separately. 

This measure of the degree of selectivity of a neuron to a given stimulus set 

was defined as: 

)1/()]/([
1
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=

nRRn
n

i
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where n = number of parametric values of the relevant/irrelevant dimension 

(i.c. 4: 0, 33, 66 and 100%); Ri = mean firing rate (averaged across the 4 

values of the irrelevant/relevant dimension, respectively) to the ith parametric 

value of the relevant/irrelevant dimension; and Rmax = max{Ri}. The DOS 

could vary between 0 (when the neuron responded equally for all parametric 

values) and 1 (when there was a response for only one parametric value). We 

employed the DOS index rather than a best-worst index (Sigala and 

Logothetis 2002) since the DOS index takes into account responses to all, 

rather than only 2, of the parametric values. As for the best-worst index used 
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by Sigala and Logothetis (2002), the DOS indices were computed on the 

marginal means of the parametric values of a dimension, i.e. by averaging 

across the mean responses for the 4 values of the other dimension (e.g. 

response for curvature 0% represents the average of the mean responses for 

the shapes having the 0, 33, 66 and 100% aspect ratio values of that curvature 

value).  

To compare differences in responses to shapes belonging to the same versus 

different categories, we computed, for each neuron and set, the absolute 

differences in average response strength to all possible pairs of adjacent 

stimuli (separately along the relevant and irrelevant dimension of the shape 

configuration). These response differences were then divided by the square 

root of the mean of the variances in the response strength to these stimuli. 

These d’ values take into account the difference in mean spike counts as well 

as the variance of the response over trials. The differences for pairs of stimuli 

that belonged to the same category were defined as the within-category 

differences (WCDs); between-category differences (BCDs) were calculated 

between adjacent stimuli belonging to two different categories. The average 

parametric distance between stimuli was identical for BCDs and WCDs. An 

index of the strength of category tuning was computed for each neuron by 

dividing the difference between the averages of the BCDs and WCDs by the 

sum of these averages, giving values ranging from -1 to 1, where positive 

values indicate larger response differences between categories compared with 

within a category, and negative values indicate the opposite. This category 

tuning index is identical to the one used by Freedman et al. (2003) in their 

analysis of category tuning, except that we computed the category tuning 

index using d’ values instead of raw response differences.  
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CHAPTER 4 
EFFECTS OF ADAPTATION ON STIMULUS 

SELECTIVITY OF MACAQUE INFERIOR TEMPORAL 
SPIKING ACTIVITY AND LOCAL FIELD POTENTIALS 

In preparation 

In many cortical areas, repeated presentation of a specific stimulus is 

commonly associated with a reduced neuronal response, i.e. adaptation. 

Recently, adaptation has been used in fMRI studies to infer the stimulus 

selectivity of neuronal populations based on the degree of cross-adaptation 

when the adapter and test stimulus differ. In the present study, we studied the 

effects of adaptation on the neuronal stimulus selectivity in IT cortex, both 

with single-cell spiking activity and local field potentials (LFPs). Sequences 

of 2 stimuli (stimulus durations 300ms, ISI 300ms) were presented to 

passively fixating monkeys. For one of the 4 parametric sets of 6 shapes (each 

created by morphing between 2 complex 3D shapes), for which the neuron 

was most selective, all 36 possible stimulus combinations were shown in a 

fully-crossed design. We observed that, both for the spiking activity and the 

LFP gamma power, stimulus repetition scaled down the neuronal responses 

without changing the tuning width. The degree of adaptation was not only 

response strength dependent but was affected by the relationship between 

adapter and test stimulus for both shape feature and position changes: a larger 

adaptation was found when adapter and test stimulus had identical shape 

features and were presented at the same position than when these stimuli 

differed in shape or position. Consequently, we found that the degree of 

adaptation decreased with decreasing similarity between the adapter and test 

stimulus. The present results suggest that adaptation occurs at or before the 

level of the synapses onto the neuron. The implications of these findings for 

models of adaptation and for the interpretation of fMRI studies using 

adaptation are discussed. 
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INTRODUCTION 

Until recently, fMRI studies were limited to showing differences in activation 

of a brain region when different stimuli (e.g. moving versus static stimuli) 

were presented and were unable to reveal the neuronal selectivity for stimulus 

parameters in this activated region (e.g. direction selectivity). However, 

knowledge about the stimulus selectivity of neurons is essential to understand 

what these neurons code. This fMRI limitation has recently been overcome 

with the development of the functional magnetic resonance adaptation 

technique (fMR-A; Grill-Spector and Malach 2001; Nacache and Dehaene 

2001). However, contrary to the single-cell recording technique used in 

macaques in which stimulus selectivity can be assessed directly, fMR-A 

studies may only provide an indirect measure of the average selectivity of 

neuronal populations (e.g. Toottel et al. 1998; Grill-Spector et al. 1999; 

Kourtzi and Kanwisher 2000; James et al. 2002; Piazza et al. 2004). The 

various fMR-A paradigms that have been used all need to infer this selectivity 

from the level of cross-adaptation.  

The principle of cross-adaptation works as follows: Consider 3 stimuli (A, B 

and C) and that the same neurons respond to stimulus A and B, but not to 

stimulus C. When stimulus A is repeated, the neuronal activation will 

decrease, i.e. adaptation will occur (A-A sequence). Because the same 

neurons are responsive for stimulus A and B, one expects also that activation 

is decreased when B is followed by A, i.e. cross-adaptation (B-A sequence). 

However, since different neurons respond to stimulus A and C, one does not 

expect cross-adaptation for the C-A sequence. 

A key assumption in inferring neuronal tunings from cross-adaptation is that 

the same tuning function underlies both the degree of adaptation and the 

responsiveness of the neurons. This match between the neuronal adaptation 
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and the neuronal tuning was examined by Sawamura et al. (2006) in a single-

cell study in macaque inferior temporal (IT) cortex. This brain area at the 

endpoint of the ventral visual stream which is involved in object identification 

and categorization (Gross et al. 1969; Dean 1976; Tanaka 1996; Logothetis 

and Sheinberg 1996; Afraz et al. 2006) is known to show neuronal adaptation 

(Gross et al. 1967, 1969; Baylis and Rolls 1987; Miller et al. 1991a, b; Riches 

et al. 1991; Sobotka and Ringo 1993; Vogels et al. 1995) and also shows 

fMRI adaptation in macaques (Sawamura et al. 2005). Sawamura et al. (2006) 

measured the response for each sampled IT neuron to a shape stimulus A (i.e. 

the test stimulus), to which the neuron responded, as a function of a previous 

stimulus (i.e. the adapter). This previous stimulus was either the same shape 

(shape A) or a different one (shape B or C). Stimulus B was chosen to be 

equally effective for that particular neuron as shape A, while a shape to which 

the neuron responded much less or not was chosen as stimulus C. Sawamura 

et al. found little or no cross-adaptation for the C-A sequences, whereas lower 

average response reductions for the B-A sequences compared to the A-A 

sequences were observed. This lower then expected degree of cross-

adaptation for the B-A sequences (based on the similarity of the responses to 

shape B and A) indicated a greater stimulus selectivity of the adaptation effect 

compared to the stimulus selectivity of the responses of the IT neurons. This, 

in turn, suggests a possible overestimation of the neuronal selectivity by the 

fMR-A method. 

As Sawamura et al. (2006) only presented one test stimulus (shape A), they 

could not address issues related to the effects of adaptation on the stimulus 

selectivity of IT neurons. However, in order to interpret fMR-A results, it is 

crucial to know how adaptation affects the neuronal tuning and this as a 

function of the similarity between the adapter and the test stimulus. 

Additionally, changes in stimulus selectivity following adaptation could be 

used to distinguish two models of adaptation: the “fatigue” model (Grill-
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Spector and Malach 2001) and the “sharpening” model (Desimone 1996; 

Wiggs and Martin 1998). The fatigue model predicts that stimulus repetition 

reduces the response in proportion to the original response, but predicts no 

change in selectivity with adaptation. The sharpening model, by contrast, 

predicts that adaptation causes a sharpening of the tuning curves, thus an 

increased selectivity after adaptation. This results in a sparser representation 

of the stimuli. 

To study the effects of adaptation on the stimulus selectivity of IT neurons, 

we constructed sets of stimuli that varied systematically along a set of 

morphing dimensions. The use of such parameterized shape sets allows 

measuring the tunings of IT neurons to the parametric variation built into the 

stimulus sets (e.g. Op de Beeck et al. 2001; Sigala and Logothetis 2002; 

Brincat and Connor 2004; Kayaert et al. 2005; De Baene et al. 2007). By 

presenting all possible combinations of these stimuli in a fully crossed design 

in which all stimuli could serve as an adapter and as a test stimulus, we could 

assess the effect of adaptation on the tuning of IT neurons. 

Recently, several studies showed a higher correlation between fMRI BOLD 

responses and Local Field Potentials (LFPs) compared to spiking activity 

(Logothetis et al. 2001; Viswanathan and Freeman 2007). Whereas single 

cells reflect the neuronal output, LFPs are thought to reflect the summation of 

synaptic activity from a radius of up to a few millimeters around the tip of the 

electrode (Mitzdorf 1985). Because LFPs, as does the fMRI BOLD response, 

embody a population response and reflect an energetically expensive activity 

(Logothetis et al. 2001; Rauch et al. 2008), they could possibly reconcile 

single-unit recordings in monkeys with neuroimaging results in humans. 

Kreiman et al. (2006) recorded both single cell activity and LFPs from the 

same electrode in macaque IT cortex. They reported that LFPs often showed 

stimulus selectivity, although the selectivity for the single units was stronger. 
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Additionally, they found only a weak correlation between the selectivity 

observed for the LFPs and that for the single units. Since LFPs can 

demonstrate stimulus selectivity in IT cortex, we compared the effects of 

adaptation on tuning of single units and LFPs in IT cortex by examining both 

responses of single cells and LFPs recorded from the same electrode in this 

present study.  

In order for our findings to add to the understanding of the fMR-A results, we 

used stimulus timing parameters which were very similar to those used in 

rapid, event-related fMR-A paradigms (e.g. Kourtzi and Kanwisher 2000). 

Parts of the results of the present study have been published in abstract form 

(De Baene and Vogels 2007).  

 

METHODS 

SUBJECTS AND RECORDING 

The data were collected from two rhesus monkeys (Macaca mulatta; Monkey 

G and M). All animal care and experimental and surgical protocols complied 

with national and European guidelines and were approved by the K.U. 

Leuven Ethical Committee for animal experiments. 

Prior to the experiments, we attached a plastic head-fixation post to the skull 

and stereotactically implanted a recording chamber under aseptic conditions 

and isoflurane anesthesia. The positioning of the recording chamber was 

guided by structural magnetic resonance (MRI) images taken before surgery. 

A reliable estimation of the recording positions was obtained by visualization 

of a copper sulphate filled tube, inserted into the grid (Crist, Hagerstown, 

MD) at one of the recording positions, using MRI scans obtained in the 

beginning and the midst of the recording sessions. The depths of the 
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recording positions were estimated using microdrive depth readings 

corresponding to white/grey matter transitions and to contacts with the skull 

base during electrode penetrations. 

Across animals, the recording locations were estimated to range from 13 to 22 

anterior to the external auditory meatus and included the lower bank of the 

superior temporal sulcus (STS), the cortical convexity lateral to the anterior 

middle temporal sulcus (aMTS) and the lip of the STS (area TEm; Seltzer and 

Pandya 1978) of the left hemisphere. 

