
DECISION DIAGRAMS IN MACHINE LEARNING:
AN EMPIRICAL STUDY ON REAL-LIFE CREDIT-RISK DATA

CHRISTOPHE MUES • BART BAESENS· CRAIG M. FILES· JANVANTHIENEN

OR 0405

Decision Diagrams in Machine Learning: an

Empirical Study on Real-Life Credit-Risk Data

Christophe Muesl, Bart Baesens1,2, Craig M. Files3, Jan Vanthienen1

lK.U.Leuven, Dept. of Applied Economic Sciences,

Naamsestraat 69, B-3000 Leuven, Belgium

{Christophe.Mues; Bart.Baesens; Jan.Vanthienen}@econ.kuleuven.ac.be

2University of Southampton, School of Management

Southampton, S017 1BJ, United Kingdom

b.m.m. baesens@soton.ac.uk

33100 San Luis St., Fort Collins,

Colorado 80525-6612

cfiles@ee.pdx.edu

Abstract

Decision trees are a widely used knowledge representation in machine learn

ing. However, one of their main drawbacks is the inherent replication of isomorphic

subtrees, as a result of which the produced classifiers might become too large to be

comprehensible by the human experts that have to validate them. Alternatively,

decision diagrams, a generalization of decision trees taking on the form of a rooted,

acyclic digraph instead of a tree, have occasionally been suggested as a potentially

more compact representation. Their application in machine learning has nonethe

less been criticized, because the theoretical size advantages of subgraph sharing

did not always directly materialize in the relatively scarce reported experiments

on real-world data. Therefore, in this paper, starting from a series of rule sets

extracted from three real-life credit-scoring data sets, we will empirically assess to

what extent decision diagrams are able to provide a compact visual description.

Furthermore, we will investigate the practical impact of finding a good attribute

ordering on the achieved size savings.

1

1 Introduction

One of the key decisions financial institutions have to make as part of their daily opera

tions is to decide whether or not to grant a loan to an applicant. With the emergence of

large-scale data-storing facilities, huge amounts of data have been stored regarding the

repayment behavior of past applicants. It is the aim of credit scoring to analyze these

data and build models that distinguish good payers from bad payers using character

istics such as amount on savings account, marital status, purpose of loan, etc. Many

classification techniques have been suggested in the literature to build credit-scoring

models [2, 22]. Amongst the most popular are traditional statistical methods (e.g. lo

gistic regression [21]), nonparametric statistical models (e.g. k-nearest neighbor [13]

and classification trees [5]) and neural networks [6]. Especially neural networks have

in recent years received a lot of attention. However, a major drawback is the lack of

transparency of the resulting models. While they are generally able to achieve a high

predictive accuracy rate, the reasoning behind how they reach their decisions is not

readily available, which hinders their acceptance by practitioners. As a result, one often

sees that the estimated credit-scoring models fail to be successfully integrated into the

actual decision environment.

Therefore, we have, in earlier work, proposed a two-step process to open the neural

network black box which involves: (1) extracting rules from the network; (2) visualizing

this rule set using an intuitive graphical representation, such as decision tables or trees

[1]. The latter notations are intended to communicate the extracted knowledge to the

credit-scoring expert in a format that he/she can more easily understand and validate,

and efficiently apply in every-day practise. In our experience, the ability to provide

such a visualization has become a critical success factor for the development of decision

support systems for credit scoring.

Clearly, an important criterion where human interpretability is concerned, is the size

of the generated representation. Despite their being intuitive and efficiently applicable

in theory, it has regularly been observed that the decision trees generated by machine

learning algorithms turn out to be too large to be comprehensible to human experts.

2

In that regard, one of their main limitations is the inherent replication of isomorphic

subtrees implementing terms in disjunctive concepts. Hence, in this paper, we report

on the alternative use of decision diagrams. The latter are a generalization of decision

trees taking on the form of a rooted, acyclic digraph instead of a tree, which have to

a great extent been studied and applied by the hardware design community [3]. Their

use has also occasionally been proposed in the machine-learning community (e.g. in

[16, 17, 18]), precisely because of the potential size savings a graph-based representation

might offer over a tree-based one.

