
A BRANCH-AND-BOUND ALGORITHM FOR STABLE SCHEDULINC 
IN SINGLE-MACHINE PRODUCTION SYSTEMS 

ROEL LEUS • WILLY HERROELEN 

OR 0428 



A branch-and-bound algorithm for stable scheduling In 
single-machine production systems 

Roel Leus • Willy Herroelen 
Katholieke Universiteit Leuven, Department of Applied Economics 

Naamsestraat 69, 3000 Leuven, Belgium 
{Roel.Leus ; vVilly.Herroelen }@econ.kuleuven.ac.be 

Robust scheduling aims at the construction of a schedule that is protected against uncertain 

events. A stable schedule is a robust schedule that will change little when variations in the 

input parameters arise. This paper proposes a branch-and-bound algorithm for optimally 

solving a single-machine scheduling problem with stability objective, when a single job is 

anticipated to be disrupted. 
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1. Introduction 

Manufacturing schedules are rarely executed in a 'vacuum' environment and regularly suffer 

disruptions from a variety of sources like resource unavailability, tardy deliveries of material 

or sub-assemblies, altered work content of some jobs, etc. Anticipation of uncertainty in 

the planning stage can be done in multiple ways. A first option is to eliminate the use of 

schedules altogether and construct scheduling policies that will determine dynamically which 

jobs to dispatch at which time instances. We refer to Part 2 of Pinedo (2002) for a survey 

in machine scheduling and to Stork (2001) for a project scheduling setting. Alternatively, a 

schedule can be constructed despite the uncertainty inherent to the scheduling environment. 

Such a predictive schedule or pre-schedule serves very important functions (Mehta and U zsoy 

1998). The first is to allocate resources to the different activities to optimise some measure 

of performance - it may be necessary to make advance bookings of key staff or equipment 

to guarantee their availability. The second, as also pointed out by Wu et al. (1993), is to 

serve as a basis for planning external activities such as material procurement, preventive 

maintenance and delivery of orders to external or internal customers. Pre-schedules are the 

starting point for communication and coordination with external entities in the company's 

inbound and outbound supply chain: they are the basis for agreements with suppliers and 

subcontractors, as well as for commitments to customers. We refer the reader to Mehta 
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and Uzsoy (1998) and to Aytug et al. (2004) for a further discussion of the usefulness of a 

pre-schedule. 

For our purposes, a pre-schedule with express anticipation of disruptions (which is up 

to a certain degree 'protected') is called robust. When disruptions occur during schedule 

execution, the pre-schedule needs to be rescheduled. Logically, robust scheduling generally 

incorporates assumptions about the rescheduling strategy that will be followed. If we wish to 

exploit the aforementioned coordination purposes of a schedule to the best possible extent, 

it will be desirable that execution remain as 'close' as possible to the pre-schedule. The term 

stability refers to the situation where there is little deviation between the pre-schedule and the 

executed schedule. The thus-defined stability concept has in the literature also been termed 

solution robustness or predictable scheduling and constitutes a particular form of schedule 

robustness. Stability can be strived for during rescheduling, and is then alternatively referred 

to as minimally disruptive, minimal perturbation and minimum deviation scheduling; for 

examples we refer to Akturk and Gorgulu (1999), Bean et al. (1991), Calhoun et al. (2002), 

Raheja and Subramaniam (2002), Rangsaritratsamee et al. (2004) and Wu et al. (1993). The 

option that we explore in this paper is to introduce stability already into the pre-schedule. 

Examples from literature are sparse, we mention Mehta and Uzsoy (1998), O'Donovan et 

al. (1999) and Leus (2003). Sevaux and Sorensen (2003) construct single-machine pre­

schedules that are solution-robust and at the same time do not deviate much from an input 

baseline solution (for instance the basic weekly production schedule), which is a still different 

application of stability. 

In the following section, we will introduce some notation and outline the problem we 

wish to solve. Section 3 presents a mathematical formulation and explains how the model 

is solved. Our computational experiments with the proposed algorithms are presented in 

Section 4 and we round off the paper with some conclusions (Section 5). 

2. Notation and problem statement 

Uncertainty during schedule execution is modelled by variability in job durations. In light 

of the difficulty of scheduling with continuous duration distributions, a number of studies 

have resorted to modelling duration variability by means of discrete scenarios, we refer to 

Daniels and Carrillo (1997), Daniels and Kouvelis (1995) and Kouvelis and Yu (1997). This 

will also be our choice, and we additionally evade inherent complexity due to the possible 
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combinations of job duration realisations by optimising for the situation in which a single 

job is expected to deviate from its pre-schedule duration. For the alternative, where the job 

durations would be independent, the evaluation of most objective functions boils down to the 

generalised PERT-problem, which is particularly difficult (see Hagstrom 1988). The resulting 

restricted model is useful when disturbances are sparse and spread throughout time, such 

that the number of interactions is limited. This is especially applicable when resources are 

not machines but human beings, such that job durations are not mere realisations of nature 

but rather manageable to a certain extent. Examples in which comparable suggestions have 

been made are Adiri et al. (1989) (a single deterministic or stochastic breakdown), Leon et al. 

(1994) (one disruption on a single fallible machine in a job shop) and Mehta and Uzsoy (1998) 

(minimise the distance from a schedule with all jobs disrupted). In a reactive rather than 

proactive (robust) setting, we find similar considerations in Hall and Potts (2004) (analysis 

of schedule disruptions caused by the arrival of a single set of new jobs). Finally, a reasoning 

quite akin to ours in a graph coloring context can be found in Yanez and RamIrez (2003), 

where the robustness of a coloring is measured as the probability of the coloring remaining 

valid after one random complementary edge is added to the edge set. 

We assume that a set of jobs N, INI = n, with deterministic durations di , i E N, is to be 

scheduled on a single machine, a solution being a pre-schedule S that specifies starting times 

Si(S) for all jobs i. We impose a deadline w on the pre-schedule: Si(S) + di :::; w, Vi E N. 

A probability of disruption Pi is associated with every job i E N, which reflects the relative 

chance of the job suffering a perturbation in its duration. In our optimisation model, Pi is 

the probability that job i is the unique disrupted job, and so we assume L.N Pi = 1. We 

underline the fact that this single-disruption restriction is a simplification in the model, but 

that we do not impose this constraint on the actual job duration realisations! More in 

particular, any number r of activities can undergo a duration disruption by selection of r 

activities without replacement out of N, the probability of selection of activity i each time 

proportional to Pi' Our computational results (see Section 4) will show that the model is 

in fact quite robust to variations in the actual number of disrupted jobs. Random variable 

Li denotes the increase in pre-schedule duration di for job i if i is disturbed. Li is assumed 

discrete with probability mass function (pmf) gi (.), which associates non-zero probability 

with positive values lik E Wi, where Wi denotes the set of disturbance scenarios for the 

duration of job i; L.kEwi gi(lik) = 1 and we write gik as shorthand for gi(lik); the lik-variables 

are indexed from small to large. Note that any continuous distribution can be approximated 
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by choosing I '1f i I appropriately large. 

