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Abstract

The subject of this Ph.D.-thesis is to be situated in the theory of locally compact
quantum groups which is a non-commutative generalization of the well-known
theory of locally compact groups. The locally compact groups constitute the
basic examples of locally compact quantum groups. For each property about
groups, the corresponding property for quantum groups is studied.

The theory of locally compact quantum groups is quite recent. The nowadays
formulation of the theory is known since 1999. Already earlier (since about 1961),
a lot of researchers made a contribution which is used in the present theory.

J. Kustermans and S. Vaes were the ones that finally came up with a satis-
factory definition of a ‘locally compact quantum group’. They gave their main
definition in 1999 and built up a whole theory, relying on the results of several
other researchers (Van Daele, Woronowicz, Baaj, Skandalis,. . .)

By now, the Kustermans-Vaes theory is widely spread and further developed.
As such, we now have a fully equipped theory at our disposal.

It is of course necessary to have interesting examples. There is no theory
that can survive without examples. It turns out not to be an easy task to find
a new quantum group and then elaborate its typical features. Throughout the
years, there has already been done a lot of effort in order to construct and work
out several new examples. It is especially S.L. Woronowicz who has made very
valuable contributions hereabouts.

In the thesis, we study the ‘quantum E(2) group’. This is an important
and very refined example of a non-compact quantum group. The fundamental
work has already been done by Woronowicz in 1991. Also S. Baaj made a very
important contribution by proving the existence and uniqueness of the Haar
weights. The work of Baaj was published in 1992.

The first chapter of the thesis is devoted to the general theory. In particular,
we point our attention to the world of (modular) multiplicative unitaries. A new
technique is introduced to study invariant weights within this framework.

In Chapter 2, we show that this new technique provides an elegant way to
prove that the quantum E(2) group fits into the Kustermans-Vaes theory. We
also seize the opportunity to renew and simplify the known results.

Further, we also study some general features of the quantum E(2) group.
We will have a closer look at the amenability properties (Chapter 3) and the
representation theory (Chapter 4). In this way, we obtain a fully elaborated
example of a non-compact quantum group.
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Korte samenvatting

Het onderwerp van deze doctoraatsthesis situeert zich in de theorie van lokaal
compacte kwantumgroepen. Dit is een niet-commutatieve veralgemening van de
welbekende theorie van lokaal compacte groepen. De lokaal compacte groepen
vormen dan ook de basisvoorbeelden van lokaal compacte kwantumgroepen.
Elke gekende eigenschap over lokaal compacte groepen geeft aanleiding tot een
studie van de overeenkomstige eigenschap voor kwantumgroepen.

De theorie van kwantumgroepen is vrij recent. In zijn huidige vorm kennen
we deze theorie sinds 1999. Maar reeds eerder (ongeveer vanaf 1961) hebben tal
van onderzoekers bijdragen geleverd die tot de huidige theorie geleid hebben.

Het waren uiteindelijk J. Kustermans en S. Vaes die er als eersten in gelukt
zijn om een bevredigende definitie te geven van wat een ‘lokaal compacte kwan-
tumgroep’ nu precies is. Ze formuleerden hun definitie in 1999 en bouwden
daarna een hele theorie uit. Zij steunden hierbij op heel wat resultaten van
andere onderzoekers (Van Daele, Woronowicz, Baaj, Skandalis,. . .).

Ondertussen is de theorie van Kustermans en Vaes wijd verspreid en verder
ontwikkeld. We beschikken momenteel over een zeer uitgewerkte theorie.

Het is uiteraard nodig om interessante voorbeelden te hebben. Er is immers
geen enkele theorie die kan overleven zonder voorbeelden. Het blijkt echter niet
eenvoudig om een nieuwe kwantumgroep te vinden en om dan zijn typische
kenmerken te beschrijven. Er is dan ook al heel wat tijd ingestoken om nieuwe
voorbeelden te construeren en uit te werken. Het is vooral S.L. Woronowicz
die hieromtrent belangrijke bijdragen heeft geleverd.

In de thesis bestuderen we de ‘kwantum E(2) groep’. Dit is een belangrijk
en zeer verfijnd voorbeeld van een niet-compacte kwantumgroep. De nodige
fundamenten voor de constructie van dit voorbeeld zijn reeds in 1991 gelegd door
Woronowicz. Ook S. Baaj leverde een heel belangrijke bijdrage door bestaan en
uniciteit van de Haargewichten te bewijzen. Dit gebeurde in 1992.

Het eerste hoofdstuk van de thesis behandelt de algemene theorie. In het
bijzonder richten we hierin onze aandacht op de wereld van (modulaire) multipli-
catieve unitairen. We introduceren een nieuwe techniek voor het bestuderen van
invariante gewichten binnen deze structuur.

In Hoofdstuk 2 tonen we dat deze nieuwe techniek een elegante manier levert
om te bewijzen dat de kwantum E(2) groep past in de Kustermans-Vaes theorie.
We maken bovendien van de gelegenheid gebruik om de gekende resultaten te
hernieuwen en te vereenvoudigen.
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We bestuderen verder ook enkele algemene kenmerken van de kwantum
E(2) groep. Hierbij passeren vooral de amenability eigenschappen (Hoofdstuk 3)
en de representatietheorie (Hoofdstuk 4) de revue. Op deze manier krijgen we
een volledig uitgewerkt voorbeeld van een niet-compacte kwantumgroep.
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Introduction

In this thesis, we study the quantum E(2) group of Woronowicz [158, 159, 149] as
a locally compact quantum group in the sense of Kustermans and Vaes [65, 66].
We also consider the (opposite) dual quantum group Ê(2). We will give a (very)
detailed treatment of both of these two non-compact quantum groups.

The nowadays theory of locally compact quantum groups is built up starting
from the basic definition of Kustermans and Vaes (cf. Definition 1.1.6). In its
present form, this study of quantum groups in the operator algebra setting is
quite elaborated. Due to the work of many researchers, several aspects of the
general theory are now well-understood and applications can be found in different
domains. In Section 1.1, we will state the main definition and give, in short, an
overview of the most important results of the general theory.

Of course, it is important to have enough (non-trivial) examples of locally com-
pact quantum groups illustrating the general theory. With this thesis, we make
a contribution to this by giving a detailed study of one such example. We will
focus on the quantum E(2) group. The construction and study of examples is
really an apart branch in the quantum group theory. In any non-trivial example,
a rather high level of complexity of techniques is involved. This is the reason
why a complete thesis is needed in order to fully elaborate a single example.

The purpose of this Ph.D.-thesis is to describe all the aspects of the quantum
E(2) group in an accurate way. From the main Chapter 2 onwards, we will give
the complete construction of this non-compact quantum group and its related
objects. While doing this, a lot of our attention will go to the study of the specific
properties of both the quantum E(2) group and its dual.

Before we concentrate on the quantum E(2) group, we first explore the world
of (modular) multiplicative unitaries. The main focus is on the appearance of
Haar weights within this framework; see Sections 1.3 and 1.4.

This study of multiplicative unitaries is useful on its own. It eventually leads up
to a new technique to construct a family of invariant weights.

Preliminaries

The two quantum groups E(2) and Ê(2) were first introduced and studied by
S.L. Woronowicz in [158, 159, 149]. He constructed two pairs (A,Φ) and (Â, Φ̂)

1



2 Introduction

of a C∗-algebra together with a comultiplication. The starting point of his con-
struction was a quantum deformation of the group of motions on the (Euclidean)
plane. This deformation is explained in [157]. The two considered bi-C∗-algebras
had enough properties to be called ‘locally compact quantum groups’.

The example of the quantum E(2) group was further explored by S. Baaj in [1, 2].
He was the first to obtain a formula for the Haar weights. Using advanced
techniques, he was able to prove the existence of left and right invariant weights
on both the bi-C∗-algebras (A,Φ) and (Â, Φ̂). Moreover, he could also prove a
uniqueness property. These results completed (in a sense) the quantum group
structure of the quantum E(2) group.

However, these results of Woronowicz and Baaj were obtained already in 1991
and 1992. In that time, there was not yet developed a satisfactory general
theory of locally compact quantum groups. This was only done in 1999, when
J. Kustermans and S. Vaes started to publish their series of papers [65, 66, 67, 68].
So, in a sense, the quantum E(2) group was an example before there was a
theory. As such, it played (together with other examples) an important role
in the development of a general quantum group theory. All the experts were
convinced that any such theory, not including the quantum E(2) group as a
basic example, was not a good theory. In this way, the structure of the quantum
E(2) group was an indication for finding the adequate axioms in the search for
a satisfactory definition of a locally compact quantum group.

Thus, in between the original construction of the quantum E(2) group and the
development of the general theory, there lies a period of almost 10 years. In
the meanwhile, a lot of important research was done in the quantum group
theory. For instance, Baaj and Skandalis published their fundamental paper on
multiplicative unitaries [4]. Also, there was the proposal of Kirchberg [52] to
introduce a polar decomposition for the antipode. Both these innovations had
a major effect on the development of the nowadays (operator algebra) approach
to quantum groups. Further, several new concepts were introduced and studied
in the area of locally compact quantum groups. An example of this is that one
began to study regularity and amenability of quantum groups.

The part of quantum group theory specifically related to the study of examples
has also changed a lot through the years. Woronowicz introduced several new
concepts which are very useful in the construction of examples of locally compact
quantum groups. The two most important ones are the manageability theory
for multiplicative unitaries [162, 114] and the machinery around the notion of
elements affiliated to a C∗-algebra [157, 161]. We will have a closer look at these
concepts in Sections 1.3 to 1.5. It should further be mentioned that Woronowicz
also provided us with new typical techniques; see e.g. his study of the quantum
az+b-group [165] and the quantum ax+b-group [169].

Because of all the new features that appeared in the theory of locally compact
quantum groups since Woronowicz’ construction of the quantum E(2) group,
we believe that it is certainly worthwhile to revise and update the treatment of
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this example. In the thesis, we present a nowadays proof of the fact that the
quantum E(2) group is indeed a locally compact quantum group in the sense of
Kustermans and Vaes. This basic result is stated in Theorem 2.4.3. It should
certainly be remarked that a proof can also be deduced from the earlier results
proved by S. Baaj in [1]. We assess our approach as more streamlined.

Actually, the reason for writing this thesis is threefold. As explained above,
the first reason is to give a thoroughly nowadays approach to the quantum
E(2) group. Secondly, we have a closer look at the technique of Van Daele [148]
to prove the invariance of the Haar weights. In Section 1.4, we formulate (and
prove) a generalization of this technique in the general framework of modular
multiplicative unitaries. In this way, we show that the Van Daele technique
is quite general applicable to construct Haar weights in specific examples of
quantum groups. We will apply the generalized technique in Chapter 2 when
studying the quantum E(2) group. Finally, as a third reason, we also seize the
opportunity to study all the known features of locally compact quantum groups
in the case of the quantum E(2) group and its dual. We give a detailed study
of the amenability properties and we unravel the representation theory.

The approach followed in the thesis is fully adapted to the nowadays theory of
locally compact quantum groups. This is clearly seen as our work is strongly
influenced by the recent fundamental work of Kustermans and Vaes [65, 66] and
Woronowicz [162, 161] on the topic. As a consequence, our new treatment of
the quantum E(2) group fits completely into the framework of Kustermans and
Vaes. The thesis is written in the spirit of the recent work of Van Daele [148]
and Woronowicz [165, 169] in which the quantum az+b-group and the quantum
ax+b-group are studied. We are convinced that the approach in these articles
is a good one to deal with examples of locally compact quantum groups.

Of course, the earlier work of Woronowicz and Baaj is an important source of
inspiration. Nevertheless, we will look at the quantum E(2) group from our own
point of view. We think that our approach is more instructive than the previous
ones, mainly because we can now rely on the recent developments in quantum
group theory. Also the fact that we give a complete working-out of the algebraic
motivation helps to improve the readability of the text. This algebraic part is
included to increase the intuition for the operator algebra results.

We like to point out that our main contribution to the quantum E(2) group
is not that we prove revolutionary new facts, but that we give an easy to read
and complete study of this example. We also prove some new properties and
simplify proofs of known facts. Another achievement is that we show that the
Haar weights fit into the general framework built up in Section 1.4.

At some points, our approach to the quantum E(2) group differs from both of the
approaches of Woronowicz and Baaj, although there is certainly no fundamental
difference. Especially in the main formulas, there will only be minor changes (if
any). Throughout the thesis, we will explain some differences and similarities
between the different approaches. We further mention that also A. Pal studied



4 Introduction

the quantum E(2) group [88, 89]. In his work, he mainly focussed on the contrac-
tion procedure of Woronowicz [160] relating the quantum E(2) group and the
quantum SU(2) group. However, this approach is completely different.

As the central object in this thesis is the quantum E(2) group, it is appropriate
to mention a few words about that part of the quantum group theory that is
concerned with examples. In Section 1.2, we will discuss some generalities about
the usual treatment of examples. Here in the Introduction, we already shortly
elucidate some aspects of how to construct (atomic) examples.

Studying a concrete example can be quite different from working in the general
theory. It requires special techniques which are not always easy. In his recent
work, Woronowicz provided us with several new, typical techniques which are
very useful (also see above). Nevertheless, it still takes a lot of work to construct
a non-trivial example of a quantum group. Especially the ‘atomic examples’
(examples built up using Method 1 in Section 1.2) can be quite hard to work with.
A lot easier to handle are for instance the examples constructed by using the
bicrossed product construction of Vaes and Vainerman [131, 132].

Many examples of bi-C∗-algebras arise from a quantum deformation of a classical
group (also the quantum E(2) group; see above). These deformations are first
obtained on the Hopf ∗-algebra level and then lifted to the C∗-algebra context.
In between, there is a Hilbert space step. The lifting procedure is usually rather
complicated, but interesting analysis is involved. Especially in the non-compact
case, there can appear some non-trivial technical difficulties.

As mentioned above, it is Woronowicz who has done some remarkable work in
producing such quantum deformations. However, having a bi-C∗-algebra, there
remains the problem of constructing Haar weights. In his very recent work [166],
Woronowicz displayed a formula for right invariant weights that fits into the
framework of manageable multiplicative unitaries. Unfortunately, his technique
does not always produce a Haar weight; see Remark 2.7.20.

Preceding the results of Woronowicz, there was already made some progress in
the area. The work of Van Daele [148] probably was the first systematic study
of Haar weights on quantum group examples. In Section 1.4, we base on the
technique of Van Daele to prove a formula for the Haar weights that is more
general than the one of Woronowicz. This new formula is strongly motivated by
the results in [134]. As we will illustrate in Chapter 2, it yields a quite powerful
technique to construct Haar weights in concrete examples.

Examples of (atomic) quantum groups are thus usually constructed on three
levels. First, there is the Hopf ∗-algebra level. This level contains the idea
behind the deformation and consists of the construction of a dual pair of Hopf
∗-algebras. Apart from the deformation idea (which is non-trivial), this level
mostly does not contain many advanced results. It is mainly used as an algebraic
intuition for later results. The next step is the Hilbert space level. In this step,
the generators of the considered Hopf ∗-algebras are represented as (possibly
unbounded) operators on a Hilbert space. This level contains all the technical
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details. The last step in the construction procedure is the C∗-algebra level. Here,
the example is studied as a locally compact quantum group. It is also the level
where the Haar weights come into the picture.

In Chapter 2, we construct the quantum E(2) group by using the above method.
Besides the quantum E(2) group, there are several other examples of locally
compact quantum groups built up in this way. The most interesting ones are
the quantum az+b-group, the quantum ax+b-group and the quantum S̃Uq(1, 1)
group. We will give references for these (and other) examples in Section 1.2.

Thus, in this thesis, we explore the example of the quantum E(2) group. We
will give a complete description of all the aspects of this non-compact quantum
group. On the technical level, we are very precise. We however try to write
things in a not too detailed way in order not to let technical details prevent a
better understanding of what is really going on. Nevertheless, it should take the
reader little effort to make all the arguments completely rigorous.

As will be explained in Section 1.1, locally compact quantum groups are studied
in different settings. The main distinction is in the choice of applying either
C∗-algebra theory or von Neumann algebra theory. The C∗-algebra approach
is historically the most important one. Especially the last few years, it is clear
that the von Neumann algebra approach is coming on. Due to its richness in
properties, it can sometimes be very convenient to use the von Neumann algebra
theory. This is certainly the case when weight theory is involved, because we then
have the Tomita-Takesaki theory at our disposal. Further, the von Neumann
algebra setting is more appropriate to deal with technicalities.

For this Ph.D.-thesis, we have opted to mainly work in the (reduced) C∗-algebra
setting. The reason for this choice is that this setting is the most natural one to
study the quantum E(2) group in; e.g. because we can use the theory of elements
affiliated to a C∗-algebra [157, 161]. We will however not neglect to also consider
some results relating to the von Neumann algebra setting.

Structure of the thesis

Before we really jump into the quantum world, we first give a short overview of
the structure and the content of this thesis.

The thesis contains 5 chapters.

Chapter 1 - Locally compact quantum groups. We start, in Chapter 1,
by giving a short introduction to the general theory of locally compact quantum
groups. This Chapter 1 is divided into 5 sections. In the first Section 1.1, we
formulate the definition of Kustermans and Vaes (cf. Definition 1.1.6) and we
give some related remarks. We also say a few words about the history behind this
definition. Further, we mention the most important basic properties of quantum
groups. The second Section 1.2 is devoted to examples of quantum groups. Here,
we discuss a few different methods for constructing examples. We also describe
the standard examples and include a list of further known examples.



6 Introduction

The next three sections are used to study some important concepts which are
particularly useful when studying a concrete quantum group example. In Sec-
tion 1.3, we initiate the reader to the world of multiplicative unitaries. Most of
our attention will go to modular multiplicative unitaries. We describe the main
results of Woronowicz [162] and prove some extra properties.

Also in Section 1.4, the notion of modularity plays an important role. Combining
the modularity results with the technique of Van Daele [148], we create a quite
general framework wherein one can study invariance of weights. We display a
concrete description of a family of weights ψq that are strongly right invariant.
Each of these weights is a good candidate for being a Haar weight.

Finally, in the fifth and last Section 1.5, we gather some information about the
affiliation relation. We include these results for sake of completeness.

Chapter 2 - The quantum E(2) group and its dual. This is the main
chapter. The complete Chapter 2 is devoted to the construction of the quantum
E(2) group. We will handle this in a (very) detailed way. The principal result is
that the quantum E(2) group is a locally compact quantum group in the sense
of Kustermans and Vaes; see Theorem 2.4.3. Moreover, it is non-compact and
non-discrete. Simultaneously with the construction of the quantum E(2) group,
we also construct the (opposite) dual quantum Ê(2) group. Of course, we will
not only expound the constructions, but also have a close look at the specific
properties of both of these two examples.

The constructions of the quantum E(2) group and its dual are performed in
Section 2.4 in a short and standard way. The Sections 2.5 to 2.8 contain the
details about the typical features of these examples.

The main actor in our construction is the multiplicative unitary W . We present a
new, direct proof of the fact that this unitary operator is manageable in the sense
of Woronowicz [162]. This gives us the possibility to simplify the construction of
the quantum E(2) group (A,Φ). From the manageability theory, we can directly
deduce the basic properties of the C∗-algebra A and the comultiplication Φ.
For the dual quantum group (Â, Φ̂), we automatically get similar results.

The next step is the construction of the Haar weights. This will be an easy
application of the general results proved in Section 1.4. The quantum E(2) group
is unimodular; the dual quantum Ê(2) group is non-unimodular.

By using all these results, we will find that both the quantum E(2) group and
its dual are locally compact quantum groups according to Definition 1.1.6. After
establishing this main result, we display more traits of the bi-C∗-algebras (A,Φ)
and (Â, Φ̂). We also construct the (unbounded) antipodes S and Ŝ through their
polar decomposition. We then focus on some distinctive characteristics such as
the modular elements and the left and right regular representations. Further,
we consider regularity properties and we give some duality theory.

Chapter 3 - Amenability properties. Then, in Chapter 3, we look at some
interesting amenability results. We first give a short introduction to the general
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theory of amenability in the quantum group case. After this, we study the
specific amenability properties of the quantum groups E(2) and Ê(2). It turns
out that both these quantum groups are strongly amenable. In the two cases,
we are able to construct infinitely many linearly independent (left) invariant
means. It is the first appearance of this foreseen property.

Chapter 4 - Representation theory. The Chapter 4 is devoted to the
representation theory. First, we describe the C∗-algebras A and Â in terms of
crossed products and we prove some related universality properties. Using these
results, we then completely unravel the representation theory of the quantum
E(2) group and its dual. In both cases, we display a detailed description of all
the irreducible ∗-representations and all the corepresentations.

Chapter 5 - Conclusions and open problems. In Chapter 5, we conclude
the thesis. Besides the conclusions, we also list some open problems. These may
be of interest for future research on the quantum E(2) group.

There are also two appendices.

Appendix A - The function Fµ and its Fourier transform. In the first
Appendix A, we study the quantum exponential function Fµ together with its
Fourier coefficients. The formulated results are very important in calculations
throughout the thesis. They were obtained before by Woronowicz and Baaj. For
clearness, we have chosen to rewrite the proofs in our setting.

Appendix B - Technical results. In Appendix B, we collect some technical
results. We look at basic features in weight theory and in the theory of one-
parameter representations. Further, we discuss the functional calculus.

Notations and conventions

To end the Introduction, we collect some basic notions. We fix the used notations
and settle some conventions. Further, we also include standard references.

Throughout the thesis, we make extensive use of operator algebra theory. Basic
references for this are [81, 92, 119]. Basic references for the theory of (un-
bounded) operators on a Hilbert space are [19, 105, 116]. A text about Hilbert
space operators which is very well suited for our purposes is [59].

We only include some basic notations here. The more advanced notations (e.g.
notations concerning weights or one-parameter representations) are explained
in Appendix B. In this Appendix B, the reader can also find some remarks
about the functional calculus for normal operators.

First, we fix a number µ ∈ R with 0 < µ < 1.

The unit circle in C is denoted by S1. Further, we use the following notations:

Cµ = {µkz | k ∈ Z, z ∈ S1}, C(µ
1
2 ) = {µ 1

2kz | k ∈ Z, z ∈ S1},

Rµ = {µk | k ∈ Z}, R(µ
1
2 ) = {µ 1

2k | k ∈ Z}.

Notations like C̄µ mean that we take the closure; hence C̄µ = Cµ ∪ {0}.
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For any subset X in a Banach space E, we denote the linear span of X by
spanX. We use the notation [X] to denote the norm closed linear span and we
hereby shorten a notation like [{x |x ∈ X}] to [x |x ∈ X]. For two linear subsets
A,B ⊆ E, we always write AB to denote the linear set span {xy | x ∈ A, y ∈ B}
while A�B denotes the algebraic tensor product.

The norm on a C∗-algebra A is always denoted by ‖ · ‖. For a Hilbert space H,
we use 〈·, ·〉 to denote the scalar product.

Let X be a locally compact space. Then, we use the notations

C(X) = {f : X → C | f is continuous},
Cb(X) = {f ∈ C(X) | f is bounded},
C0(X) = {f ∈ C(X) | f vanishes at infinity}.

If X0 ⊆ X and f ∈ C(X), we use f |X0 to denote the restriction of f to X0.

For any subset Y ⊆ X, we use χY to denote the characteristic function of Y ,
i.e., we have χY (x) = 1 if x ∈ Y and χY (x) = 0 if x 6∈ Y .

Further, with A a C∗-algebra, we also use the notations

K(X,A) = {f : X → A | f is continuous and has compact support},
K(X) = {f ∈ C(X) | f has compact support}.

Let ν be a Borel measure on X. The Hilbert space L2(X, ν) is then standard
defined as the set of equivalence classes in

L2(X, ν) = {f : X → C | f is square integrable with respect to ν}

The regarding equivalence relation ∼ is defined on L2(X, ν) by setting f ∼ g if
and only if f(s) = g(s) for almost all s ∈ X.

We remark that we set `2(X) = L2(X, ν) when the measure ν is discrete.

In the case that G is a locally compact group with left Haar measure ν, we use
the short notation L2(G) to denote L2(G, ν).

For any locally compact group G, we use C∗
r(G) to denote the reduced group

C∗-algebra. This C∗-algebra is built up in Example 1.2.4.

For a C∗-algebra A, we denote by M(A) the multiplier algebra and by Aη the
set of affiliated elements. More information about these sets (and topologies on
these sets) can be found in Section 1.5. We always use the notation a η A to
denote that a ∈ Aη. The cone of positive elements in A is denoted by A+.

Further, A∗ is used to denote the set of continuous linear functionals. The subset
of positive linear functionals is denoted by A∗+. For a von Neumann algebra M ,
we also use the notation M∗ for the set of normal functionals. We use M+

∗ to
denote the subset of positive normal functionals.
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We remark that there is a notion of a strict linear map on A. These linear maps
can be extended to M(A) in a unique manner. Below, we already make use of
these extensions. We refer to Section 1.5 for more details.

For a concrete C∗-algebra A ⊆ B(H), we use the notation A′ to denote the
commutant of A. Similarly, A′′ denotes the bicommutant of A. We have that A′

and A′′ are von Neumann algebras. Moreover, it is a standard result that the
bicommutant A′′ is equal to the weak (or strong) closure of A.

Let A and B be two C∗-algebras. The notation A ∼= B then means that A
and B are ∗-isomorphic, i.e., there exists a ∗-isomorphism j : A→ B. The set of
∗-automorphisms on A is denoted by Aut(A). If M is a von Neumann algebra,
then Aut(M) always denotes the set of normal ∗-automorphisms.

If H is a Hilbert space, we denote by B(H), respectively B0(H), the C∗-algebras
of bounded and compact operators on H. As B(H) is a von Neumann algebra,
the notation B(H)∗ is well-defined. We notice that (under identification) we
have M(B0(H)) = B(H) and B(H)∗ = B0(H)∗. If ξ, η ∈ H, we define the
vector functional ωξ,η ∈ B(H)∗ by setting ωξ,η(x) = 〈xξ, η〉. We also make use
of the short notation ωξ to denote the positive vector functional ωξ,ξ.

For an (unbounded) linear map T , we use D(T ) to denote its domain. The
linear set {(ξ, T ξ) | ξ ∈ D(T )} is called the graph of T . We say that T is closed
when the graph of T is closed. A subset D0 ⊆ D(T ) is called a core for T when
the graph of the restriction of T to D0 is dense in the graph of T . For any
subset D ⊆ D(T ), we use T |D to denote the restriction of T to D.

Let T be a linear operator on a Hilbert space H. The spectrum of T is denoted
by σ(T ). Now suppose that T is densely defined, i.e., that D(T ) is dense in H.
We then use T ∗ to denote the adjoint operator. We say that T is normal when
T ∗T = TT ∗ and self-adjoint when T = T ∗. We call T non-singular when T is
injective and positive when 〈Tξ, ξ〉 ≥ 0 for all ξ ∈ H. We call T strictly positive
if it is non-singular, positive and self-adjoint. We say that u ∈ B(H) is a unitary
when u∗u = uu∗ = 1. We call p ∈ B(H) a projection when p = p∗ = p2.

Let S and T be normal operators on a Hilbert space H. Suppose that S and T
commute. We then use σ(S, T ) to denote their joint spectrum.

Also for an anti-linear operator J , we use J∗ to denote the adjoint operator.
We say that J is an anti-unitary operator when J∗J = JJ∗ = 1. If J is an
anti-unitary operator such that J = J∗, then J is called a conjugation.

Let R and S be two closed operators. In the unbounded case, we have to be
very careful when we work with the sum or the product of R and S. Throughout
the thesis, we only use the notation Ru S when the sum of R and S is densely
defined and closable. Then, Ru S is defined as the closure of R+ S. Similarly,
we only use the notation RS when the product of R and S is densely defined
and closable. In this case, RS is defined as the closure of this product. It is
important not to forget these two conventions.
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We use the symbol ⊗ to denote different tensor products. The precise meaning
of the symbol depends on its ingredients. If H and K are Hilbert spaces, then
H ⊗ K is the tensor product Hilbert space. For (possibly unbounded) closed
operators R and S on Hilbert spaces H, respectively K, we denote by R⊗S the
(closed) tensor product operator defined on the Hilbert space H ⊗K.

In Section 2.1, the symbol ⊗ is used to denote the algebraic tensor product
between two algebras. If A and B are C∗-algebras, then A ⊗ B always denotes
the minimal C∗-algebra tensor product. For von Neumann algebras M and N ,
we use M ⊗̄N to denote the von Neumann algebra tensor product.

The following standard examples are well-known. For locally compact groups F
and G, we have C0(F )⊗C0(G) = C0(F ×G). For Hilbert spaces H and K, we
have B0(H)⊗B0(K) = B0(H ⊗K) and B(H) ⊗̄B(K) = B(H ⊗K).

Let A ⊆ B(H) and B ⊆ B(K) be two C∗-algebras. The flip operator on H ⊗K
is denoted by Σ. The flip map on A⊗B is denoted by σ̇. Hence, by definition,
we have that σ̇(x) = ΣxΣ for every x ∈ A⊗B.

We will make extensive use of the leg-numbering notation. Let A, B and C be
three C∗-algebras. There exist unique non-degenerate ∗-homomorphisms

θ12 : A⊗B →A⊗B ⊗ C, θ13 : A⊗B → A⊗ C ⊗B,

θ23 : A⊗B → C ⊗A⊗B.

such that, for all a ∈ A and b ∈ B, we have

θ12(a⊗ b) = a⊗ b⊗ 1, θ13(a⊗ b) = a⊗ 1⊗ b and θ23(a⊗ b) = 1⊗ a⊗ b.

For all x ∈M(A⊗B), we then use the notations

x12 = θ12(x), x13 = θ13(x) and x23 = θ23(x).

For any set G, we always use ι (or ιG) to denote the identity map:

ι : G→ G : x 7→ x.

Let A and B be two C∗-algebras and let ω ∈ A∗. Then, we define ω̄ ∈ A∗ by
ω̄(x) = ω(x∗). For all a ∈ M(A), we define aω, ωa ∈ A∗ by aω(x) = ω(xa)
and ωa(x) = ω(ax). We also consider the slice maps

ω ⊗ ι : M(A⊗B) →M(B) and ι⊗ ω : M(B ⊗A) →M(B).

If moreover ρ ∈ B∗, we consider the tensor product functional

ω ⊗ ρ : M(A⊗B) → C.

In the von Neumann algebra case, we again make use of the symbol ⊗̄ to denote
slice maps and tensor product functionals.



Chapter 1

Locally compact quantum
groups

As explained in the Introduction, this thesis is completely devoted to the study
of the quantum E(2) group in the framework of Kustermans and Vaes [65, 66].
Before we go into the details of the construction of this example, we use this
first chapter to give a short introduction to the general theory of locally compact
quantum groups. The main emphasis lies on the principal results in the theory of
Kustermans and Vaes, but we also unfold some aspects of the general concepts
introduced by Woronowicz in his study of quantum group examples.

The Sections 1.3 and 1.4 constitute the most important part of Chapter 1. They
contain new results concerning the manageability theory which we believe to be
interesting. We prove some extra properties of modular multiplicative unitaries
and we introduce a new technique to construct Haar weights. In Chapter 2, we
will apply these new results in our study of the quantum E(2) group.

We are very brief in our discussion of the general theory. For a complete outline
of the theory, we refer to the series of papers [65, 66, 68]. We also mention the
paper [67] for those who are looking for a more leisurely approach to locally
compact quantum groups. The most extended text about the general theory
can be found in the Ph.D.-thesis of S. Vaes [125]. This probably gives the best
notes for people who are not yet experts in the subject. For a first encounter
with quantum groups, we can also recommend the notes [63] and [69].

We use [125] only as a general reference. Concrete references in this thesis are
always made to one of the articles [65, 66, 68]. However, the text [125] is of great
importance. Our work is mainly influenced by this fundamental book. We will
formulate the results in such a way that they give a concrete illustration of the
theory outlined in the first chapter of [125]. In a sense, a shortened version of
this thesis could fit into [125] as a (possible) next chapter.

11



12 Chapter 1. Locally compact quantum groups

This chapter is split up into 5 sections.

Section 1.1 - The definition of a locally compact quantum group. The
first section is devoted to the general Kustermans-Vaes theory. We will give their
definition and its main consequences. Further, we introduce the most important
objects related to a quantum group together with their basic properties.

Section 1.2 - Examples of quantum groups. Here, we focus on some
generalities that concern the study of specific examples of locally compact quan-
tum groups. We describe the basic examples (i.e. the commutative quantum
groups and their duals) and we look at some possible methods to construct
examples. We also include a list of further known examples.

Section 1.3 - Multiplicative unitaries. In Section 1.3, we explicate the
theory of multiplicative unitaries. In particular, we outline Woronowicz’ results
on manageable (and modular) multiplicative unitaries. These results will be
very important in later calculations as the major tool in our construction of the
quantum E(2) group is a manageable multiplicative unitary W .

By making ahead use of the results in Section 1.4, it is possible to apply typical
quantum group techniques in the setting of modular multiplicative unitaries.
This gives us the opportunity to prove some extra properties.

Section 1.4 - A formula for the Haar weights. Also in Section 1.4, we
work in the framework of modular multiplicative unitaries. Building on the
technique of Van Daele [148], we create a new method to prove invariance of
Haar weights. This method is quite general and will provide us with a powerful
tool in our study of the Haar weights on the quantum E(2) group.

For a modular multiplicative unitary W , there is a natural way to define an
associated bi-C∗-algebra (A,Φ) (cf. Section 1.3). The main result of Section 1.4
is stated in Theorem 1.4.26. It describes a concrete family of faithful, lower
semi-continuous weights ψq that are strongly right invariant on (A,Φ).

Section 1.5 - The affiliation relation. In this last section, we consider the
notion of elements affiliated to a C∗-algebra. We discuss the main properties of
the affiliation relation as they appear in [157, 161]. We also give some remarks
about C∗-algebras that are generated by affiliated elements.

1.1 The definition of a locally compact quantum
group

In this first section, we give a condensed overview of the main results from the
general theory of locally compact quantum groups in its present form. As already
mentioned above, the nowadays quantum group theory is built up starting from
the definition of Kustermans and Vaes (cf. Definition 1.1.6). This definition was
proposed in 1999 by J. Kustermans and S. Vaes as a possible definition for a
(reduced) C∗-algebraic quantum group [65, 66]. They thereby settled a research
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program that was started several decennia ago with the attempt to generalize
the beautiful duality theory of abelian locally compact groups; see below.

By now, the definition of Kustermans and Vaes is widely spread and accepted
as a ‘good’ definition. With their definition, J. Kustermans and S. Vaes gave
the quantum group theory a very solid base which is of great importance for the
further exploration of the theory and the search for new applications. The road
to this definition has been quite long. Below, we will very briefly sketch the way
that the nowadays theory of quantum groups arose. We refer to the introduction
of [125] for a complete description of the historical background. The role of
examples is explained in a more detailed way in the next Section 1.2.

The search for a good notion of a locally compact quantum group was originated
in order to find a non-commutative analogue of the famous Pontryagin duality
theorem. After a lot of pioneering work on some special cases, this eventually
resulted in the theory of Kac algebras which solved the problem of finding a
category that includes all locally compact groups and their duals. The theory of
Kac algebras was found in the seventies by Kac and Vainerman [136, 137] and,
independently, by Enock and Schwarz [26, 27]. We refer to [29] for a complete
overview of the Kac algebra theory. For a reformulation of the Kac algebra
theory in the C∗-algebra language, we can refer to [31, 140].

The theory of Kac algebras defines in an elegant way a category with duality
containing all locally compact groups. However, amongst others, Drinfel’d and
Woronowicz found (in the eighties) new objects which had enough properties
to be called ‘quantum group’ but did not satisfy the axioms of Kac algebra
theory. This indicated that the axioms defining a Kac algebra were too narrow
to include all the would-be quantum groups. One began to look for a larger
category including all the Kac algebras and the known examples.

The first success in this direction was obtained by S.L. Woronowicz who defined
compact quantum groups in 1992; published later in [163]. One of the most
important features of his theory is the proof of the existence and uniqueness of a
Haar measure; also see [145]. As the theory classically agrees with the theory of
compact groups, it could not be the final step. Nevertheless, Woronowicz’ theory
was an enormous breakthrough in the axiomatization of quantum groups. A nice
overview of the theory of compact quantum groups can be found in [76]. There is
presented a slightly different approach in [82].

Also discrete quantum groups were defined and investigated. First, they were
studied as the duals of compact quantum groups; see [94]. Effros and Ruan [25]
and, independently, Van Daele [146] both gave an intrinsic approach.

Another crucial step towards the nowadays theory of quantum groups was the
full development of the theory of multiplicative unitaries, i.e., unitary operators
satisfying the so-called pentagonal equation. W.F. Stinespring was the first to
emphasize, in the framework of group duality, the important role played by the
fundamental unitary of a locally compact group [117]. Also in the theory of Kac
algebras, this fundamental unitary plays a key role; see e.g. [29, 139].
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The first systematic study of multiplicative unitaries was made by S. Baaj and
G. Skandalis in 1993. In their fundamental paper [4], Baaj and Skandalis also
introduced the notions of a regular and irreducible multiplicative unitary and of
a Kac system. Their theory unifies (the basics of) the theories of Kac algebras
and compact quantum groups and allows a perfectly working duality theory.
Nevertheless, S. Baaj discovered in [1, 2] that the multiplicative unitary of the
quantum E(2) group constructed by Woronowicz [159] is not regular and hence
does not fit in the Baaj-Skandalis theory; also see Corollary 2.8.24.

In 1996, S.L. Woronowicz proposed the alternative axiom of manageability for
multiplicative unitaries [162]. Apparently, this seems to be a notion that is
very well adapted to quantum groups. The fundamental unitary of any locally
compact quantum group is manageable (cf. Proposition 1.1.16). We will see in
Sections 1.3 and 1.4 that the manageability theory is very powerful.

Besides the above analytic developments, there was also important work done
on the algebraic level. In 1996, A. Van Daele [147] defined in an algebraic way a
special class of quantum groups, called algebraic quantum groups. Together with
J. Kustermans, he also developed a way to construct a C∗-algebraic quantum
group out of an algebraic quantum group [57, 70]. This leads to a self-dual
category including all compact and discrete quantum groups. Of course, this
theory is too algebraic to include all locally compact quantum groups.

Other important contributions to the quantum group theory are the work of
S. Vaes and A. Van Daele on Hopf C∗-algebras [124, 133], the work of Masuda and
Nakagami on Woronowicz algebras [79] and the joint work of Masuda, Nakagami
and Woronowicz on weighted Hopf C∗-algebras [80].

Notwithstanding the beauty and importance of the above developments, none
of these theories completely satisfies all the needs for a general theory of locally
compact quantum groups. They all suffer from one or more shortcomings. So,
one was still looking for a final theory unifying all of the above theories.

The problem was thus settled in 1999 when Kustermans and Vaes gave their
(relatively simple) definition of a locally compact quantum group [65, 66]. One
year later, they also gave a von Neumann algebraic version [68]. The basic
definition of Kustermans and Vaes is both very natural and very powerful. The
only (possible) drawback for this definition is the fact that the existence of Haar
weights is postulated. However, it seems to be the best definition one can hope
for at the moment. A theory that has the existence of the Haar weights as a
theorem rather than an axiom still seems far away.

Starting from their basic definition, Kustermans and Vaes have built up a very
powerful theory. In their work, they are of course inspired by the aforesaid earlier
theories. Throughout the years, many researchers have made a contribution
to the further development of the theory of locally compact quantum groups.
Several aspects of the theory of locally compact groups are now generalized to
the case of quantum groups. Due to all this work, most features of quantum
group theory are now understood quite well. This has also lead to interesting
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applications in other domains; e.g. in the theory of subfactors [127, 129] and
in the cohomology theory of locally compact groups [6].

The definition of Kustermans and Vaes

After the above brief history sketch, we now really start overviewing the general
theory. In our survey, we will only mention results which will pop up later
in the thesis. For proofs, we refer to [66, 68, 125]. Motivational background for
the definitions and results can be found in [125, 63, 69].

The first and most important thing to do is of course to formulate the basic
definition of Kustermans and Vaes (cf. Definition 1.1.6). Before we do so, it is
necessary first to introduce some preliminary standard definitions.

Because a usual group is defined by a space and a multiplication, it is natural
to define quantum groups by a quantum space and a comultiplication. In more
mathematical terms, one wants to define locally compact quantum groups by
an operator algebra (either a C∗-algebra or a von Neumann algebra) and a
comultiplication. An initiation to these concepts is thus a good beginning.

First, we give the basic Definition 1.1.1.

Definition 1.1.1 Let A be a C∗-algebra and let Φ : A → M(A ⊗ A) be a non-
degenerate ∗-homomorphism. We then call (A,Φ) a bi-C∗-algebra if Φ satisfies
coassociativity, i.e., if we have (Φ⊗ ι)Φ = (ι⊗ Φ)Φ.

In this case, Φ is called a comultiplication on the C∗-algebra A.

Remark 1.1.2 One should observe that Φ has its image in M(A ⊗ A) rather
than in A⊗A. At first, Φ⊗ ι and ι⊗Φ are only defined on A⊗A. Because they
are non-degenerate, we can extend these two maps in a unique way to unital
∗-homomorphisms on M(A⊗A); see Proposition 1.5.18.

The following notation is used at several places in this thesis.

Notation 1.1.3 Let (A,Φ) be a bi-C∗-algebra and ω, ρ ∈ A∗. Then, we define
ωρ ∈ A∗ by ωρ = (ω ⊗ ρ)Φ. If ω, ρ ∈ A∗+, then we also have ωρ ∈ A∗+.

We will define in the Definition 1.1.6 below a locally compact quantum group as a
bi-C∗-algebra satisfying a density condition and possessing a left and a right
invariant weight. So, we thus first have to introduce the notion of left (and
right) invariance for weights on a bi-C∗-algebra.

In the thesis, two different forms of invariance for weights will appear. It is clear
that strong invariance is indeed stronger than invariance.

Definition 1.1.4 Consider a bi-C∗-algebra (A,Φ) and a weight ϕ on A+.

• The weight ϕ is called left invariant if ϕ
(
(ω ⊗ ι)Φ(a)

)
= ω(1)ϕ(a) for all

a ∈ M+
ϕ and ω ∈ A∗+. It is called strongly left invariant if this equality

can be extended to hold for all a ∈ A+ and ω ∈ A∗+;
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• The weight ϕ is called right invariant if ϕ
(
(ι⊗ω)Φ(a)

)
= ω(1)ϕ(a) for all

a ∈ M+
ϕ and ω ∈ A∗+. It is called strongly right invariant if this equality

can be extended to hold for all a ∈ A+ and ω ∈ A∗+.

Remark 1.1.5 Notice that in Definition 1.1.4, we implicitly use the extension
of the weight ϕ to M(A)+ (see Section B.1). For a general bi-C∗-algebra (A,Φ),
we only know that (ω ⊗ ι)Φ(a) ∈M(A)+ for a ∈ A+.

We are now ready to state the main definition. This powerful definition was
introduced by J. Kustermans and S. Vaes in their fundamental papers [65, 66].
It is the starting point of the nowadays theory of quantum groups.

Definition 1.1.6 (Kustermans and Vaes) Consider a C∗-algebra A and a
non-degenerate ∗-homomorphism Φ : A→M(A⊗A) such that

• (Φ⊗ ι)Φ = (ι⊗ Φ)Φ;

• A = [ (ω ⊗ ι)Φ(a) | ω ∈ A∗, a ∈ A] = [ (ι⊗ ω)Φ(a) | ω ∈ A∗, a ∈ A].

Assume, moreover, the existence of

• a faithful left invariant approximate KMS-weight ϕ on (A,Φ);

• a right invariant approximate KMS-weight ψ on (A,Φ).

Then we call (A,Φ) a locally compact quantum group.

The next Terminology 1.1.7 is justified by Theorem 1.1.10 below.

Terminology 1.1.7 Let (A,Φ) be a locally compact quantum group and let ϕ
and ψ be the weights appearing in Definition 1.1.6.

We call ϕ the left Haar weight of (A,Φ) and ψ the right Haar weight.

The next Remark 1.1.8 is quite important. We remark that we use this property
in the thesis without explicitly referring to here.

Remark 1.1.8 It follows from Proposition 1.5.21 that the density conditions
in Definition 1.1.6 are a weakening of the cancellation law, i.e., the property
that the linear sets Φ(A)(1⊗A) and Φ(A)(A⊗ 1) are dense in A⊗A.

Nevertheless, the cancellation law will hold in every locally compact quantum
group. This property is stated in Theorem 1.1.11.

The Remark 1.1.9 below also goes along with the Definition 1.1.6.

Remark 1.1.9 In the papers [65, 66], the object defined in Definition 1.1.6 is
called a reduced C∗-algebraic quantum group.

The reason for this terminology is that there exist other, equivalent, approaches
to quantum groups. One can work with universal quantum groups [61] or in the
von Neumann algebraic setting [68]. See also the Definition 1.1.40.
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The main results of the general theory

We now have a look at the main consequences of Definition 1.1.6. We list the
basic results from the general theory. These results are all due to Kustermans
and Vaes. As mentioned above, proofs can be found in [66, 68, 125].

Although the Theorems 1.1.10 and 1.1.11 below are very natural, they are far
from being trivial. In fact, these two theorems contain some of the most advanced
results of the general theory. The full force of the work of Kustermans and Vaes
is needed to prove them in a rigorous way.

We state in Theorem 1.1.10 the strongest known uniqueness result concerning
the Haar weights. This uniqueness theorem is a very crucial property.

Theorem 1.1.10 Let (A,Φ) be a locally compact quantum group. Let ϕ and ψ
be the weights appearing in Definition 1.1.6.

Further, assume that η is a non-zero, densely defined, lower semi-continuous
weight on A+. The properties below hold:

• If η is left invariant, there exists a number r > 0 such that η = rϕ;

• If η is right invariant, there exists a number r > 0 such that η = rψ.

The next Theorem 1.1.11 gathers some very deep, non-trivial results. In partic-
ular, it gives that the invariance of the Haar weights holds in the strongest form
(although only a weak form is required in Definition 1.1.6).

We further mention that the density condition in the Theorem 1.1.11 below is
known as the cancellation law.

It is clear that Theorem 1.1.11 provides some very useful information.

Theorem 1.1.11 Let (A,Φ) be a locally compact quantum group. Let ϕ be the
left Haar weight and ψ the right Haar weight.

We have the following properties:

• The linear sets Φ(A)(A⊗ 1) and Φ(A)(1⊗A) are dense in A⊗A;

• The weight ϕ is a faithful, strongly left invariant KMS-weight on (A,Φ);

• The weight ψ is a faithful, strongly right invariant KMS-weight on (A,Φ).

The next Corollary 1.1.12 is an (almost) immediate consequence

Corollary 1.1.12 Let (A,Φ) be a locally compact quantum group. Let ϕ be the
left Haar weight and ψ the right Haar weight. Then (A, σ̇Φ) is a locally compact
quantum group with left Haar weight ψ and right Haar weight ϕ.

We call (A, σ̇Φ) the opposite quantum group of (A,Φ).

Notation 1.1.13 We also use (A,Φ)op to denote (A, σ̇Φ).
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In order to get more insight on how the general theory works, we discuss the
most important objects related to a (fixed) quantum group (A,Φ). We define
these objects and describe their standard features.

First, we fix the basic notations. For notational convenience, we keep these
notations fixed for the remainder of this Section 1.1.

Notation 1.1.14 Let (A,Φ) be a locally compact quantum group with left Haar
weight ϕ and right Haar weight ψ. The GNS-construction of the weight ϕ is
denoted by (Hϕ, πϕ,Λϕ). Because πϕ is faithful, we can (and will) identify the
C∗-algebras A and πϕ(A) and assume that A acts on Hϕ.

Because ϕ and ψ are faithful KMS-weights (cf. Theorem 1.1.11), we can intro-
duce the following Notation 1.1.15.

Notation 1.1.15 We denote the unique modular automorphism group of ϕ
by σ. We use σ′ to denote the unique modular automorphism group of ψ. We
have that σ and σ′ are norm continuous one-parameter groups on A.

The first object that Kustermans and Vaes build up starting from Definition 1.1.6
is the (left) regular representation W . This multiplicative unitary is irrefutably
one of the main actors in the general theory.

The importance of the operator W can hardly be overestimated. We remark that
manageability for multiplicative unitaries is defined in Section 1.3.

We have the following crucial Proposition 1.1.16.

Proposition 1.1.16 There exists a unique unitary operator W ∈ B(Hϕ ⊗Hϕ)
such that

W ∗(Λϕ(x)⊗ Λϕ(y)
)

= (Λϕ ⊗ Λϕ)
(
Φ(y)(x⊗ 1)

)
(1.1)

for all x, y ∈ Nϕ.

The unitary W is multiplicative, i.e., it satisfies the pentagonal equation

W12W13W23 = W23W12.

Moreover, we have that W is manageable.

We call W the left regular representation of (A,Φ).

The next Remark 1.1.17 is about the proof of Proposition 1.1.16.

Remark 1.1.17 Using the invariance of the left Haar weight ϕ, it is not so
difficult to construct an isometry W ∗ satisfying Equation (1.1). However, it
requires a lot of hard work to prove that W ∗ is indeed a unitary operator. For
this, one also needs the right Haar weight ψ.

Thus, we here see one of the reasons for requiring the existence of both a left
and a right Haar weight in Definition 1.1.6. The proof of Proposition 1.1.16 is
one of the major achievements of Kustermans and Vaes.
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The great importance of W is already clear from the following result. It says
that we can describe the complete structure of the bi-C∗-algebra (A,Φ) in terms
of W . We recall that we identify the C∗-algebras A and πϕ(A).

It is lucid that the formulas in Proposition 1.1.18 below are very useful.

Proposition 1.1.18 We have that

A = [ (ι⊗ ω)W | ω ∈ B(Hϕ)∗].

For all x ∈ A, we have
Φ(x) = W ∗(1⊗ x)W.

The next step is the construction of the antipode S. In contrast with Kac algebra
theory, the antipode can be unbounded in general. For instance, we will see in
the Chapter 2 that this is the case for the quantum E(2) group.

Because of its unboundedness, it sometimes can be quite delicate to work with
the antipode. Luckily, we have the polar decomposition which helps us (a lot)
to handle the problems caused by the unboundedness; see below.

The next Proposition 1.1.19 describes the main features of the antipode.

Proposition 1.1.19 There exists a unique closed linear map S : D(S) ⊆ A→ A
such that, for every ω ∈ B(Hϕ)∗, we have (ι⊗ ω)W ∈ D(S) and

S
(
(ι⊗ ω)W

)
= (ι⊗ ω)W ∗

and where the linear set { (ι⊗ ω)W | ω ∈ B(Hϕ)∗} is a core for S.

This linear map S is called the antipode of (A,Φ).

Furthermore, the antipode S has a unique polar decomposition S = Rτ− i
2

where
(τt) is a norm continuous one-parameter group on A and where R is an involutive
∗-anti-automorphism of A such that R and τt commute for all t ∈ R.

We call R the unitary antipode of (A,Φ) and (τt) the scaling group.

The antipode S has the following properties:

1. We have that S = Rτ− i
2

= τ− i
2
R,

2. S is densely defined and has dense range,

3. S is injective and S−1 = Rτ i
2

= τ i
2
R,

4. S is anti-multiplicative: for x, y ∈ D(S), we have that xy ∈ D(S) and
S(xy) = S(y)S(x),

5. For all x ∈ D(S), we have S(x)∗ ∈ D(S) and S(S(x)∗)∗ = x,

6. We have that S2 = τ−i.
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Moreover, the commutation relations below hold:

1. Rτz = τzR for all z ∈ C,

2. Φτt = (τt ⊗ τt)Φ for all t ∈ R,

3. ΦR = σ̇(R⊗R)Φ,

4. RS = SR,

5. τtS = Sτt for all t ∈ R.

It is important to notice the two Remarks 1.1.20 and 1.1.21.

Remark 1.1.20 We can extend the scaling group (τt) in a unique way to a
strictly continuous one-parameter group (τ̄t) on M(A); see Section B.2.

The antipode S can therefore be extended to a strictly closed linear map S̄
on M(A). This is done by putting

S̄ = Rτ̄− i
2

= τ̄− i
2
R.

We have that S̄ is the strict closure of S.

Every result of Proposition 1.1.19 has a strict counterpart involving the exten-
sion S̄. Moreover, if x ∈ D(S) and y ∈ D(S̄), we have that xy, yx ∈ D(S).

We remark that S itself is strictly closed as a linear map on A.

Remark 1.1.21 Due to the property ΦR = σ̇(R⊗R)Φ (cf. Proposition 1.1.19)
and the uniqueness of the Haar weights (cf. Theorem 1.1.10), we see that we can
take ψ = ϕR. From this, we also get that σ′t = Rσ−tR for all t ∈ R.

The Proposition 1.1.22 below collects some more commutation relations.

Proposition 1.1.22 1. The three automorphism groups σ, σ′ and τ com-
mute pairwise.

2. For all t ∈ R, we have the following equations:

Φσt = (τt ⊗ σt)Φ, Φσ′t = (σ′t ⊗ τ−t)Φ,
Φτt = (τt ⊗ τt)Φ, Φτt = (σt ⊗ σ′−t)Φ.

By definition of a modular automorphism group, we have ϕσt = ϕ and ψσ′t = ψ
for all t ∈ R. The next Proposition 1.1.23 deals with the remaining invariance
properties. It is the appropriate place to introduce the scaling constant.

Proposition 1.1.23 There exists a unique number ν > 0 such that, for all
t ∈ R, we have

ϕσ′t = νtϕ, ψσt = ν−tψ,

ψτt = ν−tψ, ϕτt = ν−tϕ.

We call ν the scaling constant of (A,Φ).
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Remark 1.1.24 The scaling constant ν is a quite peculiar object. Only very
recently, it was discovered that it can happen that ν 6= 1.

It is proved by A. Van Daele in [148] that in the case of the quantum az+b-
group (with complex deformation parameter) and the quantum ax+b-group, we
have that the scaling constant is not equal to 1.

The left Haar weight ϕ and the right Haar weight ψ are related to each other
through the modular element. We define this element δ below by using the theory
of absolutely continuous KMS-weights (see Section B.1).

We recall that, on an informal level, we have ϕδ(x) = ϕ(δ
1
2xδ

1
2 ) for x ∈ A+.

Proposition 1.1.25 There exists a unique strictly positive element δ η A such
that σt(δ) = νtδ for all t ∈ R (where ν is the scaling constant) and ψ = ϕδ. We
call δ the modular element of (A,Φ).

We have the following basic properties:

1. ψ = ϕδ and ϕ = ψδ−1 ,

2. Φ(δ) = δ ⊗ δ,

3. R(δ) = δ−1 and τt(δ) = δ for all t ∈ R,

4. If t ∈ R, then δit ∈ D(S̄) and S̄(δit) = δ−it,

5. σt(δ) = σ′t(δ) = νtδ for all t ∈ R,

6. σ′t(a) = δitσt(a)δ−it for all t ∈ R and a ∈ A.

The modular element δ indicates how much the left Haar weight ϕ is right
invariant and how much the right Haar weight ψ is left invariant. This loose
statement is made precise in the Proposition 1.1.26 below.

Proposition 1.1.26 Let x ∈M+. Take ξ ∈ D(δ
1
2 ) and η ∈ D(δ−

1
2 ). Then, we

have that

1. ϕ
(
(ι⊗ ωξ)Φ(x)

)
= ϕ(x)〈δ 1

2 ξ, δ
1
2 ξ〉,

2. ψ
(
(ωη ⊗ ι)Φ(x)

)
= ψ(x)〈δ− 1

2 η, δ−
1
2 η〉.

We distinguish between the cases δ = 1 and δ 6= 1.

Definition 1.1.27 If we have δ = 1, then we call (A,Φ) unimodular. In the
case δ 6= 1, we call (A,Φ) non-unimodular.

Thus, (A,Φ) is unimodular if and only if ϕ = ψ.
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As the final theme in our survey of the general theory, we discuss the duality
theory as studied within the Kustermans-Vaes framework. For a locally compact
quantum group, there is a natural way to construct the dual quantum group. This
(not so difficult) construction mainly uses ideas and techniques that are known
from the theory of multiplicative unitaries [4, 162].

We are again concise with the details. We only briefly indicate how to construct
the dual quantum group. The motivation behind the given definitions can be
found in [125]. We also refer to [125] to learn more about the close relation
between a quantum group and its dual.

We recall that having a nice duality theory was one of the first motivations to
search for a general theory of locally compact quantum groups.

Before constructing the dual of (A,Φ), we look back at Proposition 1.1.18. This
proposition says that (A,Φ) lives in the first leg of W . Analogously, the dual
quantum group (Â, Φ̂) will live in the second leg of W . In both cases, the
comultiplication can be written in terms of the multiplicative unitary W .

We have the following results.

Proposition 1.1.28 The linear set Â defined by

Â = [ (ω ⊗ ι)W | ω ∈ B(Hϕ)∗]

is a C∗-algebra.

We can define a non-degenerate ∗-homomorphism Φ̂ : Â → M(Â ⊗ Â) by the
formula

Φ̂(x) = ΣW (x⊗ 1)W ∗Σ.

Moreover, we have the existence of

• a faithful, strongly left invariant KMS-weight ϕ̂ on (Â, Φ̂);

• a faithful, strongly right invariant KMS-weight ψ̂ on (Â, Φ̂).

Thus, (Â, Φ̂) is a locally compact quantum group. We call it the dual of (A,Φ).

Proposition 1.1.29 The unitary operator ΣW ∗Σ is the left regular represen-
tation of (Â, Φ̂). We use Ŵ to denote this multiplicative unitary.

Notation 1.1.30 We also use (Â,Φ) to denote the dual of (A,Φ).

Remark 1.1.31 In the general theory, it is a common practise to flip the comul-
tiplication when constructing the dual quantum group.

This choice is not always made. We e.g. leave out the flip when we define the
comultiplication on the quantum Ê(2) group. In this way, we get that it actually
is the opposite dual of the quantum E(2) group (cf. Proposition 2.8.21).

It is explained in Remark 2.1.2 why we have made this particular choice.
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The following Proposition 1.1.32 is the basis for the corepresentation theory.
This is further explained in Chapter 4.

Proposition 1.1.32 We have that W ∈M(A⊗ Â). Moreover, we have

(Φ⊗ ι)W = W13W23 and (ι⊗ Φ̂)W = W13W12.

The next biduality theorem is of major importance. It generalizes the well-known
Pontryagin duality theorem for commutative locally compact groups.

Theorem 1.1.33 Let ( ˆ̂
A,

ˆ̂Φ) be the bidual quantum group of (A,Φ) (i.e. the

dual of (Â, Φ̂)). Then, we have ( ˆ̂
A,

ˆ̂Φ) = (A,Φ).

Remark 1.1.34 We can write ( ˆ̂
A,

ˆ̂Φ) = (A,Φ) because we identify πϕ(A) and A.

In general, we have that the bidual quantum group ( ˆ̂
A,

ˆ̂Φ) of a locally compact
quantum group (A,Φ) is isomorphic to (A,Φ).

More specific, πϕ : A→ ˆ̂
A is a ∗-isomorphism such that (πϕ ⊗ πϕ)Φ = ˆ̂Φπϕ.

We have moreover that ˆ̂ϕπϕ = ϕ and ˆ̂
ψπϕ = ψ.

Special types of quantum groups

It is natural to distinguish special types of quantum groups. These special types
are easier to handle because we are in a less general case and we thus have more
known properties. Historically, the special cases below were treated before there
was the general framework of Kustermans and Vaes; see above.

First, we have the commutative and the cocommutative quantum groups. These
are the basic examples of locally compact quantum groups. In Section 1.2, we
will describe all the quantum groups which are of one of these two special types.
This will be done in Examples 1.2.1 and 1.2.4.

Definition 1.1.35 Let (A,Φ) be a locally compact quantum group. Then, we
call (A,Φ)commutative if the C∗-algebra A is commutative. We call (A,Φ)
cocommutative if we have that Φ = σ̇Φ.

Other special types of locally compact quantum groups are the compact and the
discrete quantum groups. These classes are more interesting than the commu-
tative and cocommutatives ones because they are less clear-cut.

We refer to [163, 76] for studies of compact quantum groups. The papers [146, 25]
contain treatments of discrete quantum groups.

Definition 1.1.36 Let (A,Φ) be a locally compact quantum group. We then
call (A,Φ) compact if the C∗-algebra A has a unit 1.

Further, we call (A,Φ) discrete if the C∗-algebra Â has a unit 1.
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The next Lemma 1.1.37 is a basic result.

Lemma 1.1.37 Let (A,Φ) be a discrete quantum group. Then, there exists a
family of natural numbers (ni)i∈I such that A =

⊕
i∈IMni

(C).

It follows from [68, Proposition 4.2] that commutativity and cocommutativity
are dual to each other. It is a direct consequence of Theorem 1.1.33 that also
compactness and discreteness are dual notions.

Proposition 1.1.38 Let (A,Φ) be a locally compact quantum group.

• We have that (A,Φ) is commutative if and only if (Â, Φ̂) is cocommutative,

• We have that (A,Φ) is compact if and only if (Â, Φ̂) is discrete.

The next Remark 1.1.39 is about compact quantum groups.

Remark 1.1.39 The compactness property defined in Definition 1.1.36 above
does not coincide with the notion of a compact quantum group as introduced
by Woronowicz in [163]. For a bi-C∗-algebra (A,Φ) with A unital, we have
that (A,Φ) is a compact quantum group according to Definitions 1.1.6 and 1.1.36
if and only if (A,Φ) is a compact quantum group in the sense of Woronowicz
such that the Haar state h on (A,Φ) is faithful.

Let (A,Φ) be a compact quantum group in the sense of Woronowicz. Let h be
the Haar state on (A,Φ). It is not so difficult to translate the faithfulness of h
in terms of A and Φ. The following conditions are equivalent:

• The Haar state h is faithful;

• For all x ∈ A+ and ω ∈ A∗+, we have that (ω ⊗ ι)Φ(x) = 0 if and only
if ω = 0 and x = 0;

• For all x ∈ A+ and ω ∈ A∗+, we have that (ι ⊗ ω)Φ(x) = 0 if and only
if ω = 0 and x = 0.

This equivalence is proved in [39].

The von Neumann algebra setting

We now also look at the Kustermans-Vaes definition of a von Neumann algebraic
quantum group. The von Neumann algebra approach to quantum groups is
developed similar to the C∗-algebra case. We are concise with the details and
refer to [68, 125] for a complete outline of the theory.

It is important to mention that there exists a natural bijective correspondence
between (reduced) C∗-algebraic quantum groups and von Neumann algebraic
quantum groups. This is explained in [68, 125].
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We have the Definition 1.1.40 below. Notice that there are no density conditions.
These will follow automatically from the axioms in the definition.

We recall that the symbol ⊗̄ is used to denote von Neumann algebra tensor
products. This was already mentioned in the Introduction.

Definition 1.1.40 ([68]) Consider a von Neumann algebra M and a normal
and unital ∗-homomorphism Φ : M →M ⊗̄M such that

(Φ ⊗̄ ι)Φ = (ι ⊗̄Φ)Φ.

Assume the existence of two n.s.f. weights ϕ and ψ on M such that

• ϕ
(
(ω ⊗̄ ι)Φ(x)

)
= ω(1)ϕ(x) for all x ∈ M+

ϕ and ω ∈M+
∗ ;

• ψ
(
(ι ⊗̄ω)Φ(x)

)
= ω(1)ψ(x) for all x ∈ M+

ψ and ω ∈M+
∗ .

Then we call (M,Φ) a von Neumann algebraic quantum group.

We have the following uniqueness result.

Proposition 1.1.41 Let (M,Φ) be a von Neumann algebraic quantum group.
Let ϕ and ψ be the weights appearing in Definition 1.1.40.

Assume that η is an n.s.f. weight on M+. The properties below hold:

• If η is left invariant, there exists a number r > 0 such that η = rϕ;

• If η is right invariant, there exists a number r > 0 such that η = rψ.

It is therefore justified to use the next Terminlogy 1.1.42.

Terminology 1.1.42 Let (M,Φ) be a von Neumann algebraic quantum group.
Let ϕ and ψ be the weights appearing in Definition 1.1.6.

We call ϕ the left Haar weight of (M,Φ) and ψ the right Haar weight.

Similar to the C∗-algebra case, there is also a full development of the theory
of von Neumann algebraic quantum groups. Although we will make use of this
theory, we do not include its main results. We only make a small remark about
the used terminology. We refer to [68, 125] for a full treatment.

Remark 1.1.43 Let (M,Φ) be a von Neumann algebraic quantum group with
left Haar weight ϕ and right Haar weight ψ.

Similar to the C∗-algebra setting, we can define an antipode S on M with polar
decomposition S = Rτ− i

2
. Because ϕ and ψ are n.s.f. weights, they also have a

modular automorphism group.

Further, also the notions of modular element and scaling constant have a von
Neumann algebra counterpart.

We adopt all notations and terminology from the C∗-algebra case.
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The Kac algebras are special types of von Neumann algebraic quantum groups.
From the results in [69], we get the next Lemma 1.1.44.

Lemma 1.1.44 Let (M,Φ) be a von Neumann algebraic quantum group.

We then have that (M,Φ) is a Kac algebra if and only if the scaling group τ is
trivial (i.e., we have τt = ι for all t ∈ R) and the Haar weights ϕ and ψ have
the same modular automorphism group.

In this case, the antipode S is thus bounded and satisfies S2 = ι.

The von Neumann algebra setting is the most suited framework to study closed
quantum subgroups. We adopt the following Definition 1.1.45.

Definition 1.1.45 Let (M1,Φ1) and (M2,Φ2) be two von Neumann algebraic
quantum groups. Suppose that there exists a normal, faithful ∗-homomorphism
α̂ : M̂1 → M̂2 such that Φ̂2

(
α̂(x)

)
= (α̂ ⊗̄ α̂)Φ̂1(x) for all x ∈ M̂1.

Then, we say that (M1,Φ1) is a closed quantum subgroup of (M2,Φ2).

We also define the concept of a left coaction of a von Neumann algebraic quantum
group. There is of course an equivalent notion of a right coaction.

Definition 1.1.46 Let (M,Φ) be a von Neumann algebraic quantum group and
let N be a von Neumann algebra.

Then, let α : N →M ⊗̄N be an injective, unital and normal ∗-homomorphism.
We call α a left coaction of (M,Φ) on N if we have

(ι⊗ α)α = (Φ⊗ ι)α.

1.2 Examples of quantum groups

We now point our attention to examples of quantum groups. It is of course
important to have enough (non-trivial) examples of locally compact quantum
groups. Every theory needs some refined examples in order to survive.

This Section 1.2 deals with some general aspects about the study of quantum
group examples. We give a few history details and describe possible construction
methods. While doing this, we also give references to lots of examples. As it
would be almost impossible to give a complete overview of all of the theory
concerning examples, we certainly do not claim to have done so.

The two standard examples of locally compact quantum groups are given by the
locally compact groups and their duals. We will describe them in Examples 1.2.1
and 1.2.4. However, most of our attention will go to the construction of quantum
group examples which do not come from a group.
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As explained above (and below), the construction of examples of quantum groups
played a crucial role in the search for Definition 1.1.6. Similar to the general
quantum group theory, also the study of examples has been developed in different
steps. In this process, it happened more than once that a new constructed
example leaded to some drastic changes concerning the general theory.

In this context, we should certainly mention the joint work of G.I. Kac and
V.G. Paljutkin done in the sixties (thus even before there was the theory of Kac
algebras). In [43], they built up a dual pair of quantum groups. These (probably)
were the first examples of infinite quantum groups not coming from a group,
i.e., which are not commutative or cocommutative. Further, they constructed
in [44] their famous dimension 8 example; also see [45, 87].

After the development of Kac algebra theory in the seventies, people of course
tried to construct as many examples as possible. Since then, quite a number
of Kac algebra examples have been found and investigated. Several different
examples (either in the C∗-algebra or the von Neumann algebra framework) can
be found in [21, 141, 118, 78, 74, 106, 108, 30, 135, 46, 47, 48, 49, 50].

However, in the quest for finding new Kac algebra examples, also new objects
were found which had enough properties to be called ‘quantum group’ but did not
satisfy the axioms of a Kac algebra. This showed that the theory of Kac algebras
was too narrow. The main problem was the assumption that the antipode (which
is the quantum analogue of the inverse group operation) has square 1.

The first indication that the category of Kac algebras was probably not the
endpoint of quantum group theory was made on the algebraic level. The Hopf
algebra examples constructed by V.G. Drinfel’d [24] and M. Jimbo [40] in 1985
were the first examples (known to operator algebra people) of Hopf algebras
where the square of the antipode was not equal to 1. The construction of these,
by now famous, examples was an important motivation to search for a further
development of the analytic theory of quantum groups.

Two years later, there were found new analytical results which were comparable
with the above situation. S.L. Woronowicz constructed in 1987 his famous and
revolutionary example of the quantum SU(2) group [153]. This gave an example
of his theory of compact matrix pseudo-groups [154, 155] which was the starting
point of the theory of compact quantum groups. It turned out that, also here,
the antipode did not have square 1. Hence, the quantum SU(2) group is not
a Kac algebra. However, technically the most frightening thing was that the
example of the quantum SU(2) group showed that the antipode did not need to
be a bounded map (as in the Kac algebra case) but could be a densely defined,
unbounded linear map. As mentioned in Section 1.1, it was mainly for this
reason that people wanted to develop a larger category of quantum groups on
an analytic level, including the Kac algebras and all the known examples.

The example of the quantum SU(2) group was generalized by Woronowicz one
year later in 1988. For every n ∈ N\{0, 1}, he constructed the compact quantum
SU(n) group [156]. Besides these typical examples, also several other compact
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quantum groups were constructed. We can refer e.g. to [107, 8, 73, 87]. We give
a description of the quantum SU(2) group in Example 1.2.10.

Examples of (non-commutative) discrete quantum groups are less common than
one could expect. The dual of the quantum SU(2) group is described in [94].
Other discrete examples can e.g. be found in [147].

Later on, in the nineties, there appeared examples of locally compact quantum
groups that were neither compact nor discrete. For instance, P. Podleś and
S.L. Woronowicz constructed in 1990 a quantum Lorentz group which gave the
first non-discrete example of what should be a non-compact quantum group [94].
The quantum E(2) group of Woronowicz [158, 159, 149] was the second example
of a non-compact and non-discrete locally compact quantum group.

Of course, the existence of these non-compact examples motivated further the
necessity of a new theory of locally compact quantum groups. As said above, a sat-
isfactory theory was eventually found in 1999 by Kustermans and Vaes [65, 66].
Starting from their main Definition 1.1.6, they built up a theory including both
the Kac algebras and all the known examples of quantum groups.

Not so surprisingly, the study of examples gained even more attention after the
full development of the Kustermans-Vaes theory. The fact that there finally was
a solid framework to study examples within was of course an impetus to search
for new examples. Moreover, as e.g. this thesis proves, there also came a renewed
interest for earlier constructed examples.

The two standard examples

First, we describe the commutative and the cocommutative examples. These are
the two basic types of quantum group examples. We can construct all of them
by using the well-known theory of locally compact groups.

We start with the commutative case. Classically, this agrees with the theory
of locally compact groups. The commutative quantum groups are the standard
examples and as such are a great source of inspiration. Every studied feature in
quantum group theory is actuated by a property of locally compact groups.

It can be shown that any commutative quantum group is of the form discussed
in the next Example 1.2.1. This is proved e.g. in [133, Proposition 2.5].

Example 1.2.1 Let G be a locally compact group (where the group operation is
denoted by juxtaposition). We use dx to denote the left Haar measure on G.

We define a commutative C∗-algebra A by A = C0(G). We already mentioned in
the Introduction that A⊗A = C0(G×G). Further, we then get from the results
in Section 1.5 that M(A) = Cb(G) and M(A⊗A) = Cb(G×G).

We can define a comultiplication Φ on A⊗A by the formula

Φ(f)(s, t) = f(st) (1.2)

when f ∈ C0(G) and s, t ∈ G.
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The coassociativity of Φ follows immediately from the associativity of the group
operation on G. For all f ∈ C0(G) and r, s, t ∈ G, we have

(Φ⊗ ι)Φ(f)(r, s, t) = f
(
(rs)t

)
and (ι⊗ Φ)Φ(f)(r, s, t) =

(
r(st)

)
The cancellation law in G is equivalent with the property that the linear spaces

Φ(A)(A⊗ 1) and Φ(A)(1⊗A)

are dense in A⊗A. This is proved e.g. in [76, Proposition 3.3].

We can define a faithful KMS-weight ϕ on A+ by integrating with respect to the
left Haar measure. Hence, for all f ∈ C0(G), we have

ϕ(f) =
∫
G

f(x) dx.

Suppose that ω ∈ A∗+. Then there is a (unique) finite Borel measure ν on G
such that the action of ω is given by

ω(f) =
∫
G

f(r) dν(r).

Using the Fubini theorem, it is not so difficult to prove that the weight ϕ is
(strongly) left invariant. For all f ∈ C0(G), we have

ϕ
(
(ω ⊗ ι)Φ(f)

)
=

∫ (
(ω ⊗ ι)Φ(f)

)
ds =

∫∫
Φ(f)(r, s) dν(r) ds

=
∫∫

f(rs)dν(r) =
∫∫

f(rs) ds dν(r) = ω(1)ϕ(f).

Hence, we get that ϕ is a left Haar weight on (A,Φ).

Completely similar, a right Haar weight ψ can be found by integrating with respect
to the right Haar measure.

We thus get that (A,Φ) is a locally compact quantum group.

Further, it is here easy to describe the antipode and the counit. These two maps
behave very well in the commutative case.

The antipode S is a ∗-automorphism on A defined by

S(f)(t) = f(t−1)

when f ∈ C0(G) and t ∈ G.

The (bounded) counit is a ∗-homomorphism ε : A→ C defined by

ε(f) = f(e)

when f ∈ C0(G) and where e is the unit in G.
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We accompany the Example 1.2.1 with two remarks.

Remark 1.2.2 In Example 1.2.1 above, we also find some motivational remarks
explaining (some of) the terminology introduced in Section 1.1. For instance,
we see that coassociaticity is the quantum analogue of associaticity.

The notion of a counit is introduced in Definition 3.1.4.

Remark 1.2.3 The commutative case in Example 1.2.1 also explains why we
generally let Φ take values in M(A⊗A) rather than in A⊗A. For a non-compact
locally compact group G, we have that

Φ
(
C0(G)

) ∩ (
C0(G)⊗ C0(G)

)
= {0}.

This follows immediately from Equation (1.2).

In the next Example 1.2.4, we construct the group duals. In this way, we describe
all the cocommutative quantum groups; see Remark 1.2.7.

Example 1.2.4 Let G be a locally compact group.. We use Â to denote the
(reduced) group C∗-algebra C∗

r(G).

We shortly recall how C∗
r(G) is constructed.

For every p ∈ G, we denote the corresponding left translation by λp, i.e., we
have that λp is the unitary operator on L2(G) defined by

(λpξ)(t) = ξ(s−1t) for all ξ ∈ L2(G), t ∈ G.

For all f ∈ K(G), we use λ(f) ∈ B(L2(G)) to denote the left convolution with f .
The operator λ(f) is defined by putting

λ(f) =
∫
f(s)λs ds

where ds is the left Haar measure on G.

The group C∗-algebra C∗
r(G) is then defined as

C∗
r(G) = [λ(f) | f ∈ K(G) ].

There exists a unique non-degenerate ∗-homomorphism Φ̂ : Â→M(Â⊗ Â) such
that, for all p ∈ G, we have

Φ̂(λp) = λp ⊗ λp.

We moreover have that the map Φ̂ is a comultiplication, i.e., it satisfies the
coassociativity property:

(Φ̂⊗ ι)Φ̂ = (ι⊗ Φ̂)Φ̂.

Further, we also have the density properties

Â⊗ Â = [Φ̂(Â)(Â⊗ 1)] = [Φ̂(Â)(1⊗ Â)].
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There exists a faithful KMS-weight ϕ̂ on (Â, Φ̂) which is both left and right
invariant. Loosely speaking, ϕ̂ is given by the formula

ϕ̂
(
λ(f)

)
= f(e)

We thus get that (Â, Φ̂) is a locally compact quantum group.

Further, we give a short description of the antipode and the counit. These maps
are in most cases quite well-behaved.

The antipode Ŝ is a ∗-anti-automorphism on Â such that, for all f ∈ L1(G), we
have the formula

Ŝ(λ(f)) = λ(f̃)

Here, the function f̃ ∈ L1(G) is defined by f̃(p) = ∆(p)−1f(p−1) when p ∈ G
and where ∆ is the modular function of G.

The counit ε̂ is a linear map such that, for all f ∈ L1(G), we have

ε̂(λ(f)) =
∫
G

f(p) dp

This linear map is bounded if and only if G is amenable.

For the ease of notation, we introduce the following convention.

Notation 1.2.5 Whenever we use the notations (C0(G),Φ) and (C∗
r(G), Φ̂), we

always assume to be working with Examples 1.2.1 and 1.2.4.

When this notation may cause any confusion, we will use a more precise notation
with a subscript; e.g. we denote (C0(G),ΦG).

It is said above that the quantum groups (C0(G),Φ) and (C∗
r(G), Φ̂) are dual to

each other. We give a short description of this duality.

Lemma 1.2.6 Let G be a locally compact group. We can define a multiplicative
unitary W ∈ L2(G×G) by the formula

W (ξ)(p, q) = ξ(p, p−1q)

when ξ ∈ L2(G×G) and p, q ∈ G.

The unitary operator W is the left regular representation of
(
C0(G),Φ

)
.

Further, the two equalities below hold:

• C0(G) = [ (ι⊗ ω)W | ω ∈ B(L2(G))∗],

• C∗
r(G) = [ (ω ⊗ ι)W | ω ∈ B(L2(G))∗].
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We also have that

Φ(x) = W ∗(1⊗ x)W and Φ̂(y) = ΣW (y ⊗ 1)W ∗Σ

when x ∈ C0(G) and y ∈ C∗
r(G).

These formulas precisely mean that ̂(C0(G),Φ) = (C∗
r(G), Φ̂).

The duality results in Lemma 1.2.6 have some nice consequences. We formulate
two of them in the Remarks 1.2.7 and 1.2.8.

Remark 1.2.7 We already mentioned that every commutative quantum group
is of the form (C0(G),Φ) with G a locally compact group.

From Lemma 1.2.6 and Proposition 1.1.38, we then get that every cocommutative
quantum group is of the form (C∗

r(G), Φ̂) with G a locally compact group.

Remark 1.2.8 Let now G be an abelian locally compact group. Then, we have
that C∗

r(G) ∼= C0(Ĝ) where Ĝ is the dual group of G.

The duality in Lemma 1.2.6 here takes the form ̂(C0(G),ΦG) = (C0(Ĝ),ΦĜ).

In this special case, we can thus rewrite Theorem 1.1.33 as

(C0( ˆ̂
G),Φ ˆ̂

G
) = (C0(G),ΦG).

This is precisely the famous Pontryagin duality theorem.

The next Proposition 1.2.9 sums up the main parts of the above results.

Proposition 1.2.9 Let G be a locally compact group.

We have that (C0(G),Φ) and (C∗
r(G), Φ̂) are locally compact quantum groups.

Furthermore, we have ̂(C0(G),Φ) = (C∗
r(G), Φ̂).

The examples (C0(G),Φ) describe all the commutative quantum groups while the
examples (C∗

r(G), Φ̂) describe all the cocommutative quantum groups.

The construction of examples

We mentioned above that, similar to the development of the general theory,
the construction of examples of quantum groups (especially non-compact ones)
has been a slow process. However, due to the work of several researchers, the
list of examples is getting quite respectable by now. For the remainder of this
section, we discuss possible methods for constructing examples.

We divide the construction methods in two categories. This will be done in
terms of the examples that are produced. We will distinguish between atomic
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and non-atomic examples. This terminology is certainly not standard, but it is
also not new. It appeared before in [54].