Nevertheless, decision diagrams have so far not gained wide acceptance in the latter

problem context, partly because the theoretical size advantages of subgraph sharing

did not always directly materialize in (the relatively scarce) reported experiments [7].

Two problems that seem to have impaired a thorough empirical study are: (1) the use

of very different learning algorithms for the respective types of representations being

compared (thus making it hard to separate the effect of the representation from that of

the specific algorithm); (2) the impact of attribute ordering on the size of the resulting

description. Therefore, in this paper, starting from a series of rule sets produced from

real-life credit-scoring data by neural network rule extraction, we will empirically assess

to what extent decision diagrams are able to provide a more compact visual description

than their decision tree counterparts. Furthermore, we will investigate the practical

impact of finding a good attribute ordering on the achieved size savings.

This paper is organized as follows. Section 2 discusses the basic concepts of decision

diagrams and how they may provide an alternative, more concise view of the extracted

knowledge. The empirical setup and results are presented in section 3. Finally, section

4 concludes the paper.

2 Decision Diagrams

Decision diagrams are a graph-based representation of discrete functions, accompanied

by a set of graph algorithms that implement operations on these functions. Given the

3

proper restrictions (cf. infra), decision diagrams have a number of valuable properties:

• they provide a canonical function representation;

• they can be manipulated efficiently;

• for many practically important functions, the corresponding descriptions turn out

to be quite compact.

Precisely these properties explain why various types of diagrams have been used suc

cessfully in efficiently solving many logic synthesis and verification problems in the hard

ware design domain. Especially binary decision diagrams (BDDs) have, since the work

of Bryant [3], who defined the canonical subclass of reduced ordered binary decision

diagrams, pervaded virtually every sub field in the former areas. There are on the other

hand relatively few reported applications so far in the domain of artificial intelligence

[14] and machine learning [9, 16, 17, 18], while their use for the visual representation

of rules extracted from neural networks, or in the particular research domain of credit

scoring, has to our knowledge not been proposed before.

Since we are dealing with general discrete (as opposed to binary) attributes, we will

apply multi-valued decision diagrams (MDDs), a representation similar to BDDs but

which does not restrict the outdegree of internal nodes or the number of sink nodes

[15]. An MDD is a rooted, directed acyclic graph, with a sink node for every possible

output value (class). Each internal node v is labelled by a test variable (attribute)

var(v) = Xi (i = 1, ... , n), which can take values from a finite set range(xi)' Each such

node v has I range(xi) I outgoing edges, and its successor nodes are denoted by childk (v),

for each k E range(xi), respectively. An MDD is ordered (OMDD), iff, on all paths

through the graph, the test variables respect a given linear order Xl -< X2 -< ... -< Xn;

i.e., for each edge leading from a node labelled by Xi to a node labelled by Xj, it holds

that Xi -< Xj.

An OMDD is meant to represent an n-variable discrete (classification) function. For

a given assignment to the variables, the function value is determined by tracing a path

from the root to a sink, following the edges indicated by the values assigned to the

4

variables. The label of the sink node specifies the function value (class) assigned for

that input case. Figure 1 displays an example of an OMDD representation for a two

variable function, {O, 1,2, 3} x {O, 1, 2} -+ {O, I}, with respect to the variable order

Xl -< X2·

2

Figure 1: MDD example

Up to here, OMDDs are not yet uniquely determined for each function. However, by

further restricting the representation, a canonical form of MDDs is obtained, namely

reduced OMDDs (ROMDD). An OMDD is said to be reduced, iff it does not contain a

node v whose successor nodes are all identical, and no two distinct nodes u, v exist such

that the subgraphs rooted in u and v are isomorphic, i.e., for which: var(u) = var(v),

and childk(u) = childk(v) for all k E range(var(u)). For a given variable ordering, the

ROMDD representation of any function is uniquely determined (up to isomorphism), as

a result of which several properties (e.g., functional equivalence, constant functions, etc.)

become easily testable. Conceptually, a reduced decision diagram can be interpreted as

the result of the repeated application of two types of transformations on a decision tree

or graph: one reduction rule is to bypass and delete redundant nodes (elimination rule),

the other is to share isomorphic subgraphs (merging rule). In Figure 2, both rules are

illustrated for a simple binary example. Note that, in practice, efficient implementations

of diagram operations are used that directly produce a reduced form as the diagrams are

being built. From here on, we will use the term 'MDD' or decision diagram to denote

5

o

Figure 2: Decision trees (left) versus diagrams (right)

ROMDDs in particular.