Logically, the actual starting time of job i is a random variable Si(S), which is dependent 

on the pre-schedule. Stability considerations will often make it undesirable, even impossible, 

to commence processing of a job earlier than its pre-scheduled starting time: job execution 

cannot start before auxiliary resources and tooling are freed elsewhere in the shop and 

before the necessary parts and materials are delivered to the processing site, and the parties 

responsible for these prerequisites have normally been communicated as due date the pre­

schedule starting time at the initial schedule development. We model this restriction by 

imposing that jobs are not started earlier than foreseen, i.e. Si(S) ::; Si(S), Vi E N, which 

guarantees that actual production will strictly cling to the pre-schedule if all goes as planned 

(no disruptions). Areas of scheduling where such constraints have already been explicitly 

recognised are 'real-life' environments such as course scheduling, sports timetabling and 

railway and airline scheduling. 

When the pre-schedule is implemented, disruption incident information for a particular 

job logically becomes available only when the job is executed. Actually, the exact timing is 

not even important since we reschedule simply by right-shifting the remaining jobs without 

re-sequencing. If we define [i] to be the job that is scheduled in the i-th position, then 

S[I] (S) = S[I] (S) and Sri] (S) = max{ Sri] (S); S[i-l] (S) + D[i-l]}, i = 2, ... , n, with Di a stochas­

tic variable representing the actual duration of i according to the disruption scheme described 

above. A non-negative cost Ci is incurred per unit-time overrun on the start time of job i, 

to penalise the resulting system nervousness and shop coordination difficulties (internal sta­

bility) as well as the delivery delay towards the customer (external stability). The expected 

weighted deviation between actual and planned job starting times (the latter corresponding 

with the pre-schedule) is used as stability measure for a pre-schedule S: we minimise objec­

tive function 2:N cj(ESj(S) - Sj(S)), where E is the expectation operator. For encoding 

reasons, we require that all values Ci and Pi be rational numbers represented by two integers, 

and that gi map into the set of rational numbers. Disruption lengths lik are assumed to be 

integer. 

The scheduling problem as set out above has been shown to be NP-hard in the ordi­

nary sense by Leus and Herroelen (2004), even if all I '1f i I = 1, by means of a reduction 

from P211I:wjCj (whose decision problem version was proved to be ordinarily NP-complete 

via reduction from KNAPSACK by Bruno et al. 1974). In fact, a proof similar to the 

one in Leus and Herroelen (2004) can be set up to show strong NP-hardness by reduction 
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job i 1 2 3 4 5 6 

Pi 0.2 0.05 0.3 0.1 0.25 0.1 

I \[J i I 2 2 1 2 2 1 
lil (gil) 1(0.5) 1 (0.7) 2(1) 2(0.5) 1(0.5) 2(1) 
li2 (gi2) 2(0.5) 2(0.3) 4(0.5) 2(0.5) 

piELiLi/ Ci 0.3 0.065 0.6 0.3 0.09375 0.05 

Table 1: Disruption data for the example problem. 

from PII~wjCj, which is said by the website on complexity results for scheduling prob­

lems maintained by Peter Brucker and Sigrid Knust to have been shown strongly NP-hard, 

based on an unpublished reference of Jan-Karel Lenstra (see http://www.mathematik.uni­

osnabrueck.de/research/OR/class/). It is clear that the problem has an irregular objective 

function, so that an optimal solution need not necessarily exist without inserted idle time 

and a permutation of the jobs may not suffice to produce a solution. A survey of classical 

scheduling problems with this characteristic is given in Kanet and Sridharan (2000); in our 

particular environment of variable activity durations, inserted idle time can be envisaged as 

buffer time to cushion the propagation of a disruption towards the (machine) successors of 

the disrupted job. It is important to see that the evaluation of the objective function for 

a given solution can be performed in polynomial time (0 (n 2 maxiEN I \[J i I)), in other words, 

the intractability ofthe PERT-problem is not an issue here. Rather, the resource-allocation 

aspect itself seems to induce the complexity of the problem. 

We illustrate the problem setting by means of a small example. Consider an instance 

of the described problem with n = 6 (number of jobs), all jobs having equal disruption 

probability Pi = (i). Tasks indexed 5 and 6 are considered to be of high importance, the 

cost of delay in their starting times is C5 = C6 = 4; the other jobs i i- 5,6 have Ci = 1. All 

jobs have equal duration di = 1, and a time horizon of w = 9 time units is allotted to the 

set of jobs (e.g. one day's production shift length), such that we effectively have three spare 

units of time that can serve as buffer. Further information about the disruption scenarios 

of the different jobs is provided in Table 1. 

Probabilities Pi of disruption reflect the relative chance of each job suffering a perturba­

tion in its duration, with the possible perturbation lengths with their associated probabilities 

provided by the table. Job 1, for instance, has a relative probability of two out ten of suffer­

ing a duration disruption, and when it does undergo such disruption, this will be an increase 

of either one or two time units, both equally likely. 
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Figure 1: Optimal schedule for the example problem when w = 9. 

An optimal solution to the corresponding scheduling problem (a mathematical formula­

tion of the problem will be given in the next section) is depicted in Figure 1, the optimal 

objective function value is l.005. Clearly, the available idle time is put to good use: if we 

reduce w to 6 (no idle time anymore), the optimal solution has an associated cost of 4.08 

for optimal job sequence 6-2-5-4-1-3. Sequence 5-2-1-3-6-4 (optimal for w = 9) corresponds 

with a cost of 8.455 when w = 6, whereas 6-2-5-4-1-3 achieves a cost of l.435 when the 

scheduling horizon is nine time units. We point out that when the available float is zero, i.e. 

for the case w = 2:iEN di (= 6 for the example), ordering the jobs in non-decreasing expected 

weighted disruption length Pi ELi Li/Ci, with ELi the expectation operator with respect to Li, 

leads to an optimal schedule, which is easily shown by an adjacent interchange argument as 

pointed out in Leus and Herroelen (2004). We will refer to this rule as the EWDL-rule (for 

expected weighted disruption length). 

