
KATHOLIEKE
UNIVERSITEIT

LEUVEN

DEPARTEMENT TOEGEPASTE
ECONOMISCHE WETENSCHAPPEN

RESEARCH REPORT 0329

SPECIALIZING ASSOCIATIONS

by

M. SNOECK
W. LEMAHIEU

0/2003/2376/29

Specializing Associations

M. Snoeck - W. Lemahieu

Katholieke Universiteit Leuven,

Department of Applied Economic Sciences, MIS group

Naamsestraat 69,3000 Leuven, Belgium

email: {msnoeck.wilfried.lemahieu}@econ.kuleuven.ac.be

Abstract. This paper proposes to apply the concept of specialization to

associations. As associations are implemented as properties and subclasses

are allowed to redefine inherited properties, refinement of associations

occurs de facto at implementation level. It is therefore defendable to allow

redefinition of associations at conceptual modeling level as well. This

paper proposes a covariant approach to association inheritance and defines

the semantics of this concept by means of a set-theoretic approach.

1 MOTIVATION

Inheritance is one of the basic concepts of the object-oriented paradigm. The

origin of this paradigm is in programming languages, but very soon, the ideas

of the OOP paradigm were adopted by the conceptual modeling community

[e.g. 4, 6, 9] and by design and analysis techniques [e.g. 1, 3, 11, 8], resulting

in the use of inheritance for conceptual modeling. One of the major

differences between conceptual modeling and programming is that whereas

the "object type" (also named "entity type" or "class") and the "attribute" in a

conceptual model have a direct counterpart in a programming language,

namely the class definition and its properties, the concept of "relationship

type" or "association" has no direct counterpart in an object-oriented program:

the relationship type or association is implemented as a property within a

class, resulting in an indirect representation. For example, depending on the

directions in which we want to navigate the association, the association

"has_made/made_by" in Figure 1 will lead to a property "has_made :

SET(ARTWORK)"l in class ARTIST and/or a property "made_by: ARTIST" in class

ARTWORK.

ARTIST !rO_ .. 1 ___ .:.:ha==s""ma=do:;e>'--__ 0-l .. *l_AR_T_W_O_R_K----'
. < made_by .

Class ARTIST Class ARTWORK

has_made: SET(ARTWORK)

end end

Figure 1. Example of an association and its implementation

In programming languages, a class inherits the attributes and operations of its

supertype and is able a.o. to refine those properties by replacing them with a

new version. Inheritance thus applies to the concept of class and to the

concept of property: a class can be a refinement of another class and a

property can be a refinement of another property. As the concept of

"association" is not explicitly present in programming languages, the principle

of inheritance has never been directly applied to associations, not in

programming languages, but neither in object-oriented analysis or conceptual

modeling. However, when a class inherits properties from its parent class, it is

allowed to refine the inherited properties by redefining them. Hence, a

property that implements an association can be refined as well. In this way at

the programming level, a specialization class can de facto define a specialized

version of the associations it is involved in. As class diagrams are intended as

specifications of classes in the final code and as it is possible to refine

association properties in this code, it would be better if the specialization of

associations could already be specified in the class diagram. The need for

specialization of associations can easily be illustrated by a case of parallel

hierarchies. The conceptual schema in Figure 2 is inspired by a domain model

1 SET stands for a generic class implementing a collection type (such as e.g. a linked

list or an array).

2

for a company in the telecommunication business. The company sells both

material products (like routers and modems) and service products (like web

site development and hosting). Although there are some common properties,

orders for material products are treated differently from orders for service

products. In Figure 2 the general association ordersp says that each order

orders exactly one product and each product can be ordered in many orders.

Products are refined into services and materials. A material order orders

materials (only). This is modeled by means of the association ordersM.

Similarly, a service order orders a service, which is modeled by orderss.

* orders

Figure 2. Example of a parallel hierarchy

The current notation does not allow to specify that the associations ordersM

and orderss are refinements of ordersp. Strictly speaking, these associations

do not replace the definition of the association ordersp and hence they exist in

parallel. As a result, MATERIAL ORDER has an association ordersM with

MATERIAL and, by inheritance, an association ordersp with PRODUCT. Hence a

material order is both linked to a material product and to a general product,

which can be substituted by either a material product but also by a service

product. This is clearly not the intent of the model: the intent of the model is

to restrict the ordering of materials and services to material orders and service

orders respectively. The example is a typical example of covariance, where

the specializations need to narrow the destination of the association.

Covariance and narrowing raise particular issues of type safety at the

implementation level [7, 10]. In terms of programming by contract [7], the

ordersp association should be interpreted as "any kind of order can be related

3

to one product of any kind" and "any kind of product can appear in any kind of

order". According to Shang [10], when subclasses require narrowing, there

usually is an untrue promise in the superclass. In the given example, the

interpretation of ordersp as stated above is indeed an untrue promise. This

interpretation is however strongly linked to the use of contracts [7] as a (very

useful) technique to describe the capabilities of a class.