When using decision diagrams to represent a function, some total ordering of the

input variables must be selected. Since the size of the resulting diagram (i.e., the

number of nodes) is very sensitive to this choice, finding a suitable ordering is critical in

many application domains. Figure 3 illustrates the extent to which form and size can be

affected by the chosen variable order. Both diagrams shown represent the same function

(given by the Boolean formula Xl,lXl,2 + X2,lX2,2 + X3,lX3,2), but using different orders.

Several exact minimization algorithms have been proposed (e.g. in [10]), but, considering

that finding an optimal order is an NP-hard problem, they are often too costly for larger

problem instances (i.e., with many variables). Hence, heuristic approaches (selecting

some ordering based on available problem data) or local search techniques (which aim

at improving a given variable order, e.g., by moving variables up or down the graph)

have been widely investigated as well.

Over the years, several BDD packages have been developed, which implement and

provide interfaces for the manipulation of BDDs. Most often, MDDs are implemented

indirectly using these same packages, by binary encoding multi-valued variables. Direct

MDD implementations have also been proposed, e.g. in [9]. The latter package was

used in the subsequent experiments.

6

Figure 3: Effect of variable ordering on decision diagram size; example taken from [3]

7

3 Empirical Evaluation on Real-Life Credit-Scoring

Data

3.1 Step 1: Neural Network Rule Extraction

The experiments were conducted on three real-life credit-risk evaluation data sets: Ger

man credit, Bene1 and Bene2. The Bene1 and Bene2 data sets were obtained from two

major Benelux (Belgium, The Netherlands, Luxembourg) financial institutions. The

German credit data set is publicly available at the DCI repository

(http://www.ics.uci.edu/rvrnlearn/MLRepository.htrnl). All data sets were dis

cretized using the discretization algorithm of Fayyad and Irani with the default options

[8].

We then investigated the performance of two neural network rule (tree) extraction

algorithms: Neurorule and Trepan. Neurorule starts by training and pruning a neural

network for the given classification task. It then extracts a set of propositional if-then

rules, which mimics the decision process of the neural network and resolves its black

box property (see [1, 20] for more details). For example, Figure 4 displays the rules

extracted by Neurorule on the Bene1 data set. Trepan is a neural network tree extraction

algorithm which tries to approximate the neural network as a decision tree whose nodes

may consist of m-of-n expressions [4]. The tree is grown recursively using information

theoretic concepts. The neural network is hereby used as an oracle to generate additional

observations, when the number of data points available to decide upon the splits becomes

unacceptably low.

The performance of both neural network extraction algorithms was contrasted with

that of the neural network itself and with three other algorithms producing decision trees,

rules and diagrams. C4.5 is a well-known induction algorithm which uses information

theoretic concepts to grow a decision tree [19]. It first grows a full tree and then retro

spectively prunes it in order to avoid overfitting. The C4.5rules algorithm converts this

tree to a set of rules which can then be further pruned [19]. The EODG (Entropy-based

8

If Term >12 months and Purpose = cash provisioning
and Savings Account:::; 12.40 € and Years Client:::; 3
then Applicant = bad

If Term > 12 months and Purpose = cash provisioning
and Owns Property = no and Savings Account:::; 12.40 €
then Applicant = bad

If Purpose = cash provisioning and Income > 719 €
and Owns Property = no and Savings Account:::; 12.40 €
and Years Client:::; 3 then Applicant = bad

If Purpose = second-hand car and Income> 719 € and
Owns Property = no and Savings Account:::; 12.40 € and
Years Client:::; 3 then Applicant = bad

If Savings Account:::; 12.40 € and Economical sector =
Sector C then Applicant = bad

Default class: Applicant = good

Figure 4: Rules for Benel extracted by N eurorule

9

Oblivious Decision Graphs) algorithm uses mutual information to build a decision tree

in a top-down manner; this tree is subsequently converted to a decision diagram by

merging its isomorphic subtrees [17].