3. Model formulation and solution 

In light of the discussion in the previous section on the complexity status of the problem at 

hand, an optimal algorithm with better than exponential time complexity is unlikely to exist, 

and we will devise a branch-and-bound algorithm to perform implicit enumeration of the 

solution space. Section 3.1 presents a general mathematical formulation of the problem to 

be solved. In the subsequent Sections 3.2-3.4, we expound the branch-and-bound approach. 

In our lower-bound computations, we efficiently apply network-flow algorithms, a point on 

which we elaborate in Section 3.5. 

3.1. Model formulation 

For convenience, we first define some decision variables that will be used throughout the 

remainder of this paper. 

X ip = 1 if job i is processed in position p, 0 otherwise 
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Fp = the distance (or buffer size) between the jobs in position p and (p + 1) 

6.ijk = the delay in the start time of job j due to a disturbance according to scenario k of 

job i 

Clearly, inserting idle time before the job in first position or after the job in last position 

always leads to a dominated solution, so we only consider non-zero buffer sizes Fp for positions 

p = 1, ... , n - 1. The scheduling problem under study can now be formulated as follows, 

with aijk = PigikCj: 

subject to 
n 

p=l 

n 

i=l 

q~l 

n n IWil 

min L L L aijk6.ij k 

i=l j=l k=l 

i = 1, ... ,n 

P = 1, ... ,n 

6.ij k + L Fr 2: lik(XiP + Xjq - 1) 
r=p 

i, j,p, q = 1, ... , n; k = 1, ... , IWil ; i =1= j;p < q 

p=l i=l 

all 6.ijk, Fp 2: 0; all X ip E {O, 1} 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

The objective (1) is equal to the earlier presented expression L.Ncj(ESj(5) - sj(5)), in 

which the expected value of the starting time delay of activity j is computed by summing the 

values 6.ijk weighted with probability Pigik. Equations (2) and (3) ensure that each position 

corresponds with exactly one job. Restrictions on the values 6.ij k are imposed by (4) for 

indexes i and j that are assigned to positions P and q, respectively (the other equations are 

not restrictive). The corresponding delay in the start time of job j due to disruption in job 

i is equal to lik' the disruption length of i, minus L.;:! FrJ the buffer size in place between 

the positions P and q. Finally, equation (5) specifies the available total buffer space. 

The foregoing model can be seen to be of the following structure: 

. I mmay 
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subject to 

Ax+By 2: b 

y2:0 

xEX 

(P) 

with X the set of x-vectors corresponding with Xip-values that represent valid sequences 

(clearly, IXI = n!). 

An order relation is a subset of the Cartesian product C x C of its ground set C (in 

the context of the paper, a set of job pairs) fulfilling the requirements of reflexivity, anti­

symmetry and transitivity. For a binary relation C, we can write aCb to mean that (a, b) is 

in C. A complete or total order relation additionally satisfies the comparability condition 

that either aCb or bCa for any a, b. Clearly, there is a one-to-one correspondence between 

each x E X and a total ordering of N. 

3.2. General approach of the branch-and-bound algorithm 

In this section, we describe the development of a branch-and-bound algorithm for solving 

(P). The solution space is scanned by partitioning X into subsets X h and solving (P) for 

each of the restrictions x E X h . When Xh is restricted to a singleton, (P) boils down to 

inserting buffers into a fully specified job sequence. In this case, Xh induces a total ordering 

Ah on N: for all two jobs i,j E N, i i- j, either (i,j) E Ah or (j,i) E A h . During our 

search, we will also consider subsets X h ~ X defined by a partial ordering Ah of Nand 

containing all x-vectors with associated complete order T(x) such that Ah ~ T(x). We 

denote by rp(N, A, w) the optimal objective function value of (P) when the imposed deadline 

is wand the solution space is restricted to x-vectors having A ~ T(x). In other words, 

for any subset Xh ~ X, rp(N, A h , w) is the best (minimal) objective value reachable by any 

individual x E Xh . 

The branch-and-bound algorithm for (P) proposed in this paper proceeds as follows. 

From front to back of the machine, we fill one job position at a time, and each level of the 

search tree is associated with the filling of one position. In this way, the number of nodes 

at level z in case of full enumeration equals n! / (n - z)! (=the number of permutations of 

z elements from n). We initialise set Jo = 0 and order relation Ao = 0. A node h at 

level z(h) in the search tree corresponds with a subset Xh ~ X and Ah defining Xh imposes 
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Level 0 

Level 1 

Level 2 <2,4,*,*,*,*> 

Level 3 <2,3,5,*,*,*> 

Figure 2: Illustration of the branching scheme. The corresponding set Ah is described next 
to each node h. 

a complete order on subset Jh ~ N of size z( h). Per level in the search tree, we append 

one job to a partial sequence that comprises only the jobs in Jh ~ N that have so far been 

added and in which the jobs are sequenced in order of addition; each node h has n - z(h) 

child nodes; remark that z(h) = IJhl. Movement to node l from node h by branching 

corresponds with the selection of one element al E N\Jh, and we construct Jl = Jh U {al} 

and Al = Ah U {(i,al)li E Jh}, so we have Jh = U~~l{am}. We can extend Al with 

{(al,i)li E N\Jh}, but this is not used for objective function bounding (see Section 3.3). 

An illustration of the branching scheme is provided in Figure 2. 

N odes in the search tree are numbered in order of exploration and we traverse the tree in a 

depth-first manner (or last-in-first-out) , since at low-indexed levels, the bounds are not tight 

anyway, and we can reduce the computations in a node by using information from its direct 

parent node more easily, which will be made clear in Section 3.5 (the latter phenomenon has 

been referred to as the calculation restart advantage, see Parker and Rardin 1988). 

