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Abstract 

Decision trees are a widely used knowledge representation in machine learn

ing. However, one of their main drawbacks is the inherent replication of isomorphic 

subtrees, as a result of which the produced classifiers might become too large to be 

comprehensible by the human experts that have to validate them. Alternatively, 

decision diagrams, a generalization of decision trees taking on the form of a rooted, 

acyclic digraph instead of a tree, have occasionally been suggested as a potentially 

more compact representation. Their application in machine learning has nonethe

less been criticized, because the theoretical size advantages of subgraph sharing 

did not always directly materialize in the relatively scarce reported experiments 

on real-world data. Therefore, in this paper, starting from a series of rule sets 

extracted from three real-life credit-scoring data sets, we will empirically assess to 

what extent decision diagrams are able to provide a compact visual description. 

Furthermore, we will investigate the practical impact of finding a good attribute 

ordering on the achieved size savings. 
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1 Introduction 

One of the key decisions financial institutions have to make as part of their daily opera

tions is to decide whether or not to grant a loan to an applicant. With the emergence of 

large-scale data-storing facilities, huge amounts of data have been stored regarding the 

repayment behavior of past applicants. It is the aim of credit scoring to analyze these 

data and build models that distinguish good payers from bad payers using character

istics such as amount on savings account, marital status, purpose of loan, etc. Many 

classification techniques have been suggested in the literature to build credit-scoring 

models [2, 22]. Amongst the most popular are traditional statistical methods (e.g. lo

gistic regression [21]), nonparametric statistical models (e.g. k-nearest neighbor [13] 

and classification trees [5]) and neural networks [6]. Especially neural networks have 

in recent years received a lot of attention. However, a major drawback is the lack of 

transparency of the resulting models. While they are generally able to achieve a high 

predictive accuracy rate, the reasoning behind how they reach their decisions is not 

readily available, which hinders their acceptance by practitioners. As a result, one often 

sees that the estimated credit-scoring models fail to be successfully integrated into the 

actual decision environment. 

Therefore, we have, in earlier work, proposed a two-step process to open the neural 

network black box which involves: (1) extracting rules from the network; (2) visualizing 

this rule set using an intuitive graphical representation, such as decision tables or trees 

[1]. The latter notations are intended to communicate the extracted knowledge to the 

credit-scoring expert in a format that he/she can more easily understand and validate, 

and efficiently apply in every-day practise. In our experience, the ability to provide 

such a visualization has become a critical success factor for the development of decision

support systems for credit scoring. 

Clearly, an important criterion where human interpretability is concerned, is the size 

of the generated representation. Despite their being intuitive and efficiently applicable 

in theory, it has regularly been observed that the decision trees generated by machine

learning algorithms turn out to be too large to be comprehensible to human experts. 
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In that regard, one of their main limitations is the inherent replication of isomorphic 

subtrees implementing terms in disjunctive concepts. Hence, in this paper, we report 

on the alternative use of decision diagrams. The latter are a generalization of decision 

trees taking on the form of a rooted, acyclic digraph instead of a tree, which have to 

a great extent been studied and applied by the hardware design community [3]. Their 

use has also occasionally been proposed in the machine-learning community (e.g. in 

[16, 17, 18]), precisely because of the potential size savings a graph-based representation 

might offer over a tree-based one. 

Nevertheless, decision diagrams have so far not gained wide acceptance in the latter 

problem context, partly because the theoretical size advantages of subgraph sharing 

did not always directly materialize in (the relatively scarce) reported experiments [7]. 

Two problems that seem to have impaired a thorough empirical study are: (1) the use 

of very different learning algorithms for the respective types of representations being 

compared (thus making it hard to separate the effect of the representation from that of 

the specific algorithm); (2) the impact of attribute ordering on the size of the resulting 

description. Therefore, in this paper, starting from a series of rule sets produced from 

real-life credit-scoring data by neural network rule extraction, we will empirically assess 

to what extent decision diagrams are able to provide a more compact visual description 

than their decision tree counterparts. Furthermore, we will investigate the practical 

impact of finding a good attribute ordering on the achieved size savings. 

