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Abstract 

A novel device is presented for direct measurement of the axial force evolution during the pinching of fluid 

filaments following an extensional step stretch, based on the ‘tilted-CaBER’. The bending curve of the 

horizontally orientation fluid filament is fitted with the full expression of a catenary function, to directly and 

unambiguously extract the axial force from a single fitting parameter. The general limits of axial force 

determination from such devices are introduced in terms of a Bond number that accounts for the axial length scale.  

The new set-up is validated using a Newtonian PDMS oil, for which the axial force scaling and the related 

prefactors X	of the similarity solution are known. For dilute polymer solutions in form of a Boger fluid, the so far 

theoretical factor X  = 1.5 for an Oldroyd-B model fluid could be experimentally approached for the first time 

with the new setup.  
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Introduction 

Extensional flow fields are abundantly present in nature as well as in industrial applications as 

for instance in inkjet printing, coating operations, electrospinning, etc. Henceforth, extensional 

flow fields have been the subject of extensive research over the past decades. (Cooper-White, 

Fagan, Tirtaatmadja, Lester, & Boger, 2002; Dirking, Willenbacher, & Boggs, 2001; Fong, 

Chun, & Reneker, 1999). In particular, low to medium viscous complex fluids such as 

automotive coatings and inks are very difficult to quantitatively understand. Due to the many 

versatile constituents of which the fluids are made up of, it is very difficult to predict the flow 

dynamics. In this respect, dissolved polymers are an often-encountered ingredient to control 

the viscoelastic properties of a fluids of interest. Polymer solutions have therefore regularly 

been employed to create model systems to study flow situations where viscoelasticity plays a 

dominant role in extension. (Clasen, 2010; Clasen, Phillips, Palangetic, & Vermant, 2011)  

 

Several experimental techniques have been designed over the past decades to investigate the 

extensional flow behavior of complex fluids, where specifically the investigation of low 

viscosity solutions is challenging. (Hoath, 2016) Various home-built methods have been 

introduced. Opposed nozzle devices can achieve high extension rates, are easy in use and can 

control the strain rate. The device however has difficulties reaching a homogeneous flow, needs 

large sample volumes and always has a shear component in the flow field. (Dontula, Pasquali, 

Scriven, & Macosko, 1997; Fuller, Cathey, Hubbard, & Zebrowski, 1987) Another device is 

the four-roll mill which creates a quasi-homogeneous flow and works well for characterization 

when used together with optical techniques. But the device has difficulties in accurately 

calculating the extensional viscosity. (Dunlap & Leal, 1987; Lagnado & Leal, 1990; Taylor, 

1934) 

 

Commercially available techniques for investigating extensional properties of low viscosity 

solutions are the e-VROC extensional Viscometer and the capillary break-up extensional 

rheometer (CaBER). The e-VROC represents a viscosity indexer, as it provides an averaged 

viscosity value for an extensional flow through a hyperbolic contraction. (Ober, Haward, Pipe, 

Soulages, & McKinley, 2013) The CaBER on the other hand provides a more defined uniaxial 

extensional flow that allows the extraction of apparent extensional viscosities. In this device, a 

volume of fluid is placed between two circular plates to form a cylindrical filament. 

Subsequently, the plates are separated rapidly by a specified distance in order to create an 
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unstable liquid column which will pinch under the influence of capillary pressure. (Bazilevsky, 

Entov, & Rozhkov, 1990). While this decrease in diameter of the capillary bridge has been 

termed ‘capillary thinning’ in the past, we will relate to this in the following as capillary 

‘pinching’. This in order to avoid confusion with a deformation rate related loss of viscosity 

for which the term ‘thinning’ is commonly used (as for example in ‘shear thinning’). The 

CaBER has the advantage that it only needs a small sample volume and that its experimental 

procedure is very straightforward. Moreover, it lends itself very well to measure lower viscosity 

solutions, very high strain rates can be achieved and a free surface flow is created which is very 

similar to processes like inkjet printing, spraying, … (Arnolds, Buggisch, Sachsenheimer, & 