Standard extracellular recordings were performed with Tungsten 

microelectrodes that were placed in a guiding tube position in a grid and 

lowered with a Narishige hydraulic microdrive which was firmly mounted 

onto the recording chamber. The LFPs were recorded simultaneously from 

the same Tungsten microelectrodes as the spikes using a Plexon data 

acquisition system (Plexon, Dallas, TX). The input impedance of the head-

stage was > 1GOhm. 

The guiding tube was grounded and served as a reference. The recorded 

signal was amplified and split into spiking activity (band-passed signal 

between 250Hz and 8kHz) and LFPs (band-passed signal between 0.7Hz and 

170Hz, sampled at 1kHz). Single spikes were isolated online using Plexon-

software. Timings of the discriminated single units were stored (with a 1-ms 

resolution), together with stimulus and behavioral events, on a personal 

computer for later off-line analysis.  

STIMULI 

We generated 4 sets of greyscale, 3D stimuli using 3ds Max 7 (Autodesk, 

Inc., San Rafael, CA). First, we designed 2 largely dissimilar, complex 3D 

shapes with the same number of vertices per set, which served as the base and 
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target object in the subsequent morphing procedure. Next, we applied the 

morphing algorithm implemented in the 3ds Max 7 software, resulting in a set 

of 6 different shapes (labeled A to F in Figure 1) that smoothly changed their 

appearance from one of the two original shapes (the base) to the other (the 

target) by translating the position of the vertices from their arrangement in the 

base shape to the arrangement in the target shape in 5 equal steps. 

 
 
 
 
 
 
 
 
Figure 1. Stimuli. The 
parametric configurations 
consisted of 4 sets of 6 
shapes each. The shapes B 
to E of each set were 
obtained by morphing 
between shapes A and F of 
that set. 

 

The height of the shapes ranged from 5.4° to 7.2° visual angle and the area of 

the different shapes within one set was largely equated (max difference within 

a set = 0.8% of the total area). The greylevels of the images were adjusted 

resulting in equal mean luminance for all stimuli within a set after gamma-

correction. The stimuli were presented on a uniform grey background (ca 17 

cd/m²) on a monitor positioned 60cm from the eye of the monkeys. 

Additionally, we generated different scrambled versions of each image by 

dividing the original image into rectangular blocks of equal size (16x16 

pixels) and repositioning them in a random way. We repeated this 5 times per 

stimulus per set, resulting in a total of 120 scrambled images.  
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FIXATION TASK 

Eye position was measured online through the pupil position using an infrared 

eye tracking system (ISCAN, EC-240A) at a sampling rate of 120Hz. 

Monkeys were trained to keep their gaze within 0.8° (monkey G) or 1.0° 

(monkey M) of a red fixation target square (size: 0.18°) that was presented in 

the center of the display during the trials. When the animals maintained 

fixation throughout a trial, they were rewarded with a drop of apple juice.  

The stimulus selectivity of an isolated single unit was first tested using all 6 

stimuli of every shape set (N = 6 x 4 = 24 conditions) in a search test. For this 

initial search test, a stimulus was presented for 300ms after a stable fixation 

period of 500ms. A trial ended after another 300ms of stable fixation. After 

1000ms, the next trial started. The shapes of the different sets were pseudo-

randomly intermixed with the constraint that 2 subsequent shapes were from a 

different shape set. The stimuli were presented foveally with their center of 

mass at the center of the screen.  

Central adaptation test 

Based on the visual inspection of the single unit responses in the initial search 

test described above, which were on line visualized per stimulus in a 

peristimulus time histogram (PSTH), averaged across trials, we selected a 

stimulus set for which the neuron was judged to be selectively responsive for 

the subsequent test. In this test, we presented each of the 36 possible stimulus 

combinations (sequences A-A, A-B, A-C, …, F-E, F-F) of the selected shape 

set. Thus, in this fully crossed design, each of the 6 shapes could serve as an 

adapter and a test stimulus. We used maximally one repetition of a stimulus 

per sequence, since Sawamura et al. (2006) found that one stimulus 

presentation sufficed to produce strong adaptation. Within each sequence, 

after a stable fixation of 500ms, the stimuli were presented foveally for 
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300ms with an ISI of 300ms. After another period of 300ms of stable fixation, 

a trial ended. After a 500ms period in which a blank screen was presented, the 

fixation point was presented again, marking the start of a new trial. The 

different stimulus sequences were shown in pseudo-random order so that a 

stimulus presented in trial n (as an adapter or test stimulus) could not occur in 

trial n+1. In order to dis-adapt the neuron, we presented 2 dis-adaptation 

sequences in between two of these so-called adaptation sequences. In a dis-

adaptation sequence, 2 randomly chosen scrambled versions of the images 

were presented. To assure that minimally 4 scrambled images were presented 

in between two adaptation trials, a dis-adaptation sequence was repeated 

(with different scrambled images) whenever this sequence was aborted. The 

actual central adaptation test (following the initial search test) always started 

with a dis-adaptation trial (Figure 2A).  

Peripheral adaptation test 

For about one third of the recorded cells, a peripheral adaptation test was used 

instead of the aforementioned central adaptation test. Based on the visual 

inspection of the PSTHs of the single unit responses in the initial search test, 

we selected two stimuli from within a stimulus set for which the neuron was 

judged to be selective for the subsequent test. The stimulus eliciting the best 

response was always selected. The second selected stimulus was chosen to be 

as different from the first one as possible, but still eliciting a clear response. 

In the subsequent test, the monkeys also needed to passively fixate the 

fixation point as in the central adaptation test. However, the shapes were not 

presented foveally, but at an eccentricity of 4° above or below the fixation 

point. In this fully crossed design, both selected stimuli could serve as an 

adapter and as a test stimulus, and they could be presented at both positions as 
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adapter or test stimulus, resulting in 16 (2 stimuli x adapter vs test stimulus x 

2 adapter positions x 2 test stimulus positions) different conditions.  

 

Figure 2. Procedure. A. Design of 
the central adaptation test. The 
monkey initiated each trial by 
fixating a red fixation target at the 
screen center. After 500 ms, a first 
stimulus appeared at the center of 
the screen for 300 ms. After an 
interstimulus interval of 300 ms, a 
second stimulus appeared for 300 
ms. After another 300 ms of stable 
fixation, the monkey was rewarded 
with a drop of apple juice. After an 
intertrial interval of 500 ms in 
which a blank screen was 
presented, a new fixation target 
appeared. The test always started 
with a dis-adaptation trial, in 
which two scrambled images were 
presented. In between two 
adaptation trials (in which two 
regular shapes were presented), 
two non-aborted dis-adaptation 
trials were presented. B. Peripheral 
adaptation test. The succession of 
sequences was identical to that in 
the central adaptation test. 
However, stimuli were no longer 
presented at the center of the 
screen but at 4° above or below the 
fixation target. In the dis-
adaptation trials, each centered 
scrambled image of the central 
adaptation test was replaced by 
two scrambled images presented 
above and below the fixation 
target. 

 

The timing of the sequence was identical to the one used in the central 

adaptation test. Again, we presented 2 non-aborted dis-adaptation sequences 

in between two adaptation sequences. Instead of showing 2 randomly chosen 

scrambled image versions at the screen center, 4 randomly chosen scrambled 

images were presented in each dis-adaptation sequence: Two randomly 

chosen scrambled images were presented in parallel above and below the 

fixation point as adapters. Two other randomly chosen scrambled images, 
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presented in parallel above and below the fixation point, served as test stimuli 

(Figure 2B).  

Eye movement analysis 

Central adaptation test. Eye positions during the presentations of the test 

stimuli were compared between different sequences based on the parametric 

distance between the adapter and test stimulus. The within-trial standard 

deviation of the eye position was measured in a 300ms interval starting at the 

onset of the test stimulus presentation and averaged across trials having the 

same parametric distance between adapter and test stimulus. The mean 

standard deviation averaged across all trials of all parametric distances 

equaled 0.07° and 0.08° for the x direction in monkeys 1 and 2, respectively, 

and 0.08° for both monkeys in the y direction. There was no significant 

difference in standard deviation between the “same” conditions (i.e. 

parametric distance = 0: “same” trials) and the conditions with a maximal 

parametric difference between adapter and test stimulus (i.e. distance = 5: 

sequences A-F and F-A) in either direction (mean standard deviations of these 

conditions differed by less than 0.002° and 0.001° in the x and y direction, 

respectively), as tested with a general linear model (GLM) repeated-measures 

ANOVA with parametric distance (distance 0 or 5) as a within-neuron factor 

and monkey (monkey 1 or 2) as a between-neurons factor (F(1,78)=2.44, p > 

.12 and F(1,78)=1.00, p > .32 for the main effect of x and y direction, 

respectively). This suggests that the monkeys fixated equally well during the 

presentation of the test stimuli in the different sequences. 

Peripheral adaptation test. Eye positions during the presentations of the test 

stimuli were compared between different sequences based on the relation 

between the positions of the adapter and the test stimulus. Only trials in 

which the most effective stimulus (see below) served both as an adapter and 
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test stimulus were included in these analyses. The within-trial standard 

deviation of the eye position was measured in a 300ms interval starting at the 

onset of the test stimulus presentation and averaged across trials of the same 

condition (adapter and test stimulus at the same or different position). The 

mean standard deviation averaged across all trials of both conditions equaled 

0.10° and 0.08° for the x direction and 0.09° and 0.08° for the y direction in 

monkeys 1 and 2, respectively. There was no significant difference in 

standard deviation between the “same position” condition (i.e. adapter and 

test stimulus at same position) and the “different position” condition (i.e. 

adapter and test stimulus at different positions) in either direction (mean 

standard deviations of these conditions differed by less than 0.002° and 

0.001° in the x and y direction, respectively), as tested with a general linear 

model (GLM) repeated-measures ANOVA with condition (same or different 

position) as a within-neuron factor and monkey (monkey 1 or 2) as a 

between-neurons factor (F(1,38)=1.64, p > .20 and F < 1 for the main effect 

of x and y direction, respectively). This suggests that the monkeys fixated 

equally well during the presentation of the test stimuli in the different 

sequences.  

 

DATA ANALYSES 

SPIKING ACTIVITY 

Unless otherwise stated, net neuronal responses were used in all analyses, i.e. 

the mean firing rate in the response window 50 to 350 ms relative to stimulus 

onset after subtraction of the mean firing rate in the baseline window 300 to 0 

ms before onset of the adapter. For each cell, the responsiveness to each 

stimulus, presented as an adapter, was tested with a Wilcoxon test (p < .05).  
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For the analyses in the central adaptation test, only those cells responsive to at 

least one stimulus and showing shape-selectivity (one-way ANOVA, p < .05) 

within the selected shape set were included, unless otherwise stated. 

For the analyses in the peripheral adaptation test, we defined the response to a 

particular adapter at a particular position as the average net response across 

all conditions in which that particular shape, presented at that particular 

position, served as an adapter. The analyses were restricted to the most 

effective stimulus, i.e. the shape eliciting the largest response when presented 

as an adapter at one of both positions.  