Table 1 presents the classification performance of the discussed techniques on the

three credit-scoring data sets. Note that the reported accuracy was computed on inde

pendent test sets (typically one-third ofthe observations) and thus adequately represents

the generalization behavior of the classification technique. It can be observed that the

Data set Method Accuracy Complexity
German Neural network 77.84 6 inputs

Neurorule 77.25 4 rules
Trepan 73.95 21 nodes
C4.5 71.56 54 nodes
C4.5rules 74.25 17 rules
EODG 72.45 9 nodes

Benel Neural network 71.85 7 inputs
Neurorule 71.85 6 rules
Trepan 71.85 21 nodes
C4.5 70.03 114 nodes
C4.5rules 70.12 17 rules
EODG 71.37 5 nodes

Bene2 Neural network 74.09 7 inputs
Neurorule 74.13 7 rules
Trepan 74.01 17 nodes
C4.5 73.09 578 nodes
C4.5rules 73.51 27 rules
EODG 72.38 7 nodes

Table 1: Classification accuracy of rule, tree and diagram extraction techniques

Neurorule and Trepan algorithms fairly well approximate the performance of the neural

networks from which they were derived. For the Bene2 data set, the Neurorule method

even outperforms the neural network slightly. Both algorithms consistently yield very

good classification performance when compared to C4.5, C4.5rules and EODG. Besides

classification performance, we also report the number of inputs, extracted rules or nodes.

10

When looking at these criteria, it becomes clear that N eurorule and Trepan extract

concise decision models. Although the EODG algorithm extracts very concise repre

sentations as well, its classification performance is inferior when compared to Neurorule

and Trepan. The size of the C4.5-tree is in all cases prohibitively large for visualization

purposes.

Although the knowledge descriptions extracted by Neurorule or Trepan already offer

an insightful explanation of the neural network model they were generated from, they

lack an efficient evaluation scheme by which the expert can validate the knowledge as a

whole, or apply it to case-by-case decision making. For those purposes, diagrammatic

notations such as decision tables, trees or diagrams, instead of being induced directly,

can additionally provide a more suited visualization of the extracted rule sets. Thus,

the format in which the knowledge is being communicated can be transformed without

causing any loss of predictive accuracy. This idea will be elaborated on next.

3.2 Step 2: Visualizing the Extracted Knowledge using Deci

sion Diagrams

In previous work [1], we have largely focused on the use of a particular class of (lexico

graphically ordered) decision tables in this subsequent knowledge visualization step. It

was shown that this restricted type of decision table exhibits very similar properties to a

decision tree, in that it can be efficiently evaluated in a top-down manner. Rather than

having to evaluate the textual rule expressions one by one, the credit-scoring expert

can thus quickly reach a conclusion for a given application by following the proper path

through this tree structure. For example, in Figure 5, a decision tree is shown that

is functionally equivalent to the prior rule set of Figure 4 (i.e., it classifies all possible

applicants in the same way).

While retaining the predictive accuracy of the original rule set, the top-down read

ability of a decision tree makes it a seemingly attractive visual representation of the

extracted knowledge. However, a well-known property that can undermine the concise

ness and interpretability of decision trees (and hence also of lexicographically ordered

11

Years
Client

:$12 months

Term

>3

other

scclorC

other

Figure 5: Example of an (ordered) decision tree for Bene1/Neurorule

>!2.40€

decision tables) is the inherent replication of subtrees implementing terms in disjunctive

concepts (as explained, e.g., in [16]). This is the reason why we have decided to also

investigate decision diagrams as an alternative representation that could help avoid such

unnecessary replication, provided that a suitable attribute ordering can be found for the

problem at hand. The principal goal of this study therefore is to empirically verify these

theorized advantages in a real-life credit-scoring setting.

