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Abstract 

This paper proposes and evaluates a number of models for building robust 
cyclic surgery schedules. The developed models involve two types of con
straints. Demand constraints ensure that each surgeon (or surgical group) 
obtains a specific number of operating room (OR) blocks. Capacity con
straints limit the available OR blocks on each day. Furthermore, the number 
of operated patients per block and the length of stay (LOS) of each operated 
patient are dependent on the type of surgery. Both are considered stochas
tic, following a multinomial distribution. We develop a number of MIP-based 
heuristics and a metaheuristic to minimize the expected total bed shortage 
and present computational results. 

Keywords: Surgery scheduling, resource leveling, integer programming, heuris
tics. 

1 Introduction 

Developing operating room (OR) schedules can be seen as a three stage process. 
In a first stage the available OR time is divided over the different surgeons (or 
surgical groups). This can be done based on total hours of cases per allocated block 
(i.e. utilization), hospital costs and gains per allocated block, hospital funding, 
previous number of allocated hours, demand for services, political issues, etc. This 
first phase is also referred to as case mix planning, since it determines for which 
pathologies capacity will be preserved. Case mix planning has a large impact on the 
quality of service. For instance, if the share of a certain pathology in the total case 
mix decreases, patients suffering from this pathology will be confronted with longer 
waiting times. Hughes and Soliman (1985) propose a linear programming model to 
solve case mix planning problems. Dexter and Macario (2002) argue that OR time 
should be allocated to maximize OR efficiency instead of "fixed hours" blocks based 
on historical utilization data. Blake and Carter (2002) propose a methodology that 
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uses two linear goal programming models. One model sets case mix and volume for 
physicians, while holding service costs fixed; the other translates case mix decisions 
into a commensurate set of practical changes for physicians. 

Once the OR time allocated to each surgical group has been chosen, the second 
stage involves the development of a master surgery schedule. The master surgery 
schedule is a cyclic timetable that defines the number and type of operating rooms 
available, the hours that rooms will be open, and the surgical groups or surgeons 
who are to be given priority for the operating room time. A new master schedule is 
created whenever the total amount of OR time changes. This can occur not only as 
a response to a long term change in the gross number of staffed OR hours, but also in 
response to seasonal fluctuations in demand (Blake et al., 2002). Compared to case 
mix planning (first stage) and elective case scheduling (third stage), the literature 
on master surgery scheduling is rather scant. Blake et al. (2002) propose an integer 
programming model that minimizes the weighted average under supply of OR hours 
(i.e. allocating to each surgical group a number of OR hours as close as possible 
to its target OR hours). The produced master surgical schedule with a one week 
horizon is then extended to cover all weeks of the considered time horizon. Further 
decreases in the weighted average under supply can often be achieved by modifying 
the schedule slightly from week to week. To this purpose the authors present an 
enumerative exchange-based heuristic procedure. 

After the development of the master surgery schedule, elective cases can be sched
uled. This third stage occurs on a daily base and involves detailed planning of each 
intervention. Each patient needs a particular surgical procedure, which defines the 
human (surgeon) and material (equipment) resources to use and the intervention 
duration. Most of the time, this is done on a first come first serve principle, regard
ing patient satisfaction. Without this hypothesis a decision problem is encountered. 
Guinet and Chaabane (2003) define this problem as a general assignment problem 
and propose a primal-dual heuristic to solve it. Weiss (1990) deals with the prob
lem of determining the case orderings and presents both analytical and simulation 
results. 

When building surgery schedules, several objectives could be taken into account. 
Much research has focussed on the maximization of operating room utilization for 
which many algorithms have been studied ranging from simple heuristics (e.g. ear
liest start time first, largest duration first etc ... ) to more complex bin packing 
algorithms (see e.g. Dexter and Traub, 2002 or Dexter et al., 1999). A strongly 
related objective is to minimize the OR staffing costs. Dexter et al. (2000) present 
a number of computer simulations of the effects of scheduling strategies on OR labor 
costs per patient. An objective that receives more and more attention nowadays is 
the management of uncertainty. Many studies have focussed on the increase of the 
punctuality of the schedule realization. Marcon et al. (2003) propose an operating 
theatre planning procedure that aims at mastering the risk of no realization of the 
tentative plan while stabilizing the operating rooms' utilization time. Dexter et al. 
(2001) study the effect of scheduling a delay between different surgeons' cases in 
order to improve the likelihood that each surgeon will start on time. Obviously, 
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managing uncertainty requires insight in a number of aspects of the interaction 
of the planned (elective) and the emergency (non-elective) cases. Gerchak et al. 
(1996) provide a stochastic dynamic programming model for the advance scheduling 
of elective surgery under uncertain demand for emergency surgery. The problem is 
to determine how many of the requests for elective surgery to assign for each day. 
Their objective is to maximize a profit function which consists of a fixed profit per 
elective case, a fixed penalty per unit time exceeding the day's capacity and a fixed 
penalty for the postponement of a case. Bowers and Mould (2004) propose a policy 
of including planned, elective patients within the trauma (non-elective) session and 
show by means of simulation how substantially greater throughputs can be achieved, 
if patients are willing to accept a possibility of their treatment being canceled. Other 
proposals have been explored, including the option of concentrating health services 
such that one larger hospital serves a greater population (Bowers and Mould, 2002). 
The algorithms described in this paper also aim at an increase of the robustness 
of the surgery schedules. However, whereas most of the cited papers concentrate 
on the punctuality of the schedule realization, this work focusses on the control of 
the available capacity as a function of the master surgery schedule. As pointed out 
by Litvak and Long (2000), not only the non-elective cases contribute to the huge 
amount of variability in hospital environments. On the contrary, an important part 
of the variance can be controlled by applying well-thought-out scheduling policies 
of the elective cases. In what follows we briefly summarize their point. 
The operation room is in fact the engine that drives the hospital. The activities 
inside the operation room have a dramatic impact on many other activities within 
hospitals. For instance, patients undergoing an operation are expected to recover 
during a number of days. Consequently, bed capacity and nursing staff requirements 
are dependent on the operation room schedule. By well-thought-out scheduling of 
the operation room, the expected variability in resource demand can be minimized. 
Variability has a very negative impact on productivity and reducing it is one of 
the major concerns of health care management. Litvak and Long (2000) distinguish 
between two types of variability: natural variability and artificial variability. Natural 
variability is inherent to the uncertain world of health care. This variability arises 
from uncertainty in patient show-ups, uncertainty in recovery time, uncertainty in 
the successfulness of therapies etc.... Artificial variability originates from poor 
scheduling policies. A poor operation room schedule could for instance directly be 
responsible for a shortage in beds each Wednesday, whereas there is overcapacity 
on all other days of the week. Exact and/or heuristic algorithms can assist in 
minimizing artificial variability. This is exactly the objective that our model will 
focus on. 

