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Notation

In this section we give brief explanation of the abbreviations and notations used

in this thesis.

AIC Akaike’s Information Criterion

BIC Bayesian Information Criterion

EB Empirical Bayes

GFR Glomerular Filtration Rate

HIV Human Immune Virus

MAR Missing At Random

NMAR Not Missing At Random

yo
i the observed part of the longitudinal response vector of the ith subject

ym
i the missing part of the longitudinal response vector of the ith subject

> matrix transpose

diag(·) diagonal matrix

tr(·) the trace of a matrix

det(·) the determinant of a matrix

‖ · ‖ the Euclidean norm

Pr(·) probability

p(·) probability density function

O(n) f : < → < is O(n) if and only if ∃n0, ∃M > 0 such that |f(n)| ≤ Mn, for n > n0

P−→ convergence in probability

∈ a ∈ A denotes that a belongs to the set A

xi





CHAPTER

1 General Introduction

1.1 Joint Modelling for Longitudinal & Survival Data

In medical studies often two types of outcomes are considered, namely a set of

longitudinal response measurements and the time to an event of interest. These

two outcomes are usually separately analyzed; however, in three settings a joint

modelling approach is required. First, in a survival analysis context, in order to

measure the effect of a time-dependent covariate measured with error or in order

to exploit longitudinal markers as surrogates for survival. Second, in longitudi-

nal studies in order to adjust derived inferences for possibly outcome-dependent

dropout. Finally, in investigating the association structure between the longitu-

dinal and event processes. Joint models for survival and longitudinal data have

recently become quite popular in HIV and cancer vaccines studies. In particular,

in HIV studies, interest lies in the relation between longitudinal measurements of

a biomarker such as the CD4 lymphocyte count or the estimated viral load, and

the time to seroconversion or death. The number and timing of these longitudinal

measurements usually vary between patients, resulting in highly unbalanced data

1
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sets, in which dropout is quite common. In cancer vaccine (immunotherapy) trials

the time-to-event endpoint of interest is often the disease progression or time to

death. Vaccinations are given to patients to raise patient’s antibody levels against

tumor cells. Therefore a successful vaccine activates the patient’s immune system

against future tumor growth by increasing the antibodies’ production and strength.

Longitudinal measurements of concentration of antibodies help clinicians to moni-

tor the progress of the immunity level, and thus these measurements are expected

to be highly predictive for the time-to-event endpoint.

When interest is in the survival outcome, traditional approaches, including

the partial likelihood for the Cox proportional hazards model, encounter several

difficulties (Tsiatis, DeGruttola, and Wulfsohn, 1995; Wulfsohn and Tsiatis, 1997)

with longitudinal time-dependent covariates. If the entire history of the time-

dependent covariate is available, then partial likelihood could be readily employed

and there would be no complication in modelling the survival times. However,

the longitudinal measurements are typically intermittently collected at some set

of times and are not available at all time points, and especially not at the event

time. Moreover, the observed values may not be the “true” values since usually

the longitudinal responses contain measurement error. A final complication is that

the longitudinal measurements are, in fact, the output of a stochastic process that

is generated by the individual, and is directly related to the failure mechanism. In

particular, in this case we know that the individual has not yet experienced the

event, provided that we were able to collect his measurement. Such time-dependent

covariates are termed internal covariates (Kalbfleisch and Prentice, 2002, Sect.

6.3.2) and must be specially treated in a survival analysis setting, since in this case

the hazard function is not directly related to the survival function (Kalbfleisch and

Prentice, 2002, Sect. 6.3). In order to account for these special features of the

longitudinal time-dependent covariate, a model for the joint distribution of the

longitudinal and survival outcomes is required.
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When interest is in the longitudinal outcome, the occurrence of events induces

incompleteness since no longitudinal measurements are available at and after the

event time. This type of incompleteness is known in the missing data literature as

dropout or attrition. When the dropout is nonignorable, i.e., when it corresponds

to a Not Missing At Random (NMAR) missing data mechanism as defined in Little

and Rubin (2002, Sect. 1.3), then it is required that the longitudinal and dropout

processes are jointly modelled in order to obtain valid inferences. One of the

modelling frameworks for handing nonignorable dropout is the shared parameter

model (Wu and Carroll, 1988; Wu and Bailey, 1989; Follmann and Wu, 1995),

which postulates a time-to-dropout submodel for the missingness process and a

mixed effects submodel for the longitudinal responses. The specification of shared

parameter models allows the probability of dropout at time k to depend on values

of the outcome at both past and future time points, through a set of random

effects. This kind of models have two appealing features. First, for some medical

studies, they provide a conceptually simpler framework for handing nonignorable

dropout than other commonly used models, such as the selection and pattern

mixture models (for a thorough description of the selection and pattern mixture

models see Molenberghs and Kenward, 2007). That is, in some applications it is

reasonable to assume that subjects which show steep increases in their longitudinal

profiles may be more (or less) likely to dropout. Second, such models can easily

handle the case of intermittent or nonmonotone missingness (Tsonaka, Verbeke,

and Lesaffre, 2008; Tsonaka et al., 2007), which is a frequent type of missing data

especially in longitudinal studies with few planned measurements.

When interest is in the dependence structure between the two processes, com-

mon measures of association (e.g., nonparametric measures based on ranks) cannot

be readily applied. This is due to the multivariate nature and incompleteness in

the longitudinal outcome, and censoring in the event outcome. In such situations

joint likelihood models that assume underlying latent variable constructs can be
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used to investigate the association structure between the two processes (Hender-

son, Diggle, and Dobson, 2000). In particular, conditionally on these latent va-

riables the two processes are regarded as independent (conditional independence

assumption). This formulation facilitates the investigation of dependence, since

association is measured at the low-dimensional latent variables space.

1.2 Motivating Case Study

Chronic kidney disease, also known as chronic renal disease, is a progressive loss

of renal function over a period of months or years through five stages. Each stage

is a progression through an abnormally low and progressively worse glomerular

filtration rate. Patients with chronic kidney disease experience complications such

as high blood pressure, anemia, weak bones, poor nutritional health and nerve da-

mage. Furthermore, when kidney disease progresses, this may eventually lead to

renal failure, which requires dialysis or a kidney transplantation to maintain life.

Many studies have been conducted to investigate which factors play a role in the

progression of chronic kidney diseases. The motivating example that is used throu-

ghout this thesis concerns a study on patients that underwent, between 1/21/1983

and 8/16/2000, a primary renal transplantation with a graft from a deceased or

living donor in the University Hospital Gasthuisberg of the Catholic University

of Leuven (Belgium). The clinical interest lies in the long term performance of

the new graft, and especially in graft survival for at least a period of ten years.

During the follow-up period, patients were periodically tested for the condition

and performance of their graft. Here we consider three markers that are known

to be related to graft functioning and graft survival. These are the Glomerular

Filtration Rate (GFR), the proteinuria, and the blood haematocrit level. More

information regarding these markers is given in the following.

Creatinine is a waste product of creatine, an important substance of muscles
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and meat. Creatinine is almost entirely cleared from the blood by the kidney by

filtration through the glomerular filter. The serum creatinine level is therefore

used as an indicator of the Glomerular Filtration Rate. However, the creatinine

generation rate is heavily influenced by dietary protein intake, muscle mass and

muscle activity, and thus methods to calculate the GFR from the serum creatinine

level that correct for this variation are used. In this study, the Cockcroft-Gault

formula (Cockcroft and Gault, 1976) is applied to transform the creatinine level

into a (calculated) GFR. The Cockcroft-Gault formula is an inverse function of the

creatinine level, adjusted for gender, body weight and age; these three covariates

are used as surrogates of dietary protein intake, muscle mass, and muscle activity.

Proteins are large organic compounds made of amino acids, which are essential

parts of the human body and participate in every process within cells. Most

proteins in the blood are too big to pass through the kidneys’ filters into the urine

unless the kidneys are damaged. Thus, the condition in which the urine contains

an abnormal amount of protein is called proteinuria, and is an indication of renal

graft malfunctioning. In the current study, the presence of more than 1 gr of

protein in a 24 hours urine collection has been recorded as a positive finding of

proteinuria.

The haematocrit is defined as the percentage of the volume of blood that is

occupied by red blood cells. Red blood cells are crucial for the transportation of

oxygen and a decrease of their number results in anemia. One of the functions

of the kidneys is to produce a sufficient amount of the hormone erythropoietin to

ensure that the blood haematocrit level remains within normal limits. However,

damaged kidneys produce smaller amounts of erythropoietin, resulting thereby

in low haematocrit levels. Therefore, the blood haematocrit level has been also

considered as an indicator for the functioning of a renal graft in the present study.

From preliminary descriptive analyses there is evidence that both the average

and the subject-specific longitudinal trajectories are of relevance for predicting a
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Figure 1.1: Smooth average longitudinal profiles for GFR, obtained using a Nadaraya-
Watson kernel regression estimate.

graft failure. Smooth versions of the average longitudinal profiles are depicted in

Figures 1.1, 1.2 and 1.3, and subject-specific profiles for eight randomly selected

patients from the sample at hand are illustrated in Figures 1.4, 1.5 and 1.6.

In particular, we observe that patients who experienced a graft failure, present

relatively different time evolutions than patients who did not exhibit the event.

Hence, the resulting patient-specific longitudinal profiles contain a wealth of infor-

mation for the clinician who wants to monitor the progression of the risk status of

a patient. In this thesis we are interested in investigating the association structure

between the time to graft failure and the longitudinal outcomes, and in determi-

ning whether the longitudinal measurements aid in the prediction of events. To

tackle these questions a joint modelling approach of the longitudinal markers and

the time to graft failure is required.
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Figure 1.2: Smooth average longitudinal profiles for Proteinuria, obtained using a
Nadaraya-Watson kernel regression estimate.
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Figure 1.4: GFR sample subject-specific longitudinal trajectories for eight randomly
selected patients. The top-row panels depict patients who experience graft failure and the
bottom-row panels censored patients. The superimposed lines represent fitted curves using
the loess smoother.
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Figure 1.5: Proteinuria sample subject-specific longitudinal trajectories for eight ran-
domly selected patients. The top-row panels depict patients who experience graft failure
and the bottom-row panels censored patients.
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Figure 1.6: Haematocrit sample subject-specific longitudinal trajectories for eight ran-
domly selected patients. The top-row panels depict patients who experience graft failure
and the bottom-row panels censored patients. The superimposed lines represent fitted
curves using the loess smoother.

1.3 Joint Modelling of Survival and Longitudinal Data in the

Literature

Shared parameter models offer an appealing framework for the joint modelling

of survival and longitudinal processes. In particular, they assume that a latent

process, expressed by a set of time-invariant random effects, induces the depen-

dence between the two explicitly observed processes. Excellent overviews of the

joint modelling literature are given by Hogan and Laird (1997) and more recently

by Tsiatis and Davidian (2004) and Yu et al. (2004). Here we review some of the

most important contributions.

Wu and Carroll (1988) first formulated a shared parameter model in order

to correct for informative censoring in the longitudinal process by including the

subject-specific slopes as a covariate in a probit model for the dropout (i.e., censo-
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ring) process. Follmann and Wu (1995) developed a conditional approximation to

the full shared parameter model, in order to avoid the requirement for numerical

integration. Their model is defined as the integral over the random effects, of the

product of two terms, namely, the conditional distribution of the longitudinal re-

sponses given the random effects, and the conditional distribution of the random

effects given the covariates. Shared parameter models for longitudinal binary data

with nonignorable dropout have been considered by Pulkstenis, Ten Have, and

Landis (1998) and Ten Have et al. (1998) in the case of dropout, whereas Faucett

and Thomas (1996) presented a model for intermittently observed time-dependent

binary responses.

Schluchter (1992), Pawitan and Self (1993) and DeGruttola and Tu (1995)

considered a joint model in which the time-to-event is modelled parametrically,

which facilitates straightforward likelihood inference. Tsiatis et al. (1995) proposed

a two-stage approach in which, based on an approximation to the hazard function

for the event times, the usual partial likelihood for the Cox model can be used.

In this approach the observed covariate history is estimated using empirical Bayes

methodology, which requires fitting as many mixed effects models as there are

event times in the data set. Dafni and Tsiatis (1998) investigated the performance

of this approach via simulation and found that this approximate method yields

estimators that reduce but do not completely eliminate the bias.

Wulfsohn and Tsiatis (1997) considered a full likelihood approach for a joint

model based on a linear mixed model for the longitudinal process and a proportio-

nal hazards model, with infinite-dimensional baseline hazard for the event process.

Wang and Taylor (2001), instead of shared random effects, posited a shared in-

tegrated Ornstein-Uhlenbeck process. Henderson et al. (2000) proposed a more

general joint model by postulating two correlated stationary Gaussian processes,

including both random effects and serial correlation, for the longitudinal measure-

ments and survival times, respectively. As noted by Wang and Taylor (2001) and
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Henderson et al. (2000), serial correlation processes allow the trend to vary with

time and induce a within-subject autocorrelation structure that may be thought

of as arising from evolving biological fluctuations in the process about a smooth

trend. Tsiatis and Davidian (2004, Sect. 2.2) provide an interesting contradiction

between the two approaches (i.e., random effects versus serial correlation).

Tsiatis and Davidian (2001) and Song, Davidian, and Tsiatis (2002) focused on

minimizing the impact that erroneous distributional assumptions for the random

effects could have in the derived inferences. The former proposed a conditional

score approach and developed a set of unbiased estimating equations, the latter

considered the model of Wulfsohn and Tsiatis (1997) but relaxed the assumption

of normality of the random effects to one requiring only that these random effects

have a distribution with a smooth density.

Finally, Tseng, Hsieh, and Wang (2005) have recently developed a joint model-

ling framework in which for the survival process an accelerated failure time model

is postulated, with the corresponding baseline hazard function expressed as a step

function.

1.4 Issues in Joint Modelling & Aims of this Thesis

In this thesis we deal with a number of issues in the joint modelling area. In par-

ticular, we investigate the effect of misspecifying the random effects distribution in

parameter estimators and standard errors, we propose an alternative parameteri-

zation for joint models using copulas for the random effects, we discuss sensitivity

analysis issues, we use a new type of Laplace approximation to handle multidi-

mensional random effects vectors in joint models, and we consider a flexible model

for the event outcome that results in a straightforward estimation of the standard

errors. More details regarding these contributions can be found in the following

sections.
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1.4.1 Random Effects Misspecification

The key assumption of the joint modelling framework is the existence of a set

of random effects that underlies both observed processes and induces dependence.

These random effects are usually assumed to be normally distributed, even though

this choice is not made on the grounds of computational simplicity. Some authors

have questioned the Gaussian assumption, in the sense that the resulting infere-

nces can be sensitive to assumptions not easily verifiable from the available data;

see for example the discussion in Scharfstein, Rotnitzky, and Robins (1999). To

this end, some approaches have been proposed that either relax the distributional

assumptions (Song et al., 2002) or make no parametric assumption at all (Tsia-

tis and Davidian, 2001) for the random effects distribution. However, the main

empirical result from these approaches is that the parameter estimates are rather

robust to random effects misspecification.

In Chapter 2 we formally investigate this robustness phenomenon. In par-

ticular, we will show that the score vector corresponding to the observed data

likelihood can be written as the expected value of the score vector conditional on

the random effects with respect to the posterior distribution of the random effects

given the observed data. Using arguments similar to asymptotic Bayesian theory

(Cox and Hinkley, 1974) we show that, as the number of repeated measurements

per individuals grows, the longitudinal measurement model is the dominating part

in the posterior distribution of the random effects. Thus, misspecification of the

random effects distribution does not affect consistency, as more information per

subject becomes available. However, the effect of misspecifying the random effects

distribution is more prominent in the estimation of standard errors. To account

for this a sandwich-type estimator is proposed.
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1.4.2 Investigation of the Association Structure

The typical formulation of joint models assumes that the fixed and random ef-

fects parts of the longitudinal mixed model are considered as the time-dependent

covariate in the survival. This implies that the longitudinal and event processes

share a common set of random effects. An implicit feature of this formulation is

that it assumes perfect linear correlation between the latent structures of the two

processes, since the same random effects are shared. This could be regarded as a

rather restrictive assumption that may not be desirable, especially in settings in

which the association structure between the measurement and event processes is

of interest.

In Chapters 2 and 3 we consider a more flexible parameterization that consi-

ders two separate sets of random effects for the two processes. This formulation

is in the spirit of the approach proposed by Henderson et al. (2000) who postu-

late a bivariate Gaussian latent process that drives the two observed outcomes.

In this case, the association between the explicitly observed processes is measured

through the association of the two random effects. Furthermore, in order to extend

the common normality assumption for the random effects, we postulate a joint di-

stribution for the two random effects components using copulas. Copulas (Nelsen,

1999) are multivariate cumulative distribution functions with uniform marginals,

and due to Sklar’s theorem (Nelsen, 1999) they provide a convenient approach to

construct joint distributions by linking univariate marginals to their full multiva-

riate distribution. The advantage of the copula formulation is that it allows for

separate modelling of the association structure and the marginals, facilitating thus

exploration of the dependence structure.
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1.4.3 Choice of Copula and Sensitivity Analysis

The copula formulation of the random effects joint distribution provides a valuable

alternative to the common normality assumption. However, a valid question in

this setting is which copula best describes the association structure between the

longitudinal and survival data. Unfortunately, the random effects are in fact latent

variables, and thus checking the appropriateness of the assumed random effects

model (i.e., both copula function and marginal distributions) can be challenging.

Alternatively, the performance of the assumed random effects model can be im-

plicitly investigated by checking the fit of the joint model to the observed data,

and information criteria, such as the AIC or BIC, can be used to select the best

fitting copula.

However, we would like to note that the use of measures, based on the obser-

ved data, for identifying the best fitting copula should be done with caution. The

reason for this lies in the close relationship between the joint modelling of survival

and longitudinal measurements and the missing data framework. In particular, as

we already mentioned in Section 1.1, joint models correspond to a NMAR missing

data mechanism (Little and Rubin, 2002). As it is known in the missing data

literature, in NMAR settings the observed data do not contain enough informa-

tion to distinguish between certain models, since a lot of information is implicitly

provided through modelling assumptions. This feature motivated us in Chapters

2 and 3 to performed a sensitivity analysis in order to investigate the effect of

the choice of the copula function in the size of the association between the two

processes.

1.4.4 High Dimensional Random Effects

A further issue in the joint modelling framework is the requirement for nume-

rical integration over the random effects. In particular, even though the use of
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random effects facilitates the use of flexible submodels for the involved processes,

calculation of the joint density of the longitudinal and event outcomes involves

intractable integrals. This feature makes the estimation of joint models rather

computationally demanding. Common numerical integration techniques such as

Gaussian quadrature and Monte Carlo have been successfully applied in the joint

modelling framework (Song et al., 2002; Henderson et al., 2000). However, in

such methods the computational burden increases exponentially with the dimen-

sionality of the integration, which renders the consideration of complex random

effects structures (e.g., modelling nonlinear subject-specific trajectories with spli-

nes or high-order polynomials) rather prohibitive. A practical alternative in such

settings is the Laplace method for integrals (De Bruijn, 1981). The main compu-

tational complexity of the Laplace approximation is the requirement of locating

the mode of the integrand with respect to the random effects. Furthermore, even

though the Laplace approximation is appealing in high dimensional settings, the

order of the error of this approximation is O(n−1
i ), with ni denoting the number

of repeated measurements for the ith subject. This implies that in order for the

Laplace method to work satisfactorily, many repeated measurements per subject

are required.

In Chapter 4 we have considered a new type of Laplace approximation for

the joint modelling of survival and longitudinal data that is of order O(n−2
i ).

The proposed approximation requires locating the same modes as in the O(n−1
i )

approximation and the computation of a correction term based on these modes.

This yields a better approximation to the integral, while keeping the computational

complexity at the same order as in the standard Laplace method. The main idea

is to apply a fully exponential Laplace approximation to the score vector of the

shared parameter model, which, as mentioned above, is expressed as the expected

value of the score vector conditional on the random effects, with respect to the

posterior distribution of the random effects given the observed data. The main
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strength of this approach is that it effectively copes with high-dimensional random

effects structures without increasing substantially the computational burden.

1.4.5 Estimation of Standard Errors

In Chapters 2 and 3 we have considered parametric survival models for the event

process. However, in the joint modelling context, an unspecified baseline hazard

function is typically assumed for the event process in order to protect derived in-

ferences against misspecification. In this case the estimation of standard errors

is based on the profile likelihood that is defined conditionally on the nonpara-

metric maximum likelihood estimate (NPMLE) for the baseline hazard. However,

recently Hsieh, Tseng, and Wang (2006) noted that the use of the profile likelihood

approach leads to underestimation of standard errors. The reason is that in joint

models the NPMLE for the baseline hazard cannot be obtained explicitly under

the random effect structure, and thus the profile likelihood remains a function

of the baseline hazard. Hsieh et al. (2006) have therefore recommended the use

of the Bootstrap method, which renders joint models even more computationally

demanding.

In order to avoid this problem, in Chapter 4 we propose a flexible but para-

metric model for the cumulative baseline hazard function by expanding it into

B-splines basis functions. Under this formulation, the computation of standard

errors derives from standard maximum likelihood theory. In particular, the model

is formulated for the logarithm of the cumulative hazard function for the ith sub-

ject, and is related to the time-varying Cox model with covariates affecting the log

cumulative hazard ratio instead of the log hazard ratio. Our motivation for postu-

lating a flexible model for the logarithm of the cumulative baseline hazard function

is that it is typically gently curved or nearly linear as a function of the logarithm

of time, and is usually very smooth. Furthermore, the B-splines based formulation

allows for a straightforward reparameterization of the spline coefficients in order
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to satisfy the constraint that the logarithm of the cumulative baseline hazard is a

nondecreasing function of time.

1.4.6 Software

Unfortunately, procedures or functions for fitting joint models for longitudinal

and survival data are not currently available on standard software. Thus, such

kind of models are not usually considered for ‘every-day’ analyses and more naive

methods (Tsiatis et al., 1995) are used instead. In order to fill this gap, the set

of R functions that have been used throughout this thesis are available via the

package JM. This package can fit a variety of joint models and contains extra

functions that produce useful output for such models; a brief description can be

found in Appendix A.
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CHAPTER

2 Shared Parameter Models under

Random Effects Misspecification

Abstract

A common objective in longitudinal studies is the investigation of the association

structure between a longitudinal response process and the time to an event of

interest. An attractive paradigm for the joint modelling of longitudinal and sur-

vival processes is the shared parameter framework where a set of random effects

is assumed to induce their interdependence. In this work, we propose an alter-

native parameterization for shared parameter models and investigate the effect of

misspecifying the random effects distribution in the parameter estimates and their

standard errors.

Keywords: Copula function; Dropout; Joint modelling; Sandwich variance esti-

mator.
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2.1 Introduction

In follow-up studies, it is common that each subject provides both a sequence of

longitudinal response measurements as well as the time to an event of interest.

In such studies, the main scientific interest may focus on three distinct aspects,

namely, the longitudinal process in which the event occurrence causes nonigno-

rable dropout, the survival process in which the longitudinal measurements are

considered as a time-dependent covariate measured with error and the association

structure between the two processes. Typical examples in this setting include hiv

studies, in which longitudinal measurements of cd4 cell counts or the estimated

viral load are predictive for the time to onset of clinical aids or death, as well as

kidney disease studies where longitudinal glomerular filtration rate measurements

are predictive for the time to kidney failure.