The combination of covariance and programming by contract induces a

problem of type safety that has not yet found a completely satisfactory

solution [7]. The most easy solution is to advocate the use of novariance or

contravariance when designing inheritance hierarchies. In a novariant

approach, a subclass is not allowed to narrow inherited properties: what has

been inherited must be left unchanged. Of course, new features can be added

next to the unchanged inherited properties. The contravariant approach

follows the principle that a subclass can extend the capabilities of the

superclass, also for the inherited properties [15]. The underlying idea is that

the subclass can handle more situations and deliver better results. This means

that for inherited properties preconditions can be relaxed (but not narrowed)

and postconditions can be strengthened (but not relaxed). In [2] this is

formulated as a requirement of contravariance for the domains of an

association and covariance for the co-domain of an association. This means

that an association from A to B can be refined to an association from a subtype

of A to a supertype of B. Both in the novariant and in the contravariant

approaches, the inherited contracts are fulfilled by the subtype. Although

novariance and contravariance are much easier to deal with in terms of

ensuring the type safety of programs, covariance is the way people think

naturally, especially in a stepwise refinement approach. Also other authors

agree that covariance is what we need [7, 10]. This paper defines a covariant

approach to inheritance of associations. In doing so, we will not use the

interpretation of an association as a "promise" or contract on the capabilities of

a class. Rather, the conceptual model is considered as a set of axioms that

constrain the set of valid model instances. If we only consider the static

4

dimension of a conceptual model, a model instance can be defined as a set of

objects related to each other by means of instances of associations, each object

belonging to a class of the model and each association instance belonging to

an association (type) defined in the model. The ordersp association now

defines that a model instance is valid if for each order instance in class ORDER,

the model instance contains an association instance that links this order to a

product. The refined associations orderss and ordersM define constraints that

are more stringent than the constraint imposed by the ordersp association. In

particular, the orderss association limits the valid model instances to those

instances where each service order instance is linked to a service instance (and

likewise for material order instances). As a result, any model instance

satisfying the constraints imposed by the ordersM (or orderss) association, also

satisfies the constraints of the ordersp association. The interpretation of the

association as constraints on a type works fine and is in line with a stepwise

refinement approach to modeling: the ordersp association is a vague, abstract

association that needs to be clarified further in the specialization.

The interpretation of an association as a constraint does not solve the problem

completely. In the schema of Figure 2, the ordersp and ordersM lorderss

association exist simultaneously, meaning that a material/service order refers

both to a material/service product and by inheritance to a (general) product.

This problem (and at the same time the problem of narrowing) can be

circumvented by dropping the ordersp association from the schema. However,

from a modeling point of view, the association at the generalization level is

worth maintaining. One of the primary goals of a conceptual model is

communication with end-users and as such, one of the quality criteria of a

conceptual modeling language is its ability to create models that are easy to

read and understand. In this respect, the ordersp relationship allows to express

a general statement that can be refined on a second reading of the model. It

also expresses a modeling process of stepwise refinement: taking a global

perspective first and then refining the details. The presence of the ordersp

association allows to zoom into the details of a model which proves to be a

5

very useful feature, especially in the case of large models. Finally, an

additional argument can be given when considering schema evolution. If a

new type of product is added in the model of Figure 2, for example

"PACKAGE" as shown in Figure 3, then the ordersp association specifies that

also packages can be ordered. If the generalized association is dropped from

the model, PACKAGE becomes a kind of dangling product that cannot be

ordered, unless a new subclass of order is added, PACKAGE ORDER, in its turn

linked to package by means of an new association ordersPA.

Figure 3. Adding a new type of product.

As we wish to keep the generalized association and the specialized

association, we need to introduce a new notation that specifies that the two

specialized associations ordersM and orderss are refinements of and hence

replace the general association ordersp. The new notation is depicted in

Figure 4. Developing a new notation for specialization of associations is easy.

The real challenge is to define the semantics of this notation so as to ensure a

precise and unambiguous definition of the semantics. As the semantics of the

UML notation are defined in natural language, they are not rigorous enough as

a foundation for precise semantics for association specialization. Therefore

the next section presents an algebraic (set theoretic) definition of classes,

association, and the inheritance relationship between classes. Section 3 then

presents the semantics of association specialization. Section 4 discusses

association sub setting, a concept very closely related to association

specialization.

6

Figure 4. Notation for specialized associations.

2 Algebraic Definition of Classes, Associations and Class

Specialization

2.1 Classes and Associations

A conceptual model IJv{ is a pair (C/lO, where C is the set of classes in the

model, and 2{is the set of associations2• A model instance fis a tuple (0, 5I)

where 0 is the set of object instances and 5I is the set of association instances.

fis a valid instance of lJv{if and only if I satisfies all the constraints imposed

by!M. In that case we write IJv{ F= I (I satisfies 1Jv{).

Classes are collections of objects. Let 0 be the set of objects of an instance 1.

The set of objects 0 satisfies the class definition part C of IJv{ if the type of

every object a in 0 is a class C in C:

C F= O<=> \f OE 0: type(o) E C

The extent of a class C E C is a subset of 0 denoted by the function

instances(C). For the sake of simplicity, we will write C rather than

2 For the time being, we only consider the static aspects of a model and, for the sake

of simplicity, we restrict ourselves to binary relationships and do not consider other

attributes than those required to implement the associations.

7

instances(C) when we refer to the extent of the class. As a result, C E C

denotes both the type and the extent.

Similarly, every association is a collection of association instances. Since

associations aren't necessarily symmetric, each direction of the association is

considered separately. An association R is modeled as a link type RAB which

is a property of class A and its inverse link type RBA which is property of class

B (see Figure 5).

A
1 x .. y

R

u .. v 1

B

A

I ... x .. y

RAB
U .. V .1

RBA

B

Figure 5. An association and its link types

Definitions

Let tJ(be the set of associations and .9L be the set of association instances.

An association R in tJ(between the classes A and B from C is a tuple

(RAB, R BA) with

RAB : A ~ B, denoting the link type from A to B and

RBA : B ~ A, denoting the inverse link type from B to A.