2 Problem Statement 

The problem addressed in this paper involves the construction of the master surgery 
schedule. The main objective is to minimize the expected shortage of one resource, 
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namely beds. To make things clear, we will start from a simple example. On the 
one hand we have a surgery schedule divided in a number of time blocks. On the 
other hand we have a number of surgeons. Let us for simplicity suppose that each 
surgeon only performs one type of surgery. Furthermore, we assume that the number 
of patients operated per time block depends on the type of surgery and that this 
number is deterministic (this assumption will be relaxed in Section 5.1) and fixed 
for each surgeon. Whereas perfect knowledge is assumed concerning the number of 
patients undergoing surgery, there is however uncertainty concerning the length of 
stay (LOS) of each recovering patient. The LOS is assumed to follow a multinomial 
distribution with parameters which depend on the type of surgery. For instance, 
a patient recovering from appendix surgery leaves the hospital after 2 days with 
probability 20%, after 3 days with probability 50% and, finally, after 4 days with 
probability 30%. If a patient leaves after d days, (s)he occupies one bed for d days 
starting with the day of surgery. We are concerned with building a cyclic surgery 
schedule for which the expected total bed shortage (ETBS) is minimized. Cyclic 
schedules are schedules that are repeated after a certain time period (referred to 
as the cycle time). During such a cycle time there might be a number of time 
periods during which surgery cannot take place. These periods are referred to as 
the inactive periods, the other are active. Typically, cycle times are multitudes of 
weeks in which the weekends are inactive periods. To start we will state the problem 
mathematically. Let Xis (Vi E A and s E S) be the number of blocks assigned to 
surgeon s on day i. Here A represents the set of active periods and S the set of 
surgeons. Let rs be the number of blocks required by each surgeon s. Let bi be the 
maximal number of blocks available on day i. Then, our problem could be stated 
as follows (PI): 

subject to: 

LXiS = rs 

iEA 

LXiS ~ bi 

SES 

Minimize ET B S 

Xis E {O, 1,2, ... ,min(rs, bin 

(2.1) 

'lis E S (2.2) 

Vi E A (2.3) 

'lis E S and Vi E A (2.4) 

The objective function (2.1) minimizes the expected total bed shortage. Constraint 
set (2.2) implies that each surgeon obtains the number ofrequired blocks. Constraint 
set (2.3) ensures that the number of blocks assigned does not exceed the available 
number of blocks on each day. Finally, constraint set (2.4) defines Xis to be integer. 

Let l be the length of the cycle time. The expected total bed shortage (ET BS) 
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equals the sum of the expected bed shortages on each day of the cycle time: 

1 

TEBS= LEBSi (2.5) 
i=l 

with EBSi the expected bed shortage on day i. Let Uijs be a stochastic variable 
representing the number of occupied beds on day i resulting from surgery on day 
j performed by surgeon s. It can easily be shown that Uijs follows a binomial 
probability distribution, referred to as f(Uijs ). Now, let Zi be a stochastic variable 
representing the total number of occupied beds on day i. Hence, 

Zi = LLUijS (2.6) 
sES JEA 

The probability distribution of Zi is given by: 

f(Zi = Zi) = L ( II f(Uijs )) (2.7) 
hEHZi UijsEh 

with HZi the set of all combinations h of Uijs's summing up to Zi. Let Ci be the 
capacity of beds on day i. The expected shortage on day i is then as follows: 

(Xl 

(2.8) 

Given a certain schedule, we can calculate this expected value. If the total number 
of combinations leading to a shortage is not too large, we could apply complete 
enumeration. If complete enumeration is too time consuming, we could calculate 
approximated values based on the central limit theorem which states that the sum 
of many independent random variables is approximately normally distributed. 
Since EBSi is not linearly dependent on the decision variables, we cannot find the 
optimal solution using a mixed integer program (MIP) solver. Therefore, we will 
try to substitute EBSi by an expression that is linear in the decision variables, such 
that it becomes solvable with commercial MIP packages. Of course, we want the 
new objective to be as equivalent as possible with the real objective. 

3 Linearization of the problem 

3.1 Mean 

First, instead of dealing with the distribution functions f(Zi = Zi), we work with 
their mean values p+ Our assumption is that the larger the difference between 
Ci and /-Li, the smaller EBSi, the expected bed shortage on day i. Without loss 
of generalization, we assume the bed capacity Ci to be constant for all days i, i.e. 
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Ci = c, Vi = 1..l. Our objective is now to minimize the maximal J-Li. This hopefully 
results in a flat distribution of the expected bed occupation over all days of the week. 
In other words, the aim is to level the daily bed resource consumption as much as 
possible. In order to state our MIP, we first show that J-Li is linear with the decision 
variables Xis. Let Dsd be a stochastic variable representing the number of patients 
staying in the hospital exactly d days after one block of surgery by surgeon s. We 
obtain: 

{li = E(Zi) 

= E(LLUijS ) 
SES JEA 

= LLE(Uijs ) 
sES JEA 

= L L( ~ E(DsdHdlll)xjs 
sES JEA d=dist(i,j) 

= 2: L ( ~ Psdns r dill )Xjs 
sES JEA d=dist(i,j) 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

with dist( i, j) the distance between day i and day j in the week, defined as i - j + 1 
if day j precedes day i and l + i - j + 1 otherwise, rns the maximal number of days 
a patient can stay in the hospital after surgery by surgeon s, Psd the probability a 
patient stays d days in the hospital after surgery by surgeon sand ns the number 
of patients surgeon s can operate in one time block. Expression (3.5) looks far 
more complicated than it is. We first note that the mean number of patients of 
surgeon s staying exactly d days in the hospital equals Psdns (mean of a binomial 
distribution with probability of 'success' Psd and ns trials). Obviously, a patient 
that leaves the hospital after d days occupies a bed from day 0 to day d - 1. Hence, 
if we consider a particular day i after the day of surgery j we have to sum these 
expected values starting from the first LOS value reaching day i. This LOS value 
is given by dist(i,j). For instance, if i = 3 (Wednesday) and j = 1 (Monday) we 
have dist( i, j) = 3 - 1 + 1 = 3. So, all patients staying 3 days (Monday, Tuesday 
and Wednesday) or more make up the expected number of patients on Wednesday 
resulting from surgery on Monday. Obviously, when the LOS exceeds the cycle time 
l, the corresponding expected number of patients has to be added twice (or more), 
which explains the factor r dill 
Since L;~dist(i,j) Psdns r dill is a constant, the new objective is linear in the decision 
variables. Let J-L be the maximal J-Li. We then have the following MIP (MIP1): 

Minimize J-L (3.6) 

subject to: 
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LXiS = rs Vs E S (3.7) 
iEA 

L Xis::; bi Vi E A (3.8) 
sES 

~Li = LL( 

ms 

L PSdnsld/Zl)Xjs Vi = 1..l (3.9) 
sES JEA d=dist(i,j) 

Mi ::; M Vi = 1..l (3.10) 

Xis E {O, 1,2, ... ,min(rs, bin Vs E S and Vi E A (3.11) 

Mi E ~t Vi = 1..l (3.12) 

M E ~t (3.13) 

Constraint set (3.9) defines the expected number of occupied beds on each day i. 
Constraint set (3.10) implies that M exceeds each Mi which ensures that the objective 
minimizes the maximal expected bed occupation M. 

3.2 Variance 

MIP1 aims at a schedule for which the maximal expected bed occupation is reduced 
as much as possible over the week. We could however increase the effectiveness of 
our model by also taking into account the variances of the Zi variables. Indeed, a 
schedule resulting from solving MIP1 may exhibit huge differences in the variances 
of the Zi'S. Figure 1 illustrates this point. 

Prob. 

Monday Tuesday Wednesday Thursday Friday saturday Sunday 

Figure 1: Role of variance 

In this example we consider a cycle time of 1 week. The expected bed occupation is 
distributed quite level over all days of the week. However, the variance of the bed 
occupation is much larger on Thursday than on all other days. Consequently, there 
is a fair chance of running out of beds each Thursday. The question thus arises if 
it would be possible to include the variance in the objective function of our MIP. 
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Therefore, the variance of the Zi'S must be linear in the decision variables. In the 
derivation that follows, the next two rules are frequently applied: 

n n n i-1 

var(ao + L aixi) = L a;var(xi) + L L 2aiajCov(Xi; Xj) (3.14) 
i=l i=l i=l j=l 

If Xi and Xj are independent, then COV(Xi; Xj) = 0 (3.15) 

For the derivation it is important to keep in mind that the number of patients stay
ing on the same day in the hospital but having 'entered' it via different blocks are 
completely independent of each other. There is only dependency between patient 
numbers coming from one and the same block in one and the same cycle. 