Shared parameter models (Wu and Carroll, 1988; Wulfsohn and Tsiatis, 1997;

Tsiatis and Davidian, 2004) offer an appealing framework for the joint modelling

of survival and longitudinal processes. In particular, in these models it is assumed

that a latent process, expressed by a set of time-invariant random effects, induces

the dependence between the two explicitly observed processes. These random ef-

fects are usually assumed to be normally distributed, even though this choice is not

made on the grounds of computational simplicity. Some authors have questioned

the Gaussian assumption, in the sense that the resulting inferences can be sensitive

to assumptions not easily verifiable from the available data; see for example the

discussion of Scharfstein et al. (1999). To this end, some approaches have been pro-

posed that either relax the distributional assumptions (Song et al., 2002) or make

no parametric assumption at all (Tsiatis and Davidian, 2001) about the random

effects distribution. However, the main empirical result from these approaches

is that the parameter estimates are rather robust to random effects misspecifica-

tion. Huang, Stefanski, and Davidian (2006) have explored similar behaviour in
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structural measurement error models.

In this paper, we formally investigate the effect of misspecifying the random

effects distribution in shared parameter models. In particular, we show that, as

the number of repeated longitudinal measurements per individual grows, the effect

of random effects misspecification vanishes for certain parameter estimators. Two

types of parameterization for the random effects component are considered, na-

mely a common set and different sets of random effects for the two processes. For

the second type, a copula representation of the random effects distribution is pro-

posed, allowing for different types of dependence structure between the underlying

processes, enabling thus sensitivity analysis regarding the association structure.

2.2 Shared Parameter Models Framework

2.2.1 Model Specification

Let T ∗i denote the true event time for the ith subject and consider a random sample

of n subjects (i = 1, . . . , n). Letting Ji denote the underlying potential censoring

for subject i, one observes Ti = min(T ∗i ,Ji) and δi = I(T ∗i ≤ Ji), where I(·) is

the indicator function. Moreover, let yi(tij) denote the longitudinal measurement

for subject i taken at time tij , j = 1, . . . , ni. Clearly, yi(tij) is observed whenever

tij ≤ Ti, and generally yi(Ti) is not available. Let Y>i = {yi(tij), j = 1, . . . , ni}
denote the vector of observed longitudinal responses for the ith subject. Finally, let

bi represent time-independent random effects that underly both the longitudinal

measurement and survival processes. Under this setting, the shared parameter

model is defined as follows:

p(Yi, Ti, δi; θ) =
∫

p(Yi | bi; θy) p(Ti, δi | bi; θt) p(bi; θb) dbi, (2.1)
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where θ> = (θ>y , θ>t , θ>b ) is the vector containing the parameters of each one of the

submodels, with p(·) denoting the appropriate probability density functions. Here

p(Ti, δi | bi; θt) = pT∗i (Ti | bi; θt)δiST∗i (Ti | bi; θt)1−δi ; that is, it equals either the

density for the true event times or the survival function for censored observations.

Moreover, we assume that, conditionally on bi, the longitudinal measurements Yi

are independent, that is

p(Yi | bi; θy) =
∏

j

p{yi(tij) | bi; θy}. (2.2)

An implicit assumption in factorization (2.1) is that both the censoring and the

visiting processes are noninformative, i.e., independent of bi, and can be ignored

in the modelling procedure. Although such an assumption might be questionable

in certain situations, we adhere to it here and revisit it in §2.6.

Shared parameter models are built under the so-called conditional independe-

nce assumption, where the survival and longitudinal processes are assumed inde-

pendent given the random effects bi, implying that all association is induced by

the random effects. It is customary to assume bi to follow a normal distribution,

even though this does not usually lead to a tractable form for the integral in (2.1),

and hence numerical integration remains a requirement to evaluate the associa-

ted likelihood. According to (2.1), distributional assumptions about the random

effects allegedly play an important role in the model’s factorization since the bi’s

link the two processes of interest. However, empirical results (Wang and Taylor,

2001; Song et al., 2002; Tsiatis and Davidian, 2004) show that misspecification

of the random effects distribution does not have a great impact on the parameter

estimates, except for extreme cases such as discrete distributions. We investigate

this phenomenon in more detail in §2.3.
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2.2.2 Two Parameterizations

The typical shared parameter models assume that the longitudinal and event

processes share a common set of random effects. In particular, the conditional

submodels for Yi and Ti have the form

Yi | bi ∼ N (ηyi, σ
2
yIni), log Ti | bi ∼ P with E(log Ti | bi) = ηti,

ηyi = Xyiβ + Zyibi, ηti = x>tiγ + (Zyibi)>α, (2.3)

where Ini
denotes the ni-dimensional identity matrix, P denotes a parametric

distribution, Xyi and Zyi are ni× qxy and ni× qz known fixed and random effects

design matrices, respectively, β is a vector of unknown fixed effects parameters, σ2
y

is the error variance, xti is a qxt× 1 vector of covariates for the event process with

an associated coefficient vector γ, and α denotes a vector of association parameters

linking the survival process with the random effects structure of the measurement

process. If α = 0, then the two processes are unrelated, implying that joint

modelling is not required under the posited model.

An implicit feature of parameterization (2.3) is that it assumes perfect linear

correlation between the latent structures of the two processes, since the same ran-

dom effects are shared. This could be regarded as a rather restrictive assumption

that may not be desirable, especially in settings in which the association struc-

ture between the measurement and event processes is of interest. Therefore, we

propose a more flexible parameterization that considers two separate sets of ran-

dom effects for the two processes, linking them using a copula function. Copulas

(Nelsen, 1999) are multivariate cumulative distribution functions with uniform

marginals, and they provide a natural approach to construct joint distributions

and explore dependence. The consideration of two separate random effects is in

the spirit of the approach proposed by Henderson et al. (2000) who postulate a

bivariate Gaussian latent process shared by the two processes. In particular, we
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assume that

ηyi = Xyiβ + Zyibyi, ηti = x>tiγ + bti, (2.4)

p(byi, bti) = c{Fy(byi), Ft(bti); α} p(byi) p(bti), (2.5)

where byi are random effects for the measurement process and bti is a frailty term

for the survival process. The frailty term is assumed to represent an unobserved

covariate explaining heterogeneity (Keiding, Andersen, and Klein, 1997). For the

joint density of {byi, bti} given in (2.5) we assume a copula representation, where

c(·) denotes the density of a copula function C(·), and Fy(·) and Ft(·) are the mar-

ginal cumulative distributions functions for byi and bti, respectively. In the case

of multivariate byi, we assume that the copula behind Fy(·) is directly compatible

with C(·) (Nelsen, 1999, pp. 85–6). It is important to note that, under (2.4), the

association parameter is a parameter of the random effects model and specifically

of the copula function, in contrast to (2.3), where α is a parameter of the event

process model. The main advantage of parameterization (2.4) is the flexibility in

considering different dependence structures between the two processes by using

different copula functions while keeping all other aspects of the model fixed. For

instance, under the usual normality assumption for bi, parameterization (2.3) is a

special case of (2.4) with C(·) being the Gaussian copula with a restricted corre-

lation matrix assuming corr(byi, bti) = ±1 depending on the sign of α under (2.3),

and Gaussian marginals Fy(·) and Ft(·). In this example, bti = αbyi; that is, α2 is

merely a rescaling factor for the variance of byi.

However, even though the latter parameterization offers increased flexibility for

the association structure between the two processes, we should note that shared pa-

rameter models, in general, imply a restrictive representation of the marginal joint

distribution of {Yi, Ti}. To see this, consider the following simple but instructive

example. Assume no censoring and moreover that all processes involved, namely
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{Yi | byi}, {log Ti | bti} and {byi, bti} follow normal distributions. Then the cova-

riance for the marginal distribution of {Yi, log Ti} is of the form V = Z̃DZ̃> + Σ,

where Z̃ = diag(Zy, 1), D is the covariance matrix for the joint distribution of

{byi, bti}, and Σ is the residual covariance matrix for the joint distribution of

{Yi, log Ti | byi, bti} = {Yi | byi}{log Ti | bti}. Clearly, V is of a specific form

assuming positive correlation and not a general variance-covariance matrix.

2.3 Random Effects Misspecification

2.3.1 Preamble

In this section, we investigate the effect of misspecifying the random effects di-

stribution in parameter estimators and standard errors under the shared parame-

ter models framework. Unless explicitly stated, we will denote by bi the set of

random effects under both parameterizations (2.3) and (2.4); in the latter case

b>i = (b>yi, bti). We assume that the true random effects probability density func-

tion is p(bi), whereas the fitted one is f(bi; θb), where both p(bi) and f(bi; θb) are

absolutely continuous. Moreover, we assume that there is no θb ∈ Θb such that

f(bi; θb) = p(bi), where Θb is the parameter space of θb. Finally, the conditional

models for the longitudinal measurement and event processes, p(Yi | bi; θy) and

p(Ti, δi | bi; θt), respectively, are assumed correctly specified.

2.3.2 Parameter Estimators

We will distinguish between two sets of parameters, namely θ>yt = (θ>y , θ>t ) and θb.

Theorem 1 For fixed sample size n and as the number ni of repeated measure-

ments per individual in the longitudinal process Yi increases, the maximum like-

lihood estimator θ̃yt under f(bi; θb) converges to the maximum likelihood estimator

θ̂yt under the correct model p(bi).
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The proof and the formal conditions under which Theorem 1 holds can be found

in Appendix A. The key to the argument is that, as ni grows, the longitudinal

measurement model p(Yi | bi; θy) becomes the dominating part in the posterior

distribution of the random effects p(bi | Yi, Ti, δi; θ), implying that the choice

between p(bi) or f(bi; θb) is of minimal importance. However, the above theorem

does not hold for θb, and in this case the effect of misspecification will be more

prominent. According to White (1982), the maximum likelihood estimator θ̃b

will converge in probability to the value θo
b that minimizes the Kullback-Leibler

distance D(p : f ; θb) =
∫∫

p(Y, T, δ) log{p(Y, T, δ)/f(Y, T, δ; θb)} dYdT .

Two remarks based on the above theorem are worth making. First, in many

clinical examples the main interest lies in the degree of the association between

the longitudinal measurements and the survival process. As noted in §2.2, in the

standard parameterization (2.3) that assumes perfect correlation, the association

parameter α is, in fact, a parameter of the survival model or a parameter of the

longitudinal model, if (2.3) were written as ηyi = Xyiβ+Zyib
∗
i , ηti = x>tiγ+bi, with

b∗i = αbi. Thus, under Theorem 1, α will be minimally affected by misspecification

of the random effects distribution, which explains the empirical results reported

by other authors (Wang and Taylor, 2001; Song et al., 2002; Tsiatis and Davidian,

2004). However, under parameterization (2.4), α is a parameter of the copula

function, which is a part of the random effects model. Thus, even for large ni,

we may observe some sensitivity in the estimation of α under different choices

for C(·). Secondly, a straightforward extension of Theorem 1 shows that θy will

be unbiasedly estimated, even if the event process model is misspecified. This

has a direct impact in the missing data context where shared parameter models

are also used to correct for nonignorable dropout (Follmann and Wu, 1995). In

particular, if the informative censoring mechanism producing the missing data in

the longitudinal process is described by a shared parameter model, then the effect

of misspecifying both the survival and random effects models will be minimal as
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the number of repeated longitudinal measurements per individual increases.

2.3.3 Standard Errors

As we argued in the previous section, misspecification does not affect consistency.

However, the effect of misspecifying the random effects distribution will be more

prominent in the estimation of standard errors of θ̃yt. This becomes more tran-

sparent if we examine the form, under model (2.1), of the negative of the inverse

Hessian matrix, which we would have used as a consistent estimator of the asym-

ptotic inverse Fisher Information matrix if misspecification had been ignored. In

particular, with the notation introduced in Appendix A and for k, k′ = y, t, b, we

let Hkk′ = n−1
∑

i ∂Lf
i (θ̃k)/∂θk′ denote the corresponding block of the Hessian

matrix H, where

∂Lf
i (θ̃k)

∂θk′
=

8
<
:

Ef [∂h(·; θ̃k)/∂θk] + Ef [h(·; θ̃k){h(·; θ̃k)− Lf
i (θ̃k)}>], k′ = k

Ef [h(·; θ̃k){h(·; θ̃k′)− Lf
i (θ̃k′)}>], k′ 6= k,

(2.6)

with Ef denoting the expectation with respect to the posterior distribution

f(bi | Yi, Ti, δi; θ). If we assume that H−1 exists, the asymptotic variance ma-

trix of θ̃yt under standard likelihood methods has the form vâr(θ̃yt) = −(Hyt −
Hyt,bH

−1
bb H>

yt,b)
−1, where H>

yt,b = {H>
yb,H

>
tb}. The second part in the parenthesis

is clearly affected by misspecification. To see this we focus on the Hyb block of

Hyt,b, with the results for Htb and Hbb following similarly. For Hyb, (2.6) can be

rewritten as

Hyb =
1
n

n∑

i=1

Ef








ni∑

j=1

∂

∂θy
log p(yi(tij)|bi; θ̃y)





{
∂

∂θb
log f(bi; θ̃b)

}>
−

{
Lf

i (θ̃y)
}{

Lf
i (θ̃b)

}>
.

If we let ni grow, then Ef → Ep; that is, in the corresponding expectations the

true posterior is used. However, note that both parts of Hyb still depend on the



30 Chapter 2

misspecified random effects model, since Lp
i (θb) =

∫ {∂ log f(bi; θb)/∂θb} p(bi |
Yi, Ti; θ) dbi, which will result in some bias in the standard error estimators.

By standard maximum likelihood theory under misspecification (White, 1982),

the asymptotic covariance matrix for θ̃ is var(θ̃) = K−1DK−1, where K =

E{−H(θ∗yt, θ
o
b )}, D = E{Lf (θ∗yt, θ

o
b )L

f (θ∗yt, θ
o
b )
>}, and the expectations are taken

with respect to the true distribution p(Y, T, δ; θ∗). Using the sandwich variance

estimator as a consistent estimator for this covariance matrix, we obtain

vãr(θ̃yt) = AXA + 2BZ>A + BWB>, (2.7)

where A = vâr(θ̃yt) = −(Hyt−Hyt,bH
−1
bb H>

yt,b)
−1, B = −H−1

yt Hyt,b(Hb−H>
yt,bH

−1
yt

Hyt,b)−1, X = n−1
∑

i Lf
i (θ̃yt)L

f
i (θ̃yt)>, Z = n−1

∑
i Lf

i (θ̃yt)L
f
i (θ̃b)> and W =

n−1
∑

i Lf
i (θ̃b) Lf

i (θ̃b)>. Note that, as n → ∞ and if the correct model p(bi) had

been used, then ‖vãr(θ̃yt) − vâr(θ̃yt)‖ → 0. Straightforward algebra then implies

that diag(AX+2BZ>+BWB>A
−1)−1 quantifies the extra variance for θ̃yt owing

to misspecification.

2.4 A Simulation Study

2.4.1 Study Set-up

A small simulation study was performed to corroborate empirically the arguments

unfolded in §2.3. Since the case of one random effect has been extensively stu-

died in the literature, for example by Song et al. (2002), here we investigate the

effect of misspecifying the random effects distribution in parameter estimates and

standard errors for case in (2.5) of two random effects. The study considers a

two-group comparison with n = 200. In particular, for the linear mixed effects

model in (2.3), we assume measurement error variance σ2
y = 0·52, and a linear

predictor given by ηyi = (β0 + byi) + β1Ti + β2tij + β3t
2
ij + β4Titij + β5Tit

2
ij ,
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where byi denotes a random-intercepts term, Ti is the binary treatment indica-

tor and (β0, . . . , β5)> = (1, 0, 1·5, 2·5,−0·5,−1). For the survival model in (2.3),

we assume that P follows the extreme value distribution with scale parameter

σt = 0·5, and the linear predictor given by ηti = (γ0 + bti) + γ1Ti, where bti is

a frailty term and (γ0, γ1)> = (2, 1·5). The censoring mechanism follows an ex-

ponential distribution with mean 20, resulting in about 50% censoring, and the

visiting times tij are random. For the random effects model in (2.4) the fol-

lowing three scenarios are considered: (i) a bimodal mixture distribution 0·45 ×
N{(−2,−2·1)>, Σ} + 0·55 × N{(1·636, 1·718)>, Σ}, with Σ = vech(1·52, 12, 0·5),

where, in vech(s2
1, s

2
2, ρ), s2

1 and s2
2 denote the two variances and ρ the corre-

lation of the covariance matrix Σ; (ii) a unimodal skewed mixture distribution

0·7×N{(1·3, 0·9)>, Σ}+0·3×N{(−3·033, 2·1)>, Σ}, with Σ = vech(1·62, 1·72, 0·7);

and (iii) a normal distribution N (0,Σ), with Σ = vech(2·52, 2·22, 0·82). The pa-

rameter values have been chosen such that the variances σ2
by and σ2

bt, and the

degree of association in terms of Kendall’s τ for the random effects, are of the

same magnitude for all three scenarios. For ni, two cases are considered, namely

the large-ni case, in which maxi(ni) = 15 with 10 measurements per subject on

average, and the small-ni case, in which maxi(ni) = 4 with 2·5 measurements per

subject on average. Finally, for each scenario and for each choice of ni, 100 data

sets are simulated.

2.4.2 Fitted Models

For each simulated data set four joint models are fitted. In particular, for the longi-

tudinal p(Yi | byi; θy) and the survival p(Ti, δi | bti; θt) processes the correct models

are assumed, whereas for the random effects model four copulas are considered,

namely the Frank, Gumbel, Gaussian and Student’s-t4 copulas, with normal mar-

ginals. Thus, under scenarios (i) and (ii) all fitted models are misspecified, whereas

for scenario (iii) the normal copula random effects model corresponds to the true
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joint model from which we simulated. Furthermore, the quality of the model-

based standard errors vâr(θ̃), i.e., assuming the random effects distribution had

been correctly specified, and the sandwich-estimator standard errors vãr(θ̃) is com-

pared to the empirical standard errors given by
{∑M

m=1(θ̂m − θ)2/(M − 1)
}1/2

,

where θ̂m denotes the maximum likelihood estimates in the mth simulated dataset,

θ =
∑M

m=1 θ̂m/M and M = 100. The models are fitted using an em algorithm in

which the random effects are treated as missing values; more details can be found

in Appendix B. All computations have been performed in R (R Development Core

Team, 2007).

2.4.3 Results

Tables 2.1, 2.2 and 2.3 present the results, under scenarios (i), (ii) and (iii), respec-

tively. For all scenarios we observe that the parameter estimators for the longitu-

dinal and survival models are rather robust to random effects misspecification. In

contrast, the estimators for the random effects model, and especially the estima-

tor of the association parameter, show greater sensitivity regarding the choice of

the copula C(·). Furthermore, the small-ni case yielded relatively more sensitive

results for the estimators, in accordance with Theorem 1. An interesting feature is

that the Gaussian copula performed rather well under misspecification. This fea-

ture can be explained by the concept of local dependence introduced by Holland

and Wang (1987). The local dependence function equals ∂2 log p(byi, bti)/∂byi∂bti

and is used to quantify dependence when both the degree and the direction of the

dependence are different in different regions of the plane (Jones, 1996). A nume-

rical comparison between the values of the local dependence function of the true

random effects densities under scenarios (i) and (ii), and the corresponding values

of the assumed copulas, reveals that the Gaussian copula is on average closer to

the true densities than the other copulas. Finally, regarding the estimation of

standard errors, we observe that the average of the sandwich estimators is closer
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to the empirical standard errors than the corresponding model-based ones, with

the exception of scenario (iii) under the Gaussian copula, where the model-based

standard errors, as expected, show good behaviour.

2.5 Application

In this section, we present the analysis of data coming from a longitudinal study

on patients who received a kidney transplant. The main scientific focus lies in the

time a patient can maintain the new graft. In this case, a good marker for the

kidneys’ performance is the level of serum creatinine in blood. However, since the

observed levels of this marker are directly influenced by a person’s muscle activity,

the glomerular filtration rate, gfr, is typically used, which is an inverse function

of serum creatinine correcting also for sex, weight and age.

During the 10 year follow-up period gfr measurements are regularly taken

and our aim here is to explore the association structure between longitudinal gfr

measurements and the time to graft failure. Out of the 432 patients, 91 (21·1%) ex-

perienced the event; moreover, patients made on average 72 visits, with a standard

deviation 22·4 visits, resulting in a total of 31062 records. Based on descriptive

measures and plots we adopted the following models for the two processes. For

the longitudinal process a linear random-intercepts model is assumed with fixed-

effects quadratic time trends for the first 6 months, followed by linear time trends

for the remaining follow-up period. For the survival process we include the age,

weight and sex as main effects, and a frailty term related to the random-intercept

term of the measurement model.

To investigate the influence of parametric assumptions on the size of the as-

sociation between the two processes, we performed a sensitivity analysis under dif-

ferent copula functions and assuming normal marginals for the joint distribution

of the random effects, and different survival distributions. In particular, we con-
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sidered the Frank, Gumbel, Gaussian, and Student’s-t4 copulas, and the Weibull,

log-normal and log-logistic distributions as survival distributions. The estimates

of Kendall’s τ for each scenario are presented in Table 2.4. For the entire analysis

we observed results similar to those in §2.4. In particular, the main effects for

both the linear mixed and survival models were minimally affected by different

assumptions regarding the random effects, whereas the degree of the association

between the two processes was influenced to a much larger extent by the choice of

the copula function. The results suggest a moderate positive association between

the underlying latent processes, ranging from 0·56 to 0·86. However, note that

this is far from the perfect correlation that the common parameterization (2.3)

assumes.

2.6 Discussion

As the number ni of repeated longitudinal measurements per individual increa-

ses, the effect of misspecifying the random effects distribution became minimal for

certain estimators. However, estimation of the standard errors under the misspeci-

fied model will generally be affected, and thus the use of the sandwich estimator

is recommended. How large ni has to be depends on the type of information for bi

that is included in Yi. In particular, we expect that for linear mixed models, smal-

ler values of ni will suffice, as opposed to generalized or nonlinear mixed models,

because in the former case log p(Yi | bi; θy) will be quadratic in bi, which implies

that convergence of p(bi | Yi, Ti, δi; θ) to a normal distribution will be faster. In

addition, note that Theorem 1 requires all subjects to have a relatively large num-

ber of repeated measurements. Thus, if some groups of subjects have very few

measurements, perhaps because of dropout, choosing the correct random effects

distribution will be important. Moreover, our results are based on the assumption

that both p(bi) and f(bi; θb) are continuous densities, excluding the case in which
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the true random effects distribution is discrete, with few support points. In that

setting we would expect the robustness of θ̃yt to be seriously affected.

Moreover, the formulation of the shared parameter model presented in §2.2

assumed a noninformative visiting process, which enabled an easier likelihood con-

struction. However, in cases where such an assumption is erroneous, ignoring the

visiting process may influence results considerably since each subject will have ni

measurement occasions, leading to a multivariate model. Thus, the posterior di-

stribution of the random effects will then depend heavily on both the longitudinal

and visit process models.

Finally, we have assumed that the parameter space of the survival model is of

finite dimension. This excludes the commonly used semiparametric framework in

which the baseline hazard is left unspecified. Extensions of the results presented

here for this case are under consideration.

