
A BRANCH-AND-BOUND ALGORITHM FOR STABLE SCHEDULINC
IN SINGLE-MACHINE PRODUCTION SYSTEMS

ROEL LEUS • WILLY HERROELEN

OR 0428

A branch-and-bound algorithm for stable scheduling In
single-machine production systems

Roel Leus • Willy Herroelen
Katholieke Universiteit Leuven, Department of Applied Economics

Naamsestraat 69, 3000 Leuven, Belgium
{Roel.Leus ; vVilly.Herroelen }@econ.kuleuven.ac.be

Robust scheduling aims at the construction of a schedule that is protected against uncertain

events. A stable schedule is a robust schedule that will change little when variations in the

input parameters arise. This paper proposes a branch-and-bound algorithm for optimally

solving a single-machine scheduling problem with stability objective, when a single job is

anticipated to be disrupted.

Key words: single-machine scheduling; uncertainty; robustness; branch-and-bound

1. Introduction

Manufacturing schedules are rarely executed in a 'vacuum' environment and regularly suffer

disruptions from a variety of sources like resource unavailability, tardy deliveries of material

or sub-assemblies, altered work content of some jobs, etc. Anticipation of uncertainty in

the planning stage can be done in multiple ways. A first option is to eliminate the use of

schedules altogether and construct scheduling policies that will determine dynamically which

jobs to dispatch at which time instances. We refer to Part 2 of Pinedo (2002) for a survey

in machine scheduling and to Stork (2001) for a project scheduling setting. Alternatively, a

schedule can be constructed despite the uncertainty inherent to the scheduling environment.

Such a predictive schedule or pre-schedule serves very important functions (Mehta and U zsoy

1998). The first is to allocate resources to the different activities to optimise some measure

of performance - it may be necessary to make advance bookings of key staff or equipment

to guarantee their availability. The second, as also pointed out by Wu et al. (1993), is to

serve as a basis for planning external activities such as material procurement, preventive

maintenance and delivery of orders to external or internal customers. Pre-schedules are the

starting point for communication and coordination with external entities in the company's

inbound and outbound supply chain: they are the basis for agreements with suppliers and

subcontractors, as well as for commitments to customers. We refer the reader to Mehta

1

and Uzsoy (1998) and to Aytug et al. (2004) for a further discussion of the usefulness of a

pre-schedule.

For our purposes, a pre-schedule with express anticipation of disruptions (which is up

to a certain degree 'protected') is called robust. When disruptions occur during schedule

execution, the pre-schedule needs to be rescheduled. Logically, robust scheduling generally

incorporates assumptions about the rescheduling strategy that will be followed. If we wish to

exploit the aforementioned coordination purposes of a schedule to the best possible extent,

it will be desirable that execution remain as 'close' as possible to the pre-schedule. The term

stability refers to the situation where there is little deviation between the pre-schedule and the

executed schedule. The thus-defined stability concept has in the literature also been termed

solution robustness or predictable scheduling and constitutes a particular form of schedule

robustness. Stability can be strived for during rescheduling, and is then alternatively referred

to as minimally disruptive, minimal perturbation and minimum deviation scheduling; for

examples we refer to Akturk and Gorgulu (1999), Bean et al. (1991), Calhoun et al. (2002),

Raheja and Subramaniam (2002), Rangsaritratsamee et al. (2004) and Wu et al. (1993). The

option that we explore in this paper is to introduce stability already into the pre-schedule.

Examples from literature are sparse, we mention Mehta and Uzsoy (1998), O'Donovan et

al. (1999) and Leus (2003). Sevaux and Sorensen (2003) construct single-machine pre­

schedules that are solution-robust and at the same time do not deviate much from an input

baseline solution (for instance the basic weekly production schedule), which is a still different

application of stability.

In the following section, we will introduce some notation and outline the problem we

wish to solve. Section 3 presents a mathematical formulation and explains how the model

is solved. Our computational experiments with the proposed algorithms are presented in

Section 4 and we round off the paper with some conclusions (Section 5).

2. Notation and problem statement

Uncertainty during schedule execution is modelled by variability in job durations. In light

of the difficulty of scheduling with continuous duration distributions, a number of studies

have resorted to modelling duration variability by means of discrete scenarios, we refer to

Daniels and Carrillo (1997), Daniels and Kouvelis (1995) and Kouvelis and Yu (1997). This

will also be our choice, and we additionally evade inherent complexity due to the possible

2

combinations of job duration realisations by optimising for the situation in which a single

job is expected to deviate from its pre-schedule duration. For the alternative, where the job

durations would be independent, the evaluation of most objective functions boils down to the

generalised PERT-problem, which is particularly difficult (see Hagstrom 1988). The resulting

restricted model is useful when disturbances are sparse and spread throughout time, such

that the number of interactions is limited. This is especially applicable when resources are

not machines but human beings, such that job durations are not mere realisations of nature

but rather manageable to a certain extent. Examples in which comparable suggestions have

been made are Adiri et al. (1989) (a single deterministic or stochastic breakdown), Leon et al.

(1994) (one disruption on a single fallible machine in a job shop) and Mehta and Uzsoy (1998)

(minimise the distance from a schedule with all jobs disrupted). In a reactive rather than

proactive (robust) setting, we find similar considerations in Hall and Potts (2004) (analysis

of schedule disruptions caused by the arrival of a single set of new jobs). Finally, a reasoning

quite akin to ours in a graph coloring context can be found in Yanez and RamIrez (2003),

where the robustness of a coloring is measured as the probability of the coloring remaining

valid after one random complementary edge is added to the edge set.

We assume that a set of jobs N, INI = n, with deterministic durations di , i E N, is to be

scheduled on a single machine, a solution being a pre-schedule S that specifies starting times

Si(S) for all jobs i. We impose a deadline w on the pre-schedule: Si(S) + di :::; w, Vi E N.

A probability of disruption Pi is associated with every job i E N, which reflects the relative

chance of the job suffering a perturbation in its duration. In our optimisation model, Pi is

the probability that job i is the unique disrupted job, and so we assume L.N Pi = 1. We

underline the fact that this single-disruption restriction is a simplification in the model, but

that we do not impose this constraint on the actual job duration realisations! More in

particular, any number r of activities can undergo a duration disruption by selection of r

activities without replacement out of N, the probability of selection of activity i each time

proportional to Pi' Our computational results (see Section 4) will show that the model is

in fact quite robust to variations in the actual number of disrupted jobs. Random variable

Li denotes the increase in pre-schedule duration di for job i if i is disturbed. Li is assumed

discrete with probability mass function (pmf) gi (.), which associates non-zero probability

with positive values lik E Wi, where Wi denotes the set of disturbance scenarios for the

duration of job i; L.kEwi gi(lik) = 1 and we write gik as shorthand for gi(lik); the lik-variables

are indexed from small to large. Note that any continuous distribution can be approximated

3

by choosing I '1f i I appropriately large.