The set of all link types is denoted L: L !:: 2 eX e, tJ(~ L X L

A is called the domain of the link type RAB and B the co-domain. B is the

domain of the link type RBA and A is its co-domain. By definition, RAB

and RBA are each other's inverses3:

3 We define RAB and RBA as each other's inverses, although in an actual

implementation this might not be realized as such.

8

domain(RAB) = co-domain(RBA) and co-domain(RAB) = domain (RBA) and

(RAB) -1= RBA

The extent of an association R E 2(is considered by taking the instances of the

link types separately. However, as two classes might have more than one

association between them, a link instance cannot be uniquely identified by the

objects it links; we need to know its type as well. As a result, a link instance is

defined as a triple (link type, domain object, co-domain object). Hence,.9I. is

a subset4 of L x 0 x 0, containing all the link instances. In analogy with

classes, RAB is used to denote both the link type and the extent of the link type:

instances(RAB) ~.9I. is written as RAB for short. As to the type of a link

instance r, we discern between the link type and the association type of a link

instance. The link type (or I-type for short) is simply the link type in L, the

extent of which contains r. The association type (or a-type for short) is the

association of which the link type of r is part of. Formally:

Let R = (RAB, RBA)' r = (RAB,X,yi

instances (RAB), instances (RBA) ~ .91.

I-type (r) = RAB ~ r E RAB

a-type(r) = R E 2(~ [r E RAB or r E RBA]

instances(R) = instances(RAB) U instances (RBA)

4 Notice that the set of link instances is defined as a set and not as a bag. As a

consequence, each occurrence in a link is uniquely identified by the name of the link

type and the identifications of the participating objects. In case the same objects can

be related more than once by means of the same association, the association should be

modelled as a class.

5 When no confusion is possible, we will write r = (x,y) as a shorthand for r =
(RAB,X,y)

9

Associations can be used to navigate from one class to another. The set of

objects that can be reached from a given object a by navigating along a link

type RAB can be defined as the image of an object and is denoted as aeRAB.

Va E A: aeRAB = {b E B I (RAB,a,b) E RAB } k B

Each link type has a minimum and maximum cardinality constraint. The

cardinality of RAB tells how many b E B can be connected to an a E A. A

minimum cardinality of 0 means that the link type is optional, which means

there is no constraint on the minimum number of association instances an

object a of A must participate in. A minimum cardinality of 1 means that the

link type is mandatory: Every a in A must be connected to a b in B. A

maximum cardinality of '*' means that there is no constraint on the number of

association instances any a of A can be involved in. A maximum cardinality

of 'I' means that any a of A can be connected to at most 1 b of B. In the class

diagram, the cardinality of an association is denoted as an interval [minimum,

maximum] next to the co-domain of the link type. The four different

possibilities are:

minimum maximum

constraint ? constraint ?

RAB is [0,*] no no

RAB is [0,1] no yes

RAB is [1, *] yes no

RAB is [1,1] yes yes

Formally, this can be formulated as follows:

Every link type has a minimum and maximum cardinality:

V RAB E L: min (RAB) E {O, I} and

VRABE L: max (RAB)E {1,*}

10

min (RAB) = 1 ~ V a E A: # (a-RAB) ~ 1

~ V a E A: 3 b E B: (RAB,a,b) E RAB

max (RAB) = 1 ~ V a E A: # (a-RAB):::;; 1

~ V (RAB,a,b) E RAB : -, [3 (RAB,a,c) E RAB, c"* b]

~ V (RAB,a,b) E RAB: (RAB,a,c) E RAB ~ b = c

Notice that the cardinalities are constraints, which means that an actual

instance of the model can "by accident" be more stringent than required. For

example, if RAB is modeled as [0,1], we might have an instance of the model

where every a from A is connected to abE B, resulting in RAB behaving

(temporarily) as though it were [1,1].

In order to satisfy the model 9vf, every link instance r in 5l should have a type

R in 1(. In addition, the set of instances should satisfy the cardinality

constraints. These can be formulated in terms of the image of an object along

a link type. Let R = (RAB. RBA) E 1(, then

1(F= 5l <=> [(V r E 5l: a-type (r) E 1() A (V R E 1(: R F= 5l)]

R F=5l<=> min(RAB) = 1 ~ V a E A: # (a-RAB);:: 1

and min(RBA) = 1 ~ V b E B : # (b-RBA) ;:: 1

and max(RAB) = 1 ~ V a E A: # (a-RAB) :::;; 1

and max(RB~ = 1 ~ V b E B : # (b-RBA) :::;; 1

Figure 6 shows an example of a model and a valid instance of this model.

Every double arrow connecting an artist instance to an artwork instance

represents the two links (artist, artwork) and (artwork, artist) which are

occurrences of the link types has_made and made_by respectively. The model

instance satisfies the only cardinality constraint in the model: every artwork is

related to at most one artist.

11

[0 .. 1] < made by

Figure 6. Model with sample instance

2.2 Specialization of Classes

The following definitions formalize the structural aspects of

generalization/specialization:

The ISAc or <c relationship is a partial order between classes. When S ISAc G

(G <c S), we say that S is the specialization and G is the generalization class6•

The ISAc hierarchy must satisfy the following restrictions:

1) Object types have at most one generalization type (we do not yet allow

multiple inheritance).

2) The ISAc hierarchy must be acyclic.