LOCAL FIELD POTENTIALS 

For the LFPs, we applied a digital 50Hz notch filter off-line (fourth-order 

Butterworth FIR filter; Fieldtrip Toolbox1). Trials in which the signal 

exceeded the 5 to 95% window of the total input range were excluded from 

the analyses. The LFP data were analyzed in two ways. First, we computed 

the visually evoked potentials (VEPs) by stimulus-locked averaging of the 

LFP waveforms (Figure 3A and 3B). Second, we used a time-frequency 

wavelet decomposition of the signal between 15 and 100Hz for a spectral 

analysis of the LFPs. By convolving single-trial data using complex Morlet’s 

wavelets (Tallon-Baudry et al. 1997) and taking the square of the convolution 

between wavelet and signal, we obtained the time-varying power of the signal 

for every frequency (Figure 3C and 3D). Per frequency, we took the median 

power across trials. The complex Gaussian Morlet’s wavelets had a constant 

center frequency – spectral bandwidth ratio (f0/σf) of 7, with f0 ranging from 

15 to 100Hz in steps of 1Hz. At 15Hz, this led to a wavelet duration (2σt) of 

148.5ms and a spectral bandwidth (2σf) of 4.29Hz. At 100Hz, the wavelet 

duration and spectral bandwidth were 22.3ms and 28.6Hz, respectively. Thus, 

                                                 
1 Fieldtrip toolbox: http://www.ru.nl/fcdonders/fieldtrip 
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for a higher frequency, the time resolution increased, but the frequency 

resolution decreased. At frequencies below 15Hz, for which the wavelet 

duration exceeds 150ms, there could be an overlap between a wavelet 

containing information about the adapter and a wavelet containing 

information about the test stimulus, as the inter stimulus interval between 

these two stimuli was 300 ms. As a consequence, the estimated power to the 

test stimulus would be contaminated by that to the adapter and vice versa. To 

avoid this, we excluded frequencies below 15Hz from our analyses. 

 

Figure 3. LFP results averaged across all “same” trials and across all sites per monkey (monkey G: N 
= 40, panels A and C; monkey M: N = 37, panels B and D). A and B: Visual evoked potentials. The 
vertical black dotted lines depict the on- and offsets of the adapter and test stimulus. The black 
numbers in grey squares depict the peaks used to compute the adaptation index for the different 
components. C and D: LFP power spectra. For illustration purposes, the baseline power was 
subtracted from the energy at each frequency, before dividing these values by the baseline power and 
multiplying it by 100. As a consequence, the values and their corresponding colors as indicated by the 
color bars, reflect the percent signal increase relative to baseline. The vertical white dotted lines depict 
the on- and offsets of the adapter and test stimulus. 
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The LFP power response was computed by taking the average energy at each 

frequency in a 50 to 350ms response window relative to stimulus onset, 

dividing by the baseline power (ranging from 300 to 0ms before adapter 

onset) and averaging across the frequencies of the frequency band of interest. 

The frequency bands were defined based on a visual inspection of the power 

spectra (Figure 3C and 3D) as follows: the low frequency band ranged from 

15 to 30Hz; the gamma band ranged from 61 to 100Hz (see Results). The 

intermediate frequencies (31 to 60Hz) were not included in the analyses, as 

only weak differences compared to the baseline power were observed for 

these frequencies during the whole time period of the sequences. 

Contrary to the spiking activity analyses, power analyses were not restricted 

to sites showing shape-selectivity within the selected shape set, but included 

all sites (except 3, see Results) we recorded from.  

ANALYSES FOR BOTH SPIKING ACTIVITY AND LFPS 

For each cell (spiking activity) and each recording site (LFP), we calculated 

an adaptation index. The adaptation index measured the mean percent 

response difference between adapter and test stimulus across all “same” trials 

i.e. trials in which the adapter and test stimulus were identical. The adaptation 

index (AI) was defined as:  

100×
−

∑
∑∑

i

ii

Ra
RtRa

, 

where Rai = mean response to ith adapter; Rti = mean response to ith test 

stimulus, with i ranging from 1 (stimulus A) to 6 (stimulus F) for the central 

adaptation test. For the peripheral adaptation test, however, Rai = mean 

response to adapter on ith position; Rti = mean response to test stimulus on ith 
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position, with i having a value of 1 (position above fixation point) or 2 

(position below fixation point). 

The degree of adaptation for the VEPs was computed slightly differently: 

First, we averaged the VEPS across all “same” trials across all sites per 

monkey. Then, we measured the peak-to-peak amplitudes for two 

components by computing the amplitude difference between peak 1 and peak 

2 (component 1) and between peak 2 and peak 3 (component 2) for the 

adapter and between peak 4 and peak 5 (component 1) and between peak 5 

and peak 6 (component 2) for the test stimulus (peaks shown in Figure 3A 

and 3B). The adaptation indices for the VEP components were computed as 

follows:  

AI component i =  

(Adapter PPAcompi–test stimulus PPAcompi)/Adapter PPAcompix100, 

where PPAcompi = peak-to-peak amplitude component i (with value 1 or 2). 

To compare the degree of selectivity for stimuli presented as adapters with the 

degree of selectivity for these same stimuli when repeated, we computed per 

cell/site the depth of selectivity (DOS; Rainer and Miller 2000) for both the 

adapters and the test stimuli. This selectivity metric was defined as: 

1
max

−

−∑

n
R

Rn i

, 

where n = number of shapes (i.c. 6); Ri = mean response to the ith shape; and 

Rmax = max{Ri}. The DOS could vary between 0 (when the response was 

equal to all shapes) and 1 (when there was a response to only one shape). The 

DOS for the test stimuli was calculated on the responses in all “same” trials. 

The DOS for the adapters, however, was not computed on these “same” 
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conditions, to prevent that correlations between the DOS-indices for the test 

stimuli and the DOS-indices for the adapters were induced by common 

artifacts. Instead, as each stimulus was presented as an adapter in 6 different 

conditions (each time combined with another test stimulus), we randomly 

selected per stimulus one of the 5 other (non-same) conditions and used the 

responses in these trials to compute the DOS index for the adapters. For the 

computation of the DOS for a cell, absolute responses instead of net 

responses (i.e. without subtracting the mean firing rate in the baseline 

window) were used. 

To compare the tuning curves for the adapters and for the test stimuli in the 

“same” trials, we subdivided the cells/sites in three groups based on the 

responses to the different adapters. A first group of cells/sites showed 

monotonic tuning: these cells/sites showed maximum responses to one of the 

extremes of the shape set when presented as an adapter (shape A or F, Figure 

1). For the cells/sites with shape A as the most effective adapter, both adapter 

and test stimuli were ranked in ascending order (i.e., ABCDEF). If shape F 

was the most effective adapter, a descending ranking was used (i.e., 

FEDCBA), both for the adapter and test stimuli. A second group of cells/sites 

showed a maximum adapter response to shape B or E, whereas a third group 

of cells/sites had a maximum adapter response for shape C or D. For the 

cells/sites with shape B or C as most effective adapter, both adapters and test 

stimuli were ranked in ascending order (i.e., ABCDEF). If the maximum 

adapter response was found for shape E or D, a descending ranking was used 

(i.e., FEDCBA).  
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RESULTS 

CENTRAL ADAPTATION TEST 

Database 

We recorded single unit activity and local field potentials simultaneously 

from the same electrode from 80 sites (40 in each monkey). For each cell/site, 

each stimulus combination was, on average, presented 8.15 times (minimum 

= 3, maximum = 14). All 80 neurons were responsive to at least one stimulus 

of the selected shape set presented as an adapter. Of these 80 neurons, 71 cells 

showed shape selectivity within the selected shape set. After filtering out the 

outlier trials (see Methods), 3 sites were excluded from further analyses 

because of a lack of data on one or more conditions. Because no systematic 

differences were found between recordings in the lower bank of the STS and 

recordings in the lateral convexity, we pooled the results of the different 

recording positions.  

Example cell and site 

The single unit responses to all 36 possible stimulus combinations of a shape 

set are shown for one IT neuron in Figure 4A. This neuron responded to all 6 

shapes presented as an adapter, and had a preference for shape A (first row). 

This neuron also showed a clear response suppression with repetition of the 

same stimulus (“same” trials depicted by red boxes). Figure 4B shows the 

visually evoked potentials (VEPs) for all 36 possible stimulus combinations 

of a shape set for one site. These responses were simultaneously recorded 

with the same electrode as the single unit responses presented in Figure 4A. 

Inspection of the VEPs in the “same” conditions (depicted by the red boxes) 

showed a clear decrease in peak-to-peak amplitude, both for component 1 and 

2 (as denoted in Figure 3A and B) for this site.  
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Figure 4. Peri-stimulus 
time histograms (bin width 
20ms; panel A) and visually 
evoked potentials (panel B) 
recorded simultaneously 
from the same electrode for 
a single cell and site in IT 
cortex for all 36 possible 
stimulus combinations. The 
stimulus shown at the left of 
each row was presented as 
an adapter in all 6 
conditions of this row. The 
stimulus shown on top of 
each column was presented 
as a test stimulus in all 6 
conditions of this column. 
Each combination of a 
specific row and a specific 
column represents one of 
the 36 possible stimulus 
combinations. The dotted 
grey lines in panel A and 
the grey rectangles in panel 
B depict the on- and offset 
of both adapter and test 
stimulus. The red boxes 
depict the “same” 
conditions, in which the 
adapter and test stimulus are 
identical. 

 

Degree of adaptation 

The median neuronal response at population level (80 cells were included, 

irrespective of their shape selectivity) dropped substantially when the same 

stimulus was repeated: The median adaptation index for the spiking activity 

was 36.97% and was very similar across monkeys (monkey G: 39.81%; 

monkey M: 33.96%; Figure 5a). The median response to the adapter was 

significantly larger than the median response to the test stimulus in these 
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“same” trials (Wilcoxon test across data of both monkeys, p < .001 and in 

each of the two monkeys: p < .001).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Population distribution of percent 
adaptation across “same” trials. In panel A, 
the distribution of the percent adaptation 
for the spiking activity (N = 80), calculated 
on net responses, is presented. Panels B and 
C (N = 77) show the respective 
distributions of the percent adaptation for 
the power in the lower frequency bands 
(15-30Hz) and for the power in the gamma 
band (61-100Hz). Black bars represent 
cells/sites recorded in monkey G. Grey bars 
represent cells/sites recorded in monkey M. 
The black arrow indicates the median 
percent adaptation. Note that the scale of 
the X-axis differs in the A-panel compared 
to panels B and C. 
 

The peak-to-peak amplitude of both components of the VEPs measured at a 

population level decreased substantially with the repetition of a same stimulus 
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for monkey M (AI component 1 = 70.84%; AI component 2 = 43.77%). 

However, monkey G showed very different results: the peak-to-peak 

amplitude for the first component decreased only slightly (AI = 7.48%) when 

the same stimulus was repeated and, additionally, the peak-to-peak amplitude 

for the second component increased with stimulus repetition (AI = -18.90%). 

For the median power averaged across the lower frequencies (15 to 30Hz), 

the decrease with stimulus repetition at population level (N = 77) was very 

small across monkeys: The median adaptation index for the power in the 

lower frequency band was 5.19% (Figure 5b). Across monkeys, the median 

response to the adapter was not significantly different from the median 

response to the test stimulus in these “same” trials (Wilcoxon test, p > .50). 

However, both monkeys showed very different results: in monkey G, power 

at these low frequencies significantly increased with stimulus repetition 

(median AI = -15.47%; Wilcoxon test, p < .001), whereas the power 

significantly decreased with repetition in monkey M (median AI = 20.91%; 

Wilcoxon test, p < .001). 