2.7 Appendix A

Let p(Y, T, δ; θ) and f(Y, T, δ; θ) denote the marginal densities under the correctly

specified p(b) and the misspecified f(b; θb) random effects distributions, respecti-

vely. First, we work under parameterization (2.3) with a common random effect

bi for the two processes. We make the following assumptions: (i) both p(Y, T, δ; θ)

and f(Y, T, δ; θ) are well-defined densities under the usual regularity conditions

(Cox and Hinkley, 1974, p. 281); (ii) for fixed n we define the log likelihood fu-

nctions `p
n(θ) = n−1

∑n
i=1 log p(Yi, Ti, δi; θ), `f

n(θ) = n−1
∑n

i=1 log f(Yi, Ti, δi; θ),

and in addition, we assume that `p
n(θ) and `f

n(θ) have unique maxima at θ̂yt ∈ Θyt

and θ̃yt ∈ Θyt, respectively, with θy and θt having disjoint parameter spaces,

i.e., Θyt = Θy × Θt; (iii) for the score vectors Lp
n(θ) = ∂`p

n(θ)/∂θ, and Lf
n(θ) =

∂`f
n(θ)/∂θ we assume that the required conditions hold which allow differentiation

to be taken inside the integral sign; (iv) finally, we assume that both log p(bi) and
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log f(bi; θb) are bounded and smooth functions of bi around the neighbourhood of

the mode b̂i of log p(Yi | bi; θy) =
∑ni

j=1 log p{yi(tij) | bi; θy}.
Next we note that, under assumption (iii), the score vector takes the form

Lp
n(θ) =

n∑

i=1

∂

∂θ
log

∫
p(Yi | bi; θy) p(Ti, δi | bi; θt) p(bi) dbi

=
n∑

i=1

∫
h(·; θ) p(bi | Yi, Ti, δi; θ) dbi, (2.8)

where h(·; θ) denotes the corresponding score vector of each of the submodels;

for instance, for the measurement process, Lp
n(θy) requires h(·; θ) = ∂ log p(Yi |

bi; θy)/∂θy. Analogously, the misspecified score vector takes the form

Lf
n(θ) =

n∑

i=1

∫
h(·; θ) f(bi | Yi, Ti, δi; θ) dbi. (2.9)

Equation (2.9) differs from (2.8) in that f(bi | Yi, Ti, δi; θ) is the posterior under

f(bi; θb), but also that for Lf
n(θb), h(·; θ) = ∂ log f(bi; θb)/∂θb. For fixed n, the

score vectors are functions of the number of repeated measurements ni. Hence-

forth we assume that, for all i, ni → ∞. Then, under assumptions (i) and (iv)

both posterior distributions pni(bi | Yi, Ti, δi; θ) and fni(bi | Yi, Ti, δi; θ) will be

concentrated in the neighbourhood of the mode b̂i of the correctly specified lon-

gitudinal model log p(Yi | bi; θy) =
∑ni

j=1 log p{yi(tij) | bi; θy} (Cox and Hinkley,

1974, pp. 399–400), which implies that, as ni →∞, |fni(bi | Yi, Ti, δi; θ)− pni(bi |
Yi, Ti, δi; θ)| → 0. Based on this result, we have that for every ε > 0 there exists

an integer m such that for all ni ≥ m and for all θyt ∈ Θyt we obtain
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‖Lf
ni

(θyt)− Lp
ni

(θyt)‖

= ‖
∑

i

∫
h(·; θyt) {fni(bi | Yi, Ti, δi; θ)− pni(bi | Yi, Ti, δi; θ)} dbi‖

≤
∑

i

∫
‖h(·; θyt) {fni

(bi | Yi, Ti, δi; θ)− pni
(bi | Yi, Ti, δi; θ)} ‖ dbi

≤
∑

i

∫
‖h(·; θyt)‖· | fni(bi | Yi, Ti, δi; θ)− pni(bi | Yi, Ti, δi; θ) | dbi < ε,

where ‖ · ‖ denotes the Euclidean vector norm. The last statement combined with

the application of the mean value theorem to either Lf
ni

(θyt) or Lp
ni

(θyt) implies

that ‖θ̃yt − θ̂yt‖ → 0.

Under the two random effects parameterization (2.4), the arguments raised

above can be adapted accordingly to show that θ̃y will converge to θ̂y. However,

for θ̃t we have that

Lf
n(θt) =

n∑

i=1

∫∫
∂

∂θt
log p(Ti, δi | bti; θt) f(byi, bti | Yi, Ti, δi; θ) dbyidbti

=
n∑

i=1

∫
∂

∂θt
log p(Ti, δi | bti; θt) f(bti | Yi, Ti, δi; θ) dbti,

where f(bti | Yi, Ti, δi; θ) ∝ f(Yi | bti; θy, θb)p(Ti, δi | bti; θt)f(bti; θb), with f(Yi |
bti; θy, θb) =

∫
p(Yi | byi; θy)f(byi | bti; θb)dbyi. Heuristically, as long as f(byi |

bti; θb) 6= f(byi; θb), then as ni increases the p(Yi | byi; θy) part of f(Yi | bti; θy, θb)

provides increasing information regarding bti, and this information becomes greater

as the association between byi and bti gets stronger. Formally, note that, for θ̃t

to converge to θ̂t as ni → ∞, we require that |fni(bti | Yi, Ti, δi; θ) − pni(bti |
Yi, Ti, δi; θ)| → 0. This would be the case so long as fni(bti | Yi, Ti, δi; θ) is

concentrated in the neighbourhood of the mode b̂ti of fni(Yi | bti; θy, θb). To ensure

this, we also adopt the regularity conditions of Heyde and Johnstone (1979), under
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which both fni
(bti | Yi, Ti, δi; θ) and pni

(bti | Yi, Ti, δi; θ) will converge to the same

normal distribution with mean b̂ti, even though conditional independence does not

hold in this case, i.e., f(Yi | bti; θy, θb) 6=
∏ni

j=1 f{yi(tij) | bti; θy, θb}.
Finally, to make the above results probabilistic in nature and to ensure that θ̃yt

converges in probability to the true parameter vector θ∗yt, we assume that n →∞
and that θ̂yt is a consistent estimator of θ∗yt.

2.8 Appendix B

The maximum likelihood estimates for the parameter vector θ are obtained using

an em algorithm, where byi and bti are treated as missing data. We assume the

following submodels for the processes involved in the specification of the shared

parameter model:

Yi = Xyiβ + Zyibyi + εyi, log Ti = x>tiγ + bti + σ−1
t εti,

where εyi ∼ Nni(0, Vi = σ2
yQi) with Qi being a correlation matrix with an as-

sociated parameter vector κ, εti ∼ P where P denotes an appropriate distribution

function with corresponding survival function S and density function p, and σt is

a scale parameter (Kalbfleisch and Prentice, 2002, Ch. 3). Finally, the joint den-

sity of {byi, bti} follows (2.5), with copulas belonging to either the Archimedean

or elliptical classes and Gaussian marginals.

For the E-step we let Ä denote E {A(byi, bti) | Yi, Ti, δi; θ}, where the requi-

red integrals are approximated using a Gauss-Hermite quadrature rule. For the

parameters with no closed-form solution, we let `(·) denote the score vector of

the complete-data log likelihood. The expected value ῭(·) of `(·), with respect to

p(byi, bti | Yi, Ti, δi; θ), is used to maximize numerically the expected value of the

complete-data log likelihood, based on a quasi-Newton algorithm. In particular,
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the following expressions define the M-step.

For the longitudinal measurement model we have

β =

(
n∑

i=1

X>
yiV

−1
i Xyi

)−1 {
n∑

i=1

X>
yiV

−1
i (yi − Zyib̈yi)

}
,

σ2
y =

1
N

n∑

i=1

µ>yiQ
−1
i (µyi − 2Zyib̈yi) + tr(Z>yiQ

−1
i Zyiv̈byi) + b̈>yiZ

>
yiQ

−1
i Zyib̈yi,

῭(κ) =
1
2

n∑

i=1

tr(−Q−1
i Wi) + µ>yiKi(µyi − 2Zyib̈yi) + tr(Miv̈byi) + b̈>yiMib̈yi,

where N =
∑n

i=1 ni, µyi = yi −Xyiβ, b̈yi = E(byi | Yi, Ti, δi; θ), v̈byi = var(byi |
Yi, Ti, δi; θ), Wi = ∂Qi/∂κ, Ki = Q−1

i WiQ
−1
i , Mi = Z>yiKiZyi.

For the event process model we have

`(γ) = σ−1
t

n∑

i=1

xtiai and `(σt) = σ−1
t

n∑

i=1

ωiai − δi,

where ai = −δi{∂ log p(ωi)/∂ωi} − (1 − δi){∂ log S(ωi)/∂ωi} and ωi = (log Ti −
x>tiγ − bti)/σt.

For the random effects model we distinguish between the following cases. In

the first case, the Gaussian copula combined with normal marginals results in a

multivariate normal distribution with known derivatives for the variance compo-

nents. In the second case, the Student’s-t copula involves the inverse distribution

function of the Student’s-t distribution and thus numerical derivatives are used.

Finally, for Archimedean copulas, `(α) is derived for each particular copula sepa-

rately, whereas, for the parameters θby and θbt of the marginal models for byi and

bti, the following general formula is used:

`(θby) =

nX
i=1

��
g(3){C(ui, vi)}
g(2){C(ui, vi)} − 3

g(2){C(ui, vi)}
g(1){C(ui, vi)}

�
cu(vi) +

g(2)(ui)

g(1)(ui)

�
∂u

∂θby
+

∂ log p(byi; θby)

∂θby
,
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where g(·) is the generator function of the archimedean copula with g(l)(·) denoting

its lth derivative, cu(v) = ∂C(u, v)/∂u, u and v are the distribution functions of the

marginal Gaussian distributions for byi and bti, respectively, and `(θbt) is derived

analogously.
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CHAPTER

3 A Two-Part Joint Model for the Analysis

of Survival and Longitudinal Binary

Data with excess Zeros

Abstract

Many longitudinal studies generate both the time to some event of interest and

repeated measures data. This paper is motivated by a study on patients with a

renal allograft, in which interest lies in the association between longitudinal protei-

nuria (a dichotomous variable) measurements and the time to renal graft failure.

An interesting feature of the sample at hand is that nearly half of the patients

were never tested positive for proteinuria (≥ 1 gr/day) during follow-up, which

introduces a degenerate part in the random effects density for the longitudinal

process. In this paper we propose a two-part shared parameter model framework

that effectively takes this feature into account, and we investigate sensitivity to

the various dependence structures used to describe the association between the

longitudinal measurements of proteinuria and the time to renal graft failure.

47
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Keywords: Copulas; Joint modelling; Sensitivity analysis; Shared parameter mo-

del.

3.1 Introduction

Chronic kidney diseases affect one in nine US adults, and may lead to complications

such as high blood pressure, anemia, weak bones, poor nutritional health and nerve

damage. Furthermore, when kidney diseases progress, this may eventually lead to

renal failure, which requires dialysis or a kidney transplantation to maintain life.

Many studies have been conducted to investigate which factors may play a role in

the progression of chronic kidney diseases.

Our research has been motivated by a study on patients that underwent, be-

tween 1/21/1983 and 8/16/2000, a primary renal transplantation with a graft from

a deceased or living donor in the University Hospital Gasthuisberg from the Ca-

tholic University of Leuven (Belgium). We consider the 432 patients for whom the

new graft has survived for at least one year. The clinical interest lies in the long

term performance of the new graft, and especially in the graft survival for a ten

year period. Out of the 432 patients considered, 91 (21.1%) experienced a graft

failure. The corresponding Kaplan-Meier estimate for the time to graft failure is

depicted in the top-left panel of Figure 3.1. The estimated graft survival function

shows that the renal graft survival rate at ten years equals 0.79 (95% CI: 0.75,

0.83). During the ten year follow-up period, the patients were periodically tested

for the performance of the graft. One of the outcomes measuring this performa-

nce is the presence of proteinuria. Proteinuria is the condition in which the urine

contains an abnormal amount of protein, which is an indication of renal graft mal-

functioning. For the current analysis proteinuria was defined as the presence of 1

gr of protein in a 24 hours urine collection. An interesting feature of the sample at
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Figure 3.1: Top left panel: Kaplan-Meier estimate (with associated 95% CI) for time
to graft failure, with superimposed Weibull fit. Top right panel: sample smooth average
profiles (obtained using a Nadaraya-Watson kernel regression estimate) for the probability
of proteinuria versus years since entry, for patients with at least one finding of proteinu-
ria during follow-up. Bottom left panel: empirical Bayes estimates under an ignorable
random slopes logistic regression for proteinuria, including all patients. The rectangle
around zero contains the patients with no proteinuria history and it is magnified in the
third quadrant. Bottom right panel: contour plots of the Normal, Student’s-t (df = 4),
Clayton, and Frank copula for standard normal marginals and Kendall’s τ = 0.5.
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Table 3.1: Contingency table for findings of proteinuria versus renal graft failure.

Proteinuria Failure No Failure Total
at least once 72 (32.4%) 150 (67.6%) 222

never 19 (9%) 191 (91%) 210

hand is that for nearly half of the patients, proteinuria of more than 1 gr/day has

never been observed. Table 3.1 presents the frequencies of at least one positive fin-

ding of proteinuria during follow-up versus failure status. We observe that the use

of at least one finding of proteinuria as a prognostic factor for graft failure would

result in a very high negative predictive value, since 91% (95% CI: 87.1%, 94.8%)

of the patients with no proteinuria history did not experience a graft failure. On

the contrary, the positive predictive value is low 32.4% (95% CI: 26.3%, 38.6%)

implying that at least one finding of proteinuria is not indicative of graft failure.

However, the sample smooth average profiles (obtained using a Nadaraya-Watson

kernel regression estimate) for the patients with at least one positive diagnosis of

proteinuria, presented in the top-right panel of Figure 3.1, show a steep increase

for failures. This feature suggests that exploration of the longitudinal evolution of

proteinuria could be more insightful for the time to graft failure. Thus, our aim

here is to investigate the association structure between these two processes.

The setting described above connects to the framework of joint modelling of

longitudinal and time to event data (see Tsiatis and Davidian, 2004, for a review).

The majority of the research in this area has focused on continuous longitudinal

responses motivated by HIV and cancer studies. Joint models for cases where

the longitudinal measured outcome is binary have been considered for instance

by Faucett, Schenker, and Elashoff (1998) and Larsen (2004), and have also been

applied in the missing data context (Pulkstenis et al., 1998; Albert, 2000). Joint

models are constructed under the conditional independence assumption, which

posits that the event process and the longitudinal responses are independent con-

ditionally on a latent process expressed by a set of random effects. These random
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effects are typically assumed to be normally distributed, but relaxations of the

normality assumption have been proposed, for instance by Song et al. (2002).

However, note that a normal or another smooth random effects density might be

unrealistic for our data, since half of the patients never showed proteinuria du-

ring follow-up. This feature, in fact, induces a bimodality in the random effects

density, which is also evident in the plot of the empirical Bayes (EB) estimates,

obtained by the ignorable (i.e., ignoring the survival process) mixed-effects logistic

regression, presented in the bottom-left panel of Figure 3.1. This model includes

as fixed-effects linear time trends with some additional baseline covariates that will

be introduced in Section 3.4, while intercepts and slopes are used in the random

effects component. In particular, we observe that the random effects estimates for

the patients with no proteinuria are concentrated around zero, with very small

dispersion compared to the estimates for the other subjects. To overcome this

problem, we propose a two-part shared parameter model which assumes that the

distribution of the longitudinal process is a two-component mixture with a de-

generate component for patients with no proteinuria history and a mixed-effects

logistic regression component for the remaining patients. This formulation allows

to investigate separately the effect of, first, the longitudinal evolution of proteinu-

ria and, second, the history of proteinuria, to the time to graft failure. In addition,

inference for the whole population can easily be made by mixing the probability

distribution for the two parts. Such mixture models have been proposed in various

contexts in the statistical literature. Zero-inflated Poisson and negative binomial

count models are presented in Ridout, Hinde, and Demetrio (2001), whereas two-

part models for longitudinal data have been proposed by Olsen and Schafer (2001)

and Kowalski et al. (2003). Furthermore, joint modelling with cure-rate survival

models is reviewed in Yu et al. (2004).

A final issue that we tackle in this work is the sensitivity of inference to pa-

rametric assumptions for the association structure between the survival and lon-
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gitudinal processes. Sensitivity might be expected from experience related to the

joint modelling context (i.e., missing data framework). In particular, proteinuria

measurements are not available at the observed graft failure times, and can only

be identified using modelling assumptions. Thus, investigation of robustness of

inference to these assumptions is required. Here we follow a copula parameteri-

zation for the joint distribution of the underlying random effects, which allows

investigation of dependence, and we perform a sensitivity analysis by considering

different copula functions.

The remaining of the paper is organised as follows: Section 3.2 presents the

two-part shared parameter model, discusses its features and refers to goodness-of-

fit, choice of copula, and sensitivity analysis issues. Section 3.3 presents an EM

algorithm for obtaining the maximum likelihood estimates under the proposed

model. Finally, Section 3.4 presents the analysis of the renal graft failure data,

Section 3.5 discusses some simulation results, and Section 3.6 concludes the paper.

3.2 The Two-Part Shared Parameter Model Formulation

3.2.1 Submodels Specification

Joint models typically consist of three submodels, namely the longitudinal, the

survival, and the random effects models. In our formulation however, we introduce

a fourth component that accounts for the patients with no proteinuria history. In

particular, let Ti be the observed failure time for the ith patient (i = 1, . . . , n),

which is the minimum of the true failure time T ∗i and the censoring time Ji. Set δi

to be the failure indicator that equals one for true events and zero otherwise, i.e.,

δi = I(T ∗i ≤ Ji), where I(·) is the indicator function. Let yi denote the ni×1 vector

of binary indicators for proteinuria, and let di be an indicator variable that equals

one if the ith patient showed clinically important proteinuria at least once during

follow-up and zero otherwise, i.e., di = I(yij = 1; for some j = 1, . . . , ni). The
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two-part shared parameter model, omitting covariates in the notation, is defined

as

p(Ti, δi, yi; θ) =
∑

di

p(di; θ)p(Ti, δi, yi | di; θ) (3.1)

with

p(Ti, δi, yi | di; θ)

=
∫ ∫

p̆(Ti, δi | bti, di; θt) p(yi | byi, di; θy)

p(byi, bti | di; θb)dbyidbti,

where θ> = (θ>d , θ>t , θ>y , θ>b ) is the vector of the parameters in each one of the

submodels and let also A> denote the transpose of A. Further, let p(·) denote

the appropriate probability density functions for the longitudinal and random ef-

fects parts, whereas for the event process we set p̆(Ti, δi | bti, di; θt) = p(Ti |
bti, di; θt)δiS(Ti | bti, di; θt)1−δi , i.e., equal to either the density for the true event

times or the survival function for censored observations. Factorization (3.1) re-

sembles the pattern mixture models factorization used in the missing data context

(Little and Rubin, 2002) that posits an inherent heterogeneity, which determini-

stically groups individuals according to their proteinuria history. The model for

di is a simple logistic regression, which will be described in Section 3.4.

For the survival process we assume a mixed-effects accelerated failure time

model defined as

log Ti = w>i γ + diγd + bti + σtεi, εi ∼ P, (3.2)

where θ>t = (γ>, γd, σt), and wi is a qw×1 vector of baseline covariates. Parameter

γd measures the effect of proteinuria history in the logarithm of time to graft

failure, which, according to Table 3.1, is expected to be highly significant. The

random effect bti represents a frailty term that captures unobserved heterogeneity
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induced, for instance, by omitted covariates (Keiding et al., 1997). The errors

εi are assumed to follow the distribution function P, with corresponding survival

function S and density function p, and σt denotes a scale parameter (Kalbfleisch

and Prentice, 2002, Ch. 3). In this work we consider parametric models for P;

non-parametric alternatives in the joint modelling framework have been proposed

by Tseng et al. (2005).

The model for the longitudinal process conditionally on di contains a degene-

rate part in order to account for the fact that yij = 0, for all j when di = 0. For

the patients with proteinuria history, we model the longitudinal evolution of pro-

teinuria findings using a mixed-effects logistic regression. In particular, we assume

that





Pr(yij = 0, ∀j) = 1, if di = 0

Pr(yij = 1 | byi) = πij = 1/
[
1 + exp{−(x>ijβ + z>ijbyi)}

]
, if di = 1,

(3.3)

where θy = β is the vector of regression coefficients, yij equals one if the ith

patient had a proteinuria finding at the jth time, and zero otherwise, byi are

subject-specific random effects dictating patient’s longitudinal trajectories, and

Xi and Zi are ni × qx and ni × qz design matrices for the fixed- and random

effects, respectively.

The common parameterization used in joint models postulates that bti = α>byi,

where α denotes an association parameter. That is, the longitudinal and survival

processes share, in fact, the same random-effect byi, with α2 being a rescaling

factor for the variance of byi. However, this parameterization assumes perfect

correlation between the underlying random effects, which may be unrealistic in

many applications. Therefore we relax this assumption and estimate the correla-

tion between the random effects of the two processes. This parameterization is

similar to the joint model of Henderson et al. (2000) who considered two correla-

ted Gaussian processes to induce dependence. In particular, for the patients with
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proteinuria history we use a copula representation for the joint distribution of byi

and bti. Copulas (Nelsen, 1999) are multivariate distribution functions with uni-

form marginals that can be used to construct multivariate densities and investigate

dependence. Under (3.1) the random effects density then takes the form

p(byi, bti | di; θb) =





p(bti; ωt), if di = 0

C p(byi;ωy)p(bti;ωt), if di = 1,
(3.4)

where C = c{Hy(byi;ωy), Ht(bti; ωt); α}, c(·) is the density of the copula C(·), Hy(·)
and p(byi) are the marginal cumulative distribution function and the probability

density function for byi, respectively, and Ht(·) and p(bti) are defined analogously

for bti. The parameter vector for the random effects density is θ>b = (α, ω>y , ω>t ),

where α is the association parameter of the copula, and ωy and ωt are the pa-

rameter vectors for the two marginals. The advantage of the copula parameteri-

zation is that it allows for separate modelling of the association structure and

the marginals, thus facilitating exploration of dependence. In particular, the

c{Hy(byi; ωy),Ht(bti; ωt); α} part of (3.4) is the function that specifies the associa-

tion type between the two marginals Hy(·) and Ht(·).

3.2.2 Goodness-of-Fit, Choice of Copula and Sensitivity Analysis

The use of correlated random effects between the two processes enables the speci-

fication of flexible joint models. However, since the random effects are in fact

latent variables, checking the appropriateness of the assumed random effects mo-

del (i.e., copula function and marginal distributions) can be challenging. This

implies that proposed methods for goodness-of-fit in copula models (e.g., Genest

and Rivest, 1993) can be difficult to apply since the empirical cumulative distri-

bution function cannot be readily computed for the pair (byi, bti). Moreover, the

use of the Empirical Bayes estimates to uncover either the shape of the copula
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distribution C{Hy(byi),Ht(bti)} or the shape of the marginal Hy(byi) and Ht(bti),

can be misleading due to shrinkage (Fitzmaurice, Laird, and Ware, 2004; Verbeke

and Molenberghs, 2000). Alternatively, the performance of the assumed random

effects model can be implicitly investigated by checking the fit of the joint model

to the observed data. In particular, a plot of the fitted marginal survival function

versus the Kaplan-Meier estimate, and a plot of the fitted average longitudinal

profiles versus the smoothed (as in the top-right panel of Figure 3.1) sample ave-

rage profiles, could show potential model miss-fit. Moreover, information criteria,

such as the AIC, could be also employed to select the best fitting copula.

However, we would like to note that the use of measures, based on the ob-

served data, for identifying the best fitting copula should be done with caution.