3.3. Bounding the objective function 

It is easily seen that job starting times can be obtained from the formulation as: 

(7) 

The precedence constraints induced by the X-values can be combined explicitly into order 

relation A in the following way: 

(i,j) E A iff jp, q E {I, ... , n} : p < q /\ XipXjq = 1 (8) 
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The pair (p, q) for which XipXjq = 1 in (8) is logically unique. By means of (quite) some re­

arranging and simplifying of the terms, we can produce the following extended formulation 

(P) for the model (1)-(6). The only difference is that according to these new constraints, 

the last job need not end exactly at time w but may also finish sooner. 

subject to 

IWil 

min L L aijk~ijk 
(i,j)EA k=l 

(2),(3),(8), all X ip E {O, I} 

(i,j)EA 

(i,j) E A, k E Wi 

i E N 

Constraint set (10) restricts the search space to all complete orders A on N. 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

Constraints 

(11) are necessary to avoid concurrent scheduling of any two activities and replace equations 

(7): the starting time of an activity equals the starting time of its direct predecessor plus 

its direct predecessor's duration plus the buffer size in place between the two activities, 

and the buffers Fq are no longer useful in the formulation so they are eliminated and we 

change from equalities to 2;o:-constraints. Equations (12) determine the disruption lengths 

and are obtained from (4): first we add the term l:~:i F, - l:~:i F, + l:i~ll l:~=1 Xildi -

l:i~; l:~=1 Xildi (= 0) to the left hand side of (4). N ext we eliminate all X-values by 

summing only across the necessary running indexes by means of A; the starting times Si and 

Sj as defined in (7) are then readily recognised. What remains is Aij(A) = l:i~; l:~=1 Xildi , 

which represents the sum of the job durations between i and j according to A if (i, j) E A, 

otherwise O. Constraint (5) can be re-written into s[nJ + d[nJ = W, which is then translated 

into constraint set (13), whence the possibility of non-zero Fn-

At this point in our expose, we make the following observation that is important enough 

to warrant a lemma: 

Lemma 1 Without loss of generality, we can set all job durations equal to zero, if we ac­

cordingly subtract l:~=1 d i from w. 
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Proof. Model (1)-(6) remains unchanged if the proposed change is made. _ 

The adaptation to the model corresponding with this lemma is assumed to have been 

imposed in the remainder of this paper, but was relegated to this point in the text in order to 

enhance readability and generality of the foregoing. Activity starting times for a particular 

solution are implicit from job sequencing and buffer sizing. The need for quantities Aij is 

also obliterated. 

We have explained in Section 3.2 that a node h in the branch-and-bound tree corresponds 

with a subset Xh ~ X defined by a partial ordering Ah of N; from equivalence between 

models (F) and (P), rp(N, Ah, w) equals the best attainable objective value of (P) with extra 

constraint Ah ~ A. A lower bound rpO(N, Ah,w) for rp(N,Ah'W) is obtained by replacing 

constraint set (10) together with Ah ~ A by constraint A = Ah. For the resulting relaxation, 

if either i or j is in N\Jh then the corresponding 6 ijk = O. Consequently, an optimal solution 

to this relaxation will have the same objective value as an optimum for (P) with job set Jh , 

which shows that rpO(N, Ah'W) = rp(Jh, Ah'W). We also note that rp°(J,A,w) = rp(J,A,w) 

when A is a complete order on J, which is the case when J = Jh and A = Ah. In leaf 

nodes h of the search tree (with z(h) = nand Jh = N), Xh is restricted to a singleton and 

rpo (Jh , Ah , w) is the exact objective function value of the individual leaf node solution. We 

will discuss how function rpo is computed in Section 3.5. 

Next, we focus on incorporating the expected cost of disruption of the jobs in N\Jh . 

The expected disruption of a job j E N\Jh by i E Jh is lower bounded by the quantity 

Pi ~kEWi 9ik min{O; lik - w}, since N\Jh will be appended after the chain of jobs Jh and no 

more than w time units can be inserted between i and j to cushion disruption of i; this 

leads to quantity q(w, h) = "'I:.(i,))E(hx(N\h)) PiCj "'I:.kEwi 9ik min{O; lik -w}. The lower bound 

rpO(N, Ah'W) +q(w,h) for rp(N, Ah,w) is referred to as LBo. 

Because set Jh is entirely executed before N\Jh, any feasible solution to (F) 'assigns' 

float quantity f (0 ~ f ~ w) to N\Jh (to be inserted between N\Jh-jobs) and (w - f) is 

available for Jh , if we neglect float value F[z(h)]. Therefore, in any search node h, 

with lbx(j, h) a lower bound on rp(N\Jh, 0, 1), the expected cost of disruption of N\Jh-

jobs by other jobs in N\Jh (and x an integer index above zero). Two such bounds lbx 

are considered. The first bound lb1 (j, h) exploits the fact that scheduling with zero float 
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is polynomially solvable. We create an auxiliary problem in which we set each disruption 

length in scenario k of each activity i equal to max{O; lik - f} and the deadline is O. Ib l (1, h) 

does indeed constitute a lower bound because the available float is re-used in its entirety 

to cushion disruptions in each individual activity duration; the scheduling problem is solved 

by the EWDL--rule. A different bounding approach is based on the following insight: by 

Jensen's Inequality, if we replace all disruption scenarios k E Wi of the jobs i E N\Jh by 

one single disruption with length ELiLi, the resulting objective function is a lower bound 

to that of the original problem. Next, replacing all cost coefficients Ci by Ci* with i* the 

job in N\ Jh with lowest cost, and likewise taking for all jobs the same lowest probability 

and disruption length, does not increase the objective value. For the resulting set of I N\ Jh I 

identical jobs, sequencing is no longer needed and optimal starting times can be obtained by 

means of network-flow techniques (see again Section 3.5). We call the resulting bound Ib2 . 

For LE2 , a local minimum suffices for minimisation in f since the expression to be 

minimised is convex, which follows from convexity of <pO when a full order is specified, and 

from convexity of Ib2 , and the sum of two convex functions is also convex. The former 

convexity result derives from sensitivity analysis in linear programs, more specifically from 

the global dependence of the objective on the right-hand side vector (we obtain that <pO is 

convex in (w - 1) for f E [0; w], and therefore also in f on the same interval), and Ib2 is also 

the output of a linear program. Unfortunately, Ib l and thereby also LBI is not convex (for 

a counterexample, see Appendix A). LEI is computed by consideration of all discrete values 

f in [0; w], while Golden Section Search can be applied for determining LE2 , in which we 

examine only the discrete values for f. The function to be minimised need not be unimodal, 

which is normally a condition for applicability of Golden Section Search, because it is convex. 

It is clear that the determination of LEI and LE2 may both require a significant amount of 

computational effort. We have therefore also implemented 'simpler' lower bounds SLEx = 

q(w,h) + <P(Jh, Ah,w) + lbx(w, h), x = 1,2, in which both terms in the expression to be 

minimised in (15) receive the maximum float w. The SLBx-bounds are logically never 

tighter than their LEx-counterparts due to the monotonicity of <p and lbx in f. 

