
1

On the Design and Security of RC2

Lars R. Knudsen1, Vincent Rijmen2, Ronald L. Rivest3,

and M.J.B. Robshaw4

1 Dept. of Informatics, University of Bergen, Hi-techcenter, N-5020 Bergen, Norway
larsr@ii.uib.no

2 K.U. Leuven, ESAT, Kardinaal Mercierlaan 94, B-3001 Heverlee, Belgium
vincent.rijmen@esat.kuleuven.ac.be

3 M.I.T. Laboratory for Computer Science, 545 Technology Square, Cambridge,
MA 02139, USA

rivest@theory.lcs.mit.edu
4 RSA Laboratories, 100 Marine Parkway, Redwood City, CA 94065, USA

matt@rsa.com

Abstract. The block cipher RC2 was designed in 1989 by Ron Rivest
for RSA Data Security Inc. In this paper we describe both the cipher and
preliminary attempts to use both differential and linear cryptanalysis.

Appeared in Fast Software Encryption, FSE 1998, Lecture Notes in Computer
Science 1372, S. Vaudenay (ed.), Springer-Verlag, pp. 206–221, 1998.

c©1998 Springer-Verlag

2

No Title Given

No Author Given

No Institute Given

1 Introduction

RC2 is a block cipher1 that was designed in 1989 by Ron Rivest for RSA
Data Security, Inc. Initially held as a confidential and proprietary algo-
rithm, RC2 was published as an Internet Draft during 1997 [12]. RC2
has many interesting and unique design features, particularly so when
one considers the style of ciphers that dominated both the literature and
the market at the time of its invention. The cipher was intended to be
particularly efficient on 16-bit processors and with a 64-bit block size it
was intended as a drop-in replacement for DES [11]. A significant fea-
ture of RC2 is the flexibility offered to the user in terms of the effective
key-size. This has now become a common feature of many block cipher
proposals and it is a property that has proven to be important in com-
mercial applications. Over the years RC2 has been deployed widely and
it features prominently in the S/MIME secure messaging standard [5].
Currently there are no published results on the cryptanalytic strength
of RC2. As a first step this paper sets out some details on how the basic
attacks of differential [1] and linear [8] cryptanalysis might apply.

2 The Design of RC2

There are two distinct parts to using RC2. First a key expansion proce-
dure takes a user-supplied key of between one and 128 bytes in length
together with a parameter that specifies the effective key-length of en-
cryption. From this information an array K[·] of 64 16-bit round keys is
derived. Then a 64-bit plaintext block is encrypted using array K[·]. En-
cryption consists of two styles of rounds. One is termed a MIXING round
and the other a MASHING round.
Both the key expansion and encryption components rely on the use of
a substitution table called PITABLE. This table specifies a random per-
mutation on the integers 0, . . . , 255 and was derived from the expansion
of π = 3.14159 The table itself will not concern us directly in this
paper, but it is included for completeness in the Appendix. We will now
describe the action of RC2 in more detail. We will use x<<<k to denote
the 16-bit word x rotated left by k bits, & will denote bitwise logi-
cal AND, ⊕ will denote bitwise exclusive-or and ∼ will denote bitwise
complementation. All 16-bit word addition + is performed modulo 216.

1 RC2 is a registered trademark of RSA Data Security, Inc.

Appeared in Fast Software Encryption, FSE 1998, Lecture Notes in Computer
Science 1372, S. Vaudenay (ed.), Springer-Verlag, pp. 206–221, 1998.

c©1998 Springer-Verlag

3

2.1 Key Expansion

During the key expansion procedure both byte operations and 16-bit
word operations are used. The array K[·] that stores the 64 16-bit round
keys will be referred to in two ways.

a) For word operations the positions of the buffer will be referred to as
K[0], . . ., K[63] where each K[i] is a 16-bit word.

b) For byte operations the array of round keys will be referred to as
L[0], . . ., L[127] where each L[i] is an eight-bit byte. It will always
be the case that K[i] = L[2i] + 256 × L[2i + 1] (That is, the lower
order byte is given first).

Suppose that T bytes of key are supplied by the user with 1 ≤ T ≤ 128.
The key expansion procedure places the T -byte key into L[0], ..., L[T−1]
of the key buffer. Regardless of the value of T however, the algorithm has
a maximum effective key length in bits that is denoted T1. The effective
key length in bytes T8 and a mask TM based on the effective key length
in bits T1 are derived as T8 = dT1/8e and TM = 255 mod 28(1−T8)+T1.
Key expansion consists of the following two loops and intermediate step:
1. for i = T, T + 1, ..., 127 do

L[i] = PITABLE[L[i− 1] + L[i− T]] (addition is modulo 256)
2. L[128− T8] = PITABLE[L[128− T8]&TM]
3. for i = 127− T8, ..., 0 do

L[i] = PITABLE[L[i+ 1]⊕ L[i+ T8]]

At the end of this key expansion the array K[0], . . ., K[63] contains the
64 16-bit subkey words that will be used during encryption.

2.2 Encryption and Decryption

The encryption operation is defined in terms of primitive MIX and MASH

operations. An array of four 16-bit words R[0], . . ., R[3] are used to hold
the initial plaintext, the intermediate results, and the final ciphertext.
Indices to this array are always given modulo 4.

