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Abstract

A maxbias curve is a powerful tool to describe the robustness of an estimator. It

tells us how much an estimator can change due to a given fraction of contamination.

In this paper, maxbias curves are computed for some univariate location estimators

based on subranges: midranges, trimmed means and the univariate Minimum Volume

Ellipsoid (MVE) location estimators. These estimators are intuitively appealing and

easy to calculate.
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1 Introduction

The most popular location estimator is the sample average, which is however known to be

extremely sensitive to outliers. For a given data set X = {x1, . . . , xn}, let x(1) ≤ x(2) ≤
. . . ≤ x(n) be the sorted observations. The standard robust location estimator is the sample
median, deÞned as

mediann =
1

2

¡
x(bn/2c+1) + x(b(n+1)/2c)

¢
,

where bzc denotes the largest integer smaller than or equal to z. The sample median has
powerful robustness properties, but is sometimes considered to be not sufficiently efficient.
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As an alternative to the median, one could consider the α-midrange

Mn,α =
1

2

¡
x(bαnc+1) + x(n−bαnc)

¢
, (1.1)

with 0 ≤ α ≤ 0.5. Taking α = 0.5 returns the median again. If instead of taking the midpoint
of the interval Iα = [x(bαnc+1); x(n−bαnc)], we compute the average over the observations lying

in Iα, then we get the α-trimmed mean

Tn,α =
1

n− 2bnαc
n−bαncX
i=bαnc+1

x(i).

The trimming proportion equals (approximately) 2α, with 0 < α < 1
2
. The choice α = 0

yields the usual mean.

The previous location estimators rely on the interval Iα. Another location estimator based

on a subrange is the univariate version of the Minimum Volume Ellipsoid (MVE). The MVE

estimator was introduced by [9] and is routinely used for estimating robust multivariate

location and scale. But also in a univariate setup it might be useful. The univariate location

MVE estimator is obtained by looking for the shortest interval containing at least (1−α)×100
percent of the observations and then computing the midpoint of it. It is sometimes called

the Shorth estimator [1].

A competitor for the MVE is the Minimum Covariance Determinant (MCD) estimator.

The univariate MCD estimator is obtained by looking for the interval containing at least

(1 − α) × 100 percent of the observations and having the minimal value of the variance
computed over the observations belonging to the interval. Afterwards the average over the

observations belonging to the selected interval is computed and returns the MCD location

estimator. Taking α = 0.5 yields the maximum breakdown value, and another typical value

is α = 0.25. Both estimators can be easily computed ([11], page 172) in the univariate case.

All the above estimators have an accompanying scale estimator. If we compute the

range or the standard deviation over the observations belonging to the interval Iα, we obtain

the α-range and the α-trimmed standard deviation. The length of the shortest interval

in the deÞnition of the MVE yields a dispersion measure and the MCD-scale equals the

standard deviation over the observations in the selected interval. Maxbias curves of these

scale estimators have been derived in [5]. This paper complements this study by looking at

the maxbias of the location counterparts of these estimators.
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In Section 2, the maxbias curve is deÞned and functional representations of the considered

estimators are given. Section 3 contains mathematical expressions for the maxbias curves and

compares them. Some conclusions are made in Section 4, where we also make a comparison

with M-estimators of location.

2 Maxbias curves

There exist several measures of robustness of an estimator (cfr. [6]), but in this paper the

maxbias curve will be used. A maxbias curve gives the maximal bias that an estimator

can suffer from when a fraction ε of the data come from a contaminated distribution (while

the other (1 − ε) × 100% of the data follow the model distribution). By letting ε vary

between zero and the breakdown value (which is the highest fraction of contamination that

an estimator can withstand before becoming degenerate) a curve is obtained. A survey on

maxbias curves is given by [10]. A maxbias curve is an asymptotic concept and requires a

functional representation of the estimator.

Suppose that the distribution generating the �good� observations belongs to a location-

scale family

{Fµ,σ(x) := F (x− µ
σ

)|−∞ < µ <∞, 0 < σ <∞}.
Throughout the paper, the central model distribution F is supposed to satisfy the following

property

(F) F has a strictly positive and continuous unimodal density f which is symmetric about

the origin.