3.4. Further algorithmic details 

In this section, we discuss the topics of dominance rules, intermediary feasible solutions, the 

choice of the order of exploration of branching alternatives, and pre-processing. 
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3.4.1. Dominance rules 

A pairwise interchange argument shows that any two consecutive jobs i, j in an optimal 

solution either are in EWDL-order or have non-zero buffer between their positions. More in 

particular, when we schedule i immediately before j, it should hold that either PicjELjLj ::; 

pjciELiLi, or else a buffer of size at least 1 should be inserted between the two positions, 

otherwise the solution is dominated. We can restrict our search to integral buffer sizes (hence, 

'non-zero' leads to the' 2: 1 ') since an optimal solution exists with integral starting times, 

which follows from our discussion in Section 3.5. This additional constraint can be explicitly 

imposed on the starting times of the jobs in Jh . When the cumulative minimal buffer sizes 

exceed W, the current search node can be fathomed; this test is performed implicitly by the 

flow computations in Section 3.5. In any node h of the search tree, we let 6t denote the 

minimal distance between i and j. This gives rise to a starting time constraint in the form 

of (16) to replace (11) - normally with di = 0: 

(i,j)EA (16) 

The cumulative 6-values can be subtracted from the float f that is available for jobs N\Jh 

in lower-bound computations. 

Other minimal distances can be computed between the starting times of pairs of jobs 

in the partial order, based on the current incumbent and lower bounds, but this has not 

been implemented. Such minimal distances can be dealt with in exactly the same way. 

Construction of the transitive closure of the resulting distance matrix as a means of constraint 

propagation is possible, but these transitive constraints are immediately imposed anyway by 

the flow model of Section 3.5. 

3.4.2. Intermediary feasible solutions 

Intermediary feasible solutions are constructed very easily, since any linear extension of Ah 

in node h is allowable; each solution yields a global upper bound. Buffer insertion is then 

still an issue, however. This can be performed in polynomial time (see Section 3.5), but is 

nonetheless costly in terms of CPU-time. We therefore resort to (a slightly adapted version 

of) the heuristic ADFF (activity-dependent float factor, proposed in Herroelen and Leus 

2004), which simply produces activity starting times in closed-form expression rather than 

depend on an optimisation run, and performs better than other 'buffer insertion' heuristics. 
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The algorithm proceeds as follows. For a full order A on N that is input to the algorithm, 

the starting time of an activity i is the integer nearest to 6i(A)w, 'AJith 

We see that 6i(A) :::; 6j(A) if (i,j) E A, such that si(ADFF) :::; sj(ADFF), and we also 

have w 2:: si(ADFF) for every i E N since 6i E [0; 1], so the resulting schedule is feasible. In 

ADFF, the starting time of activity i equals its earliest possible starting time 0 augmented 

with fraction 6i of the available float, where 6i attempts to measure what proportion of 

cost dependent on the position of i is related to activity pairs before i in A. During the 

search, we maintain an n-vector with an arbitrary permutation of the job indexes (initialised 

with index i in the i-th position), which is continuously updated to be compatible with all 

branching decisions leading to the current search node. Each time an update is needed, we 

re-run ADFF based on the new corresponding full order on N. 

3.4.3. Order of exploration 

Because of the fact that the lower-bound computations are intimately tied with the incre­

mental construction of solutions (see Section 3.5), it would be difficult to use them as the 

basis for determining the order of exploration of the child nodes of a node in the search tree, 

since the bounds would then need to be computed for all branching alternatives before one 

of the alternatives is implemented. We therefore order the candidate jobs in decreasing 

order of a pseudo-cost of insertion, which is an estimate of the true cost, but no bound. 

The role of this pseudo-cost is in guiding heuristic decisions in the algorithm, not in gen­

erating incumbent solutions or in proving fathomability (Parker and Rardin 1988). In our 

implementation, we simply scan the branching alternatives in EWDL-order. 

3.4.4. Pre-processing 

It is clear that activities with zero cost coefficient can be sequenced last: this is always 

a dominant decision. In fact, those activities can be removed from the problem descrip­

tion in a pre-processing phase without impact on the objective function. The same goes 

for activities i with zero PiELiLi. Additionally, pre-processing can reduce the size of the 

scheduling instance, especially for small w, in the following way. We know that ESj = 
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LiEN Pi LkEW gikl::..ijk. If we denote by w; the set of disruption scenarios of i with lik < W 
i=FJ ' 

and wf = Wi \ w; then ESj = LiEN Pi LkEW1 gik max{O; lik - SBij } + LiEN Pi LkEW2 gik(lik-
i#-j ., i=FJ' 

S Bij) , with S B the sum of the buffers in place. We can see that all scenarios in Wf can be re-

placed by one disruption scenario k* with lik* = LkEW2 giklik/ LkEW2 gik and gik* = LkEW2 gik 
" , 

without influence on the objective function. Unfortunately, we work with integer data, so in 

order for this rule to be implemented, the time horizon will probably need to be discretised 

more finely. Computationally, this poses no problem, but the dominance rule in Section 

3.4.1, which imposes unit-time differences between job starting times, loses much of its value. 

Therefore, this pre-processing rule is not implemented. 

We have already explained that when w = 0, (P) can be solved in polynomial time. 

Similarly, an optimal polynomial-time algorithm exists when w 2: LiEN li,IWil - lmax, with 

lmax = maxiEN li,lwil: schedule one activity arg maxiEN li,lwil last, the other elements of N in 

arbitrary order, and insert a buffer of size li,lwil after each activity i but the last. Other 

isolated special cases might also allow for a dedicated polynomial-time solution procedure, 

but in general, for intermediary choices of w, the required computational effort cannot be 

guaranteed to be polynomial. We empirically examine the running times of our algorithm 

as a function of w in Section 4. 

3.5. Network flows 

Herroelen and Leus (2004) have examined how the scheduling of activities with a partial 

order and without resource constraints can be performed in the duration-disruption setting 

outlined in the foregoing sections; it turns out that this can be achieved by the solution of 

a linear program, the dual of which is a minimum-cost network-flow problem (MCNFP). In 

particular therefore, the problem can be solved in polynomial time. We will explain how 

their solution method is invoked to compute rp( Jh , A h , w) with Ah a full order on Jh . We 

first write out the underlying model, in which Jh is augmented with a dummy start node 0 

and dummy end node (n + 1), both with zero cost and zero disruption probability, which 

come first and last in Ah , respectively. The model focuses on the relative position of the jobs 

in time rather than on absolute values of starting times, which is reflected in the absence of 

sign constraints for the s-variables. 