In contrast to the power at lower frequencies, the median energy at population 

level averaged across the gamma band frequencies (61 to 100Hz) decreased 

substantially with the repetition of a stimulus (Figure 5c): The median 

adaptation index was 22.83% and, as was the case for the spiking activity, 

this result pattern was present in both monkeys (median AI = 29.69% and 

15.49% for monkey G and M, respectively). The median response to the 

adapter was significantly larger than the median response to the test stimulus 

in these “same” trials (Wilcoxon test across monkeys, p < .001 and in each of 

the two monkeys: p < .001). Note that the adaptation index for the spiking 

activity was computed on net responses, whereas the adaptation index for the 

power (lower frequencies and gamma) was computed on absolute responses 

(no baseline activity was subtracted). Using absolute responses to calculate 
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the adaptation index for the spiking activity resulted in a median adaptation 

index of 21.67% (median AI monkey G and M, respectively: 28.96% and 

18.39%), which was very similar to the one obtained for the gamma power. 

As no significant adaptation was found with stimulus repetition for the power 

at lower frequencies (15 to 30Hz) and as the results were inconsistent across 

monkeys for both the VEPs and the power at the lower frequencies, we 

focused on the effects of adaptation on the selectivity of the single units and 

of the power across the frequencies in the gamma band (61 to 100Hz) for the 

remainder of the paper. This is a reasonable thing to do, given the fact that the 

fMRI BOLD signal appears to be most closely tied to the LFP gamma band 

activity (Niessing et al. 2005; Mukamel et al. 2005; Viswanathan and 

Freeman 2007) and that stimulus selectivity in the visual cortex is mainly 

observed for the gamma band, in contrast to activity at lower frequencies 

(Gray and Singer 1989; Frien and Eckhorn 2000; Frien et al. 2000; Fries et al. 

2002; Siegel and Konig 2003; Kayser and Konig 2004; Henrie and Shapley 

2005; Liu and Newsome 2006).  

Effect of response strength to the adapter on adaptation 

According to a model linking fMR-A to neuronal tuning (Piazza et al. 2004), 

the reduction in a neurons firing rate is proportional to the strength of its 

initial response to a stimulus: the more a neuron fires, the greater the 

reduction of the subsequent response. To examine this, we quantified the 

relationship between the response strength to the adapter and the 

corresponding degree of adaptation in that same condition on a population 

level by performing a linear regression analysis. The analyses were restricted 

to the “same” trials. The response to a particular adapter was defined as the 

average response across all 6 conditions in which this stimulus served as an 

adapter. For the analyses of the spiking activity, we used absolute responses 
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instead of net responses and only “same” conditions in which the (shape-

selective) cell was responsive to the adapter (as tested with a Wilcoxon test, p 

< .05) were included. For the analyses of the gamma power, we included only 

those “same” conditions in which the adapter response was larger compared 

to the baseline activity, thus exceeding a ratio adapter response/baseline 

response of 1. A single neuron/site could contribute potentially 6 data points 

to the regression analysis, because in 6 conditions, the adapter and test 

stimulus were identical.  

For both the spiking activity and the gamma power (Figure 6A and 6B, 

respectively), the linear regression analysis revealed a weak but significant 

positive correlation (r = .18 and r = .13; p < .001 and p < .01, respectively) 

between the response strength to the adapter and the adaptation level (with 

regression equations y = .18x + 20.73 and y = 6.03x + 9.44 for spiking 

activity and gamma power, respectively). Very similar results were found 

when extreme values were rejected from these analyses, by excluding the 

percentiles 1 and 99 for both dependent and independent variable (with 

respective regression equations for spiking activity and gamma power: y = 

.14x + 22.51 [r = .14; p < .01] and y = 6.05x + 10.36 [r = .14; p < .01]), 

indicating that the results were not caused by a few outliers. These findings 

suggest that, at a population level, adaptation was indeed response strength 

dependent but only weakly: the adaptation level increased slightly with 

increasing response strength to the adapter. This is in line with the Piazza et 

al. (2004) model linking fMR-A to neuronal tuning and fits a view of 

adaptation as a passive process of neuronal fatigue which is based on a firing-

rate adaptation mechanism. This mechanism is similar to a gain mechanism in 

which the reduction of the neuronal response is proportional to its initial 

response.  
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Figure 6. Effect of response strength to 
adapter on adaptation level. For every 
cell/site, the percent adaptation in a 
“same” condition is plotted against the 
response strength to the adapter in that 
condition. A single neuron/site could 
contribute 6 data points to the plot. For 
the spiking activity (panel A), only 
“same” conditions in which the cells were 
responsive to the adapter are included. 
For the gamma power (panel B), only 
“same” conditions in which the adapter 
response was larger compared to the 
baseline activity are included. The 
regression lines computed on the whole 
data are depicted by the solid lines (with 
respective regression equations for 
spiking activity and gamma power: y = 
.18x + 20.73 and y = 6.03x + 9.44). The 
regression lines computed on the 1 to 
99% range of the data are depicted by the 
dotted lines (with respective regression 
equations for spiking activity and gamma 
power: y = .14x + 22.51 and y = 6.05x + 
10.36). 

 

Effect of repetition on neuronal selectivity 

One key prediction in which the fatigue model and the sharpening model of 

adaptation clearly differ is related to changes in stimulus selectivity with 

stimulus repetition: whereas the fatigue model predicts no change in 

selectivity with adaptation, the sharpening model predicts that adaptation 

causes a sharpening of the tuning curves, thus an increased selectivity after 

adaptation, as it assumes a proportionally greater adaptation for stimuli that 

elicit a weak neuronal response than for more effective stimuli.  
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To possibly distinguish these two adaptation models, we examined the effect 

of stimulus repetition on the selectivity of the spiking activity and of the 

power in the gamma band by comparing the tuning curves for the adapter and 

for the test stimuli in the “same” trials. The response to a particular adapter 

was defined as the average response across all non-same conditions, i.e. all 

conditions, except for the “same” condition, in which that particular shape 

served as an adapter. For the test stimuli, tuning curves were based on the 

average responses in the “same” conditions. Because the tuning curves for the 

adapters and for the test stimuli were based on different conditions, a possible 

similarity between these tuning curves could not be induced by common 

artifacts – which is important for LFPs. 

We subdivided the cells/sites in three groups based on the responses to the 

different adapters (see Methods). Inspection of Figure 7A showed a very clear 

correspondence for the spiking activity between the tuning curves for the 

adapters and the tuning curves for the test stimuli: For all three groups of 

cells, the most effective shape was the same whether it was presented as an 

adapter or as a test stimulus. Additionally, the modulation for the test stimuli 

was significant, as tested with a general linear model (GLM) repeated-

measures ANOVA with stimulus rank as a within-neuron factor 

(F(5,155)=14.22, p < .001; F(5,80)=13.91, p < .001; F(5,105)=7.02, p < .001, 

for group 1 to 3 respectively). Additional post-hoc analyses on the responses 

to these test stimuli (Fisher LSD) showed a significant preference for the 

most effective shape when presented as an adapter compared to the stimulus 

which differed the most from the former shape (i.e. stimulus with rank 6), as 

was (of course) also the case for the adapter stimuli (p < .001 for adapters and 

test stimuli in all three panels).  
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Figure 7. Effect of repetition on neuronal selectivity. The left column (A and C) shows the results for 
the spiking activity. The right column (B and D) shows the results for the gamma power. Panels A and 
B show the tuning curves for the adapter (solid line) and the test stimuli (dotted line) averaged across 
the “same” trials (with SEs), subdivided in three rows. In the top row, the results of cells/sites showing 
monotonic tuning are presented. Shapes were ranked in ascending (A to F, as labeled in Fig. 1) or 
descending order (F to A), depending on which shape was the most effective stimulus (A or F, 
respectively) when presented as an adapter. In the second and third row, the results of cells/sites 
showing a maximum adapter response for shapes B or E or for shapes C or D, respectively, are 
presented. Shapes were ranked in ascending order (A to F) when the most effective adapter was shape 
B or C. When shape E or D where the most effective adapters, shapes were ranked in a descending 
order (F to A). In panels C and D, the DOS indices for the test stimuli are plotted against the DOS 
indices for the adapters, both for the data obtained in Monkey G (black dots) and in Monkey M (grey 
dots). Each dot represents the values of one single neuron/site. 
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The correspondence between the tuning curves for the adapters and the tuning 

curves for the test stimuli was also clear for the gamma band, especially in the 

groups 1 and 3 of Figure 7B. For these panels, the most effective shape was 

the same whether it was presented as an adapter or as a test stimulus and the 

modulation for the test stimuli was significant, as tested with a general linear 

model (GLM) repeated-measures ANOVA with stimulus rank as a within-site 

factor (F(5,170)=3;23, p < .01; F(5,95)=3.14, p < .05, for group 1 and 3 

respectively). Additional post-hoc analyses on the responses to these test 

stimuli (Fisher LSD) showed a significant preference for the most effective 

shape when presented as an adapter compared to the stimulus which differed 

the most from the former shape (i.e. stimulus with rank 6) in both groups 1 

and 3, as was the case for the adapter stimuli (p < .001 for adapters; p < .01 

for test stimuli). This correspondence for the gamma band between the tuning 

curves for the adapters and the tuning curves for the test stimuli was less 

evident in the second group of neurons. Although the most effective shape 

was the same whether it was presented as an adapter or as a test stimulus, the 

modulation for the ranked test stimuli was not significant (F < 1). Additional 

post-hoc analyses on the responses to the test stimuli (Fisher LSD) did also 

not reveal a significant preference for the most effective shape when 

presented as an adapter compared to the stimulus which differed the most 

from the former shape (i.e. stimulus with rank 6), although this was (of 

course) the case for the adapters (p < .001 for adapters; p = .23 for test 

stimuli). Thus, although the results for the LFPs are somewhat less 

straightforward compared to the spiking activity results, we can conclude that, 

in general, the single cell and LFP results show a similar tuning for the test 

stimulus and for the adapter.  

To directly compare the degree of selectivity for the adapters and for the test 

stimuli, we computed per cell/site the Depth of Selectivity (DOS, see 

Methods) for both the adapters and the test stimuli. The DOS index for the 
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test stimuli was calculated on the responses in all “same” trials. The DOS 

index for the adapters was computed for a non-same condition which was 

randomly selected per stimulus (see Methods). We found a significant 

positive correlation between the depth of selectivity for the adapter and test 

stimuli, both for the spiking activity (r = .80, p < .001; Figure 7C) and for the 

gamma power (r = .43, p < .001; Figure 7D). The average differences 

between the DOS for the adapters and the test stimuli were very small and not 

significant, both for the single unit activity (median difference = -.007, p = 

.94, as tested with a Wilcoxon test) and for the gamma band activity (median 

difference = .014, p = .24, as tested with a Wilcoxon test). These results 

indicate that the degree of selectivity and, more generally, the tuning for the 

first and second stimulus was similar when these two stimuli had the same 

shape. This suggests that the key assumptions of the sharpening model do not 

hold for the present paradigm in IT cortex. However, these results are in line 

with the predictions of the fatigue model: the tuning width did not change 

with stimulus repetition.  