There first are the atomic examples. By ‘atomic’, we mean that these examples
(up till now) cannot be constructed out of simpler quantum groups through one
of the different existing theoretical construction procedures such as the bicrossed
product construction or the double crossed product construction. Except for the
two standard examples described in Examples 1.2.1 and 1.2.4, these examples
are usually built up using the ‘three level approach’ introduced by Woronowicz.
All the other examples (thus built up using a construction procedure with other
quantum groups as ingredients) are called non-atomic.

Not so unexpectedly, the two introduced categories both have their advantages
and disadvantages. Below, we will have a look at this and other aspects of the
different types of construction methods.

Method 1: Atomic examples

From the above description, it is obvious that the notion of an example being
‘atomic’ is not clear-cut. More or less, we called the category of atomic examples
into existence to have a short collective noun to adumbrate those examples which
are constructed along the lines set up by Woronowicz.

Constructing new atomic examples requires a strong intuition in combination
with non-trivial mathematics. The work of Woronowicz in this branch of quan-
tum group theory is very important. From the end of the eighties onwards,
he provided us with many new examples and he also introduced several typical
techniques [162, 161] which are useful in the study of an example. As it is said
above, these techniques are best usable in the C∗-algebra framework.

Atomic examples are built up ‘from nowhere’ only using a ‘good idea’. All the
necessary ingredients are constructed from the bottom up. When constructing
the example, the work is always done in three stages:

1. The Hopf ∗-algebra level;

2. The Hilbert space level;

3. The C∗-algebra level (or von Neumann algebra level).

The Hopf ∗-algebra level is mainly used as an intuition. It gives the algebraic
motivation for the later results on the operator algebra level. The Hilbert space
level deals with the technical details. The main part here is the construction
of a multiplicative unitary. Finally, we arrive at the C∗-algebra level. This gives
the example as a locally compact quantum group.

For the third level, one can thus also choose to work in the von Neumann algebra
framework. Depending on the considered example, the best choice can either be
to work with C∗-algebras or with von Neumann algebras.
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The aforesaid ‘good idea’ for the construction of an atomic example is mostly
found as follows. We start from a classical group G consisting of matrices. Then,
we work along the lines of the following recipe:

1. We look at the Hopf ∗-algebra A of polynomial functions on the group G
and we try to find some natural generators and relations for A.

2. We then deform these relations by some complex number q and consider the
Hopf ∗-algebra Aq generated by the generators together with the deformed
relations. After this and inspired by the usual comultiplication on A, we
try to define a comultiplication ∆ from Aq to the algebraic tensor product
Aq �Aq in such a way that (Aq,∆) is again a Hopf ∗-algebra.

3. The next step is to represent the deformed generators of Aq by (possibly
unbounded) closed operators on a Hilbert space H.

4. Now, we look for a C∗-algebra A ⊆ B(H) that is ‘generated’ by these
Hilbert space operators (cf. [161]). This is done by taking appropriate
functions of the generators. Further, we try to define a comultiplication
Φ : A→M(A⊗A) that agrees with ∆ on the generators.

5. The construction of the example is ended by defining left and right Haar
weights and proving their invariance.

Although the above five-step recipe is a useful guideline, it certainly does not
guarantee that it will be easy to construct new examples. First of all, it is already
non-trivial to find a possible deformation on the Hopf ∗-algebra level.

It also requires a lot of hard work to perform the lifting procedure. Technically
the most difficult part lies in the search for a good comultiplication Φ on the C∗-
algebra A and in the proof of its coassociativity. In comparison with finding the
correct formula for Φ, the construction of the Haar weights is not that difficult.
For this, the technique presented in Section 1.4 can be helpful.

In the compact case, the above construction method works really well. There, it
can be used in a rather straightforward way. Historically the first quantum group
built up using the above recipe was famous example of the non-commutative
quantum SUλ(2) group. We construct this compact quantum group in Exam-
ple 1.2.10 below. More general, there are the compact quantum SUλ(n) groups
with n ∈ N \ {0, 1} [156]. However, we only consider the case n = 2.

The quantum SUλ(2) group was first constructed by Woronowicz in 1987 [153].
It is probably the most studied example of a (compact) quantum group.

Example 1.2.10 Take λ ∈ R with 0 < |λ| < 1.

First, recall that SU(2) is the group of unitary complex matrices in M2(C) with
determinant 1. We can describe SU(2) in a more concrete way as

SU(2) =
{ (

a −c̄
c ā

)
∈M2(C)

∣∣∣ a, c ∈ C such that |a|2 + |c|2 = 1
}
.
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We consider the functions α, γ ∈ C(SU(2)) defined by

α

(
a −c̄
c ā

)
= a and γ

(
a −c̄
c ā

)
= c

when a, c ∈ C such that |a|2 + |c|2 = 1.

Now, we let A0 be the dense unital ∗-subalgebra of C(SU(2)) generated by α
and γ. We can define a ∗-homomorphism ∆ : A0 → A0 ⊗ A0 by the formula
∆(f)(s, t) = f(st) when f ∈ A0 and s, t ∈ SU(2).

It is easy to check that (A0,∆) is a Hopf ∗-algebra. We have that

∆(α) = α⊗ α− γ∗ ⊗ γ and ∆(γ) = γ ⊗ α+ α∗ ⊗ γ.

Now, we let A0 be the dense unital ∗-subalgebra of C(SU(2)) generated by α
and γ. We can define a ∗-homomorphism ∆ : A0 → A0 ⊗ A0 by the formula
∆(f)(s, t) = f(st) when f ∈ A0 and s, t ∈ SU(2).

It is easy to check that (A0,∆) is a Hopf ∗-algebra. We have

∆(α) = α⊗ α− γ∗ ⊗ γ and ∆(γ) = γ ⊗ α+ α∗ ⊗ γ.

As said above, the idea is now to deform the Hopf ∗-algebra (A0,∆) by using the
parameter λ. We stick to (A0,∆) for denoting the deformation.

We denote by A0 the universal ∗-algebra with unit 1 generated by two elements α
and γ satisfying the relations

αγ = λγα , αγ∗ = λγ∗α , γ∗γ = γγ∗,

α∗α+ γ∗γ = 1 , αα∗ + λ2γγ∗ = 1.

The universality property of the ∗-algebra A0 implies the existence of a unique
∗-homomorphism ∆ : A0 → A0 ⊗A0 such that

∆(α) = α⊗ α− λ γ∗ ⊗ γ and ∆(γ) = γ ⊗ α+ α∗ ⊗ γ.

Again, it is easy to check that (A0,∆) is a Hopf ∗-algebra. It is straightforward
to produce a co-unit and an antipode.

From the results in [144], we then get that

A0 ⊗A0 = span {∆(a)(b⊗ 1) | a, b ∈ A0} = span {(a⊗ 1)∆(b) | a, b ∈ A0}.

The next step is to represent the generators α and γ as bounded operators on a
Hilbert space. We give the concrete choice that is typically used for this.

Consider the Hilbert space H = `2(N) ⊗ `2(Z). Let (en)n∈N be the standard
orthonormal basis of `2(N) and let (fk)k∈Z be the standard orthonormal basis
of `2(Z). We also set e−1 = 0.

There are unique operators S, T ∈ B(H) such that

S(en ⊗ fk) =
√

1− λ2n en−1 ⊗ fk and T (en ⊗ fk) = λn en ⊗ fk+1

for all n ∈ N and k ∈ Z.
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Some easy calculations show that the operators S and T satisfy the same relations
as α and γ do. The universality of A0 therefore implies the existence of a unique
∗-representation π : A0 → B(H) such that π(α) = S and π(γ) = T .

It is not too arduous to prove that the ∗-representation π is injective. From the
defining relations, we immediately get that A0 is the linear span of elements
of the form αk(γl)kγm and (α∗)k

′
(γ∗)l

′
γm

′
where k, k′, l, l′,m,m′ ∈ N. It is a

little bit tedious but not too hard to check that the operators Sk(T ∗)lTm and
(S∗)k

′
(T ∗)l

′
Tm

′
, where k, k′, l, l′,m,m′ ∈ N and k′ 6= 0, are linearly independent.

The injectivity of π clearly follows from this result.

We can now use a standard procedure to construct the enveloping C∗-algebra
of A0. Because of the existence of the unital ∗-representation π, we can define
a map ‖ · ‖0 : A0 → [0,+∞] by setting

‖a‖0 = sup
{
‖θ(a)‖ | θ is a unital ∗-representation

of the ∗-algebra A0 on a Hilbert space
}
.

If K is a Hilbert space and θ : A0 → B(K) is a unital ∗-representation, then we
of course have that θ(α)∗θ(α) + θ(γ)∗θ(γ) = 1 which gives that ‖θ(α)‖ ≤ 1 and
‖θ(γ)‖ ≤ 1. This implies that the number ‖x‖0 is finite for any x ∈ A0.

It is now easy to check that ‖ · ‖0 satisfies all the needed relations for being a
C∗-seminorm. The injectivity of π gives that ‖ · ‖0 is actually a C∗-norm.

At this point, we can define a C∗-algebra A as the closure of A0 with respect to
the above defined C∗-norm ‖ · ‖0.
By the definition of the norm ‖·‖0, there exists a unique unital ∗-homomorphism
Φ : A → A ⊗ A that extends the comultiplication ∆. In other words, we have a
unique unital ∗-homomorphism Φ : A→ A⊗A such that

Φ(α) = α⊗ α− λγ∗ ⊗ γ and Φ(γ) = γ ⊗ α+ α∗ ⊗ γ.

The properties of (A0,∆) directly imply that this comultiplication Φ makes the
pair (A,Φ) into a compact quantum group according to Woronowicz.

We call (A,Φ) the quantum SUλ(2) group.

From the results in [163, 145], it ensues that there exists a unique Haar state h
on (A,Φ) that is both left and right invariant.

Let πr : A→ B(K) be the unique unital ∗-homomorphism extending π. Then, an
explicit formula for h is given by

h(a) = (1− µ2)
∞∑
n=0

µ2n
〈
πr(a)(en ⊗ f0), en ⊗ f0

〉
when a ∈ A. We refer to [154] where the invariance of h is proved.

Furthermore, it is shown in [83] that the Haar state h is faithful on A.
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The above properties together yield that the quantum SUλ(2) group (A,Φ) is a
compact quantum group according to Definitions 1.1.6 and 1.1.36.

There exists a bounded counit ε : A→ C which is determined by the formulas

ε(α) = 1 and ε(γ) = 0.

For the antipode S : D(S) ⊆ A→ A, we have α, α∗, γ, γ∗ ∈ D(S) and

S(α) = α∗, S(α∗) = α and S(γ) = −λγ, S(γ∗) = −λ−1γ∗.

This antipode S is unbounded on A.

In order to construct non-compact examples, it is a lot more difficult to apply in
a straightforward way the construction scheme displayed on page 43. One of
the crucial differences with the compact case is that the represented generators
can now be unbounded. In this case, there is no unequivocal procedure to find the
C∗-algebra which they generate. It might even happen that no such C∗-algebra
exists (cf. Section 1.5). However, this is not the main problem.

There are more serious problems with concern to the comultiplication. First of
all, there typically appear some spectral conditions to ensure the existence of a
comultiplication on the C∗-algebra level (cf. Remark 4.2.6).

When people started to study examples of non-compact, non-discrete, quantum
groups in the operator algebra framework, they also ran up against a much
more fundamental problem concerning the comultiplication. While some of the
known candidates were very simple on the Hopf ∗-algebra level, it turned out
to be impossible to lift these examples to the operator algebra level. Probably
the most famous examples of this type are the quantum ax+b-group and the
quantum SUq(1, 1)-group (cf. [157]). The technical problem is related to a known
problem in Hilbert space operator theory, namely the existence of symmetric
operators with no self-adjoint extensions. Woronowicz and Zakrzewski were able
to overcome this problem in several cases and in particular, were able to obtain
(a form of) the quantum ax+b group on the operator algebra level [169]. The
needed analysis is quite advanced, but very interesting. Koelink and Kustermans
succeeded in constructing the quantum S̃Uq(1, 1)-group [54].

To overcome the problems that are encountered, one has to concentrate on one
example at a time. In each specific case, it is inevitable to elaborate typical
techniques to find a solution. Several people made a contribution to this, but
the most credit undoubtedly should have to go to S.L. Woronowicz for all of his
important work on various highly sophisticated examples.

When dealing with non-compact examples, the problem of constructing the bi-
C∗-algebra (A,Φ) is most of the times solved by defining a ‘good’ multiplicative
unitary W that contains all the information about A and Φ. However, it is a
highly non-trivial problem to find such a multiplicative unitary. Although the
results on the Hopf ∗-algebra level will give us some intuition, it takes a lot of
work to define W in a correct way and to prove its multiplicativity.
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Luckily, the hard work will pay off. Once we have found a formula for W , we
can find a very good companion in the basic results known from the theory of
multiplicative unitaries. The results in Sections 1.3 and 1.4 will provide us then
with a possible scheme for the construction.

Also in our treatment of the quantum E(2) group, we will adopt this way of
working. We apply in Chapter 2 the following construction scheme:

1. Find a ‘good’ multiplicative unitary W ∈ B(H ⊗H).

2. Define a bi-C∗-algebra (A,Φ) by the following formulas:

• A = [ (ω ⊗ ι)W | ω ∈ B(H)∗],

• Φ(x) = W (x⊗ 1)W ∗ when x ∈ A.

3. Use the method in Section 1.4 to construct the Haar weights.

This programme can also be followed to construct all the other non-compact
examples mentioned in the list below.

The following ambivalence occurs in the study of quantum groups.

Remark 1.2.11 In the general theory, we start with the Haar weights and then
we define the regular representation and the antipodes.

In concrete examples, we usually work in the opposite direction.

First, there is the built-up of the multiplicative unitary and its related antipodes.
The construction of the Haar weights follows as a later step.

We end the discussion of atomic examples by giving a list of some of the most
important examples that are constructed by using the three level construction
procedure described above. We give references to articles where the example is
constructed or where some basic properties are discussed:

− quantum SU(2) group [153, 154, 94, 71, 11, 138],

− quantum SU(n) group [156, 83, 76, 143, 151, 13, 14],

− quantum E(2) group [157, 158, 159, 149, 2, 1, 88, 89, 103]; see Chapter 2,

− quantum az+b-group [165, 101, 112, 113, 148, 166, 97, 110, 75, 77],

− quantum ax+b-group [169, 102, 148, 166, 164, 109],

− quantum S̃Uq(1, 1)-group [54, 55, 56].

We listed these examples in historical order of the first appearance in a published
paper. One should notice that the quantum E(2) group was the first example
of a non-compact quantum group built up as an atomic example.
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Method 2: Non-atomic examples

The ‘atomic’ approach is of course not the only possible method to construct
quantum group examples. There is a multitude of other possible construction
procedures. We give a few details about some of them.

It is obvious that we cannot include all known methods, so we restrict ourselves
to a few interesting cases. For simplicity, we use the general term ‘non-atomic
example’ to denote any example not built up via the above Method 1.

As it is said above, it can require a lot of work to give the complete construction
of one atomic example. The difficulty is that there is no general approach to find
a solution to the problems one encounters while constructing such an example.
It is therefore needed to consider separately each specific case.

For this reason, it is clear that it would be very much desirable to also have
some general constructions of locally compact quantum groups which allow to
construct many concrete examples in a unified way.

We here mention three such construction procedures: twisting, the double crossed
product construction and the cocycle bicrossed product construction. These three
methods are quite regularly used and can be applied to construct both compact
and non-compact examples. The basic idea is to use known examples to build up
more difficult ones. In all three cases, it turns out to be most advisable to work
in the von Neumann algebraic setting. The corresponding C∗-algebraic versions
are usually more involved and thus require some extra effort.

The three above mentioned methods all work via the same concept. All the
generated examples are built up by means of a general theoretical construc-
tion procedure using certain fairly general mathematical structures (like locally
compact groups or quantum groups) as ingredients.

Because of this, the hard part in the construction of a non-atomic example lies in
the search for a set of suitable ingredients needed to perform one of the known
construction procedures. Once these are found, one can rely on the general
properties to build up the example and study its features. This makes it more
standard to study a non-atomic example than an atomic example. Of course, it
also requires the knowledge of the used construction method.

The main advantage of the ‘non-atomic’ methods is the fact that one can generate
a multitude of examples by varying the ingredients. However, these methods
sometimes preserve too much of the properties of the original ingredients one
starts from. For instance, up till now, all known non-atomic examples have
trivial scaling constant. As it is mentioned before, there are constructed atomic
examples with scaling constant ν 6= 1; see Remark 1.1.24.

Nonetheless, this certainly does not mean that the above mentioned non-atomic
construction procedures did not provide us with some new insights. They have
generated examples that are very useful in the study of some important features.
The (cocycle) bicrossed product construction is used, for instance, to construct



40 Chapter 1. Locally compact quantum groups

examples of non-semi-regular quantum groups [5]. It is also used to produce
non-trivial quantum group examples that are not amenable [23].

There is a quite efficient interplay between the two introduced categories of
construction methods. Every time there is constructed a new atomic example,
people try to find enough related material in order that the example can serve
as a building ingredient for (one of) the known non-atomic procedures.

Remark 1.2.12 It sometimes happens that a quantum group example can be
constructed using either Method 1 or Method 2.

For instance, this is the case with the quantum GL(2,C)-group.

This example is constructed in [100] by using the ideas of Method 1. However, it
is shown in [96] that it can also be obtained as a double crossed product of
the quantum az+b-group and its dual.

We classify the quantum GL(2,C)-group to be a non-atomic example.

We end this discussion by giving some basic references to articles where more
details can be found. For the reader who is looking for more information about
the general construction procedures or for concrete constructions of non-atomic
examples, we can refer to the following papers:

1. Twisting: [30, 135, 69, 74, 86, 106, 107],

2. Double crossed products: [7, 4, 80, 1, 50],

− quantum Lorentz group [94, 95, 98, 99] (with quantum SU(2) group),

− quantum Lorentz group [168] (with quantum E(2) group),

− quantum GL(2,C)-group [100, 96] (with quantum az+b group),

3. Bicrossed products: [131, 132, 128, 5, 42, 69, 4, 78, 21, 23, 51, 118, 38],

− quantum Heisenberg group [141, 75, 34, 35].

1.3 Multiplicative unitaries

As it is said in the Introduction and Sections 1.1 and 1.2, multiplicative unitaries
play a major role in the quantum group theory. We now give a systematic study
of these important unitary operators. In the next Section 1.4, we will look at
their relation with Haar weights and prove some useful new results.

Multiplicative unitaries are now present in purely theoretical considerations in
the general theory of Kustermans and Vaes [66, 68]. They are also particularly
useful when considering concrete examples of quantum groups. It is no surprise
that the first appearance of these unitary operators already dates back to the
very early stages of the quantum group theory.
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The first who put forward the great importance of multiplicative unitaries was
W.F. Stinespring in 1959 when he studied duality for unimodular locally compact
groups [117]. He showed that the left regular representation W of a unimodular
locally compact group G (cf. Lemma 1.2.6) contains complete information about
the algebraic and topological structure of the group G. The non-unimodular case
was considered by M. Takesaki [121]. Also the work of L. Vanheeswijck [139]
concerning group duality is to be situated in this scheme.

By definition, a unitary operator is called a multiplicative unitary if it satisfies
the so-called pentagonal equation. This equation was written down for the first
time by G.I. Kac in [41]. Kac defined multiplicative unitaries in an abstract way
and showed that the structure of two unimodular Kac algebras in duality can
be described in terms of the associated regular representation.

The concept of a multiplicative unitary was further explored by S. Baaj and
G. Skandalis. They published in 1993 their fundamental paper [4] in which they
give an axiomatic approach to the Kac-Takesaki operator. The basic results in
this comprehensive study can certainly be considered as the foundation of the
nowadays abstract theory of multiplicative unitaries.

S.L. Woronowicz in 1996 gave the theory of multiplicative unitaries a new impulse
by his manageability theory [162, 114]. In the thesis, we will mainly follow this
approach to study multiplicative unitary operators.

The definition of a multiplicative unitary

First, we recall the Definition 1.3.1 of a multiplicative unitary. We remark that
we use the leg-numbering notation as it is introduced in the Introduction.

Definition 1.3.1 Let W ∈ B(H ⊗ H) be a unitary operator. We call W a
multiplicative unitary if W satisfies the pentagonal equation

W12W13W23 = W23W12.

The next Proposition 1.3.2 is mentioned in [4] and can easily be checked.

Proposition 1.3.2 Let W ∈ B(H⊗H) be a multiplicative unitary. It then also
holds that ΣW ∗Σ is a multiplicative unitary.

We call ΣW ∗Σ the dual multiplicative unitary of W .

Not all multiplicative unitaries are useful. The pentagonal equation on its own is
not powerful enough to prove much interesting results. In order to work properly
with a multiplicative unitary, we need to impose extra conditions.

Baaj and Skandalis defined the notions of regularity [4] and semi-regularity [1] as
possible extra conditions. In both cases, there is elaborated a quite satisfactory
theory. The Baaj-Skandalis theory however does not apply to all multiplicative
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unitaries related to quantum groups. It is proved in [5] that the left regular
representation of a quantum group need not be semi-regular.

We state the Definition 1.3.3 of regularity and semi-regularity without going into
any detail. For the basic results concerning these concepts, we refer to [4, 1].
The papers [5, 77] contain more recent research about the subject.

Definition 1.3.3 ([4, 1]) Let W ∈ B(H ⊗H) be a multiplicative unitary. We
then consider the algebra C(W ) defined by

C(W ) = [ (ω ⊗ ι)(ΣW ) | ω ∈ B(H)∗].

We call W regular if C(W ) = B0(H) and semi-regular if C(W ) ⊇ B0(H).

The notions of regularity and semi-regularity for multiplicative unitaries are
nowadays mostly used to classify locally compact quantum groups.

Looking at the left regular representation, we can use them to define special types
of quantum groups. This classification is for instance important with concern to
the continuity of coactions as is explained in [5, 129].

Definition 1.3.4 Let (A,Φ) be a locally compact quantum group and W its left
regular representation. We then call (A,Φ) regular if and only if W is regular.
We call (A,Φ) semi-regular if and only if W is semi-regular.

It is not always easy to check (semi-)regularity in concrete cases. There are
various examples for which this property is still unknown.

Luckily, it is known for several categories of quantum groups to be regular.
We list the most important ones in Remark 1.3.5 below.

Remark 1.3.5 All Kac algebras are regular quantum groups; see [4, 27]. We get
from [130, Remark 2.12] that this is also the case for all C∗-algebraic quantum
groups arising from algebraic quantum groups in the sense of [57, 70].

We have in particular that commutative and cocommutative quantum groups are
regular and that compact and discrete quantum groups are regular.

The quantum E(2) group is semi-regular, but not regular (cf. Corollary 2.8.25).
Examples of non-semi-regular quantum groups can be found in [5].

Manageability theory for multiplicative unitaries

S.L. Woronowicz defined in [162] the notion of manageability for multiplicative
unitaries. This condition was later weakened to modularity [114]. There is by
now developed a full-blown manageability theory; see [162, 114, 166].

The concept of a modular multiplicative unitary is the central subject in this
Section 1.3. First, we formulate the basic results from [162, 114]. We then further
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elaborate the manageability theory. We prove interesting new results that are
common for locally compact quantum groups, but were not yet known in the
framework of modular multiplicative unitaries. Further, we introduce a stronger
form of modularity in which case calculations can be diminished.

In Section 1.4, we give a profound study of the relation between the notion of
modularity for multiplicative unitaries and (right) Haar weights. In this way, we
narrow the chasm with the Kustermans-Vaes theory.

There is an interplay between the results in Sections 1.3 and 1.4. Some results
of Section 1.4 are used in proofs in Section 1.3 and vice versa. Throughout the
two sections, we indicate the mathematical dependency in a clear way.

We like to stress that the manageability theory is a strong tool. It is used both
in the general theory and in the construction of examples.

From the general theory, we know that the left (and right) regular representa-
tion of a locally compact quantum group is always a manageable multiplicative
unitary. Conversely, a manageable (modular) multiplicative unitary can be very
advantageous when constructing examples of quantum groups. This is already
said in Section 1.2 and is corroborated by the results in Section 1.4.

The usefulness of the manageability theory in the construction of examples is
illustrated by our approach to the quantum E(2) group; see Chapter 2.

As said above, we adhere to the Woronowicz approach to multiplicative unitaries
throughout the complete thesis. For this reason, we give a full and detailed
discussion of the theory of modular multiplicative unitaries. We however only
include proofs for new results not appearing in [162, 114].

It’s now about time to start with the mathematics.

The Notation 1.3.6 below concerns the complex conjugate Hilbert space H of
a Hilbert space H and is only used in this Section 1.3.

Notation 1.3.6 For a Hilbert space H, we denote by H the complex conjugate
Hilbert space. For any element x ∈ H, the corresponding element in H is denoted
by x. Then L : H → H : x 7→ x is an anti-unitary map.

In particular, we have that 〈x, y〉 = 〈y, x〉 for all x, y ∈ H.

For a closed operator m on H, the transpose of m is denoted by m>. This means
by definition that D(m>) = D(m∗) and m>x = m∗x for x ∈ D(m∗). In other
words, we have that m> = Lm∗L∗. If m ∈ B(H), then m> is the unique bounded
operator on H such that 〈m>x, y〉 = 〈my, x〉 for all x, y ∈ H. Clearly, the map
B(H) → B(H) : m 7→ m> is an ∗-anti-isomorphism of C∗-algebras.

Setting x = x, we identify the Hilbert spaces H and H. By this identification,
we have m>> = m for any closed operator m on H.

For every ω ∈ B(H)∗, we define ω> ∈ B(H)∗ by the formula ω>(m>) = ω(m)
when m ∈ B(H). If ω ∈ B(H)∗, we have that ω> ∈ B(H)∗. Further, it is clear
that ω>> = ω for every ω ∈ B(H)∗.
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The next Definition 1.3.7 defines the notions of manageability and modularity
for multiplicative unitaries. It is taken from [114].

Definition 1.3.7 ([162, 114]) Let W ∈ B(H⊗H) be a multiplicative unitary.
We say that W is modular if there exist two strictly positive operators Q and Q̂
on H and a unitary operator W̆ ∈ B(H ⊗H) such that:

1. We have that
W (Q̂⊗Q)W ∗ = Q̂⊗Q,

2. For all x, z ∈ H and u ∈ D(Q), y ∈ D(Q−1), we have〈
W (z ⊗ y), x⊗ u

〉
=

〈
W̆ (x⊗Q−1y), z ⊗Qu

〉
In the case Q̂ = Q, we say that W is manageable.

We sum up the most important results concerning modularity. The two main
Theorems 1.3.8 and 1.3.9 show that a modular multiplicative unitary is a very
powerful tool. This is endorsed by the new results proved further below.

The next Theorem 1.3.8 gives that the modularity property is preserved if we
consider the dual multiplicative unitary.

Theorem 1.3.8 ([162, 114]) Let W be a multiplicative unitary. In the case
that W is modular, also ΣW ∗Σ is modular. The operators Q and Q̂ appearing
in Definition 1.3.7 then exchange their positions.

If W is manageable, then also ΣW ∗Σ is manageable.

The power of the manageability theory is illustrated by the advanced results
in the next Theorem 1.3.9. This main theorem gathers together the basic prop-
erties of modular multiplicative unitaries. In particular, we see that a modular
multiplicative unitary gives rise to many related objects.

The Theorem 1.3.9 below was first proved by P. Soltan and S.L. Woronowicz.
We refer to [162, 114] for a full elaboration.

Theorem 1.3.9 ([162, 114]) Let W ∈ B(H ⊗H) be a modular multiplicative
unitary. We define

A = [ (ω ⊗ ι)W | ω ∈ B(H)∗] and Â = [ (ι⊗ ω)W | ω ∈ B(H)∗].

The following properties hold:

1. We have that A and Â are non-degenerate C∗-algebras in B(H),

2. We have W ∈M(B0(H)⊗A) and W ∈M(Â⊗B0(H)),

3. We have W ∈M(Â⊗A),
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4. There exists a non-degenerate ∗-homomorphism Φ : A → M(A ⊗ A) that
is uniquely determined by the formula

(ι⊗ Φ)W = W12W13.

Moreover, the three properties below hold:

(a) We have Φ(x) = W (x⊗ 1)W ∗ for all x ∈ A,

(b) We have that Φ is coassociative, i.e., (Φ⊗ ι)Φ = (ι⊗ Φ)Φ,

(c) The linear spaces Φ(A)(1⊗A) and Φ(A)(A⊗ 1) are dense in A⊗A.

5. There exists a unique closed linear operator S : D(S) ⊆ A → A such that
{(ω ⊗ ι)W | ω ∈ B(H)∗} is a core for S and

S
(
(ω ⊗ ι)W

)
= (ω ⊗ ι)W ∗

for every ω ∈ B(H)∗.

6. The linear map S has a unique polar decomposition

S = Rτ− i
2

where

(a) (τt) is a norm continuous one-parameter group on A such that τt is
a ∗-automorphism of A for every t ∈ R,

(b) R is an ∗-anti-automorphism of A such that R2 = ι,

(c) Rτt = τtR for all t ∈ R.

7. Moreover, we have that

(a) S is densely defined and has dense range,

(b) S is injective and S−1 = Rτ i
2

= τ i
2
R,

(c) S is anti-multiplicative: for x, y ∈ D(S), we have that xy ∈ D(S) and
S(xy) = S(y)S(x),

(d) For all x ∈ D(S), we have S(x)∗ ∈ D(S) and S(S(x)∗)∗ = x,

(e) S2 = τ−i.

8. We have the following commutation relations:

(a) Rτz = τzR for all z ∈ C,

(b) Φτt = (τt ⊗ τt)Φ for all t ∈ R,

(c) ΦR = σ̇(R⊗R)Φ,

(d) RS = SR,

(e) τtS = Sτt for all t ∈ R.
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The next 5 remarks all allude to Theorem 1.3.9 above.

Remark 1.3.10 We use the polar decomposition S = Rτ− i
2

where Woronowicz
in [162] uses S = Rτ i

2
. This is of course just a minor change. It is made to have

a conformity with the conventions in the Kustermans-Vaes theory.

We have that S is strictly closed as a linear map on A.

The Theorem 1.3.9 is proved in [162, 114] only in the case that H is separable.
It is easy to adapt the proofs in order to hold in the general case.

If the Hilbert space H is separable, we have that A and Â are separable.

Remark 1.3.11 The coassociativity of Φ is a direct consequence of the fact
that W is a multiplicative unitary.

Let x ∈ A. We then have

(Φ⊗ ι)
(
Φ(x)

)
= W12Φ(x)13W ∗

12 = W12W13(x⊗ 1⊗ 1)W ∗
13W

∗
12

and

(ι⊗ Φ)
(
Φ(x)

)
= W23Φ(x)12W ∗

23 = W23W12(x⊗ 1⊗ 1)W ∗
12W

∗
23.

Using these results, we see that

(Φ⊗ ι)
(
Φ(x)

)
= W12W13W23(x⊗ 1⊗ 1)W ∗

23W
∗
13W

∗
12

= W23W12(x⊗ 1⊗ 1)W ∗
12W

∗
23 = (ι⊗ Φ)

(
Φ(x)

)
.

The second equality follows from the pentagonal equation.

Remark 1.3.12 The observant reader has probably noticed that the approach
in Theorem 1.3.9 above is somewhat different from the Kustermans-Vaes theory
expounded in Section 1.1. We here take A to be in the ‘second leg’ of W while
we have the converse result in Proposition 1.1.18.

This difference is not so important. In order to have clear references, we twice
have chosen to adopt the definitions from the original articles.

Remark 1.3.13 Similar to Remark 1.1.20, we can use the polar decomposition
S = Rτ− i

2
to extend S to a strictly closed linear map S̄ on M(A) satisfying

strict versions of all the properties of S.

In what follows, we will use S to also denote the extension S̄.

Remark 1.3.14 Theorem 1.3.9 also holds in a von Neumann algebraic version.
For this, we consider the von Neumann algebras M = A′′ and M̂ = Â′′.

From Theorem 1.3.9, we get that W ∈ M̂ ⊗̄M .
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The formula Φ(x) = W (x⊗ 1)W ∗ for all x ∈ A gives that we can extend Φ to a
normal and unital ∗-homomorphism

Φ : M →M ⊗̄M.

The results in [162, 114] imply that we can extend τ to a strongly continuous one-
parameter group of normal ∗-automorphisms on M and that R can be extended
to a normal ∗-anti-automorphism on M . The polar decomposition S = Rτ− i

2
can then be used to find a strongly closed extension of the linear map S.

It is clear that we can similarly consider Φ̂ : M̂ → M̂ ⊗̄ M̂ .

Using these extensions, it is standard to prove that all the properties described
in Theorem 1.3.9 have a von Neumann algebraic counterpart.

Throughout the text, the above considered extensions are regularly used. They are
denoted by the same notations as in the C∗-algebra framework.

The next Notation 1.3.15 is introduced for notational convenience.

Notation 1.3.15 For the remainder of Sections 1.3 and 1.4, we fix a modular
multiplicative unitary W together with all its related objects. Hence, all used
regular notations refer to the objects related to W as introduced above.

In particular, the notations (A,Φ) and S = Rτ− i
2

respectively designate the
bi-C∗-algebra and the antipode related to W as defined in Theorem 1.3.9.

All dual objects (related to ΣW ∗Σ) are denoted with a -̂symbol. This e.g. gives
us a bi-C∗-algebra (Â, Φ̂) and an antipode Ŝ = R̂τ̂− i

2
.

The Terminology 1.3.16 is as customary.

Terminology 1.3.16 We call the pair (A,Φ) the bi-C∗-algebra associated toW .
It is standard to call Φ the comultiplication and S the antipode. We call τ the
scaling group and R the unitary antipode.

In the rest of the Section 1.3, we describe (a lot) further features of the modular
multiplicative unitary W . We will see that W satisfies several useful properties.
This endorses that the modularity theory constitutes a spruce whole.

We recall that all notations refer to objects related to the modular multiplicative
unitary W , i.e., introduced in Definition 1.3.7 or Theorem 1.3.9.

It is easy to compute the ∗-algebra structure on the elements (ω ⊗ ι)W . The
following results are standard; see [4].

Lemma 1.3.17 Let ω, ω1, ω2 ∈ B(H)∗. Then, we have that

1. (ω1 ⊗ ι)W + (ω2 ⊗ ι)W =
(
(ω1 + ω2)⊗ ι

)
W ,

2.
(
(ω1 ⊗ ι)W

)(
(ω2 ⊗ ι)W

)
= (ω1ω2 ⊗ ι)W ,

3.
(
(ω ⊗ ι)W

)∗ = (ω̄ ⊗ ι)W ∗.
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The next Proposition 1.3.18 describes how Φ acts on the basic elements.

Proposition 1.3.18 Let ω ∈ B(H)∗. We then have

Φ
(
(ω ⊗ ι)W

)
= (ω ⊗ ι⊗ ι)(W12W13).

Proof. Let ω ∈ B(H)∗. We have that

Φ
(
(ω ⊗ ι)W

)
= W

(
(ω ⊗ ι)W ⊗ 1

)
W ∗

= (ω ⊗ ι⊗ ι)(W23W12W
∗
23) = (ω ⊗ ι⊗ ι)(W12W13).

The last equality follows from the pentagonal equation. �

The following propositions are useful in further calculations. They describe the
action of the scaling group τ and the unitary antipode R.

We first give some basic results.

Proposition 1.3.19 ([162, 114]) The properties below hold:

1. For all a ∈ A and t ∈ R, we have

τt(a) = Q−2itaQ2it,

2. If ω ∈ B(H)∗, then (ω⊗ ι)W ∈ D(τ− 1
2
) and τ− i

2

(
(ω⊗ ι)W

)
= (ω>⊗ ι)W̆ ,

3. For ω ∈ B(H)∗, we have R
(
(ω ⊗ ι)W

)
= (ω> ⊗ ι)W̆ ∗.

Proposition 1.3.20 Let t ∈ R. For all ω ∈ B(H)∗, we have that

τt
(
(ω ⊗ ι)W

)
= (ωt ⊗ ι)W

where ωt ∈ B(H)∗ is defined by ωt(x) = ω(Q̂2itxQ̂−2it).

Proof. Let t ∈ R and ω ∈ B(H)∗. Using Proposition 1.3.19, we get

τt
(
(ω ⊗ ι)W

)
= Q−2it

(
(ω ⊗ ι)W

)
Q2it

= (ωt ⊗ ι)
(
(Q̂−2it ⊗Q−2it)W (Q̂2it ⊗Q2it)

)
= (ωt ⊗ ι)W.

The last equality holds because W and Q̂⊗Q strongly commute. �

For the analytic continuations τz, we have the next property.

Proposition 1.3.21 Let z ∈ C. Take ξ ∈ D(Q̂−2 Imz) and η ∈ D(Q̂ 2 Imz).
Then, we have that (ωξ,η ⊗ ι)W ∈ D(τz). Further, we have

τz
(
(ωξ,η ⊗ ι)W

)
= (ωQ̂−2izξ,Q̂−2izη ⊗ ι)W.
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Proof. From Proposition B.2.21, we at once get that it is sufficient to prove
that (ωξ,η ⊗ ι)W is a middle multiplier of Q2iz, Q−2iz and that (the closure of)
Q2iz

(
(ωξ,η ⊗ ι)W

)
Q−2iz is equal to (ωQ̂−2izξ,Q̂−2izη ⊗ ι)W .

For all p ∈ D(Q 2 Imz) and q ∈ D(Q−2 Imz), we have〈
(ωξ,η ⊗ ι)WQ−2izp,Q−2izq

〉
=

〈
W (ξ ⊗Q−2izp), η ⊗Q−2izq)

〉
=

〈
W (Q̂⊗Q)−2iz(Q̂2izξ ⊗ p), η ⊗Q−2izq

〉
=

〈
(Q̂⊗Q)−2izW (Q̂2izξ ⊗ p), η ⊗Q−2izq

〉
=

〈
W (Q̂2izξ ⊗ p), Q̂2izη ⊗ q)

〉
=

〈
(ωQ̂2izξ,Q̂−2izη ⊗ ι)Wp, q

〉
.

In the third step, we use that W and Q̂⊗Q strongly commute.

From the above calculation, we get that (ωξ,η ⊗ ι)WQ−2izp ∈ D(Q2iz) and

Q2iz
(
(ωξ,η ⊗ ι)W

)
Q−2izp =

(
(ωQ̂−2izξ,Q̂−2izη ⊗ ι)W

)
p.

This ends the proof of the proposition. �

By using Proposition B.2.10, we can deduce the following result.

Corollary 1.3.22 Let H0 = {ξ ∈ H | ξ ∈ D(Q̂y) for all y ∈ C}. For ξ, η ∈ H0,
we have that (ωξ,η ⊗ ι)W is analytic with respect to τ . For every z ∈ C, we have
that span{(ωξ,η ⊗ ι)W | ξ, η ∈ H0} is a core for τz.

We also mention the next formula.

Proposition 1.3.23 Let ξ ∈ D(Q̂) and η ∈ D(Q̂−1). Then, we have

R
(
(ωξ,η ⊗ ι)W

)
= (ωQ̂ξ,Q̂−1η ⊗ ι)W ∗.

Proof. From Theorem 1.3.9, we know that R = τ i
2
S. We get that

R
(
(ωξ,η ⊗ ι)W

)
= τ i

2
S

(
(ωξ,η ⊗ ι)W

)
= τ i

2

(
(ωξ,η ⊗ ι)W ∗)

=
(
τ− i

2
(ωη,ξ ⊗ ι)W

)∗ = ((ωQ̂−1η,Q̂ξ ⊗ ι)W )∗ = (ωQ̂ξ,Q̂−1η ⊗ ι)W ∗.

The fourth equality follows from Proposition 1.3.21. �

We now prove two properties which are well-known in the Kustermans-Vaes
theory, but were not yet formulated in the context of modular multiplicative
unitaries. We will use them in later calculations.

The first result immediately follows from Definition 1.3.7.

Proposition 1.3.24 For all t ∈ R, we have

(τ̂t ⊗ τt)(W ) = W.
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It is somewhat harder to prove the second one.

Proposition 1.3.25 We have (R̂⊗R)(W ) = W .

Proof. Take x, z ∈ H and w ∈ D(Q−1), v ∈ D(Q). From Definition 1.3.7, it
follows that 〈

W (z ⊗Qv), x⊗Q−1w
〉

=
〈
W̆ (x⊗ v), z ⊗ w

〉
.

This equality precisely means that

(ι⊗ ωQv,Q−1w)W = ((ι⊗ ωv,w)W̆ )>. (1.3)

Notation 1.3.6 says that T : B(H) → B(H) : m 7→ m> is a ∗-anti-isomorphism.
From Theorem 2.3 in [114], we know that W̆ = (T⊗R)(W ∗). Using this formula,
it is not difficult to check that

((ι⊗ ωv,w)W̆ )> = (ι⊗ ωv,wR)W ∗. (1.4)

Equations (1.3) and (1.4) together give that

(ι⊗ ωQv,Q−1w)W = (ι⊗ ωv,wR)W ∗.

Now, we apply R̂ to this equation. Using the dual version of Proposition 1.3.23,
we get that

(ι⊗ ωv,w)W ∗ = (ι⊗ ωv,w)
(
(R̂⊗R)(W ∗)

)
.

We can conclude that (R̂⊗R)(W ∗) = W ∗. �

This result also implies the following.

Proposition 1.3.26 Let ω ∈ B(H)∗. Then, we can take ωR̂ ∈ B(H)∗ such that
ωR̂(x) = ω(R̂(x)) for all x ∈ Â. We have that

R
(
(ω ⊗ ι)W

)
= (ωR̂ ⊗ ι)W.

Proof. Let ω ∈ B(H)∗. From Proposition 1.3.25, we get

R
(
(ω ⊗ ι)W

)
= R

(
(ω ⊗ ι)(R̂⊗R)(W )

)
= (ωR̂ ⊗ ι)W.

In this calculation, we also use that R2 = ι. �

We now prove the small Lemma 1.3.27 that contains a simple but useful property
concerning the modular multiplicative unitary W .

Lemma 1.3.27 Let ξ, η ∈ H. Assume that (ωξ,η⊗ ι)W = 0 or (ι⊗ωξ,η)W = 0.
We then have 〈ξ, η〉 = 0.

Proof. Take ξ, η ∈ H such that (ωξ,η ⊗ ι)W = 0. For all ρ ∈ B(H)∗, we then
get that ωξ,η

(
(ι⊗ ρ)W

)
= 0 and hence ωξ,η(x) = 0 for all x ∈ M̂ . This implies

that 〈ξ, η〉 = 0. The case (ι⊗ ωξ,η)W = 0 is proved in a similar way. �
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The next Proposition 1.3.28 is of a similar kind as Lemma 1.3.27.

Proposition 1.3.28 Let ω ∈ B(H)+∗ . If (ω ⊗ ι)W = 0 or (ι ⊗ ω)W = 0, then
we have that ω = 0.

Proof. This property can easily be proved by applying the same technique as
in the proof of Lemma 1.3.27. �

In the remainder of the Section 1.3, we will (quite heavily) rely on one of the
most important propositions proven in Section 1.4. On the other hand, some of
the properties formulated below will also be used to strengthen the main results
of Section 1.4. We can thus speak of a beneficial interplay.

We now postulate a special case of Proposition 1.4.13. It gives the existence of
an n.s.f. weight ψ1 on B(H)+ satisfying some right invariance property. As it is
said above, we postpone the proof until Section 1.4.

We remark that the notation TrQ̂2 is explained in Example B.1.33.

Proposition 1.3.29 Let ψ1 = TrQ̂2 . Then, ψ1 is an n.s.f. weight on B(H)+

such that
ψ1

(
(ι⊗ ω)(W (x⊗ 1)W ∗)

)
= ω(1)ψ(x)

for all x ∈ M+
ψ1

and ω ∈ B(H)+∗ .

The above Proposition 1.3.29 thus plays a crucial role in the proofs of the results
below. Thanks to the existence of the weight ψ1, we can apply typical quantum
group techniques in the framework of modular multiplicative unitaries.

For this reason, we can now prove some important properties. Although they are
standard in the quantum group theory, it seems that they never appeared before
in the setting of multiplicative unitaries. So, it is worthwhile to mention them.
The proofs we give are based on the proofs of the counterparts in quantum group
theory. Of course, it is necessary to make some adaptations.

We proceed with the Lemma 1.3.30 below.

Lemma 1.3.30 Let x ∈ B(H). If W (x⊗ 1)W ∗ = 1⊗ x, then x ∈ C1.

Proof. Take x ∈ B(H). We consider the normal ∗-homomorphisms

a) Φ : B(H) → B(H ⊗H) : x 7→W (x⊗ 1)W ∗,

b) τt : B(H) → B(H) : x 7→ Q−2itxQ2it when t ∈ R,

c) τ̂t : B(H) → B(H) : x 7→ Q̂−2itxQ̂2it when t ∈ R.
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It is clear that (τt) and (τ̂t) are strongly continuous one parameter groups of
∗-automorphisms on B(H). The used notations do not cause any confusion.

Now, suppose that Φ(x) = 1⊗x. For all n ∈ N, we define elements xn, yn ∈ B(H)
by the formulas

xn =
n√
π

∫
exp (−n2s2)τ̂−s(x) ds

and
yn =

n√
π

∫
exp (−n2s2)τ−s(x) ds.

The integrals are taken in the strong topology.

From the theory of analytic continuations, we then get that the elements xn are
analytic with respect to τ̂ ; see Lemma B.2.27.

By Definition 1.3.7, we know that W and Q̂⊗Q strongly commute. This clearly
implies that

Φτ̂t(y) = (τ̂t ⊗̄ τt)Φ(y)

for all y ∈ B(H) and t ∈ R.

Hence, for all n ∈ N, we have that

Φ(xn) = 1⊗ yn. (1.5)

We consider the n.s.f. weight ψ1 on B(H)+ as defined in Proposition 1.3.29.

Let σ be the modular automorphism group of ψ1. From Lemma B.1.34, it ensues
that we have σt(y) = τ̂−t(y) for all y ∈ B(H) and t ∈ R.

Now, take d ∈ M+
ψ1

such that ψ1(d) = 1.

Take n ∈ N. We know that xn ∈ D(τ̂− i
2
) = D(σ i

2
). The Tomita-Takesaki theory

in Theorem B.1.31 then gives that dxn ∈ Mψ1 .

Let ω ∈ B(H)∗. We get from Equation (1.5) that

(ι ⊗̄ω)Φ(dxn) = (ι ⊗̄ ynω)Φ(d).

Because dxn ∈ Mψ1 , the right invariance property of the weight ψ1 gives that

(ι ⊗̄ω)Φ(dxn) ∈ Mψ1 and (ι ⊗̄ ynω)Φ(d) ∈ Mψ1

and

ψ1(dxn)ω(1) = ψ1

(
(ι ⊗̄ω)Φ(dxn)

)
= ψ1

(
(ι ⊗̄ ynω)Φ(d)

)
= ψ1(d)(ynω)(1) = ω(yn).

Notice that we here thus rely on Proposition 1.3.29.

The above calculation shows that yn = ψ1(dxn)1 for every n ∈ N.

It is standard to check that yn → x in the strong topology. This implies that
ψ1(dxn) is a Cauchy sequence and thus ψ1(dxn) → λ for a number λ ∈ C.

We can conclude that x = λ1. �
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We rephrase Lemma 1.3.30 in terms of the comultiplication.

Proposition 1.3.31 Let x ∈ M . Assume that Φ(x) = x ⊗ 1 or Φ(x) = 1 ⊗ x.
Then, we have that x ∈ C1.

Proof. The second case is an immediate consequence of Lemma 1.3.30. Using
the commutation relation ΦR = σ̇(R⊗R)Φ, the first case can easily be deduced
from the second one. �

The next Corollary 1.3.32 is to be expected.

Corollary 1.3.32 We have that M ∩ M̂ ′ = C1 and M̂ ∩M ′ = C1.

Proof. By duality, it is sufficient to prove one result.

Suppose that x ∈ M ∩ M̂ ′. We know from Remark 1.3.14 that W ∈ M̂ ⊗̄M .
From the formula Φ(x) = W (x⊗ 1)W ∗, we thus get that Φ(x) = x⊗ 1.

Proposition 1.3.31 now implies that x ∈ C1. �

From Corollary 1.3.32, we can derive the following result.

Corollary 1.3.33 The linear spaces M ′M̂ and M̂ ′M are dense in B(H) with
respect to the σ-strong∗ topology.

Proof. By duality, it is again sufficient to prove one result. We use B to denote
the σ-strong∗ closure of M ′M̂ .

From Remark 1.3.14, we know that W ∈ M̂ ⊗̄M . We hence have

W ∗(M ′ ⊗̄ 1)W ⊆ (1 ⊗̄M ′)′. (1.6)

Further, we get from Remark 1.3.14 that W (M ⊗̄ 1)W ∗ ⊆ M ⊗̄M . It is then
not difficult to deduce that

W ∗(M ′ ⊗̄ 1)W ⊆ (M ⊗̄ 1)′. (1.7)

Equations (1.6) and (1.7) together imply that

W ∗(M ′ ⊗̄ 1)W ⊆ (M ⊗̄M ′)′ = M ′ ⊗̄M. (1.8)

The equality (M ⊗̄M ′)′ = M ′ ⊗̄M follows from the commutation theorem for
tensor products of von Neumann algebras; see e.g. [119, Theorem IV.5.9].

Because W is a unitary, we get from Equation (1.8) that

W ∗(M ′ ⊗̄ 1) ⊆ (M ′ ⊗̄M)W ∗. (1.9)



54 Chapter 1. Locally compact quantum groups

From Theorem 1.3.9, we get that M̂ = [ (ι⊗ω)W | ω ∈ B(H)∗]′′. If we combine
this result with Equation (1.9), we find that

M̂M ′ ⊆ B.

This implies that B is a von Neumann algebra.

It is easy to check that B′ = M ∩M̂ ′. Corollary 1.3.32 then gives that B′ = C1.
We conclude that B = B(H). �

The next Lemma 1.3.34 is used in the proof of Proposition 1.3.36 below.

Lemma 1.3.34 We have that

span
{

(x⊗ 1)W (1⊗ y) | x, y ∈ B(H)
}

is dense in B(H ⊗H) with respect to the σ-strong∗ topology.

Proof. Let ξ, η ∈ H. Since W is a multiplicative unitary, we get that

1⊗ (ι⊗ ωξ,η)(W ) = (ι⊗ ι⊗ ωξ,η)(W ∗
13W

∗
12W23W12). (1.10)

Now, let { ξi | i ∈ I} be an orthonormal basis for H. We get from Lemma B.4.2
that we have

(ι⊗ ι⊗ ωξ,η)(W ∗
13W

∗
12W23W12)

=
∑
i∈I

(ι⊗ ι⊗ ωη,ξi
)(W12W13)∗(ι⊗ ι⊗ ωξ,ξi

)(W23W12) (1.11)

with convergence in the σ-strong∗ topology.

From Equations (1.10) and (1.11), we then find that

1⊗ (ι⊗ ωξ,η)(W ) =
∑
i∈I

(ι⊗ ι⊗ ωξi,η)(W ∗
13)W ∗(ι⊗ ι⊗ ωξ,ξi

)(W23)W (1.12)

with convergence in the σ-strong∗ topology.

For any subset X ⊆ B(H ⊗H), we use the notation [X]σ-strong∗ to denote the
closure of spanX in the σ-strong∗ topology.

Equation (1.12) implies that

1 ⊗̄ M̂ ⊆ [ (p∗ ⊗ 1)W ∗(1⊗ q)W | p, q ∈ M̂ ]σ-strong∗ . (1.13)

From Remark 1.3.14, we know that W ∈ M̂ ⊗̄M . It is then not difficult to
deduce from Equation (1.13) that we have(

B(H) ⊗̄M ′)(1 ⊗̄ M̂
)
⊆ [ (a⊗ 1)W ∗(1⊗ b)W | a, b ∈ B(H) ]σ-strong∗ . (1.14)
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If we combine Equation (1.14) with Corollary 1.3.33, we can derive that

B(H ⊗H) = [ (a⊗ 1)W ∗(1⊗ b)W | a, b ∈ B(H) ]σ-strong∗ .

We can then conclude that

B(H ⊗H) = [ (a⊗ 1)W ∗(1⊗ b) | a, b ∈ B(H) ]σ-strong∗ . (1.15)

It is possible to extend R and R̂ to involutive, normal ∗-anti-isomorphisms
of B(H). This follows from the results in [162, 114]. For the remainder of
the proof, we use R and R̂ to also denote these extensions.

We know from Proposition 1.3.25 that (R̂⊗R)(W ) = W . If we apply R̂ ⊗̄R to
Equation (1.15), we thus get

B(H ⊗H) = [ (1⊗ y)W ∗(x⊗ 1) | x, y ∈ B(H) ]σ-strong∗ .

This ends the proof of the lemma. �

We mention the following consequence of Lemma 1.3.34. It is clearly related
to the regularity properties of W .

Corollary 1.3.35 We have that

C(W ) = [ (ω ⊗ ι)(ΣW ) | ω ∈ B(H)∗]

is dense in B(H) with respect to the σ-strong∗ topology.

Proof. This can be deduced from Lemma 1.3.34 by using the same techniques
as in the proof of [4, Proposition 3.2]. �

The next Proposition 1.3.36 is quite standard in the setting of regular multi-
plicative unitaries [4]. It is called (left and right) reducibility for W .

We remark that the reducibility property below is related to the faithfulness of
the Haar weights on the bi-C∗-algebra (A,Φ); see [39].

Proposition 1.3.36 Let ω ∈ B(H)+∗ and x ∈ M+. If (ω ⊗ ι)Φ(x) = 0 or
(ι⊗ ω)Φ(x) = 0, then we have either x = 0 or ω = 0.

Proof. By using the commutation relation ΦR = σ̇(R⊗R)Φ, it is not difficult
to see that it is sufficient to prove one of the two considered cases.

Let ω ∈ B(H)+∗ and x ∈ M+. Assume that (ι ⊗ ω)Φ(x) = 0. Because any
ρ ∈ B(H)+∗ is the (infinite) sum of positive vector functionals, we can assume
that there exists a vector ξ ∈ H such that ω = ωξ.

Take y ∈M such that x = y∗y. Let P ∈ B(H) be the projection on Cξ.
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The assumptions of the proposition yield that we have

(ι⊗ ωξ)
(
W (y∗ ⊗ 1)(y ⊗ 1)W ∗) = 0.

This is equivalent to saying that

(y ⊗ 1)W ∗(1⊗ P ) = 0. (1.16)

Let a, b ∈ B(H). From Equation (1.16), it immediately follows that

(y ⊗ 1)
(
(1⊗ a)W ∗(b⊗ 1)

)
(1⊗ P ) = 0. (1.17)

If we combine Equation (1.17) with Lemma 1.3.34, we get

(y ⊗ 1)c(1⊗ P ) = 0.

for all c ∈ B(H ⊗H). This implies that either y = 0 or P = 0. �

The Corollary 1.3.38 is a C∗-algebra version of Proposition 1.3.36. We make use
of the next Lemma 1.3.37 in order to give a short proof.

We recall that the functionals ωρ are defined in Notation 1.1.3.

Lemma 1.3.37 Let ω ∈ A∗ and ρ ∈ B(H)∗. There exist normal functionals
θ1, θ2 ∈ B(H)∗ such that θ1|A = ρω and θ2|A = ωρ.

In the case that ω ∈ A∗+ and ρ ∈ B(H)+∗ , we can take θ1, θ2 ∈ B(H)+∗ .

Proof. Using the commutation relation ΦR = σ̇(R⊗R)Φ, it is again sufficient
to prove one of the two considered cases.

Take GNS-constructions (K1, π1, ξ1) and (K2, π2, ξ2) for ω, respectively ρ.

We know from Theorem 1.3.9 that W ∈ M(B0(H) ⊗ A). Hence, we can define
a unitary U ∈ B(K2)⊗B(K1) by the formula U = (π2 ⊗ π1)(W ).

Now, we can define a normal functional θ1 ∈ B(H)∗ by setting

θ1(x) = (ωξ2 ⊗ ωξ1)
(
U(π2(x)⊗ 1)U∗)

)
.

It is not difficult to check that θ1|A = ρω. �

Corollary 1.3.38 Let ω ∈ A∗+ and x ∈ A+. Assume that (ω ⊗ ι)Φ(x) = 0 or
(ι⊗ ω)Φ(x) = 0. Then we either have x = 0 or ω = 0.

Proof. We only consider the first result. It is clear that the second one can be
proved in a completely similar way.

Assume that (ω ⊗ ι)Φ(x) = 0. Take ρ ∈ B(H)+∗ such that ρ(1) = 1. We have
that

(ωρ⊗ ι)Φ(x) = (ρ⊗ ι)Φ
(
(ω ⊗ ι)Φ(x)

)
= 0.
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Lemma 1.3.37 gives that there exists a θ ∈ B(H)+∗ such that θ|A = ωρ.

We clearly have that (θ ⊗ ι)Φ(x) = 0. Hence, Proposition 1.3.36 implies that
either x = 0 or θ = 0. If θ = 0, then also ω = 0. �

The Corollary 1.3.38 has a direct consequence in the compact case.

Corollary 1.3.39 If A has a unit, then (A,Φ) is a compact quantum group.

Proof. Assume that A is unital. From Theorem 1.3.9, we then get that (A,Φ)
is a compact quantum group in the sense of Woronowicz. Using Remark 1.1.39
and Corollary 1.3.38, we find that the Haar state is faithful. �

We will need the Lemma 1.3.40 below.

Lemma 1.3.40 Let P ∈ M be a projection such that one of the four following
conditions hold:

1. Φ(P ) ≤ P ⊗ 1, 3. Φ(P ) ≥ P ⊗ 1,
2. Φ(P ) ≤ 1⊗ P, 4. Φ(P ) ≥ 1⊗ P.

Then, we have P = 0 or P = 1.

Proof. It clearly is enough to prove the third case. Using the commutation
relation ΦR = σ̇(R⊗R)Φ, it is not difficult to deduce the fourth case. The two
other cases then follow by replacing P with 1− P .

Take a projection P ∈M and assume that W (P ⊗1)W ∗ ≥ P ⊗1. We then have
that (P ⊗ 1)W (P ⊗ 1)W ∗ = P ⊗ 1. This yields that

(P ⊗ 1)W (P ⊗ 1) = (P ⊗ 1)W. (1.18)

Take ξ ∈ D(Q) and η ∈ D(Q−1). Applying ι ⊗̄ωQξ,Q−1η to the above equality,
we get that

P (ι ⊗̄ωQξ,Q−1η)(W )P = P (ι ⊗̄ωQξ,Q−1η)(W ). (1.19)

It is possible to extend R and R̂ to involutive, normal ∗-anti-isomorphisms
of B(H). This follows from the results in [162, 114]. For the remainder of
the proof, we use R and R̂ to also denote these extensions.

Applying R̂ to the above Equation (1.19), we get

R̂(P )R̂
(
(ι ⊗̄ωQξ,Q−1η)(W )

)
R̂(P ) = R̂

(
(ι ⊗̄ωQξ,Q−1η)(W )

)
R̂(P ). (1.20)

From the dual version of Proposition 1.3.23, we know that

R̂
(
(ι ⊗̄ωQξ,Q−1η)(W )

)
= (ι ⊗̄ωξ,η)W ∗. (1.21)
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Equations (1.20) and (1.21) together yield

R̂(P )(ι ⊗̄ωξ,η)(W ∗)R̂(P ) = (ι ⊗̄ωξ,η)(W ∗)R̂(P ). (1.22)

Therefore, we can conclude that

(R̂(P )⊗ 1)W ∗(R̂(P )⊗ 1) = W ∗(R̂(P )⊗ 1).

We now apply R̂ ⊗̄R to Equation 1.22. Remembering from Proposition 1.3.25
that (R̂ ⊗̄R)(W ) = W , we then directly find that

(P ⊗ 1)W ∗(P ⊗ 1) = (P ⊗ 1)W ∗.

By taking the adjoint, we get that

(P ⊗ 1)W (P ⊗ 1) = W (P ⊗ 1). (1.23)

If we combine Equations (1.18) and (1.23), we see that W (P ⊗ 1) = (P ⊗ 1)W
and thus

Φ(P ) = P ⊗ 1.

From Proposition 1.3.31, we now get that P ∈ C1. This implies that we either
have P = 0 or P = 1. �

We below prove important corollaries of the above Lemma 1.3.40. These results
handle about normal weights that are left or right invariant.

The properties are first formulated in the von Neumann algebra framework.
Not so surprisingly, this gives some more elegant results than the C∗-algebra
case. Further below, we also discuss the C∗-algebraic counterparts.

We state the Definition 1.3.41 of left and right invariance for weights on M+.
This is of course the von Neumann algebraic version of Definition 1.1.4.

Definition 1.3.41 Let ϕ be a weight on M+.

• The weight ϕ is called left invariant if ϕ
(
(ω ⊗ ι)Φ(a)

)
= ω(1)ϕ(x) for all

x ∈ M+
ϕ and ω ∈ M+

∗ . It is called strongly left invariant if this equality
can be extended to hold for all x ∈M+ and ω ∈M+

∗ ;

• The weight ϕ is called right invariant if ϕ
(
(ι⊗ω)Φ(x)

)
= ω(1)ϕ(x) for all

x ∈ M+
ϕ and ω ∈ M+

∗ . It is called strongly right invariant if this equality
can be extended to hold for all x ∈M+ and ω ∈M+

∗ .

The unitary antipode R interchanges left and right invariance.

Proposition 1.3.42 Let η be a weight on M+. If η is left invariant, then ηR
is right invariant. If η is right invariant, then ηR is left invariant.

We have the same properties in the case of strong invariance.
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Proof. Assume for instance that η is left invariant. From Theorem 1.3.9, we
know that we have ΦR = σ̇(R⊗R)Φ.

Take x ∈ M+
ηR. We then have

ηR
(
(ι⊗ ω)Φ(x)

)
= ηR

(
(ω ⊗ ι)(R⊗R)

(
ΦR(x)

))
= η

(
(ωR⊗ ι)(ΦR(x))

)
= ωR(1)η(R(x)) = ω(1)ηR(x).

This gives that ηR is right invariant.

All the other results can be proved in a completely similar way. �

The next Proposition 1.3.43 states the important property that non-zero, normal
left invariant weights on (M,Φ) are automatically faithful.

Proposition 1.3.43 Let η be a non-zero, normal weight on M+. Suppose that
we have for all x ∈M+ with η(x) = 0 and ω ∈M+

∗ that

η
(
(ω ⊗̄ ι)Φ(x)

)
= ω(1)η(x)

Then, we have that η is faithful.

Proof. Put N = {x ∈M | η(x∗x) = 0}. Then N is a σ-weakly closed left ideal
in M . So, there exists a projection P ∈M such that N = MP .

We thus have P ∈ N . The left invariance property of η gives that

η
((

(ω ⊗̄ ι)Φ(P )
)∗((ω ⊗̄ ι)Φ(P )

))
≤ ‖ω‖η

(
(ω ⊗̄ ι)Φ(P ∗P )

)
= ‖ω‖2η(P ∗P ) = 0

for every ω ∈M+
∗ . The used inequality infers from Lemma B.4.1.

The property (ω ⊗̄ ι)Φ(P ) ∈ N directly follows from the above calculation.

For all ω ∈M∗, we thus have (ω ⊗̄ ι)Φ(P )P = (ω ⊗̄ ι)Φ(P ).

It then ensues that
Φ(P )(1⊗ P ) = Φ(P ).

From Lemma 1.3.40, we now get that either P = 0 or P = 1. �

It is clear that Proposition 1.3.42 can be applied to directly deduce the right
invariant version of the above Proposition 1.3.43.

Proposition 1.3.44 Let η be a non-zero, normal weight on M+. Suppose that
we have for all x ∈M+ with η(x) = 0 and ω ∈M+

∗ that

η
(
(ι ⊗̄ω)Φ(x)

)
= ω(1)η(x)

Then, we have that η is faithful.
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We now prove Proposition 1.3.45. This property is quite similar to Proposi-
tion 1.3.43, but is about left invariant weights and semi-finiteness.

Proposition 1.3.45 Let η be a normal weight on M+ that is left invariant.
Then, either η is semi-finite or M+

η = {0}.

Proof. Let N be the σ-weak closure of Nη. Then N is a σ-weakly closed left
ideal in M . So, there exists a projection P ∈M such that N = MP .

We thus have P ∈ N . Let (xi)i∈I be a net in Nη such that xi → P in the σ-weak
topology. The left invariance property of η gives that

η
((

(ω ⊗̄ ι)Φ(xi)
)∗(

ω ⊗̄ ι)Φ(xi)
))
≤ ‖ω‖η

(
(ω ⊗̄ ι)Φ(x∗i xi)

)
=‖ω‖2η(x∗i xi)<+∞

for all i ∈ I and ω ∈M+
∗ . Here, we again use Lemma B.4.1.

The above calculation implies that (ω ⊗̄ ι)Φ(xi) ∈ N for all i ∈ I. This result
yields that (ω ⊗̄ ι)Φ(xi)P = (ω ⊗̄ ι)Φ(xi) for all i ∈ I.

For all ω ∈M∗, we thus have (ω ⊗̄ ι)Φ(P )P = (ω ⊗̄ ι)Φ(P ).

It then ensues that
Φ(P )(1⊗ P ) = Φ(P ).

From Lemma 1.3.40, we now get that either P = 0 or P = 1. �

We again also state the right invariant version.

Proposition 1.3.46 Let η be a normal weight on M+ that is right invariant.
Then, either η is semi-finite or M+

η = {0}.

The next Definition 1.3.47 is introduced for notational convenience.

Definition 1.3.47 We define a faithful, normal weight ψ∞ on M+ by

ψ∞(x) =

{
0 if x = 0,
+∞ if x 6= 0.

The earlier Proposition 1.3.36 trivially implies the next property.

Proposition 1.3.48 The weight ψ∞ is strongly left and strongly right invariant.

The next Proposition 1.3.49 classifies the normal weights which are left or right
invariant. It is a direct consequence of Propositions 1.3.43 to 1.3.46.

It turns out that invariant weights are either very well behaved (i.e. n.s.f. weights
making (M,Φ) into a quantum group) or completely trivial.

Proposition 1.3.49 Let η be a normal weight on M+. Assume that η is left
or right invariant. Then, we are in one of the following cases:

1. We have that η = 0,
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2. We have that η = ψ∞,

3. We have that η is an n.s.f. weight.

The above Proposition 1.3.49 infers the next result.

Corollary 1.3.50 Let η be a normal weight on M+. Further, assume that η is
left or right invariant. Then, we have that η is an n.s.f. weight if and only if
there exists an element x ∈M+ such that η(x) = 1.

The Proposition 1.3.49 can also be used to prove that every normal, left invariant
weight is automatically strongly left invariant.

Proposition 1.3.51 Let η be a normal weight on M+ that is left invariant.
Then η is strongly left invariant.

Proof. Let η be a normal, left invariant weight on M . According to Proposi-
tion 1.3.49, we have to consider three cases.

In the case that η = 0, the strong invariance is trivial. If η = ψ∞, then we get
from Proposition 1.3.48 that η is strongly invariant.

Assume that η is an n.s.f. weight. It then ensues from Theorem 1.3.9 that (M,Φ)
is a von Neumann algebraic quantum group with left Haar weight η.

We can hence use the von Neumann algebraic version of Theorem 1.1.11 to prove
that the n.s.f. weight η satisfies the strong invariance property. �

The right invariant version of course also holds.

Proposition 1.3.52 Let η be a normal weight on M+ that is right invariant.
Then η is strongly right invariant.

We then finally mention a uniqueness property. The Proposition 1.3.54 below
generalizes in a (very) small matter the corresponding property in the quantum
group case. It is only mentioned for the sake of completeness.

The Proposition 1.3.54 almost directly follows from Proposition 1.3.49 together
with Theorem 1.1.10. Further, it is clear that the corresponding property for
right invariant weights holds in a completely similar form.

Notation 1.3.53 Let λ = +∞. For every weight η on M+, we set λη = ψ∞.

Proposition 1.3.54 Let η1 and η2 be two non-zero, normal weights on M+.
Suppose that η1 and η2 are both left invariant.

Then, there exists a λ ∈ ]0,+∞] such that η1 = λη2.
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We now also prove a result for the C∗-algebra case. It is clear that Proposi-
tion 1.3.55 below is the C∗-algebraic counterpart of Proposition 1.3.43. We do
not know if there holds a C∗-algebra version of Proposition 1.3.45.

The Proposition 1.3.55 quite easily ensues from Proposition 1.3.38. The relation
between these two propositions is meticulously explored in [39].

Proposition 1.3.55 Let η be a non-zero, lower semi-continuous weight on A+.
Suppose that we have for all x ∈ A+ with η(x) = 0 and ω ∈ A∗+ that

η
(
(ω ⊗ ι)Φ(x)

)
= ω(1)η(x)

Then, we have that η is faithful.

Proof. Take a ∈ A+ with η(a) = 0. It is clear that a ∈ M+
η . For all ρ ∈ A∗+,

we then have
η
(
(ρ⊗ ι)Φ(a)

)
= ρ(1)η(a) = 0.

Using Notation B.1.10, we then see that ω
(
(ρ ⊗ ι)Φ(a)

)
= 0 for all ω ∈ Fη

and ρ ∈ A∗+. This implies that

(ι⊗ ω)Φ(a) = 0 (1.24)

for all ω ∈ Fη.

Suppose that a 6= 0. From Equation (1.24) and Proposition 1.3.38, we then get
that Fη = {0}. Proposition B.1.12 now yields that η = 0. �

We also state the right invariant version.

Proposition 1.3.56 Let η be a non-zero, lower semi-continuous weight on A+.
Suppose that we have for all x ∈ A+ with η(x) = 0 and ω ∈ A∗+ that

η
(
(ι⊗ ω)Φ(x)

)
= ω(1)η(x)

Then, we have that η is faithful.

Strongly modular multiplicative unitaries

We end the Section 1.3 by giving a few more results regarding the manageability
theory. We introduce in Definition 1.3.57 below a notion of strong modularity
for multiplicative unitaries. This new condition is slightly stronger than the
‘usual’ modularity. It has the advantage that we automatically get a nice imple-
mentation of the unitary antipode R; see Proposition 1.3.70.

We think that this new condition defines a quite natural category wherein some
formulas are more refined than in the modular case.

For strongly modular multiplicative unitaries, it is possible to simplify the known
proofs of several basic results (cf. Remark 1.3.69). It is however not the case
that the strong modularity leads up to more powerful properties.
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The strong modularity is thus not a real renewal. It only revamps the modularity
in a small degree. Even so, the strong modularity has some plus-point over
modularity. The Proposition 1.3.70 displays a tangible formula for the unitary
antipodes R and R̂. This can be useful in concrete examples.

The Definition 1.3.57 below of course resembles Definition 1.3.7.

Definition 1.3.57 Let W ∈ B(H ⊗ H) be a multiplicative unitary. We then
say that W is strongly modular if there exist two strictly positive operators Q
and Q̂ on H and two anti-unitary operators I and Î on H such that

1. We have the two following relations:

(a) W (Q̂⊗Q)W ∗ = Q̂⊗Q,

(b) (Î ⊗ I)W ∗(Î∗ ⊗ I∗) = W .

2. For all x, z ∈ H and u ∈ D(Q), y ∈ D(Q−1), we have〈
W (z ⊗ y), x⊗ u

〉
=

〈
W ∗(z ⊗ IQu), x⊗ IQ−1y

〉
.

The next Proposition 1.3.58 is used a few times below.

Proposition 1.3.58 Let (W,Q, Q̂, I, Î) be a quintuple satisfying the conditions
in Definition 1.3.57. These conditions then also hold for (W,Q, Q̂, I∗, Î∗).

Proof. Consider a quintuple (W,Q, Q̂, I, Î) which satisfies the conditions in
Definition 1.3.57. Because I and Î are anti-unitaries, it is clear that

(Î∗ ⊗ I∗)W ∗(Î ⊗ I) = W.

Let r ∈ D(Q̂), v ∈ D(Q̂−1) and w ∈ D(Q), s ∈ D(Q−1). Then, we have

〈W (r ⊗ s), v ⊗ w〉 = 〈W (Q̂r ⊗Qs), Q̂−1v ⊗Q−1w〉
= 〈W ∗(Q̂r ⊗ Iw), Q̂−1v ⊗ Is〉.

We hence get that

〈W (Q̂−1v ⊗ Is), Q̂r ⊗ Iw〉 = 〈W ∗(v ⊗ w), r ⊗ s〉. (1.25)

It is clear that this Equation (1.25) can easily be extended to hold in the more
general case that s, w ∈ H.

Take x ∈ D(Q̂), z ∈ D(Q̂−1) and u ∈ D(Q), y ∈ D(Q−1). Equation (1.25) gives
that we have

〈W (z ⊗ y), x⊗ u〉 = 〈W (Q̂−1z ⊗ II∗Q−1y), Q̂x⊗ II∗Qu〉
= 〈W ∗(z ⊗ I∗Qu), x⊗ I∗Q−1y〉

By continuity, this equality can be extended to elements x, z ∈ H. �
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The next Proposition 1.3.59 justifies the used terminology. The Condition (1b)
in Definition 1.3.57 is not needed to have this property. We do not know if there
exist strongly modular multiplicative unitaries that are not modular.

The connection between the notions of modularity and strong modularity is
further investigated in Proposition 1.3.73 below.

Proposition 1.3.59 Let W ∈ B(H ⊗H) be a multiplicative unitary operator.
If W is strongly modular, then it is also modular.

Proof. Let H be the conjugate Hilbert space of H and let L be the canonical
anti-unitary operator L : H → H : ξ 7→ ξ. Then, define a unitary operator W̆
by the formula

W̆ = (L⊗ I)W (L∗ ⊗ I∗) = (LÎ∗ ⊗ 1)W ∗(ÎL∗ ⊗ 1). (1.26)

Take x, z ∈ H and u ∈ D(Q), y ∈ D(Q−1). Proposition 1.3.58 implies that

〈W (z ⊗ y), x⊗ u〉 = 〈W ∗(z ⊗ I∗Qu), x⊗ I∗Q−1y〉
= 〈z ⊗ I∗Qu, (L∗ ⊗ I∗)W̆ (L⊗ I)(x⊗ I∗Q−1y)〉
= 〈W̆ (x⊗Q−1y), z ⊗Qu〉.

The quadruple (W, W̆ ,Q, Q̂) thus satisfies the conditions in Definition 1.3.7. �

We have the following duality property.

Proposition 1.3.60 Let W be a multiplicative unitary. In the case that W is
strongly modular, also ΣW ∗Σ is strongly modular.

The two operators Q and Q̂ appearing in Definition 1.3.57 then exchange their
positions. Similarly, the two operators I and Î switch places.

Proof. We denote Ŵ = ΣW ∗Σ. We know from Proposition 1.3.2 that Ŵ is a
multiplicative unitary. It is easy to check that

Ŵ ∗(Q⊗ Q̂)Ŵ = Q⊗ Q̂ and (I∗ ⊗ Î∗)Ŵ ∗(I ⊗ Î) = Ŵ .

Take x ∈ D(Q), z ∈ D(Q−1) and u ∈ D(Q̂), y ∈ D(Q̂). We have that

〈Ŵ (z ⊗ y), x⊗ u〉 = 〈Q̂−1y ⊗Q−1z,W (Q̂u⊗Qx)〉
= 〈Q̂−1y ⊗ I∗x,W ∗(Q̂u⊗ I∗z)〉
= 〈(Î∗ ⊗ I∗)W ∗(Î ⊗ I)(Q̂−1y ⊗ I∗x), Q̂u⊗ I∗z〉
= 〈ÎQ̂u⊗ z,W ∗(ÎQ̂−1y ⊗ x)〉
= 〈Ŵ ∗(z ⊗ ÎQ̂u), x⊗ ÎQ̂−1y〉.

The second equality follows from Proposition 1.3.58.

It is now easy to deduce the case z, u ∈ H by using a continuity argument. �
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We observe that (the proof of) Proposition 1.3.59 shows that the Notation 1.3.61
below does not contradict Notation 1.3.15 in any respect.

The Notation 1.3.61 is introduced to avoid long formulations.

Notation 1.3.61 Consider the modular multiplicative unitary W that we have
fixed in the earlier Notation 1.3.15.

For the rest of the section, we assume that W is strongly modular.

We keep applying the Notation 1.3.15. Further, we also fix the two anti-unitary
operators I and Î related to W in the sense of Definition 1.3.57.

The next Lemma 1.3.62 holds because I and Î are anti-unitary.

Lemma 1.3.62 We have that

(Î ⊗ I)W ∗(Î∗ ⊗ I∗) = W, (Î∗ ⊗ I∗)W ∗(Î ⊗ I) = W,

(Î ⊗ I)W (Î∗ ⊗ I∗) = W ∗, (Î∗ ⊗ I∗)W (Î ⊗ I) = W ∗.

The following five lemmas can be useful in calculations. They are all related
to the Condition (2) in Definition 1.3.57; see Remark 1.3.68.

We first give a short proof of Lemmas 1.3.63 and 1.3.64.

Lemma 1.3.63 For all x ∈ D(Q̂−1), z ∈ D(Q̂) and y, u ∈ H, we have〈
W (z ⊗ y), x⊗ u

〉
=

〈
W ∗(Q̂z ⊗ Iu), Q̂−1x⊗ Iy

〉
.

Proof. Take x ∈ D(Q̂−1), z ∈ D(Q̂) and y ∈ D(Q), u ∈ D(Q−1). It is direct
to check that

〈W (z ⊗ y), x⊗ u〉 = 〈W (Q̂z ⊗Qy), Q̂−1x⊗Q−1u〉
= 〈W (Q̂z ⊗ Iu), Q̂−1x⊗ Iy〉.

By a continuity argument, the proof is finished. �

Lemma 1.3.64 For all x, z ∈ H and u ∈ I∗D(Q−1), y ∈ I∗D(Q), we have〈
W (z ⊗ y), x⊗ u

〉
=

〈
W ∗(z ⊗Q−1Iu), x⊗QIy

〉
.

Proof. Take x, z ∈ H and u ∈ I∗D(Q−1), y ∈ I∗D(Q). We have that

〈W (z ⊗ y), x⊗ u〉 = 〈W (Î∗z ⊗ I∗y), Î∗x⊗ I∗u〉
= 〈W ∗(x⊗Q−1I∗y), z ⊗QI∗u〉.

The last equality follows from Lemma 1.3.63 applied to the dual multiplicative
unitary ΣW ∗Σ (cf. Lemma 1.3.66 below). �
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From Proposition 1.3.60, it follows that the three lemmas below are simple con-
sequences of Definition 1.3.57 and Lemmas 1.3.63 and 1.3.64.

Lemma 1.3.65 For all x ∈ D(Q̂−1), z ∈ D(Q̂) and y, u ∈ H we have〈
W (z ⊗ y), x⊗ u

〉
=

〈
W ∗(ÎQ̂−1x⊗ y), ÎQ̂z ⊗ u

〉
.

Lemma 1.3.66 For all x, z ∈ H and y ∈ D(Q−1), u ∈ D(Q), we have〈
W (z ⊗ y), x⊗ u

〉
=

〈
W ∗(Îx⊗Q−1y), Îz ⊗Qu

〉
.

Lemma 1.3.67 For all x ∈ Î∗D(Q̂−1), z ∈ Î∗D(Q̂) and y, u ∈ H, we have〈
W (z ⊗ y), x⊗ u

〉
=

〈
W ∗(Q̂Îz ⊗ u), Q̂−1Îx⊗ y

〉
.

The next Remark 1.3.68 alludes to the above lemmas.

Remark 1.3.68 The Condition (2) in Definition 1.3.57 can be replaced by either
one of the properties in Lemmas 1.3.63 to 1.3.67.

This of course only holds under the assumption of Conditions (1a) and (1b).

In the case of Lemma 1.3.63, the equivalence with Condition (2) is implicitly
proved in the last part of the proof of Proposition 1.3.73.