Let T denote a statistical functional representing a location estimator. All the loca-

tion functionals considered in this paper are affine equivariant (meaning that T (aX + b) =

aT (X) + b where T (X) ≡ T (G) whenever X ∼ G) and Fisher consistent at the speciÞed

model, thus T (Fµ,σ) = µ. Therefore there will be no loss of generality to restrict attention

to the central model distribution F. DeÞne the contamination neighborhood of F

Fε = {G;G = (1− ε)F + εH; H any distribution} (2.1)

for a given fraction of contamination ε (0 ≤ ε ≤ 1). The maxbias curve is then deÞned by

B(ε;T, F ) = sup
G∈Fε

|T (G)|. (2.2)
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The breakdown value is now obtained as

ε∗(T, F ) = inf{ε > 0|B(ε, T, F ) =∞}. (2.3)

The functional associated to the α-midrange is given by

Mα(G) =
1

2
{G−1(α) +G−1(1− α)},

with G−1(β) = inf{t|G(t) > β} for any 0 ≤ β ≤ 1, while the functional representation of the
α-trimmed mean is given by

Tα(G) =
1

1− 2α
Z 1−α

α

G−1(t) dt (2.4)

where 0 < α < 1
2
.

For the MVEα location estimator, we Þrst consider intervals containing (1 − α) of the
mass of a distribution G. They take the form

IG,x = [x−HG(x), x+HG(x)] (2.5)

where

HG(x) = inf{s > 0|PG(|X − x| ≤ s) > 1− α}. (2.6)

We can see IG,x as the smallest interval with center x covering (1 − α) of the mass of G.
Therefore we get

TMVEα
(G) = argmin

x
|IG,x| = argmin

x
HG(x). (2.7)

The MCDα location functional is deÞned in a similar way.

The derivation of the maxbias curve of an estimator is not always an easy matter. It

is often admitted that the maximal bias of a location functional is produced by taking for

H in (2.1) a point mass at inÞnity. However, the most unfavorable or worst contaminating

distribution H is not necessarily of that type and in principle it doesn�t even need to be a

Dirac measure.

3 Maxbias curves of the location estimators

In this section, the maxbias curves of the α-midrange, α-trimmed mean and the MVE

location estimators are compared. Propositions 1 and 2 give the maxbias curves for the
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α-midrange and α-trimmed mean. Both Mα and Tα belong to the class of L-estimators, for

which maxbias curves were already derived in ([7], page 59) but using Levy neighborhoods

instead of contamination neighborhoods. The proofs of the propositions are kept for the

Appendix.

Proposition 1. The maxbias curve of the α-midrange estimator at F is given by

B(ε;Mα, F ) =

 1
2

¡
F−1( α

1−ε) + F
−1(1−α

1−ε )
¢

if ε < α

∞ otherwise
(3.1)

for 0 < α < 1
2
.

Proposition 2. The maxbias curve of the α-trimmed mean at F is given by

B(ε;Tα, F ) =

 1−ε
1−2α

R 1−α
1−ε
α

1−ε
F−1(t) dt if ε < α

∞ if ε > α
(3.2)

for 0 < α < 1
2
.

The behavior of B(ε;Tα, F ) for ε = α depends on F. If the Þrst moment of F exists, the

maxbias curve of the α-trimmed mean is Þnite at ε = α (for 0 < α < 0.5). Otherwise,

it is inÞnite. In both cases the breakdown value equals α. It is quite commonly believed

that maxbias curves have an asymptote at their breakdown value, in which case we speak

of �regular� explosion of the maxbias curve. But it was already noted in [5] that we don�t

always have regular explosion. For the trimmed mean we only have regular explosion when

the Þrst moment of F fails to exist.

The derivation of the maxbias curves of Mα and Tα is easy, since both estimators are

monotone. This means that if a distribution G1 is stochastically smaller than G2 (notation

G1
s¹ G2), then Tα(G1) ≤ Tα(G2) and Mα(G1) ≤ Mα(G2). Recall that

G1
s¹ G2 ⇔ G1(x) ≥ G2(x) for all x.