The reason for this lies in the close relationship between the joint modelling of

survival and longitudinal measurements and the missing data framework. To see

this more clearly, let yo
i and ym

i denote the set of observed and missing longitudi-

nal measurements for the ith individual, before and at the observed event time Ti,

respectively. Then the conditional distribution of the missingness process (i.e., the

event process) given the complete vector of longitudinal measurements (yo
i , ym

i ),

that is used to characterize the missing data mechanism, has the form

p(Ti | yo
i , ym

i ) =
∫

p(Ti | bi) p(yo
i , ym

i | bi) p(bi) dbi∫
p(yo

i , ym
i | bi) p(bi) dbi

=
∫

p(Ti | bi) p(bi | yo
i , ym

i ) dbi, (3.5)

where b>i = (b>yi, bti). According to Little and Rubin (2002), since this distribution

depends on ym
i , joint models imply a Not Missing At Random (NMAR) missing

data mechanism. As it is known in the missing data literature, in NMAR settings

the observed data do not contain enough information to distinguish between cer-

tain models, since a lot of information is implicitly provided through modelling

assumptions. In such cases it is advisable to perform a sensitivity analysis un-
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der different model formulations rather than rely on goodness-of-fit measures and

criteria that depend on the observed data only (see e.g., discussion of Diggle and

Kenward, 1994; Copas and Li, 1997; Little and Rubin, 2002; Jansen et al., 2006).

In our proposed model, the posterior distribution of the random effects in (3.5)

is analogous to p(byi, bti | yo
i , ym

i ) ∝ p(yo
i , ym

i | byi)p(byi, bti), which according to

(3.4) implies that the copula is the key part that describes the association between

the missingness and longitudinal processes. Varying the choice of the copula fu-

nction leads to different shapes of association structure. This is illustrated in the

bottom-right panel of Figure 3.1, which depicts the contours of four copulas as-

suming standard normal marginals. In order to obtain comparable contour plots,

we have chosen the copula parameter α such that the association between the

two standard normal marginals equals 0.5 in terms of Kendall’s τ . However, we

observe that the copula function can significantly alter the shape of the associa-

tion, even though all the other components (i.e., marginals and global association

measure) of the bivariate densities remain the same. Thus, in the analysis of the

proteinuria data presented in Section 3.4, in addition to the proposed methods

for goodness-of-fit and choosing copula described above, we have also performed

a sensitivity analysis in order to investigate the effect of the choice of the copula

function in the size of the association between the two processes.

3.3 EM Algorithm

In this section we focus on the estimation of θ∗ = (θ>t , θ>y , θ>b )>, since estimates for

θd are easily obtained by fitting separately the logistic regression for Pr(di = 1; θd).

The maximum likelihood estimates for the model parameters θ∗ are obtained using

an EM algorithm, in which byi and bti are treated as missing data.

For the E-step, denote E {A(byi, bti) | yi, Ti, δi; θ} as Ã, i.e., the expected value

of any function A(·) of byi and bti with respect to p(byi, bti | yi, Ti, δi; θ). These



58 Chapter 3

expectations are approximated using a Gauss-Hermite quadrature rule; more de-

tails can be found in Appendix A. For the M-step, unfortunately the complete

data log-likelihood for the two-part shared parameter model does not have closed

form solutions with respect to θ. Thus, the expected value of the complete data

log-likelihood is numerically maximized using a quasi-Newton algorithm. This

procedure requires the expected score vector of the complete data log-likelihood,

given di, which we denote by ˜̀(·). The expressions of ˜̀(·) for β, γ, γd, σt have the

form

˜̀(β) =
n∑

i=1

X>
i (yi − π̃i)

˜̀{(γ>, γd)} = σ−1
t

n∑

i=1

ãiẅi

˜̀(σt) = σ−1
t

n∑

i=1

ζ̃iai − δi,

where π̃i =
∫

p(byi | yi, Ti, δi)/[1 + exp{−(Xiβ + Zibyi)}]dbyi, ẅ>i = (w>i , di),

ai = −δi{∂ log p(ζi)/∂ζi} − (1 − δi){∂ log S(ζi)/∂ζi}, and ζi = (log Ti − w>i γ −
diγd − bti)/σt.

To define the expression of ˜̀(·) for the parameters θ>b = (α, ω>y , ω>t ) of the

random effects model, we assume normal marginals with mean zero, and we di-

stinguish the following cases. First, we consider the elliptical copulas class and

specifically the normal and Student’s-t copulas. The normal copula combined with

normal marginals results in a multivariate normal distribution with derivatives for

the variance components given by

˜̀(θb) =
1
2

n∑

i=1

tr(−Σ−1K)

+ tr(Σ−1KΣ−1ṽbi) + b̃>i Σ−1KΣ−1b̃i,
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where b>i = (b>yi, bti), Σ is the covariance matrix of p(byi, bti) parameterized th-

rough θb, K = ∂Σ/∂θb, b̃i =
∫

bip(bi | yi, Ti, δi)dbi, and ṽbi =
∫

[bi − b̃i]2p(bi |
yi, Ti, δi)dbi. The Student’s-t copula involves the inverse cumulative distribution

function of the Student’s-t distribution and thus ˜̀(·) is approximated numerically

using a central difference approximation. Second, for archimedean copulas, ˜̀(α) is

derived for each particular copula separately, whereas for the parameters ωy and

ωt of the marginal models we use the result (Nelsen, 1999, Ch. 4) that the density

of the copula function has the form

c(u, v) = −g(2){C(u, v)}g(1)(u)g(1)(v)
[g(1){C(u, v)}]3 ,

which leads to the following general formulae

˜̀(ωy) = ˜̀
1(ωy) + ˜̀

2(ωy)

`1(ωy) =
n∑

i=1

{
G cu(vi) +

g(2)(ui)
g(1)(ui)

}
∂u

∂ωy
(3.6)

˜̀
2(ωy) =

1
2

n∑

i=1

tr(−D−1Q) + tr(D−1QD−1ṽbyi)

+ b̃>yiD
−1QD−1b̃yi,

with

G =
g(3){C(ui, vi)}
g(2){C(ui, vi)}

− 3
g(2){C(ui, vi)}
g(1){C(ui, vi)}

,

where g(·) is the generator function of the archimedean copula with g(l)(·) denoting

its lth derivative, cu(v) = ∂C(u, v)/∂u is the conditional distribution function for

V given U = u, U = Hy(byi; ωy) and V = Ht(bti; ωt), D is the covariance matrix

of the normal marginal for byi, Q = ∂D/∂ωy, b̃yi =
∫

byip(byi | yi, Ti, δi)dbyi,

ṽbyi =
∫

[byi− b̃yi]2p(byi | yi, Ti, δi)dbyi, and ˜̀(ωt) is derived analogously. The form

of ∂u/∂ωy, for the univariate and the bivariate case, is presented in Appendix B.

Finally, based on the above expression both ˜̀
1(ωy), using `1(ωy) from (3.6), and
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˜̀
1(ωt) are numerically approximated using the procedure described in Appendix

A.

3.4 Renal Graft Failure Analysis

We continue with the analysis of the renal graft failure study which was intro-

duced in Section 3.1. In total, the patients made on average 62.8 visits (standard

deviation 21.9 visits), resulting in 27147 records. The specification of the compo-

nents of the two-part shared parameter model (3.1) is as follows. First, for the

history of proteinuria a logistic regression is used. Second, for the survival process

a Weibull model is assumed, which seems to provide a relatively reasonable fit to

the survival function, according to the top-left panel of Figure 3.1. For comple-

teness the derivatives for the M-step under the Weibull model are presented in

Appendix C. Third, for the longitudinal process and based on the ignorable analy-

sis (i.e., ignoring the event process), a mixed-effects logistic regression is adopted,

with random-intercepts and -slopes. The covariate effects that are considered in

all the above submodels are gender, weight, tobacco group (no-smoker, smoker,

ex-smoker), age (older than 55), and long dialysis (if dialysis before transplant).

Furthermore, for the longitudinal model the interaction between time (i.e., years

since entry) and gender is considered as well. Finally, for the random effects mo-

del and in order to investigate the influence of parametric assumptions on the size

of the association between the two processes, we performed a sensitivity analysis

using the normal, Student’s-t (df = 4), Clayton, and Frank copula functions assu-

ming normal marginals. All models were fitted using the EM algorithm described

in Section 3.3, and all computations have been performed in R (R Development

Core Team, 2007). Due to the large sample size of this application nine quadrature

points are used in the Gauss-Hermite rule; however, we expect that the procedure

described in the Appendix A provides parameter estimates and standard errors of
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Table 3.2: Parameter estimates with standard errors in parenthesis, under the normal,
Student’s-t (df = 4), Clayton, and Frank copulas, for the logistic regression for proteinuria
history, the survival and longitudinal processes, and for the random effects model.

Normal Student’s-t Clayton Frank
Proteinuria History Intercept 0.08 (0.21) 0.08 (0.21) 0.08 (0.21) 0.08 (0.21)

Gender (female) −0.36 (0.23) −0.36 (0.23) −0.36 (0.23) −0.36 (0.23)
Weight −0.02 (0.01) −0.02 (0.01) −0.02 (0.01) −0.02 (0.01)
Tob. Group (smoker) −0.55 (0.49) −0.55 (0.49) −0.55 (0.49) −0.55 (0.49)
Tob. Group (ex-smoker) −0.10 (0.22) −0.10 (0.22) −0.10 (0.22) −0.10 (0.22)
Age 1.26 (0.29) 1.26 (0.29) 1.26 (0.29) 1.26 (0.29)
Dialyses −0.21 (0.20) −0.21 (0.20) −0.21 (0.20) −0.21 (0.20)

Survival Processes Intercept 2.53 (0.17) 2.34 (0.17) 3.51 (0.19) 1.73 (0.18)
No Prtn History 1.52 (0.21) 1.44 (0.22) 0.71 (0.22) 2.47 (0.34)
Gender (female) 0.53 (0.19) 0.54 (0.19) 0.52 (0.22) 0.49 (0.20)
Weight −0.01 (0.01) −0.01 (0.01) −0.01 (0.01) −0.01 (0.01)
Tob. Group (smoker) −0.45 (0.30) −0.48 (0.31) −0.57 (0.37) −0.37 (0.33)
Tob. Group (ex-smoker) 0.36 (0.19) 0.44 (0.18) 0.44 (0.21) 0.44 (0.19)
Age −0.19 (0.27) −0.29 (0.26) −0.09 (0.30) −0.17 (0.27)
Dialyses 0.05 (0.16) 0.02 (0.16) −0.04 (0.19) −0.01 (0.17)
scale 0.86 (0.07) 0.87 (0.07) 0.97 (0.08) 0.92 (0.08)

Longitudinal Process Intercept −3.53 (0.24) −3.96 (0.18) −2.32 (0.25) −4.20 (0.23)
Year Snce Entry 0.36 (0.04) 0.31 (0.03) 0.45 (0.03) 0.30 (0.04)
Gender (female) 0.76 (0.35) 0.57 (0.21) 1.01 (0.25) 0.73 (0.27)
Weight 0.04 (0.01) 0.06 (0.01) 0.01 (0.01) 0.06 (0.01)
Tob. Group (smoker) 1.07 (0.21) 1.37 (0.23) 1.34 (0.20) 0.77 (0.35)
Tob. Group (ex-smoker) −0.03 (0.38) −0.47 (0.11) 0.03 (0.13) −0.33 (0.13)
Age 0.76 (0.19) 1.19 (0.15) 0.59 (0.18) 1.22 (0.17)
Dialyses −0.83 (0.21) −0.46 (0.11) −0.94 (0.10) −0.53 (0.12)
Year Snce Entry:Age −0.38 (0.05) −0.31 (0.03) −0.39 (0.03) −0.30 (0.05)

Random-Effects Long. Intercept 2.45 (0.24) 2.25 (0.14) 2.75 (1.22) 4.46 (0.28)
Long. Slope 0.73 (0.02) 0.67 (0.04) 0.82 (0.34) 1.35 (0.10)
Long. correlatn −0.74 (0.02) −0.70 (0.03) −0.88 (0.11) −0.86 (0.02)
Surv. frailty 0.54 (0.05) 0.56 (0.05) 0.50 (0.07) 0.61 (0.03)
Kendall’s-τ −0.24 (0.09) −0.25 (0.10) −0.18 (0.04) −0.54 (0.07)

good quality.

The parameter estimates and standard errors under the scenarios considered

are presented in Table 3.2. As can been seen, the choice of the copula function

has a direct impact on certain parameter estimates. For instance, the smoker

effect is lower for the Frank copula compared to the Student’s-t copula. Moreover,

the association between the survival and longitudinal processes varies from −0.18

(s.e. = 0.04) to −0.54 (s.e. = 0.07), which is different from the common perfect

correlation assumption discussed in Section 3.2.1. As expected, the estimated

association is negative suggesting that the lower the probability of proteinuria

findings, the longer the graft survives. In addition, for all copulas we observe a

significant effect of proteinuria history, indicating that patients with no proteinuria

findings during follow-up maintain their graft longer. The effects of the copula

function are also apparent in the plots of the EB estimates for the random effects

of the longitudinal process, the marginal survival function for the event process,

and the marginal average longitudinal evolutions for the probability of proteinuria,
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Figure 3.2: Empirical Bayes estimates for the random effects in the longitudinal proces-
ses under the normal, Student’s-t (df = 4), Clayton, and Frank copulas, for the patients
with proteinuria history.

presented in Figures 3.2, 3.3 and 3.4. The EB estimates are defined as the

posterior modes, i.e.,

arg max
byi,bti

p(byi, bti | yi, Ti, δi, di; θ̂)

= arg max
byi,bti

{log p̆(Ti, δi | bti, di; θ̂t) + log p(yi | byi, di; θ̂y)

+ log p(byi, bti | di; θ̂b)},

whereas the marginal survival function is computed by

Ŝ(Ti) =
∑

d

p(di; θ̂d)
∫

S(Ti | bti, di; θ̂t) p(bti | di; θ̂b) dbti

Figure 3.2 shows that the EB estimates are generally higher for failures than for non

failures. This indicates that patients who experience graft failure either start with
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Figure 3.3: Fitted marginal survival functions under the normal, Student’s-t (df = 4),
Clayton, and Frank copulas, with superimposed Kaplan-Meier estimate and associated
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t (df = 4), Clayton, and Frank copulas, with superimposed the Nadaraya-Watson kernel
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low probability of showing clinically important proteinuria and quickly develop it

or they start with relative high probability of showing proteinuria and maintain it.

The marginal survival functions and the marginal average evolutions under each

copula have been marginalized over the covariate values as well. Both Figures 3.3

and 3.4 suggest that the fitted models do not capture perfectly the observed data.

The AIC values (smaller is better) for the four copulas are 2555.504, 2201.598,

3471.406 and 4841.606 for the normal, Student’s-t, Clayton and Frank copula,

respectively, which identify the Student’s-t as the best of the four.

However, we would like to note that Figures 3.3 and 3.4 do not necessarily imply

that the model does not fit the data. This is due to the fact that a comparison

of the fitted model with the observed data is only valid under Missing Completely

At Random missing data mechanisms, which is certainly not the case for our

application since the association between the two processes is significant for all

copulas (i.e., Table 3.2, Kendall’s-τ estimates). For instance, in Figure 3.4 the

model successfully acknowledges that if the patients with graft failure have not

failed, the average evolution would yield higher values than observed ones for the

last years. In conclusion, the variability we observe in the overall results under the

different copulas could be regarded as variability due to modelling assumptions,

which is a clear indication that distributional assumptions for the random effects

may prove difficult to verify.

3.5 Simulation Study

A simulation study has been performed to empirically investigate the finite sam-

ple performance of the proposed model, and in addition to explore the effect of

copula misspecification. In particular, we considered four simulation scenarios cor-

responding to the normal, Student’s-t (df = 4), Clayton and Frank copulas, and

two sample size settings, namely a large one with n = 200 and a small one with
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n = 50. Under each scenario and sample size setting 500 data-sets were simulated,

and each data-set was fitted under four two-part joint models. For the degene-

rate component, the event process, and the longitudinal measurement process the

correct model specifications have been assumed. In order to investigate random

effects misspecification, the normal, the Student’t-t (df = 4), the Clayton and the

Frank copulas are fitted for each data-set. The study’s set-up is presented in detail

in Section 3.7. The results, presented in Tables 3.3 to 3.10 and discussed in Section

3.7.3, showed an overall good performance of the proposed model but also some

sensitivity issues that can be attributed to the arguments raised in Section 3.2.2.

Moreover, the use of the AIC for choosing the best fitting copula revealed that

even though in the majority of times the true random effects model was selected,

the number of times another copula was selected was not negligible.

3.6 Conclusion

We have proposed a new shared parameter model for the joint modelling of lon-

gitudinal binary measurements and time to event data, and demonstrated its use

through a real data example. The main strength of this framework is that it ef-

fectively handles the existence of excess zeros patterns in the binary responses by

assuming a degenerate part in the longitudinal response model. In addition, it was

shown in the application that the shared parameter models with binary responses

are not robust with respect to the assumptions for the random effects distribution,

and thus a sensitivity analysis should be performed. A potential drawback of the

proposed model is that the logistic regression part in the two-part longitudinal

process defined in (3.3), does not impose the constraint that Pr(yij = 0, ∀j) = 0.

We expect that this feature could lead to some bias, especially for small ni, but

this is not the case for our application.

Several extensions of the proposed model can be considered. First, the para-
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metric distributional assumptions for the survival process can be relaxed either by

considering a Cox-type proportional hazards model or by extending the approach

of Tseng et al. (2005), in order to account for a longitudinal binary covariate

with excess zeros and by postulating two separate random effects components for

the two processes. Second, for ordinal longitudinal measurements, the degenerate

component formulation can be extended to handle several excess levels as well, by

positing a multinomial model for di. Third, other types of longitudinal responses

(e.g., semicontinuous random variables with point masses at one or more locations)

can be easily handled under the proposed framework by simply changing the ap-

propriate parts in the EM algorithm. Finally, in our sensitivity analysis we have

concentrated on the effect of the copula part of the random effects distribution

since this is the part that describes the association between the two processes.

However, in a larger scale sensitivity analysis it would be useful to examine the

effect of the assumptions for the marginal distributions for byi and bti as well.

3.7 Supplementary Material

3.7.1 Simulation Study Design

A simulation study has been performed to empirically investigate the performance

of the maximum likelihood estimates under the proposed two-part joint model in

finite samples as well as the effect of copula misspecification. In particular, a two

group comparison is considered with two choices for the sample size, a moderate

one with n = 200 and a small one with n = 50. The submodels specification for

the two-part joint model is as follows. First, the degenerate group indicator di is

simulated according to the logistic model

logit {Pr(di = 1; θd)} = θd0 + θd1Ti,
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where Ti denotes the treatment indicator, and (θd0, θd1) = (1, 0.8). Second, for the

survival process a Weibull model with a frailty term is assumed

log Ti = γ0 + γ1Ti + γddi + bti + σtεi,

where (γ0, γ1, γd) = (0.5, 1.5,−0.5), σt = 0.5, and εi follows an extreme value

distribution. The censoring mechanism follows an exponential distribution with

mean 11, which results in 30% censoring on average. Third, the non-degenerate

part of the longitudinal process has the form

logit {Pr(yij = 1 | byi, di = 1)} = β0 + β1tij + β2Titij + by0i + tijby1i,

where tij denotes the time points at which the yij measurements are taken, Titij

is the interaction term between Ti and tij , and (β0, β1, β2) = (0.1, 1.5,−1). The

maximum number of repeated measurements per individual is 20, with tij =

seq(0, 4, 20), where seq(a, b, c) denotes a regular sequence from a to b of length

c (e.g., seq(0, 2, 5) = 0, 0.5, 1, 1.5, 2). Taking into account the censoring and the

degenerate individuals (i.e., {i ∈ (1, 2, . . .) : di = 0}), the average number of

measurements per individual is 9.1 with standard deviation 7.6 measurements.

Finally, for the random effects model the following scenarios are considered: (i)

the normal copula, with correlation α = sin(0.5π/2) = 0.707; (ii) the Student’s-t

copula, with 4 degrees of freedom and correlation α = sin(0.5π/2) = 0.707; (iii)

the Clayton copula, with parameter α = 2; (iv) the Frank copula, with parameter

α = 5.736. The value of α for each copula has been chosen such that the as-

sociation between byi and bti equals 0.5 in terms of Kendall’s-τ . Moreover, both

marginal distributions Hy(byi;ωy) and Ht(bti; ωt) are taken to be normal with zero

mean, and with covariance matrix parameters ωy = {σ2
by0 = var(by0i) = 4; σ2

by1 =

var(by1i) = 1; corby = cor(by0i, by1i) = 0.4} and variance ω2
t = 4, respectively. For

each scenario and each sample size setting 500 data-sets have been simulated.
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3.7.2 Simulation Analysis Models

Each simulated data-set has been analyzed under four two-part joint models. In

particular, for the degenerate component, the event process and the longitudinal

measurement process the correct model specifications, as described in the previous

section, are assumed. However, for the random effects the normal, the Student’t-t

(df = 4), the Clayton and the Frank copulas are fitted for each data-set. Thus,

under each scenario (i) to (iv), the true and three misspecified random effects

models are fitted. The MLEs for the joint models’ parameters are obtained using

the EM algorithm described in Section 3.3, using 13 quadrature points for the

Gauss-Hermite rule.

3.7.3 Simulation Results

For the data-sets considered in the simulation study the average computer time

for fitting each model was 84.27 min. (standard deviation 63.58 min.) for n = 200,

and 41.01 min. (standard deviation 43.87 min.) for n = 50. Computations have

been performed in R version 2.4.1, on an AMD Opteron Cluster, consisting of 164

dual Opteron250 servers running Linux (kernel version 2.6.15.7), with 2GB RAM,

several nodes with 16GB RAM, and 4 to 8 CPUs with frequencies varying from 1.8

to 2.6 GHz. Thus, we feel that our proposed model requires reasonable computing

time considering its complexity.

The bias and root mean square error for each parameter of the two-part joint

model, presented in Section 3.7.1, are given in Tables 3.3 to 3.6 for sample size

n = 200, and Tables 3.7 to 3.10 for sample size n = 50. For all scenarios we

observe that the true model has a relatively good performance compared to the

joint models with misspecified copula function. Moreover, the performance of the

two elliptical copulas (i.e., normal and Student’s-t) seems to be better than the one

of the Archimedean ones (i.e., Clayton and Frank). For example, in Table 3.5 we
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observe that the Clayton copula, even though is the correct one, shows greater bias

for γd, β1 and β2 than the elliptical copulas; however, for the variance components

it performs better than the other copulas. In addition, some sensitivity of the

results regarding the copula choice is apparent in the parameter estimates of all

three submodels. For instance, in Table 3.3 the estimated association parameter

τ has less bias and root mean square error for the misspecified Student’s-t copula

rather than for the normal copula, which is the true one. Another example can be

found in Table 3.7 in which the Clayton and Frank copulas provide better estimates

for γ0 than the true normal copula. For sample size n = 50, we observed the same

behaviour for the two-part joint models but, as expected, with larger values for

the root mean square error, and in some cases with also more bias. Finally, the

sensitivity regarding the choice of copula is also evident in the number of times

each copula has been selected as the best fitting copula according to the AIC, for

each scenario. Even though the AIC the majority of times selects the true model,

the number of times it fails to do so is not negligible. These observations reinforce

our statement, presented in Section 3.2.2, that sensitivity analysis is necessary in

the joint modelling framework in order to investigate the impact of the modelling

assumptions.

3.8 Appendix A

The integrals involved in the specification of the E-step do not have a closed form

solution and thus are approximated using the Gauss-Hermite quadrature rule. In

particular,

E {A(byi, bti) | yi, Ti, δi} =
∫ ∫

A(byi, bti) p(byi, bti | yi, Ti, δi) dbyidbti

≈ 2q/2
∑

t1···tq

htA(t
√

2) p(t
√

2 | yi, Ti, δi) exp(‖t‖2),
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Table 3.3: Simulation results based on 500 data-sets under the normal scenario (i)
with sample size n = 200. The bias and root mean square error for each parameter are
presented. The line ‘AIC’ denotes the number of times each copula has been selected as
the best fitting copula according to the AIC.