For example, although the tree shown in Figure 5 is substantially smaller than the

corresponding C4.5-tree (cf. Table 1), it still contains a certain degree of replication.

Most notably, two out of the three subtrees rooted at a 'years client'-test node are

isomorphic. In contrast, by reducing the tree into a decision diagram, in which recurring

parts are shared through multiple incoming edges, a smaller representation is obtained

(cf. Figure 6, below).1 In the latter, the subgraph rooted at the rightmost of the two

lTo produce these graph drawings, we used the Graphviz software [12] from AT&T Laboratories
(http://www.research.att.com/sw!tools/graphviz).

12

'years client'-nodes is thus included once instead of twice. If these size savings are indeed

substantial on average, a decision diagram will provide a valuable alternative knowledge

visualization.

sector C

> 12 months

cash provisioning

:£ 12 months

second
hand car

:£ 12.40 €

> 12.40 €

other

>3

Figure 6: Minimum-size MDD for Bene1/Neurorule

Hence, we further processed each rule set by joining nominal attribute values that do

not appear in any rule antecedent into a common 'other' state, and by rewriting rules

containing negations or m-of-n expressions into disjunctive normal form. Based on the

latter format, we then built a decision diagram representation, using the standard im

plementations of logical sum and product provided by the MDD-package. As explained

13

in section 2, the size of the resulting diagram depends on the order in which the at

tributes are evaluated. To find an optimal order (i.e., which results in a minimum-size

MDD), we implemented a simple exhaustive search procedure, at every step of which

two neighboring variables in the order are swapped. Considering that adjacent variable

pairs can be swapped efficiently by a local exchange of subgraphs [11], and given the

input space reduction achieved in the preceding step of the knowledge discovery process,

execution turned out to be feasible (other more efficient minimization algorithms are

described elsewhere, e.g. in [10]). As a result of this optimization process, we ended up

with a minimum-size MDD for each rule set. Figure 6 earlier depicted the MDD thus

obtained from the Bene1 rule set extracted by Neurorule. The results for all MDDs are

listed in Table 2. Most importantly, in all cases, the diagrams were sufficiently concise

to be easily understood and applied.

Data set Extraction Internal nodes Internal nodes Size
method in min.-size MDD in matching tree saving

German Neurorule 7 14 50%
Trepan 7 7 0%

Bene1 Neurorule 8 12 33.3%
Trepan 14 29 51.7%

Bene2 Neurorule 11 28 60.7%
Trepan 16 51 68.6%

Table 2: MDD size results

In Table 2, we can also see that, except for the German credit classifier produced by

Trepan, substantial size gains are being achieved as a result of MDD reduction (unlike,

e.g., for the learning algorithm applied in [7], which reportedly produced few node

merging on real-world data sets). To give an idea of the amount of subgraph sharing,

we have included a column displaying the size of the equivalent decision tree obtained

when the same (total) attribute ordering is adopted (note that we are not considering

unordered trees or graphs at this point). To make the analysis fair, we avoid repetitive

counting of sink nodes, and measure size in terms of the number of internal nodes. The

14

percentage in the final column thus provides an indication of the effectiveness of the

merging rule.

As explained above, the reported figures are for minimum-size MDDs. Unlike in prior

decision diagram based learning approaches, we do not have to revert to a greedy or

dering strategy, or to incremental reordering methods (as in [18]), because MDDs are

applied only after the input space has been drastically reduced in the first step of the

process. Consequently, we are able to more fully explore the impact of variable ordering

on diagram size. Figure 7 displays the observed size distribution for all investigated

cases. Along the y-axis of each bar plot, the number of condition orders is indicated

that lead to the number of internal nodes specified on the x-axis. The resulting distri

bution curve for the MDDs is depicted by solid boxes; empty boxes indicate the same

relation for the matching decision trees (i.e., without subgraph merging). Although,

even with non-optimal attribute orders, the MDDs obtained still are relatively small on

average (most points on the MDD curves are well to the left of the tree size curve),

the importance of finding an appropriate attribute ordering becomes clear. For exam

ple, for Bene1/Trepan, the number of internal nodes varies from 14 to 38. Obviously,

where comprehensibility and evaluation efficiency are concerned, this is an important

difference. Hence, as could be expected, the utility of decision diagram techniques as a

visual communication aid strongly depends on whether an adequate ordering strategy

is applied.