Let us now start the derivation: 

var(Zi) = var(L L Uijs ) (3.16) 
sES JEA 

Applying (3.14) and knowing that the covariances between the different Uijs's are 
all zero (the number of patients occupying a bed operated in different OR blocks 
are independent of each other) gives: 

var(Zi) = L L var(UijS ) (3.17) 
sES JEA 

L ms-dist(i,j) J . 

= LLvar ( t ~ t DSd) (3.18) 
sES JEA 1=0 g=l d=dist(i,j)+ II 

Recall that Dsd is a stochastic variable that stands for the number of patients who 
stay exactly d days in the hospital after one block of surgery by surgeon s. The first 
and third summations divide the D sd variables into their cycles, i.e. the number of 
patients staying in the hospital on day i after surgery by surgeon s on day jean 
be divided according to the cycle in which they entered the system. For f = 0 all 
patients entered in the current cycle (= 0) are added, for f = 1 all patients entered 
in the previous cycle are added, etc .... The second summation indicates the number 
of blocks (Xjs) for which patients are added. 
Writing this in full gives: 

ms ms ms 

var(Zi) = L L var ( L Dsd + L Dsd + L Dsd +· .. 
sES JEA d=dist(i,j) d=dist(i,j) d=dist( i,j) 

+ Dsd + Dsd + D sd +·· . 
d=dist( i,j)+l d=dist(i,j)+l d=dist(i,j)+l 

+ Dsd + Dsd + Dsd +·· . 
d=dist(i,j)+21 d=dist(i,j)+21 d=dist( i,j)+21 

+ ... ) (3.19) 
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The first line indicates all patients entered in the current cycle. The different terms 
int this line indicate the different blocks that "produce" patients. The second line 
indicates the numbers entered in the previous cycle, etc .... 

The number of patients occupying a bed on a particular day i having undergone 
surgery more than 1 cycle ago is of course completely independent of the new patients 
entered in the current cycle. In general, the number of patients operated in the same 
block, but in different cycles, are independent of each other. Hence, application of 
again (3.14) and (3.15) gives: 

rns rns rns 

var(Zi)=L::L[var( :L D sd + :L D sd + :L D Sd +"') 

sES jEA d=dist(i,j) d=dist(i,j) d=dist(i,j) 

rns rns rns 

+var( :L D sd + :L D sd + :L D Sd +"') 

d=dist(i,j)+l d=dist(i,j)+l d=dist(i,j)+l 

rns rns rns 

+ var ( :L Dsd + :L Dsd + :L Dsd + ... ) 
d=dist( i,j)+21 d=dist(i,j)+21 d=dist( i,j)+21 

+ ... ] (3.20) 

Within each cycle the number of patients coming from one block on a particular day 
assigned to surgeon s is independent from the number coming from another block 
on the same day assigned to the same surgeon s. Applying again (3.14) and (3.15) 
gives: 

rns rns 

var(Zi) = :L L: [var( :L D sd ) + var( :L 
sES jEA d=dist(i,j) d=dist(i,j) d=dist( i,j) 

ms ma ms 

+var( :L D sd ) + var( :L D sd ) + var( :L D sd ) + ... 
d=dist( i,j)+l d=dist(i,j)+l d=dist( i,j)+l 

ma ms ms 

+ var( " D sd ) + var( L D sd ) + var( :L n .)--L 
L... L/sa I··· 

d=dist( i,j)+21 d=dist( i,j) +21 d=dist(i,j)+21 

+ ... ] (3.21) 

Rewriting it in the shorter summation notation: 

Lms-dist(i,j) J . 
I xJ8 

var(Zi) = :L:L :L :L var( (3.22) 
sES jEA 1=0 9=1 d=dist(i,j)+ II 
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Applying (3.14) gives: 

Lms-dist(i,j) J . 
1 XJs ms 

var(Zi) = L L L L ( L var(Dsd) 

SES jEA f=O g=l d=dist(i,j)+ fl 

ms d1-1 

+ L L 2cov(Dsd1 ; D Sd2 )) (3,23) 

d1 =dist(i,j)+ fl d2=dist(i,j)+ fl 

The covariances between the D sd variables coming from the same block are of course 
not zero, but negative. Intuitively this can be seen as follows, The more patients 
that stay e.g. exactly 1 day, the less patients will stay exactly 2, 3, etc ... days and 
vice versa. The total is always ns. The variance and covariance formulas for the 
individual variables of a multinomial distribution are as follows: 

(3.24) 

(3.25) 

Alternatively, these formulas could be obtained by observing that the individual 
variables of a multinomial distribution are binomial processes with probability of 
'success' Psd and ns trials. Applying these formulas gives: 

Lms -dist(i,j) J . 
1 XJs ms 

Var(Zi) = L L L L ( L Psd(l - psd)ns 

SES jEA f=O g=l d=dist(i,j)+fl 

ms dl-1 

L L 2Psd1Psd2 nS ) (3.26) 
d1=dist(i,j)+fl d2=dist(i,j)+fl 

Since 9 is merely a summation index and hence does not influence the calculation, 
summing up from 1 to Xjs is the same as multiplying by Xjs: 

L m s - d1st(i,j) J 

var(Zi) = LL L ( 
sES jEA f=O d=dist(i,j)+fl 

ms d1 -1 

L L 2PSdlPSd2nS)XjS (3.27) 
d1=dist(i,j)+ fl dFdist(i,j)+ fl 

This expression can be further simplified by observing that also the summation over 
f can be turned into a multiplication. The summation is replaced by respectively the 
factor I dill and I d 2/ll indicating how many cycle times the Dsd variables contribute 
to respectively the variance and the covariance: 

var(Zi) = L L ( t Psd(l - psd)ns I dill 

sES jEA d=dist(i,j) 

ms d1 -1 

L L 2PsdlPsd2nsld2/ll)xjs (3.28) 
d1 =dist( i,j) dFdist( i,j) 
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In conclusion, the variance of each Zi varies linearly with the decision variables. 

Let us illustrate this with a simple example. Consider the following distribution 
of the LOS for each patient of surgeon s: 

Table 1: LOS distribution for example 1 
LOS (Nr. of days) 2 3 4 10 11 

probability 0.2 0.3 0.1 0.3 0.1 

Assume a cycle time of 1 week. For illustrative purposes, we opted for a LOS 
distribution having a limited number of outcomes and a 'tail' exceeding the cycle 
time. Although this example may not seem to be very realistic at first sight, it could 
represent a scenario in which the operated patients can be divided into two groups: 
the first group having no complications and leaving the hospital within 4 days and 
the second group having complications and staying much longer. Assume it is known 
that this surgeon can operate 10 patients per block. Now, suppose we assign one 
block on Monday to this surgeon. We illustrate the calculation of E(U3,1,s) and 
var(U3,1,s). Let Dsdl denote the number of patients staying d days in the hospital 
who have undergone surgery in the previous week. We obtain: 

E(U3,1,s) = E(Ds3 + Ds4 + Ds10 + Dsll + Ds10' + Dsll/) 

= E(Ds3) + E(Ds4) + E(Ds10 ) + E(Dsll ) + E(DsIO/) + E(Dsll/) 

= E(Ds3) + E(Ds4) + 2E(DslO ) + 2E(Dsll ) 

= 0.3 * 10 + 0.1 * 10 + 2 * 0.3 * 10 + 2 * 0.1 * 10 

= 3 + 1 + 6 + 2 = 12 

var(U3,l,s) =var(Ds3 + Ds4 + Ds10 + Dsll + Ds10' + Dsll/) 

=var(Ds3 ) + var(Ds4) + var(DslO) + var(Dsll) + var(DS10/) + var(Dsll/) 

+ 2cov(Ds4' Ds3 ) + 2cov(Ds10 , Ds3 ) + 2cov(Ds10 , Ds4 ) 

+ 2cov(Dsll' Ds3 ) + 2cov(Dsll' Ds4 ) + 2cov(Dsll' DslO ) 