Logically, the actual starting time of job i is a random variable Si(S), which is dependent

on the pre-schedule. Stability considerations will often make it undesirable, even impossible,

to commence processing of a job earlier than its pre-scheduled starting time: job execution

cannot start before auxiliary resources and tooling are freed elsewhere in the shop and

before the necessary parts and materials are delivered to the processing site, and the parties

responsible for these prerequisites have normally been communicated as due date the pre­

schedule starting time at the initial schedule development. We model this restriction by

imposing that jobs are not started earlier than foreseen, i.e. Si(S) ::; Si(S), Vi E N, which

guarantees that actual production will strictly cling to the pre-schedule if all goes as planned

(no disruptions). Areas of scheduling where such constraints have already been explicitly

recognised are 'real-life' environments such as course scheduling, sports timetabling and

railway and airline scheduling.

When the pre-schedule is implemented, disruption incident information for a particular

job logically becomes available only when the job is executed. Actually, the exact timing is

not even important since we reschedule simply by right-shifting the remaining jobs without

re-sequencing. If we define [i] to be the job that is scheduled in the i-th position, then

S[I] (S) = S[I] (S) and Sri] (S) = max{ Sri] (S); S[i-l] (S) + D[i-l]}, i = 2, ... , n, with Di a stochas­

tic variable representing the actual duration of i according to the disruption scheme described

above. A non-negative cost Ci is incurred per unit-time overrun on the start time of job i,

to penalise the resulting system nervousness and shop coordination difficulties (internal sta­

bility) as well as the delivery delay towards the customer (external stability). The expected

weighted deviation between actual and planned job starting times (the latter corresponding

with the pre-schedule) is used as stability measure for a pre-schedule S: we minimise objec­

tive function 2:N cj(ESj(S) - Sj(S)), where E is the expectation operator. For encoding

reasons, we require that all values Ci and Pi be rational numbers represented by two integers,

and that gi map into the set of rational numbers. Disruption lengths lik are assumed to be

integer.

The scheduling problem as set out above has been shown to be NP-hard in the ordi­

nary sense by Leus and Herroelen (2004), even if all I '1f i I = 1, by means of a reduction

from P211I:wjCj (whose decision problem version was proved to be ordinarily NP-complete

via reduction from KNAPSACK by Bruno et al. 1974). In fact, a proof similar to the

one in Leus and Herroelen (2004) can be set up to show strong NP-hardness by reduction

4

job i 1 2 3 4 5 6

Pi 0.2 0.05 0.3 0.1 0.25 0.1

I \[J i I 2 2 1 2 2 1
lil (gil) 1(0.5) 1 (0.7) 2(1) 2(0.5) 1(0.5) 2(1)
li2 (gi2) 2(0.5) 2(0.3) 4(0.5) 2(0.5)

piELiLi/ Ci 0.3 0.065 0.6 0.3 0.09375 0.05

Table 1: Disruption data for the example problem.

from PII~wjCj, which is said by the website on complexity results for scheduling prob­

lems maintained by Peter Brucker and Sigrid Knust to have been shown strongly NP-hard,

based on an unpublished reference of Jan-Karel Lenstra (see http://www.mathematik.uni­

osnabrueck.de/research/OR/class/). It is clear that the problem has an irregular objective

function, so that an optimal solution need not necessarily exist without inserted idle time

and a permutation of the jobs may not suffice to produce a solution. A survey of classical

scheduling problems with this characteristic is given in Kanet and Sridharan (2000); in our

particular environment of variable activity durations, inserted idle time can be envisaged as

buffer time to cushion the propagation of a disruption towards the (machine) successors of

the disrupted job. It is important to see that the evaluation of the objective function for

a given solution can be performed in polynomial time (0 (n 2 maxiEN I \[J i I)), in other words,

the intractability ofthe PERT-problem is not an issue here. Rather, the resource-allocation

aspect itself seems to induce the complexity of the problem.

We illustrate the problem setting by means of a small example. Consider an instance

of the described problem with n = 6 (number of jobs), all jobs having equal disruption

probability Pi = (i). Tasks indexed 5 and 6 are considered to be of high importance, the

cost of delay in their starting times is C5 = C6 = 4; the other jobs i i- 5,6 have Ci = 1. All

jobs have equal duration di = 1, and a time horizon of w = 9 time units is allotted to the

set of jobs (e.g. one day's production shift length), such that we effectively have three spare

units of time that can serve as buffer. Further information about the disruption scenarios

of the different jobs is provided in Table 1.

Probabilities Pi of disruption reflect the relative chance of each job suffering a perturba­

tion in its duration, with the possible perturbation lengths with their associated probabilities

provided by the table. Job 1, for instance, has a relative probability of two out ten of suffer­

ing a duration disruption, and when it does undergo such disruption, this will be an increase

of either one or two time units, both equally likely.

5

213
time

o 1 2 3 4 5 6 7 8 9 10

Figure 1: Optimal schedule for the example problem when w = 9.

An optimal solution to the corresponding scheduling problem (a mathematical formula­

tion of the problem will be given in the next section) is depicted in Figure 1, the optimal

objective function value is l.005. Clearly, the available idle time is put to good use: if we

reduce w to 6 (no idle time anymore), the optimal solution has an associated cost of 4.08

for optimal job sequence 6-2-5-4-1-3. Sequence 5-2-1-3-6-4 (optimal for w = 9) corresponds

with a cost of 8.455 when w = 6, whereas 6-2-5-4-1-3 achieves a cost of l.435 when the

scheduling horizon is nine time units. We point out that when the available float is zero, i.e.

for the case w = 2:iEN di (= 6 for the example), ordering the jobs in non-decreasing expected

weighted disruption length Pi ELi Li/Ci, with ELi the expectation operator with respect to Li,

leads to an optimal schedule, which is easily shown by an adjacent interchange argument as

pointed out in Leus and Herroelen (2004). We will refer to this rule as the EWDL-rule (for

expected weighted disruption length).

3. Model formulation and solution

In light of the discussion in the previous section on the complexity status of the problem at

hand, an optimal algorithm with better than exponential time complexity is unlikely to exist,

and we will devise a branch-and-bound algorithm to perform implicit enumeration of the

solution space. Section 3.1 presents a general mathematical formulation of the problem to

be solved. In the subsequent Sections 3.2-3.4, we expound the branch-and-bound approach.

In our lower-bound computations, we efficiently apply network-flow algorithms, a point on

which we elaborate in Section 3.5.

3.1. Model formulation

For convenience, we first define some decision variables that will be used throughout the

remainder of this paper.

X ip = 1 if job i is processed in position p, 0 otherwise

6

Fp = the distance (or buffer size) between the jobs in position p and (p + 1)

6.ijk = the delay in the start time of job j due to a disturbance according to scenario k of

job i

Clearly, inserting idle time before the job in first position or after the job in last position

always leads to a dominated solution, so we only consider non-zero buffer sizes Fp for positions

p = 1, ... , n - 1. The scheduling problem under study can now be formulated as follows,

with aijk = PigikCj:

subject to
n

p=l

n

i=l

q~l

n n IWil

min L L L aijk6.ij k

i=l j=l k=l

i = 1, ... ,n

P = 1, ... ,n

6.ij k + L Fr 2: lik(XiP + Xjq - 1)
r=p

i, j,p, q = 1, ... , n; k = 1, ... , IWil ; i =1= j;p < q

p=l i=l

all 6.ijk, Fp 2: 0; all X ip E {O, 1}

(1)

(2)

(3)

(4)

(5)

(6)

The objective (1) is equal to the earlier presented expression L.Ncj(ESj(5) - sj(5)), in

which the expected value of the starting time delay of activity j is computed by summing the

values 6.ijk weighted with probability Pigik. Equations (2) and (3) ensure that each position

corresponds with exactly one job. Restrictions on the values 6.ij k are imposed by (4) for

indexes i and j that are assigned to positions P and q, respectively (the other equations are

not restrictive). The corresponding delay in the start time of job j due to disruption in job

i is equal to lik' the disruption length of i, minus L.;:! FrJ the buffer size in place between

the positions P and q. Finally, equation (5) specifies the available total buffer space.