Effect of adapter value on response reduction to the test stimulus 

The results for the “same” trials presented above, that adaptation was 

dependent on the strength of the response to the adapter and that stimulus 

repetition did not change the tuning width but scaled down the responses, fit 

the view that adaptation is merely a passive process of neural fatigue caused 

by some kind of gain mechanism. In this view, the test stimulus is considered 

to be a neutral probe, so most adaptation is expected to be observed in 

sequences where the test stimuli followed the most effective adapter, 

compared to less effective adapters, irrespective of the relationship between 

the adapter and test stimulus value. This prediction was examined in the next 

analysis. For this analysis, we defined the response to a particular adapter as 

the average response across all conditions (including the “same”-condition) in 
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which that particular shape served as an adapter. These analyses were 

restricted to those cells and sites which demonstrated an adaptation level of at 

least 10%. Only shape selective cells were included. 

Per cell/site, the responses to only two stimuli were used: the most effective 

shape when presented as an adapter (further denoted as stimulus 1) and the 

shape which parametrically differed from that shape the most (i.e. shape F 

when the most effective shape was stimulus A, B or C; shape A when the 

most effective shape was stimulus D, E or F). This latter shape (further 

denoted as stimulus 2) was not necessarily the least effective shape when 

presented as an adapter. A prerequisite for each cell to be included was to 

respond significantly to both stimulus 1 and 2 when presented as an adapter 

(as tested with a Wilcoxon test). We compared the responses to these two 

shapes presented as test stimuli under two conditions (following stimulus 1 or 

following stimulus 2) using a general linear model (GLM) repeated-measures 

ANOVA with stimulus (effective vs less effective stimulus; i.e. stimulus 1 vs 

stimulus 2) and presentation number (adapter vs test stimulus) as within-

neuron factors. If adaptation was only dependent on the strength of the 

response to the adapter, we would not expect the interaction between stimulus 

and presentation number to be significant and most adaptation should be 

found for test stimulus 1 and 2 following the most effective adapter, stimulus 

1. However, for both the spiking activity and the gamma power, the 

interaction between stimulus and presentation number was significant 

(F(1,62)=30.71, p < .001 and F(1,63)=14.94, p < .001, respectively). 

Zooming in on this interaction for the spiking activity (Figure 8A) showed 

indeed significantly more adaptation when test stimulus 1 was repeated 

compared to when this test stimulus followed the less effective adapter, 

stimulus 2 (p < .001 as tested with a Fisher LSD test), as was expected from a 

response strength driven mechanism. For test stimulus 2, however, the 

opposite was true: most adaptation was not found when this test stimulus 
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followed the most effective adapter, stimulus 1. Instead, significantly more 

adaptation was found when this test stimulus followed the identical, but less 

effective adapter, stimulus 2 (p < .05 as tested with a Fisher LSD test). For 

the gamma power (Figure 8B), also significantly more adaptation was found 

when the less effective shape, stimulus 2, was repeated compared to when this 

shape followed the most effective adapter, stimulus 1 (p < .001 as tested with 

a Fisher LSD test). Inspection of Figure 8B shows that also most adaptation 

was found when the most effective stimulus was repeated compared to when 

this stimulus 1 followed the less effective adapter, stimulus 2. However, this 

difference in adaptation failed to reach significance (p = .48 as tested with a 

Fisher LSD test). 

 

 

 

 

 

 
Figure 8. Effect of adapter value on 
response reduction to the test stimulus. The 
response strength to two shapes presented 
as test stimuli when following one or the 
other shape presented as an adapter is 
plotted. Shape 1 was defined as the most 
effective shape when presented as an 
adapter, whereas shape 2 was defined as the 
shape which (parametrically) differed from 
shape 1 the most. Only cells (N = 63, panel 
A) and sites (N = 64, panel B) showing an 
adaptation level of at least 10% were 
included. The solid black line depicts the 
responses to shapes 1 and 2 when presented 
as an adapter. The responses to the test 
stimuli following shape 1 or shape 2 
presented as an adapter are depicted by the 
grey and black dotted line, respectively 
(with SEs). 
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These results suggest that the degree of adaptation was not only response 

strength dependent, but was also depending on the relationship between 

adapter and test stimulus: the adaptation was larger for identical than for 

different subsequent stimuli. The finding that more adaptation occurred when 

a suboptimal stimulus was repeated compared to when this stimulus followed 

the preferred stimulus contradicts the assumptions of a fatigue model based 

on a firing-rate adaptation mechanism which only assumes a change in gain, 

thus a maximal adaptation when a stimulus followed the most effective 

adapter.  

Effect of shape similarity between adapter and test stimulus on adaptation 

level 

If the degree of adaptation indeed depends on the relation between the values 

of the adapter and the test stimulus and most adaptation is observed when the 

same stimulus is repeated, one could expect that adaptation is reduced with 

decreasing shape similarity between adapter and test stimulus (Jiang et al. 

2006). To examine the effect of adaptation on the tuning of IT neurons as a 

function of the similarity between the adapter and the test shape, we 

computed for each of the 36 conditions the difference between the response to 

the test stimulus in that condition and the response to this particular stimulus 

when presented as an adapter. The latter response to a stimulus was obtained 

by averaging across all 6 conditions in which that particular stimulus served 

as an adapter. Next, we averaged across all conditions with a same parametric 

distance between the adapter and the test stimulus, resulting in six values per 

cell/site (i.e. a value for parametric distance 0 to 5). These analyses were 

restricted to those cells and sites which demonstrated an adaptation level of at 

least 10%. Only shape selective cells were included. 
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We examined the effect of similarity by performing a general linear model 

(GLM) repeated-measures ANOVA on the differences in response strength to 

the adapter and to the test stimulus with parametric distance (distance 0 to 5) 

between the test stimulus and the preceding adapter stimulus as a within-

neuron factor. For both the spiking activity and the gamma power, there was a 

significant effect of parametric distance on the response strength difference 

for the adapter and test stimulus (F(5,310)=15.69, p < .001; F(5,315) = 13.00, 

p < .001, respectively): the more dissimilar the adapter and test shape became, 

the less response strength difference was found, thus the less adaptation was 

observed (Figure 9A and 9B).  

 

 

 

 

 

 

Figure 9. Effect of adapter-test stimulus 
similarity on adaptation level. Panels A and B 
show the mean difference in response strength 
to the adapter and the test stimulus (larger 
differences indicate more adaptation) as a 
function of the parametric distance between the 
adapter and the test stimulus for the spiking 
activity and the gamma power, respectively 
(with SEs). Only cells (N = 63) and sites (N = 
64) showing an adaptation level of at least 10% 
were included. 
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Spike contamination in gamma power 

The results described above showed very similar findings across spiking 

activity and gamma power. A possible trivial explanation for these highly 

similar results for spikes and gamma power is that spiking residuals were 

dominantly present in the gamma power, despite the low-pass filtering of the 

LFP signal. To examine this possibility, we compared the degree of 

adaptation and the DOS index for the spiking activity and for the LFP gamma 

power recorded at the same time with the same electrode. The correlation 

between the adaptation indices for the spiking activity and the gamma power 

was low and marginally significant (r = .21, p > .06). When these adaptation 

indices for the spiking activity were computed on the absolute response 

strength (thus without subtraction of the baseline), the correlation was higher 

and reached significance (r = .28, p < .05). Also the DOS-indices for the 

spiking activity and the gamma power, computed on the “same” trials, 

correlated significantly (r = .32, p < .01).  

We also compared the stimulus preferences for the spiking activity and the 

gamma power. To this end, for each cell showing significant shape 

selectivity, we ranked the 6 stimuli according to their response strength for 

the spiking activity. The same ranking was then used to order the stimuli for 

the corresponding gamma power obtained from the same electrode. A general 

linear model (GLM) repeated measures ANOVA with rank as a within-site 

factor showed that the mean responses for the gamma power decreased with 

stimulus rank (F(5,340)=17.04, p < .001), indicating that the overall ranking 

was preserved for the gamma power. A similar overall preservation of shape 

rank was obtained for the spiking activity if the shapes were ranked based on 

the gamma power responses using a GLM repeated measures ANOVA with 

rank as a within-neuron factor (F(5,340)=15.80, p < .001).  



Chapter 4 
 

166 

Additionally, we computed the noise correlations between the spiking activity 

and the gamma power obtained simultaneously with the same electrode in the 

following way. First, we computed per cell/site the average and the standard 

deviation of the response strength for each stimulus across conditions in 

which this stimulus served as an adapter. Then, for each trial, a z-score was 

computed by standardizing the response strength to the stimulus in that trial 

(by subtracting the average response strength for that stimulus and dividing it 

by the respective standard deviation). The correlation between the z-values of 

all trials of all cells and the corresponding z-values obtained for the gamma 

power was 0.00 (p = .98) across monkeys (monkey G: r = 0.00, p = .92; 

monkey M: r = 0.00, p = .87). This suggests that there is no direct relation 

between the gamma power and the activity of the single unit obtained 

simultaneously with the same electrode.  

PERIPHERAL ADAPTATION TEST 

The adaptation effects observed in IT cortex, as presented above, did not 

necessarily originate in this area. Possibly, adaptation was generated in earlier 

visual areas and simply passed on to IT. Tracing the origin of the adaptation 

effects is important for the interpretation of fMR-A results, as in these 

studies, the observation of stimulus-selective adaptation effects in a particular 

area is seen as evidence for stimulus selective processing in that area. 

To determine whether the adaptation effects observed in IT originate in 

earlier visual areas with small receptive field sizes, we presented the adapter 

and test stimuli at different, non-overlapping locations within the receptive 

field of an IT neuron. Under these circumstances, no adaptation is expected to 

be found if adaptation was indeed inherited from earlier cortical areas because 

the adapter and test stimulus do no longer fall inside the same receptive field 

at these earlier levels.  
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Database 

For the peripheral adaptation test, we recorded single unit activity and local 

field potentials from 40 sites (20 in each monkey). For each cell/site, there 

was an average of 9.61 presentations per condition (minimum = 4, maximum 

= 13). All cells were responsive to at least one stimulus presented at one of 

the two positions.  

Degree of adaptation for peripheral stimulus presentations 

The median neuronal response at population level (N = 40 cells) dropped 

substantially when the same stimulus was repeated at the same position: The 

median adaptation index for the spiking activity was 37.20% and was very 

similar across monkeys (monkey G: 35.69%; monkey M: 38.08%) and to the 

one obtained in the central adaptation test (see above). The median response 

to the adapter was significantly larger than the median response to the test 

stimulus in these “same” trials (Wilcoxon test across monkeys, p < .001).  

The median power at population level (N = 40 sites) averaged across the 

gamma band frequencies (61 to 100Hz) decreased substantially with the 

repetition of a stimulus at the same position: The median adaptation index 

was 20.26% and, as was the case for the spiking activity, this result pattern 

appeared for both monkeys (median AD: 12.42% and 25.84% for monkey G 

and M, respectively) and again was similar to the median value obtained in 

the central adaptation test. The median response to the adapter was 

significantly larger than the median response to the test stimulus in these 

“same” trials (Wilcoxon test across monkeys, p < .001). Thus adaptation 

occurred when stimuli are presented peripherally for both spiking activity and 

gamma power.  



Chapter 4 
 

168 

Effect of adapter and test stimulus position on response reduction to the test 

stimulus 

To examine the effect of adapter and test stimulus position on adaptation, we 

restricted our analyses to those conditions in which the most effective 

stimulus served both as the adapter and test stimulus. The best position was 

defined as the position at which the most effective shape elicited the best 

response when presented as the adapter. The other position was labeled worst 

position. Note that all cells were also responsive to the most effective shape 

when presented at this worst position.  