This paper is organized as follows. Section 2 discusses the basic concepts of decision 

diagrams and how they may provide an alternative, more concise view of the extracted 

knowledge. The empirical setup and results are presented in section 3. Finally, section 

4 concludes the paper. 

2 Decision Diagrams 

Decision diagrams are a graph-based representation of discrete functions, accompanied 

by a set of graph algorithms that implement operations on these functions. Given the 
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proper restrictions (cf. infra), decision diagrams have a number of valuable properties: 

• they provide a canonical function representation; 

• they can be manipulated efficiently; 

• for many practically important functions, the corresponding descriptions turn out 

to be quite compact. 

Precisely these properties explain why various types of diagrams have been used suc

cessfully in efficiently solving many logic synthesis and verification problems in the hard

ware design domain. Especially binary decision diagrams (BDDs) have, since the work 

of Bryant [3], who defined the canonical subclass of reduced ordered binary decision 

diagrams, pervaded virtually every sub field in the former areas. There are on the other 

hand relatively few reported applications so far in the domain of artificial intelligence 

[14] and machine learning [9, 16, 17, 18], while their use for the visual representation 

of rules extracted from neural networks, or in the particular research domain of credit 

scoring, has to our knowledge not been proposed before. 

Since we are dealing with general discrete (as opposed to binary) attributes, we will 

apply multi-valued decision diagrams (MDDs), a representation similar to BDDs but 

which does not restrict the outdegree of internal nodes or the number of sink nodes 

[15]. An MDD is a rooted, directed acyclic graph, with a sink node for every possible 

output value (class). Each internal node v is labelled by a test variable (attribute) 

var(v) = Xi (i = 1, ... , n), which can take values from a finite set range(xi)' Each such 

node v has I range(xi) I outgoing edges, and its successor nodes are denoted by childk ( v), 

for each k E range(xi), respectively. An MDD is ordered (OMDD), iff, on all paths 

through the graph, the test variables respect a given linear order Xl -< X2 -< ... -< Xn; 

i.e., for each edge leading from a node labelled by Xi to a node labelled by Xj, it holds 

that Xi -< Xj. 

An OMDD is meant to represent an n-variable discrete (classification) function. For 

a given assignment to the variables, the function value is determined by tracing a path 

from the root to a sink, following the edges indicated by the values assigned to the 
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variables. The label of the sink node specifies the function value (class) assigned for 

that input case. Figure 1 displays an example of an OMDD representation for a two

variable function, {O, 1,2, 3} x {O, 1, 2} -+ {O, I}, with respect to the variable order 

Xl -< X2· 

2 

Figure 1: MDD example 

Up to here, OMDDs are not yet uniquely determined for each function. However, by 

further restricting the representation, a canonical form of MDDs is obtained, namely 

reduced OMDDs (ROMDD). An OMDD is said to be reduced, iff it does not contain a 

node v whose successor nodes are all identical, and no two distinct nodes u, v exist such 

that the subgraphs rooted in u and v are isomorphic, i.e., for which: var(u) = var(v), 

and childk(u) = childk(v) for all k E range(var(u)). For a given variable ordering, the 

ROMDD representation of any function is uniquely determined (up to isomorphism), as 

a result of which several properties (e.g., functional equivalence, constant functions, etc.) 

become easily testable. Conceptually, a reduced decision diagram can be interpreted as 

the result of the repeated application of two types of transformations on a decision tree 

or graph: one reduction rule is to bypass and delete redundant nodes (elimination rule), 

the other is to share isomorphic subgraphs (merging rule). In Figure 2, both rules are 

illustrated for a simple binary example. Note that, in practice, efficient implementations 

of diagram operations are used that directly produce a reduced form as the diagrams are 

being built. From here on, we will use the term 'MDD' or decision diagram to denote 
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Figure 2: Decision trees (left) versus diagrams (right) 

ROMDDs in particular. 