MIX R[i]

The primitive “MIX R[i]” operation is defined as follows, where s[0] =
1, s[1] = 2, s[2] = 3, and s[3] = 5. Here j is a “global” variable so
that K[j] is always the first key word in the expanded key which has
not yet been used in a MIX operation.

R[i] = R[i] +K[j] + (R[i− 1]&R[i− 2]) + (∼R[i− 1]&R[i− 3]);

j = j + 1;

R[i] = R[i]<<<s[i];

MIXING round

A MIXING round consists of MIX R[0], MIX R[1], MIX R[2], MIX R[3].

MASH R[i]

The primitive “MASH R[i]” operation is defined as follows:

R[i] = R[i] +K[R[i− 1]& 003fx];

Appeared in Fast Software Encryption, FSE 1998, Lecture Notes in Computer
Science 1372, S. Vaudenay (ed.), Springer-Verlag, pp. 206–221, 1998.

c©1998 Springer-Verlag

4

MASHING round
A MASHING round consists of MASH R[0], MASH R[1], MASH R[2], MASH
R[3].

The entire encryption operation can now be described as follows. Here j is
a global integer variable which is only affected by the mixing operations.

Encryption With RC2

1. Initialize words R[0], ..., R[3] to contain the 64-bit plaintext
block.

2. Expand the key, so that words K[0], ..., K[63] become defined.
3. Initialize j to zero.
4. Perform five MIXING rounds.
5. Perform one MASHING round.
6. Perform six MIXING rounds.
7. Perform one MASHING round.
8. Perform five MIXING rounds.
9. The ciphertext is R[0], ..., R[3].

Decryption is the reverse of encryption. Since the details can easily be
established they are not included here. Test vectors for encryption using
RC2 are provided in the Appendix.

2.3 Features of RC2

RC2 is rather unusual in that the 64-bit plaintext block is split into
four words each of 16 bits. In a style reminiscent of the hash function
MD4 [13], much of the encryption process relies on one of these words
being modified by a function of the other three, the four words then
being swapped cyclically. This design approach was explored some seven
years after the design of RC2, which now might be described as being
an “unbalanced Feistel cipher” [4].
The key schedule for RC2 is also unusual. T8 is the number of bytes
needed to contain the given T1 bits of key. When T1 is congruent to k,
modulo 8, a mask TM containing ones in the low-order k bits is used to
derive the correct effective key length. The first step of the key expansion
expands the key to a full 128 bytes, using a non-linear byte-wide feedback
shift-register approach. Step three is similar to the first, except that it
starts at the high end and works towards the lower end. Steps two and
three also work together to limit the effective key size to T1 bits. Step
three corresponds to using a feedback register of only T8 bytes, and step
two ensures that the initial state of that register has only T1 bits of
entropy. Although the procedure limits the actually entropy of the key
to T1 bits, it also ensures that the final key table depends upon each
bit of the supplied key. If one supplies a 16-byte key, but set T1 = 40,
then changing any bit of the supplied key should result in a different key
table, although the number of possible key tables is limited to 240.

3 Differential Cryptanalysis of RC2

Differential cryptanalysis [1] can be a powerful style of attack. By choos-
ing a pair of plaintexts with a particular difference, which can be adapted

Appeared in Fast Software Encryption, FSE 1998, Lecture Notes in Computer
Science 1372, S. Vaudenay (ed.), Springer-Verlag, pp. 206–221, 1998.

c©1998 Springer-Verlag

5

to the cipher in question, the cryptanalyst hopes that some identifiable,
and unusual behavior, can be observed by processing the ciphertexts. One
possible evolution of the difference between a pair of plaintexts during
encryption can be described by a characteristic. In essence, a characteris-
tic specifies the difference between two parallel encryptions at each stage
of the encryption process and there is some associated probability that
a pair being encrypted does indeed follow this description. A plaintext
pair that follows the characteristic is typically called a right pair. A pair
that does not is called a wrong pair.
Throughout our attack on RC2, we shall define the difference between
two 16-bit words A and B to be A ⊕ B. Furthermore in our analysis
we shall be interested in how single-bit differences behave within RC2.
The decision to restrict our attention to single-bit differences facilitates
analysis but is also motivated by a typical assumption that characteristics
involving multiple-bit differences over integer addition will generally hold
with lower probability than single-bit characteristics [6]. We note that
other more complex techniques [2, 7] might open new avenues for the
analysis of RC2.
We will use et to denote the 16-bit word with a single one bit in position t
from the right, all other bits being set to zero. We also view the leftmost
bit of a 16-bit word to be the most significant bit. Thus we shall use
e15 to denote a 16-bit word with the only non-zero bit being the most
significant bit. We will denote the word of 16 zero bits as 0000x where
the subscript x denotes hexadecimal notation and we will denote the
Hamming weight (i.e. the number of ones in the binary expansion of
some quantity x) as Hwt(x).
For the remainder of the paper, we shall consider MIXING and MASHING

rounds in the following way. Instead of viewing the operation at each
step as acting on a different word we shall consider the operations to
be identical (i.e., at each MIX step R[0] = R[0] +K[j] + (R[3] &R[2]) +
(∼R[3] &R[1])) but that between steps the words are rotated cyclically
(i.e., TEMP = R[0]; R[0] = R[1]; R[1] = R[2]; R[2] = R[3]; R[3] = TEMP).