Willenbacher, 2010) These characteristics make it an ideal technique to investigate low 

viscosity polymer solutions. (Clasen, Plog, et al., 2006; Cooper-White et al., 2002) An 

inexpensive variant of the CaBER with a less defined flow field has emerged recently with the 

dripping on substrate (DoS) protocol, that also creates and observes the pinching dynamics of 

a filament. (Dinic, Biagioli, & Sharma, 2017; Dinic, Jimenez, & Sharma, 2017) 

 

From the pinching profile of the filament, parameters governing the extensional behavior can 

be extracted, such as the apparent extensional viscosity and the relaxation time. The idea to 

utilize this set-up as an extensional rheometer has been formulated already early on (Bousfield, 

Keunings, Marrucci, & Denn, 1986; Schümmer & Tebel, 1983). The bulk forces and stresses 

arising in a slender pinching filament are balanced with interfacial forces as surface and line 

tension, gravitational forces, inertial forces, and external traction. These bulk forces and 

stresses are usually obtained from solving the Navier-Stokes equation for an axisymmetric 

column of an incompressible fluid in a cylindrical coordinate system. Eggers and Dupont 

(Eggers & Dupont, 1994) as well as Garcia and Castellanos (García & Castellanos, 1994) 

showed in detail how this solution could be simplified by only retaining the lowest order terms 

of the radial expansions of velocities and the pressure entering the momentum balance, and of 

the normal and tangential stress boundary conditions. This leading order approximation of the 

momentum balance is given by equation 1. 

𝜌(�̇� + 𝑣𝑣′) = −𝛾𝜅! + 𝐷"#[𝐷#(𝜎$$ − 𝜎%%)]′ (1) 

where 𝐷 is the minimum diameter, 𝜅 = &
'√&)'!"

− &'"
(&)'!")# "⁄  is the mean curvature of the 

axisymmetric surface of the filament, 𝜎$$ − 𝜎%% is the bulk normal stress difference, 𝜌 is the 
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density, 𝛾 is the surface tension of the fluid and the dots denote temporal derivatives, ′ and ′′ 

denote the first and second spatial derivative in the axial direction, respectively.  

 

Integrating over the filament then yields the axial force balance and the axial tension 𝐹$, for 

which at the cross-section of the minimum radius 

4𝐹$
𝜋𝐷#

= 𝛾𝐾 + (𝜎$$ − 𝜎%%) (2) 

It should be noted that this balance contains in principle on the right hand side also the radial 

inertial contribution -
./
�̈�𝐷 as derived by Szabo (Mathues, Formenti, McIlroy, Harlen, & 

Clasen, 2018; Szabo, 1997; Tirtaatmadja, McKinley, & Cooper-White, 2006) (while axial 

acceleration terms at the minimum radius vanish). This contribution has been omitted by 

Eggers in his derivation of the momentum balance approximation. This omission of inertia is 

justified for the viscous fluids considered here, for which the radial inertial contribution is 

subdominant to the bulk stress difference.  

 

For the following discussion it is important to notice that the surface tension term 𝛾𝐾 appearing 

in eq. 2 contains not only the Laplace pressure contribution arising from the mean curvature 𝜅, 

but also the line tension contribution in the axial direction of the cylindrical coordinate system 

of the slender filament. (Clasen, Eggers, Fontelos, Li, & McKinley, 2006; Fontelos & Li, 2004; 

Li & Fontelos, 2003). This can be seen when rewriting the mean curvature gradient in the 

momentum balance to match the form of the bulk stress term (Entov & Yarin, 1984) as 𝜅! =

−𝐷"#[𝐷#𝐾]′ where K can be written as 

𝐾 = −
4

𝐷√4 + 𝐷!#
+

4𝐷"
(4 + 𝐷!#)0 #⁄ +

8
𝐷√4 + 𝐷!#

(3) 

The first two terms on the RHS are just the negative mean curvature -𝜅, while the last term 

represents the line tension. Since the line tension and the first term of the mean curvature have 

the same form except for a factor -2, they are usually combined to give 𝐾 = &
'√&)'!"