+ 2cov(Dsll/, DSIO/) 

=var(Ds3 ) + var(Ds4) + 2var(DsIO) + 2var(Dsll ) 

+ 2cov(Ds4' Ds3 ) + 2cov(DsIO' Ds3 ) + 2cov(Ds10 , Ds4 ) 

+ 2cov(Dsll' Ds3 ) + 2cov(Dsll' Ds4 ) + 4cov(Dsll' DslO ) 

=0.3 * 0.7 * 10 + 0.1 * 0.9 * 10 + 2 * 0.3 * 0.7 * 10 + 2 * 0.1 * 0.9 * 10 

- 2 * 0.1 * 0.3 * 10 - 2 * 0.3 * 0.3 * 10 - 2 * 0.3 * 0.1 * 10 

- 2 * 0.1 * 0.3 * 10 - 2 * 0.1 * 0.1 * 10 - 4 * 0.1 * 0.3 * 10 

=8.3 - 3 - 2 = 3.3 
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We extend MIP1 such that the variance is taken into account. Let a; be the vari
ance of Zi' Let wit and W a 2 be the weight expressing the relative importance of 
respectively leveling the mean and variance of the bed occupation. Let f be the 
maximal weighted sum of mean and variance. We then obtain the following MIP 
(MIP2): 

subject to: 

LXiS = rs 
iEA 

LXiS :::; bi 
sES 

Minimize f 

ms 

lLi = LL( L pSdnsldlll)xjs 
sES JEA d=dist(i,j) 

a; = L L ( ~ Psd(l - psd)ns I dill 
sES JEA d=dist(i,j) 

ms dl-l 

L L 2PsdlPsd2nsld2/ll)xjs 
dl =dist( i,j) dFdist(i,j) 

WltlLi + wa2a; :::; f 

Xis E {O, 1,2, ... ,min(rs, bin 

lLi E Rt, a; E Rt 
f E Rt 

3.3 Special cases 

Vs E S 

Vi E A 

Vi=1..l 

Vi=1..l 

Vi = 1..l 
Vs E S and Vi E A 

Vi = 1..l 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

When W a 2 equals 0, the variance is ignored and model MIP1 will result. When WfL 

equals 0, the mean is ignored and MIP2 will minimize the maximal variance of the 
daily bed occupation. This means that the resulting bed occupation may exhibit 
peaks on certain days of the week. However, these peaks will be well predictable. 
This model is appropriate if the capacity of the resource is adaptable, since the peaks 
in the demand for resources could be anticipated by providing more capacity during 
these peaks. An example of such a flexible resource is manpower. Bed capacity is 
however generally not adaptable at short term. 
The relative importance of W a 2 and wit might be dependent on the presence (or 
absence) of an external stochastic process consuming the considered resource. In our 
example for instance beds might be occupied from emergency cases. Consider first 
the situation in which there is no such external process. Suppose we set W a 2 equal 
to ° and find an 'optimally' leveled solution. However, given uneven distributed 
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variances, there are certain days in which there is a fair chance of bed shortage. 
vVe might obtain a better solution by slightly increasing W(T2. Assume that in the 
new solution, although the mean bed day occupations exhibit larger differences, the 
sum of the probabilities of bed shortages is much smaller. Hence, in this situation a 
positive value for W(T2 is clearly better in the absence of external stochastic processes. 
However, if we do allow for external processes to consume resources, this conclusion 
might not hold any more. Since no single model will ever include all sources of 
variability in hospital environments, this is certainly an interesting point for further 
research. 

3.4 Percentile minimization 

Incorporating the variance could be done in a slightly different way. Instead of 
calculating the true mean and the true variance and minimizing the peak of the 
weighted sum, one could directly calculate the contribution of each decision variable 
Xis to some kind of weighted measure. Therefore, we take the contribution to the 
mean and add nstdev times the square root of the contribution to the variance. For 
instance, the contribution for Xjs would be: 

m. 

~ Psdnsfdlll 

d=dist( i,j) 

m. m. dl-l 1 

+ nstdev ( ~ Psd(1 - psd)ns f dill - ~ ~ 2Psd1Psd2nS f d 2 /ll) '2 

d=dist(i,j) dl =dist(i,j) dFdist(i,j) 

(3.38) 

The model is then totally equivalent with MIPI (3.6-3.13) except for the coeffi
cients of constraint 3.9. Although referred to as percentile minimization, the model 
does not necessarily minimize the highest percentile peak. Minimizing the highest 
percentile peak is equivalent to minimizing the highest tail distribution and is a 
non-linear problem. Instead, we try to measure the contribution of each variable to 
each day percentile with a linear weight and solve the problem with a linear opti
mizer. We choose to take the root of the variance contributions, because standard 
deviations are more common when referring to distribution tails. 

4 Is autocorrelation a problem? 

Preliminary tests showed that the simulated variances of daily bed occupation (Zi) 
are slightly smaller than the calculated ones given by (3.28). The reason is the 
occurrence of autocorrelation. Indeed, part of the variance of the number of patients 
in the hospital on day i of cycle t is explained by the number on day i of cycle t - 1. 
This part is proportional with the number of patients expected to stay longer than 
the cycle time. A simulation study in Section 8.4 will try to answer the question to 
what amount this autocorrelation is influencing the probabilities of bed shortages. 
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5 Extensions 

5.1 Stochastic ns 

An important drawback of our model is the assumption of deterministic numbers of 
patients (ns)' It would be interesting to extend our model such that it can handle 
stochastic ns's. Would it still be possible to express both mean and variance as 
linear combinations of the decision variables? 
Answer: This is no problem. Introducing stochastic ns's following a multinomial 
distribution does not destroy the linearity of both average and variance. Hence, 
instead of assuming deterministic patient numbers, we can deal with uncertainty: 
for instance for a particular surgeon the number of operated patients equals 7 with 
probability 10%, 8 with probability 20%, 9 with probability 40% and 10 with prob
ability 30%. We show how the expressions for both mean and variance are extended 
such that they incorporate this additional stochastic information. For the mean, we 
make use of the following theorem on conditional means: 

E(Y) = E[E(YIX)] (5.1) 

In words, the overall mean equals the mean of the conditional means. Applied to 
our problem: let Ns be a stochastic variable representing the number of patients for 
surgeon s. k = l..Qs are the different (discrete) states of this variable with hsk being 
the probability and nsk the corresponding number of patients in state k for patient 
s. 

(5.2) 
qs rns 

= L hsk ( L Psdnsk I dill) (5.3) 
k=l d=dist(i,j) 

For the variance, we make use of the following theorem on conditional variances: 

var(Y) = E[var(YIX)] + var[E(YIX)] (5.4) 

In words, the overall variance equals the sum of (1) the mean of the conditional 
variances and (2) the variance of the conditional means. Applied to our problem: 

(5.5) 

Elaborating the first term gives: 

qs rns 

E[var(UijsINs)] = L hsk ( L Psd(l - psd)nsk I dill 
k=l d=dist(i,j) 

rns d1-l 

L L 2psd1 Psd2 n Sk I d2 /ll) (5.6) 
d1 =dist( i,j) dFdist( i,j) 
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Elaborating the second term gives: 

~ 2 

var[E(UijsINs )] = L hsk (E(UijSINs) - E(UijS )) 

k=l 
qs ms qs ms 2 

= L hsk ( L Psdnsk I dill - L hsk ( L Psdnsq I dill) ) 
k=l d=dist(i,j) k=l d=dist(i,j) 

(5.7) 

Combining all this gives us the variance of U ijs : 

qs ms 

var(Uijs ) = L hsk ( L Psd(l - psd)nsk I dill 
k=l d=dist(i,j) 

ms dl-l 

L L 2Psd1 Psd2nskld2/11) 
dl =dist( i,j) dFdist( i,j) 

~ ms ~ ms 

+ L hsk ( L Psdnsk I dill - L hsk ( L Psdnsq I dill) r 
k=l d=dist(i,j) k=l d=dist(i,j) 

(5.8) 

In conclusion, incorporating numbers of patients following a discrete probability 
distribution preserves the linearity of both mean and variance of the daily bed 
occupation. Hence, the above outlined MIP's can perfectly incorporate this source 
of uncertainty. 