The foregoing model can be seen to be of the following structure:

. I mmay

7

subject to

Ax+By 2: b

y2:0

xEX

(P)

with X the set of x-vectors corresponding with Xip-values that represent valid sequences

(clearly, IXI = n!).

An order relation is a subset of the Cartesian product C x C of its ground set C (in

the context of the paper, a set of job pairs) fulfilling the requirements of reflexivity, anti­

symmetry and transitivity. For a binary relation C, we can write aCb to mean that (a, b) is

in C. A complete or total order relation additionally satisfies the comparability condition

that either aCb or bCa for any a, b. Clearly, there is a one-to-one correspondence between

each x E X and a total ordering of N.

3.2. General approach of the branch-and-bound algorithm

In this section, we describe the development of a branch-and-bound algorithm for solving

(P). The solution space is scanned by partitioning X into subsets X h and solving (P) for

each of the restrictions x E X h . When Xh is restricted to a singleton, (P) boils down to

inserting buffers into a fully specified job sequence. In this case, Xh induces a total ordering

Ah on N: for all two jobs i,j E N, i i- j, either (i,j) E Ah or (j,i) E A h . During our

search, we will also consider subsets X h ~ X defined by a partial ordering Ah of Nand

containing all x-vectors with associated complete order T(x) such that Ah ~ T(x). We

denote by rp(N, A, w) the optimal objective function value of (P) when the imposed deadline

is wand the solution space is restricted to x-vectors having A ~ T(x). In other words,

for any subset Xh ~ X, rp(N, A h , w) is the best (minimal) objective value reachable by any

individual x E Xh .

The branch-and-bound algorithm for (P) proposed in this paper proceeds as follows.

From front to back of the machine, we fill one job position at a time, and each level of the

search tree is associated with the filling of one position. In this way, the number of nodes

at level z in case of full enumeration equals n! / (n - z)! (=the number of permutations of

z elements from n). We initialise set Jo = 0 and order relation Ao = 0. A node h at

level z(h) in the search tree corresponds with a subset Xh ~ X and Ah defining Xh imposes

8

Level 0

Level 1

Level 2 <2,4,*,*,*,*>

Level 3 <2,3,5,*,*,*>

Figure 2: Illustration of the branching scheme. The corresponding set Ah is described next
to each node h.

a complete order on subset Jh ~ N of size z(h). Per level in the search tree, we append

one job to a partial sequence that comprises only the jobs in Jh ~ N that have so far been

added and in which the jobs are sequenced in order of addition; each node h has n - z(h)

child nodes; remark that z(h) = IJhl. Movement to node l from node h by branching

corresponds with the selection of one element al E N\Jh, and we construct Jl = Jh U {al}

and Al = Ah U {(i,al)li E Jh}, so we have Jh = U~~l{am}. We can extend Al with

{(al,i)li E N\Jh}, but this is not used for objective function bounding (see Section 3.3).

An illustration of the branching scheme is provided in Figure 2.

N odes in the search tree are numbered in order of exploration and we traverse the tree in a

depth-first manner (or last-in-first-out) , since at low-indexed levels, the bounds are not tight

anyway, and we can reduce the computations in a node by using information from its direct

parent node more easily, which will be made clear in Section 3.5 (the latter phenomenon has

been referred to as the calculation restart advantage, see Parker and Rardin 1988).

3.3. Bounding the objective function

It is easily seen that job starting times can be obtained from the formulation as:

(7)

The precedence constraints induced by the X-values can be combined explicitly into order

relation A in the following way:

(i,j) E A iff jp, q E {I, ... , n} : p < q /\ XipXjq = 1 (8)

9

The pair (p, q) for which XipXjq = 1 in (8) is logically unique. By means of (quite) some re­

arranging and simplifying of the terms, we can produce the following extended formulation

(P) for the model (1)-(6). The only difference is that according to these new constraints,

the last job need not end exactly at time w but may also finish sooner.

subject to

IWil

min L L aijk~ijk
(i,j)EA k=l

(2),(3),(8), all X ip E {O, I}

(i,j)EA

(i,j) E A, k E Wi

i E N

Constraint set (10) restricts the search space to all complete orders A on N.

(9)

(10)

(11)

(12)

(13)

(14)

Constraints

(11) are necessary to avoid concurrent scheduling of any two activities and replace equations

(7): the starting time of an activity equals the starting time of its direct predecessor plus

its direct predecessor's duration plus the buffer size in place between the two activities,

and the buffers Fq are no longer useful in the formulation so they are eliminated and we

change from equalities to 2;o:-constraints. Equations (12) determine the disruption lengths

and are obtained from (4): first we add the term l:~:i F, - l:~:i F, + l:i~ll l:~=1 Xildi -

l:i~; l:~=1 Xildi (= 0) to the left hand side of (4). N ext we eliminate all X-values by

summing only across the necessary running indexes by means of A; the starting times Si and

Sj as defined in (7) are then readily recognised. What remains is Aij(A) = l:i~; l:~=1 Xildi ,

which represents the sum of the job durations between i and j according to A if (i, j) E A,

otherwise O. Constraint (5) can be re-written into s[nJ + d[nJ = W, which is then translated

into constraint set (13), whence the possibility of non-zero Fn-

At this point in our expose, we make the following observation that is important enough

to warrant a lemma:

Lemma 1 Without loss of generality, we can set all job durations equal to zero, if we ac­

cordingly subtract l:~=1 d i from w.

10

Proof. Model (1)-(6) remains unchanged if the proposed change is made. _

The adaptation to the model corresponding with this lemma is assumed to have been

imposed in the remainder of this paper, but was relegated to this point in the text in order to

enhance readability and generality of the foregoing. Activity starting times for a particular

solution are implicit from job sequencing and buffer sizing. The need for quantities Aij is

also obliterated.

We have explained in Section 3.2 that a node h in the branch-and-bound tree corresponds

with a subset Xh ~ X defined by a partial ordering Ah of N; from equivalence between

models (F) and (P), rp(N, Ah, w) equals the best attainable objective value of (P) with extra

constraint Ah ~ A. A lower bound rpO(N, Ah,w) for rp(N,Ah'W) is obtained by replacing

constraint set (10) together with Ah ~ A by constraint A = Ah. For the resulting relaxation,

if either i or j is in N\Jh then the corresponding 6 ijk = O. Consequently, an optimal solution

to this relaxation will have the same objective value as an optimum for (P) with job set Jh ,

which shows that rpO(N, Ah'W) = rp(Jh, Ah'W). We also note that rp°(J,A,w) = rp(J,A,w)

when A is a complete order on J, which is the case when J = Jh and A = Ah. In leaf

nodes h of the search tree (with z(h) = nand Jh = N), Xh is restricted to a singleton and

rpo (Jh , Ah , w) is the exact objective function value of the individual leaf node solution. We

will discuss how function rpo is computed in Section 3.5.