When using decision diagrams to represent a function, some total ordering of the 

input variables must be selected. Since the size of the resulting diagram (i.e., the 

number of nodes) is very sensitive to this choice, finding a suitable ordering is critical in 

many application domains. Figure 3 illustrates the extent to which form and size can be 

affected by the chosen variable order. Both diagrams shown represent the same function 

(given by the Boolean formula Xl,lXl,2 + X2,lX2,2 + X3,lX3,2), but using different orders. 

Several exact minimization algorithms have been proposed (e.g. in [10]), but, considering 

that finding an optimal order is an NP-hard problem, they are often too costly for larger 

problem instances (i.e., with many variables). Hence, heuristic approaches (selecting 

some ordering based on available problem data) or local search techniques (which aim 

at improving a given variable order, e.g., by moving variables up or down the graph) 

have been widely investigated as well. 

Over the years, several BDD packages have been developed, which implement and 

provide interfaces for the manipulation of BDDs. Most often, MDDs are implemented 

indirectly using these same packages, by binary encoding multi-valued variables. Direct 

MDD implementations have also been proposed, e.g. in [9]. The latter package was 

used in the subsequent experiments. 
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Figure 3: Effect of variable ordering on decision diagram size; example taken from [3] 
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3 Empirical Evaluation on Real-Life Credit-Scoring 

Data 

3.1 Step 1: Neural Network Rule Extraction 

The experiments were conducted on three real-life credit-risk evaluation data sets: Ger

man credit, Bene1 and Bene2. The Bene1 and Bene2 data sets were obtained from two 

major Benelux (Belgium, The Netherlands, Luxembourg) financial institutions. The 

German credit data set is publicly available at the DCI repository 

(http://www.ics.uci.edu/rvrnlearn/MLRepository.htrnl). All data sets were dis

cretized using the discretization algorithm of Fayyad and Irani with the default options 

[8]. 

We then investigated the performance of two neural network rule (tree) extraction 

algorithms: Neurorule and Trepan. Neurorule starts by training and pruning a neural 

network for the given classification task. It then extracts a set of propositional if-then 

rules, which mimics the decision process of the neural network and resolves its black 

box property (see [1, 20] for more details). For example, Figure 4 displays the rules 

extracted by Neurorule on the Bene1 data set. Trepan is a neural network tree extraction 

algorithm which tries to approximate the neural network as a decision tree whose nodes 

may consist of m-of-n expressions [4]. The tree is grown recursively using information

theoretic concepts. The neural network is hereby used as an oracle to generate additional 

observations, when the number of data points available to decide upon the splits becomes 

unacceptably low. 

The performance of both neural network extraction algorithms was contrasted with 

that of the neural network itself and with three other algorithms producing decision trees, 

rules and diagrams. C4.5 is a well-known induction algorithm which uses information

theoretic concepts to grow a decision tree [19]. It first grows a full tree and then retro

spectively prunes it in order to avoid overfitting. The C4.5rules algorithm converts this 

tree to a set of rules which can then be further pruned [19]. The EODG (Entropy-based 
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If Term >12 months and Purpose = cash provisioning 
and Savings Account:::; 12.40 € and Years Client:::; 3 
then Applicant = bad 

If Term > 12 months and Purpose = cash provisioning 
and Owns Property = no and Savings Account:::; 12.40 € 
then Applicant = bad 

If Purpose = cash provisioning and Income > 719 € 
and Owns Property = no and Savings Account:::; 12.40 € 
and Years Client:::; 3 then Applicant = bad 

If Purpose = second-hand car and Income> 719 € and 
Owns Property = no and Savings Account:::; 12.40 € and 
Years Client:::; 3 then Applicant = bad 

If Savings Account:::; 12.40 € and Economical sector = 
Sector C then Applicant = bad 

Default class: Applicant = good 

Figure 4: Rules for Benel extracted by N eurorule 
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Oblivious Decision Graphs) algorithm uses mutual information to build a decision tree 

in a top-down manner; this tree is subsequently converted to a decision diagram by 

merging its isomorphic subtrees [17]. 