The ancestor relationship between classes is denoted as </ and is the reflexive

transitive closure of <c. The classes that are directly or indirectly a

generalization of a class S, are called the ancestor classes of S. The topmost

ancestor of a class S is that ancestor that is on the top of the generalization

hierarchy. The ancestor that is a direct generalization of a class S is called the

parent of S. Classes that are directly or indirectly a specialization of class G,

are called the descendants of G. The classes that are direct specializations are

called the children of G. A class G is both an ancestor and a descendant of

6 The direction of the '<' sign might seem somewhat contra-intuitive, but is motivated

by the fact that the specialisation is considered as an extension of the generalisation.

12

itself. The extent of a class P is the set of all occurrences of this class. The

deep extent is the union of extents of descendant classes of P, including the

extent ofP.

Formal definition

<c + is a hierarchical partial order on C

<=> (1) V 0 E C: 0 </ 0

(2) V 0, SEC: 0 <c+ Sand S </ 0 ~ 0 = S

(3) V 0, S, T E C: 0 </ Sand S </ T ~ 0 </ T

(4) <c is the cover of </:

V 0, SEC, 0 <c S ~ 0 </ S

V 0, SEC, 0 *- S :

o </ Sand -, (:J H E C: 0 </ Hand H </ S) ~ 0 <c S

(5) <c must be a hierarchy:

V 0, 0', SEC: 0 <c Sand 0' <c S ~ 0 = G'

Let 0, SEC. If 0 <c S then we say that 0 is a generalization or parent

of Sand S is a specialization or child of O.

y+(P) = {O E CI 0 </ P} (ancestors of P)

y.(P) = {S E CI P </ S} (descendants of P)

Ymax(P) = {O E C I 0 <c + P and -, :J H E C: H <c 0 }

ancestor)

(topmost

.+ is a postfix operator that takes the deep extent of an object type and is

defined as: P+ = U {S I S E y-(P)}

In a strong typing approach, it is required that each object belongs to exactly

one and always the same class for the whole time of its existence. As a result,

the generalization and specialization types have disjoint extents. For the same

reason, overlapping subclasses are not allowed and objects are not allowed to

13

migrate between subclasses or between subclass and superclass. However, the

superset/subset hierarchy can be reconstructed by working with the deep

extent of object types (see Figure 7): the deep extent of a specialized class is

always a subset of the deep extent of its generalization:

Ancestors
of 5'

r

tj S, G: G <c S =:} S+ ~ G+

G' = Deep extent of G
= Gu 5" u ... u 5"

Extent of 5'

=Deep extent of 5'
= 5"

Extent of 5"
=Deep extent of 5"
=5n+

Figure 7. Extent/deep extent and superset/subset hierarchy

2.3 Associations over Specialized Classes

The introduction of specialization for classes, requires a redefinition of

associations. Indeed, when a supertype is involved in an association, all

sUbtypes inherit the association from their supertype. As a result, the property

RAB now also applies to objects in each sUbtype A' of A. The object that is

linked by RAB to an object a from A, can be an object b from B itself but also

from any descendant class of B. The fact that an object a can also be from a

descendant type of B rather than from B only is called the principle of

"substitution": whenever an object from a given class is required, it can always

be substituted by an object of a specialized class. Similarly, the property RBA

also applies to each object b' in a subtype B' of B and its co-domain is A+.

Hence, a link type RAB with domain A and co-domain B, encompasses tuples

(a',b') with a' element of a descendant A' of A and b' element of a descendant

B' of B. In other words, the domain of a link type RAB is the deep extent of A

and its co-domain is the deep extent of B. The definition of relationships and

links is modified accordingly:

14

Definitions

An association R in 2(between the classes A and B from C is a tuple

(RAB , RBA) with

RAB : A + ~ B+, denoting the link type from A + to B+ and

RBA : B+ ~ A+, denoting the inverse link type from B+ to A+.

A + is the domain of the link type RAB and B+ the co-domain. B+ is the

domain of the link type RBA and A + is its co-domain. By definition, RAB

and RBA are each other's inverses:

domain(RAB) = co-domain(RBA) = A + and co-domain(RAB) = domain

(RBA) = B+ and (RAB) -1= RBA

When using a relationship RAB to navigate from A to B, the set of objects that

can be reached from a given a E A + is a subset of the deep extent of B: \j a E

A + : a-RAB ~ B+ and similarly: \j b E B+: b-RBA E A +.

The formulation of maximum and minimum cardinalities remains the same,

except that it now applies to all elements of the deep extent of A and B:

R FYI. <=}

and min(RBA) = 1 => \j b E B+: # (b-RBA) ~ 1

and max(RAB) = 1 => \j a E A+: # (a-RAB)::;; 1

and max(RBA) = 1 => \j b E B+: # (b-RBA) ::;; 1

3 Specialization of Associations

As argued in section 1, there are good reasons to allow applying the concepts

of generalization and specialization to associations. This section formalizes

the generalization and specialization of associations. An association R

between A and B is composed of two link types: RAB, which is a property of

class A and RBA, which is a property of class B. Specialization classes of both

A and B can independently refine or not refine the inherited properties. For a

15

link type property, both the co-domain and the cardinality constraints are

subject to refinement. As a result, several cases can be considered. In the first

case, the co-domain classes of the inherited association are refined

symmetrically by descendants of A and B, possibly complemented with

cardinality refinement. In the second case, only one of the two link types is

refined. Finally, the third case discusses the case of asymmetric

specialization without narrowing of the destination: only the cardinality

constraints are refined.

Before treating the different cases, association inheritance is defined.