Since for every G ∈ Fε, G
s¹ (1− ε)F + ε∆∞, where ∆x is the Dirac measure putting all its

mass on x, it follows immediately that the maximal bias will be obtained by contaminating

F with a point mass at �inÞnity� The MVE and MCD location estimators however are not

monotone, making the derivation of their maxbias curves much harder.
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The next proposition gives a formal proof of the maxbias curve of the location MVEα

estimator, which has not appeared yet in the literature to our knowledge. DeÞne for all

x ∈ IR, H+
ε (x) as the solution s of the equation

F (x+ s)− F (x− s) = 1− α
1− ε (3.3)

and H−
ε (x) as the solution s of the equation

F (x+ s)− F (x− s) = 1− α− ε
1− ε (3.4)

for 0 ≤ ε ≤ 1− α.

Proposition 3. The maxbias B(ε;TMVEα
, F ) for 0 < α ≤ 1

2
, is given by the positive

solution b of the equation

H−
ε (b) = H

+
ε (0) (3.5)

when ε < α and equals +∞ otherwise. The functions H+
ε and H−

ε are defined as in (3.3)

and (3.4).

An interesting feature of the maxbias of the MVE location estimator is that the most un-

favorable contaminating distribution is a point mass distribution H = ∆z with z not at

inÞnity but much closer to the center of the distribution (see proof of Proposition 3). In

Figure 1, TMVEα
((1− ε)F + ε∆z) is plotted as a function of z. One sees that contamination

far from the center of F leads to a zero bias, showing the redescending character of MVE.

Less extreme outliers, however, can still lead to a considerable bias of TMVEα
.

In Figure 2, the maxbias curves at the Normal model (so by taking for F the standard

normal distribution) of the location estimators Mα, Tα and MVEα for α = 0.25 are repre-

sented together with the maxbias curve of the median. The α-trimmed mean has a maxbias

curve close to that of the median, which has been proved to be the lower bound at any F

satisfying condition (F)(see [7], page 74). The maxbias of Tα increases only slightly with ε

and stays bounded right up to the breakdown point. This doesn�t hold for the α-midrange

nor for the MVE location estimator with 25% breakdown point.

The maxbias curve of the MCD location estimator appeared to be much harder to handle

and no rigorous proof is available yet. However, for the Normal distribution and using
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Figure 1: Bias TMVEα
((1 − ε)F + ε∆z) of the MVEα location estimator corresponding to

point mass contamination as a function of z for z ≥ 0 and α = 0.5.

Figure 2: Maxbias curves of the location estimatorsMα, Tα and MVEα for α = 0.25, together

with the maxbias curve of the median at the normal distribution.
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Figure 3: Maxbias curves of the location estimators MVEα and MCDα for α = 0.5, together

with the maxbias curve of the median at the normal distribution.

numerical veriÞcations, an expression for the maxbias curve has been obtained. Let x−(z)

be the solution of x+H−
ε (x) = z. DeÞne

λb(x) =
1− ε
1− α

Z x+H−
ε (x)

x−H−
ε (x)

(y − x)2 dF (y) + ε

1− α(b− x)
2

for every b ∈ IR and let �x(b) = argmin
x≥x−(b)

λb(x). The maxbias B(ε;TMCDα
, F ) with F the

Normal distribution, is then given by the solution b of the equation

λb(�x(b)) =
1− ε
1− α

Z H+
ε (0)

−H+
ε (0)

y2dF (y)

for ε ≤ α.
Note that for the scale part a formally correct proof has been given in [5]. Figure 3 gives

the maxbias curves of the MVEα and MCDα estimators with α = 0.5 together with the

lower bound. The non-differentiability at ε = 0 of B(ε;TMVEα
, F ) makes it lie above the

maxbias curve of MCD for small values of ε. In the neighborhood of the breakdown value,

MCDα has a signiÞcantly larger bias than the MVEα location estimator for α = 0.5.

When comparing robust estimators not only maxbias needs to be taken into account

(otherwise the median would always be the optimal choice) but also efficiency, since an

estimator needs to be precise when the data are generated according to the model. The

asymptotic variances of Mα and Tα are easily obtained since they are L-estimators (e.g. [6,
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Figure 4: Gaussian efficiencies of the location estimators Mα (dashed and dotted line), Tα

(solid line) and MCDα (dashed line) as a function of α.

page 108]). For the MCDα we used the results of [3]. The MVEα has a slower than normal

convergence [1, page 50], and therefore one could say that it has zero efficiency. In Figure

4 the Gaussian efficiencies of the location estimators Mα, Tα and MCDα are represented

as a function of α. The limit case α = 0.5 for Mα and Tα corresponds to the efficiency

of the median. The trimmed mean is always more efficient than the median, while the