Table 1 presents the classification performance of the discussed techniques on the 

three credit-scoring data sets. Note that the reported accuracy was computed on inde

pendent test sets (typically one-third ofthe observations) and thus adequately represents 

the generalization behavior of the classification technique. It can be observed that the 

Data set Method Accuracy Complexity 
German Neural network 77.84 6 inputs 

Neurorule 77.25 4 rules 
Trepan 73.95 21 nodes 
C4.5 71.56 54 nodes 
C4.5rules 74.25 17 rules 
EODG 72.45 9 nodes 

Benel Neural network 71.85 7 inputs 
Neurorule 71.85 6 rules 
Trepan 71.85 21 nodes 
C4.5 70.03 114 nodes 
C4.5rules 70.12 17 rules 
EODG 71.37 5 nodes 

Bene2 Neural network 74.09 7 inputs 
Neurorule 74.13 7 rules 
Trepan 74.01 17 nodes 
C4.5 73.09 578 nodes 
C4.5rules 73.51 27 rules 
EODG 72.38 7 nodes 

Table 1: Classification accuracy of rule, tree and diagram extraction techniques 

Neurorule and Trepan algorithms fairly well approximate the performance of the neural 

networks from which they were derived. For the Bene2 data set, the Neurorule method 

even outperforms the neural network slightly. Both algorithms consistently yield very 

good classification performance when compared to C4.5, C4.5rules and EODG. Besides 

classification performance, we also report the number of inputs, extracted rules or nodes. 
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When looking at these criteria, it becomes clear that N eurorule and Trepan extract 

concise decision models. Although the EODG algorithm extracts very concise repre

sentations as well, its classification performance is inferior when compared to Neurorule 

and Trepan. The size of the C4.5-tree is in all cases prohibitively large for visualization 

purposes. 

Although the knowledge descriptions extracted by Neurorule or Trepan already offer 

an insightful explanation of the neural network model they were generated from, they 

lack an efficient evaluation scheme by which the expert can validate the knowledge as a 

whole, or apply it to case-by-case decision making. For those purposes, diagrammatic 

notations such as decision tables, trees or diagrams, instead of being induced directly, 

can additionally provide a more suited visualization of the extracted rule sets. Thus, 

the format in which the knowledge is being communicated can be transformed without 

causing any loss of predictive accuracy. This idea will be elaborated on next. 

3.2 Step 2: Visualizing the Extracted Knowledge using Deci

sion Diagrams 

In previous work [1], we have largely focused on the use of a particular class of (lexico

graphically ordered) decision tables in this subsequent knowledge visualization step. It 

was shown that this restricted type of decision table exhibits very similar properties to a 

decision tree, in that it can be efficiently evaluated in a top-down manner. Rather than 

having to evaluate the textual rule expressions one by one, the credit-scoring expert 

can thus quickly reach a conclusion for a given application by following the proper path 

through this tree structure. For example, in Figure 5, a decision tree is shown that 

is functionally equivalent to the prior rule set of Figure 4 (i.e., it classifies all possible 

applicants in the same way). 

While retaining the predictive accuracy of the original rule set, the top-down read

ability of a decision tree makes it a seemingly attractive visual representation of the 

extracted knowledge. However, a well-known property that can undermine the concise

ness and interpretability of decision trees (and hence also of lexicographically ordered 
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Years 
Client 

:$12 months 

Term 

>3 

other 

scclorC 

other 

Figure 5: Example of an (ordered) decision tree for Bene1/Neurorule 

>!2.40€ 

decision tables) is the inherent replication of subtrees implementing terms in disjunctive 

concepts (as explained, e.g., in [16]). This is the reason why we have decided to also 

investigate decision diagrams as an alternative representation that could help avoid such 

unnecessary replication, provided that a suitable attribute ordering can be found for the 

problem at hand. The principal goal of this study therefore is to empirically verify these 

theorized advantages in a real-life credit-scoring setting. 