Next, we focus on incorporating the expected cost of disruption of the jobs in N\Jh .

The expected disruption of a job j E N\Jh by i E Jh is lower bounded by the quantity

Pi ~kEWi 9ik min{O; lik - w}, since N\Jh will be appended after the chain of jobs Jh and no

more than w time units can be inserted between i and j to cushion disruption of i; this

leads to quantity q(w, h) = "'I:.(i,))E(hx(N\h)) PiCj "'I:.kEwi 9ik min{O; lik -w}. The lower bound

rpO(N, Ah'W) +q(w,h) for rp(N, Ah,w) is referred to as LBo.

Because set Jh is entirely executed before N\Jh, any feasible solution to (F) 'assigns'

float quantity f (0 ~ f ~ w) to N\Jh (to be inserted between N\Jh-jobs) and (w - f) is

available for Jh , if we neglect float value F[z(h)]. Therefore, in any search node h,

with lbx(j, h) a lower bound on rp(N\Jh, 0, 1), the expected cost of disruption of N\Jh-

jobs by other jobs in N\Jh (and x an integer index above zero). Two such bounds lbx

are considered. The first bound lb1 (j, h) exploits the fact that scheduling with zero float

11

is polynomially solvable. We create an auxiliary problem in which we set each disruption

length in scenario k of each activity i equal to max{O; lik - f} and the deadline is O. Ib l (1, h)

does indeed constitute a lower bound because the available float is re-used in its entirety

to cushion disruptions in each individual activity duration; the scheduling problem is solved

by the EWDL--rule. A different bounding approach is based on the following insight: by

Jensen's Inequality, if we replace all disruption scenarios k E Wi of the jobs i E N\Jh by

one single disruption with length ELiLi, the resulting objective function is a lower bound

to that of the original problem. Next, replacing all cost coefficients Ci by Ci* with i* the

job in N\ Jh with lowest cost, and likewise taking for all jobs the same lowest probability

and disruption length, does not increase the objective value. For the resulting set of I N\ Jh I

identical jobs, sequencing is no longer needed and optimal starting times can be obtained by

means of network-flow techniques (see again Section 3.5). We call the resulting bound Ib2 .

For LE2 , a local minimum suffices for minimisation in f since the expression to be

minimised is convex, which follows from convexity of <pO when a full order is specified, and

from convexity of Ib2 , and the sum of two convex functions is also convex. The former

convexity result derives from sensitivity analysis in linear programs, more specifically from

the global dependence of the objective on the right-hand side vector (we obtain that <pO is

convex in (w - 1) for f E [0; w], and therefore also in f on the same interval), and Ib2 is also

the output of a linear program. Unfortunately, Ib l and thereby also LBI is not convex (for

a counterexample, see Appendix A). LEI is computed by consideration of all discrete values

f in [0; w], while Golden Section Search can be applied for determining LE2 , in which we

examine only the discrete values for f. The function to be minimised need not be unimodal,

which is normally a condition for applicability of Golden Section Search, because it is convex.

It is clear that the determination of LEI and LE2 may both require a significant amount of

computational effort. We have therefore also implemented 'simpler' lower bounds SLEx =

q(w,h) + <P(Jh, Ah,w) + lbx(w, h), x = 1,2, in which both terms in the expression to be

minimised in (15) receive the maximum float w. The SLBx-bounds are logically never

tighter than their LEx-counterparts due to the monotonicity of <p and lbx in f.

3.4. Further algorithmic details

In this section, we discuss the topics of dominance rules, intermediary feasible solutions, the

choice of the order of exploration of branching alternatives, and pre-processing.

12

3.4.1. Dominance rules

A pairwise interchange argument shows that any two consecutive jobs i, j in an optimal

solution either are in EWDL-order or have non-zero buffer between their positions. More in

particular, when we schedule i immediately before j, it should hold that either PicjELjLj ::;

pjciELiLi, or else a buffer of size at least 1 should be inserted between the two positions,

otherwise the solution is dominated. We can restrict our search to integral buffer sizes (hence,

'non-zero' leads to the' 2: 1 ') since an optimal solution exists with integral starting times,

which follows from our discussion in Section 3.5. This additional constraint can be explicitly

imposed on the starting times of the jobs in Jh . When the cumulative minimal buffer sizes

exceed W, the current search node can be fathomed; this test is performed implicitly by the

flow computations in Section 3.5. In any node h of the search tree, we let 6t denote the

minimal distance between i and j. This gives rise to a starting time constraint in the form

of (16) to replace (11) - normally with di = 0:

(i,j)EA (16)

The cumulative 6-values can be subtracted from the float f that is available for jobs N\Jh

in lower-bound computations.

Other minimal distances can be computed between the starting times of pairs of jobs

in the partial order, based on the current incumbent and lower bounds, but this has not

been implemented. Such minimal distances can be dealt with in exactly the same way.

Construction of the transitive closure of the resulting distance matrix as a means of constraint

propagation is possible, but these transitive constraints are immediately imposed anyway by

the flow model of Section 3.5.

3.4.2. Intermediary feasible solutions

Intermediary feasible solutions are constructed very easily, since any linear extension of Ah

in node h is allowable; each solution yields a global upper bound. Buffer insertion is then

still an issue, however. This can be performed in polynomial time (see Section 3.5), but is

nonetheless costly in terms of CPU-time. We therefore resort to (a slightly adapted version

of) the heuristic ADFF (activity-dependent float factor, proposed in Herroelen and Leus

2004), which simply produces activity starting times in closed-form expression rather than

depend on an optimisation run, and performs better than other 'buffer insertion' heuristics.

13

The algorithm proceeds as follows. For a full order A on N that is input to the algorithm,

the starting time of an activity i is the integer nearest to 6i(A)w, 'AJith

We see that 6i(A) :::; 6j(A) if (i,j) E A, such that si(ADFF) :::; sj(ADFF), and we also

have w 2:: si(ADFF) for every i E N since 6i E [0; 1], so the resulting schedule is feasible. In

ADFF, the starting time of activity i equals its earliest possible starting time 0 augmented

with fraction 6i of the available float, where 6i attempts to measure what proportion of

cost dependent on the position of i is related to activity pairs before i in A. During the

search, we maintain an n-vector with an arbitrary permutation of the job indexes (initialised

with index i in the i-th position), which is continuously updated to be compatible with all

branching decisions leading to the current search node. Each time an update is needed, we

re-run ADFF based on the new corresponding full order on N.

3.4.3. Order of exploration

Because of the fact that the lower-bound computations are intimately tied with the incre­

mental construction of solutions (see Section 3.5), it would be difficult to use them as the

basis for determining the order of exploration of the child nodes of a node in the search tree,

since the bounds would then need to be computed for all branching alternatives before one

of the alternatives is implemented. We therefore order the candidate jobs in decreasing

order of a pseudo-cost of insertion, which is an estimate of the true cost, but no bound.