Definition

The ISA. or <. relationship is a partial order between associations. When R'

ISA. R (R <. R'), we say that R' is the specialized association and R is the

generalized association. The ISA. hierarchy must satisfy the following

restrictions:

1) The domain and co~domain of the link types composing R' must be

descendants of the domain and co-domains of the composing link types

of R (which includes R itself)?

2) The specialized link type inherits and is allowed to narrow the

cardinality constraints of the parent link type.

3) Associations have at most one generalization type (we do not allow

multiple inheritance).

4) The ISA. hierarchy must be acyclic.

7 Notice that in a contravariant approach, it is not allowed to narrow both the domain

and co-domain of an association. Rather, the contravariant approach advocates to

narrow the domain co-variantly and to broaden the co-domain contravariantly.

Hence, in a contravariant approach, when a link R'A'B' is a subtype of a link R AB, then

B' should be a supertype of B. Castagna [2] therefore suggests the name co­

contravariance.

16

Formal definition

Let A' be a subtype of A and B' be a subtype of B. Then

Iv'R,R' E 2(:

(O)R <,+R' ~ RAB <.+ R'A'B' and RBA <,+ R'B'A'

(l)RAB <,+ R'A'B' ~ A </ A' and B </ B'

(2)RAB <.+ R'A'B' ~ [min(RAB) = 1 ~ min (R'A'B') = 1] /\ [max(RAB) = 1 ~

max (R'A'B') = 1]

(3)<,+ is a hierarchical partial order on 2(

¢::} (a) Iv' R E 2(: R <,+ R

(b) Iv' R, R' E 2(: R <,+ R' and R' <,+ R ~ R = R'

(c) Iv' R, R', R" E 2?,;. R <,+R' andR' <,+R" ~ R <,+ R"

<. is the cover of <,+. <.+ can be recovered by taking the reflexive

transitive closure of < •. <. must be a hierarchy:

(4) Iv' R,R', R" E 2?,;. R<.R" andR' <.R" ~R=R'

Let R, R' E ~ If R <. R' then we say that R is a generalization of R' and R'

is a specialization of R.

y+(R)={GE 2(IG<.+R} (AncestorsofR)

y.(R) = {S E 2(1 R <,+ S} (descendants ofR)

ymaxCR)={GE 2(1 G<a + Rand-,::J HE 2(:H<aG} (topmost ancestor)

.+ is a postfix operator that takes the deep extent of an association and is

defined as:

R+ = U {S 1 S E y_(R)}

The main problem that remains to be solved is to detennine the type of an

association instance. We will define this for each of the following cases

separately.

17

3.1 Symmetric refinement

The most obvious case is the one with parallel hierarchies such as in the

example of Figure 2. Figure 8 represents an abstract version of the same type

of hierarchy. In this case both the domain A and the co-domain B of the

association R have been specialized into respectively A' and B'. The asso­

ciation R has been refined to an association R' that links the specialized classes

A' and B'. In practice this means that A' inherits the link type RAB from A, but

overrides it with R'A'B" Similarly for B', which overrides RBA with R'B'A"

Figure 8. Symmetric refinement

Semantics questions that need to be answered are

1) What are the admissible link instances between elements of A + and

elements of B+ ?

2) What is the type of a link instance?

Let us consider the model in Figure 9. Link instances between elements of A

U A" and elements of BuB" are in R. And link instances between elements

of A' and B' are in R'. But what about a link instance between an element a' in

A' with an element b in B. As B defines the co-domain of RBA as A +, the link

instance is admissible from the point of view of B and hence, (b, a') would be

an element of R BA. It would then by definition be an element of R AB, since

RAB and RBA are by definition each other's inverses. However, because A'

overrides the link type RAB with R'A'B', it should be an instance of R'A'B" But

18

the redefinition of R'A'B' specifies that the co-domain of R'A'B' is B'. Hence,

from the point of view of A', a link (a',b) is not admissible. A similar

reasoning applies to a link instance (a,b') with a E A and b' E B'. The lower

part of Figure 9 shows the admissible and inadmissible link instances.

Model

Model Instance: Admissible Links Model Instance: Inadmissible Links

A B

Figure 9. Admissible and inadmissible link instances in parallel hierarchies.
The dashed link instance is in R', the solid link instances are in R.

Notice that there is no refined link type between A" and B"

As a result, the domain of RAB is A +\A' and its co-domain is B""\B'

Definition

domain(RAB) = A+\ {A'+ I A <c A' and::3 R' E 'R... , R <aR' and domain(R')

=A'+}

co-domain(RAB) = B+\ {B'+ I B <c B' and ::3 R' E 'R... , R <a R' and co­

domain(R') = B'+}

When a link type R'A'B' is a specialization of a link type RAB , it inherits the

cardinality constraints of RAB . In a covariant approach, R'A'B' can only add

constraints, but must respect the inherited constraints. Hence, R'A'B' must keep

the minimum constraint and can add one in case RAB had no minimum

19

constraint. A similar reasoning applies to the maximum constraint. The

possibilities for the cardinalities of the descendant are given in Table 18.

Table 1:
Meta-constraints on cardinality constraints of specialized link types.

Generalized minimum maximum possible cardinalities

link type constraint? constraint? for specialized link type

RAB is (0,*) no no (0,*) (0,1), (1,*), (1,1)

RAB is (0,1) no yes (0,1), (1,1)

RAB is (1,*) yes no (1, *), (1,1)

RAB is (1,1) yes yes (1,1)

This table can easily be extended to a more general form of expressing

cardinalities. If the cardinalities of a link type are expressed as intervals of

natural numbers, then the specialization link type is allowed to raise the lower

bound and decrease the upper bound. Formally:

Let the cardinality of RAB be expressed as RAB is [min, max] with min, max E IN

then RAB <aR'A'B' and R'A'B' is [min', max'] => min"; min' and max:2: max'

Notice that this even allows a descendant class to disinherit an optional link

type by refining a cardinality of [O,n] to [0,0].