Maybe, this is a good place to include the next Remark 1.3.69. The carrying out
of this remark can be done by using Propositions 1.3.21 and 1.3.70.

The Remark 1.3.69 has of course has no great value.

Remark 1.3.69 In the case of strongly modular multiplicative unitaries, several
of the calculations in [162] can be simplified in a great extent. For instance, the
main formula

S
(
(ω ⊗ ι)W

)
= (ω ⊗ ι)W ∗

is now an almost direct consequence of the easy Lemma 1.3.63.

The next Proposition 1.3.70 shows the advantage of strongly modular multipli-
cative unitaries over modular ones.

We obtain the property that the unitary antipode R in the strong modular case
is implemented by the anti-unitary operator I.

Proposition 1.3.70 We have that

R(x) = Ix∗I∗ = I∗x∗I and R̂(y) = Îy∗Î∗ = Î∗y∗Î

for all x ∈M and y ∈ M̂ .
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Proof. We prove the first formula. The second one can then be deduced by
using the duality property in Proposition 1.3.60.

Let ω ∈ B(H)∗. Proposition 1.3.59 gives that W is modular. Hence, we get
from Proposition 1.3.19 that

R
(
(ω ⊗ ι)W

)
= (ω> ⊗ ι)W̆ ∗. (1.27)

In this formula, W̆ is the unitary defined by Equation (1.26).

Define ωR̂ ∈ B(H)∗ by ωR̂(x) = ω(Î∗x∗Î).

We have that

I
(
(ω ⊗ ι)W

)∗
I∗ = (ωR̂ ⊗ ι)

(
(Î ⊗ I)W ∗(Î∗ ⊗ I∗)

)
= (ωR̂ ⊗ ι)W. (1.28)

Further, we have

(ω> ⊗ ι)W̆ ∗ = (ω> ⊗ ι)
(
(LÎ∗ ⊗ 1)W (ÎL∗ ⊗ 1)

)
= (ωR̂ ⊗ ι)W. (1.29)

The three Equations (1.27), (1.28) and (1.29) together imply that we have for
all ω ∈ B(H)∗ that

R
(
(ω ⊗ ι)W

)
= I

(
(ω ⊗ ι)W

)∗
I∗. (1.30)

We know from Remark 1.3.14 that R is a normal ∗-anti-automorphism on M .
The Equation (1.30) thus infers that we have for all x ∈M that

R(x) = Ix∗I∗.

Because R2 = ι, we also get that R(x) = I∗x∗I for all x ∈M . �

The following generalization of Proposition 1.3.58 is a direct consequence.

Corollary 1.3.71 Let (W,Q, Q̂, I, Î) be a quintuple satisfying all the conditions
in Definition 1.3.57. These conditions then also hold for the three quintuples
(W,Q, Q̂, I∗, Î∗), (W,Q, Q̂, I, Î∗) and (W,Q, Q̂, I∗, Î).

Proof. This result follows from a combination of Propositions 1.3.58 and 1.3.70
together with Propositions 1.3.59 and 1.3.25. �

We can also deduce the following variant of Lemma 1.3.62.

Lemma 1.3.72 We have that

(Î ⊗ I∗)W ∗(Î∗ ⊗ I) = W, (Î∗ ⊗ I)W ∗(Î ⊗ I∗) = W,

(Î ⊗ I∗)W (Î∗ ⊗ I) = W ∗, (Î∗ ⊗ I)W (Î ⊗ I∗) = W ∗.
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It turns out that the implementation of R is precisely the property that makes
the ‘strong’ in strong modularity. We can prove Proposition 1.3.73.

We remark that, for once, we make the exception not to follow Notation 1.3.61.

Proposition 1.3.73 Let W be a modular multiplicative unitary. Working with
the notations from Notation 1.3.15, we have that W is strongly modular if and
only if there exist anti-unitary operators I and Î such that

R(x) = IxI∗ and R̂(y) = ÎyÎ∗ (1.31)

for all x ∈M and y ∈ M̂ .

Proof. If W is strongly modular, it follows from Proposition 1.3.59 that W is
modular. From Proposition 1.3.70, we get the implementation of R and R̂.

Now, assume that W is modular and that R and R̂ are implemented as in
the Equation (1.31). It directly follows from Definition 1.3.7 that

W (Q̂⊗Q)W ∗ = Q̂⊗Q.

Proposition 1.3.25 implies that we have

(Î ⊗ I)W ∗(Î∗ ⊗ I∗) = W.

Take r ∈ D(Q̂−1), v ∈ D(Q̂) and s ∈ D(Q−1), w ∈ D(Q). Then, we have

〈W (v ⊗ s), r ⊗ w〉 = 〈(ωv,r ⊗ ι)Ws,w〉.

If we use Proposition 1.3.23, we get that

〈W (v ⊗ s), r ⊗ w〉 = 〈I∗(ωQ̂−1r,Q̂v ⊗ ι)WIs,w〉

= 〈W ∗(Q̂v ⊗ Iw), Q̂−1r ⊗ Is〉.

Hence, for x ∈ D(Q̂), z ∈ D(Q̂−1) and u ∈ D(Q), y ∈ D(Q−1), we have that

〈W (z ⊗ y), x⊗ u〉 = 〈W (Q̂−1z ⊗Q−1y), Q̂x⊗Qu〉
= 〈W ∗(z ⊗ IQu), x⊗ IQ−1y〉.

By continuity, we can extend this result to x, z ∈ H. �

The implementation of the unitary antipode can be used to prove some more
formulas. We mention two simple properties.

Proposition 1.3.74 Let ξ, η ∈ H. We have that

R
(
(ωξ,η ⊗ ι)W

)
= (ωÎη,Îξ ⊗ ι)W = (ωÎ∗η,Î∗ξ ⊗ ι)W.

Proof. It is clear that ωÎη,Îξ(x) = ωÎ∗η,Î∗ξ(x) = ωξ,η(R̂(x)) for all x ∈ B(H).
Hence, an application of Proposition 1.3.26 ends the proof. �
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Lemma 1.3.75 Let ξ ∈ D(Q̂−1) and η ∈ D(Q̂). Then, we have

(ωξ,η ⊗ ι)W ∗ = (ωÎQ̂η,ÎQ̂−1ξ ⊗ ι)W.

Proof. Take ξ ∈ D(Q̂−1) and η ∈ D(Q̂). We have that

(ωξ,η ⊗ ι)W ∗ = S
(
(ωξ,η ⊗ ι)W

)
= R

(
(ωQ̂−1ξ,Q̂η ⊗ ι)W

)
= (ωÎQ̂η,ÎQ̂−1ξ ⊗ ι)W

In the above calculation, we successively use Theorem 1.3.9, Proposition 1.3.74
and Proposition 1.3.21. �

The next Proposition 1.3.76 is about the implementation of the comultiplication.
It can easily be deduced from Definition 1.3.57.

Proposition 1.3.76 Define V ∈M(A⊗B0(H)) by V = (I⊗I)ΣW ∗Σ(I∗⊗I∗).
Then, V is a multiplicative unitary. For all x ∈ A, we have that

Φ(x) = W (x⊗ 1)W ∗ = V ∗(1⊗ x)V.

We end this Section 1.3 by a remark about the strong modularity of the regular
representation of a locally compact quantum group.

The properties in Remark 1.3.77 follow from the results in [66].

Remark 1.3.77 Let W be the (left or right) regular representation of a locally
compact quantum group (A,Φ). Then W is strongly modular.

Moreover, we can take Q = Q̂ and also I∗ = I and Î∗ = Î.

Further, we have the commutation relations IN tI = N−t and ÎN tÎ = N−t for
all t ∈ R. We have IÎ = ν

i
4 ÎI where ν is the scaling constant of (A,Φ).

1.4 A formula for the Haar weights

From the results in Section 1.3, we see that the theory of modular multiplicative
unitaries is not too far away from the theory of locally compact quantum groups.
The only gulf between these two branches of quantum group theory sits in the
existence of Haar weights. From the principal Theorem 1.3.9, we know that a
bi-C∗-algebra (A,Φ) associated to a modular multiplicative unitary W is only
a Haar weight away from being a locally compact quantum group.

But still, the Haar weights actually are the most indispensable tool in the
Kustermans-Vaes theory. The possible lack of invariant weights is thus quite
a serious problem. In what follows, we create a guideline of how to seek for Haar
weights within the framework of modular multiplicative unitaries.
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As far as we know, there has not been much research in this direction. There
probably only is the recent paper [166] of Woronowicz. However, the results in
this thesis are significantly stronger than the ones formulated in [166].

The main result in this Section 1.4 is Theorem 1.4.30. Starting from a modular
multiplicative unitary W , it describes a family of faithful, normal weights ψq
that are strongly right invariant on the associated bi-C∗-algebra (A,Φ).

In this way, we then obtain a technique that is useful to find a formula for the
(right) Haar weight in specific examples of quantum groups. As it is already said
above, we will apply this technique in Chapter 2 to construct the Haar weights
on the quantum E(2) group and its dual; see Section 2.7.

The results in this Section 1.4 show that the framework of modular multiplicative
unitaries is well-suited to study right invariance of weights on a bi-C∗-algebra.
We prove that a modular multiplicative unitary satisfying some extra conditions
gives rise to a locally compact quantum group. In particular, the found results
are helpful to apply the construction scheme stated on page 38.

In the proofs, we are inspired by the technique used by A. Van Daele in [148] to
construct the Haar weights on the quantum ax+b-group and the quantum az+b-
group. The general idea underlying this technique is presented in [134].

Although it is not the most general setting (cf. Remark 1.4.33), we prefer to work
in the framework of modular multiplicative unitaries. This seems to be a natural
choice. At the end of the section, we treat more general cases.

The next Notation 1.4.1 recalls the conventions about the notations.

Notation 1.4.1 For the remainder of the Section 1.4, we again use the modular
multiplicative unitary W that is fixed in Notation 1.3.15.

We also again make use of the standard notations for the related objects.

We also fix an operator N̂ which implements the scaling group τ̂ . It is explained
in Remark 1.4.3 that such an operator N̂ always exists.

Notation 1.4.2 Let N̂ be a strictly positive operator on H such that

τ̂(y) = N̂−ityN̂ it

for all y ∈ M̂ .

The next Remark 1.4.3 is thus important to observe.

Remark 1.4.3 The existence of an operator N̂ satisfying the assumptions in
the Notation 1.4.2 is guaranteed by Proposition 1.3.19.

This Proposition 1.3.19 infers that the choice N̂ = Q̂2 is always correct.



1.4 A formula for the Haar weights 71

The next Definition 1.4.4 defines an n.s.f. weight ψ1 that is of crucial importance.
This weight ψ1 has a leading role in this Section 1.4.

We remark that the notation TrN̂ is explained in Example B.1.33.

Definition 1.4.4 We define the n.s.f. weight ψ1 on B(H)+ by ψ1 = TrN̂ .

We use (Hψ1 , πψ1 ,Λψ1) to denote the GNS-construction of ψ1.

Furthermore, we denote by ∇ψ1 the modular operator and by Jψ1 the modular
conjugation of the n.s.f. weight ψ1.

We also introduce a family of deformations ψq of the weight ψ1. Further in the
section, we prove that (in the case q 6= 0) all the weights ψq are faithful, normal
weights that are strongly right invariant; see Theorem 1.4.18.

Definition 1.4.5 For all q ∈ M̂ ′, we define a normal weight ψq on B(H)+ by
setting that

ψq(x) = ψ1(q∗xq) = TrN̂ (q∗xq)

The Lemma 1.4.6 below contains a remark about the use of the notation ψq.
It is important not to forget this convention.

Lemma 1.4.6 Let q ∈ M̂ ′. The restriction of ψq to M+ is a normal weight.
The restriction of ψq to A+ is lower semi-continuous.

We use ψq to also denote these restrictions.

The next Remark 1.4.7 discusses the goals of the Section 1.4.

Remark 1.4.7 The main purpose of this Section 1.4 is to seek for a right Haar
weight ψ on the bi-C∗-algebra (A,Φ). In the case that this search is successful, we
get that (A,Φ) is a locally compact quantum group.

It is not known if it is always possible to construct Haar weights. The existence
of Haar weights is only guaranteed in some special cases. We know e.g. from
the Corollary 1.3.39 that a Haar state always exists if A is unital.

Nevertheless, the weights ψq defined in Definition 1.4.5 are good candidates.
This follows from the results below. We will prove that ψq is a Haar weight under
the condition that there exists an element x ∈ A+ such that ψq(x) = 1.

We first point our attention to the original weight ψ1. The Lemma 1.4.8 below
ensues from the theory of n.s.f. weights; see Lemma B.1.34.

Lemma 1.4.8 The modular automorphism group σ of the n.s.f. weight ψ1 is
given by

σt : B(H) → B(H) : x 7→ N̂ itxN̂−it.



72 Chapter 1. Locally compact quantum groups

The next Definition 1.4.9 introduces one more notation.

Definition 1.4.9 For every element x ∈ D(σ i
2
), we define a bounded operator

π′ψ1
(x) ∈ B(Hψ1) by the formula

π′ψ1
(x) = Jψ1πψ1

(
σ i

2
(x)

)∗
Jψ1 .

The property in Proposition 1.4.10 below explicates the relation of the above
Definition 1.4.9 with the ∗-representation πψ1 . We mention that it is a standard
result from the Tomita-Takesaki theory; see Theorem B.1.31.

The Proposition 1.4.10 also gives a motivation for the used notation.

Proposition 1.4.10 Let x ∈ D(σ i
2
). For all y ∈ Nψ1 , we have that yx ∈ Nψ1

and
π′ψ1

(x)Λψ1(y) = Λψ1(yx).

We now prove the Lemmas 1.4.11 and 1.4.12. These two lemmas are crucial steps
towards the invariance of the weights ψq. In fact, they are the key results in our
invariance proof. This becomes clear in the proof of Proposition 1.4.13.

First, we look at the close relation between the modular automorphism group σ
and the scaling group τ̂ of the dual bi-C∗-algebra (Â, Φ̂).

Although the Lemma 1.4.11 is almost trivial to prove, it is really this property
that eventually gives the (right) invariance of the weights ψq.

Lemma 1.4.11 Let t ∈ R. For all x ∈ M̂ , we have σt(x) = τ̂−t(x).

Proof. This follows from Notation 1.4.2 and Lemma 1.4.8. �

The Lemma 1.4.12 gives a precise meaning to the map π′ψ1
◦Ŝ−1.

Lemma 1.4.12 Consider the injective, normal and unital ∗-homomorphism γ
defined by

γ : M̂ → B(Hψ1) : x 7→ γ(x) = Jψ1πψ1

(
R̂(x∗)

)
Jψ1 .

For all x ∈ D(Ŝ−1), we have that

γ(x) = π′ψ1

(
Ŝ−1(x)

)
.

Proof. Take x ∈ D(Ŝ−1). From Lemma 1.4.11, it follows that Ŝ−1(x) ∈ D(σ i
2
).

The operator π′ψ1
(Ŝ−1(x)) is thus well-defined; see Definition 1.4.9.

Using Lemma 1.4.11, we see that

σ i
2
(Ŝ−1(x)) = σ i

2

(
τ̂ i

2
R̂(x)

)
= σ i

2

(
σ− i

2
(R̂(x))

)
= R̂(x).
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We hence have

π′ψ1

(
Ŝ−1(x)

)
= Jψ1πψ1

(
σ i

2
(Ŝ−1(x))

)∗
Jψ1 = Jψ1πψ1

(
R̂(x)

)∗
Jψ1 = γ(x).

This ends the proof of the lemma. �

The next Proposition 1.4.13 states a basic form of the right invariance of the
weights ψq. It is formulated for the weights ψq considered on B(H)+. This gives
a property that is stronger than just right invariance.

We observe that we used the result below in its full generality in our calculations
in Section 1.3 (at least the special case q = 1; see Proposition 1.3.29).

Proposition 1.4.13 Let q ∈ M̂ ′. For all x ∈ M+
ψq

and ω ∈ B(H)+∗ , we have
that

ψq
(
(ι⊗ ω)(W (x⊗ 1)W ∗)

)
= ω(1)ψq(x).

Proof. Take x ∈ M+
ψq

and ω ∈ B(H)+∗ . We denote Φ(x) = W (x⊗ 1)W ∗.

We consider a GNS-construction (K,π, ξ) for ω. Then π : B(H) → B(K) is a
normal and unital ∗-homomorphism. We use the notation Wπ = (ι ⊗̄π)W .

From Remark 1.3.14, we getW ∈ M̂ ⊗̄M . Thus, Wπ is a unitary in M̂ ⊗̄B(K).

Take an orthonormal basis (ξi)i∈I in the Hilbert space K. It then infers from
Lemma B.4.2 that we have

(ι ⊗̄ω)Φ(x) = (ι ⊗̄ωξ,ξ)(Wπ(x⊗ 1)W ∗
π )

=
∑
i∈I

(ι ⊗̄ωξi,ξ)(Wπ)x(ι ⊗̄ωξ,ξi
)(W ∗

π )

=
∑
i∈I

(ι ⊗̄ωξi,ξπ)(W )x(ι ⊗̄ωξ,ξiπ)(W ∗)

with convergence in the σ-strong∗ topology on B(H).

Using the above result, we see that we have

ψq
(
(ι ⊗̄ω)Φ(x)

)
= ψq

( ∑
i∈I

(ι ⊗̄ωξi,ξπ)(W )x(ι ⊗̄ωξ,ξiπ)(W ∗)
)

=
∑
i∈I

ψ1

(
q∗(ι ⊗̄ωξi,ξπ)(W )x(ι ⊗̄ωξ,ξi

π)(W ∗)q
)

=
∑
i∈I

ψ1

((
x

1
2 q(ι ⊗̄ωξ,ξiπ)W ∗

)∗(
x

1
2 q(ι ⊗̄ωξ,ξiπ)W ∗

))
.

In the last step of this calculation, we use that q ∈ M̂ ′.
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We will prove below that x
1
2 q(ι ⊗̄ωξ,ξi

π)W ∗ ∈ Nψ1 . If we already use this result
here, we get from the above calculation that

ψq
(
(ι ⊗̄ω)Φ(x)

)
=

∑
i∈I

∥∥Λψ1

(
x

1
2 q(ι ⊗̄ωξ,ξi

π)W ∗)∥∥2
. (1.32)

This ends the first part of the proof.

From Theorem 1.3.9 (applied to ΣW ∗Σ), we get that (ι ⊗̄ωξ,ξi
π)W ∈ D(Ŝ−1)

and
Ŝ−1

(
(ι ⊗̄ωξ,ξi

π)W
)

= (ι ⊗̄ωξ,ξi
π)W ∗. (1.33)

Using Lemma 1.4.11, we see that this implies that (ι ⊗̄ωξ,ξi
π)W ∗ ∈ D(σ i

2
).

It is clear that x
1
2 q ∈ Nψ1 . Hence, we find x

1
2 q(ι ⊗̄ωξ,ξiπ)W ∗ ∈ Nψ1 and

Λψ1

(
x

1
2 q(ι ⊗̄ωξ,ξiπ)W ∗) = π′ψ1

(
(ι ⊗̄ωξ,ξiπ)W ∗)Λψ1(x

1
2 q). (1.34)

This follows from Proposition 1.4.10.

Equations (1.33) and (1.34) together with Lemma 1.4.12 yield that

Λψ1

(
x

1
2 q(ι ⊗̄ωξ,ξiπ)W ∗) = γ

(
(ι ⊗̄ωξ,ξi

π)W
)
Λψ1(x

1
2 q). (1.35)

Now, we define a unitary W2 ∈ B(Hψ1 ⊗ K) by W2 = (γ ⊗̄ ι)Wπ. With this
notation, we can rewrite Equation (1.35) as

Λψ1

(
x

1
2 q(ι ⊗̄ωξ,ξi

π)W ∗) =
(
(ι ⊗̄ωξ,ξi

)W2

)
Λψ1(x

1
2 q). (1.36)

The two Equations (1.32) and (1.36) together give the invariance of ψq. By using
these results, we can make the computation

ψq
(
(ι ⊗̄ω)Φ(x)

)
=

∑
i∈I

∥∥Λψ1

(
x

1
2 q(ι ⊗̄ωξ,ξi

π)W ∗)∥∥2

=
∑
i∈I

∥∥(
(ι ⊗̄ωξ,ξi)W2

)
Λψ1(x

1
2 q)

∥∥2 =
∥∥W2

(
Λψ1(x

1
2 q)⊗ ξ

)∥∥2

= 〈ξ, ξ〉ψ1(q∗xq) = ω(1)ψq(x).

The proof of the proposition is thus completed. �

Now that we have proved the above Proposition 1.4.13, we can make use of the
results in Section 1.3. This leads up to interesting new properties.

The results below are formulated for the weights ψq considered either on M+

or A+. The context makes it clear which case we are working in.

The next Theorem 1.4.14 states that the weights ψq are strongly right invariant.
This property is a direct consequence of Proposition 1.3.51.

Theorem 1.4.14 Let q ∈ M̂ ′. The weight ψq is strongly right invariant, i.e.,
for all x ∈M+ and ω ∈M+

∗ , we have that

ψq
(
(ι⊗ ω)Φ(x)

)
= ω(1)ψq(x).
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From Proposition 1.3.49, we get the following classification result.

Proposition 1.4.15 Let q ∈ M̂ ′. Only the three possibilities below occur:

1. We have that ψq = 0,

2. We have that ψq = ψ∞,

3. We have that ψq is an n.s.f. weight.

The first possibility in Proposition 1.4.15 can be excluded in the case q 6= 0.
It only requires a short proof to obtain this property.

Proposition 1.4.16 Take q ∈ M̂ ′. We have that ψq = 0 if and only if q = 0.
In the case q 6= 0, we have that ψq is a faithful, normal weight.

Proof. Assume that ψq = 0. Then, we have that ψ1(q∗x∗xq) = 0 for all x ∈M .
From Definition 1.4.4, we know that ψ1 is an n.s.f. weight on B(H)+. We thus
get that xq = 0 for all x ∈M . This implies that q = 0.

It ensues from Proposition 1.4.15 that any ψq 6= 0 is faithful and normal. �

The Proposition 1.4.15 also provides us with a necessary and sufficient condition
for ψq to be an n.s.f. weight (cf. Corollary 1.3.50).

Proposition 1.4.17 Let q ∈ M̂ ′. Then, ψq is an n.s.f. weight if and only if
there exists an element x ∈M+ such that ψq(x) = 1.

For q 6= 0, we can formulate a strong version of Theorem 1.4.14. It follows from
a combination of Theorem 1.4.14 and Propositions 1.4.15 and 1.4.16.

The next Theorem 1.4.18 is the main result of Section 1.4.

Theorem 1.4.18 Take q ∈ M̂ ′ with q 6= 0. Then ψq is a faithful, normal weight
that is strongly right invariant, i.e., for all x ∈M+ and ω ∈M+

∗ , we have

ψq
(
(ι ⊗̄ω)Φ(x)

)
= ω(1)ψq(x).

The Definition 1.4.19 below defines for every weight ψq a close related weight ϕq.
From the Proposition 1.3.42, we get that every ‘right’ property about ψq has a
left invariant version concerning ϕq.

The weights ϕq and ψq of course have similar standard properties.

Definition 1.4.19 For all q ∈ M̂ ′, we define a normal weight ϕq on M+ by
setting that

ϕq(x) = ψq(R(x)).

Further, we use ϕq to also denote its restriction to A+.
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We then get the very nice Corollary 1.4.20 below.

Corollary 1.4.20 Assume that there exist elements q ∈ M̂ ′ and x ∈ M+ such
that ψq(x) = 1. Then, (M,Φ) is a von Neumann algebraic quantum group.

Moreover, ψq is the right Haar weight and ϕq is the left Haar weight.

Proof. The Remark 1.3.14 gives that Φ is a normal and unital ∗-homomorphism
on the von Neumann algebra M such that Φ is coassociative, i.e., we have

(Φ ⊗̄ ι)Φ = (ι ⊗̄Φ)Φ.

From the assumptions and Proposition 1.4.17, we immediately get that ψq is an
n.s.f. weight on M+. From Theorem 1.4.18, it follows that ψq is strongly right
invariant in the sense that

ψq
(
(ω ⊗̄ ι)Φ(x)

)
= ω(1)ψq(x)

for all x ∈M+ and ω ∈M+
∗ .

Again from Remark 1.3.14, we know that R is an injective, normal and unital
∗-automorphism on M . This implies that ϕq = ψqR is an n.s.f. weight on M+.
We get from Proposition 1.3.42 that ϕq is strongly left invariant. �

Using Corollary 1.4.20, we can examine what are the chances for (M,Φ) to be a
von Neumann algebraic quantum group.

Remark 1.4.21 We consider the set J = {xq | x ∈M, q ∈ M̂ ′}.
From Corollary 1.4.20, we see that it is sufficient to prove that J ∩Nψ1 6= {0}
in order to conclude that (M,Φ) is a von Neumann algebraic quantum group.

The Corollary 1.3.32 implies that the ∗-algebra generated by J is strongly dense
in B(H). Definition 1.4.4 gives that also Nψ1 is strongly dense in B(H).

We now also prove the C∗-algebraic counterparts of all the above properties.

From Lemma 1.4.6 and Proposition 1.4.16, we get the following result.

Proposition 1.4.22 Take q ∈ M̂ ′. If q 6= 0, we have that ψq is a faithful, lower
semi-continuous weight.

Also in the C∗-algebra case, we have a classification result. It can be deduced
from Proposition 1.4.15 by copying the proof of [68, Proposition 1.6].

Theorem 1.4.23 Let q ∈ M̂ ′. Only the three possibilities below occur:

1. We have that ψq = 0,

2. We have that ψq = ψ∞,

3. We have that ψq is a faithful KMS-weight.
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The next Proposition 1.4.24 is similar to Proposition 1.4.17. It is evidently a
direct consequence of Proposition 1.4.23.

Proposition 1.4.24 Let q ∈ M̂ ′. Then, ψq is a faithful KMS-weight if and
only if there exists an element x ∈ A+ such that ψq(x) = 1.

It is not difficult to translate the main Theorems 1.4.14 and 1.4.18 into the
C∗-algebra setting. We get completely similar results.

First, we prove the strong right invariance of the weights ψq.

Theorem 1.4.25 Let q ∈ M̂ ′. The weight ψq is strongly right invariant, i.e.,
for all x ∈ A+ and ω ∈ A∗+, we have

ψq
(
(ι⊗ ω)Φ(x)

)
= ω(1)ψq(x).

Proof. According to Proposition 1.4.15, we have to consider three cases. In the
case ψq = 0, the result is of course trivial. If ψq = ψ∞, the strong invariance
follows directly from Corollary 1.3.38.

In the case that ψq is an n.s.f. weight on M+, we can use Lemma 1.3.37 to
deduce from Theorem 1.4.14 that ψq is strongly right invariant. �

The stronger (and more interesting) case below follows from Theorem 1.4.25
combined with Proposition 1.4.22.

Theorem 1.4.26 Take q ∈ M̂ ′ with q 6= 0. Then, we have that ψq is a faithful,
lower semi-continuous weight that is strongly right invariant, i.e., for all x ∈ A+

and ω ∈ A∗+, we have

ψq
(
(ι⊗ ω)Φ(x)

)
= ω(1)ψq(x).

We compare the above Theorem 1.4.26 with the results of Woronowicz.

Remark 1.4.27 S.L. Woronowicz proves in [166, Theorem 1.1] a weakened
form of Theorem 1.4.25 in the special case N̂ = Q̂2 and q = 1. We have thus
fashioned this property into Theorem 1.4.26. Together with Proposition 1.4.24,
this Theorem 1.4.26 constitutes a combination which we genuinely contemplate
as a substantial improvement to Woronowicz’ results in [166].

We will demonstrate in Remark 2.7.20 that the formula of Woronowicz does not
always give a Haar weight. It is possible that M+

TrQ̂2
∩M+ = {0}.

For q ∈ M̂ ′, it is not difficult to generalize the methods of Woronowicz to prove
the right invariance of the weight ψq informally defined by ψq(x) = TrQ̂2(q∗xq).
The computations in [166] can be adapted in a straightforward way in order to
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hold in the more general case. Hence, using the methods of Woronowicz, we can
prove a version of Theorem 1.4.25 in the special case N̂ = Q̂2.

We know that Woronowicz, independently, also found this latter generalization
of [166, Theorem 1.1]. He mentioned this in a private communication we had
at a CIRM conference in Marseille in June 2004.

We also formulate the C∗-algebra version of Corollary 1.4.20.

Proposition 1.4.28 Assume that there exist elements q ∈ Â′ and x ∈ A+ such
that ψq(x) = 1. Then, (A,Φ) is a locally compact quantum group.

Moreover, ψq is the right Haar weight and ϕq is the left Haar weight.

Proof. We can repeat the proof of [68, Proposition 1.6] to deduce from Corol-
lary 1.4.20 that (A,Φ) is a locally compact quantum group.

By proceeding in this way, we automatically get that ψq and ϕq are respectively
the right and the left Haar weight on (A,Φ). �

The next Remark 1.4.29 is about the conditions in Proposition 1.4.28.

Remark 1.4.29 Notice that it is not a stronger assumption to require that there
exists an element x ∈ A+ such that ψq(x) = 1.

It is equivalent either to allow elements x ∈ A+ or elements x ∈M+.

Suppose that y ∈M+ and ψq(y) = 1. We denote z = R(y
1
2 ). It is clear that we

can take ω ∈ B(H)+∗ such that ω(1) = 1 and ω(z) 6= 0.

We define an element yω ∈ A+ by the formula

yω = R
(

(ωz ⊗ ι)(W ∗)∗(ωz ⊗ ι)(W ∗)
)
.

From Proposition 1.3.28, it follows that yω 6= 0.

Further, we have

ψq(yω) = ψqR
(

(ωz ⊗ ι)(W ∗)∗(ωz ⊗ ι)(W ∗)
)

= ψqR
(

(ω ⊗ ι)((z ⊗ 1)W ∗)∗(ω ⊗ ι)((z ⊗ 1)W ∗)
)

≤ ψqR
(
‖ω‖(ω ⊗ ι)

(
W (z∗z ⊗ 1)W ∗))

= ψqR
(
(ω ⊗ ι)Φ(z∗z)

)
= ψq(y) = 1.

So, we find ψq(yω) < +∞.

Because ψq is faithful, we get that 0 < ψq(yω) < +∞.
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The next Theorem 1.4.30 summarizes the above results. It shows that if we have
a modular multiplicative unitary at hand, we are probably (more than) halfway
in the construction of a locally compact quantum group.

Theorem 1.4.30 Fix a modular multiplicative unitary W ∈ B(H⊗H) together
with all its related objects. Take a strictly positive operator N̂ on H such that
we have τ̂t = N̂−itxN̂ it for all x ∈ Â.

For every q ∈ M̂ ′ with q 6= 0, we can consider a faithful, normal weight ψq
on M+ informally defined by ψ(x) = TrN̂ (q∗xq) when x ∈M+.

Assume that there exist elements q ∈ M̂ ′ and x ∈ M+ such that ψq(x) = 1.
Then, the following properties hold:

1. We have that (A,Φ) is a locally compact quantum group with right Haar
weight ψq and left Haar weight ϕq,

2. We have that (M,Φ) is a von Neumann algebraic quantum group with right
Haar weight ψq and left Haar weight ϕq.

The following two results can be useful for compact quantum groups.

Lemma 1.4.31 Let q ∈ M̂ ′ ∩Nψ1 . Then ψq is a normal linear functional.

Proof. Take x ∈ B(H)+. We have that

ψq(x) = ψ1(q∗xq) ≤ ‖x‖ψ1(q∗q) < +∞

Hence ψq is everywhere defined. �

Corollary 1.4.32 Suppose that A is unital and that q ∈ M̂ ′ ∩Nψ1 with q 6= 0.
If we denote λ = 1

‖ψq‖ , we have that λψq is the Haar state on (A,Φ).

Proof. This follows from Lemma 1.4.31 and Theorem 1.4.18. �

The Remarks 1.4.33 and 11.4.34 are about a generalization of our technique.

Remark 1.4.33 The result of Proposition 1.4.13 above can be proved to hold in
a more general setting. This generalized property is however much less natural
than the results concerning modular multiplicative unitaries.

Let K be a Hilbert space. Fix a unitary U ∈ B(H ⊗K).

Let ψ1 be an n.s.f. weight on B(H)+ and denote its modular automorphism group
with σ. Assume that (ι⊗ ω)U∗ ∈ D(σ i

2
) for all ω ∈ B(H)∗.
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Further, let (Hψ1 , πψ1 ,Λψ1) be the GNS-construction of ψ1 and assume that there
exists a unitary Ũ ∈ B(Hψ1 ⊗K) such that

Λψ1

(
y(ι⊗ ω)U∗

)
=

(
(ι⊗ ω)Ũ

)
Λψ1(y)

for all y ∈ Nψ1 and ω ∈ B(K)∗.

Let q ∈ B(H) be a bounded operator that belongs to {(ι ⊗ ω)U | ω ∈ B(K)∗}′.
Then define a normal weight ψq on B(H)+ by ψq(x) = ψ1(q∗xq). It is possible
to prove that

ψq
(
(ι ⊗̄ω)(U(x⊗ 1)U∗)

)
= ω(1)ψq(x)

for all x ∈ M+
ψq

and ω ∈ B(K)∗.

Remark 1.4.34 The condition in the above Remark 1.4.33 is quite unnatural.
It is satisfied for all unitaries U ∈ B(H ⊗K) such that, for all ω ∈ B(K)∗, we
have that (ι⊗ ω)U ∈ D(Ŝ−1) and

Ŝ−1
(
(ι⊗ ω)U

)
= (ι⊗ ω)U∗. (1.37)

For instance, if U ∈ B(H ⊗ K) is a unitary satisfying U12W23 = W23U13U12,
then the Condition (1.37) is a consequence of [162, Theorem 1.6].

1.5 The affiliation relation

In this Section 1.5, we overview some basic results concerning the notion of
elements affiliated to a C∗-algebra A. We include this survey to keep the text
self-contained. The concept of an affiliated element plays a very important role
in our study of the quantum E(2) group in Chapter 2.

The affiliation relation was introduced by Baaj in [3]. It is however Woronowicz
who elaborated a full study of affiliated elements [157, 161]. We mainly follow
his approach in the treatment below. We do not include any proof.

We further mention that the affiliation relation also provides us with a very
efficient approach to the functional calculus of normal operators. We refer to the
complete Section B.3 for more explication on this matter.

It is most convenient to work with concrete C∗-algebras. We therefore introduce
the following Notation 1.5.1.

Notation 1.5.1 We fix a non-degenerate C∗-algebra A ⊆ B(H). Further, we
fix a non-degenerate C∗-algebra B ⊆ B(K).
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The multiplier algebra

We first give a short study of the multiplier algebra M(A). We look at the strict
topology on M(A) and give its basic properties.

The undermentioned results about M(A) are quite standard and can e.g. be
found in [72, 152, 161, 60, 81, 15, 122, 104].

The most easy way to introduce M(A) is as follows.

Definition 1.5.2 The unital C∗-algebra M(A) is defined by

M(A) =
{
x ∈ B(H) | xA ⊆ A and Ax ⊆ A

}
.

Further, M(A) is called the multiplier algebra of A.

The next three Lemmas 1.5.3, 1.5.4 and 1.5.5 are quite trivial.

Lemma 1.5.3 We have A ⊆M(A).

Lemma 1.5.4 We have M(A) = A if and only if A is unital.

Lemma 1.5.5 We have that M(A)⊗M(B) ⊆M(A⊗B).

The Definition 1.5.6 below equips M(A) with the strict topology.

Definition 1.5.6 The strict topology on M(A) is the weakest topology such
that, for all a ∈ A, we have that the mappings

M(A) → A : x 7→ xa and M(A) → A : x 7→ ax

are continuous.

Hence, a net (xi)i∈I in M(A) strictly converges to x ∈M(A) if and only if

‖xia− xa‖ → 0 and ‖axi − ax‖ → 0

for all a ∈ A.

The next Lemma 1.5.7 is again immediately clear.

Lemma 1.5.7 The strict topology on M(A) is weaker than the norm topology
on M(A). These two topologies coincide if and only if A is unital.

It takes more effort to prove the following property.

Lemma 1.5.8 The multiplier algebra M(A) is the completion of A with respect
to the strict topology. This implies that A is strictly dense in M(A).
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We mention the two basic Examples 1.5.9 and 1.5.10.

Example 1.5.9 Let X be a locally compact Hausdorff space. We consider the
commutative C∗-algebra C0(X).

We then have that M(C0(X)) = Cb(X).

The strict topology on M(C0(X)) lies in between the norm topology and the
topology of uniform convergence on compact subsets.

If X is non-compact, then the three mentioned topologies differ.

Example 1.5.10 Let H be a Hilbert space. We have M(B0(H)) = B(H).

The strict topology on M(B0(H)) is stronger than the σ-strong∗ topology. It is
strictly stronger if H is infinite dimensional.

The two mentioned topologies always coincide on bounded subsets.

The following Definition 1.5.11 is very important.

Definition 1.5.11 Let ρ : A→M(B) be a linear map. We call ρ strict if it is
both norm bounded and strictly continuous on bounded subsets of A.

The next Proposition 1.5.12 is proved in Section 7 of [60].

Proposition 1.5.12 Let ρ : A → M(B) be a strict linear map. There exists a
unique linear mapping ρ̄ : M(A) →M(B) that extends ρ.

We have that ρ̄ is norm bounded and ‖ρ̄‖ = ‖ρ‖. Further, we have that ρ̄ is
strictly continuous on bounded subsets of M(A).

It is easy to check the following result.

Lemma 1.5.13 Let C ⊆ B(L) be a non-degenerate C∗-algebra. Assume that
ρ : A→M(B) and θ : B →M(C) are two strict linear maps.

Then, we also have that θ̄ ◦ ρ : A→M(C) is a strict linear map.

The Definitions 1.5.14 and 1.5.14 define two categories of linear maps. These are
basic examples of strict linear maps; see Proposition 1.5.18.

Definition 1.5.14 Let π : A→M(B) be a ∗-homomorphism. Then, π is called
non-degenerate if we have that π(A)B is dense in B.

Definition 1.5.15 Let R : A→M(B) be a ∗-anti-homomorphism. Then, R is
called non-degenerate if we have that R(A)B is dense in B.
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The Lemma 1.5.16 below can be useful. It is of course no surprise that we have
a completely similar result for ∗-anti-homomorphisms.

We remark that any approximate unit (eα) in A strictly converges to 1.

Lemma 1.5.16 Let θ : A→M(B) be a ∗-homomorphism. The four conditions
below are equivalent:

1. θ is non-degenerate,

2. For any approximate unit (eα), we have that (θ(eα)) strictly converges to 1,

3. There is a bounded net (eα) in A such that (θ(eα)) strictly converges to 1,

4. The set { θ(a)b | a ∈ A, b ∈ B} is dense in B.

In the remainder of this Section 1.5, we give a lot of useful information about
non-degenerate ∗-homomorphisms.

First, we give a remark about ∗-anti-homomorphisms.

Remark 1.5.17 For non-degenerate ∗-anti-homomorphisms, we have counter-
parts of all the properties stated below. These results are used in the thesis, but
are not explicitly stated in the treatment below.

The next Proposition 1.5.18 is a standard property.

Proposition 1.5.18 Let π : A→M(B) be a non-degenerate ∗-homomorphism.
We then have that π is a strict linear map.

Moreover, the extension π̄ : M(A) →M(B) is a unital ∗-homomorphism.

The Lemma 1.5.19 below gathers some useful information.

Lemma 1.5.19 Let π : A → M(B) be a non-degenerate ∗-homomorphism and
let π̄ : M(A) →M(B) be its unique extension.

We have the following properties:

• If π is injective on A, then π̄ is injective on M(A),

• If π(A) ⊇ B, then π̄ is strictly continuous on M(A),

• If π is a ∗-isomorphism from A to B, then π̄ is a strictly continuous
∗-isomorphism from M(A) to M(B).

Also the following Remark 1.5.20 is certainly interesting.

Remark 1.5.20 Consider a ∗-representation π : A → B(H). Then, we have
that π is a non-degenerate ∗-representation if and only if π : A→M(B0(H)) is
a non-degenerate ∗-homomorphism.
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Let C ⊆ B(L1) and D ⊆ B(L2) be two non-degenerate C∗-algebras.

If π1 : A → M(C) and π2 : B → M(D) are non-degenerate ∗-homomorphisms,
then also π1 ⊗ π2 : A⊗B →M(C ⊗D) is non-degenerate.

For continuous linear functionals, we have the very strong result of Proposi-
tion 1.5.22. It is a consequence of the Proposition 1.5.21 below.

Proposition 1.5.21 We have

A∗ = {aωb | ω ∈ A∗, a, b ∈ A},
A∗+ = {aωa∗ | ω ∈ A∗+, a ∈ A},

The next Proposition 1.5.22 was first proved in [122].

Proposition 1.5.22 Let ω : A→ C be a continuous linear functional. We have
that ω is a strict linear map.

Moreover, the extension ω̄ : M(A) → C is strictly continuous.

Further, also the slice maps are strict linear maps.

Lemma 1.5.23 Let ω : A → C be a continuous linear functional. Then, the
slice maps ω ⊗ ι : A⊗B → B and ι⊗ ω : A⊗B → A are strict.

Finally, we introduce the Notation 1.5.24 to simplify notations. The uniqueness
part of Proposition 1.5.12 makes that there is not caused any confusion.

The Notation 1.5.24 is applied throughout the whole thesis.

Notation 1.5.24 Let ρ : A → M(B) be a strict linear map. We then use ρ to
also denote the extension ρ̄ : M(A) →M(B).

The affiliation relation

We now go further and define the set of elements affiliated to A. We mention
that we keep using the Notation 1.5.1. This means that we always work with
two concrete C∗-algebras A ⊆ B(H) and B ⊆ B(K).

The results below are proved e.g. in [157, 161, 59, 72, 167].

First, we introduce the notion of the z-transform of a closed operator.

Definition 1.5.25 Let T be a closed operator on H. We define zT ∈ B(H) by
setting

zT = T (1 + T ∗T )−
1
2 .

We call zT the z-transform of T .
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The next Lemma 1.5.26 gathers some basic (but non-trivial) properties. It shows
that the z-transform zT contains full information about T .

Lemma 1.5.26 Let S, T be two closed operators on H. Then, the following
properties hold:

• We have ‖zT ‖ ≤ 1,

• We have that T ∈ B(H) if and only if ‖zT ‖ < 1,

• We have T = zT (1− z∗T zT )−
1
2 ,

• We have S = T if and only if zS = zT .

The next Definition 1.5.27 is the central issue in this Section 1.5. It makes use
of the z-transform to introduce the affiliation relation.

We refer to [157, 161] for a full elaboration of this subject.

Definition 1.5.27 Let T be a closed operator on H. We say that T is affiliated
to A if and only if

1. zT ∈M(A),

2. (1 + T ∗T )−
1
2A is dense in A.

We then write T η A.

The next Notation 1.5.28 is standard.

Notation 1.5.28 We use Aη to denote the set of elements affiliated to A.

It is not difficult to prove the three lemmas below.

Lemma 1.5.29 We have M(A) = {T η A | T ∈ B(H)}.

Lemma 1.5.30 We have A ⊆M(A) ⊆ Aη.

Lemma 1.5.31 We have M(A) = Aη if and only if A is unital.

The Lemmas 1.5.32 and 1.5.33 are less trivial than they look.

Lemma 1.5.32 Let T η A and γ ∈ C0. Then, we have γT η A.

Lemma 1.5.33 Let T η A and x ∈M(A). Then, we have (T + x) η A.

If x is invertible in M(A), then we also have Tx, xT η A.
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The next Lemma 1.5.34 is a basic result. It shows that the affiliation relation
well-behaves with respect to the adjoint operation.

Lemma 1.5.34 Let T be a closed operator on H. If T η A, then we have
that T ∗ η A and zT∗ = z∗T .

Further, we have T ∗T η A and TT ∗ η A.

We then have the Lemma 1.5.35 below.

Lemma 1.5.35 Let T η A. The properties below hold:

• We have that T is normal if and only if zT is normal,

• We have that T is self-adjoint if and only if zT is self-adjoint,

• We have that T is positive if and only if zT is positive,

There are also some useful results concerning the tensor product of two affiliated
elements; see [167, Theorem 6.1] and [169, Proposition A.1].

Proposition 1.5.36 Assume that S η A and T η B. Then, we have

S ⊗ T η A⊗B.

Proposition 1.5.37 Let S, T be two non-zero, normal operators on H and K.
If S ⊗ T η A⊗B, then we have S η A and T η B.

For normal operators T , we can also use the functional calculus to find a simple
characterization of the affiliation relation.

Proposition 1.5.38 Let T be a normal operator on H. Then, the following
conditions are equivalent:

1. We have T η A,

2. We have that
{
f(T ) | f ∈ C0(σ(T ))

}
is a subset of M(A) containing an

approximate unit for A.

Below, we will endow Aη with a natural topology. We first look at the behavior
of the z-transform with respect to the strict topology on M(A).

Proposition 1.5.39 Let (xn) be a sequence in M(A) and x ∈ A. The following
two conditions are equivalent:

1. We have that xn → x in the strict topology,

2. The sequence (xn) is bounded and we have zxn
→ zx in the strict topology.
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Proposition 1.5.40 Let (xi) be a net in M(A) and x ∈ A. If xi → x in the
strict topology, then we also have zxi → zx in the strict topology.

If the net (xi) is bounded, these two convergence conditions are equivalent.

We now define the η-topology. The Definition 1.5.41 is taken from [161], where
this topology is called the topology of almost uniform convergence.

The Definition 1.5.41 is based on the Propositions 1.5.39 and 1.5.40.

Definition 1.5.41 The η-topology on Aη is the weakest topology which makes
the z-transform

Aη →M(A) : T 7→ zT

strictly continuous.

Hence, a net (Ti)i∈I in Aη converges to T η A if and only if

zTi
→ zT

in the strict topology.

The next Lemma 1.5.42 is a consequence of Proposition 1.5.40.

Lemma 1.5.42 The η-topology restricted to M(A) is weaker than the strict
topology. These two topologies coincide on bounded subsets of M(A).

It takes some effort to prove the following property.

Lemma 1.5.43 Let T η A. Then, there exists a sequence (Tn) in M(A) such
that Tn → T in the η-topology.

This result implies that A is dense in Aη with respect to the η-topology.

We also mention the next result.

Lemma 1.5.44 Let (Ti) be a net in Aη and T η A. Assume that Ti → T in the
η-topology. Then, we have that T ∗i → T ∗ in the η-topology.

We now further explore the Examples 1.5.9 and 1.5.10. These two main cases
are used a few times in Chapter 2.

It is again easy to handle the commutative case.

Example 1.5.45 Let X be a locally compact Hausdorff space. We consider the
commutative C∗-algebra C0(X).

We then have that C0(X)η = C(X). The η-topology on C0(X)η coincides with
the topology of uniform convergence on compact subsets.
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The next Example 1.5.46 shows that that Aη can behave quite badly with respect
to the sum and the product of two affiliated elements.

Example 1.5.46 Let H be a Hilbert space. We then have that B0(H)η is equal
to the set of closed operators on H.

We now again point our attention to non-degenerate ∗-homomorphisms. It turns
out that such a non-degenerate ∗-homomorphism can be extended to the set of
affiliated elements. This gives us some very useful properties.

In the next Definition 1.5.47, we make use of Proposition 1.5.18.

Definition 1.5.47 Let π : A → M(B) be a non-degenerate ∗-homomorphism.
For every S η A, there exists a unique element T η B such that π(zS) = zT .

We then write π(S) = T .

We have to be quite careful when we use the extension of π to Aη. Luckily, the
following results make it somewhat easier to work with π.

The Propositions 1.5.48 and 1.5.49 collect some basic properties.

Proposition 1.5.48 Let π : A→M(B) be a non-degenerate ∗-homomorphism.
For every T η A, we have

π(T ∗) = π(T )∗, π(T ∗T ) = π(T )∗π(T ), π(TT ∗) = π(T )π(T )∗.

Proposition 1.5.49 Let π : A→M(B) be a non-degenerate ∗-homomorphism.
Let T η A. The properties below hold:

1. If T is normal, then π(T ) is normal,

2. If T is self-adjoint, then π(T ) is self-adjoint,

3. If T is positive, then π(T ) is positive,

4. If T is strictly positive, then π(T ) is strictly positive.

Also the Remarks 1.5.50 and 1.5.51 contain some useful properties.

Remark 1.5.50 Let C ⊆ B(L1) and D ⊆ B(L2) be non-degenerate C∗-algebras.

We consider non-degenerate ∗-homomorphisms π : A → M(B), θ : B → M(C)
and π1 : A→M(C), π2 : B →M(D).

Then, also θπ : A → M(C) is non-degenerate. It is easy to check that we
have (θπ)(T ) = θ(π(T )) for all T η A.

Further, we have that π1 ⊗ π2 : A⊗B →M(C ⊗D) is non-degenerate and that
(π1 ⊗ π2)(S ⊗ T ) = π1(S)⊗ π2(T ) for all S η A and T η B.
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Remark 1.5.51 Let π : A→M(B) be a non-degenerate ∗-homomorphism that
is injective. Lemma 1.5.19 gives that π is also injective on M(A).

It is then easy to deduce that π is also injective on Aη.

The next Proposition 1.5.52 states that non-degenerate ∗-homomorphisms are
continuous on the set of affiliated elements.

Proposition 1.5.52 Let π : A→M(B) be a non-degenerate ∗-homomorphism.
Then, we have that the map

π : Aη → Bη : T 7→ π(T )

is continuous in the η-topology.

For every net (Ti) in Aη and T η A such that Ti → T in the η-topology, we thus
have that

π(Ti) → π(T )

in the η-topology.

C∗-algebras generated by affiliated elements

The last topic we focus on are the C∗-algebras which are generated by affiliated
elements. All results below are taken from [161].

If we have a finite set of bounded operators on a Hilbert space, we can consider
the smallest C∗-algebra which contains all these operators. We then say that
this C∗-algebra is generated by the given set of bounded operators.

S.L. Woronowicz gave in [161] a definition for the C∗-algebra A to be generated
by a finite number of (possibly unbounded) affiliated elements.

The definition of Woronowicz is stated in Definition 1.5.53 below. It starts
with the C∗-algebra A and affiliated elements T1, T2, . . . , Tn η A and then gives
a condition under which we say that A is generated by T1, T2, . . . , Tn η A.

In the bounded case, Definition 1.5.53 coincides with the usual notion as it is
mentioned above. The approach is however quite different.

For the interested reader, we mention that it is also possible to define when the
C∗-algebra A is generated by a quantum family of generators. We do not go
further into this matter and refer to [161] for a detailed treatment.

We now state the main Definition 1.5.53.

Definition 1.5.53 Let T1, T2, . . . , Tn η A. We then say that A is generated
by T1, T2, . . . , Tn η A if for any non-degenerate C∗-algebra C ⊆ B(L) and any
non-degenerate ∗-representation π : A→ B(L), we have(

π(Ti) η C for any
i = 1, 2, . . . , n

)
=⇒

(
π : A→M(C) is non-degenerate

)
.
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At first sight, it looks like the Definition 1.5.53 is given in a laborious manner.
The method of working is quite opposite to the intuition.

It is however not possible to work the other way round. There is no effective
procedure to construct a C∗-algebra out of a given set of affiliated elements.

In each separate case, we thus have to invent an appropriate C∗-algebra and prove
a posteriori that it is indeed the C∗-algebra we seek for. Even worse is the fact
that the existence of such a C∗-algebra is not guaranteed.

The Proposition 1.5.54 is an excellent expedient when one wants to prove that the
C∗-algebra A is generated by affiliated elements T1, T2, . . . , Tn η A.

Proposition 1.5.54 Let T1, T2, . . . , Tn η A. We define a set Γ ⊆M(A) by

Γ =
{

(1 + T ∗i Ti)
−1 | i = 1, 2, . . . , n

} ∪ {
(1 + TiT

∗
i )−1 | i = 1, 2, . . . , n

}
.

Assume that the following two conditions are satisfied:

1. We have that T1, T2, . . . , Tn η A separate non-degenerate ∗-representations
of A, i.e., if we consider two such maps π1, π2 : A → B(L) which are
different, then π1(Ti) 6= π2(Ti) for some i = 1, 2, . . . , n,

2. There exist elements r1, r2, . . . , rk ∈ Γ such that r1r2 · · · rk ∈ A.

Then A is generated by T1, T2, . . . , Tn η A.

We explicate the meaning of Definition 1.5.53 in the commutative case.

Example 1.5.55 Let X be a locally compact Hausdorff space. We consider the
commutative C∗-algebra C0(X).

From Example 1.5.45, we know that C0(X)η = C(X).

Let f1, f2, . . . , fn ηC0(X). Then, C0(X) is generated by f1, f2, . . . , fn if and only
if they separate points of X and

lim
λ→∞

N∑
i=1

|fi(λ)|2 = +∞.

This latter condition is superfluous (and meaningless) if X is compact.



Chapter 2

The quantum E(2) group
and its dual

This Chapter 2 constitutes the heart of the thesis. It encompasses all details
regarding the construction of the quantum E(2) group. In particular, we give a
proof of the fact that this example fits in with the framework of Kustermans
and Vaes. We display a very accurate and detailed treatment.

We construct the quantum E(2) group (A,Φ) following the ‘atomic’ construction
procedure as explained in the Method 1 of Section 1.2. More precisely, we apply
the scheme on page 38. We start with a multiplicative unitary W and then
define (A,Φ) as the associated bi-C∗-algebra. From the results in Section 1.4, it
will ensue quite easily that (A,Φ) is a locally compact quantum group.

It should be observed that this method of working is one of the main differences
of our approach in comparison with the work of Woronowicz. He introduces the
bi-C∗-algebra (A,Φ) in [159] without making use of W .

The central property of the Chapter 2 is thus that (A,Φ) satisfies the conditions
in Definition 1.1.6. We state this main result in Theorem 2.4.3. It is the starting
point of a profound study of all the aspects of the quantum E(2) group.

In Sections 2.5 to 2.8, we investigate the structure of (A,Φ) as a locally compact
quantum group. The information in these sections provides us with a solid base
for further research on the typical features of this example. This becomes clear
already in Chapter 3 where we study its amenability properties.

The representation theory of (A,Φ) is unravelled in Chapter 4. The Chapter 5 is
used to mention a few open problems as an incentive for future research.

We also treat the quantum Ê(2) group (Â, Φ̂). For the construction of this
example, we operate completely similar to the case of the quantum E(2) group.
In Section 2.8, we show that (Â, Φ̂) is the opposite dual of (A,Φ).

91
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In the Introduction and in Chapter 1, we already focussed on the history of the
quantum E(2) group. We do not repeat these things so that we can put all our
attention to the mathematics. We only recall that the quantum E(2) group was
first introduced and studied by S.L. Woronowicz [157, 158, 159, 149] and that
the Haar weights on this example were first obtained by S. Baaj [2, 1].

Throughout the Chapter 2, we mainly concentrate on the quantum E(2) group
as a C∗-algebraic quantum group. We are very accurate in all of the calculations.
The von Neumann algebra case is considered separately in Section 2.9.

We recall (cf. the Introduction) that we have fixed a number µ with 0 < µ < 1.
This µ is used as the deformation parameter in our construction.

Because this Chapter 2 is quite elaborated, we first overview its sections.

Section 2.1 - The Hopf ∗-algebra level. In this Section 2.1, we present a
dual pair of Hopf ∗-algebras. They describe the quantum groups E(2) and Ê(2)
in an algebraic way. Although this part is not really necessary for the rest of
the thesis, it is rather easy and very instructive. It will help to understand the
formulas in the further Sections 2.2 to 2.8. As such, this level is mainly used
as an algebraic intuition for later results. It will not be used to give proofs on
the analytic level. The polar decomposition of the antipode is one of the results
that can already be obtained in this purely algebraic context.

Section 2.2 - Operator equalities and special functions. This is the
start of the Hilbert space level. We here deal with some technical details. Most of
these results concern the function Fµ introduced in Definition 2.2.1. We focus on
the relation of Fµ with certain pairs of operators and we give crucial properties
of its Fourier coefficients. The mentioned results are taken from [158, 168, 1].
They are of the utmost importance for later calculations.

Section 2.3 - The multiplicative unitary. The results in this section
are crucial. We describe the main tool in our construction. We will construct a
multiplicative unitary W and prove that it is manageable. The important unitary
operator W will appear many times throughout this thesis. It will be a main
actor both in the construction procedure and in the study of the amenability
properties of the quantum E(2) group (cf. Chapter 3).

Section 2.4 - The definition of the quantum E(2) group. This short
Section 2.4 is central in Chapter 2. It is used to fix the data of the operator
algebra level. We give a (possible) definition for the quantum E(2) group (A,Φ).
Further, we state that (A,Φ) is a locally compact quantum group. In a complete
similar way, also the quantum Ê(2) group (Â, Φ̂) is introduced.

Section 2.5 - The C∗-algebras and the comultiplications. We here
have a closer look at the C∗-algebras and the comultiplications. It is shown
that the C∗-algebras A and Â can be obtained by taking suitable functions
of the generators. They are also described as crossed products. Further, we
characterize the comultiplications Φ and Φ̂ in terms of the generators.
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Section 2.6 - The antipodes. In the Section 2.6, we study the antipodes
and their properties. We describe the action of S and Ŝ on the generators. These
results are then used to prove that both S and Ŝ are unbounded.

Section 2.7 - The Haar weights. We here construct the Haar weights
and describe their main properties. By applying the technique introduced in
the Section 1.4, we are able to prove the invariance of the Haar weights by just a
very short calculation. It turns out that the quantum E(2) group is unimodular
while the quantum Ê(2) group is non-unimodular.

Section 2.8 - Features of the quantum E(2) group. This Section 2.8
compiles several short studies. We treat in detail all the features of the quantum
E(2) group known from the general theory. We describe the modular elements
and the regular representations. Also, we look at regularity properties and we
study some duality results. We describe closed quantum subgroups and construct
an ergodic (left) action γ of the quantum E(2) group. At the end of the section,
we state Theorem 2.8.54 which summarizes the main results.

Section 2.9 - The von Neumann algebra case. Finally, we also look
somewhat closer at the von Neumann algebra level. We give a short study of
the quantum E(2) group as a von Neumann algebraic quantum group.

2.1 The Hopf ∗-algebra level

This Section 2.1 is the start of our detailed built-up of the quantum E(2) group.
As it is said above, we apply the Method 1 in Section 1.2 in order to construct
the quantum E(2) group in a transparent way.

We thus build up the quantum E(2) group as an ‘atomic’ example. It is explained
in Section 1.2 that this involves that our treatment is split up into three levels.
First, there is the Hopf ∗-algebra level which is the content of this Section 2.1.
The Hilbert space level and the C∗-algebra level (and von Neumann algebra level)
are treated in the subsequent Sections 2.2 to 2.9.

The main issue in this Ph.D.-thesis lies in the study of the quantum E(2) group
as a C∗-algebraic quantum group. The Hopf ∗-algebra level we only give as an
intuitive motivation for later results. Nonetheless, we believe that it is certainly
instructive first to consider the easy algebraic counterpart of the much more
difficult results on the operator algebra level.

In this Section 2.1, we begin our study of the quantum E(2) group by defining
two Hopf ∗-algebras (A,∆) and (B, ∆̂). We give their main properties and, in
particular, we show that they form a dual pair of Hopf ∗-algebras.

Since the results in this Section 2.1 are not needed to treat the C∗-algebra case,
we will not linger over details. However, we do treat all the results with a
reasonable care. We will not omit any precision.
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For the theory of dual pairs of Hopf ∗-algebras, we refer to [143]. Notice that
we use ∆ to denote the comultiplication on the Hopf ∗-algebra level, whereas in
the C∗-algebra framework we use Φ for the comultiplication.

The dual pair of Hopf ∗-algebras that is behind the example of the quantum
E(2) group is the well-known pair in the Proposition 2.1.1 below.

The proof of Proposition 2.1.1 is (almost) trivial; its content certainly is not.
For the duality between (A,∆) and (B, ∆̂), we refer to Proposition 2.1.4.

We again recall that 0 < µ < 1.

Proposition 2.1.1 Consider the unital ∗-algebra A over C that is generated by
a unitary element c and a normal element d satisfying cd = µdc.

The ∗-algebra A can be made into a Hopf ∗-algebra when a comultiplication ∆ is
defined by

∆(c) = c⊗ c and ∆(d) = c⊗ d+ d⊗ c∗.

The counit ε is given by ε(c) = 1 and ε(d) = 0. The antipode S is given by
S(c) = c∗, S(d) = −µ−1d and S(d∗) = −µd∗.

Further, consider the unital ∗-algebra B over C that is generated by a self-adjoint
invertible element a and a normal element b satisfying ab = µba.

The ∗-algebra B can be made into a Hopf ∗-algebra when a comultiplication ∆̂ is
defined through the formulas

∆̂(a) = a⊗ a and ∆̂(b) = a⊗ b+ b⊗ a−1.

The counit ε̂ is given by ε̂(a) = 1 and ε̂(b) = 0, while the antipode Ŝ is determined
by Ŝ(a) = a−1, Ŝ(b) = −µ−1b and Ŝ(b∗) = −µb∗.

The next Remark 2.1.2 explains some choices.

Remark 2.1.2 As it is common usage in the theory of dual pairs of Hopf ∗-
algebras, we have defined the comultiplication ∆̂ dual to ∆.

For transparency, we will make this choice also in Section 2.4 when we define
the quantum E(2) group in the C∗-algebra framework.

This method of working is different from the normal approach in the theory of
locally compact quantum groups, where we usually flip the comultiplication on
the dual quantum group (cf. Proposition 1.1.28).

There are two motives for making this choice. First, as we have mentioned above,
it enhances the connection between the Hopf ∗-algebra level and the C∗-algebra
level. We moreover get the advantage that our formulas then match with the
pristine formulas that Woronowicz displayed in the articles [159, 149].
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The algebra A in Proposition 2.1.1 can be considered – on the Hopf ∗-algebra
level – as the quantum analogue of the group E(2) of motions on the plane.
This fact is explained in the Remark 2.1.3 below. Further, the algebra B is the
Hopf ∗-algebra underlying the quantum Ê(2)-group.

The idea behind the construction of the quantum E(2) group is similar to the
case of the quantum SU(2) group (cf. Example 1.2.10). It will however turn out
to be much more difficult to perform the lifting to the C∗-level.

The Remark 2.1.3 is taken from [157, Section 3].

Remark 2.1.3 S.L. Woronowicz found its inspiration for the definition of the
Hopf ∗-algebra (A,∆) in a deformation of the E(2) group.

First, consider the matrix group E(2) that is defined as follows:

E(2) =
{ (

v n
0 v̄

)
∈M2(C)

∣∣∣ v, n ∈ C such that |v| = 1
}
.

Then consider the functions c, d ∈ C(E(2)) defined by

c

(
v n
0 v̄

)
= v and d

(
v n
0 v̄

)
= n

for all v, n ∈ C such that |v| = 1.

Now, let A0 be the unital ∗-subalgebra of C(E(2)) generated by c and d. We can
define a ∗-homomorphism ∆ : A0 → A0 ⊗ A0 by the formula ∆(f)(s, t) = f(st)
when f ∈ A0 and s, t ∈ E(2). This ∗-homomorphism ∆ is coassociative.

It is easy to check that (A0,∆) is a Hopf ∗-algebra. We have that

∆(c) = c⊗ c and ∆(d) = c⊗ d+ d⊗ c∗.

This indicates where the idea for the Hopf ∗-algebra (A,∆) in Proposition 2.1.1
comes from. It is however a non-trivial property that it is possible to define a
deformation such as it is done in the Proposition 2.1.1.

The relation with the group of motions of the plane is explained as follows.
Let g ∈ E(2) be the (unique) element with c(g) = v and d(g) = n. Then, we
associate with g the transformation g̃ of C defined by the formula

g̃ : C → C : ξ 7→ v2ξ + vn. (2.1)

The map g 7→ g̃ defines a ∗-homomorphism from E(2) into the group of all
transformations of C which preserve orientation and Euclidian distance.

We have that the kernel of this ∗-homomorphism is a normal subgroup of E(2)
that is isomorphic to Z2. Thus, we get that E(2) is in fact the two-fold covering
of the group of motions on the two-dimensional Euclidian plane.
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The pairing between the two Hopf ∗-algebras A and B is described in the next
Proposition 2.1.4. It is a standard task to prove this result (cf. [143]). Only the
non-degeneracy of the pairing is not immediately clear. This property will follow
once we have calculated the full pairing; see below.

Proposition 2.1.4 The pair (A,B) becomes a dual pair of Hopf ∗-algebras when
a pairing is defined by

〈c, a〉 = µ
1
2 , 〈d, a〉 = 0, 〈d∗, a〉 = 0,

〈c, b〉 = 0, 〈d, b〉 = z, 〈d∗, b〉 = 0,
〈c, b∗〉 = 0, 〈d, b∗〉 = 0, 〈d∗, b∗〉 = −µz

where z ∈ C is arbitrary. This pairing is non-degenerate if z 6= 0.

Although the Hopf ∗-algebras A and B are certainly not difficult, it is by no
means trivial to realize them on the operator algebra level. This will become clear
in the following sections where we describe in a precise manner the construction
of both of the quantum groups E(2) and Ê(2) on the C∗-algebra level.

One of the main tools in the construction of the quantum E(2) group in the
C∗-algebra framework is the multiplicative unitary. We introduce this unitary
operator W in Definition 2.3.9. The formula that we use in this definition is due
to Woronowicz; see [159, Theorem 2.1]. In what follows, we give an algebraic
motivation to the formula for W in the crucial Definition 2.3.9.

We introduce a completion B ⊗̄A of B ⊗ A. For a detailed treatment of how
to work correctly in this ∗-algebra, we refer to [143].

Notation 2.1.5 We use the notation B ⊗̄A to denote the completion of B⊗A
with respect to the weak topology induced by A⊗B.

The next Definition 2.1.6 is quite crucial.

Definition 2.1.6 We denote by W the element in B ⊗̄A that ‘carries’ the
duality between the two Hopf ∗-algebras A and B. This means that

〈W,x⊗ y〉 = 〈x, y〉

for all x ∈ A and y ∈ B.

The element W corresponds to the multiplicative unitary on the C∗-algebra level.
Hence, we want W to satisfy the pentagonal equation

W12W13W23 = W23W12

where we used the leg-numbering notation.



2.1 The Hopf ∗-algebra level 97

Applying the slice maps 〈x, · 〉⊗ ι⊗〈 · , y〉 on the above pentagonal equation, we
see that it is equivalent with the commutation rules

yx = x(1)〈x(2), y(1)〉y(2) (2.2)

when x ∈ A and y ∈ B. In this formula, we use the Sweedler notation.

Notice that, for x ∈ A, we mean by 〈x, · 〉 the functional B → C : t 7→ 〈x, t〉.
Similarly, we define linear maps 〈 · , y〉 : A→ C : s 7→ 〈s, y〉 when y ∈ B.

We can easily calculate the commutation rules (2.2) between the generators.
The most important ones are collected in the Proposition 2.1.7 below.

Proposition 2.1.7 We have that

ac = µ
1
2 ca, ad = µ−

1
2 da,

bc = µ
1
2 cb, bd = µ−

1
2 db+ zca−1, bd∗ = µ

1
2 d∗b.

One should compare this result with Proposition 2.3.6. There, we will consider
the above commutation relations on the Hilbert space level.

We now want to obtain a formula for W in terms of the generators. For this
purpose, we calculate the full pairing.

For the rest of the Section 2.1, we make use of the Notation 2.1.8.

Notation 2.1.8 We denote x = cd and y = ab.

The next Proposition 2.1.9 displays a detailed description of the full pairing.

Proposition 2.1.9 We have that

∆(x) = c2 ⊗ cd+ cd⊗ 1 = c2 ⊗ x + x⊗ 1,

∆(y) = a2 ⊗ ab+ ab⊗ 1 = a2 ⊗ y + y ⊗ 1.

It is immediate to check that {xp(x∗)qcr | p, q ∈ N, r ∈ Z} is a basis for A and
that {yp′(y∗)q′ar′ | p′, q′ ∈ N, r′ ∈ Z} is a basis for B.

The full pairing on these basis elements is given by〈
xp(x∗)qcr,yp

′
(y∗)q

′
ar

′〉
= 〈xp,yp

′
〉〈(x∗)q, (y∗)q

′
〉〈cr, ar

′
〉 (2.3)

where

〈xp,yp
′
〉 = δp,p′ [p, µ2]! 〈x,y〉p = δp,p′ [p, µ2]! (µ

3
2 z)p,

〈(x∗)q, (y∗)q
′
〉 = δq,q′ [q, µ−2]! 〈x∗,y∗〉q = δq,q′ [q, µ−2]! (−µ 3

2 z)q,

〈cr, ar
′
〉 = µ

1
2 rr

′
.

Hereby, we use the following notations. We define [0, w]! = 1 and

[p, w] =
1− wp

1− w
, [p, w]! = [1, w][2, w] · · · [p, w]

when p ∈ N0 and w ∈ C with w 6= 1.
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The calculation of the full pairing is rather long, but standard. We remark that
this pairing is calculated before; see e.g. [53, Proposition 3.2].

At first sight, it might seem more natural to search for formulas in terms of the
numbers 〈cpdq(d∗)r, ap′bq′(b∗)r′〉 (as is done in [53]). This is of course equivalent
to the full pairing above. The reason of the change of generators will become
clear later, when we derive a formula for the multiplicative unitary W .

By using the results in Proposition 2.1.9, one can apply standard techniques to
prove the non-degeneracy of the considered pairing. See [143] for details.

Further, the above description of the full pairing leads us to the formula for the
element W that is displayed in the Lemma 2.1.10 below.

The result in Lemma 2.1.10 is mainly due to the Equation (2.3).

Lemma 2.1.10 We have that

W = Gµ2(y ⊗ x)Gµ−2(y∗ ⊗ x∗)χ(a⊗ 1, 1⊗ c) (2.4)

where χ is the bicharacter on R(µ
1
2 )× S1 defined by

χ(µ
1
2n, t) = tn

and where Gµ2 and Gµ−2 are the functions on C defined by

Gµ2(z) =
∞∑
q=0

1
[q, µ2]!

( z

〈x, y〉

)q
, Gµ−2(z) =

∞∑
q=0

1
[q, µ−2]!

( z

〈x∗, y∗〉

)q
.

Proof. As said above, we consider B ⊗̄A equipped with the weak topology
induced by A ⊗ B. This means that a net (xi) ∈ B ⊗̄A converges to a limit
x ∈ B ⊗̄A if and only if

〈xi, y〉 → 〈x, y〉 (2.5)

for all y ∈ A⊗B.

From this angle, we see that Equation (2.5) can be applied in order to study the
convergence of series of elements in B ⊗A.

Let p, q, p′, q′ ∈ N and r, r′ ∈ Z. We then have

〈W,xp(x∗)qcr ⊗ yp
′
(y∗)q

′
ar

′
〉 = 〈xp(x∗)qcr,yp

′
(y∗)q

′
ar

′
〉

= 〈xp,yp
′
〉〈(x∗)q, (y∗)q

′
〉〈cr, ar

′
〉

= 〈W,xp ⊗ yp
′
〉〈W, (x∗)q ⊗ (y∗)q

′
〉〈W, cr ⊗ ar

′
〉.

The formulas in Proposition 2.1.9 imply that

〈(y ⊗ x)q,xp ⊗ yp
′
〉 = 〈xp,yq〉〈xq,yp

′
〉

= δp,qδp′,q[q, µ2]! 〈x,y〉q[p′, µ2]!〈x,y〉p
′
δp,qδp,p′([p, µ2]!)2〈x,y〉2p.
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Hence, we get〈 1
[q, µ2]!

(y ⊗ x
〈x,y〉

)q
,xp ⊗ yp

′
〉

= δp,qδp,p′ [p, µ2]! 〈x,y〉p = δp,q〈xp,yp
′
〉.

This formula together with Equation (2.3) gives that Gµ2(y⊗ x) is well-defined
in B ⊗̄A and that〈

Gµ2(y ⊗ x),xp ⊗ yp
′〉

= 〈xp,yp
′
〉 = 〈W,xp ⊗ yp

′
〉.

Completely similar, we find that Gµ−2(y∗ ⊗ x∗) is well-defined in B ⊗̄A and〈
Gµ−2(y∗ ⊗ x∗), (x∗)q ⊗ (y∗)q

′〉
= 〈(x∗)q, (y∗)q

′
〉 = 〈W, (x∗)q ⊗ (y∗)q

′
〉.

Further, we have that

〈aq ⊗ cq
′
, cr ⊗ ar

′
〉 = µ

1
2 rqµ

1
2 r

′q′

and hence 〈
(a⊗ 1)q(1⊗ c)q

′
, cr ⊗ ar

′〉
= (µ

1
2 r)q(µ

1
2 r

′
)q

′
.

This implies that also χ(a⊗ 1, 1⊗ c) is well-defined in B ⊗̄A and〈
χ(a⊗ 1, 1⊗ c), cr ⊗ ar

′〉
= χ(µ

1
2 r, µ

1
2 r

′
) = µ

1
2 rr

′
= 〈cr, ar

′
〉 = 〈W, cr ⊗ ar

′
〉.

Using Equation (2.3) and all the results above, we find〈
Gµ2(y ⊗ x)Gµ−2(y

∗ ⊗ x∗)χ(a⊗ 1, 1 ⊗ c),xp(x∗)qcr ⊗ yp
′
(y∗)q

′
ar

′〉
= 〈Gµ2(y ⊗ x),xp ⊗ yp

′
〉〈Gµ−2(y

∗ ⊗ x∗), (x∗)q ⊗ (y∗)q
′
〉〈χ(a⊗ 1, 1 ⊗ c), cr ⊗ ar

′
〉

= 〈W,xp ⊗ yp
′
〉〈W, (x∗)q ⊗ (y∗)q

′
〉〈W, cr ⊗ ar

′
〉

=
〈
W,xp(x∗)qcr ⊗ yp

′
(y∗)q

′
ar

′〉
.

We thus obtain that

W = Gµ2(y ⊗ x)Gµ−2(y∗ ⊗ x∗)χ(a⊗ 1, 1⊗ c).

This ends the proof of the lemma. �

We will below rewrite Equation (2.4) in a form that is more allied to the results
on the operator algebra level appearing later in this Chapter 2. For this, we
need some formulas concerning the functions Gµ2 and Gµ−2 .

Throughout the thesis, we make extensively use of the function Fµ as defined
below. It is a very powerful tool in our calculations. We refer to Section 2.2
and Appendix A for more information about this important function.

Definition 2.1.11 ([158]) We consider the function Fµ on C that is defined in
the following way. For z ∈ C \ {−µ−2k | k ∈ N}, we set

Fµ(z) =
∞∏
k=0

1 + µ2kz

1 + µ2kz
. (2.6)

We further set Fµ(z) = −1 when z ∈ {−µ−2k | k ∈ N}.
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The next Lemma 2.1.12 is quite obvious.

Lemma 2.1.12 For almost all z ∈ C, we have

Fµ

(µ2 − 1
〈x, y〉

z
)

= Gµ2(z)Gµ−2(z).

Proof. Let z ∈ C \
{ 〈x,y〉

1−µ2 µ
−2k | k ∈ N

}
. Some easy computations yield

Gµ2(z) =
∞∏
k=0

1
1 + µ2kt

with t = (µ2 − 1)
z

〈x, y〉
,

Gµ−2(z) =
∞∏
k=0

(1 + µ2ks) with s = (1− µ2)
z

〈x∗, y∗〉
.

From Equation (2.6), it then follows that

Fµ

(µ2 − 1
〈x,y〉

z
)

= Gµ2(z)Gµ−2(z).

This ends the proof of the lemma. �

It is clear that Notation 2.1.13 below is founded upon Lemma 2.1.12. We use it
to skirt a direct definition of elements like Fµ(y ⊗ x).

Notation 2.1.13 We denote

Fµ

(µ2 − 1
〈x,y〉

(y ⊗ x)
)

= Gµ2(y ⊗ x)Gµ−2(y∗ ⊗ x∗).

The Proposition 2.1.14 below gives a complete description of W in terms of the
generators a, b, c, d. By this, the study of the element W is concluded.

It is precisely the elegant formula in Equation (2.7) that we will use to define
the multiplicative unitary W on the C∗-algebra level; see Definition 2.3.9.

The Lemma 2.1.10 is the immediate cause for the following result.

Proposition 2.1.14 We have that

W=Fµ

(µ2 − 1
〈x,y〉

(y⊗x)
)
χ(a⊗1, 1⊗c)=Fµ

(µ− 3
2 (µ2 − 1)
z

(ab⊗cd)
)
χ(a⊗1, 1⊗c).

If we use the natural choice z = µ−
3
2 (µ2 − 1), we get

W = Fµ(ab⊗ cd)χ(a⊗ 1, 1⊗ c). (2.7)
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In the remainder of this Section 2.1, we look at a few properties of the Hopf ∗-
algebras A and B. They are included as an algebraic motivation for later results.
All the formulas below will be recovered on the operator algebra level.

The Proposition 2.1.15 collects some results about the antipode S. In particular,
it gives that we have a polar decomposition S = Rτ− i

2
.

The fact that there already exists a polar decomposition on the Hopf ∗-algebra
level is not so uncommon. For instance, this is always the case if we are working
within the category of algebraic quantum groups; see [62].

Proposition 2.1.15 There is an involutive ∗-anti-homomorphism R on A and
an analytic one-parameter group {τt | t ∈ R} of ∗-automorphisms on A such
that S = Rτ− i

2
= τ− i

2
R. For all z ∈ C, we have that R and τz commute.

For all x ∈ A and t ∈ R, we have

∆(τt(x)) = (τt ⊗ τt)∆(x).

Further, we have for all x ∈ A that

∆(R(x)) = σ̇(R⊗R)∆(x)

where σ̇ denotes the flip from A⊗A to itself given by σ̇(x⊗ y) = y ⊗ x.

For all t ∈ R, we have

τt(c) = c and τt(d) = µ−2itd.

We have that
R(c) = c∗ and R(d) = −d.

Proof. First, we consider the one-parameter group τ . For t ∈ R, we define
τt(c) = c and τt(d) = µ−2itd. It is easy to verify that these formulas yield a
one-parameter group of ∗-automorphisms on the Hopf ∗-algebra A.

This one-parameter group τ is analytic in the sense that, for all x ∈ A and all
linear functionals f on A, the map t 7→ f(τt(x)) is analytic. We hereby mean
that the map t 7→ f(τt(x)) is the restriction to R of an entire map.

We can then extend τ to C by using analytic continuation. It is clear that, for
all z ∈ C, we have

τz(c) = c and τz(d) = µ−2izd.

These formulas imply that ∆(τz(x)) = (τz ⊗ τz)∆(x) for all x ∈ A and z ∈ C.
Further, it also follows that τz commutes with S for every z ∈ C.

Define R = Sτ i
2
. Since S commutes with τ i

2
, we also have R = τ i

2
S. Hence, we

get that S = Rτ− i
2

= τ− i
2
R.
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Because S is an anti-homomorphism and τ i
2

is a homomorphism, it is clear
that R is an anti-homomorphism. As S flips the comultiplication and τ leaves
it invariant, also R will flip the comultiplication.

Now, we look at the behavior of R with respect to the involution. We have the
general property

R(x∗) = S(τ i
2
(x∗)) = S(τ− i

2
(x)∗) = S−1(τ− i

2
(x))∗ = R−1(x)∗

so that R(x∗) = R−1(x)∗ for all x ∈ A.

We also have that

R2(c) = S2τi(c) = S2(c) = c,

R2(d) = S2τi(d) = µ2S2(d) = µ2S(−µ−1d) = −µS(d) = −µ(µ−1d) = d,

R2(d∗) = S2τi(d∗) = S2(τ−i(d)∗) = µ−2S2(d∗) = d∗.

We get that R2 = ι and R is thus an anti-automorphism. Together with the
property R(x∗) = R−1(x)∗, we see that R is also a ∗-map. �

The next Proposition 2.1.16 is about the antipode Ŝ.