4 Conclusions and Future Work

In this paper, we have demonstrated the effectiveness of a two-step approach to build

accurate yet comprehensible credit-scoring models from data, using three real-life data

sets. Firstly, powerful rule set classifiers were obtained using neural network rule ex

traction techniques (viz., Neurorule and Trepan). In the second step, these were then

compactly visualized in the form of decision diagrams, thus providing the credit-scoring

expert with a comprehensible and efficiently applicable notation, while retaining the

15

'50

180

160 200

140

120 150

100

80 100

60

0

0 ~ ~. ~
10 12 14 16 18 20

(a) German/Neurorule (b) German/Trepan

9<l0,----~----.--,---~---.-__,
3000,-----.--------.----,-_~-~-_____,

800

'500
700

'00 '000

500

1500
400

300 1000

200

':oL----J.Jl,d..hIWJo 1JlllllI1J21llli1JUl0 JWlJWjdUlWJ!~IIIIJLllJWIII~~~!llJWn~~fiL........JU"~o~,o 50:'------...Jo 'u.LLlJ,dl,LLl.I..Lo Ll..l.LL3hJl1lJlJLO HIlJ1JllLll~III)llJlJLJJJl~~ 1WWl
5
llJlJLJJJl
O

llJlJLJJJl,1WWl
O

J1JWlJlJ
70

(c) Benel /N eurorule (d) Benel/Trepan

3000,-----.--------.---,---~-~-____, '000,------._----._----._---._---._--._--.

2600 5000

2000 4000

1600 3000

1000 '000

(e) Bene2 /N eurorule (f) Bene2/Trepan

Figure 7: Size distribution of decision diagram vs. tree

16

predictive accuracy of the original rule set. To minimize the size of the resulting dia

grams, an exact variable order optimization procedure was applied. In all cases, this

approach yielded highly accurate classifiers, compared to the decision tree and diagram

inducers C4.5 and EODG, while the resulting decision diagrams were also satisfactorily

concise. We found that the MDD reduction mechanism was quite effective, in that sev

eral isomorphic subgraphs are being shared which would otherwise be replicated when

using a decision tree representation. This is a noteworthy result, considering that the

theorized advantages of decision diagram inducers did thus far not often directly mate

rialize in a real-life setting. Finally, the importance of selecting a good attribute order

was demonstrated.

Although the obtained decision diagrams are clearly more compact than their decision

tree counterparts, it has to be noted that we have restricted the comparison to both

ordered diagrams and trees (i.e., in which the order of testing variables does not differ

between different branches). Clearly, the search space of finding a minimal unordered

representation (sometimes also referred to as 'branching programs' or 'free' diagrams)

is much larger, while the relative advantages of graph sharing might be less prominent.

Secondly, we have implicitly assumed that a compact graph representation is to be

preferred over a larger tree-based representation. Obviously, overly large decision trees

inhibit the intuitiveness and usability of the extracted knowledge, hence succinctness is

indeed an important factor. However, an interesting topic for further research would

be to investigate, in an experimental setting, to what extent credit-scoring experts are

actually at ease interpreting these graph-based decision schemes as opposed to the more

conventional tree-based schemes. In that case, additional evaluation criteria would,

e.g., have to be the average time required by practitioners to classify applicants, or the

observed frequency of classification mistakes.

17

References

[1] B. Baesens, R Setiono, C. Mues, and J. Vanthienen. Using neural network rule

extraction and decision tables for credit-risk evaluation. Management Science,

49(3):312-329, 2003.

[2] B. Baesens, T. Van Gestel, S. Viaene, M. Stepanova, J. Suykens, and J. Vanthienen.