Normal Student’s-t Clayton Frank
True Bias RMSE Bias RMSE Bias RMSE Bias RMSE

θd0 1.0 0.0052 0.2309 0.0052 0.2309 0.0052 0.2309 0.0052 0.2309
θd1 0.8 0.0444 0.3789 0.0444 0.3789 0.0444 0.3789 0.0444 0.3789
γ0 0.5 0.0522 0.3660 0.0607 0.3735 −0.0025 0.3078 0.0346 0.3425
γ1 1.5 −0.0191 0.3178 −0.0227 0.3178 0.0192 0.3268 −0.0152 0.3392
γd −0.5 −0.0043 0.4084 0.0059 0.4088 0.5516 0.6870 0.5068 0.6778
σt 0.5 −0.0195 0.1850 −0.0070 0.1944 −0.1712 0.1976 −0.1227 0.2075
β0 0.1 0.0129 0.2129 0.0151 0.2125 −0.0966 0.2209 −0.0872 0.2148
β1 1.5 0.1079 0.4617 0.1358 0.4788 0.1500 0.4843 0.1820 0.5417
β2 −1.0 −0.0901 0.4875 −0.1093 0.4979 −0.1669 0.4954 −0.1822 0.5677

σby0 2.0 −0.0553 0.1930 −0.0283 0.1844 −0.0317 0.1815 −0.2248 0.3040
σby1 1.0 0.0305 0.1909 0.0447 0.1833 0.0160 0.1267 −0.0471 0.1671
corby 0.4 0.0168 0.2045 0.0539 0.1965 0.2226 0.2923 0.3004 0.3465

ωt 2.0 −0.0147 0.1496 −0.0197 0.1569 −0.0445 0.1316 0.0790 0.1577
τ 0.5 0.0117 0.0654 0.0066 0.0560 0.0158 0.0829 0.0948 0.1149

AIC 236 (47.2%) 87 (17.4%) 103 (20.6%) 74 (14.8%)

Table 3.4: Simulation results based on 500 data-sets under the Student’s-t scenario (ii)
with sample size n = 200. The bias and root mean square error for each parameter are
presented. The line ‘AIC’ denotes the number of times each copula has been selected as
the best fitting copula according to the AIC.

Normal Student’s-t Clayton Frank
True Bias RMSE Bias RMSE Bias RMSE Bias RMSE

θd0 1.0 0.0079 0.2318 0.0079 0.2318 0.0079 0.2318 0.0079 0.2318
θd1 0.8 0.0361 0.3821 0.0361 0.3821 0.0361 0.3821 0.0361 0.3821
γ0 0.5 0.0540 0.3847 0.0452 0.3779 0.0071 0.3437 0.0413 0.3545
γ1 1.5 −0.0109 0.3112 −0.0111 0.3154 0.0398 0.3332 0.0016 0.3256
γd −0.5 −0.0119 0.4097 −0.0052 0.4080 0.5787 0.7398 0.5208 0.6890
σt 0.5 −0.0096 0.1787 −0.0149 0.1777 −0.1511 0.2035 −0.1224 0.2034
β0 0.1 0.0201 0.2222 0.0171 0.2198 −0.0914 0.2301 −0.0732 0.2236
β1 1.5 0.0406 0.4726 0.0803 0.4724 0.1016 0.4780 0.1473 0.5403
β2 −1.0 −0.0185 0.5068 −0.0595 0.5033 −0.1153 0.4975 −0.1391 0.5686

σby0 2.0 −0.0654 0.2142 −0.0411 0.1989 −0.0511 0.1918 −0.2479 0.3326
σby1 1.0 0.0052 0.1717 0.0198 0.1607 0.0182 0.1224 −0.0671 0.1682
corby 0.4 −0.0343 0.2233 −0.0037 0.2030 0.1625 0.2640 0.2611 0.3259

ωt 2.0 −0.0167 0.1531 −0.0133 0.1536 −0.0564 0.1376 0.0912 0.1625
τ 0.5 −0.0109 0.0352 0.0012 0.0609 0.0031 0.0898 0.0831 0.1093

AIC 128 (25.6%) 223 (44.6%) 84 (16.8%) 65 (13.0%)
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Table 3.5: Simulation results based on 500 data-sets under the Clayton scenario (iii)
with sample size n = 200. The bias and root mean square error for each parameter are
presented. The line ‘AIC’ denotes the number of times each copula has been selected as
the best fitting copula according to the AIC.

Normal Student’s-t Clayton Frank
True Bias RMSE Bias RMSE Bias RMSE Bias RMSE

θd0 1.0 0.0063 0.2340 0.0063 0.2340 0.0063 0.2340 0.0063 0.2340
θd1 0.8 0.0364 0.3815 0.0364 0.3815 0.0364 0.3815 0.0364 0.3815
γ0 0.5 −0.9074 0.9867 −0.8978 0.9766 −0.9308 1.0074 −0.8897 0.9733
γ1 1.5 −0.0256 0.3079 −0.0177 0.3059 0.0024 0.3142 −0.0247 0.3271
γd −0.5 −0.0149 0.4165 0.0055 0.4164 0.9261 1.0355 0.6666 0.8279
σt 0.5 0.0858 0.2000 0.1374 0.2298 0.0138 0.1862 0.0239 0.1941
β0 0.1 0.0469 0.2131 0.0538 0.2149 0.0159 0.2197 0.0020 0.2056
β1 1.5 0.0512 0.6562 0.1196 0.6958 0.2036 0.6437 0.2624 0.7458
β2 −1.0 0.0250 0.6671 −0.0366 0.6916 −0.1358 0.6388 −0.1465 0.7092

σby0 2.0 −0.1458 0.2693 −0.1221 0.2452 −0.0119 0.1824 −0.2570 0.3388
σby1 1.0 −0.0132 0.2044 −0.0247 0.1864 −0.0128 0.1113 −0.0970 0.1696
corby 0.4 0.0342 0.2560 0.0481 0.2475 −0.0104 0.2593 0.1790 0.3224

ωt 2.0 0.0164 0.1444 −0.0054 0.1419 −0.0284 0.1273 0.1439 0.2082
τ 0.5 −0.0363 0.0802 −0.0185 0.0738 −0.0094 0.0755 0.0491 0.0865

AIC 54 (10.8%) 31 (6.2%) 368 (73.6%) 47 (9.4%)

Table 3.6: Simulation results based on 500 data-sets under the Frank scenario (iv)
with sample size n = 200. The bias and root mean square error for each parameter are
presented. The line ‘AIC’ denotes the number of times each copula has been selected as
the best fitting copula according to the AIC.

Normal Student’s-t Clayton Frank
True Bias RMSE Bias RMSE Bias RMSE Bias RMSE

θd0 1.0 0.0110 0.2303 0.0110 0.2303 0.0110 0.2303 0.0110 0.2303
θd1 0.8 0.0297 0.3842 0.0297 0.3842 0.0297 0.3842 0.0297 0.3842
γ0 0.5 −0.7247 0.8020 −0.7156 0.7910 −0.7484 0.8306 −0.6969 0.7295
γ1 1.5 −0.0061 0.2793 −0.0159 0.2790 0.0006 0.2931 −0.0028 0.2830
γd −0.5 −0.0080 0.3714 −0.0038 0.3663 0.6785 0.8148 0.5733 0.6033
σt 0.5 0.2216 0.3021 0.2387 0.3125 0.1080 0.2734 0.0249 0.2032
β0 0.1 −0.0127 0.2109 −0.0188 0.2139 −0.0193 0.2294 0.0054 0.2099
β1 1.5 0.1235 0.6934 0.1786 0.7251 0.1683 0.6808 0.1372 0.7012
β2 −1.0 −0.0784 0.7199 −0.1338 0.7476 −0.1667 0.6976 −0.0364 0.6205

σby0 2.0 −0.0746 0.2363 −0.0469 0.2161 0.0966 0.2197 −0.0604 0.2129
σby1 1.0 0.1819 0.3337 0.1332 0.2677 0.1007 0.2276 0.0153 0.1604
corby 0.4 0.1590 0.2890 0.1646 0.2784 0.0349 0.3089 0.0135 0.2626

ωt 2.0 −0.3134 0.3540 −0.3200 0.3612 −0.2951 0.3424 −0.0679 0.1887
τ 0.5 −0.0921 0.1204 −0.0813 0.1109 −0.0910 0.1446 0.0011 0.0654

AIC 59 (11.8%) 58 (11.6%) 76 (15.2%) 307 (61.4%)
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Table 3.7: Simulation results based on 500 data-sets under the normal scenario (i)
with sample size n = 50. The bias and root mean square error for each parameter are
presented. The line ‘AIC’ denotes the number of times each copula has been selected as
the best fitting copula according to the AIC.

Normal Student’s-t Clayton Frank
True Bias RMSE Bias RMSE Bias RMSE Bias RMSE

θd0 1.0 0.0569 0.5193 0.0569 0.5193 0.0569 0.5193 0.0569 0.5193
θd1 0.8 0.5450 3.1888 0.5450 3.1888 0.5450 3.1888 0.5450 3.1888
γ0 0.5 0.1478 0.7275 0.1718 0.7530 0.0923 0.4826 0.0945 0.5770
γ1 1.5 −0.0299 0.5141 −0.0443 0.5317 0.0618 0.5096 0.0386 0.5061
γd −0.5 −0.0451 0.7833 −0.0383 0.7822 0.3322 0.6532 0.3175 0.7076
σt 0.5 −0.1299 0.2849 −0.1157 0.2958 −0.2599 0.2799 −0.2487 0.2740
β0 0.1 0.0627 0.4166 0.0641 0.4248 −0.0890 0.4461 −0.1083 0.4168
β1 1.5 0.4324 1.3088 0.4719 1.3201 0.4441 1.1714 0.4895 1.3950
β2 −1.0 −0.3439 1.3625 −0.3727 1.3704 −0.4032 1.1774 −0.4558 1.4572

σby0 2.0 −0.0970 0.3786 −0.0516 0.3566 −0.0498 0.3245 −0.1843 0.4111
σby1 1.0 0.0049 0.2126 0.0889 0.3360 0.0132 0.2004 −0.0054 0.2726
corby 0.4 −0.0154 0.3930 −0.0382 0.3756 0.1278 0.3916 0.2110 0.3852

ωt 2.0 −0.0222 0.2972 −0.0350 0.3178 −0.0821 0.2403 0.0348 0.2331
τ 0.5 −0.0008 0.1228 −0.0137 0.1165 −0.0331 0.1649 0.0626 0.1376

AIC 159 (31.8%) 89 (17.8%) 143 (28.6%) 109 (21.8%)

Table 3.8: Simulation results based on 500 data-sets under the Student’s-t scenario (ii)
with sample size n = 50. The bias and root mean square error for each parameter are
presented. The line ‘AIC’ denotes the number of times each copula has been selected as
the best fitting copula according to the AIC.

Normal Student’s-t Clayton Frank
True Bias RMSE Bias RMSE Bias RMSE Bias RMSE

θd0 1.0 0.0561 0.5186 0.0561 0.5186 0.0561 0.5186 0.0561 0.5186
θd1 0.8 0.4898 2.9970 0.4898 2.9970 0.4898 2.9970 0.4898 2.9970
γ0 0.5 0.1174 0.6226 0.1085 0.6409 0.0624 0.4779 0.0683 0.5070
γ1 1.5 0.0195 0.5584 0.0106 0.5583 0.0373 0.4598 0.0456 0.5133
γd −0.5 −0.0263 0.6964 −0.0137 0.6897 0.3703 0.6730 0.3729 0.6805
σt 0.5 −0.1503 0.2844 −0.1292 0.2903 −0.2620 0.2844 −0.2354 0.2873
β0 0.1 0.0856 0.4101 0.0793 0.4139 −0.0735 0.4963 −0.0891 0.4241
β1 1.5 0.3159 1.2349 0.3659 1.2150 0.4589 1.2562 0.4759 1.4233
β2 −1.0 −0.2008 1.2479 −0.2622 1.2009 −0.3999 1.2391 −0.4309 1.3975

σby0 2.0 −0.0787 0.3575 −0.0517 0.3494 −0.0677 0.3128 −0.2005 0.4125
σby1 1.0 0.1112 0.3709 0.0601 0.2856 0.0079 0.2269 −0.0362 0.2335
corby 0.4 −0.0570 0.4077 −0.0594 0.3779 0.1004 0.4284 0.1780 0.3910

ωt 2.0 −0.0107 0.2918 −0.0317 0.2961 −0.0807 0.2471 0.0568 0.2430
τ 0.5 −0.0165 0.1314 −0.0230 0.1207 −0.0464 0.1848 0.0531 0.1395

AIC 120 (24.0%) 115 (23.0%) 141 (28.2%) 124 (24.8%)
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Table 3.9: Simulation results based on 500 data-sets under the Clayton scenario (iii)
with sample size n = 50. The bias and root mean square error for each parameter are
presented. The line ‘AIC’ denotes the number of times each copula has been selected as
the best fitting copula according to the AIC.

Normal Student’s-t Clayton Frank
True Bias RMSE Bias RMSE Bias RMSE Bias RMSE

θd0 1.0 0.0619 0.5552 0.0619 0.5552 0.0619 0.5552 0.0619 0.5552
θd1 0.8 0.5262 3.2102 0.5262 3.2102 0.5262 3.2102 0.5262 3.2102
γ0 0.5 −0.8270 1.1638 −0.8221 1.1497 −0.7270 1.0631 −0.6868 1.0321
γ1 1.5 0.0006 0.6456 0.0151 0.6448 0.0361 0.5801 −0.0255 0.5954
γd −0.5 −0.0126 0.8695 0.0059 0.8495 0.8588 1.1989 0.6774 1.0846
σt 0.5 0.0150 0.2911 0.0686 0.3130 −0.1864 0.2761 −0.1455 0.2825
β0 0.1 0.0898 0.4642 0.0955 0.4695 0.0140 0.4694 0.0068 0.4289
β1 1.5 0.8313 3.5437 0.6959 2.9828 0.8175 2.7667 0.9618 3.0770
β2 −1.0 −0.6773 3.5421 −0.5415 2.9658 −0.7066 2.7117 −0.7944 3.0267

σby0 2.0 −0.1557 0.3971 −0.1241 0.3584 −0.0055 0.3103 −0.2347 0.4302
σby1 1.0 0.1622 0.4481 0.0361 0.2930 −0.0163 0.2262 −0.0675 0.2225
corby 0.4 −0.0303 0.4604 −0.0865 0.4280 −0.2586 0.5070 −0.0943 0.4599

ωt 2.0 −0.0193 0.2997 −0.0454 0.3046 −0.0328 0.2178 0.1734 0.3119
τ 0.5 −0.0307 0.1397 −0.0430 0.1309 −0.0173 0.1633 0.0660 0.1338

AIC 59 (11.8%) 39 (7.8%) 293 (58.6%) 109 (21.8%)

Table 3.10: Simulation results based on 500 data-sets under the Frank scenario (iv)
with sample size n = 50. The bias and root mean square error for each parameter are
presented. The line ‘AIC’ denotes the number of times each copula has been selected as
the best fitting copula according to the AIC.

Normal Student’s-t Clayton Frank
True Bias RMSE Bias RMSE Bias RMSE Bias RMSE

θd0 1.0 0.0554 0.5080 0.0554 0.5080 0.0554 0.5080 0.0554 0.5080
θd1 0.8 0.5424 3.1396 0.5424 3.1396 0.5424 3.1396 0.5424 3.1396
γ0 0.5 −0.6909 1.0083 −0.6779 0.9904 −0.4908 0.8235 −0.5567 0.8750
γ1 1.5 −0.0125 0.5684 −0.0157 0.5770 −0.0046 0.4988 −0.0009 0.5045
γd −0.5 0.0031 0.7896 0.0021 0.7840 0.5861 0.9640 0.6450 0.9698
σt 0.5 0.1157 0.3347 0.1539 0.3590 −0.1596 0.2813 −0.1434 0.2788
β0 0.1 0.0256 0.4435 0.0178 0.4645 0.0129 0.5623 -0.0020 0.4464
β1 1.5 0.5263 2.4957 0.5694 2.5227 0.6159 2.5402 0.5721 2.3889
β2 -1.0 -0.4654 2.5157 -0.5100 2.5411 -0.6006 2.5242 -0.5129 2.3896

σby0 2.0 −0.0946 0.3773 −0.0490 0.3455 0.1055 0.3502 −0.0692 0.3565
σby1 1.0 0.2997 0.5695 0.1555 0.3952 0.0681 0.3026 0.0351 0.2795
corby 0.4 0.0628 0.4454 0.0183 0.4132 −0.2068 0.4819 −0.1503 0.4266

ωt 2.0 −0.3318 0.4395 −0.3433 0.4462 −0.1968 0.3047 −0.0242 0.2555
τ 0.5 −0.0930 0.1687 −0.0978 0.1672 −0.1037 0.2057 0.0240 0.1141

AIC 55 (11.0%) 53 (10.6%) 169 (33.8%) 223 (44.6%)
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where q denotes the integral dimension,
∑

t1···tq

is used as shorthand for
∑
t1

· · ·∑
tq

,

t> = (t1, . . . , tq) are the abscissas with corresponding weights ht, and ‖·‖2 denotes

the square of the Euclidean distance.

A known problem of the Gaussian-Hermite rule (Pinheiro and Bates, 1995), is

that it assumes that the main mass of the integrand is around zero, which might

not be the case for certain individuals. The adaptive Gauss-Hermite rule solves

this problem by centering and rescaling the integrand in each iteration, increasing

however dramatically the computational burden. In order to avoid both the poor

approximation of the simple Gauss-Hermite rule and the computational complexity

of the adaptive rule, we use the EB estimates and their standard error from the

ignorable models, to center and scale the integrand. Even though this procedure is

not a fully adaptive rule, we expect that the ignorable EB estimates provide a good

approximation to the patients’ standing in the random effects dimension, resulting

in an acceptable integral approximation with a moderate number of quadrature

points.

3.9 Appendix B

Here we present the form of ∂u/∂ωy = ∂Hy(byi;ωy)/∂ωy, used in the M-step of

the EM algorithm, where Hy(byi; ωy) denotes the normal cumulative distribution

function (cdf) with zero mean and variance components parameterized through

ωy. We present two cases; univariate and bivariate random effects. First, in the

univariate case, with byi representing a random intercepts term, we get

∂

∂ωy
Hy(byi; ωy) = −byi

ωy
p(byi;ωy),

where p(byi; ωy) denotes the normal probability density function with zero mean

and standard deviation ωy. Second, in the bivariate case, where byi = (by1i, by2i),

we use the parameterization of the bivariate normal cdf considered in Drezner and
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Wesolowsky (1989):

Hy(by1i, by2i; ωy1, ωy2, ρ)

=
(ωy1ωy2)

−1

2π
p

1− ρ2

by1iZ

−∞

by2iZ

−∞

exp

�
−h2

1/ω2
y1 + h2

2/ω2
y2 − 2ρh1h2/ωy1ωy2

2(1− ρ2)

�
dh1dh2

= Hy(by1i; ωy1)Hy(by2i; ωy2) +

1

2π

ρZ

0

exp{−(b2
y1i/ω2

y1 + b2
y2i/ω2

y2 − 2rby1iby2i/ωy1ωy2)/2(1− r2)}√
1− r2

dr,

which leads to the following expressions for the partial derivatives with respect to

the correlation ρ, and the standard deviations ωy1, and ωy2

∂Hy(by1i, by2i; ωy1, ωy2, ρ)

∂ρ
=

exp{−(b2
y1i/ω2

y1 + b2
y2i/ω2

y2 − 2ρby1iby2i/ωy1ωy2)/2(1− ρ2)}
2π
p

1− ρ2
,

∂Hy(by1i, by2i; ωy1, ωy2, ρ)

∂ωy1
= − by1i

ωy1
p(by1i; ωy1)Hy(by2i; ωy2)

+

ρZ

0

B(r) exp{−(b2
y1i/ω2

y1 + b2
y2i/ω2

y2 − 2rby1iby2i/ωy1ωy2)/2(1− r2)}
2π
√

1− r2
dr,

where

B(r) =
2by1i

ω2
y1

√
1− r2

�
by1i

ωy1
− rby2i

ωy2

�
,

and ∂Hy(by1i, by2i;ωy1, ωy2, ρ)/∂ωy2 is derived analogously. The integral over r

can be easily approximated using an adaptive Gauss-Kronrod rule (Piessens et al.,

1983).
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3.10 Appendix C

The form of ˜̀{(γ>, γd)} and ˜̀(σt) under the Weibull model is

˜̀{(γ>, γd)} = σ−1
t

n∑

i=1

{exp(ζ̃i)− δi}ẅi

˜̀(σt) = σ−1
t

n∑

i=1

Ãi − (1 + ζ̃)δi,

where ζ̃i = (log Ti − w>i γ − diγd − b̃ti)/σt, with b̃ti =
∫

bti p(byi | yi, Ti, δi) dbti,

and Ai = ζi exp(ζi).
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CHAPTER

4 Fully Exponential Laplace

Approximations for the Joint Modelling

of Survival and Longitudinal Data

Abstract

A common objective in longitudinal studies is the joint modelling of a longitudi-

nal response with a time-to-event outcome. Random effects are typically used in

the joint modelling framework to explain the interrelationships between these two

processes. However, estimation in the presence of random effects involves intrac-

table integrals requiring therefore numerical integration. In this paper we propose

a new computational approach for fitting such models based on the Laplace me-

thod for integrals that makes the consideration of high dimensional random effects

structures feasible. Contrary to the common Laplace approximation, our method

requires much less repeated measurements per individual in order to produce re-

liable results.

81
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Keywords: B-splines; EM algorithm; Dropout; Longitudinal models; Shared para-

meter model; Survival models.

4.1 Introduction

Longitudinal studies often produce two types of outcomes, namely a set of longitu-

dinal response measurements and the time to an event of interest. Joint modelling

of these two processes is required mainly in three settings. First, in a survi-

val analysis context in order to measure the effect of a time-dependent covariate

measured with error. Secondly, in longitudinal studies in order to adjust derived

inferences for possibly outcome-dependent dropout, and finally, in investigating

the association structure between the longitudinal and event time processes. A

well known example is found in AIDS research in which a biomarker such as CD4

lymphocyte count is measured intermittently and its relationship with time to

seroconversion or death is of interest (Tsiatis and Davidian, 2004).

Shared parameter models (Tsiatis and Davidian, 2004; Follmann and Wu, 1995)

provide an appealing framework for the joint modelling of survival and longitudinal

data. In particular, in these models it is assumed that a latent process, expressed

by a set of time-invariant random effects, induces the dependence between the two

explicitly observed processes. Even though the use of random effects facilitates

the use of flexible submodels for the involved processes, the need for numerical

integration makes the estimation of shared parameter models rather computatio-

nally demanding. Common numerical integration techniques such as Gaussian

quadrature and Monte Carlo have been successfully applied in the joint modelling

framework (Song et al., 2002; Henderson et al., 2000). However, in such methods

the computational burden increases exponentially with the dimensionality of the

integration, which renders the consideration of complex random effects structures

(e.g., modelling nonlinear subject-specific trajectories with splines or high-order
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polynomials) rather prohibitive. A practical alternative in such settings is the

Laplace method for integrals (De Bruijn, 1981). The main computational com-

plexity of the Laplace approximation is the requirement of locating the mode of

the integrand with respect to the random effects. Thus, when the dimensionality

of the integration is increased, the computational burden of the Laplace method

is smaller compared to the quadrature or Monte Carlo integration approaches.

Even though the Laplace approximation is appealing in high dimensional settings,

the order of the approximation error is O(n−1
i ), with ni denoting the number of

repeated measurements for the ith subject. This implies that in order for the

Laplace method to work satisfactorily, many repeated measurements per subject

are required.