We computed the degree of adaptation to the most effective shape, averaged 

across best and worst positions, in conditions where the adapter and test 

stimulus were presented at different positions. In these conditions, no 

adaptation was expected to be found if the adaptation observed in IT was 

merely a reflection of the adaptation originating in other areas with smaller 

receptive fields. However, the median adaptation index was 21.24% for the 

spiking activity (monkey G: 20.20%; monkey M: 23.27%) and 18.17% for 

the gamma power (monkey G: 11.48%; monkey M: 21.73%). This response 

reduction with stimulus repetition was significant (Wilcoxon test across 

monkeys, p < .001 for both spiking activity and gamma power), but smaller 

(about 42.9% for the spiking activity and about 10.3% for the gamma power) 

compared to the conditions in which adapter and test stimulus were presented 

at the same position (see Degree of adaptation). The robustness of the 

response reduction with stimulus repetition across position variations between 

adapter and test stimulus suggests that this adaptation was, at least partially, 

generated in a high level visual area in the visual processing stream rather 

than merely being inherited from earlier stages with smaller receptive fields. 
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As adaptation was also present when adapter and test stimulus were shown at 

different positions, we could compare the responses to the most effective 

shape at the two positions presented as test stimuli as a function of the 

position of the adapter (best or worst position). To this end, we used a general 

linear model (GLM) repeated-measures ANOVA with position of adapter 

(best or worst position) and position of test stimulus (best or worst position) 

as within-neuron factors. For this analysis, only those cells and sites which 

demonstrated an adaptation level (computed on the “same” trials only) of at 

least 10% were included. If adaptation was not dependent on the relation 

between the positions of the adapter and the test stimulus, but did depend on 

the strength of the response to the adapter, most adaptation was expected to 

be found when the test stimulus followed the adapter presented at the best 

position, irrespective of the position of the test stimulus. This is the same 

logic as employed above when considering the effect of the relationship 

between adapter and test shape on the adaptation. For both the spiking 

activity and the gamma power, the interaction between adapter position and 

test stimulus position was significant (F(1,31)=27.61, p < .001 and 

F(1,31)=7.21, p < .05, respectively). Zooming in on this interaction for the 

spiking activity (Figure 10A) showed indeed significantly more adaptation 

when the test stimulus was repeated on the best position compared to when 

this test stimulus on the best position followed the adapter on the worst 

position (p < .001 as tested with a Fisher LSD test), as was expected. For the 

test stimulus presented at the worst position, however, the opposite was true: 

most adaptation was not found when this test stimulus followed the adapter 

on the best position. In fact, significantly more adaptation was found when 

this test stimulus followed the adapter on the worst position (p < .01 as tested 

with a Fisher LSD test).  
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Figure 10. Effect of adapter and test 
stimulus position on response reduction to 
the test stimulus. The response strength to 
the most effective shape presented at two 
different positions when following this 
shape presented as an adapter at the same 
or at a different position is plotted. The best 
position was defined as the position on 
which this shape elicited the best response 
when presented as the adapter. The other 
position was labeled worst position. Only 
cells (N = 32, panel A) and sites (N = 32, 
panel B) showing an adaptation level of at 
least 10% were included. The solid black 
line depicts the responses to the most 
effective shape when presented as an 
adapter at the two different positions. The 
responses to the test stimulus following this 
shape presented at the best or at the worst 
position are depicted by the grey and black 
dotted line, respectively (with SEs). 

 

For the gamma power (Figure 10B), also significantly more adaptation was 

found when the test stimulus on the best position followed the adapter on the 

best position compared to when this test stimulus followed the adapter on the 

worst position (p < .05 as tested with a Fisher LSD test). Inspection of Figure 

10B shows that also most adaptation was found when the test stimulus on the 

worst position followed the adapter on this same, worst position, compared to 

when this test stimulus followed the adapter on the best position. However, 

this difference in adaptation level failed to reach significance (p = .24 as 

tested with a Fisher LSD test). 
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These results suggest that adaptation depended on the relation between the 

positions of the adapter and test stimulus. This is very similar to the way 

adaptation depended on the relation between the shape features of the first 

and second stimulus in the central adaptation test, as presented above. 

For some specific combinations of selected stimuli, there could be a retinal 

overlap between the adapter presented at one position and the test stimulus 

presented at the other position, as in these cases, both the extreme lower part 

of the shape presented above the fixation point and the extreme upper part of 

the shape presented below the fixation point overlapped with the fixation 

window. To examine if the observed adaptation was merely a result of this 

potential overlap, we excluded all trials in which the monkeys’ eye 

movements entered this overlapping part of the fixation window and the 

stimuli presented in that trial. The analyses performed on the remaining trials 

showed very similar results as those reported above, suggesting that the 

observed adaptation was not merely caused by this possible retinal overlap 

between the adapter and test stimulus.  

TIMING OF ADAPTATION EFFECTS 

To examine the temporal window in which adaptation occurred in the central 

adaptation test, we compared the response course for the adapter stimuli and 

the test stimuli averaged across the “same” trials, for both the spiking activity 

and the power in the gamma band. For the peripheral adaptation test, we 

compared the responses to the adapter stimuli and the responses to the test 

stimuli, both for the conditions in which adapter and test stimuli were 

presented at the same position and for conditions in which the position of 

these two stimuli differed. For the spiking activity as well as for the power in 

the gamma band, we averaged the responses across the best and worst 

position for these analyses. 
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For each cell, we divided the spiking responses in bins of 10ms, starting 5ms 

before stimulus onset (thus ranging from -5 to 5ms relative to stimulus onset) 

up to 480ms after stimulus onset (thus ranging from 475 to 485ms relative to 

stimulus onset). For the central adaptation test, we then compared the 

population response to the adapter to the population response to the test 

stimulus per 10 ms bin, using a Wilcoxon matched pairs test (p < .05). For the 

peripheral adaptation test, we compared the population responses to the 

adapter with the responses to the test stimulus presented at the same or at the 

other position per bin, again using a Wilcoxon matched pairs test (p < .05). 

Only when three out of four successive bins reached this significance level, 

these bins were assumed to reflect significant differences. 

For the gamma power, we compared the adapter and test stimulus responses 

per millisecond, starting at stimulus onset and lasting 480ms, also using a 

Wilcoxon matched pairs test (p < .05). Only when this significance level was 

reached for 20 out of 25 successive milliseconds, the response differences in 

these millisecond bins were assumed to reflect significant differences. 

For the spiking activity in the central adaptation test, the response strength to 

the test stimulus started to differ significantly from the response strength to 

the adapter at 70ms after stimulus onset (i.e. the bin ranging from 65 to 

75ms)(Figure 11A). This difference remained significant up till 340ms (i.e. 

the 335-345ms bin). For the gamma power, the test stimulus showed a 

significant reduced response compared to the adapter stimulus from 67ms to 

388ms relative to stimulus onset (Figure 11B). Thus, the onset of adaptation 

was fast and similar for spiking and gamma activity.  
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Figure 11. Timing of adaptation at a population level for the spiking activity (A and C) and the 
gamma power (B and D). A and B: Central adaptation test. Adapter and test stimulus responses, 
averaged across all “same” trials, are depicted by the solid and dotted line, respectively. C and D: 
Peripheral adaptation test. Adapter responses, averaged across the best and worst position, are 
depicted by the black dotted line. The mean response strength to the test stimulus, averaged across 
best and worst position, is depicted by the black solid line for conditions where adapter and test 
stimulus were presented at the same position and by the grey solid line when both stimuli were 
presented at a different position. In all panels, response strength is plotted relative to the onset of the 
first and second stimulus (against the center of the 10ms bins or per ms, for the spiking activity and 
gamma power, respectively). The black dots on the bottom in panel A and B indicate the bins/ms for 
which the response strength to the adapter and to the test stimulus differed significantly (p < .05). The 
dots on the bottom in panel C and D indicate the bins/ms for which the response strength to the 
adapter and the response strength to the test stimulus presented at the same (in black) or at the other 
position (in grey) as the adapter differed significantly (p < .05). 

 

For the spiking activity in the peripheral adaptation test, the response strength 

to the test stimulus started to differ significantly from the response strength to 

the adapter at 70ms relative to stimulus onset (i.e. the bin ranging from 65 to 

75ms) when adapter and test stimulus were presented at the same position 

(Figure 11C). When these stimuli were presented at a different position, their 

response strengths started to differ significantly at 60ms relative to stimulus 
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onset. This difference remained significant up till 310ms in the “same 

position” condition (i.e. the 305-315ms bin) and up till 280ms (i.e. the 275-

285ms bin) in the “different position” condition, although for some bins, the 

difference did not reach significance, probably due to a lack of statistical 

power. For the gamma power, the test stimulus showed a significant reduced 

response compared to the adapter stimulus from 69ms to 373ms relative to 

stimulus onset when adapter and test stimulus were presented at the same 

position (Figure 11D). When the position was different for the adapter and 

test stimulus, their response strengths started to differ from 77ms relative to 

stimulus onset up till 350ms (with some rare exceptions where the difference 

did not reach significant) to continue to be significant from 362 to 382ms.  

These results for both the central and peripheral adaptation test suggest that, 

although adaptation seems to last longer for the gamma power compared to 

the single unit activity, the repetition suppression starts at about the same time 

relative to stimulus onset for the single units and the gamma power. This can 

be appreciated by comparing Figure 11A and 11B for the central adaptation 

test and Figure 11C and 11D for the peripheral adaptation test. Additionally, 

despite some small differences, the timing of the adaptation in the condition 

in which the adapter and test stimulus were presented at the same position 

was very similar compared to that in the condition in which these stimuli 

were presented at a different position in the peripheral adaptation test. This 

was observed both for the spiking activity and the gamma power results. This 

can be appreciated by comparing Figure 11C and 11D.  

Important to note is that one should be careful in comparing the adaptation 

latencies for the spiking activity and gamma power. Not only were the 

analyses performed with a different bin width (i.e. 10ms bins for the spiking 

activity vs 1ms for the gamma power), also the time-frequency wavelet 

decomposition for the spectral analysis of the LFPs resulted in a smoothing of 
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the signal (temporal resolution of 36.5ms for 61Hz to 22.3ms for 100Hz), by 

which the temporal resolution was reduced.  

 

DISCUSSION 

The present study was set up to examine the effects of adaptation on the 

neuronal stimulus selectivity in IT cortex. We observed, both for the spiking 

activity and the LFP gamma power, that stimulus repetition did not change 

the tuning width, but scaled down the neuronal responses. The degree of 

adaptation, however, was not only response strength dependent, but depended 

also on the relationship between adapter and test stimulus: the adaptation was 

larger for identical than for different subsequent stimuli. Consequently, we 

found that the degree of adaptation decreased with increasing dissimilarity 

between the adapter and test stimulus. The effect of relationship between 

adapter and test stimulus held for both shape feature and position changes: a 

larger adaptation was found when adapter and test stimulus had identical 

shape features and were presented at a different position than when these 

stimuli differed in shape or position.  