6 N P-hardness proof of linearized problem 

In what follows an NP-hardness proof for problem MIP1 is given. The NP-hardness 
is proven by means of a transformation from 3-PARTITION. This problem can be 
described as follows: 
3-PARTITION: Given a set T = {1, ... ,3t} and positive integers aI, ... ,a3t and e 
with ~jET aj = te, can T be partitioned into t disjoint 3-element subsets ~ such 
that ~jETi aj = e (i = 1, ... ,t)? 
This celebrated problem was the first number problem that was proven to be N P
complete in the strong sense. A (very) small problem instance will illustrate this 
problem: the set T consists of 6 elements with corresponding values of 3, 3, 3, 
4, 4 and 5. The values of t and e are obviously 2 (3*2=6 elements) and 11 
(3+3+3+4+4+5 = 22 = 2*11), respectively. for this problem instance the answer 
is positive: TI could consist of elements 1, 2 and 6 with corresponding values of 3, 
3 and 5, whereas the second set T2 then consists of the remaining three elements 3, 
4 and 5 with values 3, 4 and 4. 
Given any instance of the 3-PARTITION problem, an instance of the problem MIP1 
can be constructed in the following way: 
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• The cycle time (l) equals t; there are no inactive days (A = {1, ... ,t}). 

• The number of blocks per day (bi ) equals 3. 

• The number of surgeons equals the number of different values in the set T. 

• The number of patients each surgeon s can operate per block (ns) equals the 
corresponding value. 

• The number of requested blocks per surgeon (rs) equals the number of times 
the corresponding value occurs in set T. 

• The LOS of the patients is deterministic and equals 1 for each surgeon, i.e. 
PsI = 1, 'lis, P sd = 0, 'lis, 'lid i=- 1. 

We show that 3-PARTITION has a solution if and only if there exists a feasible 
schedule with f-L = c. 
Suppose that 3-PARTITION has a solution {TI' ... ,Tt }. A feasible schedule with 
value f-L = c is then obtained as follows. Each set T I , ... , Tt represents an operating 
day containing 3 blocks at which the surgeons corresponding to the elements in the 
set are scheduled. The number of patients occupying a bed on each day amounts 
to c which is the sum of the operated patients during each day. In order to prove 
the optimality of the solution, we show that f-L = c equals a lower bound. Since each 
patient stays exactly 1 day, the total LOS over all patients equals the total number 
of patients, Ls ns = LjET aj = tc. If we manage to distribute all these patients 
perfectly balanced over the cycle time, we obtain a solution of (LjET aj) /t = tc/t = 
c. It follows that f-L = c is a lower bound to our problem. 
Conversely, suppose that there is a feasible schedule with value ~l = c. First of all, 
three blocks must have been assigned at each day, since the total number of requested 
blocks equals the total number of available blocks (i.e. LsEs rs = Li=1..l bi = 3t). 
By definition, we have for each day i: f-Li ::; f-L. Now, since each patient stays 
exactly 1 day, the total LOS over all patients equals the total number of patients, 
Ls ns = LjET aj = tc. Hence, if the schedule would have a day i for which f-Li < f-L, 
then there must be another day having a f-Li > f-L. By definition, this is not possible 
and thus each day must have a /-Li equal to ~l = c. Hence, each day i = l..t represents 
a set of 3 elements (surgeon-block assignments) with the sum of their values (nr. of 
operated patients) equal to c. This is a solution to 3-PARTITION. Since MIP1 is a 
special case of MIP2, MIP2 is also NP-hard in the strong sense. Q.E.D. 

7 Solving the original problem 

MIP2 could be solved with a commercial MIP solver. Preliminary tests indicated 
that the LP relaxation gap of MIP2 is fairly small. This suggests that it will be 
difficult to develop a specific (branch-and-bound) algorithm that could solve the 
problem more efficiently. Nevertheless, a number of interesting research questions 
remain: 
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1. Do the proposed integer programming models provide satisfying solutions to 
the original problem PI (2.1-2.4)? 

2. Would it be possible to use these models in order to develop a heuristic that 
provides better results? 

3. 'Which of the elaborated models/heuristics is best suited to solve the original 
problem PI? 

4. Is the best choice dependent on certain problem dimensions? 

5. How do the results compare to a metaheuristic approach in which the objective 
function is evaluated directly? 

7.1 Objective function 

If we want to solve PI, we should be able to evaluate objective function (2.1). In 
order to do this, we need to deduce the exact bed usage probability distributions 
of each day, given a particular surgery schedule. Unfortunately, computing these 
general discrete distribution functions involves the enumeration of an exponential 
number of probability states, which is computationally very hard. Therefore, we will 
approach the exact objective (2.1) with an easy to calculate one, making use of the 
central limit theorem. According to this theorem, each variable which is the sum of a 
number of independent variables, is approximately normally distributed with mean 
equal to the sum of the independent means and variance equal to the sum of the 
independent variances. Recall that the independent means and variances can easily 
be calculated exactly. Hence, for calculating the shortage probabilities we can simply 
make use of the standard cumulative normal distribution functions. For calculating 
expected shortages we have to apply numerical integration. For instance, in order 
to calculate the expected shortage for day i, we compute the following integral: 

(7.1 ) 

This expression simply sums up all shortages (Zi-Ci) multiplied by the corresponding 
probabilities. The reason why the integral starts at Ci +0.5 (and not at Ci or at Ci + 1) 
is that we have to take into account a continuity correction for approaching a discrete 
function with a continue one. For calculating these integrals we made use of the 
numerical integration routines provided in GNU Scientific Library (GSL) version 
1.3 (Galassi et al., 2003). 
In what follows, three heuristics will be elaborated which aim at the minimization 
of this objective: a repetitive MIP heuristic, a quadratic MIP heuristic and a local 
search heuristic (simulated annealing). 
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7.2 Repetitive MIP heuristic 

As the name suggests, the repetitive MIP heuristic involves the successive solving of 
a number of lVIIP's. After each solution, an extra constraint is added to the model, 
which limits the search space. For the moment we will only concentrate on the 
averages and thus neglect the impact of the variance. This can be motivated by 
the fact that the average and variance of each Zi are positively correlated to some 
extent and hence low averages tend to go together with low variances and vice versa. 
We implemented two repetitive MIP heuristics, to which we refer as REPMIPI and 
REPMIP2 respectively. 

REPMIPI works as follows: 

1. TEES = 00. 

2. Solve MIPI (3.6)-(3.13). If the found schedule results in a lower total expected 
bed shortage, save it as being the best found. Let p be the optimal objective 
value and let i be the day with the maximal peak, i.e. J-li = p. 

3. Add an extra constraint to the model: J-li ::; P + E. 

4. Make J-li no longer contribute to the objective function. Therefore, delete 
J-li ::; J-l out of constraint set (3.10). 

5. Go back to step 2. Repeat this until a certain stop criterium is met. 

The idea is that after the minimization of the highest peak, the second highest peak 
is to be minimized, whereby the peak of the highest day is kept below a certain limit. 
Next, the third highest peak is minimized with constraints on the first two peaks 
and so on .... E determines to which amount the previous peak(s) can be exceeded. 
If E equals 0, the search space is limited most from MIP to MIP. E can be made 
dependent on the progression of the algorithm. The solution of each MIP provides 
a surgery schedule which could be evaluated by calculating the total expected bed 
shortage (TEBS), for which we do a number of numerical integrations (7.1). The 
best schedule is saved. 