In this paper we consider a new type of Laplace approximation for the joint

modelling of survival and longitudinal data that is of order O(n−2
i ). The proposed

approximation requires locating the same modes as in the original O(n−1
i ) approxi-

mation and the computation of a correction term based on these modes. Thereby

a better approximation is achieved with computational complexity of the same

order as in the common Laplace method. The main idea is to apply the Laplace

approximation to the score vector of the shared parameter model, which is expres-

sed as the expected value of the score vector conditional on the random effects,

with respect to the posterior distribution of the random effects given the observed

data. Our method is based on the fully exponential Laplace approximation, pro-

posed by Tierney, Kass, and Kadane (1989) for approximating posterior moments

of nonpositive functions in a Bayesian analysis context. A similar approach has

been also considered by Steel (1996) for the estimation of generalized mixed mo-

dels. An additional contribution of our work is the formulation of the cumulative

baseline hazard function for the survival outcome. In the joint modelling context,

an unspecified baseline hazard function is typically assumed for the event process

to protect the derived inferences against misspecification. However, recently Hsieh
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et al. (2006) noted that the use of the profile likelihood approach, which is required

in this case, leads to underestimation of standard errors. Thus, here we postulate

a flexible but parametric model for the cumulative baseline hazard function by ex-

panding it into B-splines basis functions. Under this formulation, the computation

of standard errors derives from standard maximum likelihood theory. The requi-

red monotonicity constraint is imposed by reparameterizing the basis coefficients

similarly to the reparameterization of the threshold coefficients in the proportional

odds model. Finally, we also investigate the asymptotic properties of the propo-

sed Laplace based maximum likelihood estimators when both the sample size and

number of repeated measurements per individual grow to infinity.

This research is motivated by a study on 4071 patients that underwent, be-

tween 1/21/1983 and 8/16/2000, a primary renal transplantation with a graft

from a deceased or living donor in the University Hospital Gasthuisberg of the

Catholic University of Leuven (Belgium). The clinical interest lies in the long

term performance of the new graft, and especially in the graft survival for over

a ten year period. During the follow-up period patients were periodically tested

for the performance of the graft. In the present analysis interest lies in the use

of longitudinal haematocrit measurements as a prognostic factor for time to graft

failure. An interesting feature of the data is that the longitudinal subject-specific

profiles are highly nonlinear, as it is also illustrated in Figure 4.1 for eight randomly

selected patients. For a preliminary ignorable analysis (i.e., ignoring the survival

process) of the data, a linear mixed model is posited, in which subject-specific

time evolutions are modelled nonlinearly using natural cubic splines with seven

degrees of freedom. Table 4.1 shows a comparison of this model with simpler li-

near mixed models assuming linear and quadratic subject-specific time evolutions,

respectively. Both AIC and BIC values support the use of natural cubic splines

1The difference with the number of patients in Chapters 2 and 3 is due to the fact that
haematocrit measurements were not available for all 432 patients.
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Figure 4.1: Haematocrit subject-specific longitudinal trajectories for eight randomly
selected patients. The top-row panels depict patients who experience graft failure and the
bottom-row panels censored patients. The superimposed lines represent fitted curves using
the loess smoother.

Table 4.1: Ignorable analysis of the renal graft failure data. Three linear mixed models
are fitted assuming linear, quadratic and nonlinear (using natural cubic splines with 7
degrees of freedom) subject-specific evolutions in time. ‘#’ denotes the number of pa-
rameters in the model, ‘AIC’ and ‘BIC’ the Akaike and Bayesian Information Criteria
values, respectively, and ‘log-Lik’ the log-likelihood value. AIC and BIC are defined such
that smaller values are better.

Model # AIC BIC log-Lik
Linear 7 369089 369152 −184537.5

Quadratic 11 354553 354652 −177265.5
Natural splines 46 310231 310644 −155069.5



86 Chapter 4

for modelling the time evolutions. This suggests that in the joint modelling analy-

sis of the data we should allow for such nonlinearities. In order to fit the joint

model under this high-dimensional random effects structure the proposed Laplace

approximation is used.

The remaining of the paper is organised as follows: Section 4.2 presents the

shared parameter model framework and the specification of the submodels for

the involved processes. Section 4.3 presents the Laplace based EM algorithm

for obtaining the maximum likelihood estimates under the proposed model and

Section 4.4 discusses the asymptotic behaviour of the Laplace estimators. Finally,

Section 4.5 discusses some simulation results and Section 4.6 presents the analysis

of the renal graft failure data.

4.2 Joint Modelling Framework

4.2.1 Shared Parameter Model

Let T ∗i denote the true failure time for the ith subject (i = 1, . . . , n) and Ti =

min(T ∗i ,Ji) the observed failure time, where Ji is the censoring time. Define the

event indicator as δi = I(T ∗i ≤ Ji), where I(·) is the indicator function. Let yij =

{yi(tij), j = 1, . . . , ni} denote the longitudinal response measurements for the ith

subject taken at time points tij . Finally, let bi represent time-independent random

effects that underly both the longitudinal measurement and survival processes.

The joint likelihood contribution of the ith subject for the two outcomes, omitting

covariates in the notation, is defined as

p(Ti, δi, yi; θ) =
∫ {

p(Ti | bi; θ)δiS(Ti | bi; θ)1−δi
}
p(yi | bi; θ)p(bi; θ) dbi, (4.1)

where θ is the parameter vector, yi is the vector of longitudinal responses of the

ith subject, and p(·) denotes appropriate probability density functions. For the
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event process, S(·) denotes the survival function conditional on the random effects.

Furthermore, we make the assumption that both the censoring and the visiting

processes are noninformative, i.e., independent of bi, Ti and yi, and can thus be

ignored from the modelling procedure (Tsiatis and Davidian, 2004).

4.2.2 Longitudinal Responses Submodel

For the longitudinal process we postulate a linear mixed effects model formulated

as

yi(tij) = Wi(tij) + εi(tij), εi(tij) ∼ N (0, σ2), (4.2)

where Wi(tij) = x>i (tij)β + z>i (tij)bi, Xi and Zi are the ni × qx and ni × qz

design matrices (with corresponding row vectors x>i (tij) and z>i (tij)) for the fi-

xed and random effects, β and bi, respectively. In order to model flexibly the

subject-specific profiles, we assume that both Xi(t) and Zi(t) contain a poten-

tially high-dimensional vector of functions f(t) of time t, expressed in terms of

high-order polynomials or splines. The term εi(tij) denotes measurement error

independent of bi. In addition, we assume that the correlation between the repea-

ted measurements in the longitudinal process is captured by the random effects,

i.e., cov{εi(t), εi(t′)} = 0, for t 6= t′, and thus the conditional independence as-

sumption p(yi | bi; θ) =
∏

j p{yi(tij) | bi; θ}, holds for all i. Extensions to more

complex error structures including serial correlation terms are straightforward but

are not considered here. Finally, regarding the random effects, Song et al. (2002)

have explored the need for more flexible assumptions for their distribution in the

joint modelling framework; however, they discovered that parameter estimates

and standard errors are rather robust to misspecifications, a feature that has been

also theoretically corroborated by Rizopoulos, Verbeke, and Molenberghs (2008)

and Hsieh et al. (2006). We therefore assume bi to follow a multivariate normal

distribution with mean zero and variance-covariance matrix D, without requiring
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further investigation of this assumption.

4.2.3 Survival Submodel

The submodel for the event process accommodates the effects of the longitudinal

time-dependent covariate and additional baseline covariates. In particular, the

model is formulated for the logarithm of the cumulative hazard function for the

ith subject as

log Hi(t | bi) = log H0(t) + αWi(t) + γ>xti, (4.3)

where xti denotes the qxt × 1 vector of baseline covariates, α and γ are regression

coefficients, and H0(·) is the cumulative baseline hazard. This model is related to

the time-varying Cox model with covariates affecting the log cumulative hazard

ratio instead of the log hazard ratio. In order to allow for flexibility in the speci-

fication of the survival model we expand log H0(t) into B-spline basis functions

given by

log H0(t) = s(log t;ω) = ω0 +
m∑

k=1

ωkBk(log t, q), (4.4)

where ω> = (ω0, ω1, . . . , ωm), q denotes the degree of the B-splines and m =

m̈ + q − 1, with m̈ denoting the number of interior knots. Our motivation for

postulating a flexible model for the logarithm of the cumulative baseline hazard

function is that log H0 is typically gently curved or nearly linear as a function of

log t, and is usually very smooth. Thus, few knots will be required to capture

its shape. To complete the definition of the event model we need to assure that

log H0(t) is a nondecreasing function of t or equivalently of log t. Monotonicity

can be achieved in the following way. The derivative ∂s(log t; ω)/∂ log t can be

written as (Dierckx, 1995):
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∂s(log t; ω)/∂ log t =
∑

k

ωk

{
∂Bk(log t, q)/∂ log t

}

= q
∑

k

ωk+1 − ωk

λk+q+1 − λk
Bk(log t, q − 1), (4.5)

where {λk} denotes a vector of knot positions with nondecreasing values. Then,

since by definition Bk(log t, q−1) ≥ 0 (Dierckx, 1995), monotonicity is guaranteed

if the sequence of coefficients ωk is nondecreasing, i.e., ωk+1 ≥ ωk, for all k. To

avoid the imposition of inequality constraints, we make the following reparameteri-

zation: ω1 = ω∗1 , ωk = ωk−1+exp(ω∗k), for k > 1, where ω∗k’s are unconstrained. In

the remainder of the paper and for notational simplicity ω∗k will be denoted as ωk.

Similar models have been considered by Rosenberg (1995) who proposed to esti-

mate the hazard function using B-splines, and by Royston and Parmar (2002) who

modelled log H0(t) using natural cubic splines but without imposing the required

monotonicity constraint.

According to our experience, the placement of the boundary and internal knots

does not appear critical for a good fit of the model. In particular, we suggest that

the boundary knots are placed at the extreme log survival times, and the internal

knots at quantiles of the uncensored log survival times. Four or five internal knots

usually provide a reasonably good fit. The rationale for placing the internal knots

according to quantiles of the uncensored survival times is to allow the data to be

most closely modelled in the region of greatest density.
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4.3 Estimation via an EM Algorithm

4.3.1 Score Vector and EM algorithm

The maximum likelihood estimates in the joint modelling framework are typically

obtained using standard maximization algorithms such as the EM or the Newton-

Raphson (Lange, 2004). For the former, bi’s are treated as missing data. The key

component for applying either of these two algorithms in joint models is the score

vector of the observed data log-likelihood function `(θ) =
∑

i log p(Ti, δi, yi; θ).

According to (4.1) and the submodels specification presented in Section 4.2, `(θ)

is easily found to be proportional to (i.e., constant terms are excluded)

`(θ) ∝
∑

i

log
∫ {

1
Ti

∂s(log Ti;ω)
∂ log Ti

exp
[
ηi(bi)− exp{ηi(bi)}

]}δi

{
exp

[− exp{ηi(bi)}
]}1−δi × (σ2)−ni/2 exp

{− ‖ yi −Xiβ − Zibi ‖2 /2σ2
}

×det(D)−1/2 exp
(−b>i D−1bi/2

)
dbi, (4.6)

where ηi(bi) = s(log Ti; ω) + αWi(Ti) + γ>xti, ∂s(log t; ω)/∂ log t is given in (4.5),

and ‖ · ‖ denotes the Euclidean vector norm. It can be easily shown that the score

vector under (4.6) is written as

S(θ) =
∂`(θ)
∂θ>

=
∑

i

∂

∂θ>
log

∫
p(Ti, δi | bi; θ)p(yi | bi; θ)p(bi; θ) dbi

=
∑

i

∫
h(θ, bi)p(bi | Ti, δi, yi; θ) dbi, (4.7)

where p(Ti, δi | bi; θ) = p(Ti | bi; θ)δiS(Ti | bi; θ)1−δi , and h(·) denotes the complete

data score vector given by h(θ, bi) = ∂ log p(Ti, δi, yi, bi)/∂θ> = ∂{log p(Ti, δi |
bi; θ)+log p(yi | bi; θ)+log p(bi; θ)}/∂θ>. Note that the observed data score vector

is expressed as the expected value of the complete data score vector with respect

to the posterior distribution of the random effects. This implies that (4.7) can
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play a double role. In particular, if the score equations corresponding to (4.7) are

solved with respect to θ with p(bi | Ti, δi, yi; θ) fixed at the θ value of the previous

iteration, then this corresponds to an EM algorithm, whereas if the score equations

are solved with respect to θ considering p(bi | Ti, δi, yi; θ) also as a function of θ,

then this corresponds to a maximization of the observed data log-likelihood `(θ).

As we will discuss further, this appealing feature allows for an easy interchange

between maximization algorithms and in a straightforward calculation of standard

errors.

Here the EM algorithm is used; the use of a Newton-type algorithm is briefly

presented in Section 4.7. The measurement error variance in the longitudinal

measurement model and the covariance matrix of the random effects are updated

in the M-step according to the closed-form expressions

σ̂2 = N−1
∑

i

∫ {
(yi −Xiβ − Zibi)>(yi −Xiβ − Zibi)

}
p(bi | Ti, δi, yi; θ) dbi

= N−1
∑

i

(yi −Xiβ)>(yi −Xiβ − 2Zib̃i) + tr(Z>i Ziṽbi) + b̃>i Z>i Zib̃i,

D̂ = n−1
∑

i

ṽbi + b̃ib̃
>
i ,

where N =
∑

i ni, b̃i = E(bi | Ti, δi, yi; θ), ṽbi = var(bi | Ti, δi, yi; θ). For the

parameters θ>t = (ω>, γ>, α) of the survival process closed-form solutions of the

score equations do not exist and thus the M-step is implemented via an one-step

Newton-Raphson update, given by

β̂cr+1 = β̂cr − {
∂S(β̂cr)/∂β

}−1
S(β̂cr) (4.8)

θ̂cr+1
t = θ̂cr

t − {
∂S(θ̂cr

t )/∂θt

}−1
S(θ̂cr

t ), (4.9)

where β̂ and θ̂cr
t denotes the values of β and θt at the current iteration, respectively,

and ∂S(β̂cr)/∂β and ∂S(θ̂cr
t )/∂θt denotes the Hessian matrices evaluated at β̂cr
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and θ̂cr
t , respectively. The score vectors for β and θt have the form

S(β) =
∑

i

X>
i {yi −Xiβ − Zib̃i}/σ2 +

∫ (
αxi(Ti)[δi − exp{ηi(bi)}]

)

p(bi | Ti, δi, yi; θ) dbi, (4.10)

S(θt) =
∑

i

∫ [
δi

∂

∂θ>t
log

∂s(log Ti; ω)
∂ log Ti

+ [δi − exp{ηi(bi)}]∂ηi(bi)
∂θ>t

]

p(bi | Ti, δi, yi; θ) dbi. (4.11)

The Hessian matrices ∂S(β)/∂β and ∂S(θt)/∂θt are computed using a central

difference approximation (Press et al., 2007).

4.3.2 Laplace Approximations for Posterior Moments

The calculation of the M-step updates, presented in Section 4.3.1, requires the

specification of the E-step expectations. Under the score vector (4.7) these expec-

tations are of the form

E{A(bi) | Ti, δi, yi; θ} =
∫

A(bi)p(bi | Ti, δi, yi; θ) dbi (4.12)

=
∫

A(bi)p(Ti, δi | bi; θ)p(yi | bi; θ)p(bi) dbi∫
p(Ti, δi | bi; θ)p(yi | bi; θ)p(bi) dbi

, (4.13)

where A(·) denotes a function of the random effects, and θ in the posterior di-

stribution p(bi | Ti, δi, yi; θ) is fixed to its value from the previous iteration. For

the M-step updates presented in Section 4.3.1, A(·) takes the following forms:

A(bi) = bi, A(bi) = exp{ηi(bi)}, and A(bi) = exp{ηi(bi)}z>i (t)bi. Furthermore, for

the closed-form updates of σ̂2 and D̂ we also need ṽbi = var{A(bi) | Ti, δi, yi; θ},
with A(bi) = bi.

Unfortunately, the integrals in (4.12) and (4.13) do not have closed-form solu-

tions and therefore numerical integration methods are usually employed for their
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calculation. The Laplace method for integrals provides an appealing approxi-

mation in such settings, especially when the dimensionality of the integration is

high. The Laplace approximation is typically applied in (4.12) by expanding the

logarithm of the integrand using a second-order Taylor series around the mode

with respect to bi. The error of this approximation is of order O(n−1
i ). Here

we apply a fully exponential Laplace approximation in the numerator and deno-

minator of (4.13), as it has been proposed by Tierney et al. (1989) for appro-

ximating posterior moments in the Bayesian analysis context. Let E{A(bi)} =

E{A(bi) | Ti, δi, yi; θ}; Tierney et al.’s approximation is applied in positive fu-

nctions and thus the cumulant generating function log E
[
exp{c>A(bi)}

]
is used,

where A(bi) is assumed to have a nonzero derivative at b̂i = b̂
(0)
i , with b̂

(c)
i =

arg maxb{log p(Ti, δi, yi, b) + c>A(b)}. Then the required expectations are given

as E{A(bi)} = ∂ log E
[
exp{c>A(bi)}

]
/∂c> |c=0. The approximation is perfor-

med in two steps. First, the modes b̂i are obtained for each subject using the

Newton-Raphson scheme

b̂it+1
i = b̂it

i − Σ−1
i L(b̂it

i ), (4.14)

where it denotes the iteration,

L(bi) = −∂
{
log p(Ti, δi | bi) + log p(yi | bi) + log p(bi)

}

∂b>i
= −α

[
δi − exp{ηi(bi)}

]
zi(t)− Z>i (yi −Xiβ − Zibi)/σ2 + D−1bi,

and Σi = Σ(c)
i |(c,b)=(0,b̂i)

, with

Σ(c)
i = −∂2

{
log p(Ti, δi | bi) + log p(yi | bi) + log p(bi) + c>A(bi)

}

∂b>i ∂bi

= α2 exp{ηi(bi)}zi(t)z>i (t) + Z>i Zi/σ2 + D−1 −

∂2c>A(bi)/∂b>i ∂bi. (4.15)
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The Newton-Raphson algorithm in (4.14) converges very fast, since in this case the

objective function is g(bi) = log p(Ti, δi | bi) + log p(yi | bi) + log p(bi), for which,

especially as ni increases, the leading term is log p(yi | bi) =
∑

j log p{yi(tij) |
bi}, which is quadratic in bi. In the second step, a fully exponential Laplace

approximation is applied to log E
[
exp{c>A(bi)}

]
; by differentiating the result and

evaluating at c = 0 we obtain the following formulas for approximating E{A(bi)}
and var{A(bi)}, respectively:

E{A(bi)} = A(b̂i) +
∂ log

{
det

(
Σ(c)

i

)}−1/2

∂c>
|(c,b)=(0,b̂i)

+O(n−2
i )

= A(b̂i)− 1
2
tr(V) + O(n−2

i ), (4.16)

var{A(bi)} = A′>(b̂i)Σ−1
i A′(b̂i) +

∂2 log
{
det

(
Σ(c)

i

)}−1/2

∂c>∂c
|(c,b)=(0,b̂i)

+O(n−3
i )

= A′>(b̂i)Σ−1
i A′(b̂i)−

1
2
tr

{
−VV> + Σ−1

i

∂2

∂c>∂c
Σ(c)

i |(c,b)=(0,b̂i)

}
+ O(n−3

i ), (4.17)

where A′(bi) = ∂A(bi)/∂b>i , and V = Σ−1
i {∂Σ(c)

i /∂c>} |(c,b)=(0,b̂i)
. Thus, given the

b̂i values, the approximations require evaluation of A(b̂i) and some extra correction

terms the calculation of which is presented in Appendix A.

The appealing feature of the fully exponential Laplace approximation is that

equations (4.16) and (4.17) are computed at b̂i, implying that only one opti-

mization with respect to bi is needed in each iteration. In order to appreciate

the importance of this feature we compare this approximation with the common

Laplace approximation, when an EM algorithm or a direct maximization of the

log-likelihood is used to derive the maximum likelihood estimates. In particular,

applying the common Laplace in the EM algorithm described above, requires an

optimization with respect to bi for each different A(·) function, increasing thus

the computational burden considerably. On the other hand, in a direct maximi-
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zation of the observed data log-likelihood only the integral in (4.6) needs to be

approximated that requires one optimization. Note that in the common Laplace

approximation of `(θ) the same b̂i’s are required as in the fully exponential Laplace

approximation described above. Thus, in this case, the computational burden of

the O(n−2
i ) and O(n−1

i ) approximations is of the same magnitude, since the ca-

lculation of the correction terms is not computationally demanding. However, the

approximation error in the fully exponential Laplace method in (4.16) and (4.17)

is of order O(n−2
i ) and O(n−3

i ), respectively, implying that the derived parameter

estimators will enjoy better asymptotic properties, as we also discuss in Section

4.4, compared to the O(n−1
i ) approximation.

4.3.3 Standard Errors

One of the features of our model is that a flexible but parametric cumulative ba-

seline hazard has been considered using B-splines. An advantage of this approach

is that the calculation of standard errors is much simpler and follows from stan-

dard theory. This contradicts joint models in which the baseline hazard is left

unspecified. In particular in this case, the use of the profile likelihood leads to un-

derestimation of standard errors (Hsieh et al., 2006), and therefore the Bootstrap

method is recommended, which renders joint models even more computationally

demanding. Furthermore, even though we have used the EM algorithm for obtai-

ning the maximum likelihood estimates (MLE), the calculation of standard errors

is straightforward and does not require, for instance Louis (1982) formula. This is

because, as we noted in Section 4.3.1, the complete data score vector used in the

EM is also the observed data score vector that can be used to derive the standard

errors. In particular, let θ̂ denote the MLEs, then from standard likelihood theory

we have that var(θ̂) =
[
E

{−∂S(θ)/∂θ
}]−1, where the expectation is taken with

respect to the true joint density. Here we use the negative of the observed Hessian

matrix H(θ) = n−1
∑

i ∂Si(θ)/∂θ, evaluated at θ̂, as a consistent estimator of the



96 Chapter 4

Fisher information matrix. Under (4.7) it can be easily shown that the elements

of H are written in the following form

∂Si(θ̂u)
∂θu′

= E
{

∂h(θ̂u, bi)/∂θu′
}

+ E

[
h(θ̂u, bi)

{
h(θ̂u′ , bi)− Si(θ̂u′)

}>]
,

where u, u′ = t, y, b, θ> = (θ>t , θ>y , θ>b ) is the vector of the parameters in the

survival, longitudinal and random effect submodels, respectively, and the ex-

pectation is taken with respect to the posterior distribution of the random ef-

fects. We observe that the Hessian matrix is also written as the expectation

of terms with nonzero derivative at b̂i, with respect to p(bi | Ti, δi, yi; θ). This

implies that H(θ̂) can be sufficiently approximated using a numerical differen-

tiation algorithm (e.g., a forward or central difference approximation) in S(θ̂).

The elements of the score vector are presented in Section 4.7. Finally, it is

often the case in joint modelling that the baseline hazard function is not of pri-

mary interest, which implies that ω in (4.4) should be treated as a vector of

nuisance parameters. In this setting let θ−ω denote the vector of all other pa-

rameters excluding ω, then the covariance matrix of θ̂−ω can be consistently

estimated by vâr(θ̂−ω) = −{H(θ̂−ω) − H(θ̂−ω, ω̂)H−1(ω̂)H>(θ̂−ω, ω̂)
}−1, where

H(θ−ω, ω) = n−1
∑

i ∂Si(θ−ω)/∂ω.