The role of this pseudo-cost is in guiding heuristic decisions in the algorithm, not in gen­

erating incumbent solutions or in proving fathomability (Parker and Rardin 1988). In our

implementation, we simply scan the branching alternatives in EWDL-order.

3.4.4. Pre-processing

It is clear that activities with zero cost coefficient can be sequenced last: this is always

a dominant decision. In fact, those activities can be removed from the problem descrip­

tion in a pre-processing phase without impact on the objective function. The same goes

for activities i with zero PiELiLi. Additionally, pre-processing can reduce the size of the

scheduling instance, especially for small w, in the following way. We know that ESj =

14

LiEN Pi LkEW gikl::..ijk. If we denote by w; the set of disruption scenarios of i with lik < W
i=FJ '

and wf = Wi \ w; then ESj = LiEN Pi LkEW1 gik max{O; lik - SBij } + LiEN Pi LkEW2 gik(lik-
i#-j ., i=FJ'

S Bij) , with S B the sum of the buffers in place. We can see that all scenarios in Wf can be re-

placed by one disruption scenario k* with lik* = LkEW2 giklik/ LkEW2 gik and gik* = LkEW2 gik
" ,

without influence on the objective function. Unfortunately, we work with integer data, so in

order for this rule to be implemented, the time horizon will probably need to be discretised

more finely. Computationally, this poses no problem, but the dominance rule in Section

3.4.1, which imposes unit-time differences between job starting times, loses much of its value.

Therefore, this pre-processing rule is not implemented.

We have already explained that when w = 0, (P) can be solved in polynomial time.

Similarly, an optimal polynomial-time algorithm exists when w 2: LiEN li,IWil - lmax, with

lmax = maxiEN li,lwil: schedule one activity arg maxiEN li,lwil last, the other elements of N in

arbitrary order, and insert a buffer of size li,lwil after each activity i but the last. Other

isolated special cases might also allow for a dedicated polynomial-time solution procedure,

but in general, for intermediary choices of w, the required computational effort cannot be

guaranteed to be polynomial. We empirically examine the running times of our algorithm

as a function of w in Section 4.

3.5. Network flows

Herroelen and Leus (2004) have examined how the scheduling of activities with a partial

order and without resource constraints can be performed in the duration-disruption setting

outlined in the foregoing sections; it turns out that this can be achieved by the solution of

a linear program, the dual of which is a minimum-cost network-flow problem (MCNFP). In

particular therefore, the problem can be solved in polynomial time. We will explain how

their solution method is invoked to compute rp(Jh , A h , w) with Ah a full order on Jh . We

first write out the underlying model, in which Jh is augmented with a dummy start node 0

and dummy end node (n + 1), both with zero cost and zero disruption probability, which

come first and last in Ah , respectively. The model focuses on the relative position of the jobs

in time rather than on absolute values of starting times, which is reflected in the absence of

sign constraints for the s-variables.

IWil

min ~ ~ Qijkl::..ijk

(i,j)EAh k=l

15

(17)

subject to

-h
SJ· - S; > 6·· ,- 2J

So - Sn+1 2:: -w

(i,j)EAh

(i,j) E A h , k E Wi

all ~ijk 2:: 0; all Si unrestricted in sign

(18)

(19)

(20)

(21)

If we assign non-negative multipliers Xij, Yijk and v to the constraints (18), (19) and (20),

respectively, the dual of the foregoing model can be written as follows:

max L 8t X ij + L likYijk - WV (22)
(i,j)EAh (i,j)EAh

kEWi

subject to

{
0

L Xij - L Xji + L Yijk - L Yjik = V

(i,j)EAh (j,i)EAh (i,j)EAh (j,i)EAh -v
kEWi kEWj

i E Jh,i =1= O,n+ 1
i = 0 (23)
i=n+l

(24)

This is a MCNFP with node set Jh and arc set Ah augmented with return arc (n + 1,0).

Each arc (i,j) E Ah is actually a multi-arc, representing !Wi! + 1 individual arcs with flow

quantities Xij and Yijl to YijlWil; Xij has the lowest profit 8& = 0 or 1 and is uncapacitated,

while Yijk has profit coefficient lik and flow capacity CXijk.

In every node of the search tree, we could solve stand-alone MCNFPs to produce lower

bounds, but we will approach this issue more efficiently: we maintain a flow network in which

a flow is preserved at all times that is feasible for the current search node, such that good

starting solutions are immediately available for step-wise primal algorithms, which proceed

to optimal solutions through a direct, constructive sequence of improving feasible solutions.

In our application, optimal solution of the resulting MCNFP is obtained by means of the

strongly polynomial minimum-mean cycle-cancelling algorithm (Ahuja et al. 1993), in which

the successive negative-cost augmenting directed cycles in the residual network are identified

by the algorithm of Karp (1978) as the negative cycles with minimum mean cost (the mean

cost of a cycle is its cost divided by the number of arcs it contains). Remark that the residual

network is always strongly connected, given the uncapacitated x-arcs and return flow v, such

that Karp's algorithm is easily implemented. In the search for a negative-cost augmenting

16

cycle and in the longest-path computations, we can exploit the fact that from the multi-arc

between any two nodes, maximum two individual arcs need actually be considered, namely

the unsaturated one with maximal benefit (as forward arc) and the flow-carrying arc with

minimal benefit (as backward arc); these two may be identical. Node 0 is chosen as the

source for Karp's algorithm.

Intuitive insights such as those cited in Dasdan and Gupta (1998) for enhancing algorith­

mic efficiency have been tested but are of little value because of the density of the network.

When the capacity of flow-bearing arcs is re-set to zero, for instance due to backtracking, the

arc flows are removed by means of one or more augmenting cycles that contain the arcs in

question as backward arcs; these augmenting cycles are identified by a (strongly polynomial)

shortest augmenting-path algorithm. If the MCNFP is unbounded, the primal model is

infeasible because the cumulative minimal starting-time differences 8t exceed w, in which

case we can fathom the current search node and backtrack (the infinite-capacity positive-gain

augmenting cycle C is composed of x-arcs and v, with :E (i,j)EC 8t > w). Otherwise, once
#(n+l,O)

an optimal MCNFP-solution is found, an optimal solution to model (17)-(21) is constructed

by exploiting complementary-slackness conditions for linear programs. The following cases

can be distinguished:

1. Yijk = O. Since 6.ijk = 0 (complementary slackness), Sj 2: Si + lik'

2. 0 < Yijk < O!ijk· This leads to 6. ij k + Sj - Si = lik (complementary slackness) and

6.i jk = 0 (for the same reason), so Sj = Si + lik'

3. Yijk = O!ijk· In this case, 6. ij k + Sj - Si = lik' and since 6.ijk > 0, we obtain that

Si 2: Sj - lik'

For the x-arcs, we have

2. Xij > O. This yields Sj = Si + 8t.
Using these observations, we can find the solution of the primal problem by solving

a longest-path problem in the residual network (which may have negative arc lengths),

where arcs lengths are equal to the minimum timelags between the job starting times -

remark that the longest path from 0 to i minimises Si subject to the equality and inequality

17

constraints. For arcs in the residual network corresponding with forward arcs in the original

network, only cases 1 and 2 are relevant, for backward arcs, only 2 and 3. Without loss

of better solutions, we choose So = 0 and Sn+1 = w. The remaining starting times are

well defined because the residual network does not contain a positive cycle, from optimality

of the MCNFP-solution. Also, at most one arc corresponding with each multi-arc carries

flow at a value strictly between its lower and upper bound, because of the structure of the

profit coefficients, which allows to easily identify the predecessor disruption scenario up to

which jobs are protected. The longest-path problem is solved using an adaptation of the

FIFO label-correcting algorithm: from So and Sn+1, we can obtain permanent starting times

for intermediary jobs i if equality restrictions relate Si to other permanent starting times

(while in principle, for label-correcting algorithms such as the FIFO algorithm, all labels are

temporary until termination of the algorithm, see Ahuja et al. 1993).