REPMIP2 works as follows: 

1. TEES = 00. 

2. Solve MIPI (3.6)-(3.13). If the found schedule results in a lower total ex
pected bed shortage, save it as being the best found. Let Mi be the lowest bed 
occupation peak and let i be the day with this minimal peak. 

3. Add an extra constraint to the model: J-li 2: Mi + E. 

4. Solve the adapted model. If the found schedule results in a lower total expected 
bed shortage, save it as being the best found. 
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5. Increase the right hand side value of the constraint, added in step 3 with E 

over the current usage of beds on day i. 

6. Go back to step 4. Repeat this until a certain stop criterium is met. 

The idea is that after the minimization of the highest peak, the lowest peak is 
identified. Next, the model is resolved with an extra constraint which prohibits the 
current solution by implying an increase in the lowest peak. The aim is that the 
overcapacity in this lowest peak is divided over all other days but the peak day. E 

determines to which amount the previous off-peak(s) has to be exceeded. A typical 
value for E is 0.01. Typical end criteria include the detection of an infeasible model 
and/ or the peak of the lowest day exceeding a certain limit (e.g. the overall average 
bed occupation). The solution of each MIP provides a surgery schedule which could 
be evaluated by calculating the total expected bed shortage (TEBS), for which we 
do a number of numerical integrations (7.1). The best schedule is saved. 

7.3 Quadratic MIP heuristic 

Also in this heuristic we neglect the variances and merely take into account the 
averages. We solve again a MIP, however the objective function is now quadratic 
(QMIP): 

subject to: 

LXiS=rS 
iEA 

L Xis:::; bi 

sES 
ms 

Minimize L /LZ 
iEA 

/Li = LL( L Psdns(ld/lJ + l))Xjs 

sES jEA d=dist(i,j) 

Xis E {O, 1,2, ... ,min(rs, bi)} 

/Li E ~t 
/L E ~t 

Vs E S 

Vi E A 

Vi = 1..l 

Vs E S and Vi E A 

Vi = 1..l 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

(7.6) 
(7.7) 

(7.8) 

Since 2:iEA /Li is constant and hence independent of the surgery schedule, this model 
explicitly tries to level the peaks as much as possible. Note that the minimization 
of xi + x~, subject to Xl + X2 = a results in Xl = X2 = ~. Remark that also 2:iE A O"t 
is constant and hence independent of the surgery schedule, thus we might also take 
into account the variances. Again, we evaluate the resulting surgery schedule by 
calculating the objective function by computing a number of integrals (7.1). 
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7.4 Simulated annealing 

Simulated annealing (SA) is a technique to find a good solution to an optimization 
problem by trying random variations of the current solution. A worse variation is 
accepted as the new solution with a probability that decreases as the computation 
proceeds. The slower the cooling schedule, or rate of decrease, the more likely the 
algorithm is to find an optimal or near-optimal solution. This technique stems from 
thermal annealing which aims to obtain perfect crystallizations by a slow enough 
temperature reduction to give atoms the time to attain the lowest energy state. The 
search tries to avoid local minima by jumping out of them early in the computa
tion. Towards the end of the computation, when the temperature, or probability 
of accepting a worse solution, is nearly zero, this simply seeks the bottom of the 
local minimum. The chance of getting a good solution can be traded off with com
putation time by slowing down the cooling schedule. The slower the cooling, the 
higher the chance of finding the optimum solution, but the longer the run time. 
Thus effective use of this technique depends on finding a cooling schedule that gets 
good enough solutions without taking too much time. The algorithm is based upon 
that of Metropolis et al. (1958), which was originally proposed as a means of finding 
the equilibrium configuration of a collection of atoms at a given temperature. The 
connection between this algorithm and mathematical minimization was first noted 
by Pincus (1970), but it was Kirkpatrick et al. (1983) who proposed that it forms 
the basis of an optimization technique for combinatorial (and other) problems. 

Our simulated annealing (SA) implementation is very basic. Our neighborhood is 
defined as all solutions which could be obtained after swapping two surgery blocks 
from the current solution. The first block is chosen randomly. The second block is 
the first encountered block for which a swap results in an improvement (decrease) 
of the objective value. If no such block can be found, the block leading to the 
smallest increase is chosen. Since swaps between one surgeon and swaps between 
one day have no impact on the objective function, these swaps are not taken into 
account. In order to decide whether or not to accept a worse solution, a standard 
Boltzman function is evaluated. Let T denote the temperature and 6.1 the decrease 
in objective function. For swaps with negative 6.1 the probability of acceptance is 
given by e¥. Of course, the best found schedule is saved. 

The advantage of SA over the previous two methods is that the true objective 
can immediately be evaluated. In contrast, the repetitive MIP heuristic optimizes a 
series of linear objective functions which hopefully result in a schedule that minimizes 
the true objective. Similarly, the quadratic MIP heuristic evaluates a quadratic 
objective instead of the true objective. The main drawback of SA is that we have 
to do some experiments in order to find good values for T and the temperature 
decrease function. The probability of a worse solution acceptance should be large 
at the start of the search and small towards the end. 
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8 Computational experiment 

8.1 Test set 

In order to study the computational performance of the heuristics, a test set has 
been composed. Firstly, note that all test problems involve a cycle time of 7 days 
in which the last two days are not available to allocate OR time (weekend), which 
is common in practice. We identified seven factors which we thought could have 
an impact on the complexity of the problem. These are: (1) the number of time 
blocks per day, (2) the number of surgeons, (3) the division of requested blocks per 
surgeon, (4) the number of operated patients per surgeon, (5) the probability of a 
no show-up as a measure of the variability in this number, (6) the length of stay 
(LOS) distribution and finally (7) the bed capacity. If we consider two settings for 
each factor and repeat each factor combination 3 times, we obtain 27 * 3 = 384 test 
instances. Table 2 contains the settings for these seven factors. Some of the factor 
settings require some further explanation. 

Table 2: Design of experiment 
Factor Nr. blocks Nr. Division Nr. patients Prob. LOS Capacity 

setting per day surgeons req. blocks per surgeon no show-up 

3-6 3-7 evenly 3-5 5% 2-5 105% 
distributed 

2 7-12 8-15 not evenly 3-12 10% 2-12 110% 
distributed 

The number of blocks per day is drawn from a uniform distribution with bounds 3 
and 6 in the first setting and 7 and 12 in the second setting. A block is defined as the 
smallest time unit for which a specific operating room can be allocated to a specific 
surgeon (or surgical group). Note that, due to large set-up time and costs, in real-life 
applications the number of blocks per day in one operating room is usually 1 or 2, i.e 
each surgical group has the OR for at least half a day. Hence, considering more blocks 
can be seen as a way of considering more operating rooms as there is no difference 
from a computational point of view. The third factor indicates whether or not the 
requested blocks are evenly distributed among all surgeons; e.g. if there are 20 time 
blocks and 5 surgeons, each surgeon requires 4 time blocks in the evenly distributed 
case, whereas in the unevenly distributed case huge differences can occur. Factor 
5 defines the probability of a no show-up. The higher this probability, the higher 
the variability in the number of operated patients distribution for each surgeon. For 
the LOS in factor 6 we simulated exponential distributions (made discrete by use 
of binomial distributions) with mean dependent on the factor setting. Finally, the 
capacity was set as follows. First we calculate the total bed occupation, i.e. sum 
up all (expected) LOS days of all (expected) patients of all surgeons. This number 
was divided by 7 in order to obtain the absolute minimum required capacity. Next, 
depending on the factor setting this capacity was increased with 5 or 10%. 
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8.2 Tested heuristics 

Using these 384 test instances the following heuristic algorithms were tested: 

Abbrev. 
MINMU 
MINWEIGHTED 

REP lVIIP1 
REPMIP2 
QP 
lVIINMUPERC 

REPlVIIP1PERC 
REPMIP2PERC 
QPPERC 
SAl 

SA2 

Description 
Minimize average peak (=MIP1)(3.6-3.13) 
Minimize weighted peak 
(=lVIIP2 with wI-' = 0.8 and W".2 = 0.2) (3.29-3.37) 
Repetitive MIP model 1 with E=l% of previous peak 
Repetitive MIP model 2 with E=O.Ol 
Quadratic Programming model (7.2-7.8) 
Same as MINMU, but now based on percentiles (see 3.4) 
nstdev = 0.2 
Idem for REPMIP1 
Idem for REPMIP2 
Idem for QP 
Simulated annealing (7.4) 
objective=min. total expected shortage 
initial temperature=500 
temperature update interval=lO iterations 
temperature update function=0.95*previous temperature 
end criterium=max. time all previous heuristics 
See SAl 
except for end criterium=1000 iterations 

All heuristics were implemented in Visual C++ and linked with CPLEX 8.1 (ILOG, 
2002) as a callable optimization library to perform linear and quadratic optimization. 