4.4 Asymptotic Behaviour of the Laplace Estimators

In this section we investigate the asymptotic properties of the Laplace maximum

likelihood estimators θ̂ presented in Section 4.3.1. Our arguments are similar to

those of Vonesh (1996) who discussed the asymptotic properties of the O(n−1
i )

Laplace estimators for nonlinear mixed models. In particular, let θ0 denote the

true parameter value, then under suitable regularity conditions it is shown in
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Appendix C that

θ̂ − θ0 = Op[max{n−1/2,min(ni)−2}]. (4.18)

Thus, θ̂ will be consistent as long as both n and min(ni) grow to infinity. Intuiti-

vely, the n−1/2 term comes from standard asymptotic theory, while the min(ni)−2

term comes from the Laplace approximation. Moreover, based on the derivation of

equation (4.18) presented in Appendix C, we can deduce that if min(ni) = O(nρ)

for ρ > 1/2, then the fully exponential Laplace maximum likelihood estimators

will be asymptotically equivalent to the true maximum likelihood estimators that

solve S(θ) = 0. Finally, under the same regularity conditions, it can be shown in

a similar manner that the standard Laplace method produces estimators with ap-

proximation error of order Op[max{n−1/2, min(ni)−1}]. This clearly demonstrates

the superiority of approximations (4.16) and (4.17), since the common Laplace

requires min(ni) = O(nρ) for ρ > 1 in order the MLEs not to be affected by

approximation error.

4.5 Simulation Study

A simulation study has been performed to empirically investigate the finite sample

performance of the Laplace based maximum likelihood estimators. In particular,

we considered two simulation scenarios corresponding to high- and low-dimensional

random effect structures, and three n̄i settings, namely n̄i = 5, n̄i = 12 and

n̄i = 25, where n̄i denotes the average number of repeated measurements per

subject. In the low-dimensional scenario random intercepts and random slopes

have been considered, whereas in the high-dimensional scenario a fourth degree

polynomial was posited. Under each scenario and n̄i setting, 500 data sets were

simulated with n = 200 subjects. Parameter estimates in each simulated data

set were obtained using the EM algorithm described in Section 4.3.1. In the low-

dimensional scenario we also fitted the model using the Gauss-Hermite quadrature
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rule to approximate the E-step expectations and compare it to the Laplace based

estimates. A detailed description of the simulation set-up and all tables with the

simulation results can be found in Section 4.8. The results showed an overall good

performance of the proposed Laplace approximation, even in the small n̄i setting.

In addition regarding computing time, we observed that in the low-dimensional

scenario the Gauss-Hermite integration rule is faster that the Laplace method.

However, in our simulations we have considered the simple Gauss-Hermite, which

is expected to work satisfactorily when the integrand is proportional to a normal

density with covariance matrix of a magnitude 2−1I, with I denoting here the

identity matrix. When this is not the case, an adaptive Gauss-Hermite rule would

be required making thus the computational burden much heavier.

4.6 Application

We continue with the analysis of the renal graft failure study which was introduced

in Section 4.1. Out of the 407 patients considered, 126 experienced a graft failure

resulting in about 70% censoring. The patients made on average 143.8 visits (stan-

dard deviation 57.1 visits), resulting in 58531 records. The minimum number of

repeated measurement is 14, which according to (4.18) implies that the derived La-

place MLEs have the same accuracy as the true MLEs, since max{407−1/2, 14−2} =

407−1/2; however, note that this is not the case under the common Laplace ap-

proximation in which the error is of order max{407−1/2, 14−1} = 14−1. The

submodels specification of the joint model (4.1) is as follows. In the survival mo-

del four internal knots (placed at the 20%, 40%, 60% and 80% quantiles of the

uncensored log survival times) are used to capture the shape of the log cumulative

baseline hazard. In the longitudinal process, and based on the ignorable analysis

discussed in Section 4.1, a natural cubic spline with seven degrees of freedom is

postulated to model the subject-specific trajectories. This formulation results in
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Table 4.2: Renal graft failure data. Parameter estimates with standard errors in pa-
renthesis. For the longitudinal process ‘NCS 1’ - ‘NCS 7’ denote the parameters of the
natural cubic spline. For the event process ‘Assoct.’ denotes the association parameter
α. For the random effects submodel ‘D11’ - ‘D88’ denote the diagonal elements of the
covariance matrix D.

Survival Process Longitudinal Process Random Effects
Param. Value (Std. Err.) Param. Value (Std. Err.) Param. Value (Std. Err.)

Intercept 24.49 (0.085) Gender 0.43 (0.200) D11 22.46 (1.629)
NCS 1 14.78 (0.405) Weight 0.02 (0.009) D22 67.12 (4.962)
NCS 2 13.83 (0.008) Assoct. −0.17 (0.027) D33 61.22 (4.725)
NCS 3 14.22 (0.327) D44 66.05 (5.099)
NCS 4 13.16 (0.140) D55 59.08 (4.723)
NCS 5 8.13 (0.417) D66 76.34 (6.303)
NCS 6 22.19 (0.843) D77 120.94 (9.782)
NCS 7 11.22 (1.262) D88 289.47 (25.114)
Gender 0.73 (0.204)
Weight 0.05 (0.016)

σ 3.17 (0.010)

an eight-dimensional random effects vector with respect to which the joint density

(4.1) of the observed process is defined. Finally, the gender and weight covariate

effects are considered in both submodels.

The model is fitted using the EM algorithm described in Section 4.3.1, and all

computations have been performed in R. Initial values were obtained by fitting the

ignorable linear mixed model for the longitudinal process, and model (4.3) for the

event process, in which the calculation of Wi(t) was based on the empirical Bayes

estimates of the ignorable linear mixed model. As an illustration of the relative

computational performance of our model we would like to mention that under the

eight-dimensional random effects distribution the computing time for the E-step of

one EM iteration using the Gauss-Hermite rule with only three quadrature points

is greater than 25 min. (i.e., we stopped the program after 25 min.), whereas the

proposed Laplace approximation takes only 12 sec. The parameter estimates and

associated standard errors are presented in Table 4.2. The estimated association

parameter α is negative and highly significant indicating that the higher the ave-

rage haematocrit values, the longer the graft survives. Furthermore, the estimates

of the natural cubic spline coefficients suggest a strong nonlinear time effect for the
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Figure 4.2: Renal graft failure data. Fitted longitudinal average profiles (with associated
95% pointwise CI) and marginal survival function. The average longitudinal profiles have
been computed for males and females at the median weight. In the plot of the marginal
survival function the Kaplan-Meier estimate (with associated 95% CI) for the time to
graft failure is also superimposed.

average longitudinal evolutions that is illustrated in Figure 4.2. We observe that

the model captures the initial and expected increase in haematocrit levels after the

transplant as well as the decline in the following years due to the kidney problems.

The unexpected increase in the average haematocrit levels after the twelfth year

since entry is attributed to the small amount of available information. In particu-

lar, only 4.5% of the total number of measurements were taken after twelve years,

which results in very wide confidence intervals for the average haematocrit levels

in this area. Figure 4.2 depicts as well the fitted marginal survival function for the

time to graft failure that is computed according to the following expression

S(t) =
∫
S(t | bi; θ̂)p(bi; θ̂) dbi ≈ n−1

∑

i

S(t | b̂i; θ̂).

We observe some discrepancy between the fitted survival function after the twelfth
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year since entry and the Kaplan-Meier estimate. This discrepancy is explained first

by the fact that the Kaplan-Meier estimate does not account for the informative

censoring, and second by the small number of events in this area (i.e., the last

internal knot is placed at 10.5 years), and thus it does not pose a major concern.

4.7 Discussion

We have proposed a new computational approach for the joint modelling of longi-

tudinal measurements and time-to-event data, and demonstrated its use through

a real data example. The main strength of this framework is that it effectively

copes with high-dimensional random effects structures without increasing substan-

tially the computational burden. Furthermore, the B-splines formulation of the

log cumulative baseline hazard allows for great flexibility in the specification of

the survival submodel, whereas it does not pose complications in the calculation

of standard errors. Our main motivation to flexibly model the log cumulative

baseline hazard using B-splines was the easy in incorporating the required mo-

notonicity constraint; however, other smoothing methods (e.g., kernels or local

regression) can be considered as well. Another straightforward extension of the

proposed framework is to handle categorical longitudinal responses by postulating

a generalized mixed model for the longitudinal process. This would require to

adapt the M-step update for β and approximate the expectation of different A(·)
functions depending on the type of categorical responses (e.g., binomial, poisson,

etc.).

Furthermore, in this paper we have used the EM algorithm to obtain the ma-

ximum likelihood estimates. A direct maximization of the observed data log-

likelihood can be also considered using a quasi-Newton algorithm, such as the

BFGS (Lange, 2004). The BFGS algorithm requires the specification of the obser-

ved data score vector corresponding to `(θ). However, as noted in Section 4.3.1,
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S(θ) used to derive the M-step updates is also the observed data score vector.

Thus, similarly to the M-step updates, we can easily derive the components of the

score vector S(θ) corresponding to σ2 and θb (i.e., the vector parameterizing the

covariance matrix D), which take the form:

S(σ2) = − N

2σ2
+

1
2σ4

∑

i

(yi −Xiβ)>{yi −Xiβ − 2Zib̃i(θ)}+

tr
{
Z>i Ziṽbi(θ)

}
+ b̃>i (θ)Z>i Zib̃i(θ),

S(θb) = −n

2
tr(D−1∂D/∂θb) +

1
2

∑

i

tr
{
D−1(∂D/∂θb)D−1ṽbi(θ)

}
+

b̃>i (θ)D−1 ∂D

∂θb
D−1b̃i(θ),

while for the score vectors for β and the parameters of the event process are given

in (4.10) and (4.11), respectively. Furthermore, in the above equations we have

used the notation b̃i(θ) and ṽbi(θ) to stress that these are also treated as functions

of θ.

Finally, an issue with the Laplace approximation (4.16) is that it cannot be

applied for functions A(bi) for which A′(b̂i) = 0. This excludes the possibility of

applying this approximation to compute the log-likelihood, which could be required

for instance to perform a likelihood ratio test. In this case `(θ) can be easily

approximated with the common Laplace approximation (i.e., using the values of

b̂i and Σi that have been already computed) by

`(θ) =
nκ

2
log 2π +

[∑

i

log p(Ti, δi | b̂i) + log p(yi | b̂i) + log p(b̂i)

−1
2

log{det(Σi)}
]

+ O
{
n min(ni)−1

}
,

where κ denotes the dimensionality of the random effects vector.
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4.8 Supplementary Material

4.8.1 Simulation Study Set-up

A simulation study has been performed to empirically investigate the finite sample

performance of the proposed model. In all cases, for each of n = 200 subjects, the

event times were simulated according to the model

log Hi(t | bi) = log H0(t) + αWi(t),

where α = −1 and H0(t) = 10−5t. The censoring mechanism follows an exponen-

tial distribution with mean 6.5, which results in about 30% censoring on average.

For the longitudinal process we consider two simulation scenarios corresponding to

high- and low-dimensional random effects structures, and three n̄i settings, namely

n̄i = 5, n̄i = 12 and n̄i = 25, where n̄i denotes the average number of repeated

measurements per subject. In particular, for the low-dimensional case we take

Wi(tij) = (β0 + b0i) + (β1 + b1i)tij ,

where (β0, β1) = (2,−6.4), and tij = seq(0, 5, 15)2 for n̄i = 5, tij = seq(0, 5, 30)

for n̄i = 12 and tij = seq(0, 5, 70) for n̄i = 25. The measurement error variance

is taken σ2 = 0.6, and the elements of the covariance D for the random effects

are var(b0i) = 5, var(b1i) = 1.8 and cov(b0i, b1i) = −0.7. For the high-dimensional

scenario, we simulate censoring times from an exponential distribution with mean

2.5 (in order to have again 30% censoring on average), and for the longitudinal

process we take

Wi(tij) = (β0 + b0i) + (β1 + b1i)tij + (β2 + b2i)t2ij + (β3 + b3i)t3ij ,

2where seq(a, b, c) denotes a regular sequence from a to b of length c, e.g., seq(0, 2, 5) =
0, 0.5, 1, 1.5, 2.
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where (β0, β1, β2, β3) = (2,−6.4,−4.5,−2.8), and tij = seq(0, 3, 20) for n̄i = 5,

tij = seq(0, 3, 45) for n̄i = 12 and tij = seq(0, 3, 90) for n̄i = 25. The measurement

error variance is taken σ2 = 0.6, and the elements of the covariance D for the

random effects are

D =




5 −0.3969 −0.3182 −0.2372

−0.3969 1.4 0.1122 0.0837

−0.3182 0.1122 0.9 0.0671

−0.2372 0.0837 0.0671 0.5




.

Finally, under each scenario and n̄i setting, 500 data sets were simulated.

In both scenarios we fitted the EM algorithm described in Section 3 of the

paper, using the the proposed Laplace approximation. In the low-dimensional

scenario we also fitted the model using the Gauss-Hermite quadrature rule (with

35 quadrature points for each dimension) to approximate the E-step expectations,

and compare it to the Laplace based estimates.

4.8.2 Simulation Study Results

Descriptives for the computing time (in minutes) under the different scenarios and

sample size settings are presented in Table 4.3. Computations have been performed

in R version 2.5.0, on an AMD Opteron Cluster, consisting of 164 dual Opteron250

servers running Linux (kernel version 2.6.15.7), with 2GB RAM, several nodes

with 16GB RAM, and 4 to 8 CPUs with clock speeds varying from 1.8 to 2.6 GHz.

We observe that in the low-dimensional scenario the Gauss-Hermite integration

rule is faster than the Laplace method. However, in our simulations we have

considered the simple Gauss-Hermite rule, which is expected to work satisfactorily

when the integrand is proportional to a normal density with covariance matrix of

a magnitude 2−1I, with I denoting the identity matrix. When this is not the case,

an adaptive Gauss-Hermite rule would be required making thus the computational
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burden much heavier. The average computing time required in the Laplace method

for the second scenario is more than the corresponding computing time for the first

one. We would like to note that the reason for this is that in the second scenario we

have nine more parameters to estimate, which inevitably requires more iterations

for the maximization algorithm. However, the average computing time required

per iteration for the computation of the modes b̂i is in the two scenarios of the

same magnitude. Finally, an interesting feature for the Laplace method is that

computing times are decreasing with increasing n̄i. After careful investigation,

we discovered that this feature is explained as follows. As also noted above, the

computing time for the Laplace approximation, performed in the E-step, does

not substantially increase with n̄i. However, for small n̄i more EM iterations are

required to locate the MLEs, since less information is available in the data.

Tables 4.4 and 4.5 present the bias and root mean square error (RMSE) for

the association parameter, the fixed-effects parameters of the longitudinal model,

and the measurement error standard deviation. For all scenarios the proposed

model showed a good performance in terms of bias and RMSE. In addition and as

expected, the RMSE for the Laplace based estimates decreases with increasing n̄i.

Furthermore, in the low-dimensional scenario we observe that the Laplace based

estimates performs slightly better than the estimates based on the Gauss-Hermite

method. As we noted above, this could be attributed to the fact that an adaptive

Gauss-Hermite rule might be required since in this case. In the high-dimensional

scenario and for the quadratic β2 and cubic β2 fixed effect parameters, we observed

relatively larger bias and RMSE compared to the linear effect β1, especially for

n̄i = 5. This is attributed to the fact that when few repeated measurements per

individual are available, there is considerably less information in the data for β2

and β2 compared to the other n̄i settings.
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Table 4.3: Descriptives for the computing time (in minutes) under the two scenarios
and the three n̄i settings. The top and middle parts contain the results for the Gauss-
Hermite rule (with 35 quadrature points) and the Laplace approximation, respectively,
under the low-dimensional scenario; the bottom part contains the results for the Laplace
approximation under the high-dimensional scenario. ‘1st Qu.’ and ‘3rd Qu.’ denote the
first and third quartiles, respectively.

n̄i = 5 n̄i = 12 n̄i = 25

1st Qu. 12.317 12.756 14.075
Median 12.898 13.586 15.231
Mean 13.270 13.921 15.811

3rd Qu. 14.528 15.360 18.146

1st Qu. 16.230 6.408 5.855
Median 47.030 21.670 19.726
Mean 48.100 37.140 36.060

3rd Qu. 71.510 60.870 53.150

1st Qu. 34.460 19.250 19.450
Median 54.200 37.390 26.140
Mean 59.600 51.820 51.860

3rd Qu. 78.320 75.320 73.600

Table 4.4: Simulation results for the low-dimensional scenario based on 500 data sets
with sample size n = 200. The bias and root mean square error (RMSE) for parameters
of the survival and longitudinal models are presented. The top part contains the results
for the Gauss-Hermite rule with 35 quadrature points, whereas the bottom part contains
the results for the Laplace approximation.

True n̄i = 5 n̄i = 12 n̄i = 25
Value Bias RMSE Bias RMSE Bias RMSE

α −1.0 −0.1936 1.4585 −0.0854 0.1156 −0.1526 1.2505
β0 2.0 −0.0813 0.1880 −0.0712 0.1751 −0.0311 0.2020
β1 −6.4 0.1756 0.2413 0.0949 0.1711 0.0348 0.1703
σ 0.8 0.0142 0.1393 0.0022 0.0656 0.0137 0.1333

α −1.0 −0.0861 0.1394 −0.0512 0.0984 −0.0249 0.0694
β0 2.0 −0.0767 0.1571 −0.0449 0.1413 −0.0269 0.1192
β1 −6.4 0.1108 0.1633 0.0618 0.1209 0.0225 0.0959
σ 0.8 0.0026 0.0217 0.0001 0.0137 0.0001 0.0083
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Table 4.5: Simulation results for the high-dimensional scenario using the Laplace appro-
ximation based on 500 data sets with sample size n = 200. The bias and root mean square
error (RMSE) for parameters of the survival and longitudinal models are presented.

True n̄i = 5 n̄i = 12 n̄i = 25
Value Bias RMSE Bias RMSE Bias RMSE

α −1.0 0.0961 0.2391 −0.0793 0.1759 0.0438 0.0932
β0 2.0 −0.0515 0.1198 −0.0659 0.1371 −0.0597 0.1247
β1 −6.4 0.9052 1.0919 0.3299 0.8953 0.1678 0.6093
β2 −4.5 1.3369 1.7968 0.7107 1.1712 0.0930 0.8035
β3 −2.8 1.1307 1.4540 0.5192 1.2381 0.1562 0.7636
σ 0.8 0.0104 0.0263 0.0021 0.0128 0.0001 0.0086

4.9 Appendix A

For the calculation of the correction terms we first require the following results

∂Σ(c)
i

∂c>
|(c,b)=(0,b̂i)

=
∂

∂b̂
(c)
i

Σ(c)
i

∂b̂
(c)
i

∂c>
|(c,b)=(0,b̂i)

=
∂Σi

∂b>
∂b̂

(c)
i

∂c>
|c=0,

∂2Σ(c)
i

∂c>∂c
|(c,b)=(0,b̂i)

=
∂2Σi

∂b>∂b

{
∂b̂

(c)
i

∂c

∂b̂
(c)
i

∂c>

}

c=0

+
∂Σi

∂b>
∂2b̂

(c)
i

∂c>∂c
|c=0,

where, in Appendix B, we show that ∂b̂
(c)
i /∂c> |c=0= Σ−1

i A′(b̂i), and ∂2b̂
(c)
i /∂c>∂c |c=0

= Σ−1
i

[
A′′(b̂i) Σ−1

i A′>(b̂i)+A′′(b̂i)Σ−1
i A′(b̂i)−(∂Σi/∂bi){Σ−1

i A′>(b̂i)}{Σ−1
i A′(b̂i)}

]
,

with A′′(bi) = ∂2A(bi)/∂b>i ∂bi.

For the calculation of the terms {∂Σ(c)
i /∂c>} and {∂2Σ(c)

i /∂c>∂c} at (c, b) =

(0, b̂i), we observe from (4.15) that only exp{ηi(b)} and ∂2c>A(b)/∂b>∂b are fu-
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nctions of b, for which we obtain

[
∂

∂c>

{∂2c>A
{
b̂
(c)
i

}

∂b>∂b

}]

c=0

=
∂2A(b̂i)
∂b>∂b

+
[
c>

{ ∂

∂c>
∂2A

{
b̂
(c)
i

}

∂b>∂b

}]

c=0

=
∂2A(b̂i)
∂b>∂b

,
[
α2zi(t)z>i (t)

∂

∂c>
exp

{
ηi

(
b̂
(c)
i

)}]

c=0

= α3zi(t)z>i (t) exp{ηi(b̂i)}R,

[
α2zi(t)z>i (t)

∂2

∂c>∂c
exp

{
ηi

(
b̂
(c)
i

)}]

c=0

= α3zi(t)z>i (t) exp{ηi(b̂i)}
[
αRR> +

z>i (t)
∂2b̂

(c)
i

∂c>∂c
|c=0

]
,

where R = z>i (t)Σ−1
i A′(b̂i). We have not presented the calculation of the term

[
∂2

∂c>∂c

{∂2c>A
{
b̂
(c)
i

}

∂b>∂b

}]

c=0

,

since this involves the product of A′′′(bi) = ∂A′′(bi)/∂bi with other terms and needs

to be calculated only for A(bi) = bi, which implies that it drops. Finally, in order

to apply (4.16) and (4.17) in the M-step updates presented in Section 4.3.1, A′(bi)

and A′′(bi) are required for A(bi) = exp{ηi(bi)}, and A(bi) = exp{ηi(bi)}z>i (t)bi;

for completeness these are also presented in Appendix B.

4.10 Appendix B

Here we present the calculation of the terms ∂b̂
(c)
i /∂c> and ∂2b̂

(c)
i /∂c>∂c evaluated

at c = 0. In particular, let K(bi) = log p(Ti, δi | bi) + log p(yi | bi) + log p(bi), then

b̂
(c)
i is chosen such that

∂

∂bi

{K(bi) + A>(bi) c
}

bi=b̂
(c)
i

= 0,
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from which we obtain

K′(b̂(c)
i ) + A′>(b̂(c)

i ) c = 0 ⇒ ∂

∂c>
{K′(b̂(c)

i ) + A′>(b̂(c)
i ) c

}
= 0 ⇒

K′′(b̂(c)
i )

∂b̂
(c)
i

∂c>
+ A′(b̂(c)

i ) + c>A′′(b̂(c)
i )

∂b̂
(c)
i

∂c>
= 0 c=0=⇒ (4.19)

∂b̂
(c)
i

∂c>
|c=0=

{−K′′(b̂i)
}−1

A′(b̂i) = Σ−1
i A′(b̂i).

where K′(bi) = ∂K(bi)/∂b>i , and K′′(bi) = ∂2K(bi)/∂b>i ∂bi. Similarly, from (4.19)

we derive

∂

∂c

{
K′′(b̂(c)

i )
∂b̂

(c)
i

∂c>
+ A′(b̂(c)

i ) + c>A′′(b̂(c)
i )

∂b̂
(c)
i

∂c>

}
= 0 ⇒

K′′′(b̂(c)
i )

∂b̂
(c)
i

∂c

∂b̂
(c)
i

∂c>
+K′′(b̂(c)

i )
∂2b̂

(c)
i

∂c>∂c
+ A′′(b̂(c)

i )
∂b̂

(c)
i

∂c
+ A′′(b̂(c)

i )
∂b̂

(c)
i

∂c>
+

c>
∂

∂c

{
A′′(b̂(c)

i )
∂b̂

(c)
i

∂c>

}
c=0=⇒

∂2b̂
(c)
i

∂c>∂c
|c=0= Σ−1

i

[
K′′′(b̂i)Σ−1

i A′>(b̂i)Σ−1
i A′(b̂i) + A′′(b̂i)Σ−1

i A′>(b̂i) +

A′′(b̂i)Σ−1
i A′(b̂i)

]
,

where K′′′(bi) = ∂K′′(bi)/∂bi = −∂Σi/∂bi. Note that ∂2b̂
(c)
i /∂c>∂c |c=0 is requi-

red for the calculation of the term ∂2Σ(c)
i /∂c>∂c in equation (15), which is only

computed for A(bi) = bi. Thus, we obtain the following simplification

∂2b̂
(c)
i

∂c>∂c
|c=0= Σ−1

i

[K′′′(b̂i)Σ−1
i 1>Σ−1

i 1
]
,
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where 1 denotes the summing vector of conforming dimensions. Finally, the

first and second order partial derivatives for A(bi) = exp{ηi(bi)} and A(bi) =

exp{ηi(bi)}z>i (t)bi considered in Section 4.3.2 are given by: ∂ exp{ηi(bi)}/∂b>i =

α exp{ηi(bi)}zi(t), ∂2 exp{ηi(bi)}/∂b>i ∂bi = α2 exp{ηi(bi)}zi(t)z>i (t), ∂
[
exp{ηi(bi)}

z>i (t)bi

]
/∂b>i = exp{ηi(bi)}

{
αz>i (t)bi+1

}
zi(t), and ∂2

[
exp{ηi(bi)}z>i (t)bi

]
/∂b>i ∂bi

= α exp{ηi(bi)}zi(t)z>i (t)
{
αz>i (t)bi + 2

}
.