α-midrange beats the median for a large range of values for the trimming proportion (i.e.

for α > 0.108). The other limit case, α = 0 corresponds with the sample average for Tα

and MCDα. The efficiency of MCDα is rather dissapointing. We only do better than the

median for for trimming proportions smaller than 8%, in which case the MCD will have a

very low breakdown point. We conclude from Figure 4 that trimmed means have very good

efficiency properties, while we already saw from Figure 2 that also their bias behavior is very

reasonable.
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4 Conclusion

The robustness of an estimator is most frequently measured by its breakdown point. How-

ever, even if two estimators have identical breakdown values, they may behave differently to

given amounts of contamination. The maxbias curve helps us to compare more thoroughly

the robustness of the different estimators. In this paper, maxbias curves have been computed

for some simple and frequently used univariate location estimators: the α-range, α-trimmed

mean and MVEα (which all have the same breakdown value for Þxed 0 < α < 1/2).

Section 3 provides support for the 25% trimmed mean as the estimator to use among the

considered estimators. For realistic amounts of contamination (≤ 25%), its maxbias curve is
nearly optimal. Its Gaussian efficiency is fairly high (84% versus 64% for the median), it is

widely known and its deÞnition is easy to understand. More support for the use of trimmed

means can be found in [4].

How do they compare to Huber�s M-estimators? A location M-estimator is deÞned as

the solution tn of the equation

1

n

nX
i=1

ψ

µ
xi − tn
sn

¶
= 0

where ψ is a strictly increasing, continuous, odd function and sn an auxiliary scale estimator.

As ψ function we take Huber�s ψ(u) = min(c,max(u,−c)) with the tuning constant c set
to have a 95% Gaussian efficiency. It is recommended to use a maximal breakdown point

scale estimator for sn, and the MVE0.5 is particularly well suited as auxiliary scale estimator

(see [2]). This guarantees that the location estimator will also have 50% breakdown value,

as long as ψ is bounded. The attained efficiency remains the same as if we would have

estimated scale and location jointly, like in Huber�s proposal 2 ([7, page 137]). We computed

the maxbias curves of these M-estimators using results of [8]. From Figure 5 we see that

the 95% efficient Huber M-estimator has a larger bias than the 25% trimmed mean for the

more realistic amounts of contamination (up 25%). Taking instead an M-estimator with

84% efficiency, the same efficiency as T0.25, gives a maxbias curve very close to that of the

trimmed mean (upto 25%), with slight advantage for the Huber estimator. A drawback

of an M-estimators, however, remains its implicit deÞnition, which requires the use of an

numerical algorithm to compute it.

There still remains theoretical work to be done for the maxbias of multivariate location

and scatter estimators. Maxbias curves for the multivariate MVE-scale estimator under the
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maxbias curve of the median (dotted line) at the normal distribution. The inserted win-

dow shows a zoom of the graph close to the breakdown point of the 25%-trimmed mean.
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assumption of a Þxed location were computed by [12]. For the location MVE and MCD

estimators however, no results seem to have been obtained.

Acknowledgment: The authors whish to thank Peter Rousseeuw for suggesting a comparison

with the Huber M-estimator.

5 Appendix

Proof of Proposition 5: First assume that ε < α and let c denote the right hand side of (3.1).

Let G = (1 − ε)F + εH, where H can be any distribution. We may assume without loss

of generality that Mα(G) > 0. We will prove that Mα(G) ≤ c. As G−1(α) ≤ F−1( α
1−ε) and

G−1(1− α) ≤ F−1(1−α
1−ε ), it follows that

Mα(G) =
1

2

¡
G−1(α) +G−1(1− α)¢ ≤ 1

2

µ
F−1(

α

1− ε) + F
−1(
1− α
1− ε )

¶
= c.