8 Notice that Table I identifies meta-constraints. Whereas constraints are elements in

the model that put constraints on the validity of model instances, meta-constraints are

elements in the meta-model that put constraints on the model itself. Meta-constraints

are pertinent to schema evolution, as they determine the validity of newly added

subclass definitions.

20

3.2 Asymmetric specialization

A less obvious case is were only one class specializes the association, We

discuss the case where the subtype A' refines the co-domain of RAB to B', but

the SUbtype B' does not refine the co-domain of RBA,

Figure 10. Asymmetric specialization.

In this case, a link instance (a,b) is an element of RAB, and its reverse link

instance (b,a) is an element of RBA (a E A, b E B). A link instance (a',b) with

a' E A' and bE B, and its inverse link (b,a') are inadmissible, since A' imposes

the constraint that elements of A' should be linked to elements of B', A link

(b',a) and its inverse link (a, b') are however allowed, since B' does not refine

RBA, These links are respectively elements of RBA and RAB , A link (a',b') ,

with a' E A' and b' E B' is an element of R'A'B" The inverse link type of R'A'B',

namely R'B'A' = (R'A'B,r1 is only implicitly defined and a subset of RBA, namely

the projection ofRBA on (B', A'):

(R'A'B-r1 = R'B'A' = RBN'(B', A') = {(b,a) E RBA I bE B', and a' E A'}

In addition to refining the co-domain, R'A'B' can also impose additional

cardinality constraints in the same way as for a symmetric specialization (see

Table I),

Figure 11 shows an example of an asymmetric specialization, The generalized

association specifies that an artist can make zero to many artworks and that an

artwork is made by 0 to one artist (zero means the artist is unknown), PAINTER

21

is a subclass of ARTIST and PAINTING is a subclass of ARTWORK. The

has_made link type is refined and renamed to has-painted. The co-domain of

has-painted is narrowed to paintings and a cardinality constraint is added,

stating that a painter has painted at least one painting. In the other direction,

the made_by link type is not refined as a painting can also be produced by

another type of artist (e.g. a sculptor occasionally producing a painting).

Notice that this model defines that a painter cannot be linked to other artwork

than paintings since the has-painted link type replaces the has_made link

type. Most likely however, a painter can also produce other artwork than

paintings. This situation can be expressed by using relationship subsetting

rather than specialization, as discussed in section 4.

Figure 11. Example of an asymmetric specialization

3.3 Asymmetric specialization without narrowing of the destination

In the previous cases, the refined link type narrows the co-domain to a subtype

of the original co-domain. A link type can however also be refined without

narrowing the co-domain, e.g. only by specifying an additional cardinality

constraint.

22

Figure 12. Asymmetric specialization without narrowing

Figure 13.
Example of an asymmetric association, without narrowing of co-domain

Figure 13 gives and example of such a specialization. As a general rule,

employees work in zero to many departments: the link type is optional. The

subclass MANAGER refines the link type works_in to a mandatory link type

with in addition a multiplicity constraint of one: each manager works in

exactly 1 department. The meta-constraints that apply to such refinement are

the same as those for previous cases and are given in Table 1.

4 Association Subsetting

Defining a link type as a subset of another link type is closely related to link

type specialization. The major difference is that the subsetting link type does

not replace the superset link type but exists next to it. In contrast, a

specialized link type replaces its generalized link type. The major similarity is

that the deep extent of a specialized link type is a subset of the deep extent of

the generalized link type.

23

This section illustrates the concept of link type subsetting by means of a few

examples, without defining it formally, as this is beyond the scope of this

paper. The major goal of this section is to contrast link type subsetting with

link type specialization. Association subsetting is an already existing concept:

it is for example defined in NIAM [16] and ORM [5].

4.1 Subsetting of associations between specialized classes

Suppose that in Figure 11 a painter can also make other artwork than

paintings, but that hasyainted links an artist to his/her paintings whereas

has_made links the artist to all his/her artwork. In this case, the hasyainted

link type defines a subset of the has_made link type. This can be modeled by

using association subsetting rather than subtyping, as shown in Figure 14.

has_painted>
< painted_by

1..*

Figure 14. Example of association subsetting

A link instance between a painter and one of his/her paintings (e.g. (Monet,

Impression)) is now both an element of the has_made link type and of the

hasyainted link type9.

A link type that is defined as a subset of another link type, does not replace the

latter. As a result, the painter class has both the properties has_made and

9 As a result, link type subsetting, does not allow for strong typing of link instances.

As long as they are not treated as objects in an implementation, this will not yield

problems.

24

has-painted. With link type subsetting, we specify that the paintings that are

linked through the has_painted link type with a particular painter, are also

linked to this painter whenever we consider all the artwork made by this

painter. More formally, link type subsetting implies that Monet-has_painted ~

Monet-has_made.

As to the cardinality constraints, the meta-model constraints are different from

those applying to link type specialization. When the has_made link type is

mandatory, the has-painted link type needs not to be mandatory as well: if it

is required for an artist to have produced at least one artwork, this artwork

needs not to be a painting, not even for a painter. Hence, a minimum

cardinality constraint of one can be relaxed by the subsetting link type.