4.11 Appendix C

We work under the following assumptions: (i) p(Ti, δi, yi; θ) is a well-defined den-

sity under the usual regularity conditions (Cox and Hinkley, 1974, p. 281); (ii)

the true parameter value θ0 is an interior point of the parameter space, and the

Laplace estimator θ̂ is an interior point in a neighbourhood containing θ0; (iii)

b̂i = arg maxb{log p(Ti, δi, yi, b)} exists for all i. Let Ŝ(·) denote the approximated

score vector according to (4.16), then we obtain

S(θ̂) =
∑

i

{
Ŝi(θ̂) + O(n−2

i )
} ⇒

n−1S(θ̂) = n−1Ŝ(θ̂) + O
{
min(ni)−2

}
, (4.20)

where Ŝ(θ̂) = 0. Under the regularity conditions in (i) we can apply a Taylor series

expansion in S(θ) around θ0

S(θ̂) = S(θ0) +H(θ∗)(θ̂ − θ0), (4.21)

where θ∗ lies on the segment joining θ0 and θ̂. From (4.21) and (4.20) we obtain

n1/2(θ̂ − θ0) = −
h
n−1

X
i

Hi(θ
∗)
i−1n

n−1/2
X

i

Si(θ0)− Si(θ̂)
o

= −
h
n−1

X
i

Hi(θ
∗)
i−1h

n−1/2S(θ0) + O{n1/2 min(ni)
−2}
i
. (4.22)
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In addition, under assumptions (i) and (ii) we have that as n →∞, n−1H(θ∗) P−→
E{H(θ0)}, where the expectation is taken with respect to p(Ti, δi, yi; θ0), and

H(θ) =
∑

iHi(θ). By further assuming that E{H(θ0)} is nonsingular we obtain

{
n−1H(θ∗)

}−1 P−→[
E{H(θ0)}

]−1
. (4.23)

Therefore, combining (4.22) and (4.23) we obtain the desired result

n1/2(θ̂ − θ0) = −[
E{H(θ0)}

]−1
[
n−1/2S(θ0) + Op

{
n1/2 min(ni)−2

}]
⇒

(θ̂ − θ0) = −[
E{H(θ0)}

]−1
[
n−1S(θ0) + Op

{
min(ni)−2

}]

= Op[max{n−1/2, min(ni)−2}],

where in the last step we use the fact that under the regularity conditions (i),

n−1S(θ0) = Op(n−1/2), and E{H(θ0)} = Op(1).
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CHAPTER

5 General Conclusion

5.1 Discussion

5.1.1 Choice of Parameterization & Questions of Interest

The typical parameterization in the joint modelling framework assumes that the

linear predictor of the longitudinal mixed model conditional on the random effects

is included as a time-dependent covariate in the linear predictor of the model

for the event process. This implies that a single set of random effects is shared

by the two processes. In Chapters 2 and 3 we have considered a more flexible

parameterization using two sets of random effects, one for each process. The

association in this case is modelled through the joint distribution function of the

two random effects.

The choice between these two parameterizations depends on the question of

interest, and in particular, whether the focus of inference is on measuring the

effect of the longitudinal time-dependent covariate in the survival outcome, or on

investigating the association structure between the two processes. In particular,
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the standard parameterization is given by

ηti = x>tiγ + α(x>yiβ + z>yibi), (5.1)

where i denotes the subject, xti and xyi are the covariate vectors for the fixed effects

in the longitudinal and dropout processes, respectively, and zyi is the design matrix

for the random effects bi in the longitudinal process. Under (5.3), the association

parameter directly quantifies the effect of the longitudinal process in the event

process, and thus this parameterization is preferable when this effect is the focus

of inference. However, when interest is in the association structure between the two

processes, then the two random effects parameterization offers greater flexibility.

To justify this, note that the one set random effects parameterization is a special

case of the two random effects parameterization when the two random effects are

perfectly correlated. Furthermore, the copula formulation of the random effects

joint distribution facilitates the investigation of the dependence structure and in

particular, checking whether different copulas may influence the estimated size of

the association, as we observed for the GFR and Proteinuria markers in Chapters

2 and 3, respectively.

5.1.2 Random Effects Misspecification

In Chapter 2 we have shown that misspecification of the random effects distribution

does not affect consistency as the number of repeated measurements per individual

grows. This argument is based on two facts. First, the score vector corresponding

to the observed data log-likelihood can be written as the expected value of the

score vector corresponding to the complete data log-likelihood with respect to the

posterior distribution of the random effects given the observed data. Second, as

ni grows, the model for the longitudinal process, which was assumed correctly

specified, becomes the leading term in the posterior distribution of the random
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effects, which implies that misspecification of the prior distribution for the random

effects does not influence the results very much.

In practice, however longitudinal measurements are taken at a finite set of time

points. Furthermore, even though the theorem presented in Chapter 2 applies for

all well defined densities, the actual number of repeated measurements required in

order for the above result to hold will depend on the type of the posited longitudinal

model. In particular, a small ni will be sufficient as long as log p(yi | bi) can be

well approximated by a quadratic function of bi, near its mode b̂i. For instance, in

the exponential family we expect that normal longitudinal responses will require

smaller ni compared to categorical responses, and among the members of the

family for categorical responses, Poisson data will need smaller ni than binary

outcomes.

In order to protect the resulting inferences against misspecification of the ran-

dom effects distribution, an adequate specification of the longitudinal model is of

major importance. Thus, in addition to a good data exploration for the choice

of the mean and association structures, relatively flexible models should be used,

which are able to capture the characteristics of the data at hand. For instance,

for continuous baseline covariates splines could be employed to capture potential

nonlinear effects, and meaningful interactions with categorical covariates should

be included.

5.1.3 Choice of Numerical Integration Method

An important issue in the shared parameter models is the need for numerical inte-

gration, which unfortunately makes fitting such models a computationally deman-

ding task. In Chapter 4 we have proposed a new computational approach based

on the fully exponential Laplace approximation, which makes fitting joint models

feasible, even with high-dimensional random effect structures. We should mention

however that we do not suggest that the use of the Gauss-Hermite rule should be
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abandoned. In fact, there are cases, in which the Gauss-Hermite rule should be

preferred over the Laplace approximation. In particular, for low-dimensional ran-

dom effects structures, such as random intercepts and random slopes, we have seen

in the simulation results in Chapter 4 that the Gauss-Hermite rule produced relia-

ble results and it was faster than the Laplace approximation. Thus, as a guideline

regarding the choice of numerical integration method, we suggest the following.

First, if high-dimensional random effects structures are to be considered, then it

is known that the Gauss-Hermite rule will be very time consuming, and thus the

enhanced Laplace approximation of Chapter 4 should be preferred. Second, for

low dimensional random effects the choice between integration methods should be

based on the empirical Bayes estimates of the random effects, and their estimated

variance covariance matrix, under the ignorable (i.e., ignoring the event process)

linear mixed effects model. In particular, the empirical Bayes estimates are given

by (Verbeke and Molenberghs, 2000)

b̂i = DZ>i Wi(yi −Xiβ),

and their covariance matrix is of the form

var(b̂i) = DZ>i

{
Wi −WiXi

(∑

i

X>
i WiXi

)−1

X>
i Wi

}
ZiD

where, yi is the longitudinal response vector for the ith subject, Xi and Zi are the

design matrices, for the fixed effects β and random effects bi, respectively, D is the

covariance matrix of the random effects, Wi equals V −1
i , and Vi = ZiDZ>i + σ2I

(I denotes the identity matrix). Even though these estimates ignore the influence

of the survival outcome, they provide a good indication about the behaviour of the

integrand. This argument is based on the fact that, as we have also seen in Chapter

2, as ni increases the longitudinal model becomes the leading term of the posterior
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distribution of the random effect, which is proportional to this integrand. If for

many of the individuals in the sample b̂i is far more zero, and more importantly

the elements of var(b̂i) are not of magnitude 2−1I, then the Laplace method should

be used, otherwise the faster Gauss-Hermite could be employed. This is due to

the fact that the Gauss-Hermite weight function is proportional to the N (0, 2−1I)

density, which implies that the Gauss-Hermite rule will only work satisfactorily

when var(b̂i) ≈ 2−1I.

5.1.4 Importance of Underlying Assumptions

The formulation of the joint models that have been considered in this thesis was

based on three assumptions. In particular, we have assumed that the visiting

and censoring processes are noninformative, and that given the random effects the

longitudinal and survival processes are independent (conditional independence).

By visiting process we refer to the stochastic mechanism that generates the time

points at which the longitudinal measurements are collected (Lipsitz et al., 2002).

In this section we comment on the importance and nature of these assumptions,

and on the difficulties in checking them.

The assumptions for noninformative visiting and censoring processes are simi-

lar in spirit to the Missing At Random (MAR) assumption in the missing data

framework (Little and Rubin, 2002). In particular, in order to ignore these two

processes from the definition of the shared parameter model, we have assumed

that the probabilities of visiting and censoring at time point k depend only on

observed history but not on the event times and future longitudinal measurements

themselves. As observed history we define all available information for the lon-

gitudinal process prior to time point k. Practically speaking, these assumptions

imply the belief that decisions on whether a subject withdraws from the study or

appears at the clinic for a longitudinal measurement depend on the observed past

history (longitudinal measurements and baseline covariates), but there is no ad-
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ditional dependence on underlying, latent subject characteristics associated with

prognosis. Evaluating the plausibility of the non-informativeness for the visiting

and censoring processes usually requires external information from subject-matter

experts, since the observed data do not contain enough information to suggest

otherwise. For instance, if the censoring is informative, then it may depend on the

unobserved true event times and/or future longitudinal measurements.

As we have explained in Chapter 3, there is a direct connection between the

joint modelling of longitudinal and survival data, and the missing data framework.

That is, the requirement for joint modelling corresponds to NMAR dropout mecha-

nism. The conditional independence assumption in fact directly relates to the na-

ture of the missing data mechanism. In particular, the dropout mechanism under

the shared parameter model is written as

p(Ti | yo
i , ym

i ) =
∫

p(Ti | bi, y
o
i , ym

i )p(bi | yo
i , ym

i ) dbi

=
∫

p(Ti | bi)p(bi | yo
i , ym

i ) dbi,

where ym
i and yo

i denote the missing and observed components of the longitudinal

response vector for the ith subject, respectively. If conditional independence does

not hold then p(Ti | bi, y
o
i , ym

i ) 6= p(Ti | bi), implying that the probability of

event (i.e., dropout) may still depend on unobserved responses ym
i . The last

statement elucidates the difficulty to check this assumption in practice. That is,

as we have noted in Chapter 3, inferences regarding the missing data mechanism

should be made with caution, since information is implicitly provided through

modelling assumptions. The only pragmatic approach to investigate the impact of

violating the conditional independence is to perform a sensitivity analysis. Further

comments and possibilities for sensitivity analysis are discussed in Section 5.2.2.
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5.2 Topics for Future Research

5.2.1 More than One Marker

In this thesis we have considered joint modelling of a single longitudinal marker

with a time-to-event outcome. However, in our case study, it would be also intere-

sting to account for the effects of GFR, proteinuria and haematocrit simultaneously

in the survival model (Fieuws et al., 2007).

The formulation of a joint model with more than one longitudinal outcome is

conceptually straightforward. However, practical difficulties with such extensions

arise for two reasons. First, each longitudinal response will require a different set

of possibly high-dimensional random effects. For instance, according to the models

for the GFR, proteinuria and haematocrit that we have considered throughout the

thesis, the calculation of the full joint model would require a 13-dimensional nume-

rical integration. A possible solution to this problem is the Laplace approximation

that we have discussed in Chapter 4, and which could be adapted to handle the full

joint model with more than one longitudinal marker. The second problem is that

the dimensionality of the parameter vector will inevitably increase. Maximization

of the observed data log-likelihood in so many dimensions is a numerically and

computationally challenging task. Under a full conditional independence assum-

ption (i.e., given the random effects, the event process is independent from the

longitudinal markers, and the longitudinal markers are independent of each other)

the EM algorithm has the advantage that the majority (except for the survival

model) of the M-step updates are in closed-form. However, the EM algorithm

has a linear convergence rate (Little and Rubin, 2002), which implies that a large

number of iterations will usually be required before convergence. Alternatively,

algorithms with a superlinear convergence rate, such as the BFGS (Lange, 2004),

could be used instead. Even though quasi-Newton algorithms will converge faster

than the EM, the requirement of inverting in each iteration an approximation to
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the Hessian matrix is also computationally intensive, since in the full joint model

this will be a high-dimensional matrix. The best approach would be a combina-

tion of the two algorithms, namely a prespecified number of EM iteration could be

used as a refinement of the starting values before initiating the main optimization

routine based on a quasi-Newton algorithm.

Finally, in the related framework of longitudinal data analysis, Fieuws and

Verbeke (2006) have recently proposed a pairwise approach for the joint modelling

of multivariate longitudinal profiles. Investigating the possibility of extending such

an approach to the joint modelling of multivariate longitudinal and time-to-event

data is worth considering.

5.2.2 Sensitivity Analysis

The focus of inference in Chapters 2 and 3, was the association structure between

the longitudinal and event outcomes. As we illustrated in detail in Chapter 3, joint

models assume a Not Missing At Random dropout mechanism. This motivated us

to perform a sensitivity analysis around the choice of the copula function, which

models the dependence between the two processes. However, a larger scale sensiti-

vity analysis would be also worth considering. In particular, since the assumptions

for the missing data mechanism are impossible to be tested from the data at hand

(see e.g., Molenberghs and Kenward, 2007, Sect. 1.3; Copas and Li, 1997), it

would be of interest to investigate the sensitivity of inferences based on the shared

parameter models when several aspects of the longitudinal, survival and random

effects submodels are altered. In the following we mention some possibilities for

sensitivity analysis that are worth further investigation:

• The specification of the random effects component of the joint model requires

to make appropriate choices for the random effects distribution and the ran-

dom effects design matrix Z. Based on the argument raised in Chapter 2, we
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expect that an inappropriate assumption for the random effects distribution

will not affect inference for large enough ni. However, we would expect that

inferences could be relatively more sensitive to the choice of Z. There are

mainly two reasons for this argument. First, the design matrix of the random

effect is used in the specification of the conditional density p(yi | bi), which

as noted in Chapter 2, is the dominating term of the posterior distribution

of the random effects, and thus greatly influences inferences. Second, in the

NMAR context we require an appropriate model for the conditional density

p(ym | yo, T ). This implies that not only the mean but also the correlation

structure of the longitudinal joint model p(ym, yo), which is also influenced

by the choice of Z, needs to be correctly specified.

• In relation to the point above, it is worth considering whether including

an extra serial correlation term in the error component of the longitudinal

mixed model, and further the type of the serial correlation model (e.g., ex-

ponential, Gaussian, etc.), could affect inferences. For instance, Verbeke and

Molenberghs (2000), in the selection models framework, observed that after

having included a serial correlation structure, including an extra measure-

ment error term, altered considerably the resulting p-value for testing MAR.

We should also mention that models with an elaborate random effects struc-

ture (e.g., high-order polynomials or splines in Z) and no serial correlation

terms may produce fits in the observed data similar to the ones from models

with a simple random effects structure (e.g., only random intercepts) and a

serial correlation term. However, the fit in the missing longitudinal respon-

ses ym could be substantially different, since the dropout process depends

usually only on the random effects and not the correlation structure terms

(an exception of this is the model of Henderson et al., 2000).

• Several options for the time-to-dropout model may also be considered in a
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sensitivity analysis. For instance, inferences under a proportional hazards

model can be compared with the corresponding ones from an accelerated

failure time model. Furthermore, different kinds of parameterization may be

used that associate the longitudinal and the dropout processes. The standard

parameterization is given in (5.3); some further possibilities are:

ηti = x>tiγ + αz>yibi, (5.2)

ηti = x>tiγ + z>yi{A(α) bi}, (5.3)

ηti = x>tiγ + bti, (5.4)

where i denotes the subject, and bti denotes a frailty term. The association

parameter α plays a different role in each of the equations (5.1) to (5.4). In

particular, in parameterization (5.1) both the fixed and random effects parts

of the longitudinal model affect the time-to-dropout, whereas in paramete-

rizations (5.2) and (5.3) only the random effects part does so. In addition,

in parameterization (5.3), A(α) denotes a lower triangular matrix, parame-

terized by the vector of association parameters α, which acts as a rescaling

factor for the covariance matrix of the random effects. Finally, parameteri-

zation (5.4) is in fact the parameterization that we have used in Chapters 2

and 3, in which association is measured via the joint distribution {bi, bti}.

• Shared parameter models postulate that the probability of dropout at any

time point depends on values of the outcome at both past and future time

points, through the random effects. Such models are plausible when subjects

which show steep increases in their profiles may be more (or less) likely to

dropout. However, in some applications, the probability of dropout may di-

rectly depend on the actual unobserved longitudinal responses. Furthermore,

in some case-studies there is no subject-matter knowledge to justify one mis-

sing data mechanism over an other. Thus, a broader sensitivity analysis in
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which different NMAR models (i.e., selection and pattern mixture models)

are fitted could be utilized.

5.2.3 Residuals Analysis

A basic approach of goodness-of-fit testing is to display or summarize the observed

data, and compare this to what might have been expected from the fitted model. If

there are systematic discrepancies between the data summaries and their reference

distribution under the assumed model, this implies a misfit of the model to the

data. A traditional approach to check model assumptions is the inspection of

residual plots. Properties and features of residuals, when longitudinal and survival

outcomes are separately modelled, have been extensively studied in the literature.

For instance, different types of residuals for linear mixed models are discussed in

Nobre and Singer (2007) and Verbeke and Molenberghs (2000), whereas residuals

for parametric and semiparametric survival models are presented in Therneau and

Grambsch (2000).

However, in the case of joint modelling, the reference distribution for the above

mentioned types of residuals is not directly evident. Complications arise due to

the nonignorable dropout in the longitudinal process caused by the occurrence

of events. That is the observed data, upon which the residuals are calculated,

are not a random sample of the target population. This implies for instance

that a potential systematic behaviour of the residuals versus the fitted values

is not necessarily indicative of a model misfit. Thus, conclusions from common

residual plots in the joint model framework should be extracted with caution.

A promising approach to handle this issue is the use of multiple imputation for

posterior predictive checks, as it has been presented by Gelman et al. (2005). The

idea is to form random versions of the complete data set by imputing ym
i using

random draws from the predictive distribution p(ym
i | yo

i , Ti, δi; θ). These versions

of the complete data set can be used to calculate residuals, which could then be
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compared to the null hypothesis (e.g., zero mean and independence). Adapting

this approach to the case of joint modelling is currently under investigation.
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APPENDIX

A Software

A.1 The JM Package

Even though joint modelling of longitudinal and time-to-event data has received

considerable interest in the statistical literature in the recent years, there is no

publicly available software to fit these kind of models. Guo and Carlin (2004)

have provided WinBUGS and SAS NLMIXED code to fit joint models under an

exponential distribution for the event times. However, this code requires first,

non user-friendly modifications in order to fit other types of survival models (e.g.,

the model considered in Chapter 4), and second, considerable effort in order user-

required quantities to be computed. Thus, there is an evident need for flexible and

user-friendly joint modelling software.

The R package JM (available from the Comprehensive R Archive Network at

http://cran.r-project.org/) has been developed to fill this gap. The pac-

kage has a single model-fitting function named jointModel(), which accepts as

main arguments a linear mixed effects object fit returned by function lme() from

package nlme, and a survival object fit returned by either function coxph() or

129
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function survreg() from package survival. In addition, the method argument

of jointModel() specifies the type of the survival submodel to be fitted and

type of numerical integration method; available options are:

method = "ph-GH": the time-dependent version of a proportional hazards

model with unspecified baseline hazard function. The Gauss-Hermite in-

tegration rule is used to approximate the required integrals. (This option

corresponds to the joint model proposed by Wulfsohn and Tsiatis, 1997)

method = "weibull-GH": the Weibull model under the accelerated failure

time formulation. The Gauss-Hermite integration rule is used to approximate

the required integrals.

method = "ch-GH": the log cumulative hazard formulation presented in Cha-

pter 4; the log cumulative baseline hazard is approximated using B-splines.

The Gauss-Hermite integration rule is used to approximate the required in-

tegrals.

method = "ch-Laplace": the log cumulative hazard formulation presented

in Chapter 4; the log cumulative baseline hazard is approximated using B-

splines. The Laplace approximation method developed in Chapter 4 is used

to approximate the required integrals. (This option corresponds to the joint

model proposed in Chapter 4)

A sample syntax is as follows:

# linear mixed effects model fit

fitLME <- lme(y ˜ drug * time, random = ˜ time | id, data)

# Cox proportional hazards model fit

fitSURV <- coxph(Surv(ftime, d) ˜ drug, data = data, x = TRUE)

# joint model fit

jointModel(fitLME, fitSURV, timeVar = "time", method = "weibull-GH")
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Several supporting functions are available that extract or calculate several

quantities based on the fitted joint model, such as model summary and stati-

stical significance for the estimated coefficients, empirical Bayes estimates (and

their standard error), fitted and residuals values, etc. In particular, the function

jointModel() return objects of class jointModel, for which the following

methods are available: print(), coef(), fixef(), ranef(), fitted(),

residuals(), summary(), plot(), vcov(), and logLik(). A detailed de-

scription of these functions is available at the on-line help files.

A.2 JM Package Extensions

The JM package is still under active development and a number of extensions is

already in the planning and design stages. These extensions can be summarized

in the following:

• The package currently fits joint models under the standard parameterization

(see e.g., (5.3)). In a future release parameterizations (5.1) to (5.4) will be

added. Apart from the enhanced flexibility in the joint model definition, this

feature will also facilitate the investigation of sensitivity of inferences under

different formulations of the random effects structure.

• A predict() method will be included that calculates the expected future

lifetime. This is defined as the expected value of the event time given that

this subject has not yet exhibited the event by the time his last longitudi-

nal measurement was collected, and can be used to provide predictions of

subject-specific event times for future individuals in the study.

• Implementation of the posterior predictive residuals as discussed in Section

5.2.3. In particular, an appropriate Monte Carlo algorithm (e.g., Metropolis-

Hastings) needs to be considered in order to sample multiple imputations ym
i
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from the nonstandard density p(ym
i | yo

i , Ti).

• Extension of the Laplace approximation method for the Weibull and time-

dependent proportional hazards models, in order to handle high-dimensional

random effects structures.
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