Proposition 2.1.16 There is an involutive ∗-anti-homomorphism R̂ on B and
an analytic one-parameter group {τ̂t | t ∈ R} of ∗-automorphisms on B such
that Ŝ = R̂τ̂− i

2
= τ̂− i

2
R̂. For all z ∈ C, we have that R̂ and τ̂z commute.

For all y ∈ B and t ∈ R, we have

∆̂(τ̂t(y)) = (τ̂t ⊗ τ̂t)∆̂(y).

Further, we have for all y ∈ B that

∆̂(R̂(y)) = σ̇(R̂⊗ R̂)∆̂(y)

where σ̇ denotes the flip from B ⊗B to itself.

For all t ∈ R, we have

τ̂t(a) = a and τ̂t(b) = µ−2itb

We have that
R̂(a) = a−1 and R̂(b) = −b.

The theory of dual pairs of Hopf ∗-algebras shows that Proposition 2.1.17 follows
directly from the pairing; see e.g. [143]. The corresponding formulas on the
operator algebra level can be found in Theorems 2.6.11 and 2.6.39.

We note that in Equation (2.8) we make use of the unique extensions of ι ⊗ S
and Ŝ ⊗ ι to closed linear maps on the ∗-algebra B ⊗̄A.

Proposition 2.1.17 We have that

(ι⊗ S)W = (Ŝ ⊗ ι)W = W ∗. (2.8)
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From Remark 2.1.3, we know that the E(2) group has a natural action on C.
This leads up to the construction of a coaction γ of (A,∆).

The next Proposition 2.1.18 is taken from [157].

Proposition 2.1.18 Let C be the unital ∗-algebra over C that is generated by
a single element ξ satisfying ξξ∗ = µ2ξ∗ξ.

We consider the ∗-homomorphism γ : C → A⊗ C determined by the formula

γ(ξ) = c2 ⊗ ξ + cd⊗ 1.

This definition is of course inspired by the Equation (2.1).

It is not difficult to check that

(∆⊗ ι)γ = (ι⊗ γ)γ.

This means that γ is a left coaction of (A,∆) on C.

By identifying ξ with cd, we can consider C as a ∗-subalgebra of A. We then
have that the action γ coincides with ∆|C .

To end the Section 2.1, we mention the Proposition 2.1.19. The non-existence
of Haar functionals on the Hopf ∗-algebra level is not unexpected.

Proposition 2.1.19 There does not exist a non-zero positive integral on A
which is either left or right invariant.

We have a completely similar result for the Hopf ∗-algebra B.

Proof. Let ϕ be a non-zero positive left invariant integral on A.

From the general theory (see e.g. [147]), we know that the integral ϕ is faithful
in the sense that ϕ(a∗a) = 0 implies a = 0.

We have that

ϕ(cd)1 = (ι⊗ ϕ)∆(cd) = (ι⊗ ϕ)(c2 ⊗ cd+ cd⊗ 1) = ϕ(cd)c2 + ϕ(1)cd.

This yields
ϕ(cd)(1− c2) = ϕ(1)cd. (2.9)

Multiplying on the left by c∗ and on the right by c gives that

ϕ(cd)(1− c2) = ϕ(1)dc. (2.10)

If we now combine the Equations (2.9) and (2.10), we get

ϕ(1)cd = ϕ(1)dc.

Since cd = µdc and 0 < µ < 1, we find that ϕ(1) = 0. This clearly contradicts the
faithfulness property of ϕ.

We conclude that there exists no non-zero positive left invariant integral on A.
The other results can be proven by using the exactly same technique. �
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2.2 Operator equalities and special functions

This Section 2.2 deals with a few technical results. Two special functions Fµ
and χ are introduced and investigated. Both these functions play a very crucial
role in the theory of the quantum E(2) group.

In the next Section 2.3, we use the functions Fµ and χ to define the multipli-
cative unitary W ; see Definition 2.3.9. Further, the properties of Fµ are used in
the Theorem 2.3.30 to prove the manageability of W .

The Section 2.2 encompasses several important results that are relentlessly used
in later calculations. It is mainly included to keep the text self-contained and
therefore does not contain many proofs.

We observe that most of the mentioned properties are proved in Appendix A
where we give an accurate study of the function Fµ and its Fourier coefficients.
However, we also include some results from [158, 168] without proof. It is always
designated in a clear way where one can find full details.

The next Definition 2.2.1 first appeared in [158]. Notice that the product in
Equation (2.11) converges because we have 0 < µ < 1.

Definition 2.2.1 ([158]) We consider the function Fµ on C that is defined in
the following way. For all z ∈ C \ {−µ−2k | k ∈ N}, we set

Fµ(z) =
∞∏
k=0

1 + µ2kz

1 + µ2kz
(2.11)

Further, we set Fµ(z) = −1 when z ∈ {−µ−2k | k ∈ N}.

We define a bicharacter χ ∈ Cb(R(µ
1
2 )× S1) by setting that

χ(µ
1
2k, z) = zk

when k ∈ Z and z ∈ S1.

Especially the function Fµ plays a vital role in this Ph.D.-thesis. This function is
investigated thoroughly by Woronowicz in [158, 168] and by Baaj in [1].

As it is said above, we use this technical Section 2.2 to elucidate (some of) the
known results about Fµ and we refer to Appendix A for proofs.

First, we have the next Lemma 2.2.2 containing some basic properties.

Lemma 2.2.2 ([158]) The function Fµ is not continuous on C. But we do have
that the restriction of Fµ to C̄µ is continuous.

We also use the notation Fµ to denote this restriction.

For all z ∈ C, we have Fµ(z) = Fµ(z) and |Fµ(z)| = 1. Hence, Fµ ∈ Cb(C̄µ).
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The function Fµ has the following asymptotical behavior.

Lemma 2.2.3 ([158]) For z ∈ C̄µ, we have Fµ(µ2z)Fµ(z−1) =
(
z
|z|

)logµ(|z|)+1.
Thus, for z ∈ C̄µ large enough, we get that

Fµ(z) ≈
( z

|z|

)logµ(|z|)−1

.

We make use of the Fourier transform of Fµ with respect to the angle variable.
The Fourier coefficients of Fµ and their properties are studied very intensively
in Appendix A. For now, we only mention the most interesting results.

We introduce a notation for the Fourier coefficients.1 The uniform convergence
of the Fourier series in Definition 2.2.4 below is proved in Lemma A.8.

Definition 2.2.4 ([1, 2]) Let k, n ∈ Z. Then, we define a number B(k, n) by

B(k, n) =
1

2π

∫ 2π

0

Fµ(µneit)e−ikt dt.

We thus have by definition that B(k, n) is the kth Fourier coefficient of the
continuous function S1 → C : z 7→ Fµ(µnz).

For all z ∈ S1, we have that

Fµ(µnz) =
∑
k∈Z

B(k, n)zk. (2.12)

Further, the series in Equation (2.12) has uniform convergence on S1.

S. Baaj discovered in [1] some properties about the numbers B(k, n) which turn
out to be very useful in computations. We collect the most important ones in
Propositions 2.2.5 and 2.2.6. Proofs can be found in Appendix A.

The Proposition 2.2.5 below is quite basic. There are however needed some very
ingenious tricks in order to prove Proposition 2.2.6.

Proposition 2.2.5 ([1, 2]) We have the following properties:

1. B(k, n) ∈ R and |B(k, n)| ≤ 1 for all k, n ∈ Z,

2. limn→+∞B(k, n) = δk,0 uniformly in k.

Proposition 2.2.6 ([1, 2]) Let k, n ∈ Z. We have that

B(k, n) = (−µ)kB(−k, n− k)

= B(k − n+ 1,−n+ 2) = (−µ)k−n+1B(n− 1, k + 1).

1The B comes from Baaj who first studied these numbers.
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The next Remark 2.2.7 is about where the above properties are used.

Remark 2.2.7 The set of equalities in Proposition 2.2.6 is the most important
property of the numbers B(k, n) (at least for our purposes). For instance, it is
used in the proof of the manageability of the multiplicative unitary W .

The formula limn→+∞B(k, n) = δk,0 is also important. It is used in Section 3.1
to prove (strong) amenability of the quantum E(2) group and its dual.

Further, also the regularity properties of W are studied by means of this property.

We now collect some results of Woronowicz involving the function Fµ and certain
pairs of normal operators. These results are a main tool when studying the
properties of the multiplicative unitary W . We do not give any proof.

First, we define a set of pairs (R,S) of normal operators satisfying in a strong
sense the relations RS = µ−2SR and R∗S = SR∗. We often deal with such pairs
of operators when studying the quantum E(2) group.

The next Definition 2.2.8 is explored in the papers [158, 168].

Definition 2.2.8 ([158]) We denote by Dµ the set of all pairs (R,S) of normal
operators on a Hilbert space K such that R,S and their polar decompositions
R = uR|R| and S = uS |S| satisfy the following five conditions:

1. kerR = kerS = {0},

2. uRuS = uSuR,

3. u∗R|S|uR = µ|S|,

4. uS |R|u∗S = µ|R|,

5. |R| and |S| strongly commute.

Except for its last result, it is a simple task to prove the Lemma 2.2.9 below.
The properties in Lemma 2.2.9 are useful basic results.

More information about Ru S can be found in Theorem 2.2.11.

Lemma 2.2.9 Let (R,S) ∈ Dµ. The operators RS, R−1S, RS−1 and R u S
are well-defined. Moreover, R−1S and RS−1 are normal and RS is not normal.

The operator Ru S is normal if and only if σ(R−1S) ⊆ C̄µ.

It is easy to check the Lemma 2.2.10. From Theorem 2.4 in [168], it follows that
this property more or less characterizes the pairs of operators in Dµ.

Lemma 2.2.10 Let (R,S) ∈ Dµ. Then, we have

RS = µ−2SR and R∗S = SR∗.
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The Theorems 2.2.11 and 2.2.12 show the great importance of the function Fµ.
These deep results will play a major role in later calculations.

We first state the Theorem 2.2.11 about pairs (R,S) belonging to Dµ.

Theorem 2.2.11 ([158],[168]) Let (R,S) ∈ Dµ. We have that (S∗, R∗) ∈ Dµ.
Further, the following conditions are equivalent:

1. R+ S admits a normal extension,

2. Ru S is normal,

3. σ(R−1S) ⊆ C̄µ,

4. σ(RS−1) ⊆ C̄µ.

If one of the above conditions is satisfied, then we have

1. Ru S = Fµ(R−1S)RFµ(R−1S)∗,

2. Ru S = Fµ(RS−1)∗SFµ(RS−1),

3. (Ru S)∗ = R∗ u S∗.

Hence, in this case, Ru S is unitarily equivalent to both R and S.

Finally, if A ⊆ B(H) is a non-degenerate C∗-algebra and R,S η A, then we also
have that

Ru S η A.

The remarkable Theorem 2.2.12 is the most crucial feature of the function Fµ.
It gives that Fµ is some kind of quantum exponential function.

Theorem 2.2.12 ([158]) Let (R,S) ∈ Dµ and σ(R), σ(S) ⊆ C̄µ (in this case
the condition σ(R−1S) ⊆ C̄µ is fulfilled automatically). Then, we have

Fµ(Ru S) = Fµ(R)Fµ(S). (2.13)

The Proposition 2.2.13 states that Fµ is essentially the only bounded function
satisfying the character property in Equation (2.13). We mention this uniqueness
result for completeness. We will make no use of it in this thesis.

Proposition 2.2.13 ([158]) Let (R,S) ∈ Dµ. Assume that f is a measurable
function on C̄µ such that both f and 1

f are bounded.

We then have that the two following conditions are equivalent:

1. f(Ru S) = f(R)f(S),

2. There is a number t ∈ C̄µ such that f(z) = Fµ(tz) for almost all z ∈ C̄µ.
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In the two Propositions 2.2.14 and 2.2.15, we investigate the relation between
the special functions Fµ and χ and the affiliation relation.

We use the techniques from [165, Section 5] to give a proof of these properties.

Proposition 2.2.14 ([158]) Let A ⊆ B(K) be a non-degenerate C∗-algebra.
Let Q be a normal operator on K such that σ(Q) ⊆ C̄µ.
The two statements below are equivalent:

1. For any z ∈ C̄µ we have Fµ(zQ) ∈M(A). Moreover, the mapping

C̄µ →M(A) : z 7→ Fµ(zQ)

is strictly continuous,

2. We have that QηA.

Proof. We consider the commutative C∗-algebra B = C0(C̄µ). It follows from
Examples 1.5.9 and 1.5.45 that M(B) = Cb(C̄µ) and Bη = C(C̄µ).

We define a function g η B by

g : C̄µ → C : x 7→ x.

Using Example 1.5.55, we see that B is generated by g η B.

For every γ ∈ C̄µ, we define a function F γ ∈M(B) by

F γ : C̄µ → S1 : x 7→ Fµ(γx).

Then F γ is a unitary element in M(B).

It is easy to check that F γ → F γ0 uniformly on compact subsets when γ → γ0.
For bounded subsets of M(B), the topology of uniform convergence on compact
subsets coincides with the strict topology. Therefore, the mapping

C̄µ →M(B) : γ 7→ F γ (2.14)

is strictly continuous.

For all k, n ∈ Z, we define a function fk,n ∈M(B) as follows. For every z ∈ C̄µ,
we set

fk,n(z) =
1

2π

∫ 2π

0

Fµ(µnzeiθ)e−ikθ dθ. (2.15)

Thus, we have by definition that fk,n(z) is the kth Fourier coefficient of the
function S1 → C : t 7→ Fµ(µnzt). This e.g. means that fk,n(1) = B(k, n).

Using the asymptotical behavior of the function Fµ (see Lemma 2.2.3), it is not
so difficult to prove that fk,n ∈ B for all k, n ∈ Z.

Further, we can use the asymptotical behavior of Fµ to show (with some effort)
that the set {fk,n | k, n ∈ Z} separates points of C̄µ.

We hence get that {fk,n | k, n ∈ Z} is a subset of B that separates points
of C̄µ. The Stone-Weierstrass theorem implies that the ∗-algebra generated by
{fk,n | k, n ∈ Z} is dense in B. We use B0 to denote this ∗-algebra.
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Now, let Q be an operator satisfying the assumptions of the theorem. Then, the
functional calculus

π : B → B(H) : f 7→ f(Q)

is a non-degenerate ∗-homomorphism. We have that π(g) = Q.

First, assume that QηA. Because g η B generates the C∗-algebra B, we can
then consider π as a non-degenerate ∗-homomorphism from B into M(A). This
gives that Fµ(γQ) = F γ(Q) belongs to M(A) for all γ ∈ C̄µ.

The continuity in (2.14) gives that the mapping

C̄µ →M(A) : γ 7→ Fµ(γQ)

is strictly continuous.

Conversely, assume that Fµ(γQ) ∈M(A) for every γ ∈ C̄µ and that the mapping

C̄µ →M(A) : γ 7→ Fµ(γQ) (2.16)

is strictly continuous.

In this case, we have for all k, n ∈ Z that the mapping

[0, 2π] →M(A) : θ 7→ Fµ(µneiθQ)e−ikθ

is strictly continuous.

Integrating over θ, we get that fk,n(Q) ∈ M(A) for all k, n ∈ Z. Because B0 is
dense in B, we obtain that f(Q) ∈M(A) for every f ∈ B.

Using the continuity (2.16), it is not difficult to show that f0,n(Q) → 1 in the
strict topology on M(A) if n→ +∞.

We can thus conclude that { f(Q) | f ∈ B} is a subset of M(A) containing
an approximate unit for A. This property implies that we can consider π as a
non-degenerate ∗-homomorphism from B to M(A).

Applying π to g η B, we obtain that QηA. �

Proposition 2.2.15 Let A ⊆ B(K) be a non-degenerate C∗-algebra. Let Q be
a strictly positive operator on K such that σ(Q) ⊆ R̄(µ

1
2 ).

The two statements below are equivalent:

1. For any z ∈ S1 we have χ(Q, z) ∈M(A). Moreover, the mapping

S1 →M(A) : z 7→ χ(Q, z)

is strictly continuous,

2. We have that QηA and Q−1 η A.
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Proof. We consider the commutative C∗-algebra D = C0(R(µ
1
2 )). It follows

from Examples 1.5.9 and 1.5.45 that M(D) = Cb(R(µ
1
2 )) and Dη = C(R(µ

1
2 )).

We define two functions h1, h2 η D by

h1 : R(µ
1
2 ) → C : x 7→ x and h2 : R(µ

1
2 ) → C : x 7→ x−1.

Using Example 1.5.55, we see that D is generated by h1, h2 η D.

For every z ∈ S1, we define a function Gz ∈M(D) by

Gz : R(µ
1
2 ) → S1 : x 7→ χ(x, z).

Then Gz is a unitary element in M(D).

It is easy to check that Gz → Gz0 uniformly on compact subsets when z → z0.
For bounded subsets of M(D), the topology of uniform convergence on compact
subsets coincides with the strict topology. Therefore, the mapping

S1 →M(D) : z 7→ Gz (2.17)

is strictly continuous.

By definition, we have for z ∈ S1 that χ(Q, z) = Gz(Q).

For all k, n ∈ Z with n 6= 0, we define a function gk,n ∈ M(D) as follows. For
every x ∈ R(µ

1
2 ), we set

gk,n(x) =
1

2π

∫ 2π

0

χ(x, e
iθ
n )e−ikθ dθ =

1
2π

∫ 2π

0

Ge
iθ
n (x)e−ikθ dθ. (2.18)

Thus, gk,n(x) is the kth Fourier coefficient of the function S1 → C : z 7→ χ(x, z
1
n ).

Let k, n ∈ Z with n 6= 0. It is then easy to prove that gk,n ∈ D. Further, it is
direct to check that gk,1 is the characteristic function of the set {µ 1

2k}.
We hence find that {gk,n | k, n ∈ Z, n 6= 0} is a subset of D separating points
of R(µ

1
2 ). The Stone-Weierstrass theorem gives that the ∗-algebra generated by

{gk,n | k, n ∈ Z, n 6= 0} is dense in D. We use D0 to denote this ∗-algebra.

Now, let Q be an operator satisfying the assumptions of the theorem. Then, the
functional calculus

π : D → B(H) : f 7→ f(Q)

is a non-degenerate ∗-homomorphism. We have π(h1) = Q and π(h2) = Q−1.

First, assume that QηA and Q−1 η A. Then, because h1, h2 η D generate the
C∗-algebra D, we can consider π as a non-degenerate ∗-homomorphism from D
into M(A). This gives that χ(Q, z) = π(Gz) belongs to M(A) for every z ∈ S1.

The continuity in (2.17) gives that the mapping

S1 →M(A) : z 7→ χ(Q, z)

is strictly continuous.
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Conversely, assume that χ(Q, z) ∈M(A) for every z ∈ S1 and that the mapping

S1 →M(A) : z 7→ χ(Q, z) (2.19)

is strictly continuous.

Then, we have that π(Ge
iθ

) ∈ M(A) for every θ ∈ [0, 2π]. For all k, n ∈ Z with
n 6= 0, the mapping

[0, 2π] →M(A) : θ 7→ Ge
iθ
n (Q)e−ikθ

is strictly continuous.

Integrating over θ, we obtain that gk,n(Q) ∈ M(A) for all k, n ∈ Z with n 6= 0.
Because D0 is dense in D, we find that g(Q) ∈M(A) for every g ∈ D.

Using the continuity (2.19), it is not difficult to show that g0,n(Q) → 1 in the
strict topology on M(A) if n→ +∞.

We can thus conclude that { g(Q) | g ∈ D} is a subset of M(A) containing
an approximate unit for A. This property implies that we can consider π as a
non-degenerate ∗-homomorphism from D to M(A).

Applying π to h1, h2 η D, we obtain that QηA and Q−1 η A. �

2.3 The multiplicative unitary

In Section 2.1, we have given a complete description of the quantum E(2) group
on the Hopf ∗-algebra level. Our goal is to lift these results to the operator
algebra level. This will be done in the subsequent Sections 2.4 to 2.9. First, we
introduce the material needed to perform the lifting procedure.

Thus, in this Section 2.3, we are working on the Hilbert space level which is
the intermediate step between the easy Hopf ∗-algebra level and the much more
difficult C∗-algebra level. This C∗-algebra level starts in the Section 2.4.

The emphasis of the Section 2.3 lies on the construction of the multiplicative
unitary W . We describe this indispensable tool and its most important features.
In particular, we prove that W is strongly modular.

This Section 2.3 is crucial for later reasoning. It is precisely the manageability
property of W that allows us to apply the technique in Section 1.4. The results
in the Sections 1.3 and 1.4 then make it possible to bring in the manageability
theory in the construction of the quantum E(2) group.

As a first step, we represent the generators of the Hopf ∗-algebras A and B as
operators on a Hilbert space. We use these operators in Definition 2.3.9 to
define the multiplicative unitary W . Further, they are used in the Section 2.5
to describe the C∗-algebras of the quantum E(2) group and its dual.
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We begin by defining the Hilbert space H where the generating operators will
be working on. This is done in the Notation 2.3.1 below. The subspace H0 is
important as a core for unbounded operators.

The Notation 2.3.1 is kept fixed for the rest of the thesis.

Notation 2.3.1 We consider the Hilbert space `2(Z) and the tensor product
Hilbert space H = `2(Z)⊗ `2(Z).

Further, we fix an orthonormal basis {ek | k ∈ Z} of the Hilbert space `2(Z).
Thus {ek ⊗ el | k, l ∈ Z} is an orthonormal basis for H.

We use the notation

H0 =
{∑

k,l

ak,lek ⊗ el | ak,l ∈ C, ak,l 6= 0 for finitely many k, l
}
.

Then H0 is a dense subspace of H.

The next Notation 2.3.2 is introduced to shorten notations.

Notation 2.3.2 Let k, l,m, n ∈ Z. We then use ωk,l,m,n to denote the vector
functional ωek⊗el,em⊗en

. Further, we abbreviate ωk,l,k,l to ωk,l.

The Definition 2.3.3 below describes the operators involved. Notice that we here
use the same notations for the generators as on the algebraic level. From now
on, we only work in the operator algebra framework. There can hence be no
confusion with aforementioned notations.

The operators a, b, c, d introduced in the next Definition 2.3.3 will thus appear
as the generators of the quantum E(2) group and its dual.

It is explained in the next Section 2.5 how c, d ‘generate’ the quantum E(2) group
and how a, b ‘generate’ the quantum Ê(2) group.

The notations in Definition 2.3.3 remain fixed for the rest of the thesis.

Definition 2.3.3 We define a bounded operator s and a closed operator m
on `2(Z) as follows. For k ∈ Z, we set

sek = ek+1 and mek = µkek.

By definition, we take span{ek | k ∈ Z} as a core for m.

We have that s is a unitary operator and that m is a strictly positive operator.
It is easy to check that

ms = µsm.

Further, we define operators a, b, c, d on H by

a = m− 1
2 ⊗m, b = m

1
2 ⊗ s,

c = s⊗ s, d = s⊗m−1.
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The next Lemma 2.3.4 rallies some basic properties.

Lemma 2.3.4 The operator c is unitary and the operator a is strictly positive.
The operators b and d both are non-singular and normal.

Further, the adjoints of a, b, c, d are given by

a∗ = m− 1
2 ⊗m, b∗ = m

1
2 ⊗ s∗,

c∗ = s∗ ⊗ s∗, d∗ = s∗ ⊗m−1.

The subspace H0 is a core for the generators a, b, c, d and their adjoints.

For all z ∈ C, we have
az = m− 1

2 z ⊗mz.

Moreover, we have that H0 is a core for az.

The polar decompositions of a, c and their adjoints are trivial. Furthermore, we
have the polar decompositions

b = (1⊗ s)(m
1
2 ⊗ 1) and d= (s⊗ 1)(1⊗m−1).

The polar decompositions of b∗, d∗ can be deduced directly from these formulas.

It is easy to compute that σ(s) = S1 and σ(m) = R̄µ. The results in [37] can
then be used to deduce the Lemma 2.3.5 below.

The Lemma 2.3.5 is important when applying the functional calculus.

Lemma 2.3.5 The spectra of the operators a, b, c, d are given by

σ(a) = R̄(µ
1
2 ), σ(b) = C̄(µ

1
2 ), σ(c) = S1, σ(d) = C̄µ.

From Definition 2.3.3, we know that ms = µsm. Using this basic result, we can
find several commutation rules between the generating operators. We list the
principal ones in Proposition 2.3.6 below (cf. [158, Section 5]).

From Definition 2.3.3, we know that ms = µsm. Using this basic result, we can
find several commutation rules between the generating operators. We list the
principal ones in the Proposition 2.3.6 (cf. [158, Section 5]).

We recall that all products of operators (e.g. like azba−z) are considered as closed
operators. This convention is explained in the Introduction.

The resemblance between the Propositions 2.3.6 and 2.1.7 is clear.

Proposition 2.3.6 We have that

cd = µdc and ab = µba.

It hereby should be observed that the last commutation rule actually is a shortened
notation meaning that we have aitba−it = µitb for all t ∈ R.

Further, we remark that we even have azba−z = µzb for all z ∈ C.
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If we use b = u|b| to denote the polar decomposition of b, we have that au = µua
while the operators a and |b| strongly commute.

We also have that

1. ac = µ
1
2 ca and ad = µ−

1
2 da,

2. bc = µ
1
2 cb, bd = µ

3
2 db and bd∗ = µ

1
2 d∗b,

3. bd− µ−
1
2 db = µ−

3
2 (µ2 − 1)ca−1.

By the commutation rule ad = µ−
1
2 da, we again mean that aitda−it = µ−

1
2 itd

for all t ∈ R. Also here, we actually have azda−z = µ−
1
2 zd for all z ∈ C.

Finally, if we use d = v|d| to denote the polar decomposition of d, we have that
av = µ−

1
2 va while the operators a and |d| strongly commute.

We make a small Remark 2.3.7 about the above commutation results.

Remark 2.3.7 Surely the main outcome of Proposition 2.3.6 is that we have the
commutation relations cd = µdc and ab = µba. They will give that the pair (c, d)
generates the quantum E(2) group while the pair (a, b) (more or less) generates
the quantum Ê(2) group. See Theorems 2.5.3 and 2.5.24.

The fact that (three of) the generating operators are unbounded is close related
to the property that the quantum E(2) group and its dual are non-compact.
This non-compactness is proved in the Theorems 2.5.2 and 2.5.21.

Using the two main commutation rules cd = µdc and ab = µba together with
some spectral conditions, one can also prove that the pairs (c, d) and (a, b) are
(in some sense) universal. This universality is explored in Section 4.2.

It is easy to check that the operators cd and ab are not normal. We however do
have the normality result in Lemma 2.3.8 below.

This Lemma 2.3.8 is needed to make correct the Definition 2.3.9 below.

Lemma 2.3.8 We have that ab ⊗ cd is a non-singular and normal operator.
Its spectrum σ(ab⊗ cd) is contained in C̄µ.

Proof. We have that

ab⊗ cd = 1⊗ms⊗ s2 ⊗ sm−1.

The polar decomposition of ab⊗ cd is given by

ab⊗ cd = (1⊗ s⊗ s2 ⊗ s)|ab⊗ cd| = (1⊗ s⊗ s2 ⊗ s)
(
µ(1⊗m⊗ 1⊗m−1)

)
.

It is immediate to check that s⊗ s commutes with m⊗m−1. This implies that
also (1⊗ s⊗ s2 ⊗ s) and |ab⊗ cd| commute.
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Using the above polar decomposition, it is direct to prove that the operator
ab⊗ cd is non-singular and normal.

The formula |ab⊗ cd| = µ(1⊗m⊗ 1⊗m−1) gives that σ(|ab⊗ cd|) = R̄µ. �

Now, we are ready to define the unitary operator W . The Definition 2.3.9 below
is clearly inspired by the Proposition 2.1.14. This definition of W is due to
S.L. Woronowicz and was first introduced and studied in [159].

Definition 2.3.9 ([159]) We define a unitary operator W ∈ B(H ⊗H) by

W = Fµ(ab⊗ cd)χ(a⊗ 1, 1⊗ c).

We then immediately state the main Theorem 2.3.10. This result is nothing more
than Proposition 2.3.21 below in the special case γ = 1. We postpone the proof
until we formulate the more general result of Proposition 2.3.21.

The next Theorem 2.3.10 is the central property of this Section 2.3.

Theorem 2.3.10 The unitary W is multiplicative, i.e., it satisfies the pentag-
onal equation

W12W13W23 = W23W12.

The importance of the unitary operator W can hardly be overestimated. It will
be the main actor in our construction of the quantum E(2) group.

The multiplicativity of W will thus follow from a more general result. In Propo-
sition 2.3.21 below, we define a family of unitary operators (including W ) that
are adapted to W . This general result is needed later in the thesis.

The next Terminology 2.3.11 is justified by Theorem 2.3.10 and by the properties
of W that we prove below. Further, also the results in Section 2.1 show that it
is appropriate to use this terminology.

This Terminology 2.3.11 is of course not so important.

Terminology 2.3.11 For the rest of the thesis, the unitary operator W is called
the multiplicative unitary of the quantum E(2) group.

From Lemma 2.2.2, we get that Fµ(z) = Fµ(z) for all z ∈ C̄µ. We further know
that χ is a bicharacter. We can then deduce the Lemma 2.3.12 below.

Lemma 2.3.12 We have that

1. Fµ(ab⊗ cd)∗ = Fµ
(
(ab⊗ cd)∗

)
,

2. χ(a⊗ 1, 1⊗ c) = χ(a−1 ⊗ 1, 1⊗ c∗),

3. χ(a⊗ 1, 1⊗ c)∗ = χ(a⊗ 1, 1⊗ c∗) = χ(a−1 ⊗ 1, 1⊗ c).
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We now compute the action of both W and W ∗ on basis vectors. The next
Proposition 2.3.13 displays all the related results.

The formulas below turn out to be very powerful in later calculations.

Proposition 2.3.13 Let k, l,m, n ∈ Z. Then, the following equalities hold:

1. χ(a⊗ 1, 1⊗ c)(ek ⊗ el ⊗ em ⊗ en) = ek ⊗ el ⊗ em−k+2l ⊗ en−k+2l,

2. χ(a⊗ 1, 1⊗ c)∗(ek ⊗ el ⊗ em ⊗ en) = ek ⊗ el ⊗ em+k−2l ⊗ en+k−2l,

3. Fµ(ab⊗cd)(ek⊗el⊗em⊗en) =
∑
t∈Z

B(t, l−n+1)(ek⊗el+t⊗em+2t⊗en+t),

4. Fµ(ab⊗cd)∗(ek⊗el⊗em⊗en) =
∑
t∈Z

B(t, l−n+1)(ek⊗el−t⊗em−2t⊗en−t).

Hence, we have that

5. W (ek ⊗ el ⊗ em ⊗ en)
=

∑
t∈Z

B(t, k− l−n+1)(ek⊗el+t⊗em−k+2l+2t⊗en−k+2l+t),

6. W ∗(ek⊗el⊗em⊗en) =
∑
t∈Z

B(t, l−n+1)(ek⊗el−t⊗em+k−2l⊗en+k−2l+t).

Proof. Let k, l,m, n ∈ Z. The Lemma 2.3.4 gives that a is strictly positive
and that c is unitary. Clearly, ek ⊗ el ⊗ em ⊗ en is an eigenvector of a⊗ 1 with
eigenvalue µ−

1
2k+l. We hence have

χ(a⊗1, 1⊗c)(ek⊗el⊗em⊗en) = χ
(
µ−

1
2k+l(1⊗1), 1⊗c

)
(ek⊗el⊗em⊗en)

= (1⊗ c)−k+2l(ek ⊗ el ⊗ em ⊗ en) = ek ⊗ el ⊗ em−k+2l ⊗ en−k+2l.

The polar decomposition of the normal operator ab⊗ cd is given by

ab⊗ cd = (1⊗ s⊗ s2 ⊗ s)|ab⊗ cd|
where |ab⊗ cd| = µ(1⊗m⊗ 1⊗m−1).

We see that ek⊗el⊗em⊗en is an eigenvector of |ab⊗cd| with eigenvalue µl−n+1.

Thus, using the Fourier transform of Fµ (see Definition 2.2.4), we get

Fµ(ab⊗ cd)(ek ⊗ el⊗ em⊗ en) = Fµ
(
µl−n+1(1⊗ s⊗ s2⊗ s)

)
(ek ⊗ el⊗ em⊗ en)

=
∑
t∈Z

B(t, l − n+ 1)(1⊗ s⊗ s2 ⊗ s)t(ek ⊗ el ⊗ em ⊗ en)

=
∑
t∈Z

B(t, l − n+ 1)(ek ⊗ el+t ⊗ em+2t ⊗ en+t).

Now, a trivial calculation yields the given formula for W (ek ⊗ el ⊗ em ⊗ en).

Remembering the Lemma 2.3.12, we can compute the three remaining formulas
in a completely similar way. �
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The next Corollary 2.3.14 is a direct consequence of Proposition 2.3.13. It is
mainly used in calculations in the Sections 2.7 and 3.1.

Corollary 2.3.14 Let k, l,m, n, p, q ∈ Z. We have

1.
(
(ωk,l,m,n⊗ι)W

)
(ep⊗eq) = B(n−l, k−l−q+1)δk,m(ep−k+2n⊗eq−k+l+n),

2.
(
(ωk,l,m,n⊗ ι)W ∗)(ep⊗ eq) = B(n− l, n− q+ 1)δk,m(ep+k−2n⊗ eq+k−l−n),

3.
(
(ι⊗ ωk,l,m,n)W

)
(ep ⊗ eq)

= B(p−2q− l+n, p−q− l+1)δ−k+2l+m−2n,p−2q(ep⊗ep−q−l+n),

4.
(
(ι⊗ ωk,l,m,n)W ∗)(ep ⊗ eq)

= B(−p+ 2q + l − n, q − n+ 1)δk−m,p−2q(ep ⊗ ep−q−l+n).

The next two Lemmas 2.3.15 and 2.3.16 describe some basic relations between
the multiplicative unitary W and the generating operators a, b, c, d.

We rephrase these results in Section 2.5 in order to obtain a formula for the action
of the comultiplications on the quantum E(2) group and its dual.

We make use of Theorem 2.2.11 to give correct proofs.

Lemma 2.3.15 We have that

W (c⊗ 1)W ∗ = c⊗ c, W (c∗ ⊗ 1)W ∗ = c∗ ⊗ c∗,

W (d⊗ 1)W ∗ = c⊗ du d⊗ c∗, W (d∗ ⊗ 1)W ∗ = c∗ ⊗ d∗ u d∗ ⊗ c.

Proof. A straightforward calculation (using Proposition 2.3.13) yields

χ(a⊗ 1, 1⊗ c)(c⊗ 1)χ(a⊗ 1, 1⊗ c)∗ = c⊗ c. (2.20)

Definition 2.3.3 gives that ms = µsm. From this, it follows that

(c⊗ c)(ab⊗ cd) = (ab⊗ cd)(c⊗ c).

The Fuglede-Putnam theorem implies that we also have

(c⊗ c)Fµ(ab⊗ cd) = Fµ(ab⊗ cd)(c⊗ c). (2.21)

Equations (2.20) and (2.21) together give that

W (c⊗ 1)W ∗ = c⊗ c.

We find the formula W (c∗ ⊗ 1)W ∗ = c∗ ⊗ c∗ by taking the adjoint.

Recalling that H0 is a core for the normal operator d (cf. Lemma 2.3.4), we can
use Proposition 2.3.13 to prove that

χ(a⊗ 1, 1⊗ c)(d⊗ 1)χ(a⊗ 1, 1⊗ c)∗ = d⊗ c∗. (2.22)
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Now, we define normal operators R and S by

R = d⊗ c∗ and S = c⊗ d.

It is direct to check that (R,S) ∈ Dµ and R−1S = ab⊗ cd.

Theorem 2.2.11 (together with Lemma 2.3.8) yields

Fµ(R−1S)RFµ(R−1S)∗ = Ru S

and hence
Fµ(ab⊗ cd)(d⊗ c∗)Fµ(ab⊗ cd)∗ = c⊗ du d⊗ c∗. (2.23)

From the Equations (2.22) and (2.23) together, we get that

W (d⊗ 1)W ∗ = c⊗ du d⊗ c∗.

Theorem 2.2.11 gives that (RuS)∗ = R∗ uS∗. Hence, taking the adjoint of the
above formula, we find that

W (d∗ ⊗ 1)W ∗ = c∗ ⊗ d∗ u d∗ ⊗ c

This ends the proof of the lemma. �

Lemma 2.3.16 We have that

W ∗(1⊗ a)W = a⊗ a, W ∗(1⊗ a−1)W= a−1 ⊗ a−1,

W ∗(1⊗ b)W = a⊗ bu b⊗ a−1, W ∗(1⊗ b∗)W = a⊗ b∗ u b∗ ⊗ a−1.

Proof. It is easy to check that Fµ(ab ⊗ cd)(H0 �H0) is a subset of D(1 ⊗ a).
Further, we know from Lemma 2.3.4 that H0 is a core for the strictly positive
operator a. We can hence use Proposition 2.3.13 to prove that

Fµ(ab⊗ cd)∗(1⊗ a)Fµ(ab⊗ cd) = 1⊗ a. (2.24)

Similarly, we find the commutation rule

χ(a⊗ 1, 1⊗ c)∗(1⊗ a)χ(a⊗ 1, 1⊗ c) = a⊗ a. (2.25)

Equations (2.24) and (2.25) together give that

W ∗(1⊗ a)W = a⊗ a.

The formula W ∗(1⊗ a−1)W = a−1 ⊗ a−1 follows immediately from this result.

Now, we define normal operators R and S by

R = ab⊗ a−1c2 and S = 1⊗ b.

Some easy computations yield that (R,S) ∈ Dµ and RS−1 = ab⊗ cd.
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Theorem 2.2.11 (together with Lemma 2.3.8) gives that

Fµ(RS−1)∗SFµ(RS−1) = Ru S

and hence

Fµ(ab⊗ cd)∗(1⊗ b)Fµ(ab⊗ cd) = ab⊗ a−1c2 u 1⊗ b. (2.26)

With similar techniques as above, we can use Proposition 2.3.13 to prove that

• χ(a⊗ 1, 1⊗ c)∗(ab⊗ a−1c2)χ(a⊗ 1, 1⊗ c) = b⊗ a−1,

• χ(a⊗ 1, 1⊗ c)∗(1⊗ b)χ(a⊗ 1, 1⊗ c) = a⊗ b.

Now, Equation (2.26) together with these commutation relations yield

W ∗(1⊗ b)W = a⊗ bu b⊗ a−1. (2.27)

We define normal operators P,Q by P = a⊗ b and Q = b⊗ a−1. Then, we have
that (Q,P ) ∈ Dµ. Using Equation (2.27), we see that P uQ is normal. It now
follows from Theorem 2.2.11 that (P uQ)∗ = P ∗ uQ∗.

Hence, taking the adjoint of the formula in Equation (2.27), we find

W ∗(1⊗ b∗)W = a⊗ b∗ u b∗ ⊗ a−1

This ends the proof of the lemma. �

The next Remark 2.3.17 is worthwhile to mention.

Remark 2.3.17 If we combine the results in (the proofs of) the above lemmas
with Lemma 3.2 in [158], we find that the subspace H0 � H0 is a core for the
normal operators

c⊗ du d⊗ c∗ and a⊗ bu b⊗ a−1

and their adjoints. Hence, we have that H0 �H0 is a core for all the operators
appearing in the Lemmas 2.3.15 and 2.3.16.

We will however not need this result in any calculation.

The techniques used in the proofs above can also be applied to prove the general
pentagonal equation. This will be done in Proposition 2.3.21.

The Lemma 2.3.18 is already a first step towards the Proposition 2.3.21.

Lemma 2.3.18 We have that

(1⊗W )(ab⊗ cd⊗ 1)(1⊗W ∗) = ab⊗ cd⊗ 1 u ab⊗ c2 ⊗ cd.
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Proof. From Equations (2.20) and (2.22), we find

χ(a⊗ 1, 1⊗ c)(cd⊗ 1)χ(a⊗ 1, 1⊗ c)∗ = cd⊗ 1.

This implies that

(1⊗W )(ab⊗ cd⊗ 1)(1⊗W ∗) = Fµ(1⊗ ab⊗ cd)(ab⊗ cd⊗ 1)Fµ(1⊗ ab⊗ cd)∗.

Define normal operators R and S by

R = ab⊗ cd⊗ 1 and S = ab⊗ c2 ⊗ cd.

It is not difficult to check that (R,S) ∈ Dµ and R−1S = 1⊗ ab⊗ cd. By using
Lemma 2.3.8, we see that we have σ(R−1S) ⊆ C̄µ.

An application of Theorem 2.2.11 gives

Fµ(R−1S)RFµ(R−1S)∗ = Ru S.

This means precisely that

Fµ(1⊗ ab⊗ cd)(ab⊗ cd⊗ 1)Fµ(1⊗ ab⊗ cd)∗ = ab⊗ cd⊗ 1 u ab⊗ c2 ⊗ cd.

Now, the lemma follows from the above results. �

The Corollary 2.3.19 then gives a second intermediate step.

Corollary 2.3.19 For all γ ∈ C̄µ, we have

Fµ
(
(1⊗W )(γab⊗ cd⊗ 1)(1⊗W ∗)

)
= Fµ(γab⊗ cd⊗ 1)Fµ(γab⊗ c2 ⊗ cd).

Proof. The result is trivial if γ = 0. Let γ ∈ Cµ. Then, we define normal
operators R and S by

R = γab⊗ cd⊗ 1 and S = γab⊗ c2 ⊗ cd.

From the proof of Lemma 2.3.18, we get that (R,S) ∈ Dµ. From Lemma 2.3.8,
it follows that we have σ(R), σ(S) ⊆ C̄µ.

The Proposition 2.2.12 then gives that

Fµ(Ru S) = Fµ(R)Fµ(S)

which means precisely that

Fµ(γab⊗ cd⊗ 1 u γab⊗ c2 ⊗ cd) = Fµ(γab⊗ cd⊗ 1)Fµ(γab⊗ c2 ⊗ cd).

If we combine this result with Lemma 2.3.18, we get

Fµ
(
(1⊗W )(γab⊗ cd⊗ 1)(1⊗W ∗)

)
= Fµ(γab⊗ cd⊗ 1)Fµ(γab⊗ c2 ⊗ cd).

This gives the corollary. �
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We are now ready to prove Proposition 2.3.21 below. This crucial result describes
a whole family of unitary operators V (γ) that are adapted to W .

The Proposition 2.3.21 is thus a (small) generalization of Theorem 2.3.10.

Definition 2.3.20 For every γ ∈ C̄µ, we define a unitary V (γ) ∈ B(H⊗H) by
the formula

V (γ) = Fµ(γab⊗ cd)χ(a⊗ 1, 1⊗ c).

Proposition 2.3.21 Let γ ∈ C̄µ. We have that V (γ) is adapted to W in the
sense that it satisfies the pentagonal equation

W23V12(γ) = V12(γ)V13(γ)W23.

Proof. Take γ ∈ C̄µ. For notational convenience, we denote shortly χ for
χ(a⊗ 1, 1⊗ c) and F (γ) for Fµ(γab⊗ cd). We hence have that

V12(γ) = F 12(γ)χ12 = Fµ(γab⊗ cd⊗ 1)χ(a⊗ 1⊗ 1, 1⊗ c⊗ 1),

V13(γ) = F 13(γ)χ13 = Fµ(γab⊗ 1⊗ cd)χ(a⊗ 1⊗ 1, 1⊗ 1⊗ c),

V23(γ) = F 23(γ)χ23 = Fµ(γ1⊗ ab⊗ cd)χ(1⊗ a⊗ 1, 1⊗ 1⊗ c).

Notice that V (1) = W .

First, we split up the pentagonal equation

W23V12(γ) = V12(γ)V13(γ)W23. (2.28)

into two easier pentagonal equations, namely Equations (2.29) and (2.30).

To obtain this, we rewrite Equation (2.28) as

F 23(1)χ23F 12(γ)χ12 = F 12(γ)χ12F 13(γ)χ13F 23(1)χ23

and move the χ’s to the right.

With the techniques used to prove Lemmas 2.3.15 and 2.3.16, one can also find
the following commutation relations:

χ(cd⊗ 1)χ∗ = cd⊗ 1, χ(ab⊗ 1)χ∗ =ab⊗ c2,

χ(1⊗ cd)χ∗ = a2 ⊗ cd, χ(a2 ⊗ ab)χ∗= 1⊗ ab.

By applying the above equalities and the Fuglede-Putnam theorem, we get that
we have for every γ ∈ C̄µ that

χ23F 12(γ) = F 12(γ)χ23, χ12F 13(γ) = Fµ(γab⊗ c2 ⊗ cd)χ12,

χ13F 23(γ) = Fµ(γa2 ⊗ ab⊗ cd)χ13, χ12Fµ(γa2 ⊗ ab⊗ cd) = F 23(γ)χ12.

These commutation relations yield

W23V12(γ) = F 23(1)χ23F 12(γ)χ12 = F 23(1)F 12(γ)χ23χ12.
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Further, they also give that

V12(γ)V13(γ)W23 = F 12(γ)χ12F 13(γ)χ13F 23(1)χ23

= F 12(γ)Fµ(γab⊗ c2 ⊗ cd)χ12Fµ(a2 ⊗ ab⊗ cd)χ13χ23

= F 12(γ)Fµ(γab⊗ c2 ⊗ cd)F 23(1)χ12χ13χ23.

Using Proposition 2.3.13, it is easy to check that χ satisfies the pentagonal
equation

χ12χ13χ23 = χ23χ12. (2.29)

Hence, to complete the proof, we have to prove that F satisfies the following
pentagonal equation:

F 12(γ)Fµ(γab⊗ c2 ⊗ cd)F 23(1) = F 23(1)F 12(γ). (2.30)

We have that

F 23(1)F 12(γ)F 23(1)∗ = Fµ
(
F 23(1)(γab⊗ cd⊗ 1)F 23(1)∗

)
= Fµ

(
F 23(1)χ23(γab⊗ cd⊗ 1)χ∗23F 23(1)∗

)
= Fµ

(
(1⊗W )(γab⊗ cd⊗ 1)(1⊗W ∗)

)
.

Applying Corollary 2.3.19, we see that this calculation implies that

F 23(1)F 12(γ)F 23(1)∗ = F 12(γ)Fµ(γab⊗ c2 ⊗ cd).

From this, Equation (2.30) follows immediately. �

The next Remark 2.3.22 is about the proof of Theorem 2.3.10.

Remark 2.3.22 With γ = 1, we have by definition that V (γ) = W . In this
case, the Proposition 2.3.21 reads as

W12W13W23 = W23W12.

This precisely is the pentagonal equation in Theorem 2.3.10.

The Proposition 2.3.23 is also about the operators V (γ). This result is more or
less dual to Proposition 2.3.21. It is not used in later calculations.

Proposition 2.3.23 Let γ ∈ C̄µ. We have that V (γ) satisfies the extended
pentagonal equation

V23(γ)W12 = W12V13(γ)V23(γ).

Proof. Take γ ∈ C̄µ. Similar to the proof of Proposition 2.3.21, we denote
shortly χ for χ(a⊗ 1, 1⊗ c) and F (γ) for Fµ(γab⊗ cd).
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From the commutation relations formulated in the proof of Proposition 2.3.21,
we immediately find that

V23(γ)W12 = F 23(γ)χ23F 12(1)χ12 = F 23(γ)F 12(1)χ23χ12

and also that

W12V13(γ)V23(γ) = F 12(1)χ12F 13(γ)χ13F 23(γ)χ23

= F 12(1)Fµ(γab⊗ c2 ⊗ cd)χ12Fµ(γa2 ⊗ ab⊗ cd)χ13χ23

= F 12(1)Fµ(γab⊗ c2 ⊗ cd)F 23(γ)χ12χ13χ23.

The Equation (2.29) gives that χ satisfies the pentagonal equation

χ12χ13χ23 = χ23χ12.

Thus, to complete the proof, it suffices to prove that F satisfies the following
pentagonal equation:

F 12(1)Fµ(γab⊗ c2 ⊗ cd)F 23(γ) = F 23(γ)F 12(1). (2.31)

We have that

F 12(1)∗F 23(γ)F 12(1) = Fµ
(
F 12(1)∗(γ1⊗ ab⊗ cd)F 12(1)

)
. (2.32)

Now, we define normal operators R and S by

R = γab⊗ c2 ⊗ cd and S = γ1⊗ ab⊗ cd.

It is not difficult to check that (R,S) ∈ Dµ and RS−1 = ab⊗ cd⊗ 1. By using
Lemma 2.3.8, we see that we have σ(RS−1) ⊆ C̄µ.

An application of Theorem 2.2.11 gives

Fµ(RS−1)∗SFµ(RS−1) = Ru S.

This means precisely that

Fµ(ab⊗ cd⊗1)∗(γ1⊗ab⊗ cd)Fµ(ab⊗ cd⊗1) = γab⊗ c2⊗ cduγ1⊗ab⊗ cd.

Together with Equation (2.32), this result yields

F 12(1)∗F 23(γ)F 12(1) = Fµ(γab⊗ c2 ⊗ cdu 1⊗ γab⊗ cd). (2.33)

Using Lemma 2.3.8, we see that σ(R), σ(S) ⊆ C̄µ. So, Proposition 2.2.12 gives
that we have

Fµ(Ru S) = Fµ(R)Fµ(S)

which means that

Fµ(γab⊗c2⊗cdu1⊗γab⊗cd) = Fµ(γab⊗c2⊗cd)Fµ(1⊗γab⊗cd). (2.34)

If we combine the Equations (2.33) and (2.34), we find

F 12(1)∗F 23(γ)F 12(1) = Fµ(γab⊗ c2 ⊗ cd)F 23(γ).

From this, Equation (2.31) follows immediately. �
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The following Remark 2.3.24 is a simple comment.

Remark 2.3.24 The results in Propositions 2.3.21 and 2.3.23 are not genuinely
stronger than the pentagonal equation.

They can be directly deduced from the pentagonal equation by multiplying on the
left and on the right with appropriate operators. For this, we can e.g. make use
of the ∗-automorphisms

ρk,t : B(H) → B(H) : x 7→ (s−2k ⊗ skmit)x(s2k ⊗m−its−k);

ρ′k,t : B(H) → B(H) : x 7→ (mit ⊗ skm−it)x(m−it ⊗mits−k)

where k ∈ Z and t ∈ R. They should be applied to the first, respectively third,
leg of the pentagonal equation in order to find the extended equations.

We now look at the manageability properties of W . These play a crucial role in
the rest of the Chapter 2. The Theorem 2.3.30 is the central result.

The Definition 2.3.25 defines three important operators. These operators are
the ones that make W strongly modular.

It is explained below how N and I, Î are related to W .

Definition 2.3.25 We define N = m2 ⊗ m−2. Thus, N is a strictly positive
operator on H. Further, we define two anti-unitary operators I and Î on H by
requiring that we have

• I(ek ⊗ el) = (−1)k+l(e−k+2l ⊗ el),

• Î(ek ⊗ el) = (−1)l(ek ⊗ ek−l) and Î∗(ek ⊗ el) = (−1)k+l(ek ⊗ ek−l).

when k, l ∈ Z.

We split up the manageability proof of W into three parts. Each of the following
Propositions 2.3.26, 2.3.27 and 2.3.28 has individual significance.

The Proposition 2.3.26 says that W strongly commutes with N ⊗N .

Proposition 2.3.26 We have that

W (N ⊗N) = (N ⊗N)W.

Proof. Let t ∈ R. It is easy to check that

(N ⊗N)it(ab⊗ cd) = (ab⊗ cd)(N ⊗N)it.

This gives that N ⊗N and ab⊗ cd strongly commute.
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By using the properties of the functional calculus, we then find

(N ⊗N)Fµ(ab⊗ cd) = Fµ(ab⊗ cd)(N ⊗N). (2.35)

Further, we have that N commutes with both a and c. Hence, we get that N⊗N
strongly commutes with χ(a⊗ 1, 1⊗ c). This implies that

(N ⊗N)χ(a⊗ 1, 1⊗ c) = χ(a⊗ 1, 1⊗ c)(N ⊗N). (2.36)

Equations (2.35) and (2.36) together yield that W and N ⊗N commute. �

The next Proposition 2.3.27 gives another commutation property.

Proposition 2.3.27 We have that

(Î ⊗ I)W ∗(Î∗ ⊗ I) = (Î∗ ⊗ I)W ∗(Î ⊗ I) = W.

Proof. Let k, l,m, n ∈ Z. By using the formulas in Proposition 2.3.13, it follows
from a straightforward calculation that we have

(Î ⊗ I)W ∗(Î∗ ⊗ I)(ek ⊗ el ⊗ em ⊗ en)

=
∑
t∈Z

B(t, k − l − n+ 1)(ek ⊗ el+t ⊗ em−k+2l+2t ⊗ en−k+2l+t)

= W (ek ⊗ el ⊗ em ⊗ en).

This proves that
(Î ⊗ I)W ∗(Î∗ ⊗ I) = W.

The other formula can be proved in a completely similar way. �

We then also have the Proposition 2.3.28 below.

Proposition 2.3.28 Let x, z ∈ H and u ∈ D(N
1
2 ), y ∈ D(N− 1

2 ). Then, we
have that 〈

W (z ⊗ y), x⊗ u
〉

=
〈
W ∗(z ⊗ IN

1
2u), x⊗ IN− 1

2 y
〉
.

Proof. We have that H0 is a core for both N
1
2 and N− 1

2 . Hence, it is sufficient
to check the above formula for basis vectors.

Take k, l,m, n, r, s, x, y ∈ Z. Applying the Proposition 2.3.13, one can find by a
straightforward calculation that〈

W (er ⊗ es ⊗ em ⊗ en), ek ⊗ el ⊗ ex ⊗ ey
〉

= B(l − s, k − n− s+ 1)δk,rδk−2l−m,xδk−l−n,s−y
(2.37)

and also that〈
W ∗(er ⊗ es ⊗ IN

1
2 (ex ⊗ ey)

)
, ek ⊗ el ⊗ IN− 1

2 (em ⊗ en)
〉

= (−µ)l−sB(s− l, k − l − n+ 1)δk,rδk−2l−m,xδk−l−n,s−y.
(2.38)
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Proposition 2.2.6 gives that

B(l − s, k − n− s+ 1) = (−µ)l−sB(s− l, k − l − n+ 1).

The Expressions (2.37) and (2.38) are thus equal. �

We then arrive at the Proposition 2.3.29 below.

Proposition 2.3.29 The quintuple (W,N
1
2 ,N

1
2 , I, Î) satisfies Definition 1.3.57.

Proof. This follows from the three Propositions 2.3.26, 2.3.27 and 2.3.28. �

The next Theorem 2.3.30 rounds out the manageability study of W . It more or
less sums up the main results in this Section 2.3.

It is clear that the Theorem 2.3.30 just picks out the most relevant information
of Proposition 2.3.29. So, it does not really impart a new result.

This Theorem 2.3.30 is a fundamental in the Chapter 2.

Theorem 2.3.30 The multiplicative unitary W is strongly modular.

We recall that the fact that W is strongly modular makes it possible to apply
the modularity theory as expounded in the Sections 1.3 and 1.4. This of course
expedites the search for more properties of W and its related objects.

By combining the Proposition 1.3.59 and the (proof of) Theorem 2.3.30, we get
that the Corollary 2.3.31 below holds.

Corollary 2.3.31 We have that W is manageable.

By using the Corollary 1.3.35, it is relatively easy to prove that the multiplicative
unitary W is semi-regular, but not regular.

The Proposition 2.3.33 collects the regularity properties of W .

Definition 2.3.32 We define an algebra C(W ) by

C(W ) = [(ι⊗ ω)(ΣW ) | ω ∈ B(H)∗].

Proposition 2.3.33 We have that C(W ) is a C∗-algebra. Moreover, we have
the (strict) inclusions B0(H) ( C(W ) ( B(H).

This means that W is semi-regular, but not regular.

Proof. Take k, l,m, n ∈ Z. Using Proposition 2.3.13, we can easily calculate
the action of the operator (ι⊗ ωk,l,m,n)(ΣW ). For all p, q ∈ Z, we have

(ι⊗ωk,l,m,n)(ΣW )(ep⊗eq) = B(l−m+n, l−m+q+1)δp,m(ek−m+2n⊗el−m+n+q).

By applying Proposition A.9, it is straightforward to deduce from this formula
that (ι⊗ ωk,l,m,n)(ΣW ) ∈ B0(H) if and only if m 6= l + n.
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We define an operator Tk,l,m,n by

Tk,l,m,n = (ι⊗ ωk−2l+m+2n−2,m+n−1,m,l−n+1)(ΣW ).

It is easy to see that{
Tk,l,m,n | k, l,m, n ∈ Z

}
=

{
(ι⊗ ωk,l,m,n)(ΣW ) | k, l,m, n ∈ Z

}
.

The action of the operator Tk,l,m,n is given by

Tk,l,m,n(ep ⊗ eq) = B(l, n+ q)δp,m(ek ⊗ el+q)

when p, q ∈ Z.

It is easy to prove that Tk,l,m,n ∈ B0(`2(Z)) ⊗ B(`2(Z)) for all k, l,m, n ∈ Z.
We can then deduce that we have C(W ) ( B(H).

The formulas in Proposition 2.2.6 imply that T ∗k,l,m,n = (−µ)lTm,−l,k,n−l. This
gives that C(W ) is a C∗-algebra.

From Corollary 1.3.35, it ensues that C(W ) acts irreducibly on H. Further, the
above results imply that C(W ) ∩B0(H) 6= ∅.
The property B0(H) ⊆ C(W ) now follows from standard operator theory. �

2.4 The definition of the quantum E(2) group

This central Section 2.4 starts up the operator algebra level. Its main purpose
is to fix the data of the quantum E(2) group (A,Φ) and its dual.

From Theorem 2.3.30, we know that the multiplicative unitary W is (strongly)
modular. As it is explained in Section 1.3, this result provides us with a quick
way of defining two bi-C∗-algebras via W ; see Theorem 1.3.9.

We apply this method of working to define the quantum E(2) group (A,Φ) on
the C∗-algebra level. This is done in the Definition 2.4.1 below.

It is clear that Theorems 2.4.3 and 2.4.4 form the core of Chapter 2. We repeat
that they can also be obtained from the results of S. Baaj in [1].

In the Sections 2.5 to 2.8, we give a detailed study of all the aspects of the
quantum E(2) group. We show in Section 2.5 that Definition 2.4.1 below defines
the same bi-C∗-algebra (A,Φ) as the one defined by Woronowicz in [159].

Thanks to Theorem 1.3.9, we can give the next Definition 2.4.1.

This Definition 2.4.1 defines the quantum E(2) group.

Definition 2.4.1 We define a bi-C∗-algebra (A,Φ) by setting

• A = [ (ω ⊗ ι)W | ω ∈ B(H)∗],

• Φ : A→M(A⊗A) : x 7→W (x⊗ 1)W ∗.

We call (A,Φ) the quantum E(2) group.
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We also define a second bi-C∗-algebra (Â, Φ̂). Again, the Definition 2.4.2 is
justified by Theorem 1.3.9 (applied to ΣW ∗Σ instead of W ).

Notice that we define Φ̂ in a slightly different manner. In contrast with Theo-
rem 1.3.9 (and the general theory), we here take Φ̂ not flipped.

The Definition 2.4.2 is dual to Definition 2.4.1.

Definition 2.4.2 We define a bi-C∗-algebra (Â, Φ̂) by setting

• Â = [ (ι⊗ ω)W | ω ∈ B(H)∗],

• Φ̂ : Â→M(Â⊗ Â) : y 7→W ∗(1⊗ y)W .

We call (Â, Φ̂) the quantum Ê(2) group.

It is now a quite simple task to prove that (A,Φ) and (Â, Φ̂) are indeed locally
compact quantum groups in the sense of Kustermans and Vaes. The technique
expounded in Section 1.4 does all the hard work.

In the proofs of Theorems 2.4.3 and 2.4.4 below, we invoke on properties proved
later in Section 2.7. For this reason, we can be very concise.

The Theorem 2.4.3 is about the quantum E(2) group.

Theorem 2.4.3 The pair (A,Φ) is a locally compact quantum group.

Proof. By Definition 2.4.1, we have that (A,Φ) is a bi-C∗-algebra. It follows
from Theorem 1.3.9 that

A⊗A = [Φ(A)(A⊗ 1)] = [Φ(A)(1⊗A)].

Theorem 2.7.9 gives that there exists a faithful KMS-weight ψ on (A,Φ) that is
strongly left and strongly right invariant. �

The Theorem 2.4.4 states the dual result.

Theorem 2.4.4 The pair (Â, Φ̂) is a locally compact quantum group.

Proof. By Definition 2.4.2, we have that (Â, Φ̂) is a bi-C∗-algebra. It follows
from Theorem 1.3.9 that

Â⊗ Â = [Φ̂(Â)(Â⊗ 1)] = [Φ̂(Â)(1⊗ Â)].

From Theorems 2.7.22 and 2.7.23, we find that (Â, Φ̂) possesses a left Haar
weight ϕ̂ and a right Haar weight ψ̂. �
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2.5 The C∗-algebras and the comultiplications

In this Section 2.5, we investigate the bi-C∗-algebras (A,Φ) and (Â, Φ̂). We give
different characterizations of the C∗-algebras A and Â. Further, we prove several
formulas that describe how Φ and Φ̂ act on basic elements.

The techniques in this Section 2.5 are inspired by the methods that Woronowicz
uses in his recent studies of quantum group examples [165, 169]. It need not be
said that Woronowicz’ older results about the quantum E(2) group [159] serve
even more as an important source of inspiration.

The Section 2.5 is divided into two parts. First, we consider the quantum
E(2) group. Secondly, the quantum Ê(2) group is considered.

We remark that also the Sections 2.6 and 2.7 are built up in this way. This is
done in order not to skip from one subject to another.

The quantum E(2) group

We first consider the C∗-algebra A. We provide a description of A in terms of
the generators c, d and we prove that A is generated by c, d η A. Further, we also
portray how to write A as a crossed product.

The next Proposition 2.5.1 is a consequence of Theorem 1.3.9.

Proposition 2.5.1 The two properties below hold:

1. We have that A is a (separable) non-degenerate C∗-algebra in B(H),

2. We have W ∈M(B0(H)⊗A).

As a first task, we prove that we can find the C∗-algebra A by taking appropriate
functions of the generating operators c and d. We write everything in a form
that is suitable for further reasoning and calculations.

The following Theorem 2.5.2 is important. It says that we actually study the
same C∗-algebra as Woronowicz does so in [159].

We have to be quite diligent in order to give a rigorous proof.

Theorem 2.5.2 We have that

A =
[ ∑
k∈Z

ckfk(d)
∣∣ fk ∈ C0(C̄µ) for every k and fk 6= 0 for finitely many k

]
.

Thus, we get that A is a non-unital C∗-algebra.
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Proof. We define B as

B =
[ ∑
k∈Z

ckfk(d)
∣∣ fk ∈ C0(C̄µ) for every k and fk 6= 0 for finitely many k

]
.

Hence, we have to proof that A = B.

Because of the commutation relations in Proposition 2.3.6, we get that B is a
(separable) C∗-algebra. It is clear that B acts non-degenerately on H.

The definition of B infers that c ∈ M(B) and d η B. Further, c and d separate
non-degenerate ∗-representations of B. It is easy to check that (1 + d∗d)−1 ∈ A.
Now, the Proposition 1.5.54 gives that B is generated by c, d η B.

Since c is a unitary, we get c, cd η B. We know that a and ab are closed operators
acting on H. Thus a, ab η B0(H) (cf. Example 1.5.46). Using Proposition 1.5.36,
we then get that the normal operators a ⊗ 1, 1 ⊗ c and ab ⊗ cd are affiliated
to B0(H)⊗B. From this, we find that W ∈M(B0(H)⊗B).

Thus, we get that (ω⊗ι)W ∈M(B) for all ω ∈ B(H)∗. This then gives that A is
a C∗-subalgebra of M(B). From this, we deduce that AB ⊆ B.

The above results give that W is a unitary in M(B0(H)⊗B). This implies that
we have W (B0(H)⊗A) = B0(H)⊗A.

We get that the set

{W (m⊗ y) | m ∈ B0(H), y ∈ B} (2.39)

is linearly dense in B0(H)⊗B.

Now, let ω ∈ B(H)∗, m ∈ B0(H) and y ∈ B. We have mω ∈ B(H)∗. It is
clear that

(ω ⊗ ι)
(
W (m⊗ y)

)
=

(
(mω ⊗ ι)W

)
y.

We hence get that (ω ⊗ ι)
(
W (m⊗ y)

)
belongs to AB.

Take ω ∈ B(H)∗ with ω 6= 0. Applying the slice map ω ⊗ ι to the elements in
Equation (2.39), we see that{

(ω ⊗ ι)
(
W (m⊗ y)

)
| m ∈ B0(H), y ∈ B

}
is linearly dense in (ω ⊗ ι)

(
B0(H)⊗B

)
= B.

In particular, we can conclude that AB is dense in B.

We proceed by proving that c ∈M(A) and d η A.

Proposition 2.5.1 implies that W ∈ M(B0(H) ⊗ A). From Lemma 2.3.15, we
know that

1⊗ c = (c∗ ⊗ 1)W (c⊗ 1)W ∗.

Thus, we see that 1⊗ c ∈M(B0(H)⊗A) and hence c ∈M(A).
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Lemma 2.3.8 gives that ab ⊗ cd is a non-singular, normal operator. We now
use Proposition 2.2.14 to prove that (ab⊗ cd) η B0(H)⊗A.

For this, we anew consider the operators V (γ) as introduced in Definition 2.3.20.
It is clear that V (γ) ∈ B(H ⊗H) = M(B0(H)⊗B0(H)) for every γ ∈ C̄µ.

The Proposition 2.2.14 gives that the mapping

C̄µ →M(B0(H)⊗B0(H)) : γ 7→ V (γ)

is strictly continuous.

Hence, also the mapping

C̄µ →M(B0(H)⊗B0(H)⊗A) : γ 7→ V12(γ) (2.40)

is strictly continuous.

From Proposition 2.3.21, we know that the unitary operators V (γ) are adapted
to W . This implies that we have

V13(γ) = V12(γ)∗W23V12(γ)W ∗
23

for every γ ∈ C̄µ. Using this formula and remembering that W ∈M(B0(H)⊗A),
we find from Equation (2.40) that the mapping

C̄µ →M(B0(H)⊗B0(H)⊗A) : γ 7→ V13(γ)

is strictly continuous.

This implies that also the mapping

C̄µ →M(B0(H)⊗A) : γ 7→ V (γ)V (0)∗ (2.41)

is strictly continuous.

For every γ ∈ C̄µ, we have

V (γ)V (0)∗ = Fµ(γab⊗ cd)χ(a⊗ 1, 1⊗ c)χ(a⊗ 1, 1⊗ c)∗ = Fµ(γab⊗ cd).

Thus, Equation (2.41) precisely means that the mapping

C̄µ →M(B0(H)⊗A) : γ 7→ Fµ(γab⊗ cd)

is strictly continuous.

An application of Proposition 2.2.14 gives that

(ab⊗ cd) η B0(H)⊗A. (2.42)

We define a unitary operator r ∈ M(B0(H)) by r = 1 ⊗ s∗. Also, we define a
strictly positive operator n on H by n = 1⊗ µm. We have n η B0(H).

From Equation (2.42), we find that (r⊗ c∗)(ab⊗ cd) η B0(H)⊗A. This exactly
means that

(n⊗ d) η B0(H)⊗A.

Proposition 1.5.37 now implies that d η A.
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We then look at the embedding

j : B → B(H).

The above results give that

j(c) ∈M(A) and j(d) η A.

We know from the beginning of the proof that the C∗-algebra B is generated
by c, d η B. Thus, we have that j is a non-degenerate ∗-homomorphism from B
to M(A). We find that BA is dense in A.

If we combine the arguments above, we get that AB is dense in B and that BA is
dense in A. These results together yield that A = B. �

The Theorem 2.5.3 states the property that A is generated by the pair (c, d).
One can infer this result from the proof of Theorem 2.5.2.

This Theorem 2.5.3 is very useful, especially to prove uniqueness results.

Theorem 2.5.3 We have c ∈ M(A) and d η A. The operators c, d η A separate
non-degenerate ∗-representations of A.

We have that the C∗-algebra A is generated by c, d η A.

The next Lemma 2.5.4 follows directly from Theorem 2.5.2.

Lemma 2.5.4 We have that

M(A)⊇
[ ∑
k∈Z

ckfk(d)
∣∣ fk ∈ Cb(C̄µ) for every k and fk 6= 0 for finitely many k

]
,

Aη⊇
{
ckf(d) | k ∈ Z, f ∈ C(C̄µ)

}
.

The Proposition 2.5.7 then displays how A can be written as a crossed product.
We refer to the Section 4.1 for proofs of the results below.

Definition 2.5.5 We define an action α : Z → Aut(C0(C̄µ)) by

αn : C0(C̄µ) → C0(C̄µ) : f 7→ f(µn·).

Lemma 2.5.6 We have that (C0(C̄µ),Z, α) is a C∗-dynamical system.

Proposition 2.5.7 We have A ∼= C0(C̄µ) nα Z.

This Proposition 2.5.7 has the next useful consequence.

Corollary 2.5.8 We have that A is a type I C∗-algebra and is thus nuclear.
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We recall the standard properties of the comultiplication Φ on A. They follow
from the general manageability theory; see Section 1.3.

The three Propositions 2.5.9, 2.5.10 and 2.5.11 follow from a direct application
of Theorem 1.3.9 and Proposition 1.3.18.

Proposition 2.5.9 We can consider Φ : A → M(A ⊗ A) as a non-degenerate
∗-homomorphism. Moreover, the results below hold:

1. We have that Φ is coassociative, i.e., (Φ⊗ ι)Φ = (ι⊗ Φ)Φ,

2. The linear spaces Φ(A)(1⊗A) and Φ(A)(A⊗ 1) are dense in A⊗A.

Proposition 2.5.10 We have that Φ is characterized as the only non-degenerate
∗-homomorphism from A to M(A⊗A) such that

(ι⊗ Φ)W = W12W13.

Proposition 2.5.11 Let ω ∈ B(H)∗. We then have

Φ
(
(ω ⊗ ι)W

)
= (ω ⊗ ι⊗ ι)(W12W13).

We calculate the action of Φ on the generating elements. The results found in
the Proposition 2.5.12 below completely fit in with Proposition 2.1.1.

It is important to remark that the formulas in the Equation (2.43) are used by
S.L. Woronowicz in [159] as the defining relations for the comultiplication Φ on A.
We refer to Remark 4.2.5 for more explanation about this matter.

The formulas in Proposition 2.5.12 ensue from Lemma 2.3.15. The uniqueness
part is a direct consequence of Theorem 2.5.3.

Proposition 2.5.12 We have that Φ is characterized as the only non-degenerate
∗-homomorphism from A to M(A⊗A) such that

Φ(c) = c⊗ c and Φ(d) = c⊗ du d⊗ c∗. (2.43)

Furthermore, we have

Φ(c∗) = c∗ ⊗ c∗, Φ(d∗) = c∗ ⊗ d∗ u d∗ ⊗ c,

Φ(cd) = c2 ⊗ cdu cd⊗ 1.

The next Remark 2.5.13 is just a detail.

Remark 2.5.13 The existence of a comultiplication Φ satisfying the formulas
in Equation (2.43) is mainly due to the spectral condition σ(d) ⊆ C̄µ.
The role of this condition is explained in more detail in Remark 4.2.6.
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From Proposition 2.5.12, we find how Φ acts on basic elements.

Proposition 2.5.14 Let
∑
ckfk(d) ∈ A. Then, we have

Φ
( ∑

ckfk(d)
)

=
∑

(ck ⊗ ck)fk(c⊗ du d⊗ c∗).

We now study the semigroup behavior of the quantum E(2) group. This quite
uncanny property was discovered by Woronowicz in [160].

The result in Proposition 2.5.15 below is both intriguing and whimsical.

Proposition 2.5.15 ([160]) We have that

Φ(A) ⊆ A⊗A.

Proof. We again consider the functions fk,n ∈ C0(C̄µ) as defined in the proof
of Proposition 2.2.14. Recall that, for z ∈ C̄µ, we have

fk,n(z) =
1

2π

∫ 2π

0

Fµ(µneitz)e−ikt dt. (2.44)

Let k, l ∈ Z. It is easy to check that

fk,n(eiθx) = eikθfk,n(x) (2.45)

for all θ ∈ [0, 2π] and x ∈ C̄µ.

Let k, l,m, n ∈ Z. We have that f0,0(d)(ek ⊗ el) = B(0,−l)(ek ⊗ el). From the
formulas in Proposition 2.3.13, it then follows that

Φ
(
f0,0(d)

)
(ek ⊗ el ⊗ em ⊗ en) = W (f0,0(d)⊗ 1)W ∗(ek ⊗ el ⊗ em ⊗ en)

=
∑
t∈Z

∑
s∈Z

B(t, l − n + 1)B(0,−l + t)B(s + t, l − n + 1)(ek ⊗ el+s ⊗ em+2s ⊗ en+s)

=
∑
s∈Z

( ∑
t∈Z

B(t, l − n + 1)B(0,−l + t)B(s + t, l − n + 1)
)
(ek ⊗ el+s ⊗ em+2s ⊗ en+s).

Using Lemma A.14, we see that the above calculation implies

Φ
(
f0,0(d)

)
(ek ⊗ el ⊗ em ⊗ en)

=
∑
s∈Z

B(−s,−l − s)B(s,−n)(ek ⊗ el+s ⊗ em+2s ⊗ en+s). (2.46)

Now, take x ∈ Cµ and write x = µpeiϕ with p ∈ Z and ϕ ∈ [0, 2π[. Let F̂p as
introduced in Definition A.5. We consider the analytic function

hx : {z ∈ C | Im z > logµ} → C : θ 7→ F̂p(ei(θ+ϕ))

Also, we define h0 = 1.
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Let x ∈ C̄µ. Using the properties of F̂p (see Lemma A.6), we get that hx is an
analytic extension of the function R → C : θ 7→ Fµ(eiθx).

Take a ∈ [1, µ−1[. Using the Definition A.5 of F̂p, one can prove (with quite
some effort) that there exists a constant Ma ≥ 0 such that, for all x ∈ C̄µ, we
have |hx(z)| ≤Ma for every z on the line La := {θ ∈ C | Im θ = − log a}.
Let q ∈ Z and z ∈ C̄µ. It is clear that |fq,0(z)| ≤ 1. Shifting the integration
contour in (2.44) down in the complex plane, we get the inequality

|fq,0(z)| ≤Maa
−q.

Hence, for every a ∈ [1, µ−1[ and q ∈ Z, we have∥∥f−q,0(d)cq ⊗ cqfq,0(d)
∥∥ ≤Maa

−|q|.

This clearly implies that the series∑
q∈Z

f−q,0(d)cq ⊗ cqfq,0(d)

is norm-converging.

Using the Equality (2.45), it is easy to calculate that( ∑
q∈Z

f−q,0(d)cq ⊗ cqfq,0(d)
)

(ek ⊗ el ⊗ em ⊗ en)

=
∑
q∈Z

B(−q,−l − q)B(q,−n)(ek ⊗ el+q ⊗ em+2q ⊗ en+q).

(2.47)

Equations (2.46) and (2.47) together give that

Φ
(
f0,0(d)

)
=

∑
q∈Z

f−q,0(d)cq ⊗ cqfq,0(d). (2.48)

For all q, r ∈ Z, we have fq,r(d) = fq,0(µrd) = c−rfq,0(d)cr. Thus, we can deduce
from Equation (2.48) that

Φ
(
f0,r(d)

)
=

∑
q∈Z

f−q,r(d)cq ⊗ cqfq,r(d) (2.49)

where the sum on the right hand side is norm-converging.

From Equation (2.49), it follows that Φ
(
f0,r(d)

)
∈ A⊗A for all r ∈ Z.

Further, we have that
(
f0,r(d)

)
is an approximate unit in A. This property is

shown in the proof of Proposition 2.2.14.

Let a ∈ A. We have af0,r(d) → a and hence Φ(af0,r(d)) → Φ(a) if r → +∞.
The above results imply that Φ(af0,r(d)) ∈ A⊗A for every r ∈ Z.

We conclude that Φ(a) ∈ A⊗A. �
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It is thought-out to use the term ‘semigroup behavior’.

Remark 2.5.16 The reason to call the property in Proposition 2.5.15 semigroup
behavior is to be found in Remark 1.2.3.

Let G be a locally compact group that is non-compact. We consider the quantum
group (C0(G),Φ) defined in Example 1.2.1. Then, we have

Φ
(
C0(G)

) ∪ (
C0(G)⊗ C0(G)

)
= {0}.

This property also holds for other classes of non-compact quantum groups.

On the other hand, for a lot of non-compact semigroups H (that are not groups)
we have Φ

(
C0(H)

)
⊆ C0(H)⊗ C0(H). This is e.g. the case if H = N.

The quantum Ê(2) group

Now, we come to the quantum Ê(2) group. We deduce similar properties as for
the quantum E(2) group. However, it has to be said that the structure in this
dual case is more difficult. We hence have to make some extra effort.

We first look at the C∗-algebra Â.

The two Propositions 2.5.17 and 2.5.18 ensue from Theorem 1.3.9.

Proposition 2.5.17 The two properties below hold:

1. We have that Â is a (separable) non-degenerate C∗-algebra in B(H),

2. We have W ∈M(Â⊗B0(H)).

Proposition 2.5.18 We have W ∈M(Â⊗A).

We prove in the Theorem 2.5.21 below that we can find the C∗-algebra Â by
taking appropriate functions of the generating operators a and b. First, we
discuss the joint functional calculus of the pair (a, |b|).

We define a subset E ⊆ R(µ
1
2 )× R̄(µ

1
2 ).

Notation 2.5.19 We denote E =
{

(p, q) ∈ R(µ
1
2 )× R̄(µ

1
2 ) | pq ∈ R̄µ

}
.

The set E is introduced for technical reasons.

Remark 2.5.20 The Proposition 2.3.6 gives that a and |b| strongly commute.
We can thus consider the joint functional calculus of the pair (a, |b|).

For g ∈ C
(
R(µ

1
2 )× R̄(µ

1
2 )

)
, it is shown in [59] how to define g(a, |b|).

By some easy calculations, it can be shown that the element g(a, |b|) is completely
determined by the restriction of g to E.
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For the rest of the thesis, we then always consider elements g(a, |b|) for g ∈ C(E).
The joint functional calculus of (a, |b|) is injective on C(E).

It is sometimes more convenient to fall back on the joint functional calculus
of (a, |b|) on C

(
R(µ

1
2 )× R̄(µ

1
2 )

)
. In particular, we advise the reader to use this

latter one when checking computations. This probably is more handy.

The next Theorem 2.5.21 provides a possible description of Â in terms of the
operators a and b. Its proof is based on Propositions 2.2.14 and 2.2.15. We recall
that b = u|b| is the polar decomposition of the normal operator b.

We notice that Woronowicz in [159] describes Â in a (slightly) different way.
The two approaches are of course equivalent. Also, see Remark 2.5.25.

We refer to Remark 2.5.22 for more information about the restriction on the
elements gk(a, |b|) that appears in the description of Â given below.

Theorem 2.5.21 We have that

Â =
[ ∑
k∈Z

ukgk(a, |b|)
∣∣ gk ∈ C0(E) for every k, gk 6= 0 for finitely many k

and gk(s, 0) = 0 for all s ∈ R(µ
1
2 ) if k 6= 0

]
.

Thus, we get that Â is a non-unital C∗-algebra.

Proof. We define B̂ as

B̂ =
[ ∑
k∈Z

ukgk(a, |b|)
∣∣ gk ∈ C0(E) for every k, gk 6= 0 for finitely many k

and gk(s, 0) = 0 for all s ∈ R(µ
1
2 ) if k 6= 0

]
.