IWil 

min ~ ~ Qijkl::..ijk 

(i,j)EAh k=l 
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subject to 

-h 
SJ· - S; > 6·· ,- 2J 

So - Sn+1 2:: -w 

(i,j)EAh 

(i,j) E A h , k E Wi 

all ~ijk 2:: 0; all Si unrestricted in sign 

(18) 

(19) 

(20) 

(21 ) 

If we assign non-negative multipliers Xij, Yijk and v to the constraints (18), (19) and (20), 

respectively, the dual of the foregoing model can be written as follows: 

max L 8t X ij + L likYijk - WV (22) 
(i,j)EAh (i,j)EAh 

kEWi 

subject to 

{ 
0 

L Xij - L Xji + L Yijk - L Yjik = V 

(i,j)EAh (j,i)EAh (i,j)EAh (j,i)EAh -v 
kEWi kEWj 

i E Jh,i =1= O,n+ 1 
i = 0 (23) 
i=n+l 

(24) 

This is a MCNFP with node set Jh and arc set Ah augmented with return arc (n + 1,0). 

Each arc (i,j) E Ah is actually a multi-arc, representing !Wi! + 1 individual arcs with flow 

quantities Xij and Yijl to YijlWil; Xij has the lowest profit 8& = 0 or 1 and is uncapacitated, 

while Yijk has profit coefficient lik and flow capacity CXijk. 

In every node of the search tree, we could solve stand-alone MCNFPs to produce lower 

bounds, but we will approach this issue more efficiently: we maintain a flow network in which 

a flow is preserved at all times that is feasible for the current search node, such that good 

starting solutions are immediately available for step-wise primal algorithms, which proceed 

to optimal solutions through a direct, constructive sequence of improving feasible solutions. 

In our application, optimal solution of the resulting MCNFP is obtained by means of the 

strongly polynomial minimum-mean cycle-cancelling algorithm (Ahuja et al. 1993), in which 

the successive negative-cost augmenting directed cycles in the residual network are identified 

by the algorithm of Karp (1978) as the negative cycles with minimum mean cost (the mean 

cost of a cycle is its cost divided by the number of arcs it contains). Remark that the residual 

network is always strongly connected, given the uncapacitated x-arcs and return flow v, such 

that Karp's algorithm is easily implemented. In the search for a negative-cost augmenting 
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cycle and in the longest-path computations, we can exploit the fact that from the multi-arc 

between any two nodes, maximum two individual arcs need actually be considered, namely 

the unsaturated one with maximal benefit (as forward arc) and the flow-carrying arc with 

minimal benefit (as backward arc); these two may be identical. Node 0 is chosen as the 

source for Karp's algorithm. 

Intuitive insights such as those cited in Dasdan and Gupta (1998) for enhancing algorith­

mic efficiency have been tested but are of little value because of the density of the network. 

When the capacity of flow-bearing arcs is re-set to zero, for instance due to backtracking, the 

arc flows are removed by means of one or more augmenting cycles that contain the arcs in 

question as backward arcs; these augmenting cycles are identified by a (strongly polynomial) 

shortest augmenting-path algorithm. If the MCNFP is unbounded, the primal model is 

infeasible because the cumulative minimal starting-time differences 8t exceed w, in which 

case we can fathom the current search node and backtrack (the infinite-capacity positive-gain 

augmenting cycle C is composed of x-arcs and v, with :E (i,j)EC 8t > w). Otherwise, once 
#(n+l,O) 

an optimal MCNFP-solution is found, an optimal solution to model (17)-(21) is constructed 

by exploiting complementary-slackness conditions for linear programs. The following cases 

can be distinguished: 

1. Yijk = O. Since 6.ijk = 0 (complementary slackness), Sj 2: Si + lik' 

2. 0 < Yijk < O!ijk· This leads to 6. ij k + Sj - Si = lik (complementary slackness) and 

6.i jk = 0 (for the same reason), so Sj = Si + lik' 

3. Yijk = O!ijk· In this case, 6. ij k + Sj - Si = lik' and since 6.ijk > 0, we obtain that 

Si 2: Sj - lik' 

For the x-arcs, we have 

2. Xij > O. This yields Sj = Si + 8t. 
Using these observations, we can find the solution of the primal problem by solving 

a longest-path problem in the residual network (which may have negative arc lengths), 

where arcs lengths are equal to the minimum timelags between the job starting times -

remark that the longest path from 0 to i minimises Si subject to the equality and inequality 
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constraints. For arcs in the residual network corresponding with forward arcs in the original 

network, only cases 1 and 2 are relevant, for backward arcs, only 2 and 3. Without loss 

of better solutions, we choose So = 0 and Sn+1 = w. The remaining starting times are 

well defined because the residual network does not contain a positive cycle, from optimality 

of the MCNFP-solution. Also, at most one arc corresponding with each multi-arc carries 

flow at a value strictly between its lower and upper bound, because of the structure of the 

profit coefficients, which allows to easily identify the predecessor disruption scenario up to 

which jobs are protected. The longest-path problem is solved using an adaptation of the 

FIFO label-correcting algorithm: from So and Sn+1, we can obtain permanent starting times 

for intermediary jobs i if equality restrictions relate Si to other permanent starting times 

(while in principle, for label-correcting algorithms such as the FIFO algorithm, all labels are 

temporary until termination of the algorithm, see Ahuja et al. 1993). 

4. Computational experiments 

In this section, we discuss the experimental setup of our computational experiments (Section 

4.1), we provide some figures to illustrate the computational efficiency of our branch-and­

bound algorithm (Section 4.2), and we compare the optimal solutions to our model with 

other scheduling approaches with respect to protection against uncertainty in job processing 

times (Section 4.3). 

4.1. Experimental setup 

To examine the performance of the branch-and-bound algorithm presented in Sections 3.2-

3.5 and the underlying model of Section 3.1, a series of computational experiments using 

randomly generated test problems has been conducted. For various values of n, we have 

generate a dataset of 25 problems. For each activity i in each instance of these datasets, 

the disturbance length Li is a discrete random variable for which gi is a discretised version 

of the continuous linearly decreasing pdf hi(x) = 2(I/Ii - x/If), for which the intercept Ii 

with the abscissa is a realisation of a discrete uniform random variable with support [2; 25]. 

Scenarios k E Wi are determined as follows: lil is randomly selected from the discrete values 

in [1;min{4,Ii - I}] and additional scenarios lik = li,k-l + 5 are added while lik :s; Ii - 1; 

each gik = hi(lik). For each job, a value qi is selected from the continuous domain [1; 8] 

and these values are then normalised to probabilities Pi. Cost coefficients Ci are integer 
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values randomly selected from [1; 4]. The schedule deadline w is in most cases determined 

as the upper integer of a fraction Wo of the average disruption length ELiLi, further averaged 

(with equal weights) across all jobs i. For the example problem of Section 2, for instance, 

the average disruption length is (1.5 + 1.3 + 2 + 3 + 1.5 + 2)/6 = 1.8833, such that w = 3 

corresponds with Wo E [1.062 + E; 1.593], with E a small number. 