For example, although the tree shown in Figure 5 is substantially smaller than the 

corresponding C4.5-tree (cf. Table 1), it still contains a certain degree of replication. 

Most notably, two out of the three subtrees rooted at a 'years client'-test node are 

isomorphic. In contrast, by reducing the tree into a decision diagram, in which recurring 

parts are shared through multiple incoming edges, a smaller representation is obtained 

(cf. Figure 6, below).1 In the latter, the subgraph rooted at the rightmost of the two 

lTo produce these graph drawings, we used the Graphviz software [12] from AT&T Laboratories 
(http://www.research.att.com/sw!tools/graphviz). 
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'years client'-nodes is thus included once instead of twice. If these size savings are indeed 

substantial on average, a decision diagram will provide a valuable alternative knowledge 

visualization. 

sector C 

> 12 months 

cash provisioning 

:£ 12 months 

second
hand car 

:£ 12.40 € 

> 12.40 € 

other 

>3 

Figure 6: Minimum-size MDD for Bene1/Neurorule 

Hence, we further processed each rule set by joining nominal attribute values that do 

not appear in any rule antecedent into a common 'other' state, and by rewriting rules 

containing negations or m-of-n expressions into disjunctive normal form. Based on the 

latter format, we then built a decision diagram representation, using the standard im

plementations of logical sum and product provided by the MDD-package. As explained 
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in section 2, the size of the resulting diagram depends on the order in which the at

tributes are evaluated. To find an optimal order (i.e., which results in a minimum-size 

MDD), we implemented a simple exhaustive search procedure, at every step of which 

two neighboring variables in the order are swapped. Considering that adjacent variable 

pairs can be swapped efficiently by a local exchange of subgraphs [11], and given the 

input space reduction achieved in the preceding step of the knowledge discovery process, 

execution turned out to be feasible (other more efficient minimization algorithms are 

described elsewhere, e.g. in [10]). As a result of this optimization process, we ended up 

with a minimum-size MDD for each rule set. Figure 6 earlier depicted the MDD thus 

obtained from the Bene1 rule set extracted by Neurorule. The results for all MDDs are 

listed in Table 2. Most importantly, in all cases, the diagrams were sufficiently concise 

to be easily understood and applied. 

Data set Extraction Internal nodes Internal nodes Size 
method in min.-size MDD in matching tree saving 

German Neurorule 7 14 50% 
Trepan 7 7 0% 

Bene1 Neurorule 8 12 33.3% 
Trepan 14 29 51.7% 

Bene2 Neurorule 11 28 60.7% 
Trepan 16 51 68.6% 

Table 2: MDD size results 

In Table 2, we can also see that, except for the German credit classifier produced by 

Trepan, substantial size gains are being achieved as a result of MDD reduction (unlike, 

e.g., for the learning algorithm applied in [7], which reportedly produced few node 

merging on real-world data sets). To give an idea of the amount of subgraph sharing, 

we have included a column displaying the size of the equivalent decision tree obtained 

when the same (total) attribute ordering is adopted (note that we are not considering 

unordered trees or graphs at this point). To make the analysis fair, we avoid repetitive 

counting of sink nodes, and measure size in terms of the number of internal nodes. The 
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percentage in the final column thus provides an indication of the effectiveness of the 

merging rule. 

As explained above, the reported figures are for minimum-size MDDs. Unlike in prior 

decision diagram based learning approaches, we do not have to revert to a greedy or

dering strategy, or to incremental reordering methods (as in [18]), because MDDs are 

applied only after the input space has been drastically reduced in the first step of the 

process. Consequently, we are able to more fully explore the impact of variable ordering 

on diagram size. Figure 7 displays the observed size distribution for all investigated 

cases. Along the y-axis of each bar plot, the number of condition orders is indicated 

that lead to the number of internal nodes specified on the x-axis. The resulting distri

bution curve for the MDDs is depicted by solid boxes; empty boxes indicate the same 

relation for the matching decision trees (i.e., without subgraph merging). Although, 

even with non-optimal attribute orders, the MDDs obtained still are relatively small on 

average (most points on the MDD curves are well to the left of the tree size curve), 

the importance of finding an appropriate attribute ordering becomes clear. For exam

ple, for Bene1/Trepan, the number of internal nodes varies from 14 to 38. Obviously, 

where comprehensibility and evaluation efficiency are concerned, this is an important 

difference. Hence, as could be expected, the utility of decision diagram techniques as a 

visual communication aid strongly depends on whether an adequate ordering strategy 

is applied. 