4. Computational experiments

In this section, we discuss the experimental setup of our computational experiments (Section

4.1), we provide some figures to illustrate the computational efficiency of our branch-and­

bound algorithm (Section 4.2), and we compare the optimal solutions to our model with

other scheduling approaches with respect to protection against uncertainty in job processing

times (Section 4.3).

4.1. Experimental setup

To examine the performance of the branch-and-bound algorithm presented in Sections 3.2-

3.5 and the underlying model of Section 3.1, a series of computational experiments using

randomly generated test problems has been conducted. For various values of n, we have

generate a dataset of 25 problems. For each activity i in each instance of these datasets,

the disturbance length Li is a discrete random variable for which gi is a discretised version

of the continuous linearly decreasing pdf hi(x) = 2(I/Ii - x/If), for which the intercept Ii

with the abscissa is a realisation of a discrete uniform random variable with support [2; 25].

Scenarios k E Wi are determined as follows: lil is randomly selected from the discrete values

in [1;min{4,Ii - I}] and additional scenarios lik = li,k-l + 5 are added while lik :s; Ii - 1;

each gik = hi(lik). For each job, a value qi is selected from the continuous domain [1; 8]

and these values are then normalised to probabilities Pi. Cost coefficients Ci are integer

18

values randomly selected from [1; 4]. The schedule deadline w is in most cases determined

as the upper integer of a fraction Wo of the average disruption length ELiLi, further averaged

(with equal weights) across all jobs i. For the example problem of Section 2, for instance,

the average disruption length is (1.5 + 1.3 + 2 + 3 + 1.5 + 2)/6 = 1.8833, such that w = 3

corresponds with Wo E [1.062 + E; 1.593], with E a small number.

A description of the implementation of our algorithm is given in Appendix B. Our

implementation takes all integer inputs. Since probabilities Pi and pmf gi may have frac­

tional values, the primal objective-function coefficients are multiplied by factor 10,000 and

rounded to the lower integer. Our coding was performed in C, using the Microsoft Visual

C++ 6.0 programming environment, and the experiments were run on a Dell Latitude D800

portable computer with Pentium M processor with 1,400 MHz clock speed and 512 MB

RAM, equipped with the Windows XP operating system.

4.2. Computational efficiency

For the dataset with eight jobs per scheduling problem, we present successive improvements

in the efficiency of our branch-and-bound (B&B) algorithm in Table 2. The table indicates

the average percentage of number of nodes visited and of CPU-time when compared with

the final version of the algorithm (setting "(5)"), which makes use ofthe dominance rule and

the simple lower bounds SLEI and SLE2, but not of the generation of intermediary feasible

solutions, nor of the more involved lower bounds LEI and LE2.

We notice that the amount of float w is a key determinant for the value of the algorithmic

enhancements that we apply to the base setting (1). Intermediate feasible solutions turn out

to be completely useless: the number of search nodes is never even slightly reduced compared

with the reference setting (5). For w = 1, considerable running-time improvements are

achieved by SLEI , SLE2 and the dominance rule, but LEI and LE2 are not able to further

reduce the search space significantly. For slightly higher w (wo = 0.5), the reference setting

(5) is still among the best, although inclusion of LEI allows to gain on running time by

means of the reduction of the number of nodes in the search tree by about 18%; the gain in

CPU-time is less then proportionate, however. If we further increase w, both LEI and LE2

cut away a part of the search tree in comparison with case (5) but this benefit is more than

offset by the incremental computational effort required by these bounds, such that in total

their incorporation has a strongly disadvantageous effect on the CPU-time. When Wo = 2.5,

we observe that the algorithmic enhancements that were useful for small float values are

19

w=l Wo= 0.5
CPU nodes CPU nodes

(1) = branching + LBo 579.59% 551.02% 165.75% 178.40%

(2) = (1) + SLBI 455.97% 415.99% 146.62% 155.59%

(3) = (1) + SLB2 554.84% 509.28% 163.62% 171.36%

(4) = (1) + dominance rule 172.07% 195.29% 144.93% 152.44%

(5) = (1) + (2) + (3) + (4) 100.00% 100.00% 100.00% 100.00%

(6) = (5) + intermed. solutions 103.10% 100.00% 102.56% 100.00%

(7) = (5) + LBI 102.07% 97.93% 96.90% 82.87%

(8) = (5) + LB2 111.06% 100.00% 125.71% 99.79%

Wo= 1.5 Wo= 2.5
CPU nodes CPU nodes

(1) = branching + LBo 102.17% 107.09% 98.69% 101.23%

(2) = (1) + SLBI 101.29% 105.82% 98.77% 101.16%

(3) = (1) + SLB2 106.97% 101.18% 99.95% 101.23%

(4) = (1) + dominance rule 102.40% 104.01% 99.12% 100.32%

(5) = (1) + (2) + (3) + (4) 100.00% 100.00% 100.00% 100.00%

(6) = (5) + intermed. solutions 102.24% 100.00% 102.35% 100.00%

(7) = (5) + LEI 166.29% 71.93% 268.19% 73.53%

(8) = (5) + LB2 234.84% 90.65% 397.51% 88.16%

Table 2: Successive improvements in the branch-and-bound algorithm.

not valuable anymore, and increase rather than decrease the computational effort. In the

eight-job dataset, Wo = 2.5 corresponds with a value for w between 9 and 16, with an average

of just below 12.

We have passed the IP-formulation (1)-(6) to the IP-solver Lindo (Industrial Lindo/PC

release 6.01 (1997); the associated dynamic link library (dll) is called from our C-code). A

comparison of the running times of the solver ("IP") with those of our algorithm ("B&B")

in the reference setting (5) is provided in Table 3. The trends are obvious: we are able

to produce optimal solutions to model (P) in considerably less computation time. We also

notice that the computational effort required to produce optimal solutions goes up when w

Increases.

We elaborate on this behaviour in Figure 3 for larger values of wo, where case Wo = 0

refers to w = 1; in the same graph, we also provide an indication of the evolution of the

average number of nodes in the search tree as well as of the optimal objective function value.