ROBUSTNESS OF DEGREE OF ADAPTATION 

In the present study, we found an approximate response decrease for the 

spiking activity of 37% when stimuli were repeated foveally. This is 

strikingly similar to the 40% adaptation reported by Sawamura et al. (2006) 

for the same 300ms inter stimulus interval, although they used very different 

stimuli and another paradigm. Besides this seemingly large robustness of 

degree of adaptation across stimuli and paradigm, also very similar results 

(~37% adaptation) were found in the present study when stimuli were 

presented peripherally 4° above or below the fixation target.  
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A somewhat lower degree of adaptation (~ 23%) was found for the power in 

the gamma band when the stimuli were repeated foveally. However, the 

degree of adaptation for the spiking activity was computed on net responses, 

thus by subtracting the baseline activity from the response to the stimulus, 

whereas no such baseline subtraction was done for the LFP power. When the 

degree of adaptation for the spiking activity was computed on absolute 

responses (thus without baseline subtraction), a median adaptation index of 

about 22% was found which was very similar to the adaptation obtained for 

the gamma power. Additionally, a very similar degree of adaptation (~ 20%) 

was found for the gamma band when stimuli were repeatedly presented at a 

position above or below the fixation target. For these conditions, a somewhat 

higher, but quite similar degree of adaptation (~ 26%) was found for the 

spiking activity when this activity was computed on absolute responses (thus 

without baseline subtraction). 

These results suggest not only a large robustness of the degree of adaptation 

for the gamma power across different positions when adapter and test 

stimulus are presented at the same position. These findings also suggest a 

large robustness across different measures of neuronal activity (i.e. single unit 

or LFP gamma power).  

Robust adaptation, however, was not found for the power in the lower 

frequencies (15 to 30Hz). The results for both monkeys were very different: 

whereas the power significantly decreased with repetition (i.e. adaptation) in 

one monkey, the opposite pattern was observed in the other monkey: the 

power at these lower frequencies significantly increased with stimulus 

repetition. As yet, the cause of this discrepancy across monkeys remains 

unclear.  
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ADAPTATION FOR SINGLE UNITS VS GAMMA POWER 

As described above, the degree of adaptation was very similar for the single 

units and the power in the gamma band when the indices were computed in 

the same way (i.e. without baseline subtraction). The similarity between the 

spiking activity and the gamma power was striking: all effects of adaptation 

that we observed for the spiking activity (e.g. dependence on adapter-test 

stimulus relation, preservation of tuning width, effect of similarity, …) were 

also found for the gamma power. Although, at present, it cannot be excluded 

that these similar results could be partly due to spike contamination in the 

gamma power, this similarity could be induced by the fact that gamma power 

and spikes might be generated within the same local network. This was 

recently proposed by Belitski et al. (2008), who showed a strong positive 

signal correlation between the LFPs in the 60 to 100Hz gamma band and the 

spikes in anesthetized monkeys. Based on their findings, Belitski et al. (2008) 

suggested that local stimulus-related input possibly affects both the spiking 

activity and the engagement of a recurrent loop between local cortical 

populations in the region around the tip of the electrode. This latter is 

reflected in the LFP power in the 60 – 100Hz gamma band. 

If we zoom in on the differences between the spiking activity and the gamma 

power, a higher stimulus selectivity of adaptation for the spiking activity 

compared to the gamma power can be deduced from the effect of similarity 

on the adaptation level. Indeed, inspection of Figure 9 shows a gradual 

decrease in adaptation with larger differences between adapter and test 

stimulus for the gamma power. For the spiking activity, however, the 

decrease in adaptation is particularly evident for the first two steps (i.e. from 

same stimuli to stimuli with a parametric distance of 1 and 2), whereas the 

adaptation remains stable when the adapter and test stimulus differ by 3 or 

more parametric steps. This higher stimulus selectivity for spikes compared to 
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LFPs agrees with other findings that show that the LFP power reflects 

population activity from within a broad area around the electrode tip where 

different cells do not necessarily show the same preferences and selectivities 

(Mitzdorf 1987; Juergens et al. 1999; Kreiman et al. 2006; Goense and 

Logothetis 2008).  

ORIGIN OF ADAPTATION EFFECTS 

Although the observed adaptation effects in IT cortex could very well have 

been generated in this area itself, other possible origins need to be considered. 

A first alternative is that adaptation in IT cortex is merely a reflection from 

adaptation in early visual areas with small receptive fields (e.g. V1, V2), 

which was transferred to IT. If this were the case, no adaptation is expected to 

occur when the adapter and the test stimulus are presented at different 

positions, because both stimuli would fall within different receptive fields at 

these early areas (Hubel and Wiesel 1968). The results in our peripheral 

adaptation test, however, showed significant adaptation when the adapter and 

test stimulus were presented at different positions, which supports the thought 

of adaptation in IT cortex being highly invariant over the relative locations of 

the adapter and test stimulus, as reported by Lueschow et al. (1994). These 

findings clearly suggest that the observed adaptation did not originate in early 

visual areas with small receptive fields.  

A second possibility is that the adaptation is caused by feedback from other 

visual areas high in the visual processing hierarchy. This seems unlikely in 

the present study, as adaptation was already present close to response onset (~ 

70 ms). Although feedback could occur very fast, this early adaptation onset 

makes feedback a very unlikely origin of the observed adaptation in IT cortex 

(Xiang and Brown 1998). This is also supported by the results in the 

peripheral adaptation test, as the timing of the adaptation for stimuli presented 
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at the same or at different positions did not markedly differ and also started 

close to response onset. 

A third possibility is that the adaptation in the anterior region of IT cortex 

where we recorded, is merely a reflection of adaptation originated in more 

posterior areas (e.g. posterior IT) with large enough receptive fields to show 

adaptation when adapter and test stimuli are presented at the different 

positions tested in the present study. Some indications for this can be found 

by comparing spiking activity and LFPs: one can assume that spiking activity 

will show adaptation before LFPs in the brain region where the adaptation 

occurs. Adaptation in LFPs will be seen prior to or simultaneously with 

adaptation in the spiking activity in a brain area which receives this 

processing information from other regions (Nielsen et al. 2006; Monosov et 

al. 2008). In the present study, no clear difference in adaptation latency was 

found for the spiking activity and the LFPs, suggesting that adaptation is 

present at the input of the recorded neurons. This input can be from units in 

the same region – explaining the similar timing of LFP and single unit 

adaptation responses and possibly also the high similarity between adaptation 

effects found for spiking activity and for gamma power – or from another 

more posterior region. However, as noted before, one should be very careful 

in comparing latencies from single units and LFP power because of their 

difference in temporal resolution.  

NEED FOR AN ALTERNATIVE MODEL OF ADAPTATION 

As this present study was set up to study the changes in stimulus selectivity 

following adaptation, the hypotheses of two adaptation models could be 

examined: the sharpening model and the fatigue model. Our findings clearly 

suggested that the sharpening model does not hold in the present paradigm in 

IT cortex, as one of the key assumptions of this model was falsified: 
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adaptation did not cause a sharpening of the tuning curves, but scaled down 

the neuronal responses. A similar lack of evidence for the validity of this 

sharpening model in IT cortex was recently reported by McMahon and Olson 

(2007) for a priming paradigm. 

In contrast, some of the key assumptions of the fatigue model based on a 

firing-rate adaptation mechanism were corroborated: adaptation scaled down 

the neuronal responses without changing the tuning width and the adaptation 

level increased slightly with increasing response strength to the adapter. 

However, this model could not account for the interaction of test and adapter 

stimulus in determining the degree of adaptation: as the test stimulus is 

considered to be a neutral probe, this model can not account for the fact that 

adaptation depended on the relationship between the adapter and the test 

stimulus value. A trivial explanation for the effect of the relationship between 

adapter and test stimulus value is that it is caused by a sustained firing to the 

most effective adapter which might be larger compared to the sustained firing 

to the less effective adapter. This explanation however, does not hold since 

the response to the test stimulus at stimulus onset is very similar across 

conditions, which can be seen in Figure 9. 

Because neither the sharpening model nor the fatigue model based on a firing-

rate adaptation mechanism could account for all of our findings, an alternative 

model needed to be put forward. Based on their finding that the stimulus 

selectivity of the neuronal adaptation was greater compared to that of the 

neuronal response, Sawamura et al. (2006) suggested that adaptation is 

occurring at or before the level of the synapses onto the neuron. The case in 

which adaptation occurs at the synapse level corresponds to the synaptic 

depression mechanism put forward as an alternative to the firing-rate 

adaptation mechanism by Grill-Spector et al. (2006). Sawamura et al. (2006) 

suggested that, in this case, the degree of cross-adaptation for two different 
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stimuli would be a function of the number of synapses common to the 

processing of the two stimuli onto the tested neuron. The case in which 

adaptation occurs before the level of the synapses onto the neuron 

corresponds to what Kohn (2007) suggested as an alternative for the synaptic 

mechanism, as Kohn (2007) questioned the necessity of a synaptic 

mechanism to explain several adaptation effects, given the fact that neurons 

are embedded in recurrent networks. Sawamura et al. (2006) suggested that, 

in this case, the degree of cross-adaptation for two different stimuli would 

correlate with the number of neurons providing input to the tested neuron that 

can be adapted and respond to common features for these two stimuli. Both 

modes, synaptic adaptation and input adaptation, agree with the similar 

timing of the adaptation found for the LFPs and spiking activity.  

An alternative model, based on either assumption put forward by Sawamura 

et al. (2006), i.e. that adaptation is occurring at or before the level of the 

synapses onto the neuron, will essentially be a fatigue model. As a 

consequence, this model will be able to account for the same effects as the 

fatigue model based on a firing-rate adaptation mechanism: tuning width does 

not change with repetition and slightly more adaptation will be found with 

increasing response strength to the adapter. However, this alternative model 

will also be able to account for the effect of the relationship between the 

adapter and the test stimulus value, in contrast with a firing-rate adaptation 

mechanism. 

Although this alternative model could account for the observed adaptation 

effects in IT cortex in the current paradigm at this particular time scale, 

additional research is necessary for a possible validation of this model in 

other areas and at other time scales. The observation that the adapter and the 

test stimulus interact in recordings in V1 and MT (e.g. Dragoi et al. 2000; 
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Kohn and Movshon 2004; Krekelberg et al. 2005), suggests that this model 

might be legitimate in other areas.  

EFFECT OF ATTENTION ON ADAPTATION 

Because in the present study, as in the Sawamura et al. (2006) study, the 

monkeys were passively fixating during the recording sessions, no direct 

evidence is available that a difference in attention towards the test stimulus 

under different conditions (“same” vs “non-same”) did not contribute to the 

adaptation effects observed in this present study. However, the analysis of the 

monkeys’ eye movements could provide some indirect evidence. One could 

assume that more attention will be drawn to the test stimulus in sequences 

where this test stimulus differs from the adapter compared to when the 

adapter is repeated. However, the fixations of the monkeys were very similar 

across “same” and “non-same” trials, suggesting a similar degree of attention 

towards the test stimulus in these different conditions. Additional indirect 

evidence against the causal relationship between attentional differences and 

adaptation effects comes from fMR-A studies: Sawamura et al. (2005) found 

equal fMRI activation differences in monkey IT cortex and human LOC 

between “same” sequences and “non-same” sequences under passive fixation 

conditions and under attention-equated conditions. Similar findings under 

passive fixation conditions and in conditions in which the stimulus had to be 

attended were also reported in human LOC by Kourtzi and Kanwisher (2001). 

Although this indirect evidence suggests that attentional differences did not 

cause or contribute to the adaptation effects reported in this study, directly 

controlling the level of attention towards both the adapter and test stimulus 

could add to our understanding of the observed adaptation effects. Not only 

could the level of attention paid to the first and second stimulus within a 

sequence be different, possibly in function of the degree of similarity between 



Adaptation effects 
 

183 

the two stimuli, controlling the attentional level towards both stimuli by 

drawing attention towards both stimuli possibly changes the level of 

processing of these stimuli, which, in turn, could have an impact on the 

effects of adaptation.  