4 Conclusions and Future Work 

In this paper, we have demonstrated the effectiveness of a two-step approach to build 

accurate yet comprehensible credit-scoring models from data, using three real-life data 

sets. Firstly, powerful rule set classifiers were obtained using neural network rule ex

traction techniques (viz., Neurorule and Trepan). In the second step, these were then 

compactly visualized in the form of decision diagrams, thus providing the credit-scoring 

expert with a comprehensible and efficiently applicable notation, while retaining the 

15 



'50 

180 

160 200 

140 

120 150 

100 

80 100 

60 

0 

0 ~ ~. ~ 
10 12 14 16 18 20 

(a) German/Neurorule (b) German/Trepan 

9<l0,----~----.--,---~---.-__, 
3000,-----.--------.----,-_~-~-_____, 

800 

'500 
700 

'00 '000 

500 

1500 
400 

300 1000 

200 

':oL----J.Jl,d..hIWJo 1JlllllI1J21llli1JUl0 JWlJWjdUlWJ!~IIIIJLllJWIII~~~!llJWn~~fiL........JU"~o~,o 50:'------...Jo 'u.LLlJ,dl,LLl.I..Lo Ll..l.LL3hJl1lJlJLO HIlJ1JllLll~III)llJlJLJJJl~~ 1WWl
5
llJlJLJJJl
O 

llJlJLJJJl,1WWl
O 

J1JWlJlJ
70 

( c) Benel /N eurorule (d) Benel/Trepan 

3000,-----.--------.---,---~-~-____, '000,------._----._----._---._---._--._--. 

2600 5000 

2000 4000 

1600 3000 

1000 '000 

( e) Bene2 /N eurorule (f) Bene2/Trepan 

Figure 7: Size distribution of decision diagram vs. tree 
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predictive accuracy of the original rule set. To minimize the size of the resulting dia

grams, an exact variable order optimization procedure was applied. In all cases, this 

approach yielded highly accurate classifiers, compared to the decision tree and diagram 

inducers C4.5 and EODG, while the resulting decision diagrams were also satisfactorily 

concise. We found that the MDD reduction mechanism was quite effective, in that sev

eral isomorphic subgraphs are being shared which would otherwise be replicated when 

using a decision tree representation. This is a noteworthy result, considering that the 

theorized advantages of decision diagram inducers did thus far not often directly mate

rialize in a real-life setting. Finally, the importance of selecting a good attribute order 

was demonstrated. 

Although the obtained decision diagrams are clearly more compact than their decision 

tree counterparts, it has to be noted that we have restricted the comparison to both 

ordered diagrams and trees (i.e., in which the order of testing variables does not differ 

between different branches). Clearly, the search space of finding a minimal unordered 

representation (sometimes also referred to as 'branching programs' or 'free' diagrams) 

is much larger, while the relative advantages of graph sharing might be less prominent. 

Secondly, we have implicitly assumed that a compact graph representation is to be 

preferred over a larger tree-based representation. Obviously, overly large decision trees 

inhibit the intuitiveness and usability of the extracted knowledge, hence succinctness is 

indeed an important factor. However, an interesting topic for further research would 

be to investigate, in an experimental setting, to what extent credit-scoring experts are 

actually at ease interpreting these graph-based decision schemes as opposed to the more 

conventional tree-based schemes. In that case, additional evaluation criteria would, 

e.g., have to be the average time required by practitioners to classify applicants, or the 

observed frequency of classification mistakes. 
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