We observe that the computational effort is largest for Wo ranging from 2 tot 4 and then

decreases with increasing woo The number of nodes in the search tree, on the other hand,

takes on a much more moderate descent from that point onwards. One possible explanation

20

("E") and (2) randomly (in increasing order of job index, "I"). Afterwards, the jobs are

scheduled subject to this full order, (1) by means of the ADFF-heuristic ("A") and (2) using

the network-flow techniques of Section 3.5 ("N"). This results in four heuristics HEA,

HEN, HIA and HIN (in which the second and third letter identify the sequencing and the

scheduling method applied, respectively). Compared with the B&B-algorithm, the running

times are negligible for all four the heuristics.

Evaluation of the stability of each schedule takes place in the following way: for producing

a particular realisation of job disruption lengths, we select a pre-specified number r of jobs

without replacement out of N, with probability of selection of job i each time proportional

to Pi' For each thus-selected job i, one disruption length lik is chosen by picking exactly one

scenario out of Wi, where scenario k obviously has probability gik of being picked. The actual

job starting times corresponding with a disruption realisation are obtained by starting each

job at the maximum of the finishing time of its immediate machine predecessor and of its

own pre-scheduled starting time. The weighted deviation for the corresponding realisation

is then easily computed. Per scheduling instance and corresponding schedule, we estimate

the expected weighted deviation by averaging the objective of 50,000 runs. All results in

this section pertain to the case n = 8.

Figure 4 summarises the results of our comparison with the benchmark heuristics as a

function of Wo; Wo = 0 again corresponds with w = 1. We see that model (P) is robust to

deviations from the one-disruption assumption (r = 1): even when the duration of half of

the activities is perturbed (r = 4), the schedules still strongly outperforms all heuristics,

especially for large float values.

For low w-values, the sequencing approach is the key performance determinant: HEN and

HEA cross the ordinate at slightly over 100% (remember that the EWDL-rule is optimal for

w = OJ), versus some 200% for HIN and HIA. The peak around 6.5 for HEA and HIA can be

explained as follows: the optimum of (P) reaches 0 for one instance, and so we have replaced

the corresponding percentage difference by 1. In the wo-value range up to Wo = 7, we see that

the percentage differences are rising sharply because the reference becomes lower and lower.

The difference goes to infinity at 7, and the influence of the instance is 'neutralised' for this

and larger woo If we were to continue the abscissa beyond Wo = 8, the same phenomenon

would occur again for other instances. Since the MCNFP-method for scheduling is also able

to reach this zero objective value, the same peak does not arise for HEN and HIN. These

graphs suffice to show that large stability differences can come up, which would be even

22

200-, ---~-------.---'--'--.-------; 350-------------·-,-'--------,

1W~' ------------------------~~
--~-----./ ..

160 -----------~ - -::-~- ~-~/~-'
. ---" ~ .

-~~-.-..----
100 ,,".~-'

oo~.--------------------------~
1~--------------------------~

I
E.o -i-------- - - ----- 100 t------ ,--- '---- .--- ---

40 " I I

20 f-' -- ------------ ------.- ---- --- - ~

o I I

50 r--- ---- ---------~ - .~---

o~i ____ --__ ----__ ----__ --__ ~

(a) Results for HEN (b) Results for HIN

600 I -- - - --:-- ~-I

500 I 11:
1\" /;

J_ •••.•. ===-:4)~~\i1
100 l ~ "~_;~'-'.~-=..CC"c:~,~C-,-S»~ I

o 1,,- -, ~~- -,~-~_- ,~--J

(c) Results for HEA (d) Results for HIA

Figure 4: Comparison with heuristics: the objective function resulting from simulation is
expressed in percentage points compared with the output of model (P); Wo is on the abscissa.
The four curves (highest to lowest) correspond with r = 1,2,3 and 4, respectively.

more so if we were to compare with 'active' schedules (schedules without idle time), which

completely disregard the available float time.

The results depicted in Figure 4 are based on a simulation that draws the disruption

lengths form the discrete input scenarios, as explained higher in this section. There is no

guarantee, however, that actual disruptions in the project under study will take on the exact

same values that were input to the model, which may either stem from a discretisation of

a continuous pdf (as was done here) or be the collection of past experience on similar jobs.

We evaluate the robustness of our model to deviations from the input scenarios by sampling

disruption lengths from the continuous function that was the basis for the selection of the

input scenarios - and which in a practical setting is generally unknown, such that discrete

approximation is indeed a good alternative. More concretely, the disruption length of job i

is now a random variable Li = Ii (l- yYJ;), with Ui a continuous random variable on domain

[0; 1]. For these settings, we have made a comparison between our model and HEN, which

23

140,----------------,

80 +---------

w+--------------~

w+--------------~

o+--~-~-_-_-_--~~

o

Figure 5: The results of the sampling from continuous distributions for HEN. The graph is
constructed in a similar way as those in Figure 4.

is the best of the proposed heuristics. This yields the graph represented as Figure 5. We

conclude that, although the differences are smaller, the optimal one-disruption model still

performs significantly better than HEN for all r-values.

5. Summary and conclusions

The stability objective is a rather new topic in the field of scheduling under uncertainty.

This paper has examined the development of a stable one-machine schedule, in which small

changes due to activity duration fluctuations have only a local effect and do not propagate

throughout the scheduling horizon. Deterministic schedules are proposed with explicitly

inserted idle time serving as protective buffer time. A mathematical-programming model

was presented to minimise the expected weighted deviation in starting times of the jobs when

exactly one job is anticipated to suffer a deviation from its pre-schedule duration. The model

was solved by means of a dedicated branch-and-bound procedure.

We conclude with the following statements.

1. By means of the one-disruption restriction, our model is more easily solvable than the

case with independent activity duration distributions. This approach is not conven­

tional and may give rise to polemic, in fact, one could argue that this line of reasoning

that 'problems are caused locally, and do not interact with each other' is completely

unsatisfactory. Nevertheless, the computational results that we obtain are encourag­

ing, in that the one-disruption model produces well protected schedules for a wide

range of the actual number of disrupted activities. It is our opinion that this result

24

justifies further examination of this pragmatic approach to dealing with uncertainty,

in which only the main effects of the separate disruption of each of the n activities

are considered, rather than all 2n possible combinations of disruptions. Mere buffer

insertion for a full order on the task set with independent durations already appears

to constitute a formidable task.

2. As was to be expected, the computational performance of our algorithm as well as the

achieved stability crucially depend on the amount of buffer time that is available to be

inserted into the schedule. With respect to computation time, this is mostly because

the strength of the lower bounds and the value of the dominance rule decrease with

increasing float. At the same time, the number of possible solutions also dramatically

increases: there is a combinatorial explosion not unlike the impact of increasing the

number of buffer spaces available for buffer allocation in production lines (see e.g. Lutz

et al. 1998, and Papadopoulos and Vidalis 2001). The network-flow techniques that

we apply largely eliminate this latter problem, however.

3. Uncertainty is modelled by means of discrete duration scenarios. The model was shown

to continue to produce high-quality results for the case where disruption realisations

are not sampled exactly from these scenarios. Therefore, we can say that the model is

relatively robust to deviations in its input (at least with respect to the disruption data).