IMPLICATIONS FOR FMR-A STUDIES 

Because of the stimulus timing parameters used in the present study, the 

results are most relevant for rapid, event-related fMR-A paradigms in which 

two stimuli are successively presented with only a short lag in between (e.g. 

Kourtzi and Kanwisher 2000; Piazza et al. 2004). Using this paradigm, 

adaptation effects were found both for the spiking activity and the LFP power 

in the gamma band (61 – 100Hz) in IT cortex. As the LFP signal in the 

gamma band is assumed to reflect neural activity that originated locally (Gray 

and Singer 1989; Frien and Eckhorn 2000; Frien et al. 2000; Fries et al. 2002; 

Siegel and Konig 2003; Kayser and Konig 2004; Henrie and Shapley 2005; 

Liu and Newsome 2006), the assumption in fMR-A studies that stimulus-

selective adaptation effects in a particular area indicate stimulus selective 

processing in that area seems reasonable. However, one cannot forcefully 

exclude that this adaptation is merely a reflection of adaptation generated in 

other areas which was transferred there. Our findings support another 

common assumption in fMR-A studies: when the similarity between the 

adapter and test stimulus was reduced, less adaptation was found.  

However, the reported interactions between the adapter and the test stimulus 

suggest that adaptation occurs at or before the level of the synapses onto the 

neuron, instead of being caused by postsynaptic mechanisms. Both input and 

synaptic adaptation prevent a straightforward deduction of the neuronal 

selectivity based solely on fMR-A data. Further single-cell studies, preferably 
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in combination with LFPs and fMR-A, are needed to verify the interpretation 

of fMR-A results in different brain regions in humans and macaques.  
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CHAPTER 5 
GENERAL CONCLUSIONS AND PERSPECTIVES 

The aim of the experimental research presented in this doctoral dissertation 

was threefold. First, it was investigated, using a Rapid Serial Visual 

Presentation paradigm, whether IT neurons adapt their tuning to the 

properties of the stimulus distribution. Secondly, we tried to gain further 

knowledge with respect to the effects of categorization learning on the 

stimulus selectivity of IT neurons. Thirdly, we examined the effects of 

adaptation on the neuronal tuning in IT cortex. In this final chapter, the main 

empirical findings of this dissertation are summarized. The chapter is 

concluded with some directions for future experimental investigations of 

experience-related effects.  

 

RESEARCH OVERVIEW 

In the first part of this dissertation (Chapter 2), we examined the effects of 

changes in the stimulus distribution statistics on the stimulus selectivity of IT 

neurons. To this end, we used the Rapid Serial Visual Presentation (RSVP) 

paradigm. This paradigm, however, has rarely been used in single-cell studies 

in higher visual cortex, particularly with parametric shape sets in which the 

stimulus differences are much smaller compared to previous RSVP studies in 

IT cortex (Keysers et al. 2001; Földiák et al. 2004; Kiani et al. 2005). As a 

consequence, its validity to study shape selectivity of IT neurons under these 

conditions needed to be ascertained. A comparison of the RSVP technique 

using 100-ms presentations with that using a longer duration showed that 

shape selectivity can be determined using RSVP. Our results obtained with 

the RSVP paradigm also supported and extended findings of previous studies
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 using a standard testing paradigm (e.g. Op de Beeck et al. 2001; Kayaert et 

al. 2005): we found that the large majority of neurons preferred extremes of 

the shape configuration and we could show that, at a population level, IT 

neurons were able to represent the shape similarities at an ordinal level 

without faithfully representing the physical shape similarities. 

Once the validity of the RSVP technique to study shape selectivity of IT 

neurons within parametric shape sets was ascertained, we used this technique 

to study how IT neurons adapt their selectivity to changes in the stimulus 

distribution statistics. When a shape set with a narrower stimulus range 

(which was inextricably bound up with less variance, less (pixel-based) 

dissimilarity and higher density) was presented, the neural shape 

discrimination improved, suggesting that the tuning of IT neurons adapts to 

the stimulus distribution statistics. 

Given the positive results of the RSVP paradigm validity to study shape 

selectivity of IT neurons (Chapter 2), we used this technique to collect 

neuronal stimulus selectivities which could serve as a baseline in a study on 

the effects of categorization learning on the neural representation of complex 

shapes in IT cortex (Chapter 3). By comparing the IT responses in two 

monkeys before and after categorization learning, while counterbalancing the 

relevant categorization dimension across animals, we could resolve the 

inadequacies in the design of previous studies (Sigala and Logothetis 2002; 

Freedman et al. 2003) and disentangle the learned category-related effects 

from the pre-learned stimulus selectivity effects. Only when disentangling 

these two effects, we found that categorization learning resulted in an 

expansion of the representation of the trained dimension (i.e. a dimension-

specific increase in selectivity) and that the responses of the neurons were 

somewhat more similar for exemplars that belong to the same, compared to 

different, categories. These results thus suggest that learning to categorize 



General conclusions 
 

193 

shapes can only induce minor category-related changes in the shape 

selectivity of IT neurons in these adult monkeys. This led us to propose a 

two-stage model of categorization in adults in which: a) IT neurons are tuned 

to exemplars in a category-biased way; and b) learned categories become 

explicitly represented in extra-visual cortical regions that read-out IT. 

In a last part (Chapter 4), we examined the effects of adaptation on the 

stimulus selectivity of IT neurons, both with single-cell spiking activity and 

local field potentials. Using a passive fixation task and a fully-crossed design, 

we found robust adaptation for the spiking activity and the LFP power in the 

gamma band (61-100Hz). For lower frequencies, this kind of robust 

adaptation was not found, as clear discrepancies were observed between 

monkeys. Our results, both for the spiking activity and the LFP gamma 

power, also showed that the repetition of a stimulus did not change the tuning 

width but scaled down the neuronal responses. At a population level, the 

degree of adaptation increased slightly with increasing response strength to 

the adapter. But the degree of adaptation was not only response strength 

dependent: the degree of adaptation was also affected by the relationship 

between the adapter and test stimulus value, since more adaptation was found 

when the adapter and test stimulus were identical compared to when these 

stimuli differed. A similar result pattern was found when stimuli were no 

longer presented centrally but above or below the fixation target: more 

adaptation was found when the adapter and test stimulus were presented at the 

same position, compared to a different position. Finally, we found a 

decreasing level of adaptation with increasing dissimilarity between the 

adapter and test stimulus. Because neither the sharpening model (Desimone 

1996; Wiggs and Martin 1998) nor the fatigue model (Grill-Spector and 

Malach 2001) based on a firing-rate adaptation mechanism could account for 

all of our findings, we needed to fall back on an alternative model, suggested 
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by Sawamura et al. (2006), in which adaptation is assumed to occur at or 

before the level of the synapses onto the neuron. 

 
 

PERSPECTIVES 

As reported in Chapter 2, IT neurons can dynamically adjust their selectivity 

based on the input statistics. Although this was a small effect, it would be 

interesting to examine if a similar effect could also be observed at a 

behavioral level. One procedure that might serve to test whether changes in 

stimulus distribution statistics alter the behavioral responses of monkeys or 

humans is based on the attentional blink phenomenon. An attentional blink is 

the impaired ability to identify a second target, T2, in an RSVP stream 

following the successful identification of a first target, T1 (Raymond et al. 

1992). Hommel and Akyürek (2005) suggested that the discriminability 

between T1 and T2 played an important role in this phenomenon. As we 

observed a change in shape discriminability when the stimulus distribution 

statistics were altered in Chapter 2, this change could possibly be revealed 

behaviorally using the attentional blink paradigm. 

As discussed in Chapter 2, we could not exclude that similarity-based 

adaptation on a longer time scale caused the observed differences between the 

two ranges because the shapes in the narrow-range condition were packed at a 

higher density and were more similar than in the wide-range condition. 

Additional studies in which the variance is altered without changing the 

density and similarity within a shape set (by presenting a different amount of 

stimuli in the two sets) or in which other stimulus statistics are manipulated 

could add to our understanding of the origin of this dynamical adjustment of 

the neuronal selectivity in IT cortex. 
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Following our proposal of a two-stage model of categorization in which 

learned categories become only explicitly represented in extra-visual cortical 

regions that read-out IT, it would surely be interesting to determine the 

neuronal shape tuning in these areas after categorization learning. Two areas 

seem likely to be involved, based on several functional imaging studies in 

humans (Li et al. 2007; Vogels et al. 2002; for review see Keri (2003) and 

Ashby and Maddox (2005)): the prefrontal cortex (PFC) and the striatum. 

Freedman et al. (2001) found that the responses of prefrontal neurons were 

more similar for exemplars that belong to the same, compared to different, 

categories, as was the case for IT neurons. However, this effect was much 

stronger in PFC. Because Freedman et al. (2001) used a working memory 

task and PFC is known to be involved in working memory (Miller et al. 

1996), it remains unclear whether this effect in PFC is limited to this task or 

will also be present when the monkey is engaged in different tasks. As the 

striatum can integrate the outputs of multiple IT neurons (Cheng et al. 1997), 

also striatal neurons could represent learned categories. Single cell recordings 

in both the prefrontal cortex and the striatum, using different behavioral tasks, 

could add to our understanding of the categorization process in adults. 

As discussed in Chapter 4, indirect evidence suggested that the reported 

adaptation effects were not merely caused by attentional differences towards 

the adapter and test stimulus. However, it would certainly be useful to 

examine the effect of attention on adaptation in a direct way. Controlling the 

attentional load for both stimuli could be achieved by equally drawing 

attention towards both stimuli. One possibility to obtain this is by extending 

the adaptation test as described in Chapter 4 by randomly introducing 

sequences in which the luminance of the adapter or the test stimulus changes. 

To receive a reward in these “dimming” sequences, the monkey has to make a 

saccade as soon as he detects the luminance change. Because the dimming 

occurs randomly but counterbalanced across adapter and test stimulus and 
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these dimming sequences are randomly intermixed with regular fixation 

sequences, one can assume that the attention the monkey pays to both adapter 

and test stimulus will be largely equal, regardless of the sequence condition 

(dimming or fixation). In this way, the effect of attention on adaptation can be 

directly assessed. Recordings using this dimming task have already been 

initiated. 

Because of the stimulus timing parameters used in our study, the adaptation 

results presented in Chapter 4 are most relevant for rapid, event-related fMR-

A paradigms in which two stimuli are successively presented with only a 

short lag in between. Several fMR-A studies in different areas (e.g. V1 or 

MT), however, used long-duration adaptation (e.g. Van Wezel and Britten 

2002; Kohn and Movshon 2004; Fang et al. 2005; Larsson et al. 2006) in 

which the adapters were presented for a much longer time. Recently, Fang et 

al. (2007) compared short-duration adaptation, in which the adapter was 

presented for 300ms, with long-duration adaptation, in which the adapter was 

shown for 25s. Based on the discrepant results between the two conditions in 

this human fMR-A study, Fang et al. (2007) suggested that the short-duration 

and long-duration adaptation mechanisms might be qualitatively different. 

Recordings in IT cortex using longer presentations durations would thus be 

very interesting to reveal whether and to what extent the observed adaptation 

effects using short-term presentations of the adapter can be generalized to 

long-duration adaptation.  
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