8.3 Computational Results 

Table 3 contains the results of our experiment. This table contains average values 
(over all 384 test instances) for the expected total bed shortages (ETBS) and average 
values and standard deviations for the computation times (in milliseconds). The 
standard deviations give an indication of the variability of the computation times 
for each heuristic. 

Table 3: Computational results 
Heuristic Avg. expo shortage (ETBS) Avg. compo time (ms) St. dey. compo time (ms) 

MINMU 9.346 76.510 228.334 

MINMUPERC 9.362 78.518 405.307 

MINWEIGHTED 9.219 86.174 195.423 

REPMIP1 7.853 17833.776 321353.376 

REPlVIIP1PERC 7.941 3981.865 42299.126 

REPMIP2 7.278 2624.906 5145.229 

REPMIP2PERC 7.278 2168.659 3888.637 

QP 7.312 27.951 20.946 

QPPERC 7.464 26.443 19.029 

SAl 9.536 22109.503 323544.954 

SA2 6.698 56808.042 20574.437 
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Figure 2 and 3 visualize this table. Note that the Y-axis in Figure 3 has a logarithmic 
scale. 
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Figure 3: Comparison of heuristic computation times 

From these figures we can draw a number of conclusions. First of all, if we look at 
the expected shortages, we see that SA2 finds the best solutions, followed by REP
MIP2, REPMIP2PERC, QP and QPPERC. Additionally to these average values, 
a repeated measures analysis was done with the SAS software system in order to 
be able to draw well-founded conclusions. The solutions found by SA2 were sig
nificantly (0: = 0.05) better than those found in REPMIP2, REPMIP2PERC, QP 
and QPPERC, between which no significant difference could be found. The results 
from REPMIP1 and REPMIP1PERC are significantly worse than the previous four 
heuristics. Finally, MINMU, MINWEIGHTED, MINMUPERC and SAl performed 
significantly worse than all other heuristics, but again no significant differences could 
be found between them. With respect to the computation times, four groups can 
be distinguished (from smallest to largest computation time): (1) the quadratic 
MIP heuristics (QP and QPPERC), (2) the single MIP heuristics (MINMU, MIN
WEIGHTED and MINMUPERC), (3) the repetitive MIP heuristics (REPMIP1, 
REPMIP1PERC, REPMIP2 and REPMIP2PERC) and (4) SA2. Recall that the 
computation time given to SAl equals the largest of the MIP heuristics and hence, 
SAl is obviously situated in the third group. From the standard deviations we may 
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conclude that the computation time of REPMIPI and SA2 are highly variable. An
alyzing computation times in SAS yielded no significant difference between QP and 
QPPERC. The quadratic MIP heuristics outperform all other heuristics, although 
no significant differences could be found with REPMIPl, REPMIPPERC and SAl, 
due to the large variability in these data. 

The reason why SA2 has such large computation times is that the evaluation of 
the true objective (via numerical integration) is very time consuming. Therefore, 
a second SA heuristic was implemented in which the objective is a weighted sum 
of the squared average daily bed occupations (like in QP) and the total shortage 
probability. This new objective can be evaluated instantly and hence many more 
iterations of SA can take place. Since the total squared sum of daily average bed 
occupations is much larger than the total shortage probability, this first measure is 
normalized such that it falls in a range from 0 (minimum) to 1 (maximum). The end 
criterium of this new SA heuristic (SA3) is the same as in SA2 (1000 iterations). 
Additionally, a new heuristic was written in which the start solution is given by 
the solution found by the QP heuristic followed by 250 iterations of SA (QP+SA). 
Here, the evaluation function is again the true objective. The results of these last 
two tests are given in Table 4. Figure 4 and Figure 5 provide block diagrams with 
the added computational results. 

Heuristic 

SA3 

QP+SA 

Table 4: Computational results 
A vg. expo shortage (ETBS) 

11.513 

6.740 

14 

12 

10 

CIl 8 
f!! 
W 6 

::0 

" z 
~ 

0 0 
0:: W '!o w I-

" D- I D-::0 CJ W 

" ~ 0:: 
Z 

" Z 

" 

Avg. compo time (ms) 

230.773 

12386.804 

N 0 
'!o 0:: 

" w 
D- i!, 
W D-0:: 

" D-
W 
0:: 

Heuristic 

D- o ;;: 0 0:: 
w <n 
D-
D-
0 

N 
<t 
<n 

St. dey. compo time (ms) 

87.025 

4858.314 

'" (J; « 
<n + 

D-o 

Figure 4: Comparison of new SA heuristics 

24 



1000000 

100000 

.§. 10000 . 

.~ 1000 
,;. 

~ 100 
() 

10 

~ u U 

'" ct 

"" 
ct 

Z W 

" 
W 

" 
D- D- D-
~ 

ijJ 0: " Z " " D-
W 
ct 

N U D- C) 

"" 
ct 0 ct 

" 
W W 

D- ~ D-
w D- D-
ct 0 

" D-
W 

'" Heuristic 

;;: ;;; ~ (j) (j) 

« 
~ 
D-
O 

o average 
ost. dey. 

Figure 5: Comparison of computation times of new SA heuristics 

From these graphs we can conclude that SA3 runs significantly faster than SA2 
(and SAl), however the results are also significantly worse. As a matter of fact, the 
results of SA3 are amongst the worst overall. Changing the weights in the evaluation 
function given to the total squared sum of average bed occupations and the total 
shortage probability did not produce better results. QP+SA however yields almost 
as good results as SA2 using much smaller computation times. 
The overall conclusion is that the best results are obtained by a metaheuristic ap
proach in which the true objective is evaluated. However, MIP approaches involving 
linearized and/or quadratic objective functions can be useful to find good solutions 
within small computational effort. The quadratic lVIIP heuristics turn out to out
perform repetitive MIP heuristics with regard to both solution quality and com
putational effort. When a metaheuristic approach was initiated with the solution 
found by a QP, good results were obtained in terms of both solution quality and 
computational effort. 
The impact of the different factor settings on the computation time is dependent on 
the applied heuristic. Table 5 provides the p-values of the different factors for each 
heuristic. Significant factors (a = 0.05) are indicated with a *. 
Here we can distinguish between five groups. For the first group, consisting of 
the single MIP heuristics (MINMU, MINMUPERC and MINWEIG HTED), only 
the first two factors (the number of blocks per day and the number of surgeons) 
have a significant (positive) impact on the computation time. Due to the huge 
variability in computation times, no significant factors could be found for REPMIP 1 
and REPMIP1PERC. Since SAl gets the largest computation time of the MIP 
heuristics, this heuristic obviously also belongs to this second group. REPMIP2 
and REPMIP2PERC are situated in a third group for which a third factor becomes 
significant: the number of patients per surgeon. Also here there is a positive influence 
on the computation time. For the quadratic MIP heuristics (QP and QPPERC) yet 
another significant factor is added: the LOS (Length Of Stay of the patients). The 
influence of this factor is however negative. Hence, the longer the patients stay, 
the smaller the needed computation time to solve the quadratic program. The fifth 
group consists of the remaining SA heuristics (SA2, SA3 and SA+QP, in which 
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Table 5: Impact of factor settings: p-values 
Factor Nr. blocks Nr. Division Nr. patients Prob. LOS Capacity 