+

&'"
(&)'!")# "⁄   (Clasen, Eggers, et al., 2006). This form looks very similar to the mean curvature 

definition, except for the sign change of the first term, which has led to some confusion in the 

past as well as the neglection of the line tension and the axial tension. The line and axial tension 

are, however, crucial for the correct determination of material parameters in the following (see 

also the appendix A in Bhat et al. (Bhat, Appathurai, Harris, & Basaran, 2012) for a clear 
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representation of this issue). For slender filaments, the mean curvature and line tension can 

then safely be reduced in eq. 2 to the leading order contributions of mean curvature and line 

tension 𝛾𝐾 ≈ −2𝛾 𝐷⁄ + 4𝛾 𝐷⁄ = 2𝛾 𝐷⁄ .  

 

Generally the axial tension 𝐹$ cannot simply be reduced to the bulk stress contribution as 

surface and line tension contributions can be of similar order of magnitude as the bulk stresses. 

(Bhat et al., 2012). The total axial tension 𝐹$ is in principle not known a priori, and depends on 

the fluid properties and the resulting shape of the filament connecting the two end droplets. 

This initially prevented the use of the experimentally observed pinching rate  

𝜀̇ = −
2�̇�
𝐷

(4) 

to extract quantitatively fluid properties form the bulk stress difference as for example an 

apparent extensional viscosity (Schümmer & Tebel, 1983) in case Fz is not known:   

𝜂2 =
𝜎$$ − 𝜎%%

𝜀̇
=
4𝐹$ 𝜋𝐷#⁄ − 2𝛾 𝐷⁄

−2�̇� 𝐷⁄
(5) 

A first step to remediate this problem was set by McKinley and Tripathi (McKinley & Tripathi, 

2000) who postulated that for a cylindrical Newtonian filament, the pressure of the mean 

curvature in eq. 2 is balanced by the (viscous) bulk stresses, 2𝛾 𝐷⁄ = 𝜎$$ − 𝜎%%, so that the 

axial tension is equal to just the line tension contribution, 4𝐹$ 𝜋𝐷#⁄ = 4𝛾 𝐷⁄ , and thus decays 

with the radius. They furthermore determined the axial tension, using eq. 2, from the actual 

pinching dynamics of a Newtonian fluid of viscosity 𝜂3 and a therefore known extensional 

viscosity 𝜂2 = 3𝜂4. The results were confirmed both by numerical simulations and 

experiments. They observed that for a real (non-cylindrical but slender) filament shape of the 

Newtonian liquid, the force 𝐹$ is just a fraction X of the line tension for the cylindrical case, 

but still decaying with the filament radius:  

𝑋 =
4𝐹$ 𝜋𝐷#⁄
4𝛾 𝐷⁄

=
𝐹$
𝜋𝛾𝐷

(6) 

Replacing the force in eq. 5 with this slightly reduced line tension 4𝐹$ 𝜋𝐷#⁄ = 4𝑋𝛾/𝐷 gives 

𝜂2 = (2𝑋 − 1) 5
"'̇

. The minimum filament radius of a Newtonian liquid decays linearly with 

time t in this visco-capillary (VC) balance regime as 

𝐷(𝑡) = 𝐷7 − (2𝑋 − 1)
𝛾
3𝜂3

𝑡 (7) 
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resulting also in an extension rate increasing with time following eq. 4. The observed 

magnitude of the front factor X = 0.7127 (or (2𝑋 − 1) 3⁄ = 0.1418), arises from the fluid 

property depending deviation of the slender filament shape from the perfect cylinder shape. 

This deviation is a consequence of an effectively lower resistance of the viscous stresses of the 

fluid against the capillary pressure. For a perfect cylinder the viscous stresses just balance the 

pressure arising from mean curvature 𝜅 (first two RHS terms in eq. 3) so that only line tension 

contributes to the axial tension and X	 = 1. For the theoretical case of an incompressible inviscid 

fluid with no resistance from the bulk, the axial tension would arise from line tension reduced 

by the full capillary pressure, so that X	 = 0.5. The observed X	 = 0.7127 agrees indeed well 

with one of the similarity solutions that Papageorgiou derived theoretically for the self-similar 

shape of a pinching Newtonian filament connected to two end droplets (Papageorgiou, 1995). 

 

For other fluid properties dominating the bulk stress, or inertial contributions to the force 

balance, the filament shape changes and different evolutions of the axial tension in the filament 

have been theoretically predicted. (Brenner, Lister, & Stone, 1996; Clasen, Eggers, et al., 2006; 

Eggers, 1993, 1997; Papageorgiou, 1995) Eggers predicted that, with decreasing filament 

diameter, inertia of the fluid accelerating in the filament will eventually balance viscous forces. 