A description of the implementation of our algorithm is given in Appendix B. Our 

implementation takes all integer inputs. Since probabilities Pi and pmf gi may have frac­

tional values, the primal objective-function coefficients are multiplied by factor 10,000 and 

rounded to the lower integer. Our coding was performed in C, using the Microsoft Visual 

C++ 6.0 programming environment, and the experiments were run on a Dell Latitude D800 

portable computer with Pentium M processor with 1,400 MHz clock speed and 512 MB 

RAM, equipped with the Windows XP operating system. 

4.2. Computational efficiency 

For the dataset with eight jobs per scheduling problem, we present successive improvements 

in the efficiency of our branch-and-bound (B&B) algorithm in Table 2. The table indicates 

the average percentage of number of nodes visited and of CPU-time when compared with 

the final version of the algorithm (setting "(5)"), which makes use ofthe dominance rule and 

the simple lower bounds SLEI and SLE2, but not of the generation of intermediary feasible 

solutions, nor of the more involved lower bounds LEI and LE2. 

We notice that the amount of float w is a key determinant for the value of the algorithmic 

enhancements that we apply to the base setting (1). Intermediate feasible solutions turn out 

to be completely useless: the number of search nodes is never even slightly reduced compared 

with the reference setting (5). For w = 1, considerable running-time improvements are 

achieved by SLEI , SLE2 and the dominance rule, but LEI and LE2 are not able to further 

reduce the search space significantly. For slightly higher w (wo = 0.5), the reference setting 

(5) is still among the best, although inclusion of LEI allows to gain on running time by 

means of the reduction of the number of nodes in the search tree by about 18%; the gain in 

CPU-time is less then proportionate, however. If we further increase w, both LEI and LE2 

cut away a part of the search tree in comparison with case (5) but this benefit is more than 

offset by the incremental computational effort required by these bounds, such that in total 

their incorporation has a strongly disadvantageous effect on the CPU-time. When Wo = 2.5, 

we observe that the algorithmic enhancements that were useful for small float values are 
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w=l Wo= 0.5 
CPU nodes CPU nodes 

(1) = branching + LBo 579.59% 551.02% 165.75% 178.40% 

(2) = (1) + SLBI 455.97% 415.99% 146.62% 155.59% 

(3) = (1) + SLB2 554.84% 509.28% 163.62% 171.36% 

( 4) = (1) + dominance rule 172.07% 195.29% 144.93% 152.44% 

(5) = (1) + (2) + (3) + (4) 100.00% 100.00% 100.00% 100.00% 

(6) = (5) + intermed. solutions 103.10% 100.00% 102.56% 100.00% 

(7) = (5) + LBI 102.07% 97.93% 96.90% 82.87% 

(8) = (5) + LB2 111.06% 100.00% 125.71% 99.79% 

Wo= 1.5 Wo= 2.5 
CPU nodes CPU nodes 

(1) = branching + LBo 102.17% 107.09% 98.69% 101.23% 

(2) = (1) + SLBI 101.29% 105.82% 98.77% 101.16% 

(3) = (1) + SLB2 106.97% 101.18% 99.95% 101.23% 

( 4) = (1) + dominance rule 102.40% 104.01% 99.12% 100.32% 

(5) = (1) + (2) + (3) + (4) 100.00% 100.00% 100.00% 100.00% 

(6) = (5) + intermed. solutions 102.24% 100.00% 102.35% 100.00% 

(7) = (5) + LEI 166.29% 71.93% 268.19% 73.53% 

(8) = (5) + LB2 234.84% 90.65% 397.51% 88.16% 

Table 2: Successive improvements in the branch-and-bound algorithm. 

not valuable anymore, and increase rather than decrease the computational effort. In the 

eight-job dataset, Wo = 2.5 corresponds with a value for w between 9 and 16, with an average 

of just below 12. 

We have passed the IP-formulation (1)-(6) to the IP-solver Lindo (Industrial Lindo/PC 

release 6.01 (1997); the associated dynamic link library (dll) is called from our C-code). A 

comparison of the running times of the solver ("IP") with those of our algorithm ("B&B") 

in the reference setting (5) is provided in Table 3. The trends are obvious: we are able 

to produce optimal solutions to model (P) in considerably less computation time. We also 

notice that the computational effort required to produce optimal solutions goes up when w 

Increases. 

We elaborate on this behaviour in Figure 3 for larger values of wo, where case Wo = 0 

refers to w = 1; in the same graph, we also provide an indication of the evolution of the 

average number of nodes in the search tree as well as of the optimal objective function value. 

We observe that the computational effort is largest for Wo ranging from 2 tot 4 and then 

decreases with increasing woo The number of nodes in the search tree, on the other hand, 

takes on a much more moderate descent from that point onwards. One possible explanation 
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("E") and (2) randomly (in increasing order of job index, "I"). Afterwards, the jobs are 

scheduled subject to this full order, (1) by means of the ADFF-heuristic ("A") and (2) using 

the network-flow techniques of Section 3.5 ("N"). This results in four heuristics HEA, 

HEN, HIA and HIN (in which the second and third letter identify the sequencing and the 

scheduling method applied, respectively). Compared with the B&B-algorithm, the running 

times are negligible for all four the heuristics. 

Evaluation of the stability of each schedule takes place in the following way: for producing 

a particular realisation of job disruption lengths, we select a pre-specified number r of jobs 

without replacement out of N, with probability of selection of job i each time proportional 

to Pi' For each thus-selected job i, one disruption length lik is chosen by picking exactly one 

scenario out of Wi, where scenario k obviously has probability gik of being picked. The actual 

job starting times corresponding with a disruption realisation are obtained by starting each 

job at the maximum of the finishing time of its immediate machine predecessor and of its 

own pre-scheduled starting time. The weighted deviation for the corresponding realisation 

is then easily computed. Per scheduling instance and corresponding schedule, we estimate 

the expected weighted deviation by averaging the objective of 50,000 runs. All results in 

this section pertain to the case n = 8. 

Figure 4 summarises the results of our comparison with the benchmark heuristics as a 

function of Wo; Wo = 0 again corresponds with w = 1. We see that model (P) is robust to 

deviations from the one-disruption assumption (r = 1): even when the duration of half of 

the activities is perturbed (r = 4), the schedules still strongly outperforms all heuristics, 

especially for large float values. 

For low w-values, the sequencing approach is the key performance determinant: HEN and 

HEA cross the ordinate at slightly over 100% (remember that the EWDL-rule is optimal for 

w = OJ), versus some 200% for HIN and HIA. The peak around 6.5 for HEA and HIA can be 

explained as follows: the optimum of (P) reaches 0 for one instance, and so we have replaced 

the corresponding percentage difference by 1. In the wo-value range up to Wo = 7, we see that 

the percentage differences are rising sharply because the reference becomes lower and lower. 