Heur. per day surgeons req. blocks per surgeon no show-up 

MINMU 0.0233* < .0001* 0.2996 0.3956 0.0966 0.7456 0.8820 

MINMUPERC 0.0903 0.0069* 0.6391 0.1143 0.2167 0.2060 0.3018 

MINWEIGHTED 0.0142* < .0001* 0.3489 0.5962 0.2792 0.1506 0.2724 

REPMIP1 0.2945 0.2826 0.3144 0.3118 0.3322 0.2987 0.3093 

REPMIP1PERC 0.1018 0.0775 0.1808 0.5891 0.5045 0.1184 0.1239 

REPMIP2 < .0001* < .0001 * 0.3977 0.0286* 0.3931 0.9029 0.1704 

REPMIP2PERC < .0001* < .0001 * 0.3116 0.0030* 0.4988 0.4152 0.1612 

QP < .0001* < .0001* 0.1083 0.0062* 0.6412 0.0186* 0.1918 

QPPERC < .0001* < .0001* 0.0776 < .0001* 0.6630 0.0011 * 0.9245 

SAl 0.2174 0.2053 0.2680 0.3859 0.3945 0.2521 0.2500 

SA2 < .0001 * < .0001* 0.0031 * < .0001* 0.2587 0.0006* 0.6735 

SA3 < .0001 * < .0001 * 0.0066* 0.0204* 0.4934 0.2370 0.7232 

QP+SA < .0001* < .0001 * 0.0008* 0.0043* 0.1545 0.0014* 0.4748 

the end criterium is determined by a fixed number of SA iterations). Here also 
factor 3 (whether or not the blocks are equally divided over the surgeons) becomes 
significant. It turns out that SA can solve the problem faster when the blocks are not 
equally divided, which is no surprising result since the number of possible exchanges 
is larger when all surgeons are equally represented and hence more evaluations need 
to be done per iteration. This also explains why this factor is not significant in 
SA3, for which the computationally expensive evaluation function is replaced with 
an easily computable one. The probability of a no show-up and the (over)capacity 
do not play any role in the complexity of the problem, no matter which heuristic is 
applied. 

8.4 Simulation study 

Recall that in order to calculate expected shortages, the bed occupation distributions 
are approached with normal distribution functions (see Section 7.1). Alternatively, 
the found schedules could have been evaluated using simulation. The reason why 
this was not done in the computational experiments described earlier is that (reli
able) simulation takes too much computation time. However, to verify the accuracy 
of our results, a simulation experiment was done in which the predicted values (av
erages, variances and shortages) are compared with simulated values. In this part 
we summarize the findings of this experiment. 
The experiment involved all 384 test instances. Each problem was again solved 
with the quadratic programming heuristic (QP). For each problem the total average 
and total variance of the bed occupation (summed up over all 7 days) and total 
bed shortage resulting from the found schedule are calculated both through the 
theoretical results as outlined above and obtained through simulation: 

1. Predicted values: average and variance are calculated using the theoretical 
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formulas derived above. Expected shortages are calculated by approaching the 
bed occupation distributions with normal distributions and applying numerical 
integration as described above. 

2. Simulated values: average, variance and shortages are calculated by simulating 
1000 periods, taking into account a warm-up period in order to reach steady
state. 

The experiment provided three series (averages, variances and expected shortages) 
of predicted and simulated data. These series were compared using a paired Student 
T-test (two-tailed). In the left part of Table 6 the results are given. The extremely 
small p-values for both the variance and the expected shortage indicate that these 
predicted values are different from the simulated ones. It turns out that the pre
dicted variances are larger and hence also the predicted shortages are larger than 
the simulated ones. 

Table 6: Predicted versus simulated data 

A vg. bed occupation 
Avg. var. bed occupation 
A vg. total bed shortage 

All 384 instances Only 192 instances 

Pred. 
967,8501 
170,0203 
7,2856 

Sim. 
967,8160 
151,2397 
7,1361 

p-value 
0,4102 

1,56E-26* 
7,14E-20* 

with LOS < cycle time 
Pred. Sim. p-value 

651,5265 651,4699 0,1996 
130,0206 129,9518 0,7631 
11,3355 11,3301 0,7979 

The reason for this discrepancy is that the theoretical results do not take into account 
autocorrelation in the data. Indeed, a subset of the patients occupying a bed at 
period t will also occupy a bed at period t + 1, namely those patients that stay 
longer than a cycle in the hospital. This means that the number of patients in the 
hospital at period t + 1 can partly be explained by the number at period t. In other 
words, both numbers are dependent. When simulating more periods, the difference 
between numbers of occupied beds of subsequent periods differ less than expected 
from theoretical results, making the true variance smaller than the predicted one. 
In order to verify this explanation, the T-tests are repeated, but now only including 
those instances having the first setting of factor 6 (i.e. with LOS below the cycle 
time). The results are indicated in the right column of Table 6. As was expected, all 
p-values are now sufficiently high, indicating that the assumption of a (structural) 
difference between the predicted and the simulated data can be rejected. 

9 Conclusion and future research 

The purpose of this paper is to propose and compare models and algorithms for 
building robust surgery schedules. We concentrate on the development of cyclic 
master surgery schedules. A distinction is made between elective and non-elective 
cases producing respectively artificial and natural variability. The objective is to 
find a schedule for which the total expected bed shortage (from elective cases) IS 
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minimized. Since the problem is too complex to solve exactly, we develop a number 
of heuristics. One can distinguish between two approaches: a MIP based approach 
and a metaheuristic approach. In the first approach the non-linear objective func
tion is being replaced with a linear (or quadratic) one and the resulting models are 
solved with a state-of-the art MIP solver. Therefore, theoretical results have been 
derived for both average and variance of the resulting bed occupation on each day, 
given a particular surgery schedule. Models have been proposed which aim at the 
minimization of the highest expected bed occupation peak, highest bed occupation 
variance or a combination of both. Additionally, a number of repetitive MIP solving 
algorithms have been developed. The second approach preserves the original objec
tive function and searches a good solution by means of a metaheuristic (simulated 
annealing) approach. All algorithms have been extensively tested and their results 
compared. The best solutions are found with the simulated annealing approach. 
However, this approach also takes the longest computation times. Concerning the 
MIP based approaches, the best results are obtained with the quadratic program
ming (QP) models in terms of both solution quality and computation time. A hybrid 
approach in which a simulated annealing search is initiated with a schedule found 
by a quadratic program yields satisfying results with regard to both solution quality 
and computation time. A simulation experiment indicates that, due to autocorre
lated data, there was a slight overestimation of both variance and expected shortage 
in the theoretically developed models. 

The developed models are very basic. Only two types of constraints have been 
considered: surgery demand and OR capacity constraints. For real-life applications 
a number of additional constraints could be required like e.g. workforce capacity 
constraints (anaesthetists, nursing staff), surgeons preference constraints (e.g. all 
blocks at maximal two different days), material requirement constraints, transition 
constraints (change of equipment from one surgery group to another) etc ... It would 
be interesting to implement these kinds of models for a real-life case in order to see 
to which extent they can improve existing practices and which model extensions 
are required to make them practically useful. This is the first and most important 
item for future research. From a theoretical point of view, it would be interesting 
to see which extensions could easily be handled by which solution approach and 
which not. Furthermore, the impact of these extensions on both solution quality 
and computation time could be researched. 
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