In the same vein, the model has also been shown to be robust against deviations from

the one-disruption assumption.

4. The branch-and-bound procedure that we have developed is several orders of magnitude

faster than a general IP-solver. Nevertheless, the size of the scheduling instances

that can be solved to guaranteed optimality remains limited and, especially for large

float values, seems very little amenable to algorithmic speedup. This is not illogical

in view of the limited size of problems solvable by other combinatorial optimisation

approaches to scheduling under uncertainty (see Daniels and Carrillo 1997, Daniels

and Kouvelis 1995, and Kouvelis and Yu 1997) and the additional complication that

optimal schedules need not (and will generally not) be active. Further research is in

order if realistically sized scheduling problems are to be dealt with. We are convinced

that the insights provided in this paper can serve as guidelines in this process.

25

Acknowledgments

This research has been partially supported by project OT /03/14 of the Research Fund

K.U.Leuven and project G.0109.04 of the Research Programme of the Fund for Scientific

Research - Flanders (Belgium) (F.W.O.-Vlaanderen).

Appendices

Appendix A Counterexample for convexity of lb I

We examine the behaviour of lh for a scheduling problem with N\Jh containing two jobs,

as a function of j for j = 0 to j = 3, if CI = C2 = 1, PI = 0.99, P2 = 0.01, 1Ji1 = {1, 2, 3},

'l!2 = {50, 51, 52}, and all 9ik equal. For successive values of j = 0,1,2,3, we have lb I =

0.51,0.5,0.33,0, such that the speed of descent increases with j, and the function cannot be

convex.

Appendix B Description of the algorithmic implementation

The branch-and-bound algorithm described in this paper has been implemented along the

lines of the following pseudo-code.

procedure BB ()

level=O;

nrnodes=O;

NEW_LEVEL:

level++;

nr_alternatives_explored[level] =0;

generate_and_order_alternatives();

NEW_ALTERNATIVE:

nr_alternatives_explored[level]++;

nrnodes++;

implement_next_branching_alternative();

if (fathomed) goto BACKTRACK;

if (level<n) goto NEW_LEVEL;

FEASIBLE_SOLUTION:

26

evaluate_objective_and_update_incumbent();

BACKTRACK:

undo_branching_decisions_at_current_level();

level--;

if (nrexplored[level+1]<n-level)

level++;

goto NEW_ALTERNATIVE;

else if (level>O) goto BACKTRACK;

FINISH:

return;

References

Adiri, 1., J. Bruno, E. Frostig, A.H.G. Rinnooy Kan. 1989. Single machine flow-time schedul­

ing with a single breakdown. Acta Informatica 36 679-696.

Ahuja, R, T. Magnanti, J. Orlin. 1993. Network flows. Prentice-Hall.

Akturk, M., E. Gorgulu. 1999. Match-up scheduling under a machine breakdown. Eur. J.

Oper. Res. 112 81-97.

Aytug, H., M. Lawley, K. McKay, S. Mohan, R Uzsoy. 2004. Executing production schedules

in the face of uncertainties: a review and some future directions. Eur. J. Oper. Res. in

press.

Bean, J., J. Birge, J. Mittenthal, C. Noon. 1991. Match-up scheduling with multiple re­

sources, release dates and disruptions. Oper. Res. 39 470-483.

Bruno, J., E. Coffmann, R Sethi. 1974. Scheduling independent tasks to reduce mean

finishing time. Comm. ACM 17 382-387.

Calhoun, K., R Deckro, J. Moore, J. Chrissis, J.V. Hove. 2002. Planning and re-planning

in project and production planning. Omega 30 155-170.

Daniels, R, J. Carrillo. 1997. Beta-robust scheduling for single-machine systems with

uncertain processing times. IIE Trans. 29 977-985.

Daniels, R, P. Kouvelis. 1995. Robust scheduling to hedge against processing time uncer­

tainty in single-stage production. Mgmt. Science 41 363-376.

27

Dasdan, A., R Gupta. 1998. Faster maximum and minimum mean cycle algorithms for

system performance analysis. IEEE Trans. on Computer-Aided Design oj Integrated

Circuits and Systems 17 889-899.

Hagstrom, J. 1988. Computational complexity of PERT problems. Networks 18 139-147.

Hall, N., C. Potts. 2004. Rescheduling for new orders. Oper. Res. 52 in press.

Herroelen, W., R Leus. 2004. The construction of stable project baseline schedules. Eur.

J. Oper. Res. 156 550-565.

Kanet, J., V. Sridharan. 2000. Scheduling with inserted idle time: problem taxonomy and

literature review. Oper. Res. 48 99-110.

Karp, R 1978. A characterization of the minimum cycle mean in a digraph. Discrete Math.

23 309-31l.

Kouvelis, P., G. Yu. 1997. Robust discrete optimization and its applications. Kluwer Aca­

demic Publishers.

Leon, V., S. Wu, R Storer. 1994. Robustness measures and robust scheduling for job shops.

IIE Trans. 26 343-362.

Leus, R 2003. The generation of stable project plans. Complexity and exact algorithms.

PhD thesis, Katholieke Universiteit Leuven, Leuven, Belgium.

Leus, R, W. Herroelen. 2004. The complexity of machine scheduling for stability with a

single disrupted job. Oper. Res. Lett. in press.

Lutz, C., K. Davis, M. Sun. 1998. Determining buffer allocation and size in production lines

using tabu search. Eur. J. Oper. Res. 106 301-316.

Mehta, S., R Uzsoy. 1998. Predictable scheduling of a job shop subject to breakdowns.

IEEE Trans. on Robotics and Automation 14 365-378.

O'Donovan, R, R. Uzsoy, K. McKay. 1999. Predictable scheduling a single machine with

breakdowns and sensitive jobs. Intemat. J. PTOd. Res. 37 4217-4233.

Papadopoulos, H., M. Vidalis. 200l. A heuristic algorithm for the buffer allocation in

unreliable unbalanced production lines. Comput. Indust. Eng. 41 261-277.

Parker, R, R Rardin. 1988. Discrete optimization. Academic Press.

Pinedo, M. 2002. Scheduling. Theory, algorithms, and systems. Prentice-Hall.

Raheja, A., V. Subramaniam. 2002. Reactive recovery of job shop schedules - a review.

28

Internat. J. of Advanced Manuf. Tech. 19 756-763.

Rangsaritratsamee, R, \li.l. Ferrel, M. Kurz. 2004. Dynamic rescheduling that simultaneously

considers efficiency and stability. Comput. Indust. Eng. 46 1-15.

Sevaux, M., K. Sorensen. 2003. A genetic algorithm for robust schedules in a just-in-time

environment. Res. rep. LAMIHjSP-2003-1, Univ. Valenciennes, France.

Stork, F. 2001. Stochastic resource-constrained project scheduling. PhD thesis, TU Berlin,

Berlin, Germany.

Wu, S., H. Storer, P.-C. Chang. 1993. One-machine rescheduling heuristics with efficiency

and stability as criteria. Comput. Oper. Res. 20 1-14.

Yanez, J., J. Ramirez. 2003. The robust coloring problem. Eur. J. Oper. Res. 148 546-558.

29