However, a maximum cardinality constraint of one must be respected by the

subsetting link type: if an artwork can be produced by at most one artist, the

same must holds for a painting. Hence, a maximum cardinality constraint of

one cannot be relaxed by the sub setting link type. The meta-constraints are

summarized in Table 2.

Table 2: Constraints for subsetting link type R'A·B·

Superset minimum maximum possible cardinalities for

link type constraint? constraint ? specialized link type R'A'B'

R AB is (0,*) no no (0,*) (0,1), (1,*), (1,1)

RAB is (0,1) no yes (0,1), (1,1)

RAB is (1,*) yes no (0,*) (0,1), (1,*), (1,1)

RAB is (1,1) yes yes (0,1), (1,1)

25

4.2 Asymmetric Subsetting

has_painted> 1..*
(painted_by

Figure 15. Example of asymmetric link subsetting

In Figure 15, only the class ARTWORK is refined. The model now defines that

hasyainted links artists to paintings and is a subset of the has_made link type.

Again, hasyainted does not replace has_made and hence the class ARTIST has

both types of links. It should be noted that since the domain of the subsetting

link type is equal to the domain of the superset link type, a minimum

cardinality of one for the subsetting link type implies a minimum cardinality

of one for the superset link type. In the given example, any artist will always

have at least one artwork, because (s)he must have at least one painting.

Strictly speaking, this does not violate the optional nature of the has_made

link, but for the clarity of the model, such situation is to be avoided. The

adapted set of meta-constraints is shown in Table 3.

Table 3: Meta-Constraints for link subsetting when A' = A

Superset minimum maximum possible cardinalities for

link constraint ? constraint? specialized link R'AB'

RAB is (0,*) no no (0,*) (0,1)

RAB is (0,1) no yes (0,1)

RAB is (1,*) yes no (0,*) (0,1), (1,*), (1,1)

RAB is (1,1) yes yes (0,1), (1,1)

26

4.3 Subsetting of an association with the same participants

owns>
< owned by

Figure 16 Link subsetting between the same classes.

As a final example, let us consider association subsetting between two

identical classes: none of the participating classes has been specialized. In the

example of Figure 16, the owner association between PERSON and CAR is a

subset of the driver association. Hence, the owner is always considered to be

a driver. As a result, making the owned_by link type mandatory implies that

the driven_by link type should be mandatory as well. The meta-constraints

that apply here are the same as in Table 3.

Notice that this type of situation cannot occur for association specialization:

whenever an association R' between A' and B' is a specialization of an

association R between A and B, at least A and A' or Band B' must be distinct

classes.

5 Model satisfaction with Association Inheritance

With the definitions given in sections 3 and 2, we can ensure that an Instance

I satisfying a model %' where an association R has been refined to R' also

satisfies the same model % without refinement for R.

Theorem

Assume that % = (C, 'RJ and %' = (C', 10

with C' = C, R E 2(

and 2('= 2(u {R'}, R' = (R'A'B', R'B'A), R <aR'

Then

%' 1= I=>% 1= I

27

Proof:

f}v[' f= I
=> C' f= land '1(' f= I
=> C' f= I and \f T E '1(': T f= I
=> C' f= I and R' f= I andR f= I and \f T E 2\J{R', R}: T f= I

=> C' f= I and \f T E 2\J{R', R}: T f= I

and min(R'A'B.) = 1 => \f a E A'+: # (a-R'A'B.) :2: 1

and minCR'B'A.) = 1 => \f b E B'+: # (b-R'B'A') :2: 1

and max(R'A'B') = 1 => \f a E A'+: # (a-R'A'B.) :::; 1

and max(R'B'A.) = 1 => \f b E B'+: # (b-R'B'A.):::; 1

and min(RAB) = 1 => \f a E A"'\A': # (a-RAB):2: 1

and min(RBA) = 1 => \f b E B+\B': # (b-RBA) :2: 1

and maxCRAB) = 1 => \f a E A +\A': # (a-RAB) :::; 1

and max(RBA) = 1 => \f b E B+\B': # (b-RBA) :::; 1

=>10 C' f= I and \f T E 2\J{R', R}: T f= I

and min(RAB) = 1 => \f a E A+\A' : # (a-R'A'B.):2: 1

and \f a E A'+ : # (a-R'A'B') :2: 1

and min(RBA) = 1 => \f b E B+\B' : # (b-R'B'A') :2: 1

and \f b E B'+ : # (b-R'B'A') :2: 1

and maxCRAB) = 1 => \f a E A+\A' : # (a-R'A'B'):::; 1

and \f a E A'+ : # (a-R'A'B') :::; 1

and max(RBA) = 1 => \f b E B+\B' : # (b-R'B'A') :::; 1

and \f b E B'+ : # (b-R'B'A') :::; 1

10 According to the definition of </, [min(RAB) = 1 :::) min (R'A'B) = 1] A [max(RAB)

= 1 :::) max (R'A'B) = 1] and similarly for RBA and R'B'A" Additionally [(p --7 q) /\ (r

--7 s) /\ (p --7 r)] --7 [p --7 (q /\ s)]

28

=> c' ~ I and \j T E 2(f{R', R}: T ~ I

and min(RAB) = 1 => \j a E A +: # (aeR'A'B') 2 1

and min(RBA) = 1 => \j b E B+: # (beR'B'A') 2 1

and max(RAB) = 1 => \j a E A+: # (aeR'A'B') S 1

and max(RBA) = 1 => \j b E B+: # (beR'B'A) S 1

=> c ~ I and \j T E 2(f{R', R}: T ~ I and RIMll F= I

=> C ~ I and \j T E ~ {R}: T ~ I and RIM ~ I

=> C ~ I and \j T E 1?::. T ~ I

=>.'M~I

QED

6 Discussion and further research

This paper presented specialization of associations. The first section presented

arguments for introducing this new modeling concept. Sections 2 and 3

presented arguments for a formalization of the semantics of this concept.