Now consider the sequence of distribution functionsGn = (1−ε)F+ε∆xn where xn ↑ +∞.
We claim that limn→+∞Mα(Gn) = c. By taking xn > F−1(1−α

1−ε ), G
−1
n (α) = F−1( α

1−ε) and

G−1n (1− α) = F−1(1−α1−ε ). So, limn→+∞Mα(Gn) = c. Hence, supG∈Fε |Mα(G)| = c for ε < α.
If ε ≥ α, the contaminated distribution Gn leads to an inÞnite bias when n is sufficiently

large. Taking xn > |F−1(1−α−ε1−ε )| gives G−1n (1−α) = xn and G−1n (α) = F−1( α
1−ε). So, for any

xn > |F−1(1−α−ε1−ε )|, the functional Mα computed at Gn is given by

Mα(Gn) =
1

2

µ
F−1(

α

1− ε) + xn
¶

which goes to inÞnity as n increases. 2

Proof of Proposition 6: First assume that ε < α and let c denote the right hand side of

(3.2). Let G = (1− ε)F + εH, where H can be any distribution. One may assume without

loss of generality that Tα(G) ≥ 0. We will prove that Tα(G) ≤ c. As G−1(t) ≤ F−1( t
1−ε), it

follows that

Tα(G) =
1

1− 2α
Z 1−α

α

G−1(t) dt ≤ 1

1− 2α
Z 1−α

α

F−1(
t

1− ε) dt = c.

Now consider the sequence of distribution functionsGn = (1−ε)F+ε∆xn where xn ↑ +∞.
By taking xn > F

−1(1−α
1−ε ), G

−1
n (t) = F

−1( t
1−ε) for all 0 < t ≤ 1− α. So, limn→+∞ Tα(Gn) =

1
1−2α

R 1−α
α

F−1( t
1−ε) dt = c. Hence, supG∈Fε |Tα(G)| = c for ε < α.
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If ε > α, the contaminated distribution Gn leads to an inÞnite bias for n sufficiently

large. Indeed, for any xn > |F−1(1−α−ε1−ε )|, G−1n (1−α) = xn and G−1n (α) = F−1( α
1−ε). So that

Tα(Gn) =
1− ε
1− 2α

Z xn

F−1( α
1−ε )

y dF (y) +
1− α− (1− ε)F (xn)

1− 2α xn,

which tends to inÞnity since the second term of the right-hand side of the above equation

does. 2

Proof of Proposition 3: Let ε < α and consider Þrst the maxbias over point contaminated

distributions. Let z > 0 and denote Gz = (1 − ε)F + ε∆z. Let x+(z) be the solution of
x + H+

ε (x) = z and x−(z) be the solution of x + H−
ε (x) = z. Of course, x+(z) ≤ x−(z).

Denote the MVE location functional TMVEα
by T. For computing T (Gz), the MVE location

estimator at Gz, deÞnition (2.7) shows that one needs to Þnd the minimum of HGz(x). Recall

that IGz ,x was deÞned by (2.5). For any x, HGz(x) can be determined as follows:

(1) If x < x+(z), then the point contamination z will not belong to IGz,x and therefore

HGz(x) = H
+
ε (x).

(2) If x+(z) ≤ x ≤ x−(z), then z will be the right endpoint of IGz ,x and HGz(x) = z − x.

(3) If x > x−(z), the contaminating point z is inside the interval IGz ,x implying HGz(x) =

H−
ε (x).

Note that HGz(x) is a continuous function. Depending on the values of z, it is now easy

to Þnd the minimum of HGz(x). Herefore, one uses the properties of H
−
ε (x) and H

+
ε (x)

which are symmetric functions strictly increasing on the positive half-side, and the fact that

H−
ε (x) < H

+
ε (x) for any x (Here we use condition (F) on the model distribution).

(a) If z < H−
ε (0), then x

+(z) ≤ x−(z) ≤ 0 and clearly T (Gz) = argminxHGz(x) = 0.

(b) If H−
ε (0) ≤ z ≤ H+

ε (0), then x
+(z) ≤ 0 ≤ x−(z) and T (Gz) = x−(z).

(c) If z > H+
ε (0), then x

−(z) ≥ x+(z) ≥ 0. The minimum of HGz(x) equals then or H
+
ε (0)

(attained at 0) or H−
ε (x

−(z)) (attained at x−(z)). Note that H−
ε (x

−(z)) is strictly

increasing in z for z ≥ H−
ε (0). DeÞne now z

∗ as the unique positive solution of

H−
ε (x

−(z)) = H+
ε (0), (5.1)
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for z ≥ H−
ε (0). We have that x

−(z∗) = b, with b deÞned by (3.5). By deÞnition of x−(z)

we have H−
ε (x

−(H+
ε (0))) = H

+
ε (0)− x−(H+

ε (0)) ≤ H+
ε (0) and therfore z

∗ ≥ H+
ε (0).

So, if H+
ε (0) ≤ z < z∗ one has T (Gz) = x−(z), as in case (b) and for z > z∗ , we have

T (Gz) = 0.

Figure 1 in Section 5 summarizes the three previously considered cases by drawing T (Gz).

The non-zero part corresponds with the function x−(z), which is easily seen to be strictly

increasing for all z. We clearly see that supz T (Gz) = x
−(z∗) = b, implying that the maxbias

for point contaminated distributions equals b.

Take now G = (1 − ε)F + εH, with H arbitrary. The aim is to prove that |T (G)| ≤ b.
Suppose without loss of generality that T (G) > 0. [If it is not the case, replace G by

�G = (1 − ε)F + ε �H where −X ∼ �H with X ∼ H. Then, T ( �G) = −T (G) > 0.] DeÞne

z = sup I(G) = T (G) +HG(T (G)); we know that T (Gz) ≤ b. Consider the three following
cases:

Case I: 0 ≤ z < H−
ε (0). In this case, z is in the interior of I(Gz). One has

PGz(I(G)) = (1− ε)PF (I(G)) + ε since z ∈ I(G)
≥ (1− ε)PF (I(G)) + εPH(I(G))
≥ PG(I(G)) ≥ 1− α,

and I(G) is thus an interval containing mass (1−α) of Gz and therefore |I(G)| ≥ |I(Gz)| by
deÞnition of MVEα(Gz). But since we are in Case I and since T (G) > 0, we have |I(G)| ≤
2z < |I(Gz)|, yielding a contradiction. So Case I is excluded.
Case II: H−

ε (0) ≤ z < z∗. In this case z is at the right endpoint of I(Gz), as can be seen
from the previous enumeration. Once again PGz(I(G)) ≥ 1− α and |I(Gz)| ≤ |I(G)|. Since
z is the right endpoint of I(G) as well, one has that the midpoint of I(Gz) must be bigger

than the midpoint of I(G), yielding |T (G)| ≤ |T (Gz)| ≤ b.
Case III: z > z∗. In this case, z does not belong to I(Gz) and I(Gz) = [−H+

ε (0), H
+
ε (0)].

Since PG(I(Gz)) ≥ (1 − ε)PF (I(Gz)) = PGz(I(Gz)) ≥ 1 − α, one has |I(Gz)| ≥ |I(G)| by
deÞnition of MVEα(G).Moreover, PGz(I(G)) = (1−ε)PF (I(G))+ε ≥ 1−α (since z ∈ I(G)),
and therefore |I(G)| ≥ |I(Gz)| by deÞnition of MVEα(Gz). One concludes that |I(G)| =
|I(Gz)| = 2H+

ε (0) yielding T (G) = z −H+
ε (0) since z is the right endpoint of I(G).
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Also, PGz(I(G)) = (1−ε) (F (z)− F (z − 2H+
ε (0)))+ε ≥ 1−α so that H−

ε (z−H+
ε (0)) ≤

H+
ε (0). Or, H

−
ε (T (G)) ≤ H−

ε (b) by deÞnition (3.5) of b. Since H
−
ε is increasing on the positive

numbers, it follows that T (G) ≤ b.

If 1 − α ≥ ε ≥ α, the contaminated distribution Gn = (1 − ε)F + ε∆zn with zn ↑ +∞
leads to an inÞnite bias. The point zn must lie in I(Gn), otherwise P(1−ε)F+ε∆zn (I(Gn)) =

(1 − ε)PF (I(Gn)) < 1 − ε ≤ 1 − α. For zn > H−
ε (0), zn will even be the upper bound of

I(Gn). Therefore,

T (Gn) =
1

2
(zn + F

−1(F (zn)− 1− α− ε
1− ε )).

⇒ lim
n→+∞

T (Gn) =
1

2
( lim
n→+∞

zn + F
−1(

α

1− ε)) = +∞,

yielding an inÞnite bias for ε ≥ α.
For 1−α ≤ ε ≤ 1, we will have that for every sequence zn ↑ +∞, I(Gzn) = {zn} yielding

T (Gzn)→∞, and an inÞnite bias. 2
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