3.1 Some Basic Characteristics for MIX

Given an input difference (et 0000x 0000x 0000x) to the first MIX step
in a MIXING round, the output difference before rotation will be (et 0000x
0000x 0000x) with probability p ≥ 1/2. Rotation then moves this single
bit difference within the word, and the four words are swapped cyclically.
We can summarize the four basic characteristics which hold with prob-
ability p ≥ 1/2 (when averaged over all plaintexts and key words) for a
MIX step. The value of the rotation s[i] depends on the step i in which
the characteristic is applied. Note that addition within the subscript of
et is to be performed modulo 16.

(et 0000x 0000x 0000x) → (0000x 0000x 0000x et+s[i]) (1)

(0000x 0000x 0000x et) → (0000x 0000x et 0000x) (2)

(0000x 0000x et 0000x) → (0000x et 0000x 0000x) (3)

(0000x et 0000x 0000x) → (et 0000x 0000x 0000x) (4)

Appeared in Fast Software Encryption, FSE 1998, Lecture Notes in Computer
Science 1372, S. Vaudenay (ed.), Springer-Verlag, pp. 206–221, 1998.

c©1998 Springer-Verlag

6

Apart from (1) with t = 15 which holds with probability p = 1, these
characteristics hold with probability p = 1/2 on average. There are times
where the characteristics do not hold. The following are the cases where
the characteristic hold with certainty:

– In (2), if (R[2] & et) = (R[1] & et) then p = 1.
– In (3), if (R[3] & et) = 0000x then p = 1.
– In (4), if (R[3] & et) = et then p = 1.

In the first MIXING round, the attacker chooses the plaintext and this al-
lows the cryptanalyst to capture some of these special cases in an attack.

3.2 Some Basic Characteristics for MASH

There are two MASHING rounds in RC2 and the basic MASH step is R[0] =
R[0]+K[R[3] & 003fx]. Given an input difference (0000x 0000x 0000x
et) to a MASHING round with (et & 003fx) = 0000x the same key word
K[·] will be added to both sets of partially encrypted data. The four
basic useful characteristics for MASH are as follows:

(et 0000x 0000x 0000x) → (0000x 0000x 0000x et) (5)

(0000x 0000x 0000x et) → (0000x 0000x et 0000x) (6)

(0000x 0000x et 0000x) → (0000x et 0000x 0000x) (7)

(0000x et 0000x 0000x) → (et 0000x 0000x 0000x) (8)

Characteristic (5) holds with probability p = 1/2 unless t = 15 when
it holds with probability p = 1, characteristics (7) and (8) hold with
probability p = 1, and characteristic (6) holds with probability p = 1 if
(et & 0x3f) = 0000x. Joining these four characteristics together to pass
across a MASHING round with probability p = 1 is straightforward.

3.3 Towards a Differential Attack on RC2

In this section we combine characteristics for both MIXING and MASHING

rounds while moving towards a full analysis of RC2. We will assume that
the subkey words K[0], . . ., K[63] are independent and we aim to recover
the expanded key table K[·] in our attack.
The characteristics of interest are built around single-bit differences and
as noted in Section 3.1 there are advantages to having this single non-
zero bit in the most significant bit of a word. Depending on which word
R[·] is the subject of the characteristic we use, different rotation amounts
feature during MIXING. This leads to conditions on t, the position of the
single-bit difference in the plaintext, that provide some advantages in
an attack. Another consideration is the presence of the MASHING rounds
and one aim might be to nullify their action. If a one-bit characteristic
specifies an input difference to a MASHING round of et in any one of the
words, then provided t = 15 the characteristic will pass through the
MASHING round unhindered with probability p = 1. If 5 < t < 15 then
there is a characteristic that holds with probability p = 1/2. There are
six MIXING rounds between the two MASHING rounds and so with the

Appeared in Fast Software Encryption, FSE 1998, Lecture Notes in Computer
Science 1372, S. Vaudenay (ed.), Springer-Verlag, pp. 206–221, 1998.

c©1998 Springer-Verlag

7

plaintext difference difference at start of prob. values of t
last MIXING round

(et 0000x 0000x 0000x) (et+15 0000x 0000x 0000x) 2
−58 4

(et 0000x 0000x 0000x) (et+15 0000x 0000x 0000x) 2
−59 1, 2, 3

(0000x et 0000x 0000x) (0000x et+14 0000x 0000x) 2
−58 5

(0000x et 0000x 0000x) (0000x et+14 0000x 0000x) 2
−59 1, 3

(0000x et 0000x 0000x) (0000x et+14 0000x 0000x) 2
−60 0, 2, 4

(0000x 0000x et 0000x) (0000x 0000x et+13 0000x) 2
−58 14

(0000x 0000x et 0000x) (0000x 0000x et+13 0000x) 2
−59 7, . . ., 13

(0000x 0000x 0000x et) (0000x 0000x 0000x et+11) 2
−58 6

(0000x 0000x 0000x et) (0000x 0000x 0000x et+11) 2
−59 15, 0, . . ., 5

Table 1. 26 differentials that are potentially useful in an attack on RC2. The associated
probabilities are lower bounds provided by the analysis of a characteristic contained
within the specified differential.

difference (et 0000x 0000x 0000x) as input to the first MASHING round
we can establish the values of t that are useful to us.

A more accurate reflection of the success of a final attack is given by con-
sidering differentials [10] instead of characteristics (which provide only
a lower bound to the probability of the differential). In Section 3.5 we
will consider the issue of differentials in more detail but from this point
on we will anticipate later analysis by referring to the use of differentials
during our description of the attack. The observations provided so far
allow us to present in Table 1 the differentials that are useful to us.

3.4 Recovering Key Information

In a differential cryptanalytic attack the attacker typically chooses a
differential for (n − 1) rounds of an n-round block cipher. The attacker
then tries to deduce key information from the last round of the cipher
[1]. Here, the most effective attack on RC2 appears to require that bits
of the subkey K[0] used in the first MIXING round are recovered first.

Consider a differential with input difference (0000x 0000x 0000x et).
The starting values of R[1] and R[2] are chosen so that (R[1] & et) =
(R[2] & et). After the first MIX step the difference will be (0000x 0000x
et 0000x). The output difference from the second MIX step will depend
on the value of bit t in register R[3]. If this bit is zero then word R[1] with
difference 0000x will be chosen. Otherwise word R[2] with difference et
will be selected and a difference will be introduced into another word.
Note that the value of this bit depends on the plaintext (which we know)
and on bits of the first 16-bit subkey word K[0].

We can trace the output of the second MIX step to the end of the penul-
timate MIXING round by using the differentials in Table 1. If the pair
is a right pair then we can recover one bit of information from K[0] as

Appeared in Fast Software Encryption, FSE 1998, Lecture Notes in Computer
Science 1372, S. Vaudenay (ed.), Springer-Verlag, pp. 206–221, 1998.

c©1998 Springer-Verlag

8

follows. A necessary condition for a pair to be a good pair is that

et & ((R[0] + (R[3] &R[2]) (9)

+ (∼R[3] &R[1]) +K[0])<<< 1) = 0.

Let x = R[0] + (R[3] &R[2]) + (∼R[3] &R[1]) which we control via the
choice of plaintext. Then we have the following condition for a right pair:

(x+K[0])& et−1 = 0. (10)

Denote by k the value derived by setting the top ((16− t) mod 16) bits
of K[0] to zero. Let y = x& et−1 and let z be the quantity derived by
setting the top ((16− t+1) mod 16) bits of x to zero. Then we have that

(x+K[0])& et−1 = 0⇔ y = (z + k)& et−1. (11)

To mount an attack to recover bit (t−1) of k for some given t we encrypt
plaintext pairs with z = 0 until we obtain a right pair. Once we have a
right pair we observe the value of y. From this we deduce the value of bit
(t−1) in k and hence in K[0]. We can then repeat this approach choosing
pairs with different values to z so that information on the subkey K[0]
is recovered bit by bit.
By using different differentials with different values of t (see Table 1)
we are able to introduce some error-checking into the attack2. In this
way the bits of K[0] that we recover can be verified. All recovered bits
of K[0] have to be correct before the next bit of K[0] can be correctly
derived. Note that structures [1] can be useful in reducing the plaintext
requirements for a differential attack when more than one differential
is useful. With n useful differentials we can ask for a structure of 2n

plaintexts with specifically chosen differences. From these we derive 2n−1

plaintext pairs for each of the n characteristics.
There remains the issue of detecting when a data pair is a good pair.
We note that the difference at the start of the final MIXING round has
Hamming weight one for a good pair. We might therefore measure the
Hamming weight of the ciphertext and if the weight is less than some
threshold the pair can be considered a right pair. Depending on the
threshold we might accept some wrong pairs as being right pairs, some-
thing that would provide a wrong answer to the bit we wish to recover
with probability 1/2. To improve the robustness of the attack one might
aim to collect more right pairs. Then the value of the bit suggested most
often can be assumed to be the correct value to the key bit we are trying
to recover. As a demonstration we provide the success rate for differ-
ent amounts of plaintext in experiments on eight-round RC2. (There are
eight MIXING rounds with a MASHING inserted after round five as occurs in
RC2.) A decision on whether a good pair had occurred was made accord-
ing to whether the Hamming weight of the difference in the ciphertext
was less than some threshold. Then, once a value for the key bit had been
counted more than the other (this difference being denoted by excess)
that value for the key bit was set. Each entry in the table was computed
after 20 experiments.

2 Not all values of t are valid for use due to the two MASHING rounds.

Appeared in Fast Software Encryption, FSE 1998, Lecture Notes in Computer
Science 1372, S. Vaudenay (ed.), Springer-Verlag, pp. 206–221, 1998.

c©1998 Springer-Verlag

9

Hamming weight
excess 11 12 13

2 90% 229 20% 228.5 0% 227.5

4 100% 230 95% 230 20% 229.5

8 100% 231 100% 231 65% 231

3.5 The Effectiveness of Differential Cryptanalysis

As we previously mentioned it is differentials and their probabilities that
reflect the effectiveness of a differential attack. Whereas a characteristic
describes one specific evolution of differences through encryption, from
a given starting difference there might well have been other “paths”
through the cipher to the same target difference than the one described
by one particular characteristic. With RC2 this leads to a particularly
interesting interaction between the MIXING and MASHING rounds.
First we will consider in abstract terms the probability that a one-bit
difference in some word a produces a one-bit difference in the word d
when we define d = a+b+c for unknown constants b and c. One approach
might be to consider this as two separate additions and to consider the
intermediate word e = a+b first. Since a one-bit difference in a produces
a one-bit difference in e with probability 1/2 and a one-bit difference
in e provides a one-bit difference in d = e + c with probability 1/2 we
would say that the characteristic over the two additions has probability
1/4. However it would then be misleading to use this characteristic to
provide an approximation to the probability of the differential from a to
d. Instead, the probability of the propagation of a one-bit difference from
a to d is 1/2 since b+ c is a fixed value. Consequently the probability of
the differential from a to d must also be 1/2.
Recall that the probability of the differential is given by the sum of the
probabilities of all the characteristics that satisfy the differential. By
looking at two successive additions in isolation we inadvertently restrict
our attention to single-bit differences in the intermediate value e. Let
α, 0 ≤ α ≤ n − 1, denote the position of the one bit difference in a. A
one-bit difference in a will give a difference in e with Hamming weight h
with probability 2−h, 1 ≤ h < n− α, and with probability 2−n+α+1 for
h = n− α. Since this h-bit difference was caused by a one-bit difference
in the previous step3 an h-bit difference in e will be transformed to a
one-bit difference in d by the addition of c with probability 1/2. Thus
we get

p = 2−1(2−n+α +

n−α
∑

h=1

2−h), if α < n− 1 (12)

p = 1 if α = n− 1. (13)

One place where this has an effect is when a MIXING round follows a
MASHING round. Each word R[0], . . ., R[3] is modified by a MASH step

3 In general it is not true that an h-bit difference goes to a one-bit difference with
such a high probability.

Appeared in Fast Software Encryption, FSE 1998, Lecture Notes in Computer
Science 1372, S. Vaudenay (ed.), Springer-Verlag, pp. 206–221, 1998.

c©1998 Springer-Verlag

10

in turn. At the first subsequent MIX step R[0] is modified by means of
addition. By looking at the two additions in isolation one under-estimates
the probability of the differential.

In the analysis of RC2 we need to take account of this effect since it
applies to some extent to the MIXING rounds as well as during the tran-
sition between MIXING and MASHING rounds. Within the MIXING rounds
an intermediate quantity is used as input to a multiplexor function. This
reduces the probability that this particular characteristic is followed by a
factor of 2−h for each multiplexor when the Hamming weight of the dif-
ference is h. If we denote the number of multiplexing functions between
two successive additions by k then (12) can be rewritten as follows:

p =

n−α
∑

h=1

2−h · 2−hk · 2−1 + 2−(n−α) · 2−(n−α)k · 2−1 (14)

= 2−1

(

n−α
∑

h=1

2−(k+1)h + 2−(k+1)(n−α)

)

(15)

= 2−1

(

1− 2−(k+1)(n−α)

1− 2−(k+1)

1

2(k+1)

)

+ 2−(k+1)(n−α) (16)

≈ 2−1
(

1

2(k+1) − 1

)

. (17)

The last approximation is reasonable for smaller α (α < n − 3) but
would need some correction for larger values of α. For k = 0, 1, 2, 3,
(17) gives p = 1/2, 1/6, 1/14, 1/30, which should be compared with
the respective probabilities of the characteristics we previously derived:
1/4, 1/8, 1/16, 1/32. In the case of two consecutive MIXING rounds we
have that k = 3 and so the probability of a one-bit to one-bit differential
across two MIXING rounds is 1/30× 2−3 = 1/240.

The effect we are using here can be extended to a series of additions
whereby the intermediate values of interest have differences with a variety
of Hamming weights even though the starting and ending difference have
weight one. Consider three consecutive mixing rounds. Let a be a one-bit
difference in the leftmost words of two inputs and let α be the position
of that bit, where 0 ≤ α ≤ n− 1. Let d be the difference in the leftmost
words after three mixing rounds and suppose that h1 and h2 denote
the Hamming weights of the leftmost words after one, respectively two,
mixing rounds. Then the probability that d is a one-bit difference can
be estimated as follows, where k = 3 and where for simplicity we have
eliminated the term for h = n− α.

p '

n−α
∑

h1=1

n−α
∑

h2=1

2−h1 · 2−h1k · 2−h2 · 2−h2k · 2−1 (18)

= 2−1

(

n−α
∑

h1=1

2−(k+1)h1 ·

n−α
∑

h2=1

2−(k+1)h2

)

(19)

≈ 2−1
(

1

2(k+1) − 1

)(

1

2(k+1) − 1

)

. (20)

Appeared in Fast Software Encryption, FSE 1998, Lecture Notes in Computer
Science 1372, S. Vaudenay (ed.), Springer-Verlag, pp. 206–221, 1998.

c©1998 Springer-Verlag

11

Again the final approximation requires that α is small. For k = 3 p is
2−1(1/15)2. We can now estimate the probability of the differential over
three mixing rounds by 2−1(1/15)2 × 1/8 ' 1/3600. This extends easily
to more rounds and in general the probability of a differential over r
mixing rounds is (1/15)r−1 × 1/16. Note that the MASHING rounds can
be passed with probability one.
For a more accurate assessment a slight correction should be applied
for rounds where the difference is close to the most significant bit, but
experimental evidence given below suggests that the expressions derived
are reasonable to use. The number of rounds in the table refers to the
number of MIXING rounds used. After five MIXING rounds an additional
MASHING round is inserted as occurs when encrypting with RC2. The final
column is derived as an average over at least five sets of experiments for
each row.

rounds # pairs/test # right pairs expected # right pairs obtained

3 219 146 146
4 222 78 79
6 229 44 47
7 231 12 13

Note that the probability of the differential obtained in this section does
not take into account text pairs which have internal differences in more
than one word before they resynchronize. This was observed occasionally
during experiments but cases where differences in more than one word
resynchronize are rare and we ignore their impact on our estimates.

3.6 Differential Cryptanalysis of RC2

We arrive at the following estimates for the data required to recover
information about the subkey K[0]. Once this subkey word has been re-
covered the attack is repeated on what would now become a reduced
version of RC2. When we take into account the key-recovery techniques
of Section 3.4 we estimate that a differential attack on RC2 with r MIXING
rounds (including the MASHING rounds) requires at most 24r chosen plain-
texts. An attack on RC2 with 16 MIXING rounds requires use of a differ-
ential with probability at least 2−58.7 (“at least” since we have not yet
accounted for such phenomena as a one-bit difference in the most signif-
icant bit at a MIXING round). In this regard RC2 with 16 MIXING rounds
compares favorably to DES (247 pairs [1]) and 12-round RC5 (244 pairs
[3]). It is fair to observe, however, that RC2 is not a fast cipher and an
optimized version of DES and 12-round RC5 are both likely to be faster
than RC2.

4 Linear Cryptanalysis of RC2

Linear cryptanalysis has provided the best theoretical attack on DES in
terms of data requirements [9]. However, its usefulness on other ciphers is
often limited. The aim of such an attack is to relate bits of the plaintext
and ciphertext to bits of the key via a linear equation which holds with

Appeared in Fast Software Encryption, FSE 1998, Lecture Notes in Computer
Science 1372, S. Vaudenay (ed.), Springer-Verlag, pp. 206–221, 1998.

c©1998 Springer-Verlag

12

some probability p. Such an approximation can generally be used to
provide an estimate for one bit of the key and more advanced techniques
are available to extract more key information [9]. If an approximation
holds with probability p then the important quantity for the cryptanalyst
is the absolute value of the bias of the approximation b = |p − 1/2|.
Typically the data required to use such an approximation is given by
c× b−2 known plaintexts for some small constant c [9].

The MIX step in RC2 is R[0] = R[0]+K[j]+(R[3] &R[2])+(∼R[3] &R[1]).
Across integer addition the best linear approximation involves the least
significant bit of each quantity, and will hold with probability one. The
multiplexor function x = (R[3] &R[2]) + (∼R[3] &R[1]) has linear ap-
proximations of varying usefulness. The absolute value of the highest
non-trivial bias is 1/4 when averaged over all plaintexts. In a slight abuse
of notation we will consider a 16-bit word x as a vector in Z16

2 and we
will use the 16-bit quantity α to indicate the bits of x that are to be
used in a linear approximation. This is most conveniently described by
means of the scalar product of two vectors. Thus the {0, 1}-vector α will
be used to denote the specific bits of x to be used in an approximation
and α · x is the value of these bits combined using exclusive-or. Useful
linear approximations across the multiplexor are of the form

α · x = α ·R[1] α · x = α ·R[1]⊕ α ·R[3]

α · x = α ·R[2] α · x = α ·R[2]⊕ α ·R[3]

where Hwt(α) = 1. More generally approximations to the multiplexor
function with non-zero bias have the form

δ · x = α ·R[1]⊕ β ·R[2]⊕ γ ·R[3] (21)

where δ is the bitwise inclusive-or of α and β and γ is either 0 or it consists
of ones in positions where either α or β have ones. The greater the value
of Hwt(γ) the lower the absolute value of the bias of the approximation.

The following approximation to the first MIX step (which includes the
cyclic swap of the R[·] words) might be useful

e1 · (R[3]
new) = e0 · (R[0]

old) ⊕ e0 · (K[j])⊕ e0 ·R[2]
old.

This has a bias of absolute value 1/4. The following steps require no
approximation and there appears to be no better non-trivial linear ap-
proximations for a complete MIXING round. We might illustrate this ap-
proximation in the following way:

step R[0] R[1] R[2] R[3] round 1
e0 − e0 − start

1 − − − e1 |b| = 1/4
2 − − e1 − |b| = 1/2
3 − e1 − − |b| = 1/2
4 e1 − − − |b| = 1/2

In continuing this approximation into the next MIXING round we would
be forced to approximate the bit e1&R[0]. One integer addition involves

Appeared in Fast Software Encryption, FSE 1998, Lecture Notes in Computer
Science 1372, S. Vaudenay (ed.), Springer-Verlag, pp. 206–221, 1998.

c©1998 Springer-Verlag

13

the subkey wordK[4] and depending on this value the bias of the approx-
imation will vary4. The second integer addition involves the output from
the multiplexor function. By the conditions given above this approxima-
tion must involve e1&R[1] or e1&R[2] and we can construct the following
approximations for the second and third MIXING rounds. Here we assume
that the bias of the approximation across the multiplexor function is at
most 1/4. Similarly, we assume that the bias of the approximation across
the integer addition is at most 1/4. This occurs in approximating steps
1 and 3 and the value of |b| is given for those steps individually.

step R[0] R[1] R[2] R[3] round 2
e1 − − − start

1 − e1 − e2 |b| ≤ 1/8
2 e1 − e2 − |b| = 1/2
3 − e1 ⊕ e2 − e4 |b| ≤ 1/8
4 e1 ⊕ e2 − e4 − |b| = 1/2

4.1 The Effectiveness of Linear Cryptanalysis

The typical way to measure the effectiveness of linear cryptanalysis is to
appeal to the so-called piling-up lemma [8]. By doing this, we are lead to
estimate a bias of ≤ 2−2×2−3×2−3×22 = 2−6 for our approximation to
the first two MIXING rounds of RC2. In the case of RC2, however, routine
use of the piling-up lemma can lead to misleading results.
As an example, suppose that the two subkeys used in steps one and
three of round two are zero. In isolation the approximation to step one
(A1, say) holds with probability 5/8. In step three we find that the
second approximation (A2, say) involves bits that previously determined
whether A1 held. Analysis shows that the probability that A2 holds given
that A1 held is 13/20 and not 5/8 when A2 is considered in isolation.
Furthermore, the probability that A2 doesn’t hold when A1 doesn’t hold
is 5/12 instead of 3/8. So when the two approximations are combined
the probability that the combined approximation to round two holds is
(5/8× 13/20) + (3/8× 5/12) = 9/16 which leads to a bias of 1/16. This
is greater than the 1/32 predicted by use of the piling-up lemma.
Much of the complicated interaction between the two approximations is
due to the role of addition in the cipher. As an example, if we suppose
that approximation A1 holds, then it can be shown that the probability
that the least significant bit of R[2] is equal to zero is 11/20. Since this
bit plays a pivotal role in determining whether A2 holds it is no surprise
that the piling-up lemma gives misleading results.
For the user of RC2 there is circumstantial evidence that linear crypt-
analysis is unlikely to pose a threat to RC2. Such attacks appear to be
ineffective for ciphers that mix integer addition and bitwise operations
unless the approximation can be limited to the least significant bits across
an addition [6]. Such a restriction appears unlikely as an extension of the
current approximation into a third MIXING round illustrates:

4 Note that the whole issue of key-dependence in linear cryptanalysis is a complex one
that is rarely addressed in detail.

Appeared in Fast Software Encryption, FSE 1998, Lecture Notes in Computer
Science 1372, S. Vaudenay (ed.), Springer-Verlag, pp. 206–221, 1998.

c©1998 Springer-Verlag

14

step R[0] R[1] R[2] R[3] round 3
e1 ⊕ e2 − e4 − start

1 − e1 ⊕ e2 ⊕ e4 − e2 ⊕ e3 |b| ≤ 1/16
2 e1 ⊕ e2 ⊕ e4 − e2 ⊕ e3 − |b| = 1/2
3 − e1 ⊕ e3 ⊕ e4 − e4 ⊕ e5 ⊕ e7 |b| ≤ 1/128
4 e1 ⊕ e3 ⊕ e4 − e4 ⊕ e5 ⊕ e7 − |b| = 1/2

Nevertheless, there are complex interactions between the individual steps
of RC2 and these often provide unintuitive results. In particular we have
discovered cases where adding a non-trivial approximation to an existing
approximation actually boosts the absolute value of the bias. (Such an
example can be found in step 3 above when the subkeys in all rounds
are set to zero.) Under such circumstances the true effectiveness of linear
cryptanalysis in attacking RC2 has to remain an open problem.

5 Conclusions

In this paper we have described the block cipher RC2. While the cipher
is perhaps slower than other alternatives available today, it does appear
to offer effective resistance to differential cryptanalysis. Our attempts to
apply linear cryptanalysis to RC2 have provided some intriguing insights,
but are as yet insufficient to determine the actual resistance of RC2
to linear cryptanalysis; this remains an open problem. It is important
that RC2 continues to come under close scrutiny from the cryptanalytic
community.

Appeared in Fast Software Encryption, FSE 1998, Lecture Notes in Computer
Science 1372, S. Vaudenay (ed.), Springer-Verlag, pp. 206–221, 1998.

c©1998 Springer-Verlag

15

References

1. E. Biham and A. Shamir. Differential Cryptanalysis of the Data
Encryption Standard. Springer-Verlag, New York, 1993.

2. J. Borst, L.R. Knudsen, and V. Rijmen. Two attacks on reduced
IDEA. In W. Fumy, editor, Advances in Cryptology — Eurocrypt
’97, volume 1233 of Lecture Notes in Computer Science, pages 1–13,
1997. Springer Verlag.

3. A. Biryukov and E. Kushilevitz. Improved cryptanalysis of RC5.
Preprint.

4. M. Blaze and B. Schneier. The MacGuffin block cipher algorithm. In
B. Preneel, editor, Fast Software Encryption, volume 1008 of Lecture
Notes in Computer Science, pages 97–110, 1995. Springer Verlag.

5. S. Dusse, P. Hoffman, B. Ramsdell, L. Lundblade, and L. Repka.
S/MIME Message Specification. September 23, 1997. Available from
http://www.imc.org/draft-dusse-smime-msg.

6. B.S. Kaliski and Y.L. Yin. On differential and linear cryptanalysis
of the RC5 encryption algorithm. In D. Coppersmith, editor, Ad-
vances in Cryptology — Crypto ’95, volume 963 of Lecture Notes in
Computer Science, pages 171–184, 1995. Springer Verlag.

7. L.R. Knudsen and W. Meier. Improved differential attacks on RC5.
In N. Koblitz, editor, Advances in Cryptology — Crypto ’96, volume
1109 of Lecture Notes in Computer Science, pages 216–228, 1996.
Springer Verlag.

8. M. Matsui. Linear cryptanalysis method for DES cipher. In T. Helle-
seth, editor, Advances in Cryptology — Eurocrypt ’93, volume 765 of
Lecture Notes in Computer Science, pages 386–397, 1994. Springer-
Verlag.

9. M. Matsui. The first experimental cryptanalysis of the Data En-
cryption Standard. In Y. Desmedt, editor, Advances in Cryptology
— Crypto ’94, volume 839 of Lecture Notes in Computer Science,
pages 1–11, 1994. Springer-Verlag.

10. X. Lai, J. Massey and S. Murphy. Markov ciphers and differential
cryptanalysis. In D. Davies, editor, Advances in Cryptology — Eu-
rocrypt ’91, volume 547 of Lecture Notes in Computer Science, pages
17–38, 1991. Springer Verlag.

11. National Institute of Standards and Technology (NIST). FIPS Pub-
lication 46-2: Data Encryption Standard. December 30, 1993.

12. R.L. Rivest. A Description of the RC2TM Encryption Algorithm.
File draft-rivest-rc2desc-00.txt available from
ftp://ftp.ietf.org/internet-drafts/.

13. R.L. Rivest. The MD4 message digest algorithm. In A.J. Menezes
and S.A. Vanstone, editors, Advances in Cryptology — Crypto ’90,
volume 537 of Lecture Notes in Computer Science, pages 303–311,
1991. Springer-Verlag.

14. R.L. Rivest. The RC5 encryption algorithm. In B. Preneel, editor,
Fast Software Encryption, volume 1008 of Lecture Notes in Computer
Science, pages 86–96, 1995. Springer Verlag.

Appeared in Fast Software Encryption, FSE 1998, Lecture Notes in Computer
Science 1372, S. Vaudenay (ed.), Springer-Verlag, pp. 206–221, 1998.

c©1998 Springer-Verlag

16

Appendix

The substitution table PITABLE specified in
hexadecimal notation for input byte ab.

a* *b

0 1 2 3 4 5 6 7 8 9 a b c d e f

00: d9 78 f9 c4 19 dd b5 ed 28 e9 fd 79 4a a0 d8 9d

10: c6 7e 37 83 2b 76 53 8e 62 4c 64 88 44 8b fb a2

20: 17 9a 59 f5 87 b3 4f 13 61 45 6d 8d 09 81 7d 32

30: bd 8f 40 eb 86 b7 7b 0b f0 95 21 22 5c 6b 4e 82

40: 54 d6 65 93 ce 60 b2 1c 73 56 c0 14 a7 8c f1 dc

50: 12 75 ca 1f 3b be e4 d1 42 3d d4 30 a3 3c b6 26

60: 6f bf 0e da 46 69 07 57 27 f2 1d 9b bc 94 43 03

70: f8 11 c7 f6 90 ef 3e e7 06 c3 d5 2f c8 66 1e d7

80: 08 e8 ea de 80 52 ee f7 84 aa 72 ac 35 4d 6a 2a

90: 96 1a d2 71 5a 15 49 74 4b 9f d0 5e 04 18 a4 ec

a0: c2 e0 41 6e 0f 51 cb cc 24 91 af 50 a1 f4 70 39

b0: 99 7c 3a 85 23 b8 b4 7a fc 02 36 5b 25 55 97 31

c0: 2d 5d fa 98 e3 8a 92 ae 05 df 29 10 67 6c ba c9

d0: d3 00 e6 cf e1 9e a8 2c 63 16 01 3f 58 e2 89 a9

e0: 0d 38 34 1b ab 33 ff b0 bb 48 0c 5f b9 b1 cd 2e

f0: c5 f3 db 47 e5 a5 9c 77 0a a6 20 68 fe 7f c1 ad

Test vectors for the RC2 encryption algorithm.

key effective
length key key plaintext ciphertext
(bytes) length

(bits)

8 63 00000000 00000000 00000000 00000000 ebb773f9 93278eff

8 64 ffffffff ffffffff ffffffff ffffffff 278b27e4 2e2f0d49

8 64 30000000 00000000 10000000 00000001 30649edf 9be7d2c2

1 64 88 00000000 00000000 61a8a244 adacccf0

7 64 88bca90e 90875a 00000000 00000000 6ccf4308 974c267f

16 64 88bca90e 90875a7f 00000000 00000000 1a807d27 2bbe5db1

0f79c384 627bafb2

16 128 88bca90e 90875a7f 00000000 00000000 2269552a b0f85ca6

0f79c384 627bafb2

33 129 88bca90e 90875a7f 00000000 00000000 5b78d3a4 3dfff1f1

0f79c384 627bafb2

16f80a6f 85920584

c42fceb0 be255daf

1e

Appeared in Fast Software Encryption, FSE 1998, Lecture Notes in Computer
Science 1372, S. Vaudenay (ed.), Springer-Verlag, pp. 206–221, 1998.

c©1998 Springer-Verlag