Benchmarking state of the art classification algorithms for credit scoring. Journal

of the Operational Research Society, 54(6):627-635, 2003.

[3] RE. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, C-35(8):677-691, 1986.

[4] M.W. Craven and J.W. Shavlik. Extracting tree-structured representations of

trained networks. In D. Touretzky, M. Mozer, and M. Hasselmo, editors, Ad

vances in Neural Information Processing Systems (NIPS), volume 8, pages 24-30,

Cambridge, MA, U.S., 1996. MIT Press.

[5] RH. David, D.B. Edelman, and A.J. Gammerman. Machine learning algorithms

for credit-card applications. IMA Journal of Mathematics Applied In Business and

Industry, 4:43-51, 1992.

[6] V.S. Desai, J.N. Crook, and G.A. Overstreet Jr. A comparison of neural networks

and linear scoring models in the credit union environment. European Journal of

Operational Research, 95(1):24-37, 1996.

[7] T. Elomaa and M. Kaariainen. On the practice of branching program boosting.

Lecture Notes in Artificial Intelligence, 2167:133-144, 2001.

[8] U.M. Fayyad and K.B. Irani. Multi-interval discretization of continuous-valued

attributes for classification learning. In Proceedings of the Thirteenth International

Joint Conference on Artificial Intelligence (IJCAI), pages 1022-1029, Chambery,

France, 1993. Morgan Kaufmann.

18

[9] C. Files. A New Functional Decomposition Method As Applied to Machine Learning

and VLSI Layout. PhD thesis, Department of Electrical and Computer Engineering,

Portland State University, 2000.

[10] S.J. Friedman and K.J. Supowit. Finding the optimal variable ordering for binary

decision diagrams. IEEE Transactions on Computers, 39(5):710-713, 1990.

[11] M. Fujita, Y. Matsunaga, and T. Kakuda. On variable ordering of binary decision

diagrams for the application of multi-level logic synthesis. In Proceedings of the

European Design Automation Conference, pages 50-54, 1991.

[12] E.R Gansner, E. Koutsofios, S.C. North, and K.P. Vo. A technique for drawing

directed graphs. IEEE Transactions on Software Engineering, 19(3):214-230, 1993.

[13] W.E. Henley and D.J. Hand. Construction of a k-nearest neighbour credit-scoring

system. IMA Journal of Mathematics Applied In Business and Industry, 8:305-321,

1997.

[14] T. Horiyama and T. Ibaraki. Ordered binary decision diagrams as knowledge-bases.

Artificial Intelligence, 136(2):189-213, 2002.

[15] T. Kam, T. Villa, RK. Brayton, and A.L. Sangiovanni-Vincentelli. Multi-valued

decision diagrams: Theory and applications. International Journal on Multiple

Valued Logic, 4(1-2):9-62, 1998.

[16] R Kohavi. Wrappers for Performance Enhancement and Oblivious Decision

Graphs. PhD thesis, Department of Computer Science, Stanford University, 1996.

[17] R Kohavi and C.H. Li. Oblivious decision trees, graphs, and top-down pruning.

In Proceedings of the Fourteenth International Joint Conference on Artificial In

telligence, pages 1071-1077, Montreal, Quebec, Canada, 1995. Morgan Kaufmann

Publishers.

19

[18] A.L. Oliveira and A.L. Sangiovanni-Vincentelli. Using the minimum description

length principle to infer reduced ordered decision graphs. Machine Learning,

25(1):23-50, 1996.

[19] J.R. Quinlan. C4.5 programs for machine learning. Morgan Kaufmann, 1993.

[20] R. Setiono and H. Liu. Symbolic representation of neural networks. IEEE Com

puter, 29(3):71-77, 1996.

[21] A. Steenackers and M.J. Goovaerts. A credit scoring model for personal loans.

Insurance: Mathematics and Economics, 8:31-34, 1989.

[22] L.C. Thomas. A survey of credit and behavioural scoring: forecasting financial risk

of lending to customers. International Journal of Forecasting, 16:149-172, 2000.

20