Also within this inertial-viscous (IV) balance, regime the axial tension decays with the diameter 

so that still a linear decay of the minimum radius following eq. 7 is observed. The axial tension 

however has a different factor X = 0.5912 (or (2𝑋 − 1) 3⁄ = 0.0608) as follows from Eggers’ 

universal similarity solution of the IV regime (Eggers, 1993, 1997). The transition to a lower 

pinching rate that is obtained when inserting this theoretical lower X-factor into eq. 7 has also 

been confirmed experimentally. (Lang et al., 2019; Mathues et al., 2018; Verbeke et al., 2020) 

 

Clasen et al. derived theoretically that for a viscoelastic liquid that can be represented by an 

Oldroyd-B type model with a single relaxation time, the axial tension is again proportional to 

the minimum radius of the, in this case, near cylindrical filament. An asymptotical analysis in 

the center of the thread and a similarity analysis in the corner region where the filament is 

attached to the end droplet showed that the bulk stress is dominated by the elastic contribution 

arising from the Oldroyd-B model. These exponentially increasing elastic bulk stresses turned 

out to be with 4𝛾 𝐷⁄ = 𝜎$$ − 𝜎%% a factor 2 larger than the viscous bulk stresses for the 

Newtonian cylindrical filament, resulting therefore in larger factor X = 1.5 (or (2𝑋 − 1) 3⁄ =

2/3) (Clasen, Eggers, et al., 2006). Bhat et al. (Bhat et al., 2012) later completed the similarity 
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solution for this case by including the capillary pressure effect in the end drops for early 

thinning stages, where this effect is not subdominant to pressure within the filament as assumed 

by Clasen et al.  

 

Entov and Hinch had demonstrated that, for a discrete spectrum of relaxation times as in a 

Zimm spectrum, the stretch rate in the pinching filament will excite only the longest mode. 

This means that the Oldroyd-B approach with a single relaxation can be readily applied to 

fluids exhibiting a Zimm spectrum as dilute polymer solutions (Bousfield et al., 1986; Entov 

& Hinch, 1997). Outgoing from this model and the related axial tension, the filament radius in 

this elasto-capillary (EC) balance regime decays exponentially with time (Clasen, Eggers, et 

al., 2006; Mathues et al., 2018)  

𝐷(𝑡) = G
𝐺𝐷7&

16𝛾
I

.
0
exp M−

𝑡
3𝜆8

O (8) 

where 𝐺 is the elastic modulus and 𝜆8 is the longest extensional relaxation time of the Zimm 

spectrum. The pinching rate is in this case constant and set by this longest relaxation time of 

the unraveling polymer chain 𝜀̇ = − #'̇
'
= #

09%
. Inserting this expression for the strain rate and 

the expression of the axial tension 𝐹$ of eq. 6 for X = 1.5 into eq. 5 gives an extensional viscosity 

evolution 𝜂2 =
/59%
'

 inversely proportional to the filament diameter. 

 

A downside of the approach to calculate material properties from the scaling relations of 

equations 7 and 8 is that they rely on the assumption that the applicable scaling law is clearly 

identifiable and sufficiently dominating. This needs to occur in such a way that only this 

specific relation and the related axial force evolution are applicable. However, within the 

transition zones between the different scaling regimes the axial force evolution is not well 

defined, and the transition zones can be so stretched out that they overlay to the point that they 

obscure the single scaling laws (Clasen, Plog, et al., 2006).  

 

In order to evaluate which material parameters can be extracted from the pinching dynamics of 

the capillary bridge, it has to be known a priori which material property is predominantly 

resisting the capillary action. With this knowledge, it is feasible to fit the data with the 

appropriate constitutive model, a catch-22 for an unknown fluid. A possible route to solve this 

is with the observation of the silhouette of the pinching capillary bridge. As for example 
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summarized in an earlier review of McKinley (McKinley, 2005), Newtonian, power-law, 

weakly-elastic and elastic fluids or Bingham plastics each have their specific shape of the 

pinching capillary bridge. This filament shape can be utilized to identify the dominating 

material property. A recent overview of such shapes for a variety of material classes can be 

found in the work of Dinic (Dinic, Jimenez, et al., 2017).  