Hence, we have to proof that Â = B̂.

Thanks to the commutation relations in Proposition 2.3.6, we have that B̂ is a
(separable) C∗-algebra. It is clear that B̂ acts non-degenerately on H.

The definition of B̂ implies that a, a−1, b η B̂. Further, the operators a and b
separate non-degenerate ∗-representations of B̂. It is easy to check that we have
(1 + a2)−1(1 + a−2)−1(1 + b∗b)−1 ∈ B̂. Now, Proposition 1.5.54 gives that B̂ is
generated by the affiliated elements a, a−1, b η B̂.

Because a, |b| η B̂ strongly commute, it follows from Lemma B.3.19 that we
have a|b| η B̂. Using this property, one can easily prove that ab η B̂.

We thus have a, ab η Â. We know that c and cd are closed operators acting
on H. Thus c, cd η B0(H) (cf. Example 1.5.46). Using Proposition 1.5.36, we get
that the normal operators a⊗ 1, 1⊗ c and ab⊗ cd are affiliated to B̂ ⊗ B0(H).
From this, we find that W ∈M(B̂ ⊗B0(H)).

Thus, we get that (ι⊗ ω)W ∈M(B̂) for all ω ∈ B(H)∗. This then gives that Â
is a C∗-subalgebra of M(B̂). From this, we deduce that ÂB̂ ⊆ B̂.
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The above results give that W is a unitary in M(B̂⊗B0(H)). This implies that
we have W (B̂ ⊗B0(H)) = B̂ ⊗B0(H). We get that the set

{W (y ⊗m) | m ∈ B0(H), y ∈ B̂} (2.50)

is linearly dense in B̂ ⊗B0(H).

Now, let ω ∈ B(H)∗, m ∈ B0(H) and y ∈ B̂. We have mω ∈ B(H)∗. It is
clear that

(ι⊗ ω)
(
W (y ⊗m)

)
=

(
(ι⊗mω)W

)
y.

We hence get that (ι⊗ ω)
(
W (y ⊗m)

)
belongs to ÂB̂.

Take ω ∈ B(H)∗ with ω 6= 0. Applying the slice map ι ⊗ ω to the elements in
Equation (2.50), we see that{

(ι⊗ ω)
(
W (y ⊗m)

)
| m ∈ B0(H), y ∈ B̂

}
is linearly dense in (ι⊗ ω)

(
B̂ ⊗B0(H)

)
= B̂.

In particular, we can conclude that ÂB̂ is dense in B̂.

We proceed by proving that a, a−1, b ηM(Â).

Lemma 2.3.8 gives that ab ⊗ cd is a non-singular, normal operator. We now
use Proposition 2.2.14 to prove that (ab⊗ cd) η Â⊗B0(H).

For this, we anew consider the operators V (γ) as introduced in Definition 2.3.20.
It is clear that V (γ) ∈ B(H ⊗H) = M(B0(H)⊗B0(H)) for every γ ∈ C̄µ.

Proposition 2.2.14 gives that the mapping

C̄µ →M(B0(H)⊗B0(H)) : γ 7→ V (γ)

is strictly continuous.

Hence, also the mapping

C̄µ →M(Â⊗B0(H)⊗B0(H)) : γ 7→ V23(γ) (2.51)

is strictly continuous.

From Proposition 2.3.21, we know that the unitary operators V (γ) are adapted
to W . Let γ ∈ C̄µ. If we write Ŵ = ΣW ∗Σ and V̂ (γ) = ΣV (γ)Σ, we can then
infer that we have

V̂23(γ)Ŵ12 = Ŵ12V̂13(γ)V̂23(γ). (2.52)

This is a standard result; see [4].

From the Equation (2.52), we get that

V13(γ) = W12V23(γ)V23(γ)∗W ∗
12

for every γ ∈ C̄µ. Using this formula and remembering that W ∈M(Â⊗B0(H)),
we find from Equation (2.51) that the mapping

C̄µ →M(Â⊗B0(H)⊗B0(H)) : γ 7→ V13(γ) (2.53)

is strictly continuous.
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This implies that also the mapping

C̄µ →M(Â⊗B0(H)) : γ 7→ V (γ)V (0)∗ (2.54)

is strictly continuous.

For every γ ∈ C̄µ, we have

V (γ)V (0)∗ = Fµ(γab⊗ cd)χ(a⊗ 1, 1⊗ c)χ(a⊗ 1, 1⊗ c)∗ = Fµ(γab⊗ cd).

Thus, Equation (2.54) precisely means that the mapping

C̄µ →M(Â⊗B0(H)) : γ 7→ Fµ(γab⊗ cd)

is strictly continuous.

An application of Proposition 2.2.14 gives that

(ab⊗ cd) η Â⊗B0(H). (2.55)

Now, we use Proposition 2.2.15 to prove that a, a−1 η Â.

The Lemma 2.3.4 gives that a and a−1 are strictly positive operators. It is clear
that χ(a, z) ∈ B(H) = M(B0(H)) for every z ∈ S1.

Proposition 2.2.15 gives that the mapping

S1 →M(B0(H)) : z 7→ χ(a, z)

is strictly continuous.

Hence, also the mapping

S1 →M(Â⊗B0(H)) : z 7→ 1⊗ χ(a, z) (2.56)

is strictly continuous.

We again shortly denote χ for χ(a⊗1, 1⊗c). Equation (2.53) (with γ = 0) gives
that χ ∈M(Â⊗B0(H)). Together with the continuity in Equation (2.56), this
then implies that the mapping

S1 →M(Â⊗B0(H)) : z 7→ χ∗
(
1⊗ χ(a, z)

)
χ

(
1⊗ χ(a, z)∗

)
(2.57)

is strictly continuous.

Let z ∈ S1. An easy calculation (using Proposition 2.3.13) yields that

χ∗
(
1⊗ χ(a, z)

)
χ

(
1⊗ χ(a, z)∗

)
= χ(a, z)⊗ 1. (2.58)

From Equations (2.57) and (2.58) together, it follows that the mapping

S1 →M(Â⊗B0(H)) : z 7→ χ(a, z)⊗ 1

is strictly continuous.
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We thus have that the mapping

S1 →M(Â) : z 7→ χ(a, z)

is strictly continuous.

An application of Proposition 2.2.15 now yields a, a−1 η Â.

Next, we combine several of the above results to prove that b η Â.

We define a unitary operator r̂ ∈ M(B0(H)) by r̂ = s2 ⊗ s. Also, we define a
strictly positive operator n̂ on H by n̂ = 1⊗m. We have n̂ η B0(H).

The above results imply that a−1 η Â. We thus have (a−1 ⊗ n̂) η Â⊗B0(H); see
Proposition 1.5.36. Equation (2.55) gives that (ab⊗ cd) η Â⊗B0(H).

It is not difficult to check that a−1⊗ n̂ and ab⊗ cd strongly commute. We hence
find (a−1 ⊗ n̂)(ab⊗ cd) η Â⊗B0(H). This precisely means that

(b⊗ µr̂) η Â⊗B0(H).

Proposition 1.5.37 now implies that b η B̂.

We then look at the embedding

j : B̂ → B(H).

The above results give that

j(a), j(a−1), j(b) η Â.

We know from the beginning of the proof that the C∗-algebra B̂ is generated
by a, a−1, b η B̂. Thus, we have that j is a non-degenerate ∗-homomorphism
from B̂ to M(Â). We find that B̂Â is dense in Â.

If we combine the arguments above, we get that ÂB̂ is dense in B̂ and that B̂Â is
dense in Â. These results together give that Â = B̂. �

The next Remark 2.5.22 alludes to Theorem 2.5.21.

Remark 2.5.22 The extra condition that gk(s, 0) = 0 for all s ∈ R(µ
1
2 ) if

k 6= 0 is necessary because we want elements in Â to be continuous functions
of a and b. In this way, we have that Theorem 2.5.24 below holds. Without this
extra condition, we would have that u ∈M(Â).

We try to give some more explanation about this feature. It is clear that we have
to concentrate on elements of the form ukf(|b|) where f ∈ C0(R(µ

1
2 )).

Consider the function h defined by

h : C → C : x 7→

{
z
|z| if z 6= 0;

0 if z = 0.

By using the Borel calculus, we get that h(b) = u.

For all f ∈ C0(C̄(µ
1
2 )) and k ∈ Z, we then have ukf(|b|) = hkf(b). It is obvious

that we have hkf ∈ C0(C̄(µ
1
2 )) if and only if f(0) = 0.
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In order to have the property that the C∗-algebra Â is generated by the affiliated
elements a, a−1, b η Â, it is certainly desirable that the elements a, b η Â separate
non-degenerate ∗-representations of Â; see Proposition 1.5.54.

Let π : A → B(K) be a non-degenerate ∗-representation. By working as above,
we see that the value of π(b) determines the value of all the elements π(ukf(|b|))
where f ∈ C0(R̄(µ

1
2 )) and f(0) = 0. We however do not get information about

π(ukf(|b|)) if the condition f(0) = 0 is not satisfied.

The next Lemma 2.5.23 follows directly from Theorem 2.5.21.

Lemma 2.5.23 We have that

M(Â)⊇
[ ∑
k∈Z

ukgk(a, |b|)
∣∣ gk ∈ Cb(E) for every k, gk 6= 0 for finitely many k

and gk(s, 0) = 0 for all s ∈ R(µ
1
2 ) if k 6= 0

]
,

Âη⊇
{
ukg(a, |b|) | g ∈ C

(
E) and g(s, 0) = 0 for every s ∈ R(µ

1
2 ) if k 6= 0

}
.

We now state the important property that Â is generated by the triple (a, a−1, b).
One can infer this result from the proof of Theorem 2.5.21.

The Theorem 2.5.24 is very useful, especially to prove uniqueness results.

Theorem 2.5.24 We have that a, a−1, b η Â. The two operators a, b η Â separate
non-degenerate ∗-representations of Â.

We have that the C∗-algebra Â is generated by a, a−1, b η Â.

The next Remark 2.5.25 accompanies Theorem 2.5.24.

Remark 2.5.25 One can easily check that log a, b η Â and that the C∗-algebra Â
is generated by the affiliated elements log a, b η Â.

It is thus possible to generate Â by two affiliated elements. This is (almost) the
choice made by S.L. Woronowicz in the original article [159].

From the proof of Proposition 2.5.21, we know that a|b|, ab η Â. Further, it is
not difficult to check that we have u 6∈M(Â).

It is possible to describe Â as a C∗-subalgebra of a crossed product. The results
below are proved in Section 4.1.

We first have some definitions and basic results.

Definition 2.5.26 We define an action β : Z → Aut(C0(E)) by

βn : C0(E) → C0(E) : g 7→ g(µ−n·, ·).

Lemma 2.5.27 We have that (C0(E),Z, β) is a C∗-dynamical system.
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Definition 2.5.28 Let Âex ) Â be the C∗-algebra defined by

Âex =
[ ∑
k∈Z

ukgk(a, |b|)
∣∣ gk ∈ C0(E) for every k and gk 6= 0 for finitely many k

]
.

We denote by Âcp the C∗-subalgebra of C0(E) nβ Z generated by the elements
g ∈ K(Z,C0(E)) that satisfy g(n)(s, 0) = 0 for every s ∈ R(µ

1
2 ) if n 6= 0.

Next, we state the following properties.

Proposition 2.5.29 We have Â ∼= Âcp and Âex
∼= C0(E) nβ Z.

Corollary 2.5.30 We have that Â is a type I C∗-algebra and is thus nuclear.

We recall the standard properties of the comultiplication Φ̂ on Â. They follow
from the general manageability theory; see Section 1.3.

Since we have flipped the comultiplication, we have to be somewhat careful to
adapt the results from Theorem 1.3.9 in order to get correct formulas.

We have the following three Propositions 2.5.31, 2.5.32 and 2.5.33.

Proposition 2.5.31 We can consider Φ̂ : Â→M(Â⊗ Â) as a non-degenerate
∗-homomorphism. Moreover, the results below hold:

1. We have that Φ̂ is coassociative, i.e., (Φ̂⊗ ι)Φ̂ = (ι⊗ Φ̂)Φ̂,

2. The linear spaces Φ̂(Â)(1⊗ Â) and Φ(Â)(Â⊗ 1) are dense in Â⊗ Â.

Proposition 2.5.32 We have that Φ̂ is characterized as the only non-degenerate
∗-homomorphism from Â to M(Â⊗ Â) such that

(Φ̂⊗ ι)W = W13W23.

Proposition 2.5.33 Let ω ∈ B(H)∗. We then have

Φ̂
(
(ι⊗ ω)W

)
= (ι⊗ ι⊗ ω)(W13W23).

We calculate the action of Φ̂ on the generating elements. The results found in
the Proposition 2.5.34 below completely fit in with Proposition 2.1.1.

The formulas in Proposition 2.5.34 ensue from Lemma 2.3.16. The uniqueness
part is a direct consequence of Theorem 2.5.24.

Proposition 2.5.34 We have that Φ̂ is characterized as the only non-degenerate
∗-homomorphism from Â to M(Â⊗ Â) such that

Φ̂(a) = a⊗ a and Φ̂(b) = a⊗ bu b⊗ a−1.

Furthermore, we have

Φ̂(a−1) = a−1 ⊗ a−1, Φ̂(b∗) = a⊗ b∗ u b∗ ⊗ a−1,

Φ̂(ab) = a2 ⊗ abu ab⊗ 1.
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Proof. Only the formula for Φ̂(ab) needs some extra explanation. We use the
notation K0 = span{ek ⊗ el ⊗ em | k, l,m ∈ Z}.
It is clear that we have

Φ̂(ab) = W ∗(1⊗ ab)W.

This formula can be rewritten as

Φ̂(ab) = W ∗(1⊗ a)WW ∗(1⊗ b)W.

We then get from Lemma 2.3.16 that

Φ̂(ab) = (a⊗ a)(a⊗ bu b⊗ a−1). (2.59)

From this, we see that H0 �H0 ⊆ D
(
Φ̂(ab)

)
.

It is not difficult to check that a2⊗abuab⊗1 is well-defined. Further, it is then
clear that we have H0 �H0 ⊆ D(a2 ⊗ abu ab⊗ 1).

We again use the short notations χ = χ(a⊗ 1, 1⊗ c) and F (γ) = Fµ(γab⊗ cd).
Then, we have that

Φ̂(ab)⊗ cd = (W ∗ ⊗ 1)(1⊗ ab⊗ cd)(W ⊗ 1)
= χ∗12F 12(1)∗(1⊗ ab⊗ cd)F 12(1)χ12

= χ∗12(ab⊗ c2 ⊗ cdu 1⊗ ab⊗ cd)χ12

= χ∗12(ab⊗ c2 ⊗ cd)χ12 u χ∗12(1⊗ ab⊗ cd)χ12

= ab⊗ 1⊗ cdu a2 ⊗ ab⊗ cd.

The third equality follows from Equation (2.33). The last equality can easily be
calculated by applying Proposition 2.3.13.

Some basic calculations give that K0 ⊆ D
(
(a2 ⊗ abu ab⊗ 1)⊗ cd

)
and that

(a2 ⊗ abu ab⊗ 1)⊗ cd ⊆ ab⊗ 1⊗ cdu a2 ⊗ ab⊗ cd. (2.60)

We define two normal operators R and S by

R = ab⊗ 1⊗ cd and S = a2 ⊗ ab⊗ cd.

It is easy to check that (R,S) ∈ Dµ. We have that K0 is a core for R and
that K0 is invariant under spectral projections of |S|. The Lemma 3.2 in [158]
now implies that K0 is a core for the normal operator Ru S.

By combining this result with Equation (2.60), we get

(a2 ⊗ abu ab⊗ 1)⊗ cd = ab⊗ 1⊗ cdu a2 ⊗ ab⊗ cd.

We thus have
Φ̂(ab)⊗ cd = (a2 ⊗ abu ab⊗ 1)⊗ cd.

It is now direct to deduce that

Φ̂(ab) = a2 ⊗ abu ab⊗ 1.

This ends the proof. �
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From Proposition 2.5.34, we find how Φ̂ acts on basic elements.

Notation 2.5.35 We set w = W ∗(1⊗u)W . Then, w ∈ B(H ⊗H) is a unitary
and we have that

a⊗ bu b⊗ a−1 = w|a⊗ bu b⊗ a−1|

is the polar decomposition of the normal operator a⊗ bu b⊗ a−1.

Proposition 2.5.36 Let
∑
ukgk(a, |b|) ∈ Â. Then, we have

Φ
( ∑

ukgk(a, |b|)
)

=
∑

wkgk(a⊗ a, |a⊗ bu b⊗ a−1|).

2.6 The antipodes

In this Section 2.6, we take a next step in our description of the quantum group
structure of the quantum E(2) group and its dual. We give a detailed study of
the antipode on both of the quantum groups E(2) and Ê(2).

We make again use of the results in the Section 1.3. The basic properties of the
antipodes S and Ŝ directly ensue from the manageability theory.

Further, we calculate the action of the antipodes on the generating elements.
We find an intuition in the formulas of Proposition 2.1.15 where we have studied
the antipodes and their polar decompositions on the Hopf ∗-algebra level.

We recall Definition 2.3.25 and introduce two more operators.

Definition 2.6.1 We define N = m2 ⊗ m−2. Thus, N is a strictly positive
operator on H. Further, we define two anti-unitary operators I and Î on H by
requiring that we have

• I(ek ⊗ el) = (−1)k+l(e−k+2l ⊗ el),

• Î(ek ⊗ el) = (−1)l(ek ⊗ ek−l) and Î∗(ek ⊗ el) = (−1)k+l(ek ⊗ ek−l).

when k, l ∈ Z.

Definition 2.6.2 We define two strictly positive operators N̂ and N̂0 on H by
the formulas N̂ = m−2 ⊗m2 and N̂0 = 1⊗m2.

It is direct to check the results in the Lemma 2.6.3 below.

Lemma 2.6.3 The next two properties hold:

• We have I∗ = I and I2 = 1.

• Let t ∈ R. Then, we have IN itI = N it and IN tI = N−t.
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The formulas in Lemma 2.6.4 are typical for N and I. In a manner, the Defini-
tion 2.6.1 is chosen in such a way that Lemma 2.6.4 holds.

This Lemma 2.6.4 can be proved by some very simple calculations.

Lemma 2.6.4 We have that

Ic∗I = c∗ and Id∗I = −d.

Further, we have

N−itcN it = c and N−itdN it = µ−2itd.

The Lemmas 2.6.5 and 2.6.6 are then about the operators N̂ , N̂0 and Î.

Lemma 2.6.5 The next two properties hold:

• We have Î2 = 1.

• Let t ∈ R. Then, we have ÎN̂ itÎ∗ = N̂ it
0 and ÎN̂ tÎ∗ = N̂−t

0 .

Lemma 2.6.6 We have that

ÎaÎ∗ = Î∗aÎ = a−1 and Îb∗Î∗ = Î∗b∗Î = −b.

Further, we have

N̂−itaN̂ it = N̂−it
0 aN̂ it

0 = a and N̂−itbN̂ it = N̂−it
0 bN̂ it

0 = µ−2itb.

We also restate the Proposition 2.3.29 about the strong modularity property
of the multiplicative unitary W .

The Proposition 2.6.7 plays a crucial role in this Section 2.6.

Proposition 2.6.7 The quintuple (W,N
1
2 , N

1
2 , I, Î) satisfies Definition 1.3.57.

The quantum E(2) group

First, we consider the antipode S of the quantum E(2) group (A,Φ). As usual,
we define S through its polar decomposition. It turns out that S is an unbounded
linear map. We prove this property in Proposition 2.6.32.

From Proposition 2.6.7, we know that W is strongly modular. It makes that we
can fully rely on the modularity theory as elaborated in Section 1.3.

We start below with the definitions. Because W is strongly modular, we dispose
of implementations both of the unitary antipode R and the scaling group (τt).
This makes it possible to give explicit formulas for R and (τt).

Since we make use of the results in Section 1.3 very often, we do not provide
an explicit reference for each separate property. It is easy to find out the exact
places where the corresponding general properties are stated.



146 Chapter 2. The quantum E(2) group and its dual

We first define the unitary antipode R.

Definition 2.6.8 We consider the ∗-anti-automorphism R on A defined by

R : A→ A : x 7→ Ix∗I.

We have that R2 = ι.

Next, we come to the scaling group (τt).

Definition 2.6.9 Let t ∈ R. Then, we consider the ∗-automorphism τt on A
defined by

τt : A→ A : x 7→ N−itxN it.

We have that (τt) is a norm continuous one-parameter group on A.

The antipode S is then defined as follows.

Definition 2.6.10 We define

S = Rτ− i
2

= τ− i
2
R.

The next Theorem 2.6.11 encompasses the basic properties of S.

Theorem 2.6.11 We have that S : D(S) ⊆ A → A is a closed linear operator
such that {(ω ⊗ ι)W | ω ∈ B(H)∗} is a core for S and

S
(
(ω ⊗ ι)W

)
= (ω ⊗ ι)W ∗

for every ω ∈ B(H)∗.

Further, the properties below hold:

• S is densely defined and has dense range,

• S is injective and S−1 = Rτ i
2

= τ i
2
R,

• S is anti-multiplicative: for x, y ∈ D(S), we have that xy ∈ D(S) and
S(xy) = S(y)S(x),

• For all x ∈ D(S), we have S(x)∗ ∈ D(S) and S(S(x)∗)∗ = x,

• S2 = τ−i.

We have the following commutation relations:

• Rτz = τzR for all z ∈ C,

• Φτt = (τt ⊗ τt)Φ for all t ∈ R,

• ΦR = σ̇(R⊗R)Φ,

• RS = SR,

• τtS = Sτt for all t ∈ R.
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In the next Lemma 2.6.12, the strict closure of S is introduced.

Lemma 2.6.12 The antipode S is strictly closed on A. We can extend S to a
strictly closed linear map S̄ on M(A). Then, S̄ is the strict closure of S.

We know from Remark 1.1.20 that we can extend τ to a strictly continuous
one-parameter group τ̄ on M(A). By definition, we have

S̄ = Rτ̄− i
2

= τ̄− i
2
R.

The extension S̄ satisfies the strict version of Theorem 2.6.11.

We now describe the action of R, τ and S. In the first place, we look at the action
on elements (ω ⊗ ι)W . We can then apply the results from Section 1.3.

We first state the next Proposition 2.6.13 about the action of S.

Proposition 2.6.13 Let ω ∈ A∗. We then have (ω ⊗ ι)W ∈ D(S̄) and

S̄
(
(ω ⊗ ι)W

)
= (ω ⊗ ι)W ∗. (2.61)

Proof. We get from Proposition 3.2.8 that (A,Φ) is a universal quantum group.
From Remark 9.1 in [61], it then ensues that Equation (2.61) holds. �

The case of the unitary antipode R is considered as second one.

Lemma 2.6.14 Let ξ ∈ D(N
1
2 ) and η ∈ D(N− 1

2 ). Then, we have

R
(
(ωξ,η ⊗ ι)W

)
= (ω

N
1
2 ξ,N− 1

2 η
⊗ ι)W ∗.

Lemma 2.6.15 Let ω ∈ B(H)∗. Define ωR̂ ∈ B(H)∗ by ωR̂(x) = ω(Îx∗Î∗) for
x ∈ B(H). We have that

R
(
(ω ⊗ ι)W

)
= (ωR̂ ⊗ ι)W.

Lemma 2.6.16 Let ξ, η ∈ H. Then, we have

R
(
(ωξ,η ⊗ ι)W

)
= (ωÎη,Îξ ⊗ ι)W = (ωÎ∗η,Î∗ξ ⊗ ι)W.

The action of the scaling group (τt) is described in the next two lemmas.

Lemma 2.6.17 Let t ∈ R. For all ω ∈ B(H)∗, we have that

τt
(
(ω ⊗ ι)W

)
= (ωt ⊗ ι)W

where ωt ∈ B(H)∗ is defined by ωt(x) = ω(N itxN−it).

Lemma 2.6.18 Let z ∈ C. Take ξ ∈ D(N−Imz) and η ∈ D(N Imz). Then, we
have that (ωξ,η ⊗ ι)W ∈ D(τz). Further, we have

τz
(
(ωξ,η ⊗ ι)W

)
= (ωN−izξ,N−izη ⊗ ι)W.



148 Chapter 2. The quantum E(2) group and its dual

By using Proposition B.2.10, we also get the next Lemma 2.6.19.

Lemma 2.6.19 If ξ, η ∈ H0, then (ωξ,η ⊗ ι)W is analytic with respect to τ .
For every z ∈ C, the set span{(ωξ,η ⊗ ι)W | ξ, η ∈ H0} is a core for τz.

We further focus on the action on the basic elements
∑
ckfk(d). Since this case

is not standard, it is more interesting. In Proposition 2.6.32, we apply the found
results to prove important properties of the antipode S.

One should notice that all formulas below are in complete correspondence with
their algebraic counterparts (cf. Proposition 2.1.15).

The next Proposition 2.6.20 describes the action of R. It follows almost directly
from a combination of Lemma 2.6.4 and Theorem 2.5.3.

Proposition 2.6.20 We have that R is characterized as the only non-degenerate
∗-anti-homomorphism from A to M(A) such that

R(c) = c∗ and R(d) = −d.

Let
∑
ckfk(d) ∈ A. Then, we have

R
( ∑

ckfk(d)
)

=
∑

c−kfk(−µkd).

The Proposition 2.6.21 below also follows from Lemma 2.6.4 and Theorem 2.5.3.
It describes the action of the scaling group (τt).

Proposition 2.6.21 Let t ∈ R. We have that τt is characterized as the only
non-degenerate ∗-homomorphism from A to M(A) such that

τt(c) = c and τt(d) = µ−2itd.

Let
∑
ckfk(d) ∈ A. Then, we have

τt
( ∑

ckfk(d)
)

=
∑

ckfk(µ−2itd).

In what follows, we construct basic elements that are analytic for the scaling
group τ . These results are used to calculate the action of S. We make use of
the standard properties from the theory of analytic continuations.

The Section B.3 contains a short overview of the theory of analytic continuations
together with an explanation of the regarding notations and terminology.

We first consider the elements f(c). It is direct to check the Lemma 2.6.22 below.
We recall that τ̄ is the strictly continuous extension of τ to M(A).

Lemma 2.6.22 Let f ∈ C(S1). Then, we have that f(c) is strictly analytic
with respect to τ . For all z ∈ C, we have τ̄z(f(c)) = f(c).
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We also look at elements of the form f(d). Here, the situation is (a lot) more
complicated. We can only prove some partial results.

First, we introduce some notations.

Notation 2.6.23 Let k ∈ Z. We use the notation Sk = {z ∈ C̄µ | |z| = µk}.
For every n ∈ Z, we define a function hk,n : Sk → C by hk,n(z) = zn.

For all n ∈ Z, we introduce the following sets:

Dn,1 =
{
f ∈ C0(C̄µ) | f is constant on every Sk

}
,

Dn,2 =
{
f ∈ C0(C̄µ) | For every k, we have f |Sk

= hk,n or f |Sk
= 0

}
,

Dn,3 =
{
f ∈ C0(C̄µ) | For every k, we have f |Sk

= hk,−n or f |Sk
= 0

}
.

The ∗-algebra generated by the functions in Dn,1∪Dn,2∪Dn,3 is denoted by Dn.

The next Lemma 2.6.24 can be proved by using standard techniques.

Lemma 2.6.24 Let n ∈ N. If f ∈ Dn, then f(d) and f(d)∗ are analytic with
respect to τ . For every z ∈ C, we have the following properties:

1. If f ∈ Dn,1, we have τz(f(d)) = f(d),

2. If f ∈ Dn,2, we have τz(f(d)) = µ−2inzf(d) and τz(f(d)∗) = µ2inzf(d)∗,

3. If f ∈ Dn,3, we have τz(f(d)) = µ2inzf(d) and τz(f(d)∗) = µ−2inzf(d)∗.

We make the following Remark 2.6.25 only once. A similar remark can also be
made to Lemma 2.6.27 and Propositions 2.6.29 and 2.6.30

Remark 2.6.25 If we would replace in Notation 2.6.23 the C∗-algebra C0(C̄µ)
by its multiplier algebra Cb(C̄µ), then the conclusions of Lemma 2.6.24 remain
true under the condition that we replace τ by its strict closure τ̄ .

We know that every map τz is linear and multiplicative. Hence, we can combine
all the above results to construct more elements that are analytic for τ .

Again, we first introduce some notations.

Notation 2.6.26 Let D be the ∗-algebra generated by
⋃
n∈N Dn. Then, we have

that D is a dense subset of C0(C̄µ). We define a ∗-algebra D by

D =
{ ∑

ckfk(d) | fk ∈ D for every k and fk 6= 0 for finitely many k
}
.

It is clear that D is dense in A.

We can now use Proposition B.2.10 to deduce the next result.

Lemma 2.6.27 We have that D is a dense ∗-subalgebra of A. Every element
in D is analytic with respect to τ .

For every z ∈ C, we have that D is a core for τz.
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We can use Proposition 2.6.20 to translate Lemmas 2.6.22, 2.6.24 and 2.6.27 into
properties of the antipode S and its strict closure S̄.

It is immediate to deduce the three following propositions.

Proposition 2.6.28 Let f ∈ C(S1). Then, f(c) ∈ D(S̄) and S̄(f(c)) = f(c∗).
In particular, we have that 1, c, c∗ ∈ D(S̄) with

S̄(1) = 1, S̄(c) = c∗ and S̄(c∗) = c.

Proposition 2.6.29 Let n ∈ N. If f ∈ Dn, then f(d), f(d)∗ ∈ D(S). We have
the following properties:

1. If f ∈ Dn,1, we have S(f(d)) = f(d),

2. If f ∈ Dn,2, we have S(f(d)) = (−µ)−nf(d) and S(f(d)∗) = (−µ)nf(d)∗,

3. If f ∈ Dn,3, we have S(f(d)) = (−µ)nf(d) and S(f(d)∗) = (−µ)−nf(d)∗.

Proposition 2.6.30 We have that D is a core for the antipode S.

We then calculate the action of S on the generators. Loosely speaking, we find
that we have S(c) = c∗, S(d) = −µ−1d and S(d∗) = −µd∗.
The Proposition 2.6.31 improves the intuition about the antipode S.

Proposition 2.6.31 We have that c, c∗ ∈ D(S̄) with

S̄(c) = c∗ and S̄(c∗) = c.

Further, there exists a sequence (dk) in D(S) such that

dk → d and S(dk) → −µ−1d

and also
d∗k → d∗ and S(d∗k) → −µd∗

with convergence in the η-topology.

Proof. The results about c and c∗ are already stated in Proposition 2.6.28.

Let k ∈ N. Then, we consider the function fk ∈ C0(C̄µ) defined by

fk : C̄µ → C : z 7→

{
z if |z| ≤ k;
0 if |z| > k.

We define an element dk ∈ A by dk = fk(d).

Proposition 2.6.29 gives that dk ∈ D(S) and S(dk) = −µ−1dk for every k.

It is not difficult to prove that dk → d and S(dk) → −µ−1d in the η-topology.

The results about d∗ are completely similar. �
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From the above results, we can derive some interesting properties. We state the
most important features of the antipode S in Proposition 2.6.32 below.

The behavior of S implies that the quantum E(2) group is not a Kac algebra.

The Proposition 2.6.32 concludes our study of the antipode S.

Proposition 2.6.32 We have the following properties:

1. The antipode S is an unbounded linear map,

2. We have that D(S) 6= A,

3. The antipode S is not ∗-preserving,

4. We have that S2 6= ι.

Proof. Let n ∈ N. Then, we consider the function hn ∈ C0(C̄µ) defined by

hn : C̄µ → C : z 7→

{
zn if z ∈ S1;
0 if z 6∈ S1.

We define an element yn ∈ A by yn = hn(d).

Proposition 2.6.29 gives that yn ∈ D(S) and S(yn) = (−µ)−nyn for every n.

For every n ∈ N, we have that ‖yn‖ = 1 while ‖S(yn)‖ = µ−n. We hence find
that S is an unbounded linear map.

The closed graph theorem now implies that D(S) 6= A.

Using Proposition 2.6.29, we find that y1, y∗1 ∈ D(S) with S(y1) = −µ−1y1 and
S(y∗1) = −µy∗1 . From this, we then get that S is not ∗-preserving.

Also, we see that y1 ∈ D(S2) and S2(y1) = µ−2y1. This yields S2 6= ι. �

The quantum Ê(2) group

We now construct the antipode Ŝ of the quantum Ê(2) group (Â, Φ̂). Similar to
the case of the quantum E(2) group, we define Ŝ through its polar decomposition
Ŝ = R̂τ̂− i

2
. Every property of S has a dual counterpart related to Ŝ.

The Proposition 2.6.7 again makes it possible to apply the results in Section 1.3.
From the modularity theory, we directly get a series of standard formulas.

We first define the unitary antipode R̂.

Definition 2.6.33 We consider the ∗-anti-automorphism R̂ on Â defined by

R̂ : Â→ Â : x 7→ Îx∗Î∗.

We have that R̂2 = ι.
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Because R̂2 = ι, the next Lemma 2.6.34 holds.

Lemma 2.6.34 We have R̂(x) = Î∗x∗Î for all x ∈ Â.

Next, we come to the scaling group (τ̂t).

Definition 2.6.35 Let t ∈ R. Then, we consider the ∗-automorphism τ̂t on Â
defined by

τ̂t : Â→ Â : x 7→ N̂−itxN̂ it.

We have that (τ̂t) is a norm continuous one-parameter group on Â.

It is important to keep in mind the next Remark 2.6.36.

Remark 2.6.36 The scaling group τ̂ as introduced in Definition 2.6.35 is a
modification of the scaling group τ̂ which is studied in Section 1.3.

Since we have defined Φ̂ as the opposite comultiplication, it is necessary that also
the scaling group τ̂ undergoes a change. With respect to the results in Section 1.3,
we have to replace τ̂t by τ̂−t. This coincides with a change from N to N̂ .

These changes also have their effect on the formulas describing the action of Ŝ.
The results below are of course adapted to the chosen setting.

From Lemma 2.6.6 and Theorem 2.5.24, we find that also N̂0 can be used to
implement the scaling group τ̂ . This result is stated in Lemma 2.6.37.

We remark that the operator N̂0 is used in Definition 2.7.15 to implement the
modular automorphism group σ of the Haar weight ψ on (A,Φ).

Lemma 2.6.37 Let t ∈ R. For all x ∈ Â, we have that

τ̂t(x) = N̂−it
0 xN̂ it

0 .

The antipode Ŝ is then defined as follows.

Definition 2.6.38 We define

Ŝ = R̂τ̂− i
2

= τ̂− i
2
R̂.

The next Theorem 2.6.39 encompasses the basic properties of S.

Theorem 2.6.39 We have that Ŝ : D(Ŝ) ⊆ Â → Â is a closed linear operator
such that {(ι⊗ ω)W | ω ∈ B(H)∗} is a core for Ŝ and

Ŝ
(
(ι⊗ ω)W

)
= (ι⊗ ω)W ∗

for every ω ∈ B(H)∗.

Further, the properties below hold:

• Ŝ is densely defined and has dense range,

• Ŝ is injective and Ŝ−1 = R̂τ̂ i
2

= τ̂ i
2
R̂,
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• Ŝ is anti-multiplicative: for x, y ∈ D(Ŝ), we have that xy ∈ D(Ŝ) and
Ŝ(xy) = Ŝ(y)Ŝ(x),

• For all x ∈ D(Ŝ), we have Ŝ(x)∗ ∈ D(Ŝ) and Ŝ(Ŝ(x)∗)∗ = x,

• Ŝ2 = τ̂−i.

We have the following commutation relations:

• R̂τ̂z = τ̂zR̂ for all z ∈ C,

• Φ̂τ̂t = (τ̂t ⊗ τ̂t)Φ̂ for all t ∈ R,

• Φ̂R̂ = σ̇(R̂⊗ R̂)Φ̂,

• R̂Ŝ = ŜR̂,

• τ̂tŜ = Ŝτ̂t for all t ∈ R.

The next Remark 2.6.40 is about the strict closure of Ŝ.

Remark 2.6.40 The antipode Ŝ is strictly closed on Â. Similar to the results
in the Lemma 2.6.12, we can extend Ŝ to a strictly closed linear map on M(A).
We will use Ŝ to also denote this extension.

For Ŝ considered on M(Â), the strict version of Proposition 2.6.39 holds.

In the results below, it takes little effort to see where we work with Ŝ on Â and
where with its strict closure Ŝ on M(Â).

Most of the time, it does not really matter as almost all properties can be phrased
both for the elements in Â and for those in M(Â).

We now describe the action of R̂, τ̂ and Ŝ. In the first place, we look at the action
on elements (ι⊗ ω)W . We can then apply the results from Section 1.3.

We first state the next Proposition 2.6.41 about the action of Ŝ.

Proposition 2.6.41 Let ω ∈ Â∗. We then have (ι⊗ ω)W ∈ D(Ŝ) and

Ŝ
(
(ι⊗ ω)W

)
= (ι⊗ ω)W ∗. (2.62)

Proof. We get from Proposition 3.2.30 that (Â, Φ̂) is a universal quantum group.
From Remark 9.1 in [61], it then ensues that Equation (2.62) holds. �

The case of the unitary antipode R̂ is considered as second one.

Lemma 2.6.42 Let ξ ∈ D(N̂
1
2 ) and η ∈ D(N̂− 1

2 ). Then, we have

R
(
(ι⊗ ωξ,η)W

)
= (ι⊗ ω

N̂
1
2 ξ,N̂− 1

2 η
)W ∗.
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Lemma 2.6.43 Let ω ∈ B(H)∗. Define ωR ∈ B(H)∗ by ωR(x) = ω(Ix∗I) for
x ∈ B(H). We have that

R̂
(
(ι⊗ ω)W

)
= (ι⊗ ωR)W.

Lemma 2.6.44 Let ξ, η ∈ H. Then, we have

R̂
(
(ι⊗ ωξ,η)W

)
= (ι⊗ ωIη,Iξ)W.

The action of the scaling group (τ̂t) is described in the next two lemmas.

Lemma 2.6.45 Let t ∈ R. For all ω ∈ B(H)∗, we have that

τ̂t
(
(ι⊗ ω)W

)
= (ι⊗ ωt)W

where ωt ∈ B(H)∗ is defined by ωt(x) = ω(N̂ itxN̂−it).

Lemma 2.6.46 Let z ∈ C. Take ξ ∈ D(N̂−Imz) and η ∈ D(N̂ Imz). Then, we
have that (ι⊗ ωξ,η)W ∈ D(τ̂z). Further, we have

τ̂z
(
(ι⊗ ωξ,η)W

)
= (ι⊗ ωN̂−izξ,N̂−izη)W.

By using Proposition B.2.10, we also get the next Lemma 2.6.47.

Lemma 2.6.47 If ξ, η ∈ H0, then (ι ⊗ ωξ,η)W is analytic with respect to τ̂ .
For every z ∈ C, the set span{(ι⊗ ωξ,η)W | ξ, η ∈ H0} is a core for τ̂z.

We also mention the Proposition 2.6.48 below.

Proposition 2.6.48 Let t ∈ R. We have that

1. (R̂⊗R)(W ) = W ,

2. (τ̂−t ⊗ τt)(W ) = W .

We further focus on the action on the basic elements
∑
ukgk(a, |b|). The formulas

below completely correspond with the results in Proposition 2.1.15.

The next Proposition 2.6.49 describes the action of R̂. It follows almost directly
from a combination of Lemma 2.6.6 and Theorem 2.5.24.

Proposition 2.6.49 We have that R̂ is characterized as the only non-degenerate
∗-anti-homomorphism from Â to M(Â) such that

R̂(a) = a−1 and R̂(b) = −b.

Let
∑
ukgk(a, |b|) ∈ Â. Then, we have

R̂
( ∑

ukgk(a, |b|)
)

=
∑

(−u)kgk(µ−ka−1, |b|).
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The Proposition 2.6.50 below also follows from Lemma 2.6.6 and Theorem 2.5.24.
It describes the action of the scaling group (τ̂t).

Proposition 2.6.50 Let t ∈ R. We have that τ̂t is characterized as the only
non-degenerate ∗-homomorphism from Â to M(Â) such that

τ̂t(a) = a and τ̂t(b) = µ−2itb.

Let
∑
ukgk(a, |b|) ∈ Â. Then, we have

τ̂t
( ∑

ukgk(a, |b|)
)

=
∑

µ−2itkukgk(a, |b|).

Similar to the case of the quantum E(2) group, we construct basic elements
in D(Ŝ) and calculate the action of Ŝ on these elements. And again, we will use
these results later on to study the behavior of the antipode Ŝ.

First, we prove some results regarding the scaling group τ̂ . The Lemma 2.6.51 is
a quite easy consequence of the Propositions 2.6.50 and B.2.10.

The strict version of Lemma 2.6.51 also holds.

Lemma 2.6.51 Let
∑
ukgk(a, |b|) ∈ Â. We have that

∑
ukgk(a, |b|) is analytic

with respect to τ̂ . For z ∈ C, we have

τ̂z
( ∑

ukgk(a, |b|)
)

=
∑

µ−2izkukgk(a, |b|).

Moreover, the ∗-algebra{ ∑
k∈Z

ukgk(a, |b|)
∣∣ gk ∈ C0(E) for every k, gk 6= 0 for finitely many k

and gk(s, 0) = 0 for every s ∈ R(µ
1
2 ) if k 6= 0

}
is a core for τ̂z.

We also look at elements of the form f(b). Here, the situation is (a lot) more
complicated. We can only prove some partial results.

First, we introduce some notations.

Notation 2.6.52 Let k ∈ Z. Then, we define Ŝk = {z ∈ C̄(µ
1
2 ) | |z| = µ

1
2k}.

For every n ∈ Z, we define a function ĥk,n : Ŝk → C by ĥk,n(z) = zn.

For all n ∈ Z, we introduce the following sets:

D̂n,1 =
{
f ∈ Cb

(
C̄(µ

1
2 )

)
| f is constant on every Ŝk

}
,

D̂n,2 =
{
f ∈ Cb

(
C̄(µ

1
2 )

)
| For every k, we have f |Ŝk

= ĥk,n or f |Ŝk
= 0

}
,

D̂n,3 =
{
f ∈ Cb(C̄

(
µ

1
2 )

)
| For every k, we have f |Ŝk

= ĥk,−n or f |Ŝk
= 0

}
,

The ∗-algebra generated by the functions in D̂n,1∪ D̂n,2∪ D̂n,3 is denoted by D̂n.
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The next Lemma 2.6.53 can be proved by using standard techniques.

Lemma 2.6.53 Let n ∈ N. If f ∈ D̂n, then f(b) and f(b)∗ are strictly analytic
with respect to τ̂ . For every z ∈ C, we have the following properties:

1. If f ∈ D̂n,1, we have τ̂z(f(b)) = f(b),

2. If f ∈ D̂n,2, we have τ̂z(f(b)) = µ−2inzf(b) and τ̂z(f(b)∗) = µ2inzf(b)∗,

3. If f ∈ D̂n,3, we have τ̂z(f(b)) = µ2inzf(b) and τ̂z(f(b)∗) = µ−2inzf(b)∗.

The next Remark 2.6.54 is just a detail.

Remark 2.6.54 For f ∈ Cb(C̄(µ
1
2 )), we have that f(b) ∈ Â if and only if f = 0.

There is needed only a small calculation to prove this result.

This property shows that in the Lemma 2.6.53, we are obliged to work with the
scaling group τ̂ considered on M(Â).

This remark also applies to Proposition 2.6.56 and 2.6.57.

We can then use Proposition 2.6.49 to translate Lemmas 2.6.51 and 2.6.53 into
properties of the antipode Ŝ and its strict closure.

It is immediate to deduce the two following propositions.

Proposition 2.6.55 Let
∑
ukgk(a, |b|) ∈ Â. We have

∑
ukgk(a, |b|) ∈ D(Ŝ)

and
Ŝ

( ∑
ukgk(a, |b|)

)
=

∑
(−µ)−kukgk(µ−ka−1, |b|).

Moreover, the ∗-algebra{ ∑
k∈Z

ukgk(a, |b|)
∣∣ gk ∈ C0(E) for every k, gk 6= 0 for finitely many k

and gk(s, 0) = 0 for every s ∈ R(µ
1
2 ) if k 6= 0

}
is a core for Ŝ.

Proposition 2.6.56 Let n ∈ N. If f ∈ D̂n, then f(b), f(b)∗ ∈ D(Ŝ). We have
the following properties:

1. If f ∈ D̂n,1, we have Ŝ(f(b)) = f(b),

2. If f ∈ D̂n,2, we have Ŝ(f(b)) = (−µ)−nf(b) and Ŝ(f(b)∗) = (−µ)nf(b)∗,

3. If f ∈ D̂n,3, we have Ŝ(f(b)) = (−µ)nf(b) and Ŝ(f(b)∗) = (−µ)−nf(b)∗.
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We now calculate the action of Ŝ on the generators. Loosely speaking, we find
that we have Ŝ(a) = a−1, Ŝ(b) = −µ−1b and Ŝ(b∗) = −µb∗.
The Proposition 2.6.57 improves the intuition about the antipode Ŝ.

Proposition 2.6.57 There exists a sequence (ak) in D(Ŝ) with every ak invert-
ible and such that

ak → a and Ŝ(ak) → a−1

and also
a−1
k → a−1 and Ŝ(a−1

k ) → a

with convergence in the η-topology.

Further, there exists a sequence (bk) in D(Ŝ) such that

bk → b and Ŝ(bk) → −µ−1b

and also
b∗k → b∗ and Ŝ(b∗k) → −µb∗

with convergence in the η-topology.

Proof. Let k ∈ N. Then, we consider the function fk ∈ Cb(R(µ
1
2 )) defined by

fk : R(µ
1
2 ) → C : z 7→

{
z if 1

k ≤ |z| ≤ k;
1 if |z| < 1

k or |z| > k.

We define an element ak ∈M(Â) by ak = fk(a).

Now, we can use (the strict version of) Proposition 2.6.55 to get the formulated
convergence results about the sequence (ak).

For k ∈ N, we also consider the function hk ∈ C0

(
C̄(µ

1
2 )

)
defined by

hk : C̄(µ
1
2 ) → C : z 7→

{
z if |z| ≤ k;
0 if |z| > k.

We define an element bk ∈M(Â) by bk = hk(b).

Proposition 2.6.56 gives that bk ∈ D(S) and Ŝ(bk) = −µ−1bk for every k.

It is not difficult to prove that bk → b and Ŝ(bk) → −µ−1b in the η-topology.

The results about b∗ are completely similar. �

From the above results, we can derive some interesting properties. We state the
most important features of the antipode Ŝ in Proposition 2.6.58 below.

The behavior of Ŝ implies that the quantum Ê(2) group is not a Kac algebra.

The Proposition 2.6.32 concludes our study of the antipode S.

Proposition 2.6.58 We have the following properties:

1. The antipode Ŝ is an unbounded linear map,

2. We have that D(Ŝ) 6= Â,
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3. The antipode Ŝ is not ∗-preserving,

4. We have that Ŝ2 6= ι.

Proof. Let n ∈ N. Then, we consider the function hn ∈ C0

(
C̄(µ

1
2 )

)
defined by

hn : C̄(µ
1
2 ) → C : z 7→

{
zn if z ∈ S1;
0 if z 6∈ S1.

We define an element yn ∈M(Â) by yn = hn(b).

Proposition 2.6.56 gives that yn ∈ D(Ŝ) and Ŝ(yn) = (−µ)−nyn for every n.

For every n ∈ N, we have that ‖yn‖ = 1 while ‖Ŝ(yn)‖ = µ−n. We hence find
that Ŝ is an unbounded linear map.

The closed graph theorem now implies that D(Ŝ) 6= A.

Using Proposition 2.6.56, we find that y1, y∗1 ∈ D(Ŝ) with Ŝ(y1) = −µ−1y1 and
Ŝ(y∗1) = −µy∗1 . From this, we then get that Ŝ is not ∗-preserving.

Also, we see that y1 ∈ D(Ŝ2) and Ŝ2(y1) = µ−2y1. This yields Ŝ2 6= ι. �

2.7 The Haar weights

In this Section 2.7, we give an intensive study of the Haar weights on the quantum
E(2) group and its dual. The results from Section 1.4 play a crucial role in our
calculations. In this way, we give an illustration of their usefulness.

The Haar weights are indispensable objects in the study of a quantum group
example. From the general theory (cf. Section 1.1), we know that it is difficult to
underestimate their importance. It is thus necessary to pay enough attention
to the related part of the quantum group structure of (A,Φ) and (Â, Φ̂).

As it is said above, we apply the technique from Section 1.4 in our construction of
the Haar weights. For this reason, there is only required a very short calculation
to prove their invariance. Besides the invariance proof, we also provide a lot
of further information about the Haar weights.

The Haar weight ψ on (A,Φ) is both left and right invariant. This precisely
means that the quantum E(2) group is unimodular. The quantum Ê(2) group
is non-unimodular. In this case, we thus have that the left Haar weight ϕ̂ and
the right Haar weight ψ̂ = ϕ̂R̂ are different from each other.

We again mention that we are not the first ones to construct the Haar weights
on the quantum E(2) group and its dual. This credit should go to S. Baaj who
already found a formula for the Haar weights in 1992; see [1, 2].

We asses our technique to prove the invariance of the Haar weights as more direct
and easier than the method applied by Baaj. From the results in Section 1.4, we
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get a clear view of what is going on. The invariance proof given in [1] heavily
depends on the typical structure of (A,Φ). For instance, it makes use of extended
properties of the numbers B(k, n) studied in Appendix A.

At a few points in this Section 2.7, we make use of von Neumann algebra theory.
We therefore introduce the Notation 2.7.1 below.

Notation 2.7.1 We denote M = A′′ and M̂ = Â′′.

Also the next Notation 2.7.2 is important.

Notation 2.7.2 We use Tr to denote the canonical trace on B(H)+.

The next Lemma 2.7.3 is crucial in our calculations.

Lemma 2.7.3 Let x ∈M and p, q ∈ Z. Then, we have

〈x(ep ⊗ eq), ep ⊗ eq〉 = 〈x(e0 ⊗ eq), e0 ⊗ eq〉.

Proof. Let k, l,m, n ∈ Z. From Corollary 2.3.14, it follows that〈
(ωk,l,m,n ⊗ ι)W (ep ⊗ eq), ep ⊗ eq

〉
= B(0, l − q + 1)δk,mδl,nδk,2l.

By Definition 2.4.1,
{

(ωk,l,m,n ⊗ ι)W | k, l,m, n ∈ Z
}

is weakly dense in M . �

We also need the dual version of this result.

Lemma 2.7.4 Let x ∈ M̂ and p, q ∈ Z. There exists a unique vector η ∈ H
such that

x(ep ⊗ eq) = ep ⊗ η.

Proof. Let k, l,m, n ∈ Z. From Corollary 2.3.14, it follows that

(ι⊗ ωk,l,m,n)W (ep ⊗ eq)
= ep ⊗B(p− 2q − l + n, p− q − l + 1)δ−k+2l+m−2n,p−2q ep−q−l+n.

By Definition 2.4.2,
{

(ι⊗ ωk,l,m,n)W | k, l,m, n ∈ Z
}

is weakly dense in M̂ . �

The quantum E(2) group

Similar as in Sections 2.5 and 2.6, we first look at the case of the quantum
E(2) group. The Theorem 1.4.26 infers that there exists a family of weights ψq
on (A,Φ) that are strongly right invariant. Without being industrious, we can
find a q ∈ M̂ ′ such that ψq is a right Haar weight. We then denote ψ = ψq.
As said above, it turns out that ψ is both left and right invariant.
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The results below complete the proof of Theorem 2.4.3. They also show that the
method of Woronowicz [166] does not give the Haar weight (cf. Remark 2.7.20).
This then indicates the value of the technique in Section 1.4.

In this Section 2.7, we make use of several notations as presented in Section B.1.
We e.g. recall that the notation TrN is explained in Example B.1.33.

We apply the Proposition 1.4.28 in a straightforward manner. Hence, we dispose
of a concrete scheme of how to construct the right Haar weight ψ.

The first step is to define a weight ψ1 and a projection q.

Definition 2.7.5 We define an n.s.f. weight ψ1 on B(H)+ by ψ1 = TrN .
Hence, for all x ∈ B(H)+, we have

ψ1(x) = TrN (x) =
∑
k,l∈Z

µ2(k−l)〈x(ek ⊗ el), ek ⊗ el〉.

Definition 2.7.6 Let p be the one-dimensional projection on the subspace Ce0.
We define a projection q ∈ B(H) by q = p⊗ 1.

The next Lemma 2.7.7 is crucial.

Lemma 2.7.7 We have q ∈ M̂ ∩ M̂ ′.

Proof. Define g ∈ Cb(E) by g(s, t) = χ{1}(t). We then have q = g(a, |b|). Thus,
we get that q ∈M(Â); see Theorem 2.5.21.

The property that q ∈ M̂ ′ follows easily from Lemma 2.7.4. �

It is now a cushy job to produce the Haar weight ψ.

Definition 2.7.8 We define a weight ψ on A+ by setting ψ(x) = ψ1(qxq).

Thus, for all x ∈ A+, we have

ψ(x) =
∑
k∈Z

µ−2k〈x(e0 ⊗ ek), e0 ⊗ ek〉.

The next Theorem 2.7.9 is the central property in this Section 2.7.

Theorem 2.7.9 We have that ψ is a faithful KMS-weight on A+. Further, the
weight ψ is strongly left and strongly right invariant, i.e., we have

ψ
(
(ω ⊗ ι)Φ(x)

)
= ψ

(
(ι⊗ ω)Φ(x)

)
= ω(1)ψ(x).

for all x ∈ A+ and ω ∈ A∗+.

Proof. We define y ∈ A by y = (ω0,0 ⊗ ι)W . It is not difficult to compute that
we have ψ(y∗y) = 1. See Proposition 2.7.13 for an explicit calculation.

The Proposition 1.4.28 yields that ψ is a faithful KMS-weight on A+ that is
strongly right invariant. Further, we also get that ψR is strongly left invariant.
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Let x ∈ A+ and k, l ∈ Z. An easy calculation (using Lemma 2.7.3) gives

〈R(x)(ek ⊗ el), ek ⊗ el〉 = 〈x(e−k+2l ⊗ el), e−k+2l ⊗ el〉
= 〈x(e0 ⊗ el), e0 ⊗ el〉 = 〈x(ek ⊗ el), ek ⊗ el〉.

(2.63)

Together with Definition 2.7.8, this Equation (2.63) yields ψR = ψ. �

The next Remark 2.7.10 is just a trivia.

Remark 2.7.10 In the case of the positive vector functionals ωp,q, it is possible
to prove the (strong) left and right invariance by a direct calculation.

We illustrate how to do this in the case of left invariance.

Let x ∈ A+ and p, q ∈ Z. Using Proposition 2.3.13, we see that

ψ
(
(ωp,q ⊗ ι)Φ(x)

)
=

∑
k

µ−2k
〈
(ωp,q ⊗ ι)Φ(x)(e0 ⊗ ek), e0 ⊗ ek

〉
=

∑
k

µ−2k
〈
(x⊗ 1)W ∗(ep ⊗ eq ⊗ e0 ⊗ ek),W ∗(ep ⊗ eq ⊗ e0 ⊗ ek)

〉
=

∑
k,t

µ−2kB(t, q − k + 1)2〈x(ep ⊗ eq−t), ep ⊗ eq−t〉

=
∑
t

( ∑
k

µ−2kB(q − t, q − k + 1)2
)
〈x(e0 ⊗ et), e0 ⊗ et〉

Notice that x(ep ⊗ el) = x(e0 ⊗ el) for all l ∈ Z; see Lemma 2.7.3.

For all k, t ∈ Z, we have that

µ−2kB(q − t, q − k + 1)2 = µ−2tB(q − k, q − t+ 1)2.

This follows from the formulas in Proposition 2.2.6.

Using the above results, we get

ψ
(
(ωp,q ⊗ ι)Φ(x)

)
=

∑
t

( ∑
k

µ−2tB(q − k, q − t+ 1)2
)
〈x(e0 ⊗ et), e0 ⊗ et〉

=
∑
t

µ−2t〈x(e0 ⊗ et), e0 ⊗ et〉 = ψ(x).

This proves the left invariance property.

We now prove several useful properties of the KMS-weight ψ. This extra infor-
mation about ψ does not contain any astonishing result. Nonetheless, it helps
to get a clear picture of ψ and is therefore important.

From Theorem 1.1.10, we get the following uniqueness result.

Theorem 2.7.11 Let η be a non-zero, densely defined, lower semi-continuous
weight on A+ that is either left or right invariant.

Then, there exists a number r > 0 such that η = rψ.
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The next Proposition 2.7.12 displays the action of ψ on basic elements.

Proposition 2.7.12 Let x =
∑
ckfk(d) ∈ A. We have

ψ(x∗x) =
1

2π

∑
k,m

µ−2m

∫ 2π

0

|fk(µ−meit)|2 dt.

If fk ∈ K(C̄µ) for every k, then x ∈ Nψ ∩N∗
ψ.

Proof. Let x =
∑
ckfk(d) ∈ A. It is straightforward to compute that

ψ(x∗x) =
∑
k,m

µ−2m
〈
|fk|2(µ−ms)e0, e0

〉
.

The Stone-Weierstrass theorem gives that the set of polynomials on S1 is dense
in C(S1). We can then use the functional calculus to show that

〈g(s)en, en〉 =
1

2π

∫ 2π

0

g(eit) dt

for all g ∈ C(S1) and n ∈ Z. �

We also have the Proposition 2.7.13 below.

Proposition 2.7.13 Let k, l,m, n ∈ Z. Denote x = (ωk,l,m,n ⊗ ι)W . Then, we
have that x ∈ Nψ ∩N∗

ψ. We have

ψ(x∗x) = µ2(n−k)δk,m < +∞,

ψ(xx∗) = µ−2lδk,m < +∞.

Proof. Let k, l,m, n ∈ Z and x = (ωk,l,m,n ⊗ ι)W . We only consider the first
formula above. It is completely similar to prove the second one.

Take q ∈ Z. From Corollary 2.3.14, we get that

〈x∗x(e0 ⊗ eq), e0 ⊗ eq〉 = B(n− l, k − l − q + 1)2δk,m. (2.64)

The Proposition 2.2.6 implies that we have

µ−2qB(n− l, k − l − q + 1)2 = µ2(n−k)B(k − l − q, n− l + 1)2. (2.65)

Using Definition 2.7.8 and Equations (2.64) and (2.65), we find that

ψ(x∗x)=
∑
q

µ−2q〈x∗x(e0 ⊗ eq), e0 ⊗ eq〉=
∑
q

µ−2qB(n− l, k − l − q + 1)2δk,m

=
∑
q

µ2(n−k)B(k − l − q, n− l + 1)2δk,m = µ2(n−k)δk,m.

The last step follows from Proposition A.9. �
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The next Remark 2.7.14 further considers the action of ψ.

Remark 2.7.14 The Propositions 2.7.12 and 2.7.13 can be used to construct
elements y ∈ A for which we have y 6∈ Mψ or y 6∈ Nψ.

Define f ∈ C0(C̄µ) by f(z) = 1 if |z| ≤ 1 and f(z) = 1
|z| if |z| > 1. We get from

the Proposition 2.7.12 that f(d) ∈ A+ and ψ(f(d)) = +∞.

Then, define a vector ξ ∈ H by ξ = e0 ⊗
∑
n∈Z

1
nen. From Proposition 2.7.13,

it follows that (ωξ ⊗ ι)W 6∈ Nϕ ∪Nϕ∗ .

We now introduce a one-parameter group (σt). It will appear as the modular
automorphism group of the KMS-weight ψ; see Proposition 2.7.17.

All the results in Definition 2.7.15 follow directly from Equation (2.66) or can
be obtained by using the formulas in Proposition 2.7.16 below.

Definition 2.7.15 For every t ∈ R, we consider the ∗-automorphism σt on A
defined by

σt : A→ A : x 7→ N̂−it
0 xN̂ it

0 . (2.66)

Then (σt) is a norm continuous one-parameter group on A.

It is easy to calculate the action of σ on basic elements.

Proposition 2.7.16 Let x =
∑
ckfk(d) ∈ A. Then, we have that x is analytic

with respect to σ. For every z ∈ C, we have

σz(x) =
∑

µ−2ikzckfk(d).

Further, for all z ∈ C, we have that{ ∑
k∈Z

ckfk(d)
∣∣ fk ∈ C0(C̄µ) for every k and fk 6= 0 for finitely many k

}
is a core for σz.

The Proposition 2.7.17 describes the most important (standard) objects related
to the Haar weight ψ. In the proof, we use Tomita-Takesaki theory.

Proposition 2.7.17 We have that ψ is a faithful KMS-weight on A+ with σ
as the (unique) modular automorphism group.

The GNS-construction (Hψ, πψ,Λψ) of ψ is given by

• Hψ = `2(Z)⊗ `2(Z)⊗ `2(Z);

• Λψ : Nψ → Hψ : x 7→ Λψ(x) =
∑
k∈Z

µ−kx(e0 ⊗ ek)⊗ ek;

• πψ : A→ B(Hψ) : x 7→ x⊗ 1.
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The modular conjugation Jψ and the modular operator ∇ψ of ψ in the above
GNS-construction (Hψ, πψ,Λψ) are given by the formulas

∇ψ = 1⊗m−2 ⊗m2

and
Jψ(ep ⊗ eq ⊗ er) = e−p ⊗ er ⊗ eq

where p, q, r ∈ Z.

Proof. Theorem 2.7.9 yields that ψ is a faithful KMS-weight. It is easy to check
that (Hψ, πψ,Λψ) is a GNS-construction for ψ. The only thing that may ask for
some extra explanation is the fact that Λψ(Nψ) is dense in Hψ.

Let k, l,m ∈ Z. We consider the function f ∈ K(C̄µ) defined by

f(z) =

{(
z
|z|

)k−l+m if |z| = µ−l;

0 otherwise.

We then define an element x ∈ A by x = µmf1(d)cl−m.

From Proposition 2.7.12, we get x ∈ Nψ ∩ N∗
ψ. It is straightforward to prove

that Λψ(x) = ek ⊗ el ⊗ em. This implies that Λψ(Nψ) is dense in Hψ.

We define a weight ψvn on M+ by setting ψvn(x) = ψ1(qxq). It follows from
Proposition 1.4.17 that ψvn is an n.s.f. weight.

Of course, the GNS-construction (Hψvn , πψvn ,Λψvn) of ψvn is then given by the
same formulas as (Hψ, πψ,Λψ). Starting from this GNS-construction, it is quite
standard to built up the Tomita-Takesaki objects of the n.s.f. weight ψvn. In this
way, we can find the given formulas for ∇ψ and Jψ.

If we now invoke Tomita-Takesaki theory, it is not too hard to prove that the
modular automorphism group σvn of the n.s.f. weight ψvn is given by

σvn
t : M →M : x 7→ N̂−it

0 xN̂ it
0 .

We know from Definition 2.7.15 that σ is a norm continuous one-parameter
group on A. Using the above results, it is not difficult anymore to prove that σ
is the modular automorphism group of the faithful KMS-weight ψ. �

The next Proposition 2.7.18 gives some further properties of ψ. The fact that ψ is
invariant with respect to the scaling group (τt) implies that the scaling constant ν
of the quantum E(2) group is equal to 1; see Proposition 2.8.3.

Proposition 2.7.18 Let t ∈ R. We have

1. ψσt = ψ,
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2. ψτt = ψ,

3. ψR = ψ.

Proof. Take t ∈ R. The property ψσt = ψ is contained in Proposition 2.7.17.
From the proof of Theorem 2.7.9, we know that ψR = ψ.

Let x ∈ A and k, l ∈ Z. It is direct to check that

〈τt(x)(ek ⊗ el), ek ⊗ el〉 = 〈x(ek ⊗ el), ek ⊗ el〉.

Together with Definition 2.7.8, this equation yields that ψτt = ψ. �

The Remark 2.7.19 contains some simple facts.

Remark 2.7.19 It is possible to apply the technique from Section 1.4 with other
operators than N and q. We give some concise comment on this fact.

Let k ∈ Z. We define a strictly positive operator N̂k on H by N̂k = mk ⊗m2.
It is easy to check that N̂k satisfies τ̂t(x) = N̂−it

k xN̂ it
k for t ∈ R and x ∈ Â.

Let pk be the projection on Cek. We define qk ∈ M̂ ∩ M̂ ′ by qk = pk ⊗ 1.

For all r, s ∈ Z, we define a weight ψr,s on A+ by ψr,s(x) = TrN̂r
(qsxqs). We

can now apply Proposition 1.4.28 to show that every weight ψr,s is a faithful
KMS-weight on A+ that is strongly right invariant.

The Lemma 2.7.3 gives that ψr,s = µ2rsψ for all r, s ∈ Z.

For every k ∈ Z, we have that qk commutes with N̂0. So, we can define a positive
operator h on H by setting h = N̂−1

0 qk. We then have that ψ(x) = Trh(x) for
all x ∈ A+. However, h is not strictly positive.

We have that qk ∈ D(Ŝ) and Ŝ(qk) = qk for every k ∈ Z.

The next Remark 2.7.20 shows that Woronowicz’ formula in [166] cannot be
used to produce a Haar weight in the case of the quantum E(2) group.

Remark 2.7.20 Theorem 1.4.26 implies that the weight ψ1 is a faithful, lower
semi-continuous weight on A+ that is strongly right invariant.

It is not difficult to prove that ψ1 is not densely defined.

Let x ∈M+. From Lemma 2.7.3, we get

ψ1(x) =
∑
k∈Z

µ2kψ(x) (2.67)

Because ψ is faithful, we can deduce that Mψ1 ∩A+ = {0}.
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The quantum Ê(2) group

We now apply the results of Section 1.4 to find a formula for the Haar weights
on the quantum Ê(2) group (Â, Φ̂). It turns out that the left Haar weight ϕ̂ and
the right Haar weight ψ̂ = ϕ̂R̂ are different from each other.

From the general theory (cf. Proposition 1.1.25), we know that there exists
a unique modular element δ̂ that connects the two weights ϕ̂ and ψ̂ via the
formula ψ̂ = ϕ̂δ̂. We will calculate in Proposition 2.8.4 that δ̂ = a4.

The Definition 2.7.21 defines the Haar weights ϕ̂ and ψ̂. Unlike the case of the
quantum E(2) group, we can employ the formulas from Section 1.4 with q = 1.
We do not know any reason why this dissimilarity occurs.

Definition 2.7.21 We define weights ϕ̂, ψ̂ on Â+ by setting that

ϕ̂(x) = TrN (x) and ψ̂(x) = TrN̂0
(x).

Thus, for all x ∈ Â+, we have

ϕ̂(x) =
∑
k,l∈Z

µ2(k−l)〈x(ek ⊗ el), ek ⊗ el〉,

ψ̂(x) =
∑
k,l∈Z

µ2l〈x(ek ⊗ el), ek ⊗ el〉.

It is clear that we can now proceed quite rapidly. The fact that we can take q = 1
gives us the opportunity to dodge extra computations.

The next Theorem 2.7.22 states that ϕ̂ is the left Haar weight.

Theorem 2.7.22 We have that ϕ̂ is a faithful KMS-weight on Â+. Further,
the weight ϕ̂ is strongly left invariant, i.e., we have

ϕ̂
(
(ω ⊗ ι)Φ̂(x)

)
= ω(1)ϕ̂(x).

for all x ∈ Â+ and ω ∈ Â∗+.

Proof. We define y ∈ Â by y = (ι⊗ ω0,0)W . It is not difficult to calculate that
we have ϕ̂(y∗y) = 1. See Proposition 2.7.27 for an explicit calculation.

Because Φ̂ is defined in the opposite way, Proposition 1.4.28 yields that ϕ̂ is a
faithful KMS-weight on A+ which is strongly left invariant. �

It is then easy to derive that ψ̂ is the right Haar weight.

Theorem 2.7.23 We have that ψ̂ is a faithful KMS-weight on Â+. Further,
the weight ψ̂ is strongly right invariant, i.e., we have

ψ̂
(
(ι⊗ ω)Φ̂(x)

)
= ω(1)ψ̂(x).

for all x ∈ Â+ and ω ∈ Â∗+.
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Proof. We get from Theorem 2.7.23 and Proposition 1.4.28 that ϕ̂R̂ is a faithful
KMS-weight which is strongly right invariant.

Let x ∈ Â+ and k, l ∈ Z. An easy calculation gives that

〈R̂(x)(ek ⊗ el), ek ⊗ el〉 = 〈x(ek ⊗ ek−l), ek ⊗ ek−l〉.

We hence have

ϕ̂R̂(x) =
∑
k,l

µ2(k−l)〈R̂(x)(ek ⊗ el), ek ⊗ el〉 =
∑
k,l

µ2(k−l)〈x(ek ⊗ ek−l), ek ⊗ ek−l〉

=
∑
k,l

µ2l〈x(ek ⊗ el), ek ⊗ el〉 = ψ̂(x) = ψ̂(x).

This implies that ϕ̂R̂ = ψ̂. �

We now prove several useful properties of the KMS-weights ϕ̂ and ψ̂. This extra
information helps to get a clear picture of their behavior.

From Theorem 1.1.10, we get the following uniqueness result.

Theorem 2.7.24 Let η be a non-zero, densely defined, lower semi-continuous
weight on Â+. The following properties hold:

• If η is left invariant, there exist a number r > 0 such that η = rϕ̂;

• If η is right invariant, there exist a number r > 0 such that η = rψ̂.

The next Proposition 2.7.25 displays the action of ϕ̂ and ψ̂ on basic elements.
It is straightforward to prove the mentioned formulas.

Proposition 2.7.25 Let x =
∑
ukgk(a, |b|) ∈ Â. We have that

ϕ̂(x∗x) =
∑
k,m,n

µ2(m−n)
∣∣gk(µ−

1
2m+n, µ

1
2m)

∣∣2,
ψ̂(x∗x) =

∑
k,m,n

µ2n
∣∣gk(µ−

1
2m+n, µ

1
2m)

∣∣2.
If gk ∈ K(E) for every k, then x ∈ Nϕ̂ ∩N∗

ϕ̂ ∩Nψ̂ ∩N∗
ψ̂
.

The Remark 2.7.26 is just a detail.

Remark 2.7.26 Consider the two sets

D1 = {(µ− 1
2k, µ−

1
2k) | k ∈ N} and D2 = {(µ 1

2k, µ−
1
2k) | k ∈ N}.

Define g1, g2 ∈ C0(E) by g1(x, y) = 1
x2χD1(x, y) and g2(x, y) = x2χD2(x, y).
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Using the formulas in Proposition 2.7.25, we see that

• g1(a, |b|) ∈ M+
ϕ̂ with ψ̂(g1(a, |b|)) = +∞,

• g2(a, |b|) ∈ M+

ψ̂
with ϕ̂(g2(a, |b|)) = +∞.

Hence, M+
ϕ̂ 6⊆ M+

ψ̂
and M+

ψ̂
6⊆ M+

ϕ̂ .

We then have the Proposition 2.7.27 below.

Proposition 2.7.27 Let k, l,m, n ∈ Z. Denote x = (ι⊗ ωk,l,m,n)W . Then, we
have that x ∈ Nϕ̂ ∩N∗

ϕ̂ ∩Nψ̂ ∩N∗
ψ̂
. We have

ϕ̂(x∗x) = µ−2(k−2l−m+2n) < +∞, ψ̂(x∗x) = µ2n < +∞,

ϕ̂(xx∗) = µ2(2k+l−2m) < +∞, ψ̂(xx∗) = µ2(k+l−m) < +∞.

Proof. Let k, l,m, n ∈ Z and x = (ωk,l,m,n ⊗ ι)W . We only consider the first
formula above. It is completely similar to prove the other ones.

Take p, q ∈ Z. From Corollary 2.3.14, we get that

〈x∗x(ep ⊗ eq), ep ⊗ eq〉
= B(−k + l +m− n, q − k + l +m− 2n+ 1)2δp−2q,−k+2l+m−2n.

(2.68)

The Proposition 2.2.6 implies that we have

µ2(q−k+2l+m−2n)B(−k + l +m− n, q − k + l + l − 2n+ 1)2

= µ2(−k+2l+m−2n)B(q − k + l − n,−k + l +m− n+ 1)2.
(2.69)

Using Definition 2.7.21 and Equations (2.68) and (2.69), we find that

ϕ̂(x∗x) =
∑
p,q

µ2(p−q)〈x∗x(ep ⊗ eq), ep ⊗ eq〉

=
∑
p,q

µ2(p−q)B(−k + l +m− n, q − k + l +m− 2n+ 1)2δp−2q,−k+2l+m−2n

=
∑
q

µ2(q−k+2l+m−2n)B(−k + l +m− n, q − k + l +m− 2n+ 1)2

=
∑
q

µ2(−k+2l+m−2n)B(q − k + l − n,−k + l +m− n+ 1)2

= µ−2(k−2l−m+2n).

The last step follows from Proposition A.9. �

The Remark 2.7.28 is again just a detail.

Remark 2.7.28 Define a vector ξ ∈ H by ξ = e0 ⊗
∑
n∈Z

1
nen. From Proposi-

tion 2.7.27, it follows that (ι⊗ ωξ)W 6∈ Nϕ̂ ∪Nϕ̂∗ ∪Nψ̂ ∪Nψ̂∗ .
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We now introduce two one-parameter groups (σ̂t) and (σ̂′t). They will appear
as the modular automorphism groups of respectively the KMS-weight ϕ̂ and the
KMS-weight ψ̂; see Propositions 2.7.32 and 2.7.33.

All the results in Definition 2.7.29 follow directly from the defining relations or
can be obtained by using the formulas in Proposition 2.7.30.

Definition 2.7.29 For every t ∈ R, we consider the ∗-automorphisms σ̂t and σ̂′t
on Â defined by

σ̂t : Â→ Â : x 7→ N itxN−it,

σ̂′t : Â→ Â : x 7→ N̂ it
0 xN̂

−it
0 .

Then (σ̂t) and (σ̂′t) are norm continuous one-parameter groups on Â.

It is easy to calculate the action of σ̂ and σ̂′ on basic elements.

Proposition 2.7.30 Let x =
∑
ukgk(a, |b|) ∈ Â. Then, we have that x is

analytic with respect to both σ̂ and σ̂′. For every z ∈ C, we have

σ̂z(x) =
∑

µ−2ikzukgk(a, |b|) and σ̂′z(x) =
∑

µ2ikzukgk(a, |b|).

Further, for all z ∈ C, we have that{ ∑
k∈Z

ukgk(a, |b|) | gk ∈ C0(E) for every k, gk 6= 0 for finitely many k

and gk(s, 0) = 0 for every s ∈ R(µ
1
2 ) if k 6= 0

}
is a core for both σ̂z and σ̂′z.

We observe the Lemma 2.7.31 below.

Lemma 2.7.31 Let t ∈ R. For all x ∈ Â, we have that

σ̂t(x) = σ̂′−t(x) = τ̂t(x).

Proof. This is a direct consequence of Definitions 2.7.29 and 2.6.35 combined
with Lemma 2.6.37. It can also easily be checked on the generators. �

The two following Propositions 2.7.32 and 2.7.33 describe the most important
(standard) objects related to the Haar weights ϕ̂ and ψ̂.

Proposition 2.7.32 We have that ϕ̂ is a faithful KMS-weight on Â+ with σ̂
as the (unique) modular automorphism group.

The GNS-construction (Hϕ̂, πϕ̂,Λϕ̂) of ϕ̂ is given by

• Hϕ̂ = `2(Z)⊗ `2(Z)⊗ `2(Z);
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• Λϕ̂ : Nϕ̂ → Hϕ̂ : x 7→ Λϕ̂(x) =
∑
k,l∈Z

µk−lx(ek ⊗ el)⊗ el;

• πϕ̂ : A→ B(Hϕ̂) : x 7→ x⊗ 1.

The modular conjugation Jϕ̂ and the modular operator ∇ϕ̂ of ϕ̂ in the above
GNS-construction (Hϕ̂, πϕ̂,Λϕ̂) are given by the formulas

∇ϕ̂ = 1⊗m−2 ⊗m2

and
Jϕ̂(ep ⊗ eq ⊗ er) = ep ⊗ er ⊗ eq

where p, q, r ∈ Z.

Proof. Theorem 2.7.22 yields that ϕ̂ is a faithful KMS-weight. It is easy to
check that (Hϕ̂, πϕ̂,Λϕ̂) is a GNS-construction for ϕ̂.

We remark that the result of Lemma 2.7.4 is certainly helpful when proving the
formula 〈Λϕ̂(x),Λϕ̂(y)〉 = ϕ̂(y∗x). Further, we also give some extra explanation
about the property that Λϕ̂(Nϕ̂) is dense in Hϕ̂.

Let k, l,m ∈ Z. We define a function g ∈ K(E) by g = χ
{(µ−

1
2 k+m,µ

1
2 k)}

.

We consider the element y ∈ Â defined by y = µm−kul−mg(a, |b|). Then, we get
from Proposition 2.7.27 that y ∈ Nϕ̂ ∩N∗

ϕ̂. It is straightforward to prove that
Λϕ̂(y) = ek ⊗ el ⊗ em. This implies that Λϕ̂(Nϕ̂) is dense in Hϕ̂.

Starting from the GNS-construction (Hϕ̂, πϕ̂,Λϕ̂), it is quite standard to find
the mentioned formulas for for ∇ϕ̂ and Jϕ̂.

From Definition 2.7.29, we know that the one-parameter group σ̂ is norm con-
tinuous on Â. It is then a direct consequence of Definitions 2.7.21 and 2.7.29
that σ̂ is the modular automorphism group of the KMS-weight ϕ̂. �

Proposition 2.7.33 We have that ψ̂ is a faithful KMS-weight on Â+ with σ̂′

as the (unique) modular automorphism group.

The GNS-construction (Hψ̂, πψ̂,Λψ̂) of ψ̂ is given by

• Hψ̂ = `2(Z)⊗ `2(Z)⊗ `2(Z);

• Λψ̂ : Nψ̂ → Hψ̂ : x 7→ Λψ̂(x) =
∑
k,l∈Z

µlx(ek ⊗ el)⊗ el;

• πψ̂ : A→ B(Hψ̂) : x 7→ x⊗ 1.
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The modular conjugation Jψ̂ and the modular operator ∇ψ̂ of ψ̂ in the above
GNS-construction (Hψ̂, πψ̂,Λψ̂) are given by the formulas

∇ψ̂ = 1⊗m2 ⊗m−2

and
Jψ̂(ep ⊗ eq ⊗ er) = e−p ⊗ er ⊗ eq

where p, q, r ∈ Z.

Proof. We can almost copy the proof of Proposition 2.7.32. For ψ̂, we have
to consider the element y′ ∈ Â defined by y′ = µ−mul−mg(a, |b|) in order to
have Λψ̂(y′) = ek ⊗ el ⊗ em. The other things are completely similar. �

The next Proposition 2.7.34 gives some further properties of ϕ̂ and ψ̂. We make
use of the above results so as to formulate a short proof.

Proposition 2.7.34 Let t ∈ R. We have

1. ϕ̂σ̂t = ϕ̂σ̂′t = ϕ̂ and ψ̂σ̂′t = ψ̂σ̂t = ψ̂,

2. ϕ̂τ̂t = ϕ̂ and ψ̂τ̂t = ψ̂,

3. ϕ̂R̂ = ψ̂ and ψ̂R̂ = ϕ̂.

Proof. First notice that the properties ϕ̂σ̂t = ϕ̂ and ψ̂σ̂′t = ψ̂ are contained
in the Propositions 2.7.32 and 2.7.33.

Take x ∈ Â and k, l ∈ Z. It is straightforward to check that

〈τ̂t(x)(ek ⊗ el), ek ⊗ el〉 = 〈x(ek ⊗ el), ek ⊗ el〉.

If we combine this equation with Definition 2.7.21 and Lemma 2.7.31, we find
all the mentioned formulas concerning τ̂ , σ̂ and σ̂′.

We know from the proof of Theorem 2.7.23 that ϕ̂R̂ = ψ̂. Because R̂2 = ι
(cf. Definition 2.6.33), we also get ψ̂R̂ = ϕ̂. �

2.8 Features of the quantum E(2) group

We contemplate in this Section 2.8 the main features of the quantum E(2) group.
In this study, we are of course swayed by the general theory.

Each of the subsequent subsections is used to focus on one typical aspect of the
quantum groups (A,Φ) and (Â, Φ̂). Since we can rely on all of the elaborated
results in Sections 2.4 to 2.7, it is possible to keep the treatments quite concise.
The Theorem 2.8.54 then sums up the most important properties.
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Before we explore the traits of the quantum E(2) group and its dual, we first
restate the two central Theorems 2.4.3 and 2.4.4.

The Theorem 2.8.1 is about the quantum E(2) group.

Theorem 2.8.1 The pair (A,Φ) is a locally compact quantum group.

The Theorem 2.8.2 states the dual result.

Theorem 2.8.2 The pair (Â, Φ̂) is a locally compact quantum group.

2.8.1 The modular elements and the scaling constants

We first study the modular elements and the scaling constants. These two objects
are defined in Propositions 1.1.23 and 1.1.25.

We recall that we already know that the quantum E(2) group is unimodular and
that the quantum Ê(2) group is non-unimodular. This follows from the results
about the Haar weights as formulated in the Section 2.7.

It is not difficult to find concrete formulas for the modular elements. We just
bring together some of the aforesaid properties of the Haar weights. Further, it
is almost direct to find that the scaling constants are equal to 1.

The case of the quantum E(2) group is quite trivial.

Proposition 2.8.3 The modular element δ of (A,Φ) is the identity operator.
Thus, the quantum E(2) group is unimodular.

Further, the scaling constant ν of (A,Φ) equals 1.

Proof. Proposition 2.7.18 gives that ψR = ψ. Hence, we get δ = 1. This
immediately implies that ν = 1. �

For the quantum Ê(2) group, things are more interesting.

Proposition 2.8.4 The modular element δ̂ of (Â, Φ̂) is the strictly positive
operator a4. Thus, the quantum Ê(2) group is non-unimodular.

Further, the scaling constant ν̂ of (Â, Φ̂) equals 1.

Proof. From Proposition 2.7.34, we know that ϕ̂τ̂t = ϕ̂ for all t ∈ R. This then
yields that we have ν̂ = 1.

Using standard techniques from the Tomita-Takesaki theory, it is not difficult
to prove that ψ̂ = ϕ̂a4 . It follows from Proposition 2.7.30 that σ̂t(a4) = a4 for
all t ∈ R. We hence get that δ̂ = a4. �
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From the general theory, we can find a lot of information about the modular
element δ̂. We include the most important properties.

The next Proposition 2.8.5 ensues from Proposition 1.1.25.

Proposition 2.8.5 We have that δ̂ is characterized as the only strictly positive
element in Âη such that σ̂t(δ̂) = δ̂ for all t ∈ R and ψ̂ = ϕ̂δ̂.

We have the following basic properties:

1. ψ̂ = ϕ̂δ̂ and ϕ̂ = ψ̂δ̂−1 ,

2. Φ̂(δ̂) = δ̂ ⊗ δ̂,

3. R̂(δ̂) = δ̂−1 and τ̂t(δ̂) = δ̂ for all t ∈ R,

4. If t ∈ R, then δ̂it ∈ D(Ŝ) and Ŝ(δ̂it) = δ̂−it,

5. σ̂t(δ̂) = σ̂′t(δ̂) = δ̂ for all t ∈ R,

6. σ̂′t(a) = δ̂itσ̂t(a)δ̂−it for all t ∈ R and a ∈ Â.

We further mention two formulas saying how ϕ̂ behaves under right translations
and how ψ̂ behaves under left translations.

From Proposition 1.1.26, we can infer the Proposition 2.8.6 below.

Proposition 2.8.6 Let x ∈ Â+. Take ξ ∈ D(δ̂
1
2 ) and η ∈ D(δ̂−

1
2 ). Then, we

have that

1. ϕ̂
(
(ι⊗ ωξ)Φ̂(x)

)
= ϕ̂(x)〈δ̂ 1

2 ξ, δ̂
1
2 ξ〉,

2. ψ̂
(
(ωη ⊗ ι)Φ̂(x)

)
= ψ̂(x)〈δ̂− 1

2 η, δ̂−
1
2 η〉.

2.8.2 The regular representations

We now consider the left regular representation W̃ and the right regular repre-
sentation Ṽ of the quantum E(2) group (A,Φ). We display formulas for both
these primordial multiplicative unitaries.

From Section 1.1, we know that the (left) regular representation W̃ is one of the
main actors in the general theory. It is a fundamental tool appearing almost
everywhere in the built-up of the Kustermans-Vaes theory.

The left regular representation W̃ is used below to bridge between the concrete
setting in Chapter 2 and the general theory as expounded in Section 1.1.

We start by recalling the general definitions.
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Definition 2.8.7 We denote by W̃ and Ṽ the left, respectively right, regular
representation of the quantum E(2) group (A,Φ). This means that the unitaries
W̃ , Ṽ ∈ B(Hψ ⊗Hψ) are defined by the formulas

W̃ ∗(Λψ(x)⊗ Λψ(y)
)

= (Λψ ⊗ Λψ)
(
Φ(y)(x⊗ 1)

)
Ṽ

(
Λψ(x)⊗ Λψ(y)

)
= (Λψ ⊗ Λψ)

(
Φ(x)(1⊗ y)

)
where x, y ∈ Nψ.

From Proposition 1.1.16, we get the following property.

Proposition 2.8.8 The two operators W̃ and Ṽ are multiplicative unitaries.
Moreover, we have that W̃ and Ṽ are manageable.

We display a formula for Ṽ in Proposition 2.8.9 below.

Proposition 2.8.9 We have that

Ṽ = Fµ(P uQ)χ(R,S)

where P,Q,R, S are the normal operators on Hψ ⊗Hψ defined by

P = 1⊗ms⊗ 1⊗ s2 ⊗ sm−1 ⊗ 1,

Q = −m−1 ⊗m2 ⊗m−1s∗ ⊗ s2 ⊗ sm−1 ⊗ 1,

R = m− 1
2 ⊗m⊗m−1 ⊗ 1⊗ 1⊗ 1,

S = 1⊗ 1⊗ 1⊗ s⊗ s⊗ 1.

For all k, l,m, p, q, r ∈ Z, we have

Ṽ (ek ⊗ el ⊗ em ⊗ ep ⊗ eq ⊗ er)

=
∑
v,w∈Z

µm−vB(−m+ v,−q + v + 1)B(w, k − l +m− q + v + 1)

(ek ⊗ el+w ⊗ ev ⊗ e−k+2l+p−2v+2w ⊗ e−k+2l−m+q−v+w ⊗ er).

Proof. Let k, l,m, p, q, r ∈ Z. We define functions f1, f2 ∈ K(C̄µ) by

f1(z) =

{(
z
|z|

)k−l+m if |z| = µ−l;

0 otherwise.
and f2(z) =

{(
z
|z|

)p−q+r if |z| = µ−q;

0 otherwise.

Then, we define elements x, y ∈ Â by

x = µmf1(d)cl−m and y = µrf2(d)cq−r.

From Proposition 2.7.12, we get that x, y ∈ Nψ ∩N∗
ψ.
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A straightforward calculation gives that

Λψ(x)⊗ Λψ(y) = ek ⊗ el ⊗ em ⊗ ep ⊗ eq ⊗ er.

We can also calculate (using Proposition 2.3.13) that we have

(Λψ ⊗ Λψ)
(
Φ(x)(1⊗ y)

)
=

∑
v,w∈Z

µm−vB(−m+ v,−q + v + 1)B(w, k − l +m− q + v + 1)

(ek ⊗ el+w ⊗ ev ⊗ e−k+2l+p−2v+2w ⊗ e−k+2l−m+q−v+w ⊗ er).

If we work as in the proof of Proposition 2.3.13, we can find that

Fµ(P )Fµ(Q)χ(R,S)(ek ⊗ el ⊗ em ⊗ ep ⊗ eq ⊗ er)

=
∑
v,w∈Z

(−1)m+vB(m− v,m− q + 1)B(w, k − l +m− q + v + 1)

(ek ⊗ el+w ⊗ ev ⊗ e−k+2l+p−2v+2w ⊗ e−k+2l−m+q−v+w ⊗ er).

The formulas in Proposition 2.2.6 imply that, for all v ∈ Z, we have

(−1)m+vB(m− v,m− q + 1) = µm−vB(−m+ v,−q + v + 1).

Looking careful at Definition 2.8.7 and the above formulas, we see that

Ṽ = Fµ(P )Fµ(Q)χ(R,S).

It is easy to check that (P,Q) ∈ Dµ and σ(P ), σ(Q) ⊆ C̄µ. Proposition 2.2.12
then yields

Fµ(P )Fµ(Q) = Fµ(P uQ).

This completes the proof of the proposition. �

Remark 2.8.10 By reasoning similar to Remark 4.8 in [148], we can find an
intuition behind the formula for Ṽ given above. Of course, we have to be careful
as the quantum E(2) group is not self-dual.

It is not difficult to construct a non-degenerate ∗-homomorphism γ̃ : Â→ B(Hψ)
such that

γ̃(a) = 1⊗ 1⊗m−1 and γ̃(b) = −(1⊗ 1⊗ s∗).

Then, working as in [148, Remark 4.8], we find that

Ṽ = (πψ̂ ⊗ πψ)(W )(γ̃ ⊗ πψ)(W ).

Calculating this, we arrive at the formula for Ṽ given in Proposition 2.8.9.

The next Proposition 2.8.11 portrays W̃ in a clear way.
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Proposition 2.8.11 We have that

W̃ = Fµ(P̃ u Q̃)χ(R̃, S̃)

where P̃ , Q̃, R̃, S̃ are the normal operators on Hψ ⊗Hψ defined by

P̃ = −s2 ⊗ sm−1 ⊗ 1⊗ s−2 ⊗ 1⊗ms,

Q̃ = s2 ⊗ sm−1 ⊗ 1⊗m−1s−2 ⊗ms∗ ⊗ 1,

R̃ = 1⊗ 1⊗ 1⊗m− 1
2 ⊗ 1⊗ 1,

S̃ = s⊗ s⊗ 1⊗ 1⊗ 1⊗ 1.

For all k, l,m, p, q, r ∈ Z, we have

W̃ (ek ⊗ el ⊗ em ⊗ ep ⊗ eq ⊗ er)

=
∑
v,w∈Z

µ−vB(v,−l + p+ r − v − w + 1)B(w,−l + q + 1)

(ek−p−2v+2w ⊗ el−p−v+w ⊗ em ⊗ ep+2v−2w ⊗ eq+2w ⊗ er−v).

Proof. It is possible to prove the above formula for W̃ along the lines of Propo-
sition 2.8.9 (considering W̃ ∗ rather than W̃ ). However, we opt to give a different
proof which is based on the general theory; see Equation (2.70).

We define an anti-unitary operator Ĵ on Hψ by the formulas

Ĵ(ek ⊗ el ⊗ em) = (−1)k+l+m(e−k+2l−2m ⊗ el ⊗ em)

where k, l,m ∈ Z.

Then, we have Ĵ∗ = Ĵ and Ĵ2 = 1. It is easy to check that

Ĵ
(
Λψ(x)

)
= Λψ

(
R(x)∗

)
for all x ∈ Nψ.

From Lemma 8.26 in [66], it ensues that

W̃ = (Ĵ ⊗ Ĵ)ΣṼ ∗Σ(Ĵ ⊗ Ĵ). (2.70)

We define a pair (P0, Q0) ∈ Dµ by

• P0 = m⊗ sm−1 ⊗m2 ⊗ 1⊗m−1s∗ ⊗ 1,

• Q0 = −1⊗ 1⊗ s∗m⊗ 1⊗m−1s∗ ⊗ 1.

By using the notations and results from Proposition 2.8.9 together with the
commutation relation ms = µsm, we get (after quite some work) that

Ṽ ∗ = χ(R−1, S)Fµ(Q∗)Fµ(P ∗) = Fµ(Q∗0)Fµ(P ∗0 )χ(R−1, S).
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Now, we can deduce that

W̃ = (Ĵ ⊗ Ĵ)ΣṼ ∗Σ(Ĵ ⊗ Ĵ)

= (Ĵ ⊗ Ĵ)ΣFµ(Q∗0)Fµ(P ∗0 )χ(R−1, S)Σ(Ĵ ⊗ Ĵ)

= Fµ(P̃ )Fµ(Q̃)χ(R̃, S̃).

The last step in this calculation again requires some effort.

It is easy to check that (P̃ , Q̃) ∈ Dµ and σ(P̃ ), σ(Q̃) ⊆ C̄µ. Proposition 2.2.12
then yields

Fµ(P̃ )Fµ(Q̃) = Fµ(P̃ u Q̃).

Thus, we get
W̃ = Fµ(P̃ u Q̃)χ(R̃, S̃).

We can use the techniques from the proof of Proposition 2.3.13 to find the given
formula of the action of W̃ on basis vectors. �

2.8.3 Duality theory

The central objects in this Chapter 2 are the pairs (A,Φ) and (Â, Φ̂). We now
have a look at the duality between these two quantum groups.

In the previous sections, we frequently referred to the quantum Ê(2) group as the
dual of the quantum E(2) group. However, we did not yet give a correct proof
of this duality property. We prove in Proposition 2.8.21 below that (Â, Φ̂) is
indeed the (opposite) dual quantum group of (A,Φ).

We study the duality between the two quantum groups (A,Φ) and (Â, Φ̂) in
the Kustermans-Vaes framework. The duality theory below also has a reflection
on the representation theory of the quantum E(2) group. This is explicated
in Chapter 4. We mention that S.L. Woronowicz and A. Van Daele already
studied this kind of duality properties before; see [159, 149].

First, we prove a connection between the multiplicative unitary W and the left
regular representation W̃ as introduced in Definition 2.8.7.

The Definition 2.8.12 defines a few operators.

Definition 2.8.12 We consider the normal operator X on Hψ defined by

X = −m−1 ⊗ s∗m⊗m−1s∗.

We define a unitary U0 ∈ B(Hψ) by setting

U0(ek ⊗ el ⊗ em) = (−1)m(ek−2m ⊗ el ⊗ em)

when k, l,m ∈ Z.

Further, we define a unitary U ∈ B(Hψ) by U = Fµ(X)U0.
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The next Definition 2.8.13 is important in this Subsection 2.8.3.

Definition 2.8.13 Let α,β : B(H) → B(Hψ) be the two injective, normal and
unital ∗-homomorphisms defined by

α(x) = x12 and β(y) = Uy13U∗.

when x, y ∈ B(H).

The next Proposition 2.8.14 displays how W and W̃ are related.

Proposition 2.8.14 We have that

(α⊗ β)(ΣWΣ) = W̃ .

Proof. Throughout the proof, we use the notations introduced in Proposi-
tion 2.8.11. From this Proposition 2.8.11, we know that

W̃ = Fµ(P̃ u Q̃)χ(R̃, S̃) (2.71)

It is not difficult to prove that (P̃ , Q̃) ∈ Dµ and P̃−1Q̃ = 1 ⊗X. We then get
from Theorem 2.2.11 that

P̃ u Q̃ =
(
1⊗ Fµ(X)

)
P̃

(
1⊗ Fµ(X)∗

)
. (2.72)

Equations (2.71) and (2.72) together give

W̃ = Fµ(P̃ u Q̃)χ(R̃, S̃) =
(
1⊗ Fµ(X)

)
Fµ(P̃ )

(
1⊗ Fµ(X)∗

)
χ(R̃, S̃)

=
(
1⊗ Fµ(X)

)
Fµ(P̃ )χ(R̃, S̃)

(
1⊗ Fµ(X)∗

)
.

The third equality holds because 1⊗X commutes with both R̃ and S̃.

Using basic calculations, it is straightforward to check that

1. (1⊗ U∗0 )P̃ (1⊗ U0) = (cd⊗ ab)1246,

2. (1⊗ U∗0 )R̃(1⊗ U0) = (1⊗ a)1246,

3. (1⊗ U∗0 )S̃(1⊗ U0) = (c⊗ 1)1246.

If we combine all the above results, we get

Fµ(cd⊗ ab)1246χ(1⊗ a, c⊗ 1)1246 =
(
1⊗ U∗0Fµ(X)∗

)
W̃

(
1⊗ Fµ(X)U0

)
.

This precisely means that

(1⊗ U)(ΣWΣ)1246(1⊗ U∗) = W̃ .

Looking at Definition 2.8.13, we see that this formula completes the proof. �
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We then use the general theory to construct a dual pair of quantum groups out
of the left regular representation W̃ .

The results in Definition 2.8.15 and Proposition 2.8.16 directly ensue from the
Kustermans-Vaes theory as expounded in [66].

Definition 2.8.15 We define two bi-C∗-algebras (B,ΦB) and (B̂, Φ̂B̂) as follows.
First, we construct (B,ΦB) by setting

• B = [(ι⊗ ω)W̃ | ω ∈ B(Hψ)],

• ΦB : B →M(B ⊗ B) : x 7→ W̃ ∗(1⊗ x)W̃ .

Similarly, we define (B̂, Φ̂B̂) by

• B̂ = [(ω ⊗ ι)W̃ | ω ∈ B(Hψ)],

• Φ̂B̂ : B̂ →M(B̂ ⊗ B̂) : y 7→ ΣW̃ (y ⊗ 1)W̃ ∗Σ.

Proposition 2.8.16 We have that (B,ΦB) and (B̂, Φ̂B̂) are locally compact
quantum groups. By definition, (B̂, Φ̂B̂) is the dual of (B,ΦB).

The next Proposition 2.8.17 states that the pair (B,ΦB) is isomorphic to the
quantum E(2) group (A,Φ). In particular, we have that α is a ∗-isomorphism
between A and B that respects the comultiplication.

It is clear that Proposition 2.8.14 is crucial in the proof below.

Proposition 2.8.17 We have that α : A→ B is a ∗-isomorphism such that

ΦB
(
α(x)

)
= (α⊗α)Φ(x)

for all x ∈ A.

Proof. We know from Definition 2.8.13 that α : A → B(Hψ) is an injective
∗-homomorphism. Let ω ∈ B(Hψ)∗. We define ρ ∈ B(H)∗ by ρ(x) = ω(β(x)).
Using Proposition 2.8.14, it is direct to check that

α
(
(ρ⊗ ι)W

)
= (ι⊗ ω)W̃ .

From this, it easily follows that α(A) = B.

The general theory from [66] gives that ΦB can be characterized as the only
non-degenerate ∗-homomorphism from B to M(B ⊗ B) such that

(ι⊗ ΦB)(ΣW̃Σ) = (ΣW̃Σ)12(ΣW̃Σ)13.
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By applying Proposition 2.8.14, we then get(
ι⊗ (α⊗α)−1ΦB α

)
(W ) =

(
β−1 ⊗ (α⊗α)−1ΦB

)
(β ⊗α)(W )

= (β ⊗α⊗α)−1(ι⊗ ΦB)(ΣW̃Σ) = (β ⊗α⊗α)−1(ΣW̃Σ)12(ΣW̃Σ)13

=
(
(β ⊗α)−1(ΣW̃Σ)

)
12

(
(β ⊗α)−1(ΣW̃Σ)

)
13

= W12W13.

Proposition 2.5.10 now yields that

Φ = (α⊗α)−1ΦB α.

This ends the proof of the proposition. �

It is trivial to calculate the action of α on the generators.

Lemma 2.8.18 We have that

• α(c) = s⊗ s⊗ 1,

• α(d) = s⊗m−1 ⊗ 1.

Moreover, we have

• α(cd) = α(c)α(d) = µα(d)α(c) = s2 ⊗ sm−1 ⊗ 1.

In the dual case, we then have the Proposition 2.8.19 below. We see that β is a
∗-isomorphism between Â and B̂ that flips the comultiplication.

The pair (B̂, Φ̂B̂) is thus isomorphic to the quantum group (Â, Φ̂)op.

Proposition 2.8.19 We have that β : Â→ B̂ is a ∗-isomorphism such that

Φ̂B̂
(
β(y)

)
= σ̇(β ⊗ β)Φ̂(y)

for all y ∈ Â.

Proof. We know from Definition 2.8.13 that β : Â → B(Hψ) is an injective
∗-homomorphism. Let ω ∈ B(Hψ)∗. We define ρ ∈ B(H)∗ by ρ(x) = ω(α(x)).
Using Proposition 2.8.14, it is direct to check that

β
(
(ι⊗ ρ)W

)
= (ω ⊗ ι)W̃ .

From this, it easily follows that β(Â) = B̂.

The general theory from [66] gives that Φ̂B̂ can be characterized as the only
non-degenerate ∗-homomorphism from B̂ to M(B̂ ⊗ B̂) such that

(σ̇Φ̂B̂ ⊗ ι)(ΣW̃Σ) = (ΣW̃Σ)13(ΣW̃Σ)23.
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By applying Proposition 2.8.14, we then get(
(β ⊗ β)−1σ̇Φ̂B̂ β ⊗ ι)(W ) =

(
(β ⊗ β)−1σ̇Φ̂B̂ ⊗α−1

)
(β ⊗α)(W )

= ((β ⊗ β)−1 ⊗α−1)(σ̇Φ̂B̂ ⊗ ι)(ΣW̃Σ)

=
(
(β ⊗ β)−1 ⊗α−1

)
(ΣW̃Σ)13(ΣW̃Σ)23

=
(
(β ⊗α)−1(ΣW̃Σ)

)
13

(
(β ⊗ α)−1(ΣW̃Σ)

)
23

= W13W23.

Proposition 2.5.32 now yields that

Φ̂ = (β ⊗ β)−1σ̇Φ̂B̂ β.

This ends the proof of the proposition. �

We can use Theorem 2.2.11 to calculate the action of β on the generators.

Lemma 2.8.20 We have that

• β(a) = m− 1
2 ⊗ 1⊗ 1,

• β(b) = (−m 1
2 s−2 ⊗ 1⊗ms) u (m− 1

2 s−2 ⊗ms∗ ⊗ 1).

Moreover, we have

• β(ab) = β(a)β(b) = µβ(a)β(b) = (−s−2⊗ 1⊗ms) u (m−1s−2⊗ms∗⊗ 1).

From Propositions 2.8.17 and 2.8.19, we can infer the Proposition 2.8.21 below.
This duality result states that (Â, Φ̂) is the opposite dual of (A,Φ).

Proposition 2.8.21 We have (Â, Φ̂) = (Â,Φ)op.

2.8.4 Regularity and semi-regularity

We now prove that the regular representations W̃ and Ṽ are semi-regular, but
not regular. This result is stated in Corollary 2.8.24 below.

The regularity properties of the quantum E(2) group were already considered
by Baaj in [1]. However, we here write things in our setting. By using the recent
results from [5], we can moreover introduce some simplifications.

Thanks to Proposition 2.6 in [5], we can give the next Definition 2.8.22.

Definition 2.8.22 We define a C∗-algebra C(W̃ ) by

C(W̃ ) = [(ι⊗ ω)(ΣW̃ ) | ω ∈ B(Hϕ)∗].
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The next Proposition 2.8.23 describes the regularity properties of the multiplica-
tive unitary W̃ . It clearly resembles Proposition 2.3.33.

Proposition 2.8.23 We have that B0(Hϕ) ( C(W̃ ) ( B(Hϕ).

Proof. Combining Proposition 2.6 in [5] with Proposition 2.5 in [134], we get
that C(W̃ ) is a C∗-algebra acting irreducibly on Hϕ.

We adopt the notations introduced in Proposition 2.8.11. We then define a
unitary operator Z ∈ B(Hϕ) and a normal operator Y on Hϕ by

• Z = Fµ(Q̃)χ(R̃, S̃),

• Y = −m⊗ sm−1 ⊗ms.

It is easy to check that (P̃ , Q̃) ∈ Dµ and P̃ Q̃−1 = 1⊗ Y .

From Proposition 2.8.11 and Theorem 2.2.11, it ensues that

W̃ = Fµ(P̃ u Q̃)χ(R̃, S̃)

=
(
1⊗ Fµ(Y )

)
Fµ(Q̃)

(
1⊗ Fµ(Y )∗

)
χ(R̃, S̃)

=
(
1⊗ Fµ(Y )

)
Z

(
1⊗ Fµ(Y )∗

)
.

The last equality holds because 1⊗ Y commutes with both R̃ and S̃.

Let k, l,m, p, q, r ∈ Z. We use the abridged notation ωk,l,m,p,q,r to denote the
vector functional ωek⊗el⊗em,ep⊗eq⊗er

.

We then consider the operator (ι⊗ ωk,l,m,p,q,r)(ΣZ) ∈ B(Hϕ).
It follows from a straightforward calculation that

(ι⊗ ωk,l,m,p,q,r)(ΣZ)(eu ⊗ ev ⊗ ew)

= B(k − l + q,−l + v + 1)δk−p+2q,−u+2vδw,r(eu−p ⊗ e−k+l−q+v ⊗ em)
(2.73)

when u, v, w ∈ Z.

Combining Equation (2.73) with Proposition A.9, it is not too difficult to prove
that (ι⊗ ωk,l,m,p,q,r)(ΣZ) ∈ B0(Hϕ) if and only if l 6= k + q.

By simple computations, one can show that C(W ) ⊆ B(H)⊗B0(`2(Z)). We thus
find that we have C(W ) ( B(Hϕ).

It is clear that Fµ(Y ) is a unitary. We can thus complete the proof by remarking
that Fµ(Y )

(
(ι⊗ ω)(ΣZ)

)
∈ C(W̃ ) for all ω ∈ B(Hϕ)∗. �

The next Corollary 2.8.24 is then an almost direct consequence.

Corollary 2.8.24 We have that W̃ and Ṽ are semi-regular, but not regular.

Proof. Proposition 2.8.23 yields that W̃ is semi-regular, but not regular. From
Equation (2.70), we get that Ṽ has the same regularity properties as W̃ . �
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The Corollaries 2.8.25 and 2.8.26 then portray the regularity properties of (A,Φ)
and (Â, Φ̂). They follow from Corollary 2.8.24 in a standard way.

Corollary 2.8.25 We have that (A,Φ) is semi-regular, but not regular.

Proof. This follows from Definition 1.3.4 and Corollary 2.8.24. �

Corollary 2.8.26 We have that (Â, Φ̂) is semi-regular, but not regular.

Proof. We know from Proposition 2.8.21 that (Â, Φ̂) is the opposite dual
of (A,Φ). If we then combine Corollary 2.8.25 with Proposition 2.6 in [5], we
can easily derive the formulated regularity properties of (Â, Φ̂). �

It is known that all quantum groups arising from algebraic quantum groups in
the sense of [57, 70] are regular; see Remark 1.3.5.

From Corollaries 2.8.25 and 2.8.26, we thus get the following property.

Proposition 2.8.27 The pairs (A,Φ) and (Â, Φ̂) do not belong to the category
of quantum groups arising from algebraic quantum groups.

2.8.5 Closed quantum subgroups

We then describe some closed quantum subgroups. We recall that the notion of
a closed quantum subgroup is introduced in Definition 1.1.45.

It is easy to prove that both the quantum E(2) group and its dual have a
commutative closed quantum subgroup. Since we adopt Definition 1.1.45, it is
necessary to consider the von Neumann algebra setting.

In the treatment below, we are quite laborious. The closed quantum subgroups
of (A,Φ) and (Â, Φ̂) are defined via the operator χ(a ⊗ 1, 1 ⊗ c). Nevertheless,
this method of working gives some extra insight into the features of W .

We again apply the Notation 2.8.28.

Notation 2.8.28 We use χ to shortly denote χ(a⊗ 1, 1⊗ c).

The next Proposition 2.8.29 is a consequence of Proposition 2.3.21.

Proposition 2.8.29 We have that χ is a manageable multiplicative unitary.

Proof. By using Proposition 2.3.13, it is direct to check that χ satisfies the
pentagonal equation

χ12χ13χ23 = χ23χ12.
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The Proposition 2.3.21 yields that χ is a unitary which is adapted to W .

We get from Theorem 2.3.30 that W is manageable. Theorem 1.6 in [162] then
gives that also χ is manageable. �

Thanks to Proposition 2.8.29, we can apply Theorem 1.3.9. In particular, we
find that the next Definition 2.8.30 is justified.

This Definition 2.8.30 then defines two bi-C∗-algebras.

Definition 2.8.30 We define bi-C∗-algebras (A0,Φ0) and (Â0, Φ̂0) as follows.
First, we construct (A0,Φ0) by setting

• A0 = [(ι⊗ ω)χ | ω ∈ B(H)],

• Φ0 : B →M(A0 ⊗A0) : x 7→ χ(x⊗ 1)χ∗.

Similarly, we define (Â0, Φ̂0) by

• Â0 = [(ω ⊗ ι)χ | ω ∈ B(H)],

• Φ̂0 : Â0 →M(Â0 ⊗ Â0) : y 7→ Σχ∗(1⊗ y)χΣ.

The next Proposition 2.8.32 gives that (A0,Φ0) and (Â0, Φ̂0) are commutative
locally compact quantum groups.

We recall that, for commutative quantum groups, we always use Φ to denote the
standard comultiplication; see Notation 1.2.5.

Definition 2.8.31 Let (A1,Φ1) and (A2,Φ2) be two locally compact quantum
groups. We then say that (A1,Φ1) is isomorphic to (A2,Φ2) if there exists a
∗-isomorphism π : A1 → A2 such that

(π ⊗ π)Φ1 = Φ2π.

Proposition 2.8.32 We have the following results:

• The pair (A0,Φ0) is isomorphic to the compact quantum group (C(S1),Φ),

• The pair (Â0, Φ̂0) is isomorphic to the discrete quantum group (C0(Z),Φ).

Proof. It is easy to prove that

• [(ω ⊗ ι)(χ) | ω ∈ B(H)∗] = [f(c) | f ∈ C(S1)] ∼= C(S1),

• [(ι⊗ ω)(χ) | ω ∈ B(H)∗] = [f(a) | f ∈ C0(R(µ
1
2 ))] ∼= C0(Z).

Further, we can use Proposition 2.3.13 to check that

• Φ0(f(c)) = f(c⊗ c) = Φ(f)(c⊗ 1, 1⊗ c) for all f ∈ C(S1),

• Φ̂0(g(a)) = g(a⊗ a) = Φ(g)(a⊗ 1, 1⊗ a) for all g ∈ C0(R(µ
1
2 )).

This completes the proof of the proposition. �
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By using Remark 1.2.8, we can deduce the following duality result.

Lemma 2.8.33 We have that ̂(A0,Φ0) = (Â0, Φ̂0).

We introduce some more notations.

Notation 2.8.34 We use (M,Φ) and (M̂, Φ̂) to denote the von Neumann
algebra versions of (A,Φ) and (Â, Φ̂) as introduced in Remark 1.3.14.

It follows from Theorems 2.9.3 and 2.9.6 that the pairs (M,Φ) and (M̂, Φ̂) are
von Neumann algebraic quantum groups.

Notation 2.8.35 We use (M0,Φ0) and (M̂0, Φ̂0) to denote the von Neumann
algebra versions of (A0,Φ0) and (Â0, Φ̂0) as introduced in Remark 1.3.14.

It follows from Proposition 2.8.32 that the pairs (M0,Φ0) and (M̂0, Φ̂0) are von
Neumann algebraic quantum groups.

The next Proposition 2.8.36 roughly says that (C(S1),Φ) and (C0(Z),Φ) are
closed quantum subgroups of respectively (A,Φ) and (Â, Φ̂).

Proposition 2.8.36 We have the following results:

• The pair (M0,Φ0) is a closed quantum subgroup of (M,Φ),

• The pair (M̂0, Φ̂0) is a closed quantum subgroup of (M̂, Φ̂).

Proof. From Theorems 2.5.3 and 2.5.24, we get c ∈M(A) and a η Â. It follows
that χ ∈M(Â⊗ A). We then find from Definition 2.8.30 that A0 ⊆M(A) and
Â0 ⊆M(Â). This yields M0 ⊆M and M̂ ⊆ M̂ .

Propositions 2.5.12 and 2.5.34 give Φ(c) = c⊗c and Φ̂(a) = a⊗a. If we combine
these formulas with the results found in the proof of Proposition 2.8.32, we see
that Φ0(x) = Φ(x) for all x ∈M0 and Φ̂0(y) = Φ̂(y) for all y ∈ M̂0.

We can complete the proof by remarking that ̂(M0,Φ0) = (M̂0, Φ̂0). This duality
result follows from Lemma 2.8.33. �

2.8.6 An ergodic coaction

We describe a left coaction γ of the quantum E(2) group (A,Φ). As it is common
for the theory of coactions on quantum groups, we formulate our basic results in
the von Neumann algebra setting. We again adopt the Notation 2.8.34.

From Proposition 2.1.18, we get an intuition for constructing a left coaction γ
of (M,Φ). S.L. Woronowicz gave in [157] the initiative for describing γ on the
operator algebra level, but he did not elaborate his statements. Also A. Pal
considered some related results [88]. In the treatment below, we give a more
meticulous approach and prove some extra properties.
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We first mention the preliminary Definition 2.8.37.

Definition 2.8.37 We define a strictly positive operator T0 on `2(Z) by setting
T0(ek) = ekek for every k ∈ Z. Further, we set T = T0 ⊗ T−2

0 .

Then T is a strictly positive operator on H.

It is direct to check the Lemma 2.8.38.

Lemma 2.8.38 For all t ∈ R, we have χ(a, e−it) = T it.

We consider a one-parameter group (ht) on M .

Definition 2.8.39 Let t ∈ R. Then, we consider the ∗-automorphism ht on M
defined by

ht : M →M : x 7→ T−itxT it.

We have that (ht) is a strongly continuous one-parameter group on M .

Proposition 2.8.40 Let t ∈ R. We have that ht|A is characterized as the only
non-degenerate ∗-homomorphism from A to M(A) such that

ht(c) = e−itc and ht(d) = eitd.

Let
∑
ckfk(d) ∈ A. Then, we have

ht
( ∑

ckfk(d)
)

=
∑

e−itkckfk(eitd).

Next, we define a von Neumann algebra N .

Definition 2.8.41 Let N be the von Neumann subalgebra of M defined by

N = {a ∈M | ht(a) = a for all t ∈ R}.

We describe the basic elements of N in Proposition 2.8.43 below.

Notation 2.8.42 For every k ∈ Z, we define a subset Fk ⊆ C0(C̄µ) as follows.
First, we define sets F ′k by

F ′k =
{
f ∈ C0(C̄µ) | there exists a function g ∈ C0(R̄µ) such that

f(µnz) = g(µn)zk for all n ∈ Z and z ∈ S1
}
.

We denote F0 = F ′0. For k 6= 0, we set

Fk = {f ∈ F ′k | f(0) = 0}.
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Proposition 2.8.43 Let
∑
ckfk(d) ∈ A. Then, we have

∑
ckfk(d) ∈ N if and

only if fk ∈ Fk for every k ∈ Z.

Proof. Take
∑
ckfk(d) ∈ A and suppose that

∑
ckfk(d) ∈ N . We then derive

that fk ∈ Fk for every k ∈ Z. The converse implication is obvious.

The Proposition 2.8.40 gives that we have∑
ckfk(d) =

∑
e−itkckfk(eitd).

If we now apply Proposition 4.1.5, we can deduce that

fk(z) = e−itkfk(eitz)

for all z ∈ C̄µ and k ∈ Z.

Using the Fourier transform, it is direct to show that fk ∈ Fk for every k. In fact,
we have

fk(µlz) =
( ∫

fn,k(µleit)eitk dt
)
zk

for all k, l ∈ Z and z ∈ S1. �

From Proposition 2.8.43, it ensues that N is non-trivial.

Lemma 2.8.44 We have that N acts non-degenerately on H.

Proof. We again consider the functions fk,n ∈ C0(C̄µ) as defined in the proof
of Proposition 2.2.14. Recall that, for z ∈ C̄µ, we have

fk,n(z) =
1

2π

∫ 2π

0

Fµ(µneitz)e−ikt dt.

From Equation (2.45), we get that

fk,n(eiθx) = eikθfk,n(x)

for all θ ∈ [0, 2π] and x ∈ C̄µ.

The Proposition 2.8.43 yields that ckfk,n(d) ∈ N for all k, n ∈ Z.

From the proof of Proposition 2.5.15, we know that f0,n(d) → 1 in the strict
topology on M(A) if n→ +∞. Proposition 2.5.1 gives that A is non-degenerate.
We can thus conclude that also N is non-degenerate. �

We also introduce a C∗-algebra C. The Definition 2.8.45 below is justified by
the commutation relations in Proposition 2.3.6.

The non-degeneracy of C follows from the proof of Lemma 2.8.44.

Definition 2.8.45 We define a C∗-algebra C by setting

C =
[ ∑
k∈Z

ckfk(d)
∣∣ fk ∈ Fk for every k and fk 6= 0 for finitely many k

]
.

Then C is a non-unital C∗-algebra acting non-degenerately on H.
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It is clear that Proposition 2.8.43 entails the result below.

Proposition 2.8.46 We have C ′′ ⊆ N .

The definition of C is given with a view to the following feature.

Proposition 2.8.47 We have cd η C. Further, the C∗-algebra C is generated
by the affiliated element cd η C.

Proof. From Definition 2.8.45, it ensues that cd η C and (1 + (cd)∗(cd))−1 ∈ C.
It is not so difficult to prove that cd separates non-degenerate ∗-representations
of C. Now, Proposition 1.5.54 gives that B is generated by cd η C. �

The next Proposition 2.8.48 is crucial.

Proposition 2.8.48 For all x ∈ N , we have Φ(x) ∈M ⊗̄N .

Furthermore, we have that

Φ|N : N →M ⊗̄N : x 7→ Φ(x)

is an injective, unital and normal ∗-homomorphism.

Proof. Let t ∈ R. It is not difficult to check that

ht(W ) = Fµ(ab⊗ cd)χ(a⊗ 1, 1⊗ e−itc) = W (χ(a, e−it)⊗ 1).

We can then use Lemma 2.8.38 to prove that we have for all x ∈M that

(ι⊗ ht)Φ(x) = Φ(h−t(x)). (2.74)

Take x ∈ N . From Definition 2.9.1, we get that Φ(x) ∈M ⊗̄M . It then follows
from Equation (2.74) that we have Φ(x) ∈ (M ′ ⊗̄N ′)′.

We now observe that (M ′ ⊗̄N ′)′ = M ⊗̄N . This equality is a standard property
in von Neumann algebra theory. �

The Proposition 2.8.48 enables us to give the next Definition 2.8.49.

Definition 2.8.49 We define γ = Φ|N . Then, we have that

γ : N →M ⊗̄N : x 7→ γ(x)

is an injective, unital and normal ∗-homomorphism.

The coassociativity of Φ implicates the Proposition 2.8.50 below.

Proposition 2.8.50 We have (Φ⊗ ι)γ = (ι⊗ γ)γ.
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The next Corollary 2.8.51 is an immediate consequence.

Corollary 2.8.51 We have that γ is a left coaction of (M,Φ) on N .

We also give some information related to the Haar weight ψ. Hereby, we use the
notation ψ to also denote the restriction of ψ to N .

The next Proposition 2.8.52 implies that the left coaction γ is integrable.

Proposition 2.8.52 We have that ψ is an n.s.f. weight on N . For all x ∈ N
and ω ∈ N∗, we have that

ψ
(
(ι⊗ ω)γ(x)

)
= ω(1)ψ(x).

Proof. By virtue of Theorem 2.7.9, we see that it is sufficient to prove that ψ is
semi-finite on N . Using Propositions 2.7.12 and 2.8.46, it is easy to produce a
non-zero element in Nψ. Arguing as in the proof of Proposition 1.3.45, we can
then deduce that ψ is indeed semi-finite. �

From Proposition 1.3.31, we can deduce the property below.

Proposition 2.8.53 The left coaction γ is ergodic, i.e., we have

{x ∈ N | γ(x) = 1⊗ x} = C1.

2.8.7 Summary

We consolidate the main properties of the quantum E(2) group (A,Φ) and its
dual (Â, Φ̂) in Theorem 2.8.54 below.

All the mentioned results are proved above.

Theorem 2.8.54 We have that (A,Φ) and (Â, Φ̂) are locally compact quantum
groups in the sense of Definition 1.1.6.

We call (A,Φ) the quantum E(2) group and (Â, Φ̂) the quantum Ê(2) group.
These quantum group are shortly referred to as Eµ(2) and Êµ(2).

Furthermore, the following properties hold:

• Eµ(2) and Êµ(2) are non-commutative and non-cocommutative,

• Eµ(2) and Êµ(2) are non-compact and non-discrete,

• Êµ(2) is the opposite dual of Eµ(2),

• Eµ(2) and Êµ(2) are not Kac algebra’s,



190 Chapter 2. The quantum E(2) group and its dual

• Eµ(2) and Êµ(2) do not arise from algebraic quantum groups,

• Eµ(2) and Êµ(2) are not self-dual,

• Eµ(2) is unimodular; Êµ(2) is non-unimodular,

• Eµ(2) and Êµ(2) have scaling constant 1,

• Eµ(2) and Êµ(2) are semi-regular, but not regular.

2.9 The von Neumann algebra case

In this Section 2.9, we consider the quantum E(2) group as a von Neumann
algebraic quantum group. We are very concise in this study. We solely mention
the basic results and are frugal of comment.

There is of course an equivalence between the von Neumann algebra level and
the C∗-algebra level. However, it is quite natural to prefer the C∗-algebra setting
for a description of the quantum E(2) group. This choice has the advantage that
we can use the notion of affiliated elements as described in Section 1.5. In the
von Neumann algebra case, there is no such framework to study the action of
(for instance) Φ and Φ̂ on the unbounded generators.

Notice that there is an overlap between several notations used below and their
C∗-algebraic counterpart. This does not cause any confusion.

We first look at the quantum E(2) group.

Definition 2.9.1 We consider the von Neumann algebra M = A′′. Further, we
consider the unital normal ∗-homomorphism

Φ : M →M ⊗̄M : x 7→W (x⊗ 1)W ∗.

Definition 2.9.2 We define a normal weight ψ on M+ by setting

ψ(x) = TrN (qxq).

We immediately state the main Theorem 2.9.3. It is the von Neumann algebra
version of Theorem 2.4.3. In the proof, we are sparing of details.

This Theorem 2.9.3 is central in the Section 2.9.

Theorem 2.9.3 The pair (M,Φ) is a von Neumann algebraic quantum group.

Further, we have that ψ is an n.s.f. weight on M+ that is strongly left and
strongly right invariant, i.e., we have

ψ
(
(ω ⊗̄ ι)Φ(x)

)
= ψ

(
(ι ⊗̄ω)Φ(x)

)
= ψ(x).

for all x ∈M+ and ω ∈M+
∗ .
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Proof. From the proof of Theorem 2.7.9, we can infer that ψ = ψR and that
there exists an element x ∈M such that ψ(x) = 1.

An application of Corollary 1.4.20 now already ends the proof. �

The case of the quantum Ê(2) group can be treated in a similar way.

Definition 2.9.4 We consider the von Neumann algebra M̂ = Â′′. Further, we
consider the unital normal ∗-homomorphism

Φ : M̂ → M̂ ⊗̄ M̂ : x 7→W ∗(1⊗ x)W.

Definition 2.9.5 We define two normal weight ϕ̂ and ψ̂ on M+ by setting

ϕ̂(x) = TrN (x) and ψ̂(x) = TrN0(x).

The next Theorem 2.9.6 holds.

Theorem 2.9.6 The pair (M̂, Φ̂) is a von Neumann algebraic quantum group.

Further, we have that ϕ̂ and ψ̂ are n.s.f. weights on M+ such that ϕ̂ is strongly
left invariant and ψ̂ is strongly right invariant, i.e., we have

• ϕ̂
(
(ω ⊗̄ ι)Φ(x)

)
= ω(1)ϕ̂(x),

• ψ̂
(
(ι ⊗̄ω)Φ(x)

)
= ω(1)ψ̂(x) for all x ∈M+ and ω ∈M+

∗ .

Proof. From the proof of Theorems 2.7.22 and 2.7.23, we can infer that ψ̂ = ϕ̂R̂
and that there exists an element x ∈ M̂ such that ϕ̂(x) = 1.

An application of Corollary 1.4.20 ends the proof of the theorem. �

The next Proposition 2.9.7 follows from Remark 1.3.14.

Proposition 2.9.7 We have W ∈ M̂ ⊗̄M .

We state a simple result about M̂ . In comparison with the C∗-algebra level, we
can here be less fussy when working with the elements ukg(a, |b|).
The Proposition 2.9.8 below clearly resembles Theorem 2.5.21.

Proposition 2.9.8 We have that

M̂=
{ ∑
k∈Z

ukgk(a, |b|)
∣∣ gk ∈ C0(E) for every k and gk 6= 0for finitely many k

}′′
.

Proof. Theorem 2.5.24 implies that f(b) ∈ M̂ for all f ∈ Cb(C̄(µ
1
2 )). By using

this property, it is easy to deduce that u ∈ M̂ .

If we now apply Theorem 2.5.21, the above description of M̂ follows. �





Chapter 3

Amenability properties

A nowadays popular topic in the theory of locally compact quantum groups is the
study of amenability properties. In this Chapter 3, we focus on the amenability
results concerning the quantum E(2) group.

The amenability theory for quantum groups generalizes the results around the
familiar notion of amenability for locally compact groups. It is studied (among
others) by E. Bédos and L. Tuset [9], P. Desmedt [22] and Y. Nakagami [84].
We refer to their articles for a full elaboration of the subject.

From Woronowicz’ treatment in [159], it follows that the quantum E(2) group
is strongly amenable. In Section 3.2 below, we give an alternative proof of this
property and we unveil some extra amenability results.

The Chapter 3 contains two parts.

Section 3.1 - Definition and equivalent notions. In this Section 3.1, we
consider the general case. We introduce the definitions of the different notions
of amenability and we give some related remarks.

Section 3.2 - Amenability of the quantum E(2) group. We here study
the specific amenability properties of the quantum groups E(2) and Ê(2). In
particular, we state simple proofs of their strong amenability.

3.1 Definition and equivalent notions

We first mention some generalities of the amenability theory of locally compact
quantum groups. We state the main definitions and we look at a few basic
properties. The overview is very condensed and contains no proof. As it is said
above, we refer to [9, 22, 84] for more detailed treatments.

193
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In the theory of locally compact groups, the notion of amenability gives a very
important and intensively studied regularity condition. Standard references for
the study of amenability of locally compact groups are [32] and [90].

Taking into account the importance of amenability in the group case, it is natural
to look at generalizations of this concept to the quantum group world.

The first ones to study amenability for quantum groups were Enock and Schwartz
in 1986. They gave in [28] a full treatment of amenability for Kac algebras (but
with a defect in the proof of the main property; see [111]). All of their valid
results were later proved to be true for locally compact quantum groups.

The amenability theory of quantum groups is of course inspired by the profusion
of amenability results for locally compact groups. All amenability properties for
quantum groups spring out of a corresponding result for groups.

For locally compact groups, we have a lot of equivalent characterizations of
amenability. Most of these characterizations can be translated into the quantum
language. However, it is not yet known if the equivalence between the different
notions is still true on the level of quantum groups.

At the moment, we have two sets of equivalent characterizations. This leads to
two notions of amenability; see Definitions 3.1.3 and 3.1.5.

The Notation 3.1.1 is kept fixed for the remainder of Section 3.1.

Notation 3.1.1 Let (A,Φ) be a locally compact quantum group. We use (Â, Φ̂)
to denote the dual quantum group. The corresponding von Neumann algebraic
quantum groups are respectively denoted by (M,Φ) and (M̂, Φ̂).

Further, W̃ ∈ B(K ⊗K) denotes the left regular representation of (A,Φ).

We now give all the definitions involved.

Definition 3.1.2 Let m ∈ M∗ be a state. We then call m a left (resp. right)
invariant mean on (A,Φ) if we have

m
(
(ω ⊗ ι)Φ(x)

)
= ω(1)m(x) resp. m

(
(ι⊗ ω)Φ(x)

)
= ω(1)m(x)

for all ω ∈M∗ and x ∈M .

If m is both left and right invariant, then we call m an invariant mean.

Definition 3.1.3 We call (A,Φ) an amenable quantum group if and only if
there exists a left invariant mean m on (A,Φ).

Definition 3.1.4 A ∗-homomorphism ε : A → C is called a bounded counit
on (A,Φ) if it satisfies

(ε⊗ ι)Φ = (ι⊗ ε)Φ = ι.

Definition 3.1.5 We call (A,Φ) a strongly amenable quantum group if and
only if there exists a bounded counit ε̂ on (Â, Φ̂).
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The next Lemma 3.1.6 is e.g. proved in [22, Proposition 2.2.3]. We remark that
a detailed definition for mm0 ∈M∗ can be found in [22, Section A.1].

This Lemma 3.1.6 sums up a few basic properties.

Lemma 3.1.6 Let R be the unitary antipode of (A,Φ). Assume that m,n are
left invariant means on (A,Φ). We define m0 ∈M∗ by m0 = mR. Further, we
consider mm0 ∈M∗ defined by mm0 = (m⊗m0)Φ.

For all λ ∈ [0, 1], we have that λm+ (1− λ)n is a left invariant mean.

Further, the following properties hold:

• We have that m0 is a right invariant mean,

• We have that mm0 is an invariant mean.

Thus, (A,Φ) is amenable if and only if it possesses an invariant mean.

In the next two Examples 3.1.7 and 3.1.8, we display the standard amenability
properties of some special types of quantum groups.

We first give information about the amenability results concerning commutative
and cocommutative quantum groups. It is clear that these two cases are the
motivating examples behind Definitions 3.1.3 and 3.1.5 above.

Example 3.1.7 Let G be a locally compact group. We consider the quantum
groups (C0(G),Φ) and (C∗

r(G), Φ̂) defined in Examples 1.2.1 and 1.2.4.

For both these quantum groups, the notions of amenability and strong amenability
coincide; see Proposition 3.1.10 below.

The following properties hold:

• (C0(G),Φ) is (strongly) amenable if and only if G is amenable;

• (C∗
r(G), Φ̂) is always (strongly) amenable.

Of course, amenability of G is considered in the usual sense.

It is important to notice that a state m ∈ L∞(G)∗ is a left invariant mean
on (C0(G),Φ) in the sense of Definition 3.1.2 if and only if it is a topological
left invariant mean in the usual sense. The counit ε on (C0(G),Φ) is defined by
the formula

ε(f) = f(e)

where e is the identity of G.

For the reduced group C∗-algebra C∗
r(G), we consider the linear map ε̂ which is

defined by
ε̂ : L1(G) ⊆ C∗

r(G) → C : f 7→
∫
f(s) ds

where we integrate over the left Haar measure.

It is known from the theory of locally compact groups that G is amenable if and
only if it is possible to extend ε̂ to a bounded linear map on C∗

r(G).
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We also shed light on the situation for compact and discrete quantum groups.
These special cases are studied intensively in [11, 12, 123, 10].

In the Example 3.1.8 below, we make use of Proposition 1.1.38.

Example 3.1.8 For every compact quantum group, the Haar state gives the
unique invariant mean. Thus, all compact quantum groups are amenable.

Further, every discrete quantum group has a bounded counit.

We hence have that all compact quantum groups are strongly amenable.

The next Proposition 3.1.9 is standard. See e.g. [9] or [22].

Proposition 3.1.9 If (A,Φ) is amenable, then Â is nuclear.

We already mentioned above that it is not known if the notions of amenability
and strong amenability coincide. The possible discrepancy between these two
concepts is the subject of nowadays research.

The equivalence between the two notions of amenability is proved to be true in
special cases, but the general case is still an open question.

The following Proposition 3.1.10 combines the related results. It also justifies
the used terminology for the notion of ‘strong’ amenability.

Proposition 3.1.10 If (A,Φ) is strongly amenable, then it is also amenable.
The converse is true in the following cases:

• We have that (A,Φ) is commutative (old result);

• We have that (A,Φ) is cocommutative (trivial);

• We have that (A,Φ) is compact (trivial);

• We have that (A,Φ) is discrete (see [12, 123, 10]).

The next Proposition 3.1.11 states that we can deduce strong amenability out of
amenability if we demand an extra condition.

It was C.-K. Ng who first gave a proof of the result below.

Proposition 3.1.11 ([85]) The following statements are equivalent:

1. We have that (A,Φ) is strongly amenable,

2. There exists a left invariant mean m on (A,Φ) such that

m
(
{ (ι⊗ ω)W̃ | ω ∈ Â∗}

)
6= {0}.
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There exist several equivalent characterizations of both amenability and strongly
amenability. We refer to [9] and [22] for a complete list.

We only include the Proposition 3.1.12 and 3.1.13. The latter one appears (in the
adapted form of Proposition 3.1.19) in our calculations in Section 3.2.

The Proposition 3.1.12 below concerns amenability.

Proposition 3.1.12 ([22]) The three statements below are equivalent:

1. We have that (A,Φ) is amenable;

2. There exists a net (ωi) of states in M∗ such that ωωi(x)− ω(1)ωi(x) → 0
(resp., ωiω(x)− ω(1)ωi(x) → 0) for all ω ∈M∗ and x ∈M ,

3. There exists a net (ωi) of states in M∗ such that ‖ωωi − ω(1)ωi‖ → 0
(resp., ‖ωiω − ω(1)ωi‖ → 0) for all ω ∈M∗.

The next Proposition 3.1.13 is about strong amenability.

Proposition 3.1.13 ([9, 22]) The four statements below are equivalent:

1. We have that (A,Φ) is strongly amenable;

2. There exists a state θ ∈ B(K)∗ such that (ι⊗ θ)(W̃ ) = 1,

3. There exists a net (ξj) of unit vectors in K such that

(ι⊗ ωξj
)(W̃ ) → 1

in the weak topology.

4. There exists a net (ξj) of unit vectors in K such that

‖W̃ (η ⊗ ξj)− (η ⊗ ξj)‖ → 0

for all η ∈ K.

We recall the standard Notation 3.1.14.

Notation 3.1.14 We use R and (τt) to denote the unitary antipode respectively
the scaling group of (A,Φ) as introduced in Section 1.1.

The three Lemmas 3.1.15, 3.1.16 and 3.1.17 contain simple properties.

Lemma 3.1.15 ([84]) Assume that (A,Φ) is amenable. Then, there exists an
invariant mean m ∈M∗ such that mτt = m for all t ∈ R.

Lemma 3.1.16 ([9]) Let m ∈M∗ be a left invariant mean on (A,Φ). We then
have m ∈M∗ if and only if A is unital, i.e., if (A,Φ) is compact.

Further, we have m|A 6= 0 if and only if A is unital.
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Lemma 3.1.17 ([9]) Let ε ∈ A∗ be a bounded counit on (A,Φ). Then ε is the
unique state on A such that (ε⊗ ι)Φ = (ι⊗ ε)Φ = ι.

Moreover, we have that εR = ε and ετt = ε for all t ∈ R.

We then also mention the Proposition 3.1.18. J. Kustermans studies the theory
of universal quantum groups in [61]. This appearance of a quantum group is
especially useful if one wants to disentangle its representation theory.

Proposition 3.1.18 ([9, 22]) If (A,Φ) is strongly amenable, then (Â, Φ̂) is a
universal quantum group in the sense of Kustermans [61].

The next Proposition 3.1.19 extends Proposition 3.1.13. We state it in a version
which is adapted to the manageability theory. In this way, it is best suited to
examine the amenability properties of the quantum E(2) group.

One can apply the techniques from [9, 22] to prove the property below.

Proposition 3.1.19 Let W ∈ B(H ⊗ H) be a modular multiplicative unitary
such that (A,Φ) is the bi-C∗-algebra associated to W .

Suppose that (ξi)i∈I is a net in H such that

(ωξi
⊗ ι)(W ) → 1

in the weak topology.

Let θ ∈ B(H)∗ be a weak∗ limit point of the set {ωξi
| i ∈ I}.

We then define ε̂ ∈ Â∗ by ε̂ = θ|Â and m ∈M∗ by m = θ|M .

The following properties hold:

• We have that ε̂ is a bounded counit on (Â, Φ̂),

• We have that m is a right invariant mean on (A,Φ).

It ensues that (A,Φ) is strongly amenable.

3.2 Amenability of the quantum E(2) group

We now make use of the results in Section 3.1 to give a detailed study of the
amenability properties of the quantum E(2) group. The main property is that
both the quantum groups E(2) and Ê(2) are strongly amenable. This result is
not new. It was first mentioned by Woronowicz in [159, 149].

We approach the amenability features of the quantum E(2) group in a completely
different way. In our treatment, we follow the lines of the general theory and, in
particular, apply Proposition 3.1.19. We hereby go into full detail. Further, we
also display some new formulas concerning the invariant means.
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Proposition 3.1.19 plays a crucial role in the amenability study below. It is the
main actor in our calculations. We apply Proposition 3.1.19 to the manageable
multiplicative unitary W as introduced in Definition 2.3.9.

By performing the procedure that is encoded in Proposition 3.1.19, we can quite
easily prove some extra amenability results. For the quantum E(2) group, we
construct an infinite set of linearly independent invariant means and we display
explicit formulas for their action on basic elements.

There is a similar result for the quantum Ê(2) group. In this case, we stumble
across a distinction between left and right invariant means.

First, we fix the Notation 3.2.1.

Notation 3.2.1 We adopt all notations introduced in Chapter 2. In particular,
we have that (A,Φ) denotes the quantum E(2) group.

We now state the two basic properties. The Propositions 3.2.3 and 3.2.5 below
allow us to apply the Proposition 3.1.19 and therefore are the key results in our
amenability study of the quantum E(2) group.

To prove Propositions 3.2.3 and 3.2.5, we make use of the convergence properties
of the Fourier coefficients B(k, n); see Proposition 2.2.5.

Definition 3.2.2 For every n ∈ N, we define a unit vector ξn by

ξn =
1√

2n+ 1

n∑
k=−n

ek ⊗ ek−2n.

Proposition 3.2.3 If n→ +∞, we have that

(ι⊗ ωξn
)W → 1

in the weak topology.

Proof. Let p, q, r, s ∈ Z. For all n ∈ N, we have〈(
(ι⊗ωξn)W

)
(ep⊗eq), er⊗es

〉
=

1

2n+ 1

n∑
k,l=−n

B(0, p−q−k+2n+1)δk−p+2q,lδp,rδq,s.

This ensues directly from Definition 3.2.2 and Corollary 2.3.14.
We take n ≥ 1

2 |p− 2q|. If p ≤ 2q, we get that

〈(
(ι⊗ωξn)W

)
(ep⊗eq), er⊗es

〉
=

1

2n+ 1

n+p−2q∑
k=−n

B(0, p−q−k+2n+1)δp,rδq,s. (3.1)

Proposition 2.2.5 and Equation (3.1) together yield〈(
(ι⊗ ωξn

)W
)
(ep ⊗ eq), er ⊗ es

〉
→ δp,rδq,s. (3.2)

In the case p > 2q, we find this result in a completely similar way.
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Equation (3.2) implies that〈
(ι⊗ ωξn)Wη1, η2

〉
→ 〈η1, η2〉

for all η1, η2 ∈ H0.

From this, we can conclude that

(ι⊗ ωξn
)W → 1

in the weak topology. �

Definition 3.2.4 For every n ∈ N, we define a unit vector ξ′n by

ξ′n = e2n ⊗ en.

Proposition 3.2.5 If n→ +∞, we have that

(ωξ′n ⊗ ι)W → 1

in the weak topology.

Proof. Let p, q, r, s ∈ Z. For all n ∈ N, we have〈(
(ωξ′n ⊗ ι)W

)
(ep ⊗ eq), er ⊗ es

〉
= B(0, n− q + 1)δp,rδq,s. (3.3)

This ensues directly from Definition 3.2.4 and Corollary 2.3.14.

Proposition 2.2.5 and Equation (3.3) together yield〈
(ωξ′n ⊗ ι)W (ep ⊗ eq), er ⊗ es

〉
→ δp,rδq,s.

Similar as in the proof of Proposition 3.2.3, we then can derive that

(ωξ′n ⊗ ι)W → 1

in the weak topology. �

The next Definition 3.2.6 is given with a view to Proposition 3.1.19. We keep the
functionals θ and θ̂ fixed for the remainder of the section.

Definition 3.2.6 Because the unit ball of B(H)∗ is weak∗ compact, we can take
linear functionals θ, θ̂ ∈ B(H)∗ such that

a) We have that θ is a weak∗ limit point of the set {ωξn |n ∈ N},

b) We have that θ̂ is a weak∗ limit point of the set {ωξ′n |n ∈ N}.
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The quantum E(2) group

We now give a detailed account of the amenability properties of the quantum
E(2) group (A,Φ). We prove that (A,Φ) is strongly amenable and construct
both a bounded counit ε and an invariant mean m on (A,Φ).

The aforementioned Propositions 3.2.3 and 3.2.5 are the main ingredients in our
amenability study. Having these properties at hand, it is just a simple task to
apply Proposition 3.1.19 and deduce all the desired results.

Besides the basic amenability properties, we also include a reflection about the
non-uniqueness of the invariant mean m. We prove in Proposition 3.2.28 below
that (A,Φ) possesses infinitely many different invariant means. This result may
be not too telling, but we are brash enough to include it.

The next Theorem 3.2.7 is the central property of this section. It ensues directly
from a combination of Propositions 3.1.19 and 3.2.5.

Theorem 3.2.7 We have that (A,Φ) is strongly amenable.

We then mention the Proposition 3.2.8 below. It can be proved by combining
Propositions 3.1.19 and 3.2.3 with Proposition 3.1.18.

The main importance of Proposition 3.2.8 lies in its consequences with regards
to the representation theory of (A,Φ).

We recall that universal quantum groups are studied in [61].

Proposition 3.2.8 The pair (A,Φ) is a universal quantum group.

We construct a bounded counit ε on (A,Φ). The Definition 3.2.9 below is clearly
inspired by the general amenability results as expounded in Section 3.1.

In the Corollary 4.2.4, we regard ε via an alternative approach.

Definition 3.2.9 We define a state ε ∈ A∗ by ε = θ|A.

The next Proposition 3.2.10 infers from Propositions 3.1.19 and 3.2.3.

Proposition 3.2.10 We have that ε is a bounded counit on (A,Φ), i.e., we
have that ε is the only ∗-homomorphism from A to C such that

(ε⊗ ι)Φ = (ι⊗ ε)Φ = ι.

By virtue of Lemma 3.1.17, the two following properties hold.

Lemma 3.2.11 We have εR = ε.

Lemma 3.2.12 For all t ∈ R, we have ετt = ε.
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We can easily compute the action of ε on basic elements. The formulas below
completely resemble the related algebraic results in Proposition 2.1.1.

The next Proposition 3.2.13 describes ε in full detail.

Proposition 3.2.13 The counit ε is characterized as the only ∗-homomorphism
from A to C such that

ε(c) = 1 and ε(d) = 0.

Let
∑
ckfk(d) ∈ A. Then, we have

ε
( ∑

ckfk(d)
)

=
∑

fk(0).

Proof. The uniqueness part is a consequence of Theorem 2.5.3. We thus only
have to bother about the formulas for ε(c) and ε(d).

We know from Proposition 2.5.12 that

Φ(c) = c⊗ c and Φ(d) = c⊗ du d⊗ c∗. (3.4)

If we now apply Proposition 3.2.10, we get

c = (ε⊗ ι)Φ(c) = (ε⊗ ι)(c⊗ c) = ε(c)c.

This gives that ε(c) = 1.

It is somewhat more difficult to prove that ε(d) = 0. We remark that one should
not be too hasty when checking formulas concerning affiliated elements.

We combine Equation (3.4) with Proposition 3.2.10. If we are careful, we can
prove that

d = (ε⊗ ι)Φ(d) = (ε⊗ ι)(c⊗ du d⊗ c∗) = ε(c)du ε(d)c∗ = d+ ε(d)c∗.

We hence find that ε(d) = 0. �

It is also easy to calculate the action of ε on elements (ω ⊗ ι)W . This leads to
the standard formulas in Proposition 3.2.14 below.

Proposition 3.2.14 Let ω ∈ B(H)∗. Then, we have

ε
(
(ω ⊗ ι)W

)
= ω(1).

Proof. For all ω ∈ B(H)∗ and n ∈ N0, we have that

ωξn

(
(ω ⊗ ι)W

)
= ω

(
(ι⊗ ωξn

)W
)
.

An application of Proposition 3.2.3 and Definition 3.2.9 ends the proof. �
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It is a routine verification to deduce the Corollary 3.2.15 below.

Corollary 3.2.15 We have that ε ∈ A∗ is characterized by the formula

(ι⊗ ε)W = 1.

We now construct an invariant mean m on (A,Φ). It is clear that we again find
inspiration in the amenability results from Section 3.1.

The next Definition 3.2.16 defines m in a standard way.

Definition 3.2.16 We define a state m ∈M∗ by m = θ̂|M .

The main feature of m is stated in the Proposition 3.2.17 below.

Proposition 3.2.17 The state m is an invariant mean on (A,Φ), i.e., we
have that

m
(
(ω ⊗ ι)Φ(x)

)
= m

(
(ι⊗ ω)Φ(x)

)
= ω(1)m(x)

for all ω ∈M∗ and x ∈M .

Proof. From Propositions 3.1.19 and 3.2.5, it ensues that m is a right invariant
mean on (A,Φ). Using Equation (2.63), it is direct to prove that mR = m.

We can then deduce that m is also left invariant. �

It is easy to check the following properties.

Lemma 3.2.18 We have mR = m.

Lemma 3.2.19 For all t ∈ R, we have mτt = m.

The Proposition 3.2.20 displays the action ofm on basic elements. It is explicated
in Remark 3.2.21 below that we are somewhat sloppy with the notation.

The fact that m|A = 0 is standard; see Lemma 3.1.16.

Proposition 3.2.20 Let
∑
ckfk(d) ∈M(A). We have

m
( ∑

ckfk(d)
)

= lim
n→+∞

1
2π

∫ 2π

0

f0(µ−neit) dt. (3.5)

Hence, we see that m|A = 0.

Proof. Let n ∈ N. For every l ∈ Z, we define a number a(l) by setting

a(l) =
1

2π

∫ 2π

0

f0(µ−neit)e−ilt dt.

The polar decomposition d = (s⊗ 1)(1⊗m−1) holds; see Lemma 2.3.4.
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We then have that

ωξ′n

( ∑
ckfk(d)

)
=

∑ 〈
ckfk(d)(e2n ⊗ en), e2n ⊗ en

〉
=

∑ 〈
fk(d)(e2n ⊗ en), e2n−k ⊗ en−k

〉
=

〈
f0(µ−ns)e2n, e2n

〉
=

∑
l∈Z

〈
a(l)sle2n, e2n

〉
= a(0).

It is now direct to deduce the formula in Equation (3.5). �

The next Remark 3.2.21 is quite important.

Remark 3.2.21 We have to be careful with the loose notations that are used
in Proposition 3.2.20. The Equation (3.5) actually means that the considered
equality holds if the limit on the right hand side exists.

In the case that this limit does not exist, we are in a less comfortable situation.
The freedom in Definition 3.2.6 then leaves open several possibilities and we get
that the action of m is not unambiguously defined.

We now digress about the non-uniqueness of the invariant mean m as introduced
in Definition 3.2.16. The results below can be considered as an additional side
remark to our amenability study of the quantum E(2) group.

It is a foreseen property that any amenable quantum group which is non-compact
possesses an infinity of invariant means. This result is known to be true in
the commutative and the cocommutative case; see [90] and [36]. It is an open
problem how the general case can be proved (if possible).

We perform minor changes to the construction procedure of m. In this way, we
get hold on a lot of different invariant means; see Proposition 3.2.28.

Definition 3.2.22 Let p ∈ Z and q, n ∈ N with q 6= 0. Then, we define a unit
vector ξ′n,p,q by

ξ′n,p,q = e2qn+2p ⊗ eqn+p.

Proposition 3.2.23 Let p ∈ Z and q ∈ N0. If n→ +∞, we have

(ωξ′n,p,q
⊗ ι)W → 1

in the weak topology.

Proof. Let p, u, v, r, s ∈ Z and q ∈ N0. For all n ∈ N, we have that〈(
(ωξ′n,p,q

⊗ ι)W
)
(eu ⊗ ev), er ⊗ es

〉
= B(0, qn+ p− v + 1)δu,rδv,s.

This ensues directly from Definition 3.2.22 and Corollary 2.3.14.

The remainder of the proof is identical to the proof of Proposition 3.2.5. �
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The next Definition 3.2.24 introduces a set of states mp,q ∈M∗.

Definition 3.2.24 For all p ∈ Z and q ∈ N0, we consider a weak∗ limit point
θ̂p,q ∈ B(H)∗ of the set {ωξ′n,p,q

|n ∈ N}.

We then define a state mp,q ∈M∗ by mp,q = θ̂p,q|M .

It is straightforward to generalize Propositions 3.2.17 and 3.2.20. This leads to
the two Propositions 3.2.25 and 3.2.26 below.

We observe that Remark 3.2.21 also alludes to Equation (3.6).

Proposition 3.2.25 For all p ∈ Z and q ∈ N0, the state mp,q ∈ M∗ is an
invariant mean on (A,Φ).

Proposition 3.2.26 Let
∑
ckfk(d) ∈M(A). We have

mp,q

( ∑
ckfk(d)

)
= lim
n→+∞

1
2π

∫ 2π

0

f0(µ−qn−peit) dt (3.6)

Hence, we see that mp,q|A = 0.

We now arrive at the Proposition 3.2.27 below.

Proposition 3.2.27 Let q ∈ N0. The states in {mp,q | p ∈ N, 0 ≤ p < q} are
then linearly independent from each other.

Proof. Let q ∈ N0. For all p ∈ {0, 1, . . . q − 1}, we define a subset Yp ⊆ R̄µ by
setting Yp = {µ−qn−p |n ∈ N}.
Next, we fix an element p1 ∈ {0, 1, . . . q − 1}. We define f ∈ Cb(C̄µ) by

f : C̄µ → C : x 7→

{
1 if |x| ∈ Yp1 ,
0 otherwise.

We get from Lemma 2.5.4 that f(d) ∈M(A).

From Proposition 3.2.26, it follows that

mp1,q(f(d)) = lim
n→+∞

1
2π

∫ 2π

0

f(µ−qn−p1eit) dt = 1.

Take p2 ∈ {0, 1, . . . q − 1} with p2 6= p1. It is easy to check that Lp1 ∩ Lp2 = ∅.
If we again apply Proposition 3.2.26, we get

mp2,q(f(d)) = lim
n→+∞

1
2π

∫ 2π

0

f(µ−qn−p2eit) dt = 0.

This ends the proof of the proposition. �
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The Propositions 3.2.25 and 3.2.27 together imply that there exist infinitely
many invariant means mp,q on (A,Φ).

We state this result in the next Proposition 3.2.28.

Proposition 3.2.28 We have that the set {mp,q | p ∈ Z, q ∈ N0} contains an
infinite subset of linearly independent states.

The number of different invariant means mp,q on (A,Φ) is thus infinite.

The quantum Ê(2) group

We look at the amenability properties of the quantum Ê(2) group (Â, Φ̂). It is
proved in Theorem 3.2.29 that (Â, Φ̂) is strongly amenable. Further, we construct
both a bounded counit ε̂ and an invariant mean m̂ on (Â, Φ̂).

The amenability properties of (Â, Φ̂) are very similar to those of (A,Φ). For this
reason, we are quite succinct in the treatment below.

Similar to the case of (A,Φ), the Propositions 3.2.3 and 3.2.5 are crucial in
our amenability study. They carry almost all necessary information about the
amenability of (Â, Φ̂) and are extensively used in the proofs below.

If we combine Propositions 3.2.3 and 3.2.5 with Propositions 3.1.18 and 3.1.19,
we get Theorem 3.2.29 and Proposition 3.2.30.

The next Theorem 3.2.29 states the strong amenability of (Â, Φ̂).

Theorem 3.2.29 We have that (Â, Φ̂) is strongly amenable.

The Proposition 3.2.30 below is again to be considered in the setting of [61].

Proposition 3.2.30 The pair (Â, Φ̂) is a universal quantum group.

We construct a bounded counit ε̂ on (Â, Φ̂). The Definition 3.2.31 below is dual
to Definition 3.2.9. It is based on the results in Section 3.1.

Definition 3.2.31 We define a state ε̂ ∈ Â∗ by θ̂|Â.

The next Proposition 3.2.32 infers from Propositions 3.1.19 and 3.2.5.

Proposition 3.2.32 We have that ε̂ is a bounded counit on (Â, Φ̂), i.e., we
have that ε̂ is the only ∗-homomorphism from Â to C such that

(ε̂⊗ ι)Φ̂ = (ι⊗ ε̂)Φ̂ = ι.

By virtue of Lemma 3.1.17, the two following properties hold.

Lemma 3.2.33 We have ε̂R̂ = ε̂.

Lemma 3.2.34 For all t ∈ R, we have ε̂τ̂t = ε̂.
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We compute the action of ε̂ on basic elements. The formulas below are in
correspondence with the algebraic results in Proposition 2.1.1.

The next Proposition 3.2.35 describes ε̂ in full detail.

Proposition 3.2.35 The counit ε̂ is characterized as the only ∗-homomorphism
from Â to C such that

ε̂(a) = 1 and ε̂(b) = 0.

Let
∑
ukgk(a, |b|) ∈ Â. Then, we have

ε̂
( ∑

ukgk(a, |b|)
)

= g0(1, 0).

Proof. The uniqueness part is a consequence of Theorem 2.5.24. We thus only
have to bother about the formulas for ε̂(a) and ε̂(b).

We know from Proposition 2.5.34 that

Φ̂(a) = a⊗ a and Φ̂(b) = a⊗ bu b⊗ a−1. (3.7)

If we now apply Proposition 3.2.32, we get

a = (ε̂⊗ ι)Φ̂(a) = (ε̂⊗ ι)(a⊗ a) = ε̂(a)a.

This gives that ε̂(a) = 1.

We then combine Equation (3.7) with Proposition 3.2.32. If we are careful, we
can prove that

b = (ε̂⊗ ι)Φ̂(b) = (ε̂⊗ ι)(a⊗ bu b⊗ a−1) = ε̂(a)bu ε̂(b)a−1 = bu ε̂(b)a−1.

We hence find that ε̂(b) = 0. �

The Remark 3.2.36 is an inessential detail.

Remark 3.2.36 It is easy to calculate that θ̂(u) = 0. We hence see that it is
impossible to extend ε̂ to a ∗-homomorphism on M̂ .

We also describe the action of ε̂ on the elements (ι⊗ ω)W .

Proposition 3.2.37 Let ω ∈ B(H)∗. Then, we have

ε̂
(
(ι⊗ ω)W

)
= ω(1).

Proof. For all ω ∈ B(H)∗ and n ∈ N0, we have that

ωξ′n
(
(ι⊗ ω)W

)
= ω

(
(ωξ′n ⊗ ι)W

)
.

An application of Proposition 3.2.5 and Definition 3.2.31 ends the proof. �
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It is a routine verification to deduce the Corollary 3.2.38 below.

Corollary 3.2.38 We have that ε̂ ∈ Â∗ is characterized by the formula

(ε̂⊗ ι)W = 1.

We then construct a left invariant mean m̂ on (Â, Φ̂). The duality between the
two Definitions 3.2.39 and 3.2.16 is obvious.

Definition 3.2.39 We define a state m̂ ∈ M̂∗ by m̂ = θ|M̂ .

The main feature of m̂ is stated in the Proposition 3.2.40 below.

Proposition 3.2.40 The state m̂ is a left invariant mean on (Â, Φ̂), i.e., we
have that

m̂
(
(ω ⊗ ι)Φ̂(x)

)
= ω(1)m̂(x)

for all ω ∈ M̂∗ and x ∈ M̂ .

Proof. From Propositions 3.1.19 and 3.2.3, it ensues that m̂ is a right invariant
mean on (Â,Φ). The Proposition 2.8.21 gives that (Â, Φ̂) = (Â,Φ)op. �

We use Lemma 3.1.6 to deduce some allied results.

Definition 3.2.41 We define a state m̂0 ∈ M̂∗ by m̂0 = m̂R̂.

Proposition 3.2.42 The properties below hold:

• We have that m̂0 is a right invariant mean on (Â, Φ̂),

• We have that m̂m̂0 is an invariant mean on (Â, Φ̂).

The next Remark 3.2.43 is just a trivia.

Remark 3.2.43 It is possible to also write m̂0 as a limit of vector functionals.
Define for every n ∈ Z a vector ξ′′n by

ξ′′n =
1√

2n+ 1

n∑
k=−n

ek ⊗ e2n.

We then have ωξnR̂ = ωξ′′n for every n.

It is easy to check the Lemma 3.2.44.

Lemma 3.2.44 For all t ∈ R, we have m̂τ̂t = m̂.
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The next Proposition 3.2.45 displays the action of m̂ and m̂0 on basic elements.
We again denote the formulas in the spirit of Remark 3.2.21.

Proposition 3.2.45 Let
∑
ukgk(a, |b|) ∈M(Â). We have

m̂
( ∑

ukgk(a, |b|)
)

= lim
n→+∞

1
2n+ 1

n∑
r=−n

g0(µ
1
2 r−2n, µ

1
2 r),

m̂0

( ∑
ukgk(a, |b|)

)
= lim
n→+∞

1
2n+ 1

n∑
r=−n

g0(µ−
1
2 r+2n, µ

1
2 r).

Hence, we see that m̂|Â = 0 and m̂0|Â = 0.

Proof. Let n ∈ N. We have that

ωξn

( ∑
k

ukgk(a, |b|)
)

=
∑
k

1
2n+ 1

n∑
r,s=−n

〈
ukgk(a, |b|)(er ⊗ er−2n), (es ⊗ es−2n)

〉
=

∑
k

1
2n+ 1

n∑
r,s=−n

gk(µ
1
2 r−2n, µ

1
2 r−n)〈er ⊗ er−2n+k, es ⊗ es−2n〉

=
1

2n+ 1

n∑
r=−n

g0(µ
1
2 r−2n, µ

1
2 r−n).

This gives the action of m̂. The action of m̂0 can be computed analogously. �

We alter the basic construction of m̂ to prove that (Â, Φ̂) possesses infinitely
many different left invariant means; see Proposition 3.2.52.

The Definition 3.2.46 below is the start of this process.

Definition 3.2.46 Let p, r, s ∈ Z and q, n ∈ N with q ≥ 2. Then, we define a
unit vector ξn,p,q,r,s by

ξn,p,q,r,s =
1√

2n+ 1

n∑
k=−n

ek−sn+r ⊗ ek−qn+p.

Proposition 3.2.47 Let p, q, r, s ∈ Z with q ≥ 2. If n→ +∞, we have

(ωξ′n,p,q,r,s
⊗ ι)W → 1

in the weak topology.
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Proof. Let p, q, r, s, u, v, w, x ∈ Z with q ≥ 2. For all n ∈ N, we have that〈(
(ι⊗ ωξn,p,q,r,s

)W
)
(eu ⊗ ev), ew ⊗ ex

〉
=

1
2n+ 1

n∑
k,l=−n

B(0, u− v − k + qn− p+ 1)δk−u+2v,lδu,wδv,x.

This ensues directly from Definition 3.2.46 and Corollary 2.3.14.

The remainder of the proof is identical to the proof of Proposition 3.2.3. �

The next Definition 3.2.48 introduces a set of states m̂p,q,r,s ∈ M̂∗.

Definition 3.2.48 For all p, q, r, s ∈ Z with q ≥ 2, we consider a weak∗ limit
point θp,q,r,s ∈ B(H)∗ of the set {ωξ′n,p,q

|n ∈ N}.

We then define a state m̂p,q,r,s ∈ M̂∗ by m̂p,q,r,s = θp,q,r,s|M̂ .

It is straightforward to generalize Propositions 3.2.40 and 3.2.45. This leads to
the two Propositions 3.2.49 and 3.2.50 below.

We adhere to Remark 3.2.21 for the notations in Proposition 3.2.50.

Proposition 3.2.49 For all p, q, r, s ∈ Z with q ≥ 2, the state m̂p,q,r,s ∈ M̂∗ is
a left invariant mean on (Â, Φ̂).

Proposition 3.2.50 Let
∑
ukgk(a, |b|) ∈M(Â). We then have

m̂p,q,r,s

( ∑
ukgk(a, |b|)

)
= lim
n→+∞

1

2n+ 1

n∑
w=−n

g0(µ
1
2 (w+sn−r−2qn+2p), µ

1
2 (w−sn+r)).

Hence, we see that m̂p,q,r,s|Â = 0.

We now arrive at the Proposition 3.2.51 below.

Proposition 3.2.51 Let p, q, pi, qi, ri ∈ N with q, qi ≥ 2 for i = 1, 2. We then
have the following properties:

• If p1 − r1 6= p2 − r2, then m̂p1,q1,r1,q1 6= m̂p2,q2,r2,q2 .

• The states in {m̂p,q,s,q | s ∈ N} are linearly independent from each other.

Proof. For all k, l ∈ Z, we set Xk,l = { (x, y) ∈ E | x−1y = µ−k+l}. We then
define hk,l ∈ Cb(E) by setting hk,l = χXk,l

.

We get from Lemma 2.5.23 that hk,l(a, |b|) ∈M(Â) for all k, l ∈ Z.

Fix p, q, pi, qi, ri ∈ N with q, qi ≥ 2 for i = 1, 2 and suppose that p1−r1 6= p2−r2.
It is immediately clear that Xp1,r1 ∩Xp2,r2 = ∅.
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From Proposition 3.2.50, we get that

m̂p1,q1,r1,q1

(
hp1,r1(a, |b|)

)
= 1 and m̂p2,q2,r2,q2

(
hp1,r1(a, |b|)

)
= 0. (3.8)

It ensues that m̂p1,q1,r1,q1 6= m̂p2,q2,r2,q2 .

Take s ∈ N. From Equation (3.8), we find that m̂p,q,s,q(hp,s(a, |b|)) = 1 while we
have m̂p,q,t,q(hp,s(a, |b|)) = 0 for all t ∈ N with s 6= t. �

We then acquire the next property.

Proposition 3.2.52 We have that { m̂p,q,r,s | p, q, r, s ∈ Z, q ≥ 2} contains an
infinite subset of linearly independent states.

The number of different left invariant means m̂p,q,r,s is thus infinite.





Chapter 4

Representation theory

In this Chapter 4, we compile four studies of subjects that are all in some way
related to the representation theory of the quantum E(2) group. These four
studies together yield an almost complete deciphering of all representations and
corepresentations of both the quantum E(2) group and its dual.

The results stated below are not new and are mainly included for the sake of
completeness. For this reason, we are quite frugal of comment. We can e.g. refer
to [159, 157, 149] for more detailed treatments.

First, we fix the Notation 4.0.1.

Notation 4.0.1 We adopt all notations introduced in Chapter 2 and Section 3.2.
In particular, we have that (A,Φ) denotes the quantum E(2) group.

We then give a short overview of the sections.

Section 4.1 - Crossed products. We mentioned in Section 2.5 that we can
describe the C∗-algebras A and Â in terms of crossed products. We here fill in
the details of these constructions.

Section 4.2 - Universal pairs of operators. The Section 4.2 is then about
two kinds of universal pairs of operators. These pairs appear naturally in the
study of the quantum E(2) group and its dual.

Section 4.3 - Irreducible ∗-representations. We here display formulas
for all irreducible ∗-representations of the C∗-algebras A and Â.

Section 4.4 - Corepresentations. In this last Section 2.4, we describe all
corepresentations of the quantum groups (A,Φ) and (Â, Φ̂).

4.1 Crossed products

In the Propositions 2.5.7 and 2.5.29, we have already mentioned how the two
C∗-algebras A and Â can be described in terms of crossed products. We now
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give some more refined information about these results. Further, we also write
the von Neumann algebras M and M̂ as crossed products.

The main results of this Section 4.1 are Propositions 4.1.5 and 4.1.16. They are
e.g. mentioned by Woronowicz in [159, 149].

First, we consider the case of the C∗-algebra A.

Definition 4.1.1 We define an action α : Z → Aut(C0(C̄µ)) by

αn : C0(C̄µ) → C0(C̄µ) : f 7→ f(µn·).

It is easy to check the two Lemmas 4.1.2 and 4.1.3.

Lemma 4.1.2 We have that (C0(C̄µ),Z, α) is a C∗-dynamical system.

Lemma 4.1.3 We define a faithful, non-degenerate ∗-homomorphism π and a
strongly continuous representation U by setting

• π : C0(C̄µ) → B(H) : f 7→ f(d),

• U : Z → B(H) : k 7→ ck.

Then, we have that (π,U) is a covariant representation of (C0(C̄µ),Z, α).

The Definition 4.1.4 below is allowed by the theory of crossed products.

Definition 4.1.4 Let π̃ be the non-degenerate ∗-representation of C0(C̄µ) nα Z
that corresponds to the covariant representation (π,U).

The next Proposition 4.1.5 then states the central property.

Proposition 4.1.5 We have A ∼= C0(C̄µ) nα Z.

In particular, we have that π̃ : C0(C̄µ) nα Z → A is a ∗-isomorphism.

For every f ∈ K
(
Z,C0(C̄µ)

)
, we have

π̃(f) =
∑

ckf(k)(µ−kd).

Proof. It is direct to check that

π̃
(
K(Z,C0(C̄µ))

)
=

{ ∑
k∈Z

ckfk(d)
∣∣ fk ∈ C0(C̄µ) for every k and

fk 6= 0 for finitely many k
}
.

By using Theorem 2.5.2, we then get π̃
(
C0(C̄µ) nα Z

)
= A.
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We now apply the results from [92, Section 7.7]. Because Z is amenable, there
is a unique faithful ∗-representation

π′ n λ : C0(C̄µ) nα Z → B
(
`2(Z, `2(Z)⊗ `2(Z))

)
such that, for all y ∈ K

(
Z,C0(C̄µ)

)
, we have(

((π′ n λ)(y))ξ
)
(t) =

∑
s∈Z

π
(
α−t(y(s))

)
ξ(t− s)

where ξ ∈ `2
(
Z, `2(Z)⊗ `2(Z)

)
and t ∈ Z.

It is easy to prove that π′ n λ is unitarily equivalent to the ∗-representation

θ : C0(C̄µ) nα Z → B
(
`2(Z, `2(Z)⊗ `2(Z))

)
: x 7→ π̃(x)13.

Hence, we get that also π̃ is faithful.

We conclude that π̃ : C0(C̄µ) nα Z → A is a ∗-isomorphism. �

We can thus use the machinery of crossed products when studying aspects of
the C∗-algebra A. This has some useful consequences.

If we apply the results in [16], we can deduce the next property.

Corollary 4.1.6 We have that A is a type I C∗-algebra. In particular, we find
that the C∗-algebra A is nuclear.

We use the above results to also write M as a crossed product.

Definition 4.1.7 Let ν be the Haar measure on Cµ. We then define a regular
Borel measure ν1 on C̄µ by setting

ν1(X) =
∑
k∈Z

1
2k
ν(X ∩ Sk)

for every subset X ⊆ C̄µ.

Notation 4.1.8 We use L∞(C̄µ) to shortly denote L∞(C̄µ, ν1). We then have
that L∞(C̄µ) is an abelian von Neumann algebra.

Definition 4.1.9 We define an action α′′ : Z → Aut(L∞(C̄µ)) by

α′′n : L∞(C̄µ) → L∞(C̄µ) : f 7→ f(µn·).

It is direct to check the Lemma 4.1.10.

Lemma 4.1.10 We have that (L∞(C̄µ),Z, α′′) is a W∗-dynamical system.
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We then arrive at the Proposition 4.1.11 below.

Proposition 4.1.11 We have M ∼= L∞(C̄µ) nα′′ Z

Proof. It is easy to check that Z is a central shift in (C0(C̄µ),Z, α) in the sense
of [16]. Since Z is discrete, we can apply the results in [16] to get that(

C0(C̄µ) nα Z
)′′ = L∞(C̄µ) nα′′ Z.

An application of Proposition 4.1.5 ends the proof. �

It is also possible to describe Â and M̂ in terms of crossed products. The results
concerning Â are somewhat less elegant than those about A.

We can repeat the techniques above to get the desired properties.

Definition 4.1.12 We define an action β : Z → Aut(C0(E)) by

βn : C0(E) → C0(E) : g 7→ g(µ−n·, ·).

It is easy to check the two Lemmas 4.1.13 and 4.1.14.

Lemma 4.1.13 We have that (C0(E),Z, β) is a C∗-dynamical system.

Lemma 4.1.14 We define a faithful, non-degenerate ∗-homomorphism π̂ and a
strongly continuous representation Û by setting

• π̂ : C0(E) → B(H) : g 7→ g(a, |b|),

• Û : Z → B(H) : k 7→ uk.

Then, we have that (π̂, Û) is a covariant representation of (C0(E),Z, β).

The Definition 4.1.15 is allowed by the theory of crossed products.

Definition 4.1.15 Let π̌ be the non-degenerate ∗-representation of C0(E) nβ Z
that corresponds to the covariant representation (π̂, Û).

The Proposition 4.1.5 states the central property. It turns out that Â is not a
crossed product itself, but it can be written as a C∗-subalgebra of one.

We recall that the C∗-algebras Aex and B are introduced in Definition 2.5.28.

Proposition 4.1.16 We have Â ∼= B and Âex
∼= C0(E) nβ Z.

In particular, π̌ : C0(E) nβ Z → Âex and π̌|B : B → Â are ∗-isomorphisms.

For every g ∈ K
(
Z,C0(E)

)
, we have

π̌(f) =
∑

ukg(k)(µka, |b|).
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Proof. It is direct to check that

π̌
(
K(Z,C0(E))

)
=

{ ∑
k∈Z

ukgk(a, |b|)
∣∣ gk ∈ C0(E) for every k and

gk 6= 0 for finitely many k
}
.

By using Theorem 2.5.21, we then get π̃
(
C0(E) nβ Z

)
= Âex.

We now apply the results from [92, Section 7.7]. Because Z is amenable, there
is a unique faithful ∗-representation

π̂′ n λ : C0(E) nβ Z → B
(
`2(Z, `2(Z)⊗ `2(Z))

)
such that, for all y ∈ K

(
Z,C0(E)

)
, we have(

((π̂′ n λ)(y))ξ
)
(t) =

∑
s∈Z

π̂
(
β−t(y(s))

)
ξ(t− s)

where ξ ∈ `2
(
Z, `2(Z)⊗ `2(Z)

)
and t ∈ Z.

It is easy to prove that π̂′ n λ is unitarily equivalent to the ∗-representation

θ̂ : C0(E) nβ Z → B
(
`2(Z, `2(Z)⊗ `2(Z))

)
: x 7→ π̌(x)13.

Hence, we get that also π̌ is faithful.

We conclude that π̌ : C0(E) nβ Z → Âex is a ∗-isomorphism. Further, it is
immediately clear that π̌(Â) = B. �

If we apply the results in [16], we can deduce the next property.

Corollary 4.1.17 We have that Â is a type I C∗-algebra. In particular, we find
that the C∗-algebra Â is nuclear.

We use the above results to also write M̂ as a crossed product.

Definition 4.1.18 Let ν̂ be the Haar measure on R(µ
1
2 ) × R(µ

1
2 ). For every

k ∈ Z, we define a set Vk by Vk = { (µ
1
2p, µ

1
2k) ∈ E | p ∈ Z}.

We define a regular Borel measure ν̂1 on E by setting

ν̂1(X) =
∑
k∈Z

1
2k
ν̂(X ∩ Vk)

for all subsets X ⊆ E.

Notation 4.1.19 We use L∞(E) to shortly denote L∞(C̄µ, ν̂1). We then have
that L∞(E) is an abelian von Neumann algebra.
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Definition 4.1.20 We define an action β′′ : Z → Aut(L∞(E)) by

β′′n : L∞(E) → L∞(E) : g 7→ g(µ−n·, ·).

It is direct to check the Lemma 4.1.21.

Lemma 4.1.21 We have that (L∞(E),Z, β′′) is a W∗-dynamical system.

We then arrive at the Proposition 4.1.22 below.

Proposition 4.1.22 We have M̂ ∼= L∞(E) nβ′′ Z

Proof. It is easy to check that Z is a central shift in (C0(E),Z, β) in the sense
of [16]. Since Z is discrete, we can apply the results in [16] to get that(

C0(E) nβ Z
)′′ = L∞(E) nβ′′ Z.

From Proposition 2.9.8, it follows that M̂ = Â′′ex. An application of Proposi-
tion 4.1.16 then ends the proof. �

4.2 Universal pairs of operators

The results in Chapter 2 demonstrate that the operators c, d are very important
in our treatment of the quantum E(2) group (A,Φ). In this Section 4.2, we show
that the pair (c, d) is some kind of universal representative of a set of typical
pairs of operators. These pairs will be called E(2)-pairs of operators.

It is no surprise that also the pair (a, b) has universality properties. These are
then related to the quantum Ê(2) group (Â, Φ̂).

We did not make use of the universality properties below in our construction
of the quantum groups (A,Φ) and (Â, Φ̂) as displayed in Section 2.4. This is
very different from the working method in [159] where these universality results
constitute one of the pillars in Woronowicz’ original constructions.

In this Section 4.2, we compile results from [159]. We do not give proofs nor
amplify on the details. For more specifics, we refer to [159, 168].

We start by giving the basic Definition 4.2.1 below.

Definition 4.2.1 Let c,d be linear operators on a Hilbert space K.

We call (c,d) an E(2)-pair of operators if all four conditions below are satisfied:

1. c is unitary,

2. d is normal,

3. cdc∗ = µd,

4. σ(d) ⊆ C̄µ.
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The Lemma 4.2.2 ensues from the results in Section 2.3.

Lemma 4.2.2 We have that (c, d) is an E(2)-pair of operators.

The next Proposition 4.2.3 states the central universality property.

Proposition 4.2.3 Let A ⊆ B(K) be a non-degenerate C∗-algebra. We then
consider a non-degenerate ∗-representation π : A→ B(K).

The properties below hold:

1. We have that
(
π(c), π(d)

)
is an E(2)-pair of operators,

2. We have π(c), π(d) ηA if and only if we can consider π as a non-degenerate
∗-homomorphism from A to M(A).

Further, also the converse result holds:

3. If (c,d) is an E(2)-pair of operators, there exists a unique non-degenerate
∗-representation θ : A→ B(L) such that c = θ(c) and d = θ(d).

From Proposition 4.2.3, we can directly deduce the result below.

Corollary 4.2.4 For all z ∈ S1, there is a unique ∗-homomorphism ωz : A→ C
such that

ωz(c) = z and ωz(d) = 0.
It is clear that ω1 = ε.

Let z ∈ S1. We have that

1. (ωz ⊗ ι)Φ(c) = (ι⊗ ωz)Φ(c) = zc,

2. (ωz ⊗ ι)Φ(d) = zd and (ι⊗ ωz)Φ(d) = zd.

In particular, we get (ω−1 ⊗ ι)Φ(x) = (ι⊗ ω−1)Φ(x) for all x ∈ A.

For z1, z2 ∈ S1, we have (ωz1 ⊗ ωz2)Φ = ωz1z2 .

We now explain how Woronowicz in [159] uses the above universality properties
to construct the comultiplication Φ on the C∗-algebra A.

The Remark 4.2.5 is explained in detail in Section 3 of [157].

Remark 4.2.5 The Lemma 4.2.2 gives that (c, d) is an E(2)-pair. We then get
from Theorem 2.2.11 that also (c⊗ c, c⊗ du d⊗ c∗) is an E(2)-pair.

Theorem 2.5.3 yields c ∈ M(A) and d η A. We thus have c ⊗ c ∈ M(A ⊗ A).
By using Theorem 2.2.11, it is easy to deduce that (c⊗ du d⊗ c∗) η A.

From Proposition 4.2.3, we then get that there exists a unique non-degenerate
∗-homomorphism Φ : A→M(A⊗A) such that

Φ(c) = c⊗ c and Φ(d) = c⊗ du d⊗ c∗.

By working as in [157, Theorem 3.4], one can show that Φ is coassociative.
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We also comment on the spectral condition on d in Definition 4.2.1. We already
mentioned in Section 1.2 that such a condition typically appears in the study of
examples of locally compact quantum groups.

For the quantum E(2) group (A,Φ), the spectral condition on d is needed in
order to ensure the existence of the comultiplication.

The Remark 4.2.6 explains the meaning of the conditions on σ(d).

Remark 4.2.6 Let c,d be linear operators on a Hilbert space K. Suppose that
c is unitary and that d is normal. Further, we assume that cdc∗ = µd.

We then define a pair (R,S) ∈ Dµ by

R = d⊗ c∗ and S = c⊗ d.

From Lemma 2.2.9, we get that Ru S is normal if and only if σ(R−1S) ⊆ C̄µ.
It is not difficult to show that the condition σ(R−1S) ⊆ C̄µ is fulfilled if and only
if there exists a number x ∈ C0 such that σ(d) ⊆ xC̄µ.
In this case, we have σ(RuS) ⊆ C̄µ if and only if x ∈ C̄µ and hence σ(d) ⊆ C̄µ.

We now switch our attention to the pair (a, b). The universality properties
of (a, b) can be handled quite similarly to those of (c, d).

First, we give the basic Definition 4.2.7 below.

Definition 4.2.7 Let a,b be linear operators on a Hilbert space K.

We call (a,b) an Ê(2)-pair of operators if all five conditions below are satisfied:

1. a is strictly positive,

2. b is normal,

3. a and |b| strongly commute,

4. aitba−it = µitb,

5. σ(a, |b|) ⊆ Ē.

The small Remark 4.2.8 alludes to Definition 4.2.7.

Remark 4.2.8 Let a,b be linear operators on a Hilbert space K. We then use
b = u|b| to denote the polar decomposition of b.

We have that Condition 4 in Definition 4.2.7 can be replaced by either one of
the following conditions:

4’. au ⊇ µua,

4”. We have au = µua as operators on {ker b}⊥.
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If (a,b) is an Ê(2)-pair, then ab and ba are well-defined. It is easy to check
that in this case

− ab ⊇ µba,

− We have ab = µba as operators on {ker b}⊥.

We refer to [142] for a study about the spectral condition on a and b.

The next Lemma 4.2.9 ensues from the results in Section 2.3.

Lemma 4.2.9 We have that (a, b) is an Ê(2)-pair of operators.

The next Proposition 4.2.10 states the central universality property.

Proposition 4.2.10 Let Â ⊆ B(K) be a non-degenerate C∗-algebra. We then
consider a non-degenerate ∗-representation π : Â→ B(K).

The properties below hold:

1. We have that
(
π(a), π(b)

)
is an Ê(2)-pair of operators,

2. We have π(a), π(a−1), π(b) η Â if and only if we can consider π as a
non-degenerate ∗-homomorphism from Â to M(Â).

Further, also the converse result holds:

3. If (a,b) is an Ê(2)-pair of operators, there exists a unique non-degenerate
∗-representation θ : Â→ B(L) such that a = θ(a) and b = θ(b).

From Proposition 4.2.10, we can directly deduce the result below.

Corollary 4.2.11 For all k ∈ Z, there is a unique ∗-homomorphism ω̂k : Â→ C
such that

ω̂k(a) = µ
1
2k and ω̂k(b) = 0.

It is clear that ω̂0 = ε̂.

Let k ∈ Z. We have that

1. (ω̂k ⊗ ι)Φ(c) = (ι⊗ ω̂k)Φ̂(a) = µ
1
2ka,

2. (ω̂k ⊗ ι)Φ̂(b) = µ
1
2kb and (ι⊗ ω̂k)Φ̂(b) = µ−

1
2kb.

For k1, k2 ∈ Z, we have (ω̂k1 ⊗ ω̂k2)Φ̂ = ω̂k1+k2 .

4.3 Irreducible ∗-representations

This Section 4.3 is very short. We describe all irreducible ∗-representations of the
C∗-algebras A and Â. The properties below appeared before in [88]. They can
easily be checked by using some simple computations.
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We have already studied one-dimensional ∗-representations of both A and Â in
the Corollaries 4.2.4 and 4.2.11. It is not so difficult to also find formulas for the
other irreducible ∗-representations on these two C∗-algebras.

First, we display all irreducible ∗-representations of A.

Proposition 4.3.1 We have the following results:

• For all z ∈ C, we can define a one-dimensional irreducible ∗-representation
ωz : A→ C by setting

ωz(c) = z and ωz(d) = 0.

• For all z ∈ C, we can define an infinite-dimensional irreducible ∗-represen-
tation πz : A→ B(`2(Z)) by setting

πz(c) = s∗ and πz(d) = zm.

Every irreducible ∗-representation π : A→ B(K) on a Hilbert space K is either
one-dimensional or infinite-dimensional. We have the next classification:

• In the case that π is one-dimensional, there exists a unique z ∈ S1 such
that π is unitarily equivalent to ωz.

• In the case that π is infinite-dimensional, there exists a unique z ∈ S1 such
that π is unitarily equivalent to πz.

We then consider the case of the C∗-algebra Â.

Proposition 4.3.2 We have the following results:

• For all k ∈ Z, we can define a one-dimensional irreducible ∗-representation
ω̂k : Â→ C by setting

ω̂k(a) = µ
1
2k and ω̂k(d) = 0.

• For all z ∈ C, we can define an infinite-dimensional irreducible ∗-represen-
tation π̂k : Â→ B(`2(Z)) by setting

π̂k(a) = m and π̂k(b) = µks.

• For all z ∈ C, we can define an infinite-dimensional irreducible ∗-represen-
tation π̂′k : Â→ B(`2(Z)) by setting

π̂′k(a) = µ
1
2m and π̂′k(b) = µks.



4.4 Corepresentations 223

Every irreducible ∗-representation π̂ : Â→ B(K) on a Hilbert space K is either
one-dimensional or infinite-dimensional. We have the next classification:

• In the case that π̂ is one-dimensional, there exists a unique k ∈ Z such
that π̂ is unitarily equivalent to ω̂k.

• In the case that π̂ is infinite-dimensional, there exists a unique k ∈ Z such
that π̂ is unitarily equivalent to either π̂k or π̂′k.

4.4 Corepresentations

We now study the (unitary) corepresentations of the quantum E(2) group (A,Φ)
and its dual. In the Propositions 4.4.2 and 4.4.5, we give explicit formulas for
all corepresentations of (A,Φ) and (Â, Φ̂). We state these properties with very
little comment and refer to [159, 149] for more information and proofs.

From the amenability results in Section 3.2, we know that both the quantum
groups (A,Φ) and (Â, Φ̂) are universal in the sense of [61]. It is then a direct
consequence that their corepresentation theory is quite accessible.

The corepresentations of (A,Φ) are treated by Woronowicz in [159]. The case
of (Â, Φ̂) is considered in [149]. We further mention that e.g. E. Koelink [53]
and A. Pal [88] studied the relation between the matrix coefficients of irreducible
corepresentations and Hahn-Exton q-Bessel functions.

We state the Definition 4.4.1 of a corepresentation U on (A,Φ). This Defini-
tion 4.4.1 is not the standard one, but yields an equivalent notion.

Definition 4.4.1 Let U ∈ M(B0(K) ⊗ A) be a unitary operator. We call U a
corepresentation of (A,Φ) if we have

(ι⊗ Φ)(U) = U12U13.

The Proposition 4.4.2 describes all corepresentations of (A,Φ). The concept of
an Ê(2)-pair of operators (cf. Section 4.3) hereby plays a crucial role.

It is clear that W is a typical corepresentation of (A,Φ).

Proposition 4.4.2 ([159]) Let Â ⊆ B(K) be a non-degenerate C∗-algebra.
We have the following properties:

• Let
(
a,b

)
be an Ê(2)-pair of operators acting on K. Then, we consider

U ∈M(B0(K)⊗A) defined by

U = Fµ(ab⊗ cd)χ(a⊗ 1, 1⊗ c).

We have that U is a corepresentation of (A,Φ).
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• Let U ∈ M(B0(K) ⊗ A) be a corepresentation of (A,Φ). There exists a
unique Ê(2)-pair

(
a,b

)
of operators acting on K such that

U = Fµ(ab⊗ cd)χ(a⊗ 1, 1⊗ c).

Moreover, we have U ∈M(Â⊗A) if and only if a,a−1,b η Â.

The next Proposition 4.4.3 directly ensues from Propositions 4.2.3 and 4.4.2.

Proposition 4.4.3 Let Â ⊆ B(K) be a non-degenerate C∗-algebra. The results
below hold:

• Let π : Â → M(Â) be a non-degenerate ∗-homomorphism. We consider
W ∈M(Â⊗A) defined by

W = (π ⊗ ι)(W ).

Then, we have that W is a corepresentation of (A,Φ).

• Let W ∈M(Â⊗A) be a corepresentation of (A,Φ). There exists a unique
non-degenerate ∗-homomorphism π : Â→M(Â) such that

W = (π ⊗ ι)(W ).

We describe the corepresentations of (Â, Φ̂). It is of course no surprise that there
is a complete resemblance with the properties concerning (A,Φ).

We confine ourselves to only formulate the results.

Definition 4.4.4 Let Û ∈ M(Â ⊗ B0(K)) be a unitary operator. We call Û a
corepresentation of (Â, Φ̂) if we have

(Φ̂⊗ ι)Û = Û13Û23.

Proposition 4.4.5 ([149]) Let A ⊆ B(K) be a non-degenerate C∗-algebra.
We have the following results:

• Let
(
c,d

)
be an E(2)-pair of operators acting on K. Then, we consider

Û ∈M(Â⊗B0(K)) by

Û = Fµ(ab⊗ cd)χ(a⊗ 1, 1⊗ c).

We have that Û is a corepresentation of (Â, Φ̂).

• Let Û ∈ M(Â ⊗ B0(K)) be a corepresentation of (Â, Φ̂). There exists a
unique E(2)-pair

(
c,d

)
of operators acting on K such that

Û = Fµ(ab⊗ cd)χ(a⊗ 1, 1⊗ c).

Moreover, we have Û ∈M(Â⊗A) if and only if c,d ηA.
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Proposition 4.4.6 Let A ⊆ B(K) be a non-degenerate C∗-algebra. The results
below hold:

• Let π : A → M(A) be a non-degenerate ∗-homomorphism. We consider
W ∈M(Â⊗A) defined by

W = (ι⊗ π)(W ).

Then, we have that W is a corepresentation of (Â, Φ̂).

• Let W ∈M(Â⊗A) be a corepresentation of (Â, Φ̂). There exists a unique
non-degenerate ∗-homomorphism π : A→M(A) such that

W = (ι⊗ π)(W ).





Chapter 5

Conclusions and open
problems

In this final Chapter 5, we bethink the fruition of our work. If we look at
this Ph.D.-thesis, it seems that we have found what we were really looking for.
Another example in our life, to construct and to adore!

We use this brief Chapter 5 also to point the reader towards questions that we
look upon as interesting to further contemplate about. Of course, we restrict
ourselves to only mention those problems which seem feasible to unveil.

The thesis encompasses two main parts in each of which we make a contribution
to a specific branch of the quantum group theory. We first have our study of the
manageability theory. This is expounded in Sections 1.3 and 1.4. Further, in
Chapters 2 to 4, we elaborate all features of the quantum E(2) group.

Both these two parts form a complete whole. We have tried to streamline the
treatments as much as possible. There are nevertheless still some open problems.
We below mention a few ones that we have encountered. They may serve as an
incentive for further research. The outcome of these problems is most of the
times imponderable and might lead to some new insights.

It need not be said that we hope that the problems in the list below will be
answered in the near future. We would be very pleased if some of our results
will open a gate to new research on the quantum E(2) group.

Some thoughts on Sections 1.3 and 1.4

In Sections 1.3 and 1.4, one can find a quite complete survey of the theory
of manageable multiplicative unitaries. We here first give an overview of the
main properties and then prove some new results. In particular, we summon up
interesting results concerning the existence of Haar weights.

227
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We think that the results of the Sections 1.3 and 1.4 constitute a solid framework
that can be useful in the construction of quantum group examples.

We account the following topics as the two most intriguing open problems:

• We wonder if any manageable multiplicative unitaryW leads up to a locally
compact quantum group. Thus, if (A,Φ) is the bi-C∗-algebra associated
to W , does there always exists a (left) Haar weight ψ on (A,Φ)?

• A stronger question is whether it is always possible to find a Haar weight ψ
on (A,Φ) that is of the form ψq as displayed in Definition 1.4.5.

Some thoughts on Chapters 2, 3 and 4

The extensive Chapter 2 together with the Chapters 3 and 4 constitutes a study
of the quantum E(2) group. We assess our treatment as very complete. It might
be used as a reference work in future research.

In Chapter 2, we build up the quantum E(2) group by using the techniques that
are introduced in Sections 1.3 and 1.4. Further, we examine the basic features
of this example with special attention to the Haar weights.

In the Chapters 3 and 4, we respectively gave a study about the amenability
properties and the representation theory of the quantum E(2) group.

The following issues naturally cropped up in our research:

• It is expected that the quantum E(2) group (A,Φ) is simple, i.e., that we
cannot describe (A,Φ) as an extension in the sense of [131].

We observe that this result is equivalent to the property that (A,Φ) cannot
be written as a cocycle bicrossed product.

• It is probably useful to involve the quantum E(2) group (A,Φ) in the
research about quantum homogeneous spaces. The obvious first thing to
do is then to determine all closed quantum subgroups of (A,Φ) together
with the corresponding quantum homogeneous spaces.

There has been very recent research on quantum homogeneous spaces and
related matters; see e.g. [130]. This theory is however only elaborated for
regular quantum groups. The non-regular case is still problematic.

Because the quantum E(2) group (A,Φ) is the simplest known non-regular
quantum group (besides the bicrossed products), it should be interesting
to look at which parts of the theory of quantum homogeneous spaces for
regular quantum groups is still applicable for (A,Φ).

In the most optimal case, this research may have some solutions in store
for a generalization of the present theory.
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• We wonder if also the quantum Ê(2) group has some kind of semigroup
behavior, i.e., if there is a dual version of Proposition 2.5.15.

• In Chapter 2, we use a deformation parameter µ with 0 < µ < 1. Maybe it
is possible to adapt the construction procedure of the quantum E(2) group
in such a way that also other values of µ are allowed.

This question can be seen to be in the line of recent research on e.g. the
quantum az+b group; see [165, 113].

• As the final and inevitable thought, there is the open question if it is
possible to construct a ‘quantum E(3) group’.

Even more ambitious is then to search for a ‘quantum E(n) group’.





Appendix A

The function Fµ and its
Fourier transform

In this Appendix A, we give a detailed study of the function Fµ and its Fourier
coefficients. Most of the basic results are already formulated (without proof) in
the Section 2.2. Since the function Fµ plays a crucial role in the construction
of the quantum E(2) group, we think that it is useful to spend a few pages on
a survey of its most important basic properties.

The function Fµ was first introduced and studied by S.L. Woronowicz in [158].
Its main importance with respect to the quantum E(2) group is the fact that
it has a quantum exponential behavior. The most crucial properties of Fµ are
stated in the Theorems 2.2.11 and 2.2.12. The proofs of these results are very
advanced and we therefore do not include them in this appendix.

Although the treatment of the function Fµ is inevitably somewhat technical,
the calculations in the proofs below are certainly not intricate. There is only
required a little knowledge of complex analysis.

The emphasis of this Appendix A lies in the study of the numbers B(k, n) as
defined in Definition A.4. The formulated properties of these Fourier coefficients
are not new. They were already found by S. Baaj in [1]. We nevertheless include
a proof of these results to translate notations into our settings.

The Definition 2.2.1 of the function Fµ is restated in Definition A.1 below.

Definition A.1 ([158]) We consider the function Fµ on C that is defined in
the following way. For all z ∈ C \ {−µ−2k | k ∈ N}, we set

Fµ(z) =
∞∏
k=0

1 + µ2kz

1 + µ2kz

Further, we set Fµ(z) = −1 when z ∈ {−µ−2k | k ∈ N}.
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We start by proving the basic properties of the function Fµ. These results are
already mentioned in Section 2.2. They are all due to Woronowicz [158].

First, we have the next Lemma A.2.

Lemma A.2 ([158]) It is clear that Fµ is not continuous on C. But we have
that the restriction of Fµ to C̄µ is continuous.

We also use the notation Fµ to denote this restriction.

For all z ∈ C, we have Fµ(z) = Fµ(z) and |Fµ(z)| = 1. Hence, Fµ ∈ Cb(C̄µ).

Proof. It is clear that Fµ(z) = Fµ(z) and |Fµ(z)| = 1 for all z ∈ C. To study
the continuity of Fµ, we consider the function gµ on C defined by

gµ(z) =
∞∏
k=0

(1 + µ2kz).

We have that gµ is analytic on C. The set of its zeros is equal to {−µ−2k | k ∈ N}.
It is standard to prove that all these zeros are single zeros. Moreover, we have
that the product

∏∞
k=0(1 + µ2kz) converges uniformly on compact subsets.

For all z ∈ C \ {−µ−2k | k ∈ N}, we have

Fµ(z) =
gµ(z)
gµ(z)

.

From this, it immediately follows that Fµ is continuous on C \ {−µ−2k | k ∈ N}.
Take k ∈ N. It is not difficult to verify that

lim
θ→π

Fµ(µ−2keiθ) = −1.

This proves that Fµ is continuous on C̄µ. �

We compute the asymptotical behavior of Fµ in the Lemma A.3 below.

Lemma A.3 If z ∈ C̄µ, then we have that Fµ(µ2z)Fµ(z−1) =
(
z
|z|

)logµ(|z|)+1.
Thus, for z ∈ C̄µ large enough, we have

Fµ(z) ≈
( z

|z|

)logµ(|z|)−1

.

Proof. First assume that z = µqe−iθ with q ∈ Z and θ ∈ [0, 2π] such that θ 6= π.
It follows from a straightforward calculation that

Fµ(µ2z)Fµ(z−1) =
q∏

k=0

1 + µ2k−qeiθ

1 + µ2k−qe−iθ

= ei(q+1)θ

q∏
k=0

µq−2k = ei(q+1)θ =
( z

|z|

)logµ(|z|)+1

.

By continuity of Fµ, we can extend this result to all elements in C̄µ. �



233

Next, we recall the Definition 2.2.4 of the Fourier coefficients B(k, n).

Definition A.4 ([1, 2]) Let k, n ∈ Z. Then, we define a number B(k, n) by

B(k, n) =
1

2π

∫ 2π

0

Fµ(µneit)e−ikt dt.

We thus have by definition that B(k, n) is the kth Fourier coefficient of the
continuous function S1 → C : z 7→ Fµ(µnz).

We then also introduce functions F̂p. It is clear from their Definition A.5 that
they are closely related to the function Fµ (cf. Lemma A.7). We use them below
to prove some important relations between the numbers B(k, n).

Definition A.5 ([157, 1]) Let p ∈ Z. We then define a function F̂p on C0 in
the following way. For z ∈ C0, we set

F̂p(z) =
∞∏
k=0

1 + µ2k+pz−1

1 + µ2k+pz
.

The basic properties of the functions F̂p are stated in Lemma A.6.

Lemma A.6 ([157, 1]) Let p ∈ Z. We have that F̂p is a meromorphic func-
tion. The function F̂p is analytic on the open annulus {z ∈ C | 0 < |z| < µ−1}.
Further, we have the following properties:

• If p > 0, then F̂p has single zeros in {−µp+2k | k ∈ N} and single poles
in {−µ−p−2k | k ∈ N}. We have F̂p(1) = F̂p(−1) = 1.

• If p ≤ 0, then F̂p has single zeros in {−µ−p+2+2k | k ∈ N} and single poles
in {−µp−2−2k | k ∈ N}. We have F̂p(1) = 1 and F̂p(−1) = (−1)p+1.

Proof. Let p ∈ Z. We consider the function ĝp on C defined by

ĝp(z) =
∞∏
k=0

(1 + µ2k+pz).

Then, ĝp is analytic on C. The set of its zeros is equal to {−µ−p−2k | k ∈ N}.
It is standard to prove that all these zeros are single zeros. Moreover, we have
that the product

∏∞
k=0(1 + µ2k+pz) converges uniformly on compact subsets.

For every z ∈ C0, we have by Definition A.5 that

F̂p(z) =
ĝp(z−1)
ĝp(z)

.

This gives the meromorphic properties of the function F̂p.
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We observe that the small difference between the cases p > 0 and p ≤ 0 is due
to the fact that

• {−µp+2k | k ∈ N} ∩ {−µ−p−2k | k ∈ N} = ∅ if p > 0,

• {−µp+2k | k ∈ N}∩{−µ−p−2k | k ∈ N} = {−µ−p−2l | l ∈ N, l ≤ −p} if p ≤ 0.

In both cases, we see that F̂p is analytic the open annulus {z ∈ C | 0 < |z| < µ−1}.
It is straightforward to calculate F̂p(1) and F̂p(−1). �

The functions F̂p are related to Fµ by the following property.

Lemma A.7 ([157, 1]) Let p ∈ Z and θ ∈ [0, 2π]. We then have that

Fµ(µpeiθ) = F̂p(eiθ).

Thus, the function Fµ is analytic on every circle Sk with k ∈ Z.

Proof. Remember that Sk = {z ∈ C̄µ | |z| = µk} for k ∈ Z; see Definition 2.6.23.
Take p ∈ Z and θ ∈ [0, 2π] with θ 6= π. Then, we have

Fµ(µpeiθ) =
∞∏
k=0

1 + µ2k+pe−iθ

1 + µ2k+peiθ
= F̂p(eiθ).

The case θ = π follows by continuity or can be checked in a direct way. �

The fact the Fµ is analytic on the circles Sk makes it possible to derive some
useful results about the Fourier coefficients.

The next Lemma A.8 is a direct consequence of Lemma A.7.

Lemma A.8 ([1]) Let n ∈ Z. For every l ∈ Z, we have

lim
k→+∞

klB(k, n) = lim
k→−∞

klB(k, n) = 0.

This implicates that ∑
k∈Z

|B(k, n)| < +∞.

It follows, for all z ∈ S1, that we have

Fµ(µnz) =
∑
k∈Z

B(k, n)zk. (A.1)

Further, the series in Equation (A.1) has uniform convergence on S1.
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For the rest of this Appendix A, we focus on the Fourier coefficients B(k, n).
Below, we formulate and prove all related properties that are used throughout
this thesis. We can hereby restrict ourselves to basic results.

We mention that more advanced formulas involving the numbers B(k, n) can be
found in Appendix A of [1]. We do not include these results in this Appendix A
as they are nowhere needed in our calculations.

The next Proposition A.9 is simple, but very useful.

Proposition A.9 ([1, 2]) We have the following properties:

1. B(k, n) ∈ R and |B(k, n)| ≤ 1 for all k, n ∈ Z,

2.
∑
k∈Z |B(k, n)|2 = 1 for all n ∈ Z,

3. limn→+∞B(k, n) = δk,0 uniformly in k,

4. limn→−∞B(k, n) = 0.

Proof. Take n ∈ Z. By Definition A.4, we have that B(k, n) is the kth Fourier
coefficient of the function S1 → C : z 7→ Fµ(µnz).

Because |Fµ(µnz)| = 1 for every z ∈ S1, we get that
∑
k∈Z |B(k, n)|2 = 1. This

also gives that |B(k, n)| ≤ 1 for all k ∈ Z. The fact that we have Fµ(z) = Fµ(z)
for all z ∈ C implies that B(k, n) ∈ R for all k ∈ Z.

Independently of k, we have that

lim
n→+∞

B(k, n) =
1

2π

∫ 2π

0

lim
n→+∞

Fµ(µneiθ)e−ikθ dθ =
1

2π

∫ 2π

0

e−ikθ dθ = δk,0.

Using the asymptotical behavior of the function Fµ (see Lemma A.3), it is not
difficult to show that we have that limn→−∞B(k, n) = 0. �

The Lemma A.10 and its Corollary A.11 are also important.

Lemma A.10 ([157, 1]) Let m ∈ Z. For all z ∈ C0, we then have that

1. F̂m+1(µz) = (1 + µmz)F̂m(z),

2. F̂m(µz) = (1 + µm−1z−1)F̂m+1(z)

where equality also can mean that we have single poles at both sides.

Proof. Take m ∈ Z. Lemma A.6 shows that z is a pole of F̂m if and only if µz is
a pole of F̂m+1 or z = −µm. If m < 0, this is the case if z ∈ {−µm−2−2k | k ∈ N};
if m ≥ 0, this is the case if z ∈ {−µ−m−2k | k ∈ N}.
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In the case that z is not a pole of F̂m, we can make the straightforward compu-
tation

F̂m+1(µz) =
∞∏
k=0

1 + µ2k+mz−1

1 + µ2k+m+2z
= (1 + µmz)

∞∏
k=0

1 + µ2k+mz−1

1 + µ2k+mz
= F̂m(z)

unless m ≤ 0 and z ∈ {−µ−m−2l | 0 ≤ l ≤ −m}. We can include these cases via
a trivial continuity argument.

The proof of the second result is completely similar. The main calculation is
then given by

F̂m(µz) =
∞∏
k=0

1 + µ2k+m−1z−1

1 + µ2k+m+1z
=(1+µm−1z−1)

∞∏
k=0

1 + µ2k+m+1z−1

1 + µ2k+m+1z
= F̂m+1(z)

which is correct for almost all z ∈ C0. �

Corollary A.11 ([1, 2]) Let k, n ∈ Z. We then have that

1. B(k, n+ 1) = B(k, n)µ−k +B(k − 1, n)µn−k,

2. B(k, n− 1) = B(k, n)µ−k +B(k + 1, n)µn−k−2.

Proof. We only prove the first equality. The proof of the second equality is
completely similar. The only difference is that we then have to use the second
equality from Lemma A.10 instead of the first one.

First, we define two closed paths γ1 and γ2 in the following way:

γ1 : [0, 2π] → C : θ 7→ eiθ and γ2 : [0, 2π] → C : θ 7→ µeiθ.

We have that

B(k, n+ 1) =
1

2π

∫ 2π

0

Fµ(µn+1eit)e−ikt dt =
1

2πi

∫
γ1

F̂n+1(z)z−k−1 dz

=
1

2πi

∫
γ2

F̂n+1(z)z−k−1 dz =
1

2π

∫ 2π

0

F̂n+1(µeit)µ−ke−ikt dt

(1)
=

1
2π

∫ 2π

0

(1 + µneit)F̂n(eit)µ−ke−ikt dt

=
( 1

2π

∫ 2π

0

Fµ(µneit)e−ikt dt
)
µ−k

+
( 1

2π

∫ 2π

0

Fµ(µneit)e−i(k−1)t dt
)
µn−k

= B(k, n)µ−k +B(k − 1, n)µn−k.

The Equality (1) follows from the results in Lemma A.10. �



237

The next Proposition A.12 states the most important property of the Fourier
coefficients B(k, n) (cf. Remark 2.2.7). Its proof is based on the two equalities
in Corollary A.11. The used technique is due to S. Baaj [1].

This Proposition A.12 is e.g. crucial in the Section 2.3.

Proposition A.12 ([1, 2]) Let k, n ∈ Z. We have that

B(k, n) = (−µ)kB(−k, n− k)

= B(k − n+ 1,−n+ 2) = (−µ)k−n+1B(n− 1, k + 1).

Proof. Let F be the set of all real double sequences
(
B(k, n)

)
(k,n)∈Z×Z satisfying

the two equalities

1. B(k, n+ 1) = B(k, n)µ−k + B(k − 1, n)µn−k,

2. B(k, n− 1) = B(k, n)µ−k + B(k + 1, n)µn−k−2.

It is clear that F is a real vector space.

From the Corollary A.11, we directly get that
(
B(k, n)

)
∈ F .

Take B ∈ F. We define double sequences u,v,w by

1. u(k, n) = (−µ)kB(−k, n− k),

2. v(k, n) = B(k − n+ 1,−n+ 2),

3. w(k, n) = (−µ)k−n+1B(n− 1, k + 1).

It is not difficult to check that u,v,w ∈ F.

By the definition of the double sequences u and v we immediately get that we
have u(0, n) = B(0, n) and v(k, 1) = B(k, 1) for all k, n ∈ Z. Using the structure
of the vector space F, we see that this implies that u = v = B.

Let k, n ∈ Z. Using the equality u = v = B, we see that

w(k, n) = (−µ)k−n+1B(n− 1, k + 1) = (−µ)k−n+1v(−k + n− 1,−k + 1)

= (−µ)k−n+1B(−k + n− 1,−k + 1) = u(k − n+ 1,−n+ 2)
= B(k − n+ 1,−n+ 2) = v(k, n) = B(k, n).

Hence, we can conclude that u = v = w = B. �

The Lemma A.13 is a standard result for Fourier coefficients.

Lemma A.13 ([1]) Let p, n ∈ Z. We have that∑
k∈Z

B(k, n)B(k + p, n) = δp,0.
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Proof. By Definition A.4, we have that B(k, n) is the kth Fourier coefficient
of the function S1 → C : z 7→ Fµ(µnz). We also have that B(k + p, n) is the
kth Fourier coefficient of the function S1 → C : z 7→ Fµ(µnz)z−p.

Using Parseval’s identity (and remembering that B(k+ p, n) ∈ R for all k ∈ Z),
we get that∑

k∈Z
B(k, n)B(k + p, n) =

1
2π

∫ 2π

0

Fµ(µneiθ)Fµ(µneiθ)e−ipθ dθ

=
1

2π

∫ 2π

0

eipθ dθ = δp,0.

In this calculation, we also use that |Fµ(z)| = 1 for all z ∈ C̄µ. �

The next Lemma A.14 is used in the proof of Proposition 2.5.15.

Lemma A.14 Let l, n, s ∈ Z. We have that∑
t∈Z

B(t, l − n+ 1)B(0,−l + t)B(s+ t, l − n+ 1) = B(−s,−l − s)B(s,−n).

Proof. In this proof, we use the operators c, d as introduced in Definition 2.3.3.
We also use the unit vectors ek as introduced in Notation 2.3.1.

First, we define normal operators R and S by

R = d⊗ c∗ and S = c⊗ d.

It is easy to check that (R,S) ∈ Dµ and σ(R), σ(S) ⊆ C̄µ. Hence, Proposi-
tion 2.2.12 gives that Fµ(R u S) = Fµ(R)Fµ(S). Together with Lemma 2.3.15,
this implies that

W (Fµ(d)⊗ 1)W ∗ = Fµ(d⊗ c∗)Fµ(c⊗ d).

Let k, l,m, n, s ∈ Z. We can use techniques similar to the ones used in the proof
of Proposition 2.3.13 to calculate that〈
W (Fµ(d)⊗ 1)W ∗(ek ⊗ el ⊗ em ⊗ en), ek ⊗ el+s ⊗ em+2s ⊗ en+s

〉
=

∑
t∈Z

B(t, l − n+ 1)B(0,−l + t)B(s+ t, l − n+ 1)

and also that〈
Fµ(d⊗ c∗)Fµ(c⊗ d)(ek ⊗ el ⊗ em ⊗ en), ek ⊗ el+s ⊗ em+2s ⊗ en+s

〉
= B(−s,−l − s)B(s,−n).

This ends the proof of the lemma. �
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Technical results

We use this Appendix B to collect some information about three subjects that
are unremittingly used in calculations throughout the thesis:

• Weight theory,
• One-parameter groups,
• Functional calculus.

Further, in Section B.4, we also include two technical lemmas.

We are very concise in the treatments. We restrict ourselves to only mention
results that are used in calculations in either of the Chapters 1 to 4. It should
nevertheless be remarked that acquaintance with the three handled subjects is
a prerequisite for understanding all technical details of the thesis.

This Appendix B is thus used as a technical reference. We are sparse with details
and we therefore, in each case, include a list of more elaborated works.

B.1 Weight theory

In this Section B.1, we collect some notations and results concerning the theory
of weights on C∗-algebras and von Neumann algebras. The mentioned definitions
and properties are standard. We refer to [18, 91, 58, 64] for more details.

We also mention [125, Chapter 4] as a quite complete overview.

First, we give the Definition B.1.1 of a weight on a C∗-algebra A. This will then
be the central object for the whole Section B.1.

Definition B.1.1 Let A be a C∗-algebra. Then a mapping ϕ : A+ → [0,+∞]
is called a weight if the following two conditions are satisfied:

1. We have ϕ(x+ y) = ϕ(x) + ϕ(y) for all x, y ∈ A+,

2. We have ϕ(rx) = rϕ(x) for all r ∈ R+ and x ∈ A+.

239
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The following Notation B.1.2 and Lemma B.1.3 are standard.

Notation B.1.2 Let ϕ be a weight on a C∗-algebra A. We then denote

• M+
ϕ = {a ∈ A+ | ϕ(a) < +∞},

• Mϕ = span M+
ϕ ,

• Nϕ = {a ∈ A | ϕ(a∗a) < +∞}.

Lemma B.1.3 Let ϕ be a weight on a C∗-algebra A. The properties below hold:

• We have that M+
ϕ is a hereditary cone in A+,

• We have that Nϕ is a left ideal in M(A),

• We have Mϕ = N∗
ϕNϕ,

• We have that Mϕ is a ∗-subalgebra of A such that Mϕ ∩A+ = M+
ϕ .

We have a GNS-construction for weights. It is very similar to the well-known
GNS-construction for continuous linear functionals.

The Proposition B.1.4 is a basic result in weight theory.

Proposition B.1.4 Let ϕ be a weight on a C∗-algebra A. There exists a unique
(up to a unitary transformation) triple (Hϕ, πϕ,Λϕ) such that:

• Hϕ is a Hilbert space,

• Λϕ is a linear map from Nϕ into Hϕ satisfying the two conditions

1. Λϕ(Nϕ) is dense in Hϕ,

2. For all a, b ∈ Nϕ, we have 〈Λϕ(a),Λϕ(b)〉 = ϕ(b∗a),

• πϕ : A → B(Hϕ) is a ∗-representation such that πϕ(a)Λϕ(b) = Λϕ(ab)
for every a ∈ A and b ∈ Nϕ.

The triple (Hϕ, πϕ,Λϕ) is called the GNS-construction for ϕ.

Weights on C∗-algebras

We first concentrate on the basic properties of weights on C∗-algebras. It should
be observed that there are some very crucial results that are specifically adapted
to von Neumann algebra case. These are handled further below.

The next Notation B.1.5 is used in the whole Section B.1.

Notation B.1.5 We fix a C∗-algebra A ⊆ B(K) and a weight ϕ : A+→ [0,+∞].



B.1 Weight theory 241

We start by giving some terminology. We can e.g. refer to [18, 91, 93] for proofs
of the (non-trivial) equivalences that appear below.

The three Terminologies B.1.6, B.1.7 and B.1.8 are standard.

Terminology B.1.6 We say that ϕ is lower semi-continuous when one of the
following equivalent conditions is satisfied:

• We have for every λ ∈ R+ that the set { a ∈ A+ | ϕ(a) ≤ λ} is closed,

• For every net (xi) in A+ and x ∈ A+ such that xi → x, we have

ϕ(x) ≤ lim inf ϕ(xi),

• There exists a family (ωi) in A∗+ such that we have

ϕ(x) =
∑
i

ωi(x)

for all x ∈ A+.

Terminology B.1.7 We say that ϕ is densely defined when one of the following
equivalent conditions is satisfied:

• M+
ϕ is dense in A+,

• Mϕ is dense in A,
• Nϕ is dense in A.

Terminology B.1.8 We say that ϕ is faithful if the following condition holds:

• If a ∈ A+ and ϕ(a) = 0, then we have a = 0.

We then concentrate on the properties of weights that are lower semi-continuous.
The condition of lower semi-continuity is a very natural one to impose.

It is clear that the next Proposition B.1.9 is a simple result.

Proposition B.1.9 Suppose that ϕ is lower semi-continuous. Let (xi) be a net
in A+ and x ∈ A+ such that xi ≤ x for all i and xi → x.

We then have
ϕ(xi) → ϕ(x).

The main property in the theory of lower semi-continuous weights is stated
in the Proposition B.1.12. It shows that it is possible to approximate any lower
semi-continuous weight ϕ from below by continuous linear functionals.

The Notation B.1.10 introduces two important sets.

Notation B.1.10 We make use of the two following notations:

• Fϕ =
{
ω ∈ A+

∗ | ω(x) ≤ ϕ(x) for x ∈ A+
}
,

• Gϕ =
{
αω | ω ∈ Fϕ, α ∈ ]0, 1[

}
.
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The Lemma B.1.11 below allows us to use Gϕ as an index set for a net.

Lemma B.1.11 The set Gϕ is a directed subset of Fϕ.

The next Proposition B.1.12 is thus crucial. We should certainly remark that it
was first proved by F. Combes in his pioneering article [18].

Proposition B.1.12 Suppose that ϕ is lower semi-continuous. For all x ∈ A+,
we then have

• ϕ(x) = sup{ω(x) | ω ∈ Fϕ},

• ϕ(x) = limω∈Gϕ
ω(x).

The following Proposition B.1.13 is also very useful.

Proposition B.1.13 Let (Hϕ, πϕ,Λϕ) be the GNS-construction of ϕ. Then, we
have that

• The mapping Λϕ : Nϕ → Hϕ is closed,

• The ∗-representation πϕ : A→ B(Hϕ) is non-degenerate,

• If ϕ is faithful, then Λϕ is injective and πϕ is faithful.

The next Terminology B.1.14 is used in Definition 1.1.6.

Terminology B.1.14 Let (Hϕ, πϕ,Λϕ) be the GNS-construction of ϕ.

We call a vector v ∈ Hϕ right bounded with respect to (Hϕ, πϕ,Λϕ) if there
exists a number M ≥ 0 such that ‖πϕ(x)v‖ ≤M‖Λϕ(x)‖ for all x ∈ Nϕ.

Further, we call ϕ approximately KMS if the conditions below are satisfied:

• We have that ϕ is densely defined and lower semi-continuous,

• The subspace of the vectors v ∈ Hϕ that are right bounded with respect
to (Hϕ, πϕ,Λϕ) is dense in Hϕ.

Extensions to the multiplier algebra

Every lower semi-continuous weight ϕ on the C∗-algebra A has a natural exten-
sion to a weight on the multiplier algebra M(A). We only very shortly describe
the standard way of how this extension is constructed.

We recall that, for any ω ∈ A∗, we also use ω to denote its strictly continuous
extension to M(A). This is explained in Notation 1.5.24.

The Definition B.1.15 states the extension procedure.

Definition B.1.15 Suppose that ϕ is lower semi-continuous. We can define a
mapping ϕ̄ : M(A)+ → [0,+∞] by setting

ϕ̄(x) = sup{ω(x) | ω ∈ Fϕ}.
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From Proposition B.1.12, we can deduce the following result.

Proposition B.1.16 Suppose that ϕ is lower semi-continuous. Then ϕ̄ is a
weight on M(A) that is an extension of ϕ.

For every x ∈M(A)+, we always put ϕ(x) = ϕ̄(x).

KMS-weights on a C∗-algebra

We now point our attention to the special class of KMS-weights. It is direct to
observe that the KMS-property is a strong condition. It is therefore no surprise
that the theory of KMS-weights clusters several very useful properties.

It should be observed that we below already make use of the technique of analytic
continuation of one-parameter groups. We refer to the Section B.2 for a short
survey of the main results regarding this subject.

The next Definition B.1.17 describes the KMS-property.

Definition B.1.17 We say that ϕ is a KMS-weight on A if the two following
conditions are satisfied:

• ϕ is densely defined and lower semi-continuous,

• There exists a norm continuous one-parameter group σ on A satisfying the
conditions below:

1. ϕ is invariant under σ, i.e., we have ϕσt = ϕ for every t ∈ R,

2. For every a ∈ D(σ i
2
), we have ϕ(a∗a) = ϕ(σ i

2
(a)σ i

2
(a)∗).

The one-parameter group σ is called a modular automorphism group for ϕ.

We have the Proposition B.1.18 below.

Proposition B.1.18 Let ϕ be a faithful KMS-weight. The one-parameter group
σ appearing in Definition B.1.17 is then unique.

In this case, we call σ the modular automorphism group of ϕ.

There are several ways to express the KMS-condition for the weight ϕ. We list
three of them in the Proposition B.1.20 below.

We first give the Notation B.1.19.

Notation B.1.19 Let z ∈ C. Then, we use the notation

S(z) =
{
y ∈ C | Im y ∈ [0, Im z]

}
.

We denote the interior of S(z) by S(z)◦.
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The next Proposition B.1.20 is then about the KMS-condition.

Proposition B.1.20 Let ϕ be both densely defined and lower semi-continuous.
We take a GNS-construction (Hϕ, πϕ,Λϕ) for ϕ. Let σ be a norm continuous
one-parameter group on A such that ϕσt = ϕ for all t ∈ R.

The following conditions are equivalent:

1. The weight ψ is a KMS-weight with σ as a modular automorphism group,
i.e., for every a ∈ D(σ i

2
), we have ϕ(a∗a) = ϕ(σ i

2
(a)σ i

2
(a)∗),

2. There exists a non-degenerate ∗-anti-homomorphism θ : A→ B(Hϕ) such
that, for all x ∈ Nϕ and a ∈ D(σ i

2
), we have that xa belongs to Nϕ

and Λϕ(xa) = θ(σ i
2
(a))Λϕ(x),

3. For all a, b ∈ Nϕ ∩N∗
ϕ, there exists a function f : S(i) → C such that

• f is continuous and bounded on S(i),
• f is analytic on the interior S(i)◦ of S(i),
• f(t) = ϕ(σt(b)a) and f(t+ i) = ϕ(aσt(b)) for all t ∈ R.

We also state the Proposition B.1.21 below.

Proposition B.1.21 Suppose that ϕ is a KMS-weight. Further, we then take
a GNS-construction (Hϕ,Λϕ, πϕ) for ϕ.

We have the following result:

• There exists a unique anti-unitary operator Jϕ on Hϕ such that

JϕΛϕ(x) = Λϕ(σ i
2
(x)∗)

for all x ∈ Nϕ ∩D(σ i
2
).

• There exists a unique strictly positive operator ∇ϕ on Hϕ such that

∇it
ϕΛϕ(a) = Λϕ(σt(a))

for all a ∈ Nϕ and t ∈ R.

We call Jϕ the modular conjugation of ϕ and ∇ϕ the modular operator of ϕ.

The results below hold:

• If x ∈ Nϕ and y ∈ D(σ i
2
), then xy ∈ Nϕ and

Λϕ(xy) = Jϕπϕ(σ i
2
(y))∗JϕΛϕ(x),

• If a ∈ D(σ−i) and x ∈ Mϕ, then ax and xσ−i(a) belong to Mϕ and
ϕ(ax) = ϕ(xσ−i(a)),

• If x ∈ Nϕ ∩ N∗
ϕ and a ∈ N∗

ϕ ∩ D(σ−i) such that σ−i(a) ∈ Nϕ, then we
have ϕ(ax) = ϕ(xσ−i(a)).
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Absolutely continuous KMS-weights

We now look at a typical construction procedure for KMS-weights. Starting from
a KMS-weight ϕ and a strictly positive operator δ η A (having some properties),
there is constructed a ‘deformed’ KMS-weight ϕδ.

First, we give the Terminology B.1.22. We remark that we also here use the
convention made in the Introduction about products of operators.

Terminology B.1.22 Let a ∈ M(A) and T η A. We then say that a is a left
multiplier of T if and only if we have that aT ∈M(A).

The Proposition B.1.23 states the mentioned construction procedure. It should
be observed that, on an informal level, we have ϕδ = ϕ(δ

1
2 · δ 1

2 ).

For an elaboration of Proposition B.1.23, we refer to [58, Section 8].

Proposition B.1.23 Suppose that ϕ be a KMS-weight. We then take a modular
automorphism group σ of ϕ.

Let δ η A be a strictly positive operator such that there exists a number λ > 0
satisfying σt(δ) = λtδ for all t ∈ R.

We consider the subspace N0 of A defined by

N0 = { a ∈ A | a is a left multiplier of δ
1
2 and aδ

1
2 belongs to Nϕ}.

Then N0 is a dense left ideal of A. Further, the mapping N0 → Hϕ : a 7→ Λ(aδ
1
2 )

is closable. We use Λδ to denote its closure.

There is a unique KMS-weight ϕδ on A with (Hϕ, πϕ,Λδ) as a GNS-construction.

The next Lemma B.1.24 collects a few basic features.

Lemma B.1.24 Suppose that ϕ is a KMS-weight. Further, let δ η A and λ > 0
be as in the formulation of Proposition B.1.23.

The properties below hold:

• We have that ϕδ is faithful if and only if ϕ is faithful,

• For the modular automorphism group σ′ of ϕδ, we have that

σ′t(a) = δitσt(a)δ−it

for all a ∈ A and t ∈ R,

• We have σ′t(δ) = λtδ for all t ∈ R,

• For every t ∈ R, we have ϕσ′t = λtϕ and ϕδσt = λ−tϕδ.
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Weights on von Neumann algebras

It is aforementioned that weight theory on von Neumann algebras has some
typical features. We mention a few of them that are used in the thesis.

The next Notation B.1.25 is applied for the rest of Section B.1.

Notation B.1.25 Let ψ be a weight on a von Neumann algebra M .

We first give some terminology. By the ‘weak topologies’ on M , we mean the
weak, σ-weak, strong, strong∗, σ-strong and σ-strong∗ topologies.

It should be remarked that the equivalences appearing in Terminology B.1.26
are quite delicate to prove. We refer to [120, 33] for a full treatment.

The three Terminologies B.1.26, B.1.27 and B.1.28 are again standard.

Terminology B.1.26 We say that ψ is normal when one of the following equiv-
alent conditions is satisfied:

• For every λ ∈ R+, the set {a ∈M+ | ψ(a) ≤ λ} is σ-weakly closed,

• For every net (xi) in M+ and x ∈ M+ such that xi → x in the strong
topology, we have

ψ(x) = lim
i
ψ(xi),

• There exists a family (ωi) in M+
∗ such that we have

ψ(x) =
∑
i

ωi(x)

for all x ∈M+,

• For every net (xi) in M+ and x ∈ M+ such that xi → x in the σ-weak
topology, we have

ψ(x) ≤ lim inf ψ(xi).

Terminology B.1.27 We say that ψ is semi-finite when one of the following
equivalent conditions is satisfied:

• M+
ψ is dense in M+ in any of the weak topologies,

• Mψ is dense in M in any of the weak topologies,

• Nψ is dense in M in any of the weak topologies.

Terminology B.1.28 We say that ψ is faithful if the following condition holds:

• If a ∈M+ and ψ(a) = 0, then we have a = 0.
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The next Terminology B.1.29 explains an abbreviated designation.

Terminology B.1.29 Let ψ be normal, semi-finite and faithful. It is standard
to then call ψ an n.s.f. weight.

We mention the Proposition B.1.30 below.

Proposition B.1.30 Let (Hψ, πψ,Λψ) be the GNS-construction of ψ. Then, we
have that

• The mapping Λψ : Nψ → Hψ is σ-weak - weak closed,

• The ∗-representation πψ : M → B(Hψ) is normal and unital.

• If ψ is faithful, then Λψ is injective and πψ is faithful.

It should be observed that the von Neumann algebra setting is very appropriate
to work with weights. Especially for n.s.f. weights, there are a lot of profound
results. This is mainly manifested in the Tomita-Takesaki theory.

In the next Theorem B.1.31, we compile some crucial properties of the powerful
Tomita-Takesaki theory. We refer to [115, 120] for a full treatment.

Theorem B.1.31 Let ψ be an n.s.f. weight. There exists a unique strongly
continuous one-parameter group (σt) on M such that

1. ψσt = ψ for all t ∈ R,

2. For every x ∈ D(σ i
2
), we have ϕ(x∗x) = ϕ(σ i

2
(x)σ i

2
(x)∗).

We call (σt) the modular automorphism group of ψ.

Let (Hψ, πψ,Λψ) be a GNS-construction for ψ. Then, there is a unique closed
anti-linear operator T on Hψ satisfying

1. TΛψ(x) = Λψ(x∗) for all x ∈ Nψ ∩N∗
ψ,

2. Λψ(Nψ ∩N∗
ψ) is a core for T .

Further, let T = Jψ∇
1
2
ψ be the polar decomposition of T . Then Jψ is an anti-

unitary operator on Hψ and ∇ψ is a strictly positive operator on Hψ.

We call Jψ the modular conjugation of ψ and ∇ψ the modular operator of ψ.

The following properties hold:

1. For all x ∈ Nψ and t ∈ R, we have Λψ(σt(x)) = ∇it
ψΛψ(x),

2. For all x ∈ Nψ ∩D(σ i
2
), we have JψΛψ(x) = Λψ(σ i

2
(x)∗),
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3. If x ∈ Nψ and y ∈ D(σ i
2
), then xy ∈ Nψ and

Λψ(xy) = Jψπψ(σ i
2
(y))∗JψΛψ(x),

4. If a ∈ D(σ−i) and x ∈ Mψ, then ax and xσ−i(a) belong to Mψ and
ψ(ax) = ψ(xσ−i(a)),

5. If x ∈ Nψ ∩ N∗
ψ and a ∈ N∗

ψ ∩ D(σ−i) such that σ−i(a) ∈ Nψ, then we
have ψ(ax) = ψ(xσ−i(a)).

The Radon-Nikodym theorem

We above mentioned how a KMS-weight can be deformed by a strictly positive
operator. It is possible to apply a similar method to deform n.s.f. weights.

The next Proposition B.1.32 collects the basics of the deformation procedure.

Proposition B.1.32 Let ψ be an n.s.f. weight. We then use σ to denote the
modular automorphism group of ψ.

Let δ be a strictly positive operator that is affiliated to M in the von Neumann
algebra sense. Suppose that λ > 0 satisfies σt(δ) = λtδ for all t ∈ R.

We consider the subspace N0 of M defined by

N0 = { a ∈M | The operator aδ
1
2 belongs to Nψ}.

Then N0 is a σ-strongly∗ dense left ideal of M .

Further, we have that the mapping N0 → Hψ : a 7→ Λ(aδ
1
2 ) is σ-strong∗ - norm

closable. We use Λδ to denote its closure.

There is a unique n.s.f. weight ψδ on M with (Hψ, πψ,Λδ) as aGNS-construction.

The above Proposition B.1.32 provides us with a useful tool. It gives a fairly
easy way to construct new n.s.f. weights out of a given one. We refer to [126] for
a full treatment and for further generalizations.

We then also describe the important Example B.1.33.

Example B.1.33 Let (ei) be an orthonormal basis of a Hilbert space H.

We consider the canonical trace Tr on B(H)+. Thus, we have that Tr is the
n.s.f. weight on B(H)+ defined by

Tr(x) =
∑
i

〈xei, ei〉.

Now, let h be a strictly positive operator.

We then consider the weight Trh as introduced in Proposition B.1.32.
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Let N0 be the subspace of M defined by

N0 = { a ∈M | The operator ah
1
2 belongs to Nϕ}.

Then N0 is a σ-strongly∗ dense left ideal of M satisfying N0 ⊆ NTrh
.

For all x, y ∈ N0, we have

Trh(y∗x) =
∑
i

〈xh 1
2 ei, yh

1
2 ei〉.

Suppose that every ei is an eigenvector of h
1
2 with eigenvalue ai. We then have

for all x ∈ B(H)+ that
Trh(x) =

∑
i

a2
i 〈xei, ei〉.

The next Lemma B.1.34 collects a few basic features.

Lemma B.1.34 Suppose that ϕ is an n.s.f. weight. Further, let δ and λ be as
in the formulation of Proposition B.1.32.

The properties below hold:

• For the modular automorphism group σ′ of ϕδ, we have that

σ′t(a) = δitσt(a)δ−it

for all a ∈ A and t ∈ R,

• We have σ′t(δ) = λtδ for all t ∈ R,

• For every t ∈ R, we have ϕσ′t = λtϕ and ϕδσt = λ−tϕδ.

We also mention the following Radon-Nikodym theorem. This Theorem B.1.35
is one of the major advantages of n.s.f. weights on von Neumann algebras over
KMS-weights on C∗-algebras. We refer to [126] for a proof.

Theorem B.1.35 Let ϕ and ψ be two n.s.f. weights on M with respectively σ
and σ′ as the automorphism group. Take a number λ > 0.

The following statements are equivalent:

1. ϕσ′t = λtϕ for all t ∈ R,

2. ψσt = λ−tψ for all t ∈ R,

3. There exists a strictly positive operator δ affiliated with M such that we
have σt(δ) = λtδ for all t ∈ R and ψ = ϕδ.
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B.2 One-parameter groups

We use this Section B.2 to include some useful results on one-parameter groups
on C∗-algebras and von Neumann algebras. The treatment is quite terse and as
such only contains standard definitions and properties.

We refer to [60] for a full study of the theory of one-parameter groups.

The Notation B.2.1 is already mentioned in the Introduction.

Notation B.2.1 Let A be a C∗-algebra. We then use Aut(A) to denote the set
of all ∗-automorphisms on A.

The Notation B.2.2 is the same as Notation B.1.19.

Notation B.2.2 Let z ∈ C. Then, we use the notation

S(z) =
{
y ∈ C | Im y ∈ [0, Im z]

}
.

We denote the interior of S(z) by S(z)◦.

We formulate the Definition B.2.3 of a one-parameter group on a C∗-algebra.
This gives the central object for the whole Section B.2.

Definition B.2.3 Let A be a C∗-algebra. Consider a mapping

α : R → Aut(A) : t 7→ αt

such that

1. We have αsαt = αs+t for all s, t ∈ R,

2. We have α0 = ι.

3. For all x ∈ A, the function R → A : t 7→ αt(x) is norm continuous.

Then α is called a norm continuous one-parameter group on A.

One-parameter groups on C∗-algebras

The main focus of this Section B.2 is on the specific properties of one-parameter
groups on C∗-algebras. We observe that all results are taken from [60].

We keep the Notation B.2.4 fixed throughout Section B.2.

Notation B.2.4 We consider a C∗-algebra A ⊆ B(K). Further, we let α be a
norm continuous one-parameter group on A.
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There is a standard way to define, for every z ∈ C, a closed densely defined
linear operator αz on A. The related machinery forms an effective tool. It takes
shape in the technique of analytic continuation.

The next Definition B.2.5 is the basis for this analytic continuation.

Definition B.2.5 Take z ∈ C. The mapping αz : A→ A is defined as follows.

We use D(αz) to denote the domain of αz.

By definition, we have for a ∈ A that a ∈ D(αz) if and only if there exists a
function f : S(z) → A satisfying

1. f is continuous on S(z),

2. f is analytic on S(z)◦,

3. We have αt(a) = f(t) for every t ∈ R.

If such a function f exists, it is unique and we define αz(a) = f(z).

The Terminology B.2.6 below is standard.

Terminology B.2.6 Take x ∈ A. We then call x analytic with respect to α if
we have that x ∈ D(αz) for all z ∈ C.

The Lemmas B.2.7, B.2.8 and B.2.9 cluster some basic properties of αz.

Lemma B.2.7 Let z ∈ C. The features below hold:

• We have that αz : D(αz) → A is a closed linear map,

• We have that αz is injective and α−1
z = α−z,

• The mapping αz is densely defined and has dense range.

Lemma B.2.8 Take z ∈ C. Then, the results below hold:

• For all y ∈ S(z), we have D(αz) ⊆ D(αy),

• If y ∈ C and Im y = Im z, then D(αz) = D(αy).

Lemma B.2.9 The following results hold:

• For all t ∈ R and z ∈ C, we have αzαt = αtαz = αz+t,

• For all y, z ∈ C, we have αyαz ⊆ αy+z,

• If y, z ∈ C and (Im y)(Im z) ≥ 0, then αyαz = αy+z.
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From [60, Corollary 1.22], we get the useful Proposition B.2.10 below.

Proposition B.2.10 Take z ∈ C. Let C be a dense subspace of A such that
C ⊆ D(αz) and αt(C) ⊆ C for all t ∈ R.

Then C is a core for the closed linear mapping αz.

Extensions to the multiplier algebra

The Lemma 1.5.19 gives that every ∗-automorphism αt has a unique extension
to a strictly continuous ∗-automorphisms of M(A). We below describe how to
apply the technique of analytic continuation to these extensions.

Besides the basic reference [60], we also mention [20] for details and proofs.

We first state the Lemmas B.2.11 and B.2.12.

Lemma B.2.11 If s, t ∈ R and a ∈M(A), then αs(αt(a)) = αs+t(a).

Lemma B.2.12 Let a ∈M(A). We have that the function

R →M(A) : t 7→ αt(a)

is strictly continuous.

The next Definition B.2.13 turns out to be viable and useful. It provides a very
natural way to apply the analytic continuation on the level of M(A).

It should be noticed that Lemma B.2.12 guarantees consistency between Defini-
tion B.2.13 and Proposition 1.5.12. There is no contradiction.

Definition B.2.13 Let z ∈ C. Then, ᾱz : M(A) →M(A) is defined as follows.

We use D(ᾱz) to denote the domain of ᾱz.

By definition, we have for a ∈ M(A) that a ∈ D(ᾱz) if and only if there exists
a function f : S(z) →M(A) satisfying

1. f is strictly continuous on S(z),

2. f is analytic on S(z)◦,

3. We have αt(a) = f(t) for every t ∈ R.

If such a function f exists, it is unique and we define ᾱz(a) = f(z).

The Terminology B.2.14 below is standard.

Terminology B.2.14 Take x ∈ M(A). We then call x strictly analytic with
respect to α if we have that x ∈ D(ᾱz) for all z ∈ C.
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It is clear that the next Proposition B.2.15 is very crucial.

Proposition B.2.15 Let z ∈ C. Then ᾱz is the strict closure of αz.

For all a ∈ D(αz), we thus have that ᾱz(a) = αz(a).

It is sometimes useful to have the next Lemma B.2.16 at hand.

Lemma B.2.16 Take z ∈ C and a ∈ A. Then a ∈ D(αz) if and only if we have
that a ∈ D(ᾱz) and ᾱz(a) ∈ A.

The next Lemma B.2.17 gathers some more simple properties.

Lemma B.2.17 Let z ∈ C. The following results hold:

• We have that ᾱz : D(ᾱz) →M(A) is a strictly closed linear map,

• We have that ᾱz is injective and ᾱ−1
z = α−z,

• The mapping ᾱz has strictly dense domain and strictly dense range.

• We have that D(αz) is a strict core for ᾱz.

The next Notation B.2.18 is introduced for its convenience.

Notation B.2.18 Let z ∈ C. We put αz(a) = ᾱz(a) for all a ∈ D(ᾱz).

Implemented one-parameter groups

We now study the special case where all information about the one-parameter
group α is contained in a strictly positive operator T η A. It is no surprise that
this case is well-behaved and thus very handy.

We immediately state the regarding Definition B.2.19.

Definition B.2.19 Let T η A be a strictly positive operator on K.

We say that the one-parameter group α is implemented by T if we have

αt(x) = T−itxT it

for all x ∈ A and t ∈ R.

We introduce the Terminology B.2.20. One again should be taking notice of the
convention made in the Introduction about products of operators.

Terminology B.2.20 Let T1, T2 η A be closed operators on K.

Then x is called a middle multiplier of T1, T2 if we have T1xT2 ∈M(A).
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The next Proposition B.2.21 gives a very efficient property.

Proposition B.2.21 Suppose that the one-parameter group α is implemented
by a strictly positive operator T η A.

Take z ∈ C and x ∈M(A). The properties below hold:

• We have x ∈ D(ᾱz) if and only if x is a middle multiplier of T−iz, T iz

and T−izxT iz ∈M(A),

• If x ∈ D(ᾱz), then we have αz(x) = T−izxT iz.

Further, if x ∈ A, also the following holds:

• We have x ∈ D(αz) if and only if x is a middle multiplier of T−iz, T iz

and T−izxT iz ∈ A,

One-parameter groups on von Neumann algebras

In the thesis, we also make use of strongly continuous one-parameter groups on
von Neumann algebras. For a full treatment, we refer to [17, 116].

In the von Neumann algebra case, the same definitions as above are applied.
The only thing that changes is that the norm topology is replaced by the strong
topology. For this reason, we are very concise in the treatment.

The next Notation B.2.22 is already mentioned in the Introduction.

Notation B.2.22 Let M be a von Neumann algebra. We then use Aut(M) to
denote the set of all normal ∗-automorphisms on M .

We always apply the Definition B.2.23 below.

Definition B.2.23 Let M be a von Neumann algebra. Consider a mapping

β : R → Aut(M) : t 7→ βt

such that

1. We have βsβt = βs+t for all s, t ∈ R,

2. We have β0 = ι.

3. For all x ∈M , the function R →M : t 7→ βt(x) is strongly continuous.

Then β is called a strongly continuous one-parameter group on M .

The Notation B.2.24 is used in the rest of the Section B.3.

Notation B.2.24 We consider a con Neumann algebra M . Further, we let β
be a strongly continuous one-parameter group on M .
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The next Definition B.2.25 is the basis for the analytic continuation in the case
of strongly continuous one-parameter groups on a von Neumann algebra.

Definition B.2.25 Let z ∈ C. The mapping βz : M →M is defined as follows.

We use D(βz) to denote the domain of βz.

By definition, we have for x ∈ M that x ∈ D(βz) if and only if there exists a
function f : S(z) →M satisfying

1. f is strongly continuous on S(z),

2. f is analytic on S(z)◦,

3. We have βt(a) = f(t) for every t ∈ R.

If such a function f exists, it is unique and we define βz(a) = f(z).

The Terminology B.2.26 below is standard.

Terminology B.2.26 Take x ∈ M . We then call x analytic with respect to β
if we have that x ∈ D(βz) for all z ∈ C.

The next Lemma B.2.27 describes some basic analytic elements.

Lemma B.2.27 Take r > 0 and z ∈ C. For every x ∈ M , we consider the
element x(r, z) ∈M defined by

x(r, z) =
r√
π

∫
exp

(
− r2(t− z)2

)
βt(x) dt

where the integral is taken in the strong topology.

Let x ∈M . Then the element x(r, z) is analytic with respect for β.

For all y ∈ C, we have
βy

(
x(r, z)

)
= x(r, z + y).

Moreover, if x ∈ D(βy), the next equation holds:

βy
(
x(r, z)

)
= x(r, z + y) = βy(x)(r, z).

B.3 Functional calculus

In this Section B.3, we collect useful results about the functional calculus for
normal operators. We focus on some particular properties that are continually
used throughout the thesis; mainly in Chapter 2 and Section 3.2.

We use [59] as the standard reference for all results below. The basic properties
of the functional calculus can e.g. also be found in [19, 105, 116].
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First, we fix the Notation B.3.1.

Notation B.3.1 Let A ⊆ B(K) be a non-degenerate C∗-algebra. Further, we
consider normal operators P,Q, T η A.

We below apply the Borel calculus of P,Q, T .

For the rest of the Section B.3, we examine the functional calculus of the normal
operator T . We hereby only focus on the elements f(T ) where f is continuous.
In this case, we can make full use of the theory of affiliated elements.

The next Theorem B.3.2 is proved in [59, Proposition 6.21]. We remark that
it is in [157] that the ∗-homomorphism ψT makes its first appearance. This
Theorem B.3.2 is central in the Section B.3.

Theorem B.3.2 There exists a unique non-degenerate ∗-homomorphism

ψT : C0(σ(T )) →M(A)

such that ψT (ι|σ(T )). Moreover, ψT is injective.

For every f ∈ C(σ(T )), we then have that ψT (f) = f(T ).

We describe a technique that makes it possible to consider elements f(T ) where
the function f is not defined on the whole of σ(T ). This can sometimes come in
very handy. For an elaboration of the details, we refer to [59].

It is needed to first introduce the Terminology B.3.3.

Terminology B.3.3 Let G be a subset of C. Then G is called almost closed if
there exists a finite subset G0 of C such that G ∪G0 is closed.

We then call G compatible with T if G is almost closed and there exists a finite
subset D of C such that

1. The element T − λ1 is invertible for every λ ∈ D,

2. σ(T ) \D ⊆ G.

We can now formulate the Proposition B.3.4 below.

Proposition B.3.4 Let G ⊆ C be compatible with T . There is then a unique
non-degenerate ∗-homomorphism π : C0(G) →M(A) such that π(ιG) = T .

We have π(f |G) = f(T ) for every f ∈ C(σ(T )).

For every f ∈ C(G), we apply the notation f(T ) = π(f).

The two Lemmas B.3.5 and B.3.6 are quite simple.

Lemma B.3.5 Let G1, G2 ⊆ C be compatible with T and suppose that G1 ⊆ G2.
We then have for every f ∈ C(G2) that f(T ) = f |G1(T ).
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Lemma B.3.6 We have the following properties:

• The sets C and σ(T ) are always compatible with T ,

• If T is invertible, then C0 and σ(T ) \ {0} are compatible with T ,

• If T is strictly positive, then R+
0 is compatible with T .

We further mention the following Propositions B.3.7 and B.3.8. They contain
results that have a great merit in calculations.

Proposition B.3.7 Let G ⊆ C be compatible with T .

Let B be a C∗-algebra and π : A→M(B) a non-degenerate ∗-representation.

We have σ(π(T )) ⊆ σ(T ). If π is injective, then σ(π(T )) = σ(T ).

The properties below hold:

• We have that G is compatible with π(T ),

• For all f ∈ C(G), we have f(π(T )) = π(f(T )).

Proposition B.3.8 Let G ⊆ C be compatible with T .

Consider f ∈ C(G) and suppose that F ⊆ C satisfies f(G) ⊆ F .

The properties below hold:

• The set F is compatible with f(T ),

• We have (g ◦ f)(T ) = g(f(T )) for every g ∈ C(F ).

Further, the spectrum σ(f(T )) coincides with the closure of f(G ∩ σ(T )).

We then also state a version of the Fuglede-Putnam theorem.

Proposition B.3.9 Let u ∈ B(K) be a unitary operator. Let G be a subset
of C that is compatible with both S and T .

If uS ⊆ Tu, then we have uf(S) = f(T )u for every f ∈ C(G).

The above Proposition B.3.4 is well-suited as a framework to study powers of
operators in. We focus on complex powers of strictly positive operators.

We make use of the Notation B.3.10 below.

Notation B.3.10 Suppose that T is strictly positive. Take z ∈ C and consider
f ∈ C(R+

0 ) defined by f(t) = tz. Then, we put T z = f(T ).

We have that T z η A is an invertible normal operator.
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In the following Proposition B.3.11, we rally the most useful calculation rules
concerning the powers of strictly positive operators.

We refer to [59, Proposition 7.11] for additional related results.

Proposition B.3.11 Suppose that T is strictly positive.

Take y, z ∈ C, s ∈ R and n ∈ N. Then, the properties below hold:

1. We have that T s is a strictly positive operator,

2. We have that T is is a unitary operator,

3. We have (T s)z = T sz and (T z)n = Tnz,

4. We have that (T z)∗ = T z,

5. If 0 ≤ Im y ≤ Im z, then D(T z) ⊆ D(T y),

6. We have that T z+is = T zT is = T isT z.

The functional calculus plays a crucial role in the study of commuting normal
operators. We below mention a few basic results about this matter.

First, we give the Definition B.3.12.

Definition B.3.12 We say that P (strongly) commutes with Q if and only if
we have for all f, g ∈ C0(C) that f(P )g(Q) = g(Q)f(P ).

It is not so difficult to prove the Lemma B.3.13 below.

Lemma B.3.13 Let G ⊆ C be compatible with both P and Q. Then P commutes
with Q if and only if f(P )g(Q) = g(Q)f(P ) for all f, g ∈ C0(G).

Both Proposition B.3.14 and Lemma B.3.14 allude to Lemma B.3.13.

Proposition B.3.14 Suppose that P and Q commute. Let F,G be subsets of C
such that F is compatible with P and G is compatible with Q.

The following properties hold:

1. We have for f ∈ Cb(F ) and g ∈ Cb(G) that f(P )g(Q) = g(Q)f(P ),

2. We have for f ∈ Cb(F ) and g ∈ C(G) that f(P )g(Q) ⊆ g(Q)f(P ),

3. We have for f ∈ C(F ) and g ∈ Cb(G) that g(Q)f(P ) ⊆ f(P )g(Q).

Lemma B.3.15 Let F ⊆ C be compatible with P . Then P and Q commute if
and only if we have that f(P )Q ⊆ Qf(P ) for every f ∈ C0(F ).
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The three Lemmas B.3.16, B.3.17 and B.3.18 treat a few special cases.

Lemma B.3.16 We have the following properties:

• If P ∈M(A), then P and Q commute if and only if PQ ⊆ QP ,

• If P,Q ∈M(A), then P and Q commute if and only if PQ = QP .

Lemma B.3.17 Suppose that P is strictly positive. Then P and Q commute if
and only if P itQ ⊆ QP it for all t ∈ R.

Lemma B.3.18 Suppose that P,Q are strictly positive. Then P and Q com-
mute if and only if P isQit = QitP is for all s, t ∈ R.

We also mention the Lemma B.3.19 below.

Lemma B.3.19 Suppose that P and Q commute. We then have

P uQ η A and PQ η A.

It is not a big surprise that the functional calculi of two commuting normal
operators P and Q leads to a joint functional calculus.

The next Proposition B.3.20 displays some basic information about this joint
functional calculus. For the details, we can again refer to [59].

Proposition B.3.20 Suppose that P and Q commute. Let F,G be subsets of C
such that F is compatible with P and G is compatible with Q.

There exists a unique non-degenerate ∗-homomorphism

π : C(F ×G) →M(A)
such that

• For all f ∈ C(F ), we have π(f ⊗ 1) = f(P ),

• For all f ∈ C(F ), we have π(1⊗ g) = g(Q).

For every h ∈ C(F ×G), we use the notation h(P,Q) = π(h).

B.4 Two technical lemmas

We here state two lemmas that are used in the thesis. They are well-known and
only included for the sake of completeness.

The first Lemma B.4.1 is e.g. proved in [125, Lemma 4.6.10].

Lemma B.4.1 Let A ⊆ B(H) and B ⊆ B(K) be non-degenerate C∗-algebras.
Take ω ∈ A∗+ and x ∈M(A⊗B). We then have

• (ω ⊗ ι)(x)∗(ω ⊗ ι)(x) ≤ ‖ω‖(ω ⊗ ι)(x∗x),

• (ι⊗ ω)(x)∗(ι⊗ ω)(x) ≤ ‖ω‖(ι⊗ ω)(x∗x).
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The next Lemma B.4.2 is e.g. proved in [125, Lemma A.3].

Lemma B.4.2 Let A ⊆ B(H) and B ⊆ B(K) be non-degenerate C∗-algebras.
Take orthonormal bases (ei) and (fj) of respectively H and K.

Let x, y ∈M(A⊗B), r, s ∈ H and v, w ∈ K.

The properties below hold:

• We have that the sum∑
i

(ωs,ei ⊗ ι)(y)∗(ωr,ei ⊗ ι)(x)

is bounded and converges to (ωr,s ⊗ ι)(y∗x) in the strict topology,

• We have that the sum∑
i

(ι⊗ ωw,fj
)(y)∗(ι⊗ ωv,fj

)(x)

is bounded and converges to (ι⊗ ωv,w)(y∗x) in the strict topology.
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École Norm. Sup. (4) 33 (2000), no. 6, 837-934.

[67] J. Kustermans and S. Vaes, The operator algebra approach to quantum
groups. Proc. Natl. Acad. Sci. USA 97 (2000), no. 2, 547-552.

[68] J. Kustermans and S. Vaes, Locally compact quantum groups in the von
Neumann algebraic setting. Math. Scand. 92 (2003), no. 1, 68-92.
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[138] L.L. Vaksman and Y.S. Sŏıbel’man, An algebra of functions on the quan-
tum group SU(2). Funct. Anal. Appl. 22 (1988), no. 3, 170-181.

[139] L. Vanheeswijck, Duality in the theory of crossed products. Math. Scand.
44 (1979), no. 2, 313-329.
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Index of notations

General notations

B(H) Bounded operators on a Hilbert space H.
B0(H) Compact operators on a Hilbert space H.
ωξ,η Vector functional; ωξ,η(x) = 〈xξ, η〉.
ωξ Positive vector functional; ωξ = ωξ,ξ.

C(X) C(X) = {f : X → C | f is continuous}.
Cb(X) Cb(X) = {f ∈ C(X) | f is bounded}.
C0(X) C0(X) = {f ∈ C(X) | f vanishes at infinity}.
K(X,A) K(X,A) = {f : X → A | f is continuous and has compact support}.
K(X) K(X) = {f ∈ C(X) | f has compact support}.
L2(X, ν),L2(G), `2(G) Hilbert space of square integrable functions; see page 8.
C∗
r(G) Reduced group C∗-algebra; see Example 1.2.4.

χY Characteristic function of a set Y .
f |X0 Restriction of f ∈ C(X) to a subset X0 ⊆ X.

spanX Linear span of a subset X in a Banach space.
[X] Norm closed linear span of a subset X in a Banach space.
ι, ιG Identity map.
AB span {xy | x ∈ A, y ∈ B}.
A�B Algebraic tensor product of two linear spaces A and B.

A,B,C Denote C∗-algebras (except in Section 2.1).
A+ Cone of positive elements in a C∗-algebra A.
A∗ Continuous linear functionals on a C∗-algebra A.
A∗+ Subset of the positive linear functionals in A∗.
M(A) Multiplier algebra of a C∗-algebra A; see Definition 1.5.2.
Aη Set of elements affiliated to a C∗-algebra A; see Notation 1.5.28.
A′, A′′ Commutant and bicommutant of a C∗-algebra A.
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274 Index of notations

Aut(A) Set of ∗-automorphisms on a C∗-algebra A.
A ∼= B A is ∗-isomorphic with B.
M Denotes a von Neumann algebra.
M∗ Normal functionals on a von Neumann algebra M .
M+
∗ Subset of positive functionals in M∗.

Aut(M) Set of normal ∗-automorphisms on a von Neumann algebra M .
ω̄ ω̄(x) = ω(x∗).
aω, ωa aω(x) = ω(xa) and ωa(x) = ω(ax).
ωρ ωρ = (ω ⊗ ρ)Φ; see Notation 1.1.3.

D(T ) Domain of a linear map T .
T |D Restriction of a linear map T to D.
σ(T ) Spectrum of a linear operator T .
T ∗ Adjoint of a linear operator T .
Ru S R+ S is densely defined and closable with closure Ru S.
RS The product of R and S is densely defined and closable with closure RS.

R⊗ S Tensor product of two linear operators R and S.
zT z-transform of a closed operator T ; see Definition 1.5.25.
T η A T is affiliated to a C∗-algebra A; see Definition 1.5.27.
f(T ) Functional calculus of a normal operator T ; See Proposition B.3.4.
T z Complex power of a strictly positive operator; see Notation B.3.10.
σ(S, T ) Joint spectrum of S and T ; See page 9.
h(P,Q) Joint functional calculus of S and T ; See Proposition B.3.20.

H,K Denote Hilbert spaces.
H Complex conjugate Hilbert space of a Hilbert space H.
x ∈ H Element corresponding to x ∈ H.
m> Transpose of a linear operator m; see Notation 1.3.6.
ω> Transpose of a continuous linear functional ω; see Notation 1.3.6.
H ⊗K Hilbert space tensor product of two Hilbert spaces H and K.
Σ Flip map on a tensor product of Hilbert spaces.

A⊗B Minimal tensor product of two C∗-algebras A and B (except in Section 2.1).

M ⊗̄N von Neumann algebraic tensor product of two von Neumann algebras M and N .

σ̇ Flip map on a tensor product of C∗-algebras; σ̇(x) = ΣxΣ.
ω ⊗ ι, ι⊗ ω Slice maps on a C∗-algebra tensor product.
ω ⊗̄ ι, ι ⊗̄ω Slice maps on a von Neumann algebra tensor product.
ω ⊗ ρ Tensor product functional on a C∗-algebra tensor product.
ω ⊗̄ ρ Tensor product functional on a von Neumann algebra tensor product.
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ϕ,ψ Denote weights.
(Hϕ, πϕ, Λϕ) GNS-construction of a weight ϕ; see Proposition B.1.4.
M+
ϕ M+

ϕ = {a ∈ A+ | ϕ(a) < +∞}; see Notation B.1.2.
Mϕ Mϕ = span M+

ϕ ; see Notation B.1.2.
Nϕ Nϕ = {a ∈ A+ | ϕ(a∗a) < +∞}; see Notation B.1.2.
Fϕ Fϕ =

{
ω ∈ A+

∗ | ω(x) ≤ ϕ(x) for x ∈ A+
}

; see Notation B.1.10.
Gϕ Gϕ =

{
αω | ω ∈ Fϕ, α ∈ ]0, 1[

}
; see Notation B.1.10.

ϕδ, ψδ See Propositions B.1.23 and B.1.32.

Tr Canonical trace on a Hilbert space H; see Example B.1.33.
Trh See Example B.1.33.

αz, βz Analytic continuations of one-parameter groups; see Definitions B.2.5 and B.2.25.

ᾱz Extension of αz to the multiplier algebra; see Definitions B.2.13.

S(z) S(z) =
{
y ∈ C | Im y ∈ [0, Im z]

}
.

S(z)◦ S(z)◦ =
{
y ∈ C | Im y ∈ ]0, Im z[

}
.

Notations used in the whole thesis

(A,Φ) Denotes a bi-C∗-algebra; see Definition 1.1.1.
(A,Φ)op Opposite quantum group of (A,Φ); see Corollary 1.1.12.
(C0(G),Φ) Commutative quantum group; see Notation 1.2.5.
(C∗

r(G), Φ̂) Cocommutative quantum group; see Notation 1.2.5.

W Denotes a multiplicative unitary (except in Section 2.1); see Definition 1.3.1.

Ŵ Dual multiplicative unitary of W ; see Proposition 1.3.2.
C(W ) C(W ) = [ (ω ⊗ ι)(ΣW ) | ω ∈ B(H)∗].

µ Deformation parameter; 0 < µ < 1.

S1 Unit circle in C; S1 = {z ∈ C | |z| = 1}.
Cµ, C̄µ Cµ = {µkz | k ∈ Z, z ∈ S1} and C̄µ = Cµ ∪ {0}.
Rµ, R̄µ Rµ = {µk | k ∈ Z} and R̄µ = Rµ ∪ {0}.
C(µ

1
2 ) C(µ

1
2 ) = {µ 1

2kz | k ∈ Z, z ∈ S1}.
C̄(µ

1
2 ) C̄(µ

1
2 ) = C(µ

1
2 ) ∪ {0}.

R(µ
1
2 ) R(µ

1
2 ) = {µ 1

2k | k ∈ Z}.
R̄(µ

1
2 ) R̄(µ

1
2 ) = R(µ

1
2 ) ∪ {0}.

E E =
{

(p, q) ∈ R(µ
1
2 )× R̄(µ

1
2 ) | pq ∈ R̄µ

}
; see Notation 2.5.19.
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Fµ Fµ : C̄µ → S1; see Definition 2.2.1.
B(k, n) See Definition 2.2.4.
χ χ : R(µ

1
2 )× S1 → S1; see Definition 2.2.1.

F µ(γ) Fµ(γab⊗ cd).
χ χ = χ(a⊗ 1, 1⊗ c).
fk,n fk,n : C̄µ → C; see Equation (2.15).

gk,n gk,n : R(µ
1
2 ) → C; see Equation (2.18).

F̂p F̂p : C0 → C; see Definition A.5.

Dµ See Definition 2.2.8.

Notations in Sections 1.1 and 3.1

(A,Φ) Locally compact quantum group; see Notation 1.1.14.
ϕ Left Haar weight of (A,Φ); see Notation 1.1.14.
ψ Right Haar weight of (A,Φ); see Notation 1.1.14.
(Hϕ, πϕ, Λϕ) GNS-construction of ϕ; see Notation 1.1.14.
σ Modular automorphism group of ϕ; see Notation 1.1.15.
σ′ Modular automorphism group of ψ; see Notation 1.1.15.
W Left regular representation of (A,Φ); see Proposition 1.1.16.
S Antipode of (A,Φ); see Proposition 1.1.19.
R Unitary antipode of (A,Φ); see Proposition 1.1.19.
(τt) Scaling group of (A,Φ); see Proposition 1.1.19.
S̄, (τ̄t) Extensions of S and (τt) to M(A); see Remark 1.1.20.
ν Scaling constant of (A,Φ); see Proposition 1.1.23.
δ Modular element of (A,Φ); see Proposition 1.1.25.

(Â, Φ̂) Dual quantum group of (A,Φ); see Proposition 1.1.28.
(Â,Φ) (Â,Φ) = (Â, Φ̂); see Notation 1.1.30.
ϕ̂, ψ̂ Left and Right Haar weight of (Â, Φ̂); see Proposition 1.1.28.
Ŵ Left regular representation of (Â, Φ̂); see Proposition 1.1.29.

( ˆ̂
A,

ˆ̂Φ) Bidual quantum group of (A,Φ); see Proposition 1.1.33.
ˆ̂ϕ, ˆ̂
ψ Left and Right Haar weight of ( ˆ̂

A,
ˆ̂Φ); see Proposition 1.1.33.

(M,Φ) von Neumann algebraic quantum group; see Definition 1.1.40 and Notation 3.1.1.

(M̂, Φ̂) von Neumann algebraic quantum group associated to (Â, Φ̂); see Notation 3.1.1.

W̃ Left regular representation of (A,Φ); see Notation 3.1.1.
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Notations in Sections 1.3 and 1.4

W Modular multiplicative unitary; see Notation 1.3.15.
(A,Φ) Bi-C∗-algebra associated to W ; see Notation 1.3.15.
S Antipode of (A,Φ); see Notation 1.3.15.
R Unitary antipode of (A,Φ); see Notation 1.3.15.
(τt) Scaling group of (A,Φ); see Notation 1.3.15.
S̄, (τ̄t) Extensions of S and (τt) to M(A); see Remark 1.3.13.

Q, Q̂ See Definition 1.3.7 and Notation 1.3.15.
W̆ See Definition 1.3.7 and Notation 1.3.15.
I, Î See Definition 1.3.57 and Notation 1.3.61.

Ŵ Dual multiplicative unitary of W ; see Notation 1.3.15.
(Â, Φ̂) Bi-C∗-algebra associated to Ŵ ; see Notation 1.3.15.
Ŝ Antipode of (Â, Φ̂); see Notation 1.3.15.
R̂ Unitary antipode of (Â, Φ̂); see Notation 1.3.15.
(τ̂t) Scaling group of (Â, Φ̂); see see Notation 1.3.15.

(M,Φ) See Remark 1.3.14.
(M̂, Φ̂) See Remark 1.3.14.

N̂ See Notation 1.4.2.

ψ1 ψ1 = TrQ̂2 ; see Definition 1.4.4 and Proposition 1.3.29.
(Hψ1 , πψ1 , Λψ1 ) GNS-construction of ψ1; see Definition 1.4.4.
∇ψ1 Modular operator of ψ1; see Definition 1.4.4.
Jψ1 Modular conjugation of ψ1; see Definition 1.4.4.
(σt) Modular automorphism group of ψ1; see Lemma 1.4.8.
π′ϕ1

(x) See Definition 1.4.10.

ψq See Definitions 1.4.5 and Lemma 1.4.6.
ψ∞ See Definition 1.3.47.
ϕq See Definition 1.4.19.

Notations in Section 2.1

A0 ⊗B0 Algebraic tensor product of two algebras A0 and B0.
[p, w]! See Proposition 2.1.9.
Gµ2 , Gµ−2 See Lemma 2.1.10.
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(A,∆, ε, S) Hopf ∗-algebra underlying the quantum E(2) group; see Proposition 2.1.1.

(B, ∆̂, ε̂, Ŝ) Hopf ∗-algebra underlying the quantum Ê(2) group; see Proposition 2.1.1.

B ⊗̄A The completion of B ⊗A with respect to the weak topology induced by A⊗B.

W Element in B ⊗̄A carrying the duality; see Definition 2.1.6.
c, d Generators of A; see Proposition 2.1.1.
a, b Generators of B; see Proposition 2.1.1.
x,y x = cd and y = ab.
〈·, ·〉 Pairing between (A,∆) and (B, ∆̂); see Proposition 2.1.4.
S = Rτ− i

2
Polar decomposition of S; see Proposition 2.1.15.

Ŝ = R̂τ̂− i
2

Polar decomposition of Ŝ; see Proposition 2.1.16.

Notations in Chapter 2 (except Section 2.1), Section 3.2 and Chapter 4

H H = `2(Z)⊗ `2(Z); see Notation 2.3.1.
(ek)k∈Z An orthonormal basis in `2(Z); see Notation 2.3.1.
H0 See Notation 2.3.1.
ωk,l,m,n ωk,l,m,n = ωek⊗el,em⊗en

; see Notation 2.3.2.
ωk,l ωk,l = ωk,l,k,l; see Notation 2.3.2.
s,m sek = ek+1 and mek = µkek for k ∈ Z; see Definition 2.3.3.
c, d c = s⊗ s and d = s⊗m−1; see Definition 2.3.3.
a, b a = m− 1

2 ⊗m and b = m
1
2 ⊗ s; see Definition 2.3.3.

u, v, w See Proposition 2.3.6 and Notation 2.5.35.

W W = Fµ(ab⊗ cd)χ(a⊗ 1, 1⊗ c); see Definition 2.3.9.
V (γ) V (γ) = Fµ(γab⊗ cd)χ(a⊗ 1, 1⊗ c); see Definition 2.3.20.
N N = m2 ⊗m−2; see Definition 2.3.25.
I, Î See Definition 2.3.25.
N̂ , N̂0 N̂ = m−2 ⊗m2 and N̂0 = 1⊗m2; see Definition 2.6.1.

(A,Φ) The quantum E(2) group; see Definition 2.4.1.
(Â, Φ̂) The quantum Ê(2) group; see Definition 2.4.2.
M,M̂ M = A′′ and M̂ = Â′′; see Notation 2.7.1.
R Unitary antipode of (A,Φ); see Definition 2.6.8.
(τt) Scaling group of (A,Φ); see Definition 2.6.9.
S Antipode of (A,Φ); see Definition 2.6.10.
S̄, (τ̄t) Extensions of S and (τt) to M(A); see Lemma 2.6.12.
R̂ Unitary antipode of (Â, Φ̂); see Definition 2.6.33.
(τ̂t) Scaling group of (Â, Φ̂); see Definition 2.6.35.
Ŝ Antipode of (Â, Φ̂); see Definition 2.6.38.
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Sk Sk = {z ∈ C̄µ | |z| = µk}; see Notation 2.6.23.
hk,n hk,n : Sk → C and hk,n(z) = zn; see Notation 2.6.23.
Dn,1, Dn,2, Dn,3, Dn See Notation 2.6.23.
D,D See Notation 2.6.26.
Ŝk Ŝk = {z ∈ C̄(µ

1
2 ) | |z| = µ

1
2k}; see Notation 2.6.52.

ĥk,n ĥk,n : Ŝk → C and ĥk,n(z) = zn; see Notation 2.6.52.
D̂n,1, D̂n,2, D̂n,3, D̂n See Notation 2.6.52.

Tr Canonical trace on the Hilbert space H; see Notation 2.7.2.
ψ1 ψ1 = TrN ; see Definition 2.7.5.
q q ∈ M̂ ∩ M̂ ′; see Definition 2.7.6.
ψ Haar weight of (A,Φ) with ψ(x) = ψ1(qxq); see Definition 2.7.8.
(σt) Modular automorphism group of ψ; see Definition 2.7.15.
(Hψ , πψ , Λψ) GNS-construction of ψ; see Proposition 2.7.17.
∇ψ Modular operator of ψ; see Proposition 2.7.17.
Jψ Modular conjugation of ψ; see Proposition 2.7.17.
ϕ̂ Left Haar weight of (A,Φ) with ϕ̂ = TrN ; see Definition 2.7.21.
ψ̂ Right Haar weight of (Â, Φ̂) with ψ̂ = TrN̂0

; see Definition 2.7.21.
(σ̂t) Modular automorphism group of ϕ̂; see Definition 2.7.29.
(Hϕ̂, πϕ̂, Λϕ̂) GNS-construction of ϕ̂; see Proposition 2.7.32.
∇ϕ̂ Modular operator of ϕ̂; see Proposition 2.7.32.
Jϕ̂ Modular conjugation of ϕ̂; see Proposition 2.7.32.

(σ̂′t) Modular automorphism group of ψ̂; see Notation 2.7.29.
(Hψ̂ , πψ̂ , Λψ̂) GNS-construction of ψ̂; see Proposition 2.7.33.

∇ψ̂ Modular operator of ψ̂; see Proposition 2.7.33.

Jψ̂ Modular conjugation of ψ̂; see Proposition 2.7.33.

δ Modular element of (A,Φ); see Proposition 2.8.3.
ν Scaling constant of (A,Φ); see Proposition 2.8.3.
δ̂ Modular element of (Â, Φ̂); see Proposition 2.8.4.
ν̂ Scaling constant of (Â, Φ̂); see Proposition 2.8.4.

W̃ , Ṽ Left and right regular representation of (A,Φ); see Definition 2.8.7.

X,U0,U See Definition 2.8.12.
α,β See Definition 2.8.13.
(B, ΦB), (B̂, Φ̂B̂) See Definition 2.8.15.
(A0, Φ0), (Â0, Φ̂0) See Definition 2.8.30.
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T0, T See Definition 2.8.37.
ht See Definition 2.8.39.
N See Definition 2.8.41.
F ′k, Fk See Notation 2.8.42.
C See Definition 2.8.45.
γ γ : N →M ⊗̄N ; see Definition 2.8.49.

(M,Φ) See Definition 2.9.1.
(M̂, Φ̂) See Definition 2.9.1.
ψ Haar weight of (M,Φ); See Definition 2.9.2.
ϕ̂, ψ̂ Left and right Haar weight of (M̂, Φ̂); See Definition 2.9.5.

ξn, ξn,p,q,r,s See Definitions 3.2.2 and 3.2.46.
ξ′n, ξ

′
n,p,q See Definitions 3.2.4 and 3.2.22.

θ, θ′ See Definition 3.2.6.

ε Bounded counit on (A,Φ); see Definition 3.2.9.
m,mp,q Invariant means on (A,Φ); see Definitions 3.2.16 and 3.2.24.

ε̂ Bounded counit on (Â, Φ̂); see Definition 3.2.31.
m̂, m̂p,q Invariant means on (Â, Φ̂); see Definitions 3.2.39 and 3.2.48.

α α : Z → Aut(C0(C̄µ)); See Definition 4.1.1.
α′′ α′′ : Z → Aut(L∞(C̄µ)); See Definition 4.1.9.
β β : Z → Aut(C0(E)); See Definition 4.1.12.
β′′ β′′ : Z → Aut(L∞(E)); See Definition 4.1.20.
Âex, Âcp See Definition 2.5.28.
π̃, π̌ See Definitions 4.1.4 and 4.1.15.
ν1 See Definition 4.1.7.
L∞(C̄µ) L∞(C̄µ) = L∞(C̄µ, ν1); see Notation 4.1.8.
ν̂1 See Definition 4.1.18.
L∞(E) L∞(E) = L∞(E, ν̂1); see Notation 4.1.8.

ωz ωz(c) = z and ωz(d) = 0; see Corollary 4.2.4.
πz πz(c) = s∗ and πz(d) = zm; see Proposition 4.3.1.
ω̂k ω̂k(c) = µ

1
2k and ω̂k(b) = 0; see Corollary 4.2.11.

π̂k π̂k(c) = m and π̂k(b) = µks; see Proposition 4.3.2.
π̂′k π̂′k(c) = µ

1
2m and π̂′k(b) = µks; see Proposition 4.3.2.
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strongly modular, 63
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polar decomposition, 19
Pontryagin duality theorem, 32

quantum E(2) group, 127
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42
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Inleiding

In deze thesis bestuderen we de kwantum E(2) groep van Woronowicz [158, 159]
als een lokaal compacte kwantumgroep zoals gedefinieerd door J. Kustermans en
S. Vaes [65, 66]. We beschouwen ook de duale kwantum Ê(2) groep. We geven
een korte studie van beide niet-compacte kwantumgroepen.

De hedendaagse theorie van lokaal compacte kwantumgroepen (bestudeerd in
een operatoralgebräısch kader) is opgebouwd vanuit de definitie van Kuster-
mans en Vaes (zie Definitie N.1.3). In zijn huidige vorm is deze studie vrij
uitgewerkt. Dankzij het werk van vele onderzoekers zijn nu heel wat aspecten
van de algemene theorie goed begrepen en zijn er toepassingen in verschillende
gebieden. We formuleren in Sectie N.1 de basisdefinitie en we geven dan ook een
kort overzicht van de belangrijkste resultaten van de algemene theorie.

Het is uiteraard heel belangrijk om voldoende (niet-triviale) voorbeelden van
kwantumgroepen te hebben die de algemene theorie illustreren. Met deze thesis
leveren we een bijdrage hiertoe doordat we een gedetailleerde studie geven van
één dergelijk voorbeeld. We richten onze aandacht op de kwantum E(2) groep.
Het construeren van voorbeelden is een volledig aparte tak in de theorie van
kwantumgroepen. Bij de constructie van elk niet-triviaal voorbeeld is het nodig
om typische technieken te gebruiken. Dit is dan ook de reden dat een hele thesis
nodig is voor de volledige uitwerking van één enkel voorbeeld.

Het doel van deze doctoraatsthesis is om al de kenmerken van de kwantum
E(2) groep op een accurate manier te beschrijven. In de Sectie N.2 beschrijven
we (heel kort) de complete constructie van deze niet-compacte kwantumgroep en
de bijbehorende objecten. We richten hierbij onze aandacht ook naar specifieke
eigenschappen van de kwantum E(2) groep en zijn duale.

Vooraleer we ons concentreren op de kwantum E(2) groep, betreden we de wereld
van de (modulaire) multiplicatieve unitairen. Het al of niet bestaan van Haar-
gewichten binnen dit kader is hierbij het belangrijkste aandachtspunt.

Deze studie van multiplicatieve unitairen leidt dan uiteindelijk naar een nieuwe
techniek voor het construeren van invariante gewichten.

283



284 Nederlandse samenvatting

Enkele beschouwingen vooraf

De twee kwantumgroepen E(2) en Ê(2) zijn het eerst ingevoerd en bestudeerd
door S.L. Woronowicz in [158, 159]. Hij construeerde twee paren (A,Φ) en (Â, Φ̂)
bestaande uit een C∗-algebra en een covermenigvuldiging. Het beginpunt van
zijn constructie was een kwantumdeformatie van de groep van transformaties
van het (Euclidische) vlak. De twee beschouwde bi-C∗-algebra’s hadden genoeg
eigenschappen om ze ‘lokaal compacte kwantumgroepen’ te noemen.

S. Baaj bestudeerde de kwantum E(2) group verder in [1, 2]. Hij was de eerste
die een formule vond voor de Haargewichten. Door geavanceerde technieken
te gebruiken, is hij erin geslaagd om links en rechts invariante gewichten te
construeren op beide bi-C∗-algebra’s (A,Φ) en (Â, Φ̂). Hij bewees bovendien
ook een uniciteitseigenschap. Deze resultaten vervolledigden (in zekere) zin de
kwantumgroep-structuur van de kwantum E(2) groep.

De resultaten van Woronowicz en Baaj stammen uit 1991 en 1992. In die tijd was
er nog geen algemene theorie van kwantumgroepen. Deze kwam er pas in 1999
toen J. Kustermans en S. Vaes de artikels [65, 66, 67, 68] publiceerden. De kwan-
tum E(2) groep is dus een voorbeeld dat er al was voor de theorie.

De laatste jaren is de theorie van kwantumgroepen sterk veranderd. Er zijn tal
van nieuwe ontwikkelingen gekomen in zowel de algemene theorie als dat deel van
de theorie dat is toegespitst op het construeren van voorbeelden.

Door alle nieuwe resultaten in verband met kwantumgroepen denken we dat
het zeker interessant is om het voorbeeld van de kwantum E(2) groep opnieuw
te bekijken en aan te passen aan de huidige theorie. We geven in de thesis
een kort bewijs van het feit dat de kwantum E(2) groep een lokaal compacte
kwantumgroep is volgens de definitie van Kustermans en Vaes.

Het schrijven van deze thesis heeft 3 basisredenen. De eerste reden is dus om een
hedendaagse behandeling te geven van de kwantum E(2) groep. Verder bekijken
we in deze thesis de Van Daele-techniek [148] om invariantie van Haargewichten
aan te tonen. In Sectie N.1 voeren we een veralgemening van deze techniek
in die in concrete voorbeelden van kwantumgroepen kan gebruikt worden om
Haargewichten te construeren. Tenslotte maken we van de gelegenheid gebruik
om de gekende eigenschappen van kwantumgroepen in detail te bekijken in het
specifieke geval van de kwantum E(2) groep.

In deze Nederlandse samenvatting spelen (omwille van beknoptheid) vooral de
eerste twee van de bovenvermelde redenen een rol. De specifieke eigenschappen
van de kwantum E(2) groep krijgen hier heel weinig aandacht.

We merken op dat de eigen inbreng betreffende de kwantum E(2) groep niet
is dat we revolutionaire nieuwe dingen bewijzen, maar dat we een directe en
complete studie geven van dit belangrijke voorbeeld. We bewijzen enkele nieuwe
eigenschappen en vereenvoudigen bewijzen van gekende resultaten.

Het belang van de thesis ligt verder ook in het opbouwen van de techniek
om Haargewichten te construeren zoals we dat doen in Sectie N.1.
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We beschrijven in deze Nederlandse samenvatting de kwantum E(2) groep op
een korte en duidelijke manier en bekijken hierbij ook enkele aspecten van deze
niet-compacte kwantumgroep. De details staan enkel in de volledig uitgewerkte
studie in het Engelstalige deel van de thesis.

Het is hier dus niet de bedoeling om volledig te zijn en we laten daarom de
bewijzen achterwege. We krijgen zo een mooie, beknopte tekst die de meest
interessante resultaten van de thesis samenbundelt.

Structuur van de Nederlandse samenvatting

We geven een kort overzicht van de structuur en de inhoud van de Nederlandse
samenvatting. We merken nog eens op dat deze samenvatting zeer beknopt is.
Meer informatie kan gevonden worden in de Engelstalige tekst.

De Nederlandse samenvatting bestaat uit 3 secties.

Sectie N.1 - Lokaal compacte kwantumgroepen. We beginnen, in Sec-
tie N.1, met een korte inleiding tot de algemene theorie van lokaal compacte
kwantumgroepen. We formuleren de definitie van Kustermans en Vaes en we
vermelden de standaard-eigenschappen van kwantumgroepen. We beschrijven
dan ook de basisvoorbeelden van kwantumgroepen en bespreken heel kort enkele
verschillende methoden voor het construeren van andere voorbeelden.

We geven verder een studie van multiplicatieve unitairen. Hierin is het vooral de
manageability theorie van Woronowicz [162] die aan bod komt. We formuleren
dan zowel de basisresultaten hieruit als enkele extra eigenschappen.

De volgende stap is dan om deze manageability resultaten te combineren met
de Van Daele-techniek [148]. We creëren op die manier een vrij algemeen kader
waarin invariantie van gewichten kan bestudeerd worden. We geven een concrete
beschrijving van een familie gewichten ψq die sterk rechts invariant zijn. Elk van
deze gewichten is een goede kandidaat om een Haargewicht te zijn.

Sectie N.2 - De kwantum E(2) groep en zijn duale. Deze Sectie N.2 is
geheel gewijd aan de constructie van de kwantum E(2) groep. We behandelen
dit op een korte en duidelijke manier. Het belangrijkste resultaat is dat de
kwantum E(2) group een lokaal compacte kwantumgroep is in de betekenis van
Kustermans en Vaes; zie Stelling N.2.17. We construeren ook de duale kwantum
Ê(2) groep. We geven niet enkel de constructie van deze twee voorbeelden, maar
we bekijken ook hun typische eigenschappen.

Een heel belangrijk instrument is de multiplicatieve unitaire W . We hebben
dat W manageable is in de betekenis van Woronowicz [162]. Dit geeft ons de
mogelijkheid om de constructie van de kwantum E(2) groep (A,Φ) te vereen-
voudigen. Uit de manageability theorie vinden we direct de basiseigenschappen
van de C∗-algebra A en de covermenigvuldiging Φ. We krijgen automatisch ook
dezelfde resultaten voor de kwantum Ê(2) groep (Â, Φ̂).
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De volgende stap is de constructie van de Haargewichten. Dit is een eenvoudige
toepassing van de algemene resultaten uit Sectie N.1. De kwantum E(2) groep
is unimodulair; de duale kwantum Ê(2) groep is niet unimodulair.

Als we al deze resultaten combineren, dan vinden we dat zowel de kwantum
E(2) groep als zijn duale lokaal compacte kwantumgroepen zijn volgens Defini-
tie N.1.3. Eens we dit belangrijke resultaat hebben, richten we verder onze
aandacht op de basiskenmerken van deze twee kwantumgroepen.

Sectie N.3 - Conclusies en open problemen. In Sectie N.3 trekken we de
besluiten. We vermelden ook enkele open problemen. Deze zijn eventueel van
belang voor toekomstig onderzoek over de kwantum E(2) groep.

N.1 Lokaal compacte kwantumgroepen

In deze Sectie N.1 geven we een korte introductie tot the algemene theorie van
lokaal compacte kwantumgroepen. We formuleren de belangrijkste definities en
resultaten uit de theorie van Kustermans en Vaes.

We richten onze aandacht ook op de manageability theorie. We bewijzen nieuwe
eigenschappen van modulaire multiplicatieve unitairen en we introduceren een
nieuwe techniek om Haargewichten te construeren. We gebruiken deze resultaten
in Sectie N.2 in onze studie van de kwantum E(2) groep.

Deze inleiding tot de algemene theorie is zeer beknopt. We verwijzen naar de
Engelstalige tekst en de artikels [65, 66, 67, 68, 125, 63, 69] voor meer uitgebreide
behandelingen van de theorie van lokaal compacte kwantumgroepen.

De definitie van een lokaal compacte kwantumgroep

We bekijken dus vooreerst de algemene theorie van lokaal compacte kwantum-
groepen in zijn huidige vorm. Zoals reeds gezegd is deze theorie opgebouwd
vanuit de definitie van Kustermans en Vaes.

J. Kustermans en S. Vaes formuleerden in 1999 de onderstaande Definitie N.1.3
van een (gereduceerde) C∗-algebräısche kwantumgroep; zie [65, 66]. Ze is nu wijd
verspreid en aanvaard als een ‘goede’ definitie. We verwijzen naar de Engelstalige
tekst voor de voorgeschiedenis van deze belangrijke definitie.

De definitie van Kustermans en Vaes is zowel eenvoudig als effectief. Ze vormt
een stevige basis voor het onderzoek in de theorie van kwantumgroepen.

We formuleren eerst enkele inleidende definities.

Definitie N.1.1 Stel A een C∗-algebra en stel Φ : A → M(A ⊗ A) een niet-
gedegenereerd ∗-homomorfisme. We noemen dan (A,Φ) een bi-C∗-algebra als Φ
coassociatief is. Dit wil precies zeggen dat (Φ⊗ ι)Φ = (ι⊗ Φ)Φ.

In dit geval noemen we Φ een covermenigvuldiging op de C∗-algebra A.
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Definitie N.1.2 Beschouw een bi-C∗-algebra (A,Φ) en een gewicht ϕ op A+.

• We noemen ϕ links invariant als ϕ
(
(ω ⊗ ι)Φ(a)

)
= ω(1)ϕ(a) voor alle

a ∈ M+
ϕ en ω ∈ A∗+. Als deze gelijkheid bovendien geldt voor alle a ∈ A+

en ω ∈ A∗+, dan noemen we ϕ sterk links invariant;

• We noemen ϕ rechts invariant als ϕ
(
(ι ⊗ ω)Φ(a)

)
= ω(1)ϕ(a) voor alle

a ∈ M+
ϕ en ω ∈ A∗+. Als deze gelijkheid bovendien geldt voor alle a ∈ A+

en ω ∈ A∗+, dan noemen we ϕ sterk rechts invariant.

We formuleren de definitie van Kustermans en Vaes. Dit is het beginpunt van
de hedendaagse theorie van lokaal compacte kwantumgroepen.

Definitie N.1.3 (Kustermans en Vaes) Beschouw een C∗-algebra A en een
niet-gedegenereerd ∗-homomorfisme Φ : A→M(A⊗A) zodanig dat

• (Φ⊗ ι)Φ = (ι⊗ Φ)Φ;

• A = [ (ω ⊗ ι)Φ(a) | ω ∈ A∗, a ∈ A] = [ (ι⊗ ω)Φ(a) | ω ∈ A∗, a ∈ A].

Veronderstel daarenboven het bestaan van

• een trouw links invariant bijna-KMS gewicht ϕ op (A,Φ);

• een rechts invariant bijna-KMS gewicht ψ op (A,Φ).

Dan noemen we (A,Φ) een lokaal compacte kwantumgroep.

De Stelling N.1.6 maakt de volgende terminologie mogelijk.

Terminologie N.1.4 Stel (A,Φ) een lokaal compacte kwantumgroep. Stel dat ϕ
en ψ de gewichten zijn die voorkomen in Definitie N.1.3.

We noemen ϕ het linkse Haargewicht en ψ het rechtse Haargewicht.

We vermelden de basisresultaten van de algemene theorie. Deze resultaten zijn
bewezen door Kustermans en Vaes in [65, 66, 68].

De Stellingen N.1.5 and N.1.6 bevatten zeer belangrijke eigenschappen.

Stelling N.1.5 Stel (A,Φ) een lokaal compacte kwantumgroep. Stel ϕ en ψ het
linkse en rechtse Haargewicht. We hebben de volgende eigenschappen:

• De deelruimten Φ(A)(A⊗ 1) en Φ(A)(1⊗A) zijn dicht in A⊗A;

• Het gewicht ϕ is een trouw, sterk links invariant KMS-gewicht op (A,Φ);

• Het gewicht ψ is een trouw, sterk rechts invariant KMS-gewicht op (A,Φ).
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Stelling N.1.6 Stel (A,Φ) een lokaal compacte kwantumgroep. Stel ϕ en ψ het
linkse en rechtse Haargewicht. Zij η een niet-nul, dicht gedefinieerd, beneden
semi-continu gewicht op A+. De volgende eigenschappen gelden:

• Als η links invariant is, dan bestaat een getal r > 0 zodat η = rϕ;

• Als η rechts invariant is, dan bestaat een getal r > 0 zodat η = rψ.

We beschrijven de multiplicative unitaireW die standaard geassocieerd is aan een
kwantumgroep (A,Φ). Dit levert meer inzicht in de algemene theorie.

Eerst leggen we de Notatie N.1.7 vast.

Notatie N.1.7 Stel (A,Φ) een lokaal compacte kwantumgroep. Stel ϕ het linkse
Haargewicht en ψ het rechtse Haargewicht. De GNS-constructie van ϕ noteren
we met (Hϕ, πϕ,Λϕ). Omdat πϕ trouw is, kunnen we de C∗-algebra’s A en πϕ(A)
identificeren. Dit zullen we dan ook doen.

Het eerste object dat Kustermans en Vaes opbouwen vanuit Definitie N.1.3 is de
(links) reguliere representatie W . Dit is zonder twijfel één van de meest cruciale
objecten die aan (A,Φ) zijn geassocieerd.

Propositie N.1.8 Er bestaat een unieke unitaire operator W ∈ B(Hϕ ⊗ Hϕ)
zo dat

W ∗(Λϕ(x)⊗ Λϕ(y)
)

= (Λϕ ⊗ Λϕ)
(
Φ(y)(x⊗ 1)

)
voor alle x, y ∈ Nϕ.

De unitaire operator W is multiplicatief. Dit wil zeggen dat W voldoet aan de
pentagonvergelijking

W12W13W23 = W23W12.

Bovendien hebben we dat W manageable is.

We noemen W de links reguliere representatie van (A,Φ).

De volgende Propositie N.1.1 toont het grote belang van W . We zien dat de com-
plete structuur van de bi-C∗-algebra (A,Φ) kan beschreven worden met behulp
van W . Dit is uiteraard een belangrijke eigenschap.

Het is duidelijk dat de formules in Propositie N.1.1 zeer nuttig zijn.

Proposition N.1.1 We hebben dat

A = [ (ι⊗ ω)W | ω ∈ B(Hϕ)∗].

Voor alle x ∈ A geldt
Φ(x) = W ∗(1⊗ x)W.
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Voorbeelden van kwantumgroepen

We richten onze aandacht dan nu op voorbeelden van kwantumgroepen. Het is
natuurlijk van een heel groot belang om voldoende (niet-triviale) voorbeelden te
hebben van lokaal compacte kwantumgroepen.

De twee basisvoorbeelden van kwantumgroepen zijn de lokaal compacte groepen
en hun dualen. Deze voorbeelden zijn zeer goed gekend en uitgewerkt.

Het is vooral S.L. Woronowicz die een heel belangrijke rol heeft gespeeld in de
zoektocht naar nieuwe voorbeelden. Hij construeerde in 1987 zijn beroemde en
revolutionaire voorbeeld van de kwantum SU(2) groep [153].

S.L. Woronowicz construeerde in 1991 de kwantum E(2) groep. Dit is een zeer
verfijnd voorbeeld van een niet-compacte kwantumgroep. We geven in Sectie N.2
een uitgebreide studie van de kwantum E(2) groep en zijn duale.

We bekijken hier enkele algemeenheden in verband met voorbeelden van kwan-
tumgroepen. Deze tak van de kwantumgroepen-theorie bevat enkele specifieke
technieken. Het is interessant om daar eens naar te kijken.

Het voorbeeld N.1.9 beschrijft de commutatieve kwantumgroepen.

Voorbeeld N.1.9 Stel G een lokaal compacte groep. We gebruiken dx om de
linkse Haarmaat op G aan te duiden.

Bekijk de commutatieve C∗-algebra A = C0(G). Dan geldt A⊗A = C0(G×G).
We hebben verder dat M(A) = Cb(G) en M(A⊗A) = Cb(G×G).

Een covermenigvuldiging Φ op A⊗A kan gedefinieerd worden door

Φ(f)(s, t) = f(st)

met hierin f ∈ C0(G) en s, t ∈ G.

Het volgt uit de schrappingswet op G dat de deelruimten

Φ
(
C0(G)

)(
C0(G)⊗ 1

)
en Φ

(
C0(G)

)(
1⊗ C0(G)

)
dicht zijn in C0(G×G).

We kunnen een trouw KMS-gewicht ϕ op A definiëren door te integreren met
betrekking tot de linkse Haarmaat. Dus, voor alle f ∈ C0(G), hebben we

ϕ(f) =
∫
G

f(x) dx.

We hebben dan dat ϕ een links Haargewicht is op (A,Φ).

Het is dan verder meteen duidelijk dat we een rechts Haargewicht ψ krijgen door
te integreren met betrekking tot de rechtse Haarmaat.

We besluiten dat (A,Φ) een lokaal compacte kwantumgroep is.
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We richten nu onze aandacht op niet-commutatieve voorbeelden. We geven een
aantal algemeenheden in verband met het construeren van nieuwe voorbeelden.
Enkele typische technieken komen hierbij aan bod.

We beperken ons in deze Nederlandse samenvatting tot het bespreken van de
zogeheten ‘atomische’ voorbeelden. Dit zijn voorbeelden die opgebouwd zijn
via de ‘drie-stappen aanpak’ van Woronowicz.

De drie stappen die voorkomen in zo’n constructie zijn:

1. Het Hopf ∗-algebra-niveau;

2. Het Hilbertruimte-niveau;

3. Het C∗-algebra-niveau.

Het Hopf ∗-algebra-niveau dient voornamelijk als een intüıtie. Het geeft een
algebräısche motivatie voor latere resultaten. Het Hilbertruimte-niveau is er om
af te rekenen met de technische details. Tenslotte hebben we dan het C∗-algebra-
niveau. Dit bevat de meest belangrijke en nuttige resultaten. We bestuderen
hierin het voorbeeld als een lokaal compacte kwantumgroep.

Er moeten meestal een heel aantal moeilijkheden overwonnen worden vooraleer
we de constructie van een voorbeeld kunnen voltooien. Deze problemen zijn
bijna altijd zeer typisch voor het bekeken voorbeeld. Het is daarom nodig om
voor elk voorbeeld apart naar mogelijke oplossingen te zoeken.

We hebben gelukkig enkele handige technieken tot onze beschikking. Deze zijn
vaak een grote hulp bij het construeren van een voorbeeld. Later in deze Sec-
tie N.1 bestuderen we kort de meest nuttige van deze technieken.

Bij het construeren van een atomische kwantumgroep (A,Φ) is er bijna altijd
een cruciale rol weggelegd voor een multiplicative unitaire W die alle informatie
bevat over A en Φ. Deze W vormt dan de basis van de constructie.

De opbouw van (A,Φ) gebeurt meestal als volgt:

1. Probeer een ‘goede’ multiplicatieve unitaire W ∈ B(H ⊗H) te vinden.

2. Definieer een bi-C∗-algebra (A,Φ) door de onderstaande formules:

• A = [ (ω ⊗ ι)W | ω ∈ B(H)∗],
• Φ(x) = W (x⊗ 1)W ∗ voor x ∈ A.

3. Gebruik de Stelling N.1.20 om de Haargewichten te construeren.

We geven nog een lijst met de meest belangrijke atomische voorbeelden. Bij elk
voorbeeld geven we referenties naar uitgebreide behandelingen:

− kwantum SU(2) groep [153, 154],

− kwantum SU(n) groep [156, 83, 76],
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− kwantum E(2) groep [158, 159, 149, 1]; zie Sectie N.2,

− kwantum az+b-groep [165, 101, 113, 148],

− kwantum ax+b-groep [169, 102, 148, 166],

− kwantum S̃Uq(1, 1)-groep [54, 55].

Multiplicatieve unitairen

We geven een systematische studie van multiplicatieve unitairen. Het is al eerder
opgemerkt in deze Nederlandse samenvatting dat deze operatoren een zeer groot
belang hebben. En dus verdienen ze voldoende aandacht.

De basis van de hedendaagse theorie van multiplicatieve unitairen werd gelegd
door Baaj en Skandalis in hun artikel [4]. S.L. Woronowicz gaf in 1996 een heel
belangrijke bijdrage met zijn manageability theorie [162, 114].

We maken in de thesis uitvoerig gebruik van de resultaten omtrent manageable
multiplicatieve unitairen. De manageability theorie zal dan ook als een rode
draad lopen doorheen het verdere verloop van Sectie N.1.

Eerst bekijken we enkele gekende basiseigenschappen. We vermelden daarna ook
een eigen bijdrage. We introduceren hierin een nieuwe techniek die kan gebruikt
worden om Haargewichten te construeren; zie Stelling N.1.19.

We starten met de Definitie N.1.10 van een multiplicatieve unitaire.

Definitie N.1.10 Stel W ∈ B(H⊗H) een unitaire operator. We noemen W een
multiplicatieve unitaire als W voldoet aan de pentagonvergelijking

W12W13W23 = W23W12.

S.L. Woronowicz definieerde in [162] de notie van manageabiliteit voor multipli-
catieve unitairen. Later werd dit afgezwakt tot modulariteit [114]. We maken in
deze Sectie N.1 geen onderscheid tussen beide begrippen.

We formuleren eerst de Definitie N.1.11 van manageabiliteit. We geven niet de
versie van Woronowicz, maar een licht aangepaste versie. Het precieze verband
met de originele definitie is uitgelegd in Sectie 1.3.

Deze Definitie N.1.11 maakt een iets eenvoudiger formulering mogelijk.

Definitie N.1.11 Stel W ∈ B(H ⊗H) een multiplicatieve unitaire. We zeggen
dat W manageable is als er twee strikt positieve operatoren Q en Q̂ op H en
twee anti-unitaire operatoren I and Î op H bestaan zo dat

1. We hebben de volgende gelijkheden:

(a) W (Q̂⊗Q)W ∗ = Q̂⊗Q,
(b) (Î ⊗ I)W ∗(Î∗ ⊗ I∗) = W .
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2. Voor alle x, z ∈ H en u ∈ D(Q), y ∈ D(Q−1) geldt dat〈
W (z ⊗ y), x⊗ u

〉
=

〈
W ∗(z ⊗ IQu), x⊗ IQ−1y

〉
.

De volgende Stelling N.1.12 bevat de centrale resultaten uit de manageability
theorie. Ze werd bewezen door P. Soltan en S.L. Woronowicz [114].

We verwijzen hierbij naar Sectie 1.3 voor een meer uitgebreide versie.

Stelling N.1.12 ([162, 114]) Stel W ∈ B(H ⊗ H) een manageable multipli-
catieve unitaire. We definiëren dan

A = [ (ω ⊗ ι)W | ω ∈ B(H)∗] en Â = [ (ι⊗ ω)W | ω ∈ B(H)∗].

De onderstaande eigenschappen gelden:

1. We hebben dat A en Â niet-gedegenereerde C∗-algebra’s in B(H) zijn,

2. Er geldt W ∈M(B0(H)⊗A) en W ∈M(Â⊗B0(H)),

3. Er geldt W ∈M(Â⊗A),

4. Er bestaat een niet-gedegenereerd ∗-homomorfisme Φ : A→M(A⊗A) dat
uniek gedefinieerd is door

(ι⊗ Φ)W = W12W13.

We hebben bovendien de volgende resultaten:

(a) Er geldt Φ(x) = W (x⊗ 1)W ∗ voor alle x ∈ A,

(b) We hebben dat Φ coassociatief is; dus (Φ⊗ ι)Φ = (ι⊗ Φ)Φ,

(c) De deelruimten Φ(A)(1⊗A) en Φ(A)(A⊗ 1) zijn dicht in A⊗A.

Een formule voor de Haargewichten

Het is meteen duidelijk dat Stelling N.1.12 heel erg belangrijk is. We vinden dat
elke manageable multiplicatieve unitaire ons al een eind op weg brengt naar de
constructie van een lokaal compacte kwantumgroep.

De Haargewichten zijn de enige objecten die nog ontbreken om een kwantum-
groep te krijgen. We hebben een techniek ontwikkelt die helpt bij het zoeken
naar deze gewichten. We lichten kort de belangrijkste resultaten toe.

Eerst leggen we de Notatie N.1.13 vast.

Notatie N.1.13 Stel voor de rest van deze Sectie N.1 dat W een manageable
multiplicatieve unitaire is. We gebruiken dan de objecten die geassocieerd zijn
aan W zoals ingevoerd in Stelling N.1.12.

De notaties uit Stelling N.1.12 worden hierbij identiek overgenomen.
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We gebruiken ook de volgende Notatie N.1.14

Notatie N.1.14 Stel H een Hilbertruimte met (ei) een orthonormale basis.

We noteren met Tr het canonieke spoor op B(H)+. Dus voor x ∈ B(H)+ geldt

Tr(x) =
∑
i

〈xei, ei〉.

Stel nu dat h een strikt positieve operator is.

We bedoelen dan met Trh het gewicht op B(H)+ dat informeel gegeven wordt
door de formule

Trh(x) = Tr(h
1
2xh

1
2 ).

Met de Definities N.1.15 en N.1.16 definiëren we twee families van gewichten.
Deze spelen de hoofdrol in de zoektocht naar de Haargewichten.

We herhalen dat we gebruik maken van Notatie N.1.13.

Definitie N.1.15 Stel q ∈ Â′. We definiëren dan een beneden semi-continu
gewicht ψq op A+ door de formule

ψq(x) = TrQ̂2(q∗xq).

Definitie N.1.16 Stel q ∈ Â′. We definiëren dan een beneden semi-continu
gewicht ϕq op A+ door de formule

ϕq(x) = ψq(I∗x∗I).

We voeren nog de Notatie N.1.17 in.

Notatie N.1.17 We noteren met ψ∞ het gewicht op A+ gedefinieerd door

ψ∞(x) =

{
0 als x = 0,
+∞ als x 6= 0.

We formuleren dan de belangrijkste resultaten in verband met de gewichten ψq.
Deze eigenschappen zijn bewezen in Sectie 1.4.

Het blijkt dat we de gewichten ψq kunnen classificeren in drie categorieën.

Propositie N.1.18 Stel q ∈ Â′. Enkel de volgende mogelijkheden komen voor:

1. We hebben dat ψq = 0,

2. We hebben dat ψq = ψ∞,

3. We hebben dat ψq een trouw KMS-gewicht is.
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De volgende Stelling N.1.19 geeft de belangrijkste eigenschap van ψq.

Stelling N.1.19 Stel q ∈ Â′ met q 6= 0. We hebben dan dat ψq een trouw,
beneden semi-continu gewicht is dat sterk rechts invariant is. We hebben dus
voor alle x ∈ A+ en ω ∈ A∗+ dat

ψq
(
(ι⊗ ω)Φ(x)

)
= ω(1)ψq(x).

We beschrijven dan hoe de bovenstaande gewichten ψq en ϕq kunnen helpen om
van (A,Φ) een kwantumgroep te maken.

Stelling N.1.20 Stel dat elementen q ∈ Â′ en x ∈ A+ bestaan zo dat ψq(x) = 1.
Dan is (A,Φ) een lokaal compacte kwantumgroep.

We hebben dat ψq het rechtse Haargewicht is en ϕq het linkse Haargewicht.

N.2 De kwantum E(2) groep en zijn duale

Deze Sectie N.2 is het centrale deel van de Nederlandse samenvatting. Het bevat
de details betreffende de constructie van de kwantum E(2) group. We zullen zien
in Stelling N.2.17 dat de kwantum E(2) groep inderdaad een lokaal compacte
kwantumgroep is zoals gedefinieerd door Kustermans en Vaes.

We bouwen de kwantum E(2) groep op volgens de ‘atomische’ constructie-
methode (cf. Sectie N.1). We volgen hierbij het schema op pagina 290.

We starten dus met een multiplicatieve unitaire W en dan definiëren we een
bi-C∗-algebra (A,Φ) zoals in Stelling N.1.12. De resultaten uit Sectie N.1 geven
dan vrij direct dat (A,Φ) een lokaal compacte kwantumgroep is.

De duale kwantum Ê(2) groep (Â, Φ̂) wordt analoog geconstrueerd.

Eens de kwantum E(2) groep (A,Φ) en zijn duale zijn opgebouwd, kijken we naar
enkele specifieke eigenschappen. We geven bijvoorbeeld de belangrijkste formules
in verband met de covermenigvuldigingen en de Haargewichten.

We beperken ons evenwel sterk in het bespreken van de eigenschappen van de
kwantum E(2) groep en zijn duale. Er zijn heel wat interessante resultaten die we
niet behandelen. We verwijzen hiervoor naar de Engelstalige tekst.

We fixeren een getal µ ∈ R met 0 < µ < 1.

Het Hopf ∗-algebra niveau

We starten de constructie van de kwantum E(2) groep op het Hopf ∗-algebra
niveau. Het is al vermeld in Sectie N.1 dat dit niveau puur algebräısch is en
voornamelijk dient als een intüıtie voor latere resultaten.
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We beschrijven in Propositie N.2.1 twee Hopf ∗-algebra’s (A,∆) en (B, ∆̂).
Men kan aantonen dat deze duaal zijn ten opzichte van elkaar.

De Hopf ∗-algebra (A,∆) vormt de algebräısche intüıtie die we gebruiken om de
kwantum E(2) groep te construeren.

Propositie N.2.1 Bekijk de unitale ∗-algebra A die gegenereerd is door een
unitair element c en een normaal element d zo dat cd = µdc.

De ∗-algebra A wordt een Hopf ∗-algebra als we een covermenigvuldiging ∆
definiëren door de formules

∆(c) = c⊗ c and ∆(d) = c⊗ d+ d⊗ c∗.

Bekijk ook de unitale ∗-algebra B die gegenereerd is door een zelf-toegevoegd,
inverteerbaar element a en een normaal element b zo dat ab = µba.

De ∗-algebra B wordt een Hopf ∗-algebra als we een covermenigvuldiging ∆̂
definiëren door de formules

∆̂(a) = a⊗ a and ∆̂(b) = a⊗ b+ b⊗ a−1.

De multiplicatieve unitaire

Het is nu de bedoeling om een C∗-algebra-versie op te bouwen van de twee Hopf ∗-
algebra’s (A,∆) en (B, ∆̂). We hebben al opgemerkt in Sectie N.1 dat de theorie
van multiplicatieve unitaire heel nuttig is bij een dergelijke constructie.

Het is dan ook helemaal geen verrassing dat het construeren van een multipli-
catieve unitaire W het eerste is wat we nu gaan doen. De constructie van W is
de belangrijkste stap in de opbouw van de kwantum E(2) groep.

Met behulp van W kunnen we dan een standaard procedure gebruiken om zowel
de kwantum E(2) groep (A,Φ) als zijn duale te construeren.

We beschrijven de manier om W te definiëren. Omdat we dit op een correcte
manier doen, is het nodig dat we eerst enkele objecten invoeren.

De twee functies Fµ en χ die we definiëren in de Definitie N.2.3 zijn van een
groot belang in de constructie van W .

Definitie N.2.2 We bekijken de verzamelingen

Cµ = {µkz | k ∈ Z, z ∈ S1}, C(µ
1
2 ) = {µ 1

2kz | k ∈ Z, z ∈ S1},

Rµ = {µk | k ∈ Z}, R(µ
1
2 ) = {µ 1

2k | k ∈ Z}.

Notaties zoals C̄µ betekenen dat we de sluiting nemen; dus C̄µ = Cµ ∪ {0}.
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Definitie N.2.3 ([158]) We definiëren een functie Fµ ∈ Cb(C̄µ) op de volgende
manier. Voor alle z ∈ C̄µ \ {−µ−2k | k ∈ N} stellen we dat

Fµ(z) =
∞∏
k=0

1 + µ2kz

1 + µ2kz

Verder stellen we Fµ(z) = −1 als z ∈ {−µ−2k | k ∈ N}.

We definiëren een functie χ ∈ Cb(R(µ
1
2 )× S1) door te stellen dat

χ(µ
1
2k, z) = zk

als k ∈ Z en z ∈ S1.

De Definitie N.2.5 representeert dan de generatoren a, b, c, d uit Propositie N.2.1
als operatoren op een Hilbertruimte. We merken hierbij op dat we dezelfde
notaties gebruiken als in Propositie N.2.1. Omdat we vanaf nu enkel nog op het
C∗-algebra-niveau werken, zorgt dit niet voor verwarring.

De operatoren a, b, c, d in Definitie N.2.5 komen later terug als de generatoren
van de kwantum E(2) groep en zijn duale; zie de resultaten beneden.

Notatie N.2.4 We bekijken de Hilbertruimtes `2(Z) en H = `2(Z)⊗ `2(Z).

Stel dan {ek | k ∈ Z} een orthonormale basis van `2(Z).

Definitie N.2.5 We definiëren een begrensde operator s en een gesloten opera-
tor m op `2(Z) zoals volgt. Voor alle k ∈ Z stellen we

sek = ek+1 en mek = µkek.

We hebben dat s een unitaire operator is en dat m een strikt positieve operator is.
Het is eenvoudig om te controleren dat

ms = µsm.

We definiëren dan operatoren a, b, c, d op H door

a = m− 1
2 ⊗m, b = m

1
2 ⊗ s,

c = s⊗ s, d = s⊗m−1.

Het volgende Lemma N.2.6 geeft een aantal basiseigenschappen.

Lemma N.2.6 De operator c is unitair en de operator a is strikt positief.
De operatoren b en d zijn niet-singulier en normaal.

De spectra van de operatoren a, b, c, d worden gegeven door

σ(a) = R̄(µ
1
2 ), σ(b) = C̄(µ

1
2 ), σ(c) = S1, σ(d) = C̄µ.
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We hebben dat
cd = µdc en ab = µba.

De laatste commutatieregel betekent hierbij dat aitba−it = µitb voor alle t ∈ R.

We hebben ook dat a en |b| sterk commuteren.

Er geldt dat ab⊗ cd niet-singulier en normaal is. We hebben

σ(ab⊗ cd) ⊆ C̄µ.

We kunnen nu de Definitie N.2.1 van W geven.

Definition N.2.1 ([159]) We definiëren een unitaire W ∈ B(H ⊗H) door

W = Fµ(ab⊗ cd)χ(a⊗ 1, 1⊗ c).

We formuleren dan meteen ook de belangrijke Stelling N.2.7. Dit is één van de
centrale eigenschappen in deze Sectie N.2.

Het vergt vrij veel werk om deze Stelling N.2.7 te bewijzen.

Stelling N.2.7 De unitaire operator W is multiplicatief. Dit wil precies zeggen
dat W voldoet aan de pentagonale vergelijking

W12W13W23 = W23W12.

Het belang van W kan eigenlijk niet overschat worden. Het is het belangrijkste
instrument in onze constructie van de kwantum E(2) groep.

We bekijken dan ook nog de manageability eigenschappen van W . Deze worden
beschreven in Propositie N.2.9 en Stelling N.2.10.

De Definitie N.2.8 voert eerst enkele operatoren in.

Definitie N.2.8 Noteer N = m2⊗m−2. Dan is N een strikt positieve operator
op H. We definiëren verder ook twee anti-unitaire operatoren I en Î op H door
te stellen dat

• I(ek ⊗ el) = (−1)k+l(e−k+2l ⊗ el),

• Î(ek ⊗ el) = (−1)l(ek ⊗ ek−l) en Î∗(ek ⊗ el) = (−1)k+l(ek ⊗ ek−l).

voor alle k, l ∈ Z.

De onderstaande Propositie N.2.9 geeft aan op welke manier dat N , I en Î
verbonden zijn met W . Het is verder duidelijk dat de Stelling N.2.10 gewoon de
meest relevante informatie uit Propositie N.2.9 selecteert.

Propositie N.2.9 Er geldt dat het vijftal (W,N
1
2 , N

1
2 , I, Î) voldoet aan de voor-

waarden in de Definitie N.1.11.

Stelling N.2.10 De multiplicatieve unitaire W is manageable.
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De definitie van de kwantum E(2) groep

We gebruiken nu de theorie in Sectie N.1 om via W twee bi-C∗-algebra’s (A,Φ)
en (Â, Φ̂) op te bouwen. Dit leidt tot de Definities N.2.11 en N.2.11.

We geven de definitie van zowel de kwantum E(2) groep (A,Φ) als zijn duale.

Definitie N.2.11 We definiëren een bi-C∗-algebra (A,Φ) door

• A = [ (ω ⊗ ι)W | ω ∈ B(H)∗],

• Φ : A→M(A⊗A) : x 7→W (x⊗ 1)W ∗.

We noemen (A,Φ) de kwantum E(2) groep.

Definitie N.2.12 We definiëren een bi-C∗-algebra (Â, Φ̂) door

• Â = [ (ι⊗ ω)W | ω ∈ B(H)∗],

• Φ̂ : Â→M(Â⊗ Â) : y 7→W ∗(1⊗ y)W .

We noemen (Â, Φ̂) de kwantum Ê(2) groep.

Het is dan vrij eenvoudig om te bewijzen dat (A,Φ) en (Â, Φ̂) lokaal compacte
kwantumgroepen zijn volgens de Definitie N.1.3 van Kustermans en Vaes. Dit zal
blijken uit de hiernavolgende behandelingen.

We merken hierbij op dat de onderstaande resultaten ook illustreren dat de
combinatie van de Stellingen N.1.12 en N.1.20 een krachtig techniek geeft om
voorbeelden van kwantumgroepen te construeren.

We bekijken de kwantum E(2) groep (A,Φ) en zijn duale elk apart.

De kwantum E(2) groep

Het is meteen duidelijk uit Stelling N.1.12 dat we enkel nog Haargewichten nodig
hebben om te bewijzen dat (A,Φ) een lokaal compacte kwantumgroep is volgens
de Definitie N.1.3 van Kustermans en Vaes.

We gebruiken dan de techniek uit Sectie N.1 om een Haargewicht ψ op (A,Φ)
te vinden. Het zal blijken dat dit gaat op de vooropgestelde manier.

We beginnen daarom meteen met het construeren van een gewicht ψ dat is van
de vorm ψq zoals beschreven in de Definitie N.1.15.

Eerst definiëren we een element q ∈ Â′.

Definitie N.2.13 Stel p de projectie op de deelruimte Ce0. We definiëren dan
een projectie q ∈ B(H) door de formule q = p⊗ 1.

Lemma N.2.14 Er geldt dat q ∈ Â′.
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De volgende Definitie N.2.15 voert het gewicht ψ in.

Definitie N.2.15 We definiëren een gewicht ψ op A+ door de formule

ψ(x) = TrN (qxq).

Voor alle x ∈ A+ hebben we dan

ψ(x) =
∑
k∈Z

µ−2k〈x(e0 ⊗ ek), e0 ⊗ ek〉.

Met behulp van Propositie N.1.18 en Stelling N.1.19 is het dan mogelijk om, via
een eenvoudige berekening, de volgende Stelling N.2.16 aan te tonen.

Stelling N.2.16 We hebben dat ψ een trouw KMS-gewicht is op A+. Er geldt
bovendien dat ψ sterk links en sterk rechts invariant is. We hebben dus dat

ψ
(
(ω ⊗ ι)Φ(x)

)
= ψ

(
(ι⊗ ω)Φ(x)

)
= ψ(x).

voor alle x ∈ A+ en ω ∈ A∗+.

De Stelling N.2.17 geeft dan de centrale eigenschap. Het volgt uit de combinatie
van de twee Stellingen N.1.12 en N.2.16.

Deze Stelling N.2.17 besluit de opbouw van de kwantum E(2) groep.

Stelling N.2.17 Het paar (A,Φ) is een lokaal compacte kwantumgroep.

We geven dan enkele belangrijke eigenschappen van (A,Φ). Het is hierbij ook
zeker belangrijk om de gelijkenis met Propositie N.2.1 op te merken.

Eerst beschrijven we de C∗-algebra A in termen van de generatoren c, d.

We hebben de volgende twee Stellingen N.2.18 en N.2.19.

Stelling N.2.18 We hebben dat

A =
[ ∑
k∈Z

ckfk(d)
∣∣ fk ∈ C0(C̄µ) voor alle k en fk 6= 0 voor eindig veel k

]
.

De C∗-algebra A heeft dus geen eenheid

Stelling N.2.19 Er geldt dat c ∈M(A) en d η A. We hebben bovendien dat de
C∗-algebra A is gegenereerd door de geaffilieerde elementen c, d η A.

De covermenigvuldiging Φ heeft nu enkele mooie eigenschappen.

Stelling N.2.20 Er geldt dat Φ het enige niet-gedegenereerde ∗-homomorfisme
van A naar M(A⊗A) is dat voldoet aan de formules

Φ(c) = c⊗ c en Φ(d) = c⊗ du d⊗ c∗.
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We hebben verder dat

Φ(c∗) = c∗ ⊗ c∗, Φ(d∗) = c∗ ⊗ d∗ u d∗ ⊗ c,

Φ(cd) = c2 ⊗ cdu cd⊗ 1.

Propositie N.2.21 Stel
∑
ckfk(d) ∈ A. We hebben dan

Φ
( ∑

ckfk(d)
)

=
∑

(ck ⊗ ck)fk(c⊗ du d⊗ c∗).

De Propositie N.2.22 geeft dat (A,Φ) voldoet aan een soort ‘semigroep-gedrag’.
Dit is een heel opmerkelijke en intrigerende eigenschap.

Propositie N.2.22 ([160]) Er geldt dat

Φ(A) ⊆ A⊗A.

Het Haargewicht ψ voldoet aan de formules in Propositie N.2.23.

Propositie N.2.23 Stel x =
∑
ckfk(d) ∈ A. We hebben dan

ψ(x∗x) =
1

2π

∑
k,m

µ−2m

∫ 2π

0

|fk(µ−meit)|2 dt.

De kwantum Ê(2) groep

We bekijken dan de bi-C∗-algebra (Â, Φ̂). We gaan analoog te werk als bij (A,Φ)
om aan te tonen dat (Â, Φ̂) een lokaal compacte kwantumgroep is.

Na de opbouw van de Haargewichten bekijken we enkele specifieke eigenschappen
van (Â, Φ̂). Dit is ook (bijna) analoog als in het geval van (A,Φ), al zijn de
formules soms iets minder gestroomlijnd.

We beginnen hier met de Definitie N.2.24 van twee gewichten.

Definitie N.2.24 We definiëren twee gewichten ϕ̂, ψ̂ op Â+ door de formules

ϕ̂(x) = TrN (x) en ψ̂(x) = TrN̂0
(x).

Voor alle x ∈ Â+ hebben we dan

ϕ̂(x) =
∑
k,l∈Z

µ2(k−l)〈x(ek ⊗ el), ek ⊗ el〉,

ψ̂(x) =
∑
k,l∈Z

µ2l〈x(ek ⊗ el), ek ⊗ el〉.
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De volgende Stelling N.2.25 kan bewezen worden door Propositie N.1.18 en
Stelling N.1.19 te combineren met Stelling N.1.12.

Stelling N.2.25 We hebben dat ϕ̂ en ψ̂ trouwe KMS-gewichten zijn op A+.
Er geldt bovendien dat ϕ̂ sterk links invariant is en dat ψ̂ sterk rechts invariant is.
We hebben dus dat

ϕ̂
(
(ω ⊗ ι)Φ̂(x)

)
= ω(1)ϕ̂(x) en ψ̂

(
(ι⊗ ω)Φ̂(x)

)
= ω(1)ψ̂(x).

voor alle x ∈ A+ en ω ∈ A∗+.

We hebben dan de volgende Stelling N.2.26. Het bewijs wordt gegeven door de
resultaten uit de twee Stellingen N.1.12 en N.2.25 te combineren.

Deze Stelling N.2.26 besluit de opbouw van de kwantum Ê(2) groep.

Stelling N.2.26 Het paar (Â, Φ̂) is een lokaal compacte kwantumgroep.

We beschrijven dan de C∗-algebra Â in termen van de generatoren a, b.

Notatie N.2.27 Noteer E =
{

(p, q) ∈ R(µ
1
2 )× R̄(µ

1
2 ) | pq ∈ R̄µ

}
.

Notatie N.2.28 Stel dat b = u|b| de polaire decompositie van b is.

Stelling N.2.29 We hebben dat

Â =
[ ∑
k∈Z

ukgk(a, |b|)
∣∣ gk ∈ C0(E) voor elke k, gk 6= 0 voor eindig veel k

en gk(s, 0) = 0 voor alle s ∈ R(µ
1
2 ) als k 6= 0

]
.

De C∗-algebra Â heeft dus geen eenheid

Stelling N.2.30 Er geldt dat a, a−1, b η Â. We hebben dat de C∗-algebra Â is
gegenereerd door de geaffilieerde elementen a, a−1, b η Â.

De covermenigvuldiging Φ̂ voldoet nu aan de volgende eigenschap.

Stelling N.2.31 Er geldt dat Φ̂ het enige niet-gedegenereerde ∗-homomorfisme
van Â naar M(Â⊗ Â) is dat voldoet aan de formules

Φ̂(a) = a⊗ a en Φ̂(b) = a⊗ bu b⊗ a−1.

We hebben verder dat

Φ̂(a−1) = a−1 ⊗ a−1, Φ̂(b∗) = a⊗ b∗ u b∗ ⊗ a−1,

Φ̂(ab) = a2 ⊗ abu ab⊗ 1.
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De Haargewichten ϕ̂ an ψ̂ voldoen aan de formules in Propositie N.2.32.

Propositie N.2.32 Stel x =
∑
ukgk(a, |b|) ∈ Â. We hebben dan

ϕ̂(x∗x) =
∑
k,m,n

µ2(m−n)
∣∣gk(µ−

1
2m+n, µ

1
2m)

∣∣2,
ψ̂(x∗x) =

∑
k,m,n

µ2n
∣∣gk(µ−

1
2m+n, µ

1
2m)

∣∣2.
N.3 Conclusies en open problemen

In deze laatste Sectie N.3 denken we na over de betekenis van ons werk. Als we
naar de thesis kijken, dan lijkt het alsof we hebben gevonden wat we zochten.
Een volledige uitwerking van de kwantum E(2) groep.

We merken hierbij op dat de Nederlandse samenvatting slechts een heel beknopte
weergave is van de resultaten in de thesis. In de Engelstalige tekst komen veel
meer onderwerpen aan bod en geven we bovendien alle details.

We gebruiken deze korte Sectie N.3 ook om de lezer te wijzen op een aantal
vragen die interessant lijken om verder over na te denken. We vermelden hierbij
enkel die problemen die (op het eerste zicht) oplosbaar lijken.

De thesis omvat twee belangrijke delen. Elk van deze delen bevat een bijdrage
tot één specifieke tak van de kwantumgroepen-theorie. De Sectie N.1 behelst
een studie van de manageability theorie. We geven verder een complete studie
van de kwantum E(2) groep. Dit wordt gedaan in Sectie N.2.

De beide delen vormen elk een afgerond geheel. We hebben geprobeerd om alles
zo goed mogelijk te brengen. Maar toch zijn er dus nog enkele open problemen.
We vermelden beneden enkele vragen die we zijn tegengekomen. Dit kan een
stimulans zijn voor verder onderzoek. De uitkomst van deze vragen is meestal
onzeker en zouden eventueel kunnen leiden tot nieuwe inzichten.

We hopen uiteraard dat er in de nabije toekomst antwoorden zullen komen op de
vragen die we formuleren in de benedenstaande lijst. We zouden natuurlijk zeer
verheugd zijn als enkele van onze resultaten een (kleine) poort zouden openen
naar nieuw onderzoek over de kwantum E(2) groep.

Enkele gedachten over de Sectie N.1

We hebben in Sectie N.1 een beknopt overzicht gegeven van de theorie van
manageable multiplicatieve unitairen. Zowel gekende als nieuwe resultaten zijn
hierbij aan bod gekomen. We hebben in het bijzonder enkele nuttige resultaten
geformuleerd in verband met het bestaan van Haargewichten.

We denken dat deze resultaten een vrij goed kader vormen dat nuttig kan zijn
bij de constructie van voorbeelden van kwantumgroepen.
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De volgende vragen zijn intrigerende open problemen:

• Stel dat W een manageable multiplicatieve unitaire is. Kan W dan steeds
gebruikt worden om een lokaal compacte kwantumgroep te construeren?
Dus, als (A,Φ) de bi-C∗-algebra geassocieerd aan W is, bestaat er dan
altijd een (links) Haargewicht ψ op (A,Φ)?

• Een sterkere vraag is of er altijd een Haargewicht ψ op (A,Φ) bestaat dat
is van de vorm ψq zoals geformuleerd in Definitie N.1.15.

Enkele gedachten over de Sectie N.2

De Sectie N.2 geeft een studie van de kwantum E(2) groep. We gebruiken de
techniek die we gëıntroduceerd hebben in Sectie N.1 om de kwantum E(2) groep
op te bouwen als een lokaal compacte kwantumgroep.

We hebben verder de basiskenmerken van dit voorbeeld bestudeerd met speciale
aandacht voor de Haargewichten.

De volgende onderwerpen kwamen op in ons onderzoek:

• We vragen ons af of ook de kwantum Ê(2) groep een soort semigroep-gedrag
heeft. Dus of er een duale versie is van Propositie N.2.22.

• We maken in de centrale Sectie N.2 gebruik van een deformatieparameter µ
met 0 < µ < 1. Het is misschien mogelijk om de constructieprocedure van
de kwantum E(2) groep (A,Φ) aan te passen op zo een manier dat ook
andere waarden voor µ zijn toegelaten.

Deze vraag kan gezien worden in de lijn van recent onderzoek op bijvoor-
beeld de kwantum az+b groep; zie [165, 113].

• Als laatste en onvermijdelijke gedachte is er de open vraag of het mogelijk
is om een ‘kwantum E(3) groep’ te construeren.

De zoektocht naar een ‘kwantum E(n) groep’ is nog meer ambitieus.