The difference goes to infinity at 7, and the influence of the instance is 'neutralised' for this 

and larger woo If we were to continue the abscissa beyond Wo = 8, the same phenomenon 

would occur again for other instances. Since the MCNFP-method for scheduling is also able 

to reach this zero objective value, the same peak does not arise for HEN and HIN. These 

graphs suffice to show that large stability differences can come up, which would be even 
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Figure 4: Comparison with heuristics: the objective function resulting from simulation is 
expressed in percentage points compared with the output of model (P); Wo is on the abscissa. 
The four curves (highest to lowest) correspond with r = 1,2,3 and 4, respectively. 

more so if we were to compare with 'active' schedules (schedules without idle time), which 

completely disregard the available float time. 

The results depicted in Figure 4 are based on a simulation that draws the disruption 

lengths form the discrete input scenarios, as explained higher in this section. There is no 

guarantee, however, that actual disruptions in the project under study will take on the exact 

same values that were input to the model, which may either stem from a discretisation of 

a continuous pdf (as was done here) or be the collection of past experience on similar jobs. 

We evaluate the robustness of our model to deviations from the input scenarios by sampling 

disruption lengths from the continuous function that was the basis for the selection of the 

input scenarios - and which in a practical setting is generally unknown, such that discrete 

approximation is indeed a good alternative. More concretely, the disruption length of job i 

is now a random variable Li = Ii (l- yYJ;), with Ui a continuous random variable on domain 

[0; 1]. For these settings, we have made a comparison between our model and HEN, which 
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Figure 5: The results of the sampling from continuous distributions for HEN. The graph is 
constructed in a similar way as those in Figure 4. 

is the best of the proposed heuristics. This yields the graph represented as Figure 5. We 

conclude that, although the differences are smaller, the optimal one-disruption model still 

performs significantly better than HEN for all r-values. 

5. Summary and conclusions 

The stability objective is a rather new topic in the field of scheduling under uncertainty. 

This paper has examined the development of a stable one-machine schedule, in which small 

changes due to activity duration fluctuations have only a local effect and do not propagate 

throughout the scheduling horizon. Deterministic schedules are proposed with explicitly 

inserted idle time serving as protective buffer time. A mathematical-programming model 

was presented to minimise the expected weighted deviation in starting times of the jobs when 

exactly one job is anticipated to suffer a deviation from its pre-schedule duration. The model 

was solved by means of a dedicated branch-and-bound procedure. 

We conclude with the following statements. 

1. By means of the one-disruption restriction, our model is more easily solvable than the 

case with independent activity duration distributions. This approach is not conven­

tional and may give rise to polemic, in fact, one could argue that this line of reasoning 

that 'problems are caused locally, and do not interact with each other' is completely 

unsatisfactory. Nevertheless, the computational results that we obtain are encourag­

ing, in that the one-disruption model produces well protected schedules for a wide 

range of the actual number of disrupted activities. It is our opinion that this result 
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justifies further examination of this pragmatic approach to dealing with uncertainty, 

in which only the main effects of the separate disruption of each of the n activities 

are considered, rather than all 2n possible combinations of disruptions. Mere buffer 

insertion for a full order on the task set with independent durations already appears 

to constitute a formidable task. 

2. As was to be expected, the computational performance of our algorithm as well as the 

achieved stability crucially depend on the amount of buffer time that is available to be 

inserted into the schedule. With respect to computation time, this is mostly because 

the strength of the lower bounds and the value of the dominance rule decrease with 

increasing float. At the same time, the number of possible solutions also dramatically 

increases: there is a combinatorial explosion not unlike the impact of increasing the 

number of buffer spaces available for buffer allocation in production lines (see e.g. Lutz 

et al. 1998, and Papadopoulos and Vidalis 2001). The network-flow techniques that 

we apply largely eliminate this latter problem, however. 

3. Uncertainty is modelled by means of discrete duration scenarios. The model was shown 

to continue to produce high-quality results for the case where disruption realisations 

are not sampled exactly from these scenarios. Therefore, we can say that the model is 

relatively robust to deviations in its input (at least with respect to the disruption data). 

In the same vein, the model has also been shown to be robust against deviations from 

the one-disruption assumption. 

4. The branch-and-bound procedure that we have developed is several orders of magnitude 

faster than a general IP-solver. Nevertheless, the size of the scheduling instances 

that can be solved to guaranteed optimality remains limited and, especially for large 

float values, seems very little amenable to algorithmic speedup. This is not illogical 

in view of the limited size of problems solvable by other combinatorial optimisation 

approaches to scheduling under uncertainty (see Daniels and Carrillo 1997, Daniels 

and Kouvelis 1995, and Kouvelis and Yu 1997) and the additional complication that 

optimal schedules need not (and will generally not) be active. Further research is in 

order if realistically sized scheduling problems are to be dealt with. We are convinced 

that the insights provided in this paper can serve as guidelines in this process. 
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Appendices 

Appendix A Counterexample for convexity of lb I 

We examine the behaviour of lh for a scheduling problem with N\Jh containing two jobs, 

as a function of j for j = 0 to j = 3, if CI = C2 = 1, PI = 0.99, P2 = 0.01, 1Ji1 = {1, 2, 3}, 

'l!2 = {50, 51, 52}, and all 9ik equal. For successive values of j = 0,1,2,3, we have lb I = 

0.51,0.5,0.33,0, such that the speed of descent increases with j, and the function cannot be 

convex. 

Appendix B Description of the algorithmic implementation 

The branch-and-bound algorithm described in this paper has been implemented along the 

lines of the following pseudo-code. 

procedure BB () 

level=O; 

nrnodes=O; 

NEW_LEVEL: 

level++; 

nr_alternatives_explored[level] =0; 

generate_and_order_alternatives(); 

NEW_ALTERNATIVE: 

nr_alternatives_explored[level]++; 

nrnodes++; 

implement_next_branching_alternative(); 

if (fathomed) goto BACKTRACK; 

if (level<n) goto NEW_LEVEL; 

FEASIBLE_SOLUTION: 
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evaluate_objective_and_update_incumbent(); 

BACKTRACK: 

undo_branching_decisions_at_current_level(); 

level--; 

if (nrexplored[level+1]<n-level) 

level++; 

goto NEW_ALTERNATIVE; 

else if (level>O) goto BACKTRACK; 

FINISH: 

return; 
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