 

Similarly, the scaling of the decay of the minimum radius of the pinching bridge with time 

described above can be used to identify the dominant resisting material properties. Linear, 

exponential or logarithmic radii decays have respectively been linked for example to 

Newtonian, extension thinning, or elastic material responses. However, both approaches are 

not unambiguous, as for example the capillary bridge shapes of a yielding Bingham plastic and 

an extension thinning power law fluid are nearly indistinguishable. Also, a linear radius decay 

is observed for both a viscous as well as an inertial-viscous resistance. Furthermore, a single 

scaling regime is observable in only a few cases. Early times are often overlaid by gravitational 

drainage or inertial flows, and late times show transitions to again an inertial regime (Eggers, 

1997) or the approach to finite extensibility of elastic structures. This requires the a priori 

knowledge that a specific decay regime is expected, in order to identify this in the complex 

liquid bridge decay pattern. 

 

Other approaches use a non-dimensional analysis to determine the presence of a material 

property’s dominance in the extensional flow of the pinching capillary bridge. The calculation 

of the Ohnesorge, elasto-capillary, or intrinsic Deborah number, based on the geometrical 

parameters of the bridge as the characteristic length scales, allows to determine the eventual 

presence of an inertial, viscous or elastic controlled pinching (Clasen, 2010; Clasen et al., 

2011). Still, this approach for the non-dimensional number calculation usually utilizes 

parameters as viscosities or relaxation times often obtained from shear experiments. These 

parameters are not directly transferable to the extensional flow for non-linear material 

responses and give in this case only qualitative predictions of observable regimes. 

 

It is thus highly desirable to be able to measure the axial force and its decay over the whole 

course of the filament pinching process. This would support the identification of the present 

scaling regimes by comparison to the theoretically predicted forces from equation 6 and the 

respective X-factors. This would in particular be helpful to determine the absolute fluid stress 
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component 𝜎$$ − 𝜎%% in equation 5 to reflect the apparent extensional viscosity evolution 

correctly over the whole pinching process, and thus also within the transitional zones. To 

achieve this, Klein et al. implemented a force transducer into the endplate of a commercially 

available CaBER device (Haake). Forces were measurable down to 50 µN, however, the strong 

initial stresses prevented the applicability to the small forces encountered during the later stages 

of capillary pinching in the CaBER (Klein, Naue, Nijman, & Wilhelm, 2009). Furthermore, 

the positioning of the sensor in the endplate resulted in the inevitable presence of gravitational 

forces from the remaining fluid droplets that the pinching filament connects, which tend to 

obscure the relatively small axial forces arising in the filament.   

 

Recently, Sachsenheimer et al. have demonstrated that, by executing a CaBER experiment 

horizontally, the axial force can be derived from the bending of the filament under gravity. The 

horizontal method showed good results in agreement with the postulated X-factor of 0.7127 by 

McKinley and Tripathi for purely viscous fluids. (McKinley & Tripathi, 2000) The technique 

has further been applied to investigate semi-dilute and concentrated polymer solutions as well 

as wormlike micellar solutions. (Sachsenheimer, Hochstein, Buggisch, & Willenbacher, 2012; 

Sachsenheimer, Hochstein, & Willenbacher, 2014) 

 

The promising approach of the horizontal CaBER technique has not yet been quantitatively 

applied and tested for the full range of fluids and scaling laws available in literature.  

 

We present in this paper a home-built device constructed based on the principles of CaBER. 

The novel device allows the observation of horizontal filament pinching following 

Sachsenheimer et al. (Sachsenheimer et al., 2012). The motion of the top plate can be finely 

tuned to attenuate inertia effects as much as possible and extend the measurable range in 

horizontal orientation down to around 20 mPa∙s, which allows to access the pinching dynamics 

even of low viscosity fluids. Furthermore, a general window of operation in terms of the 

diameter is established in which measurements can be determined trustworthy. 

 

The paper is structured as follows. ‘Materials & Methods’ gives a short overview of the fluids 

and polymers used, together with construction data of the home-built rheometer. Furthermore, 

a rigorous way to analyze the filament shape and to determine stresses quantitatively is 

described. A window of operation, in terms of an adapted definition of the Bond number, is 