Although specialization of classes is a cornerstone of object-orientation, it has

never been applied to associations before. We believe that the reason for this

is that associations are only implicitly present in object-oriented programs as

client relationships between classes. In a conceptual approach however,

associations playa prevalent role in modeling the universe of discourse.

The basic concepts of the object-oriented paradigm have been developed in

the context of programming languages. As they were adopted for design and

analysis, they were never really re-considered. It seems however a matter of

common sense to investigate whether programming concepts can be applied

unchanged to design and analysis or whether they need some adaptation to the

11 RI!i\{means R as interpreted in model % as opposed to R as interpreted in %'

29

raised abstraction level. This paper reconsiders inheritance of inter-object

references in particular and adapts it to its conceptual-modeling level

counterpart, namely associations. Likewise, in [13, 14] arguments have been

given for raising the abstraction level of object interaction modeling

techniques for object-oriented conceptual models.

Although the argumentation has been developed for associations between

classes in a conceptual model, the same reasoning applies to associations that

link a (conceptual-model) class to the data types of its attributes.

The definition of the semantics of association specialization in this paper is

based on the interpretation of a conceptual model as a set of constraints on the

valid instances of a model. With this interpretation, we have been able to

prove that a covariant approach to association inheritance does not lead to

inconsistencies: a model that refines associations in a covariant way does not

contradict the constraints imposed by the model without refined associations.

Further research should however investigate how to resolve the

implementation problems raised by covariance.

Another subject of further research is the inheritance of behavior. In [12] a

novariant or contravariant approach to inherited state machines has been

suggested. However, further research should define how to achieve a

covariant approach to behavior inheritance in conceptual modeling.

7 References

1. Booch, Object-oriented Analysis and Design with applications, second

edition, Benjamin/Cummings Publishing Company, 1994.

2. Castagna G., Covariance and Contravarianc: conflict without a cause,

ACM Transactions on Programming Languages and Systems, Vol. 17, No.

3, May 1995, pp. 431-447

30

3. Embley D.W., Kurtz B.D., Woodfield S.N. Object-Oriented Systems

Analysis: A Model-Driven Approach, Yourdon Press, Prentice Hall,

Englewood Cliffs, N.J., 1992.

4. Essink L.J.B., Erhart W.J., Object Modeling and System Dynamics in the

Conceptualization Stages of Information Systems Development, in F. Van

Assche, B. Moulin, C. Rolland (eds.) Object Oriented Approach in Infor­

mation Systems, Proceedings of the IFIP TC81WG8.1 Working Conference

on the Object Oriented Approach in Information Systems, Quebec City,

Canada, 28-31 October, 1991, North Holland, 1991, pp. 89-116.

5. Halpin, T.A., Information Modeling and Relational Databases, Morgan

Kaufmann Publishers, 2001,448 pp.

6. Hammer M., McLeod D., Database Description with SDM: A Semantic

Database Model, ACM Transactions on Database Systems, Vol. 6, No.3,

September 1981, pp. 351-386.

7. Meyer Bertrand, Object-oriented software construction, Prentice Hall,

Englewood Cliffs, N.J., second edition, 1997

8. OMG, The Unified Modeling Language, on-line document via UML

resource page, http://www.omg.org/umll

9. Sernadas C., Resende P., Gouveia P., Semadas A., In-the-Iarge object­

oriented design of Information Systems, in F. Van Assche, B. Moulin, C.

Rolland (eds.) Object Oriented Approach in Information Systems, Pro­

ceedings of the IFIP TC8IWG8.I Working Conference on the Object

Oriented Approach in Information Systems, Quebec City, Canada, 28-31

October, 1991, North Holland, 1991, pp. 209-232

10. Shang David, Is a Cow an Animal? in Object Currents (on-line

publication) SIGS New York, Januari 1996 at

http://www.visviva.com/transframe/papers/covar.htm

11. Shlear S., Mellor S.J., Object-Oriented Systems Analysis: Modeling the

World in Data, Prentice Hall, Englewood Cliffs, N.J., 1988.

12. Snoeck M., Dedene G., Generalisation/Specilisation and Role in object­

oriented conceptual modeling, Data and Knowledge Engineering, 19(2),

1996

31

13. Snoeck M, Dedene G, Existence dependency: The key to semantic

integrity between structural and behavioural aspects of object types, IEEE

Trans. on Software Engineering, Vol. 24, No.4, April 1998, pp. 233-251

14. Snoeck M, Poels G., Improving the reuse possibilities of the behavioral

aspects of object-oriented domain model. Lecture Notes in Computer

Science 1920, in Laendler, A. H. F., S. W. Liddle, and V. C. Storey, ed.:

Conceptual Modeling - ER2000, 19th International Conference on

Conceptual Modeling, Salt Lake City, (Springer Verlag), pp. 423-439

(2000)

15. Szyperski C., Omohundro S., Murer S., Engineering a Programming

Language: The type and Class system of Sather, ICSI Techreport TR-93-

064, Berkeley California, 1993, available on-line at

http://www.icsi.berkeley.edul-satherlPublications/tr-93-0641

16. Wintraecken, J. J. V. R., lnformatie-analyse volgens NIAM in theorie en

praktijk, Academic service Den Haag, 1985,540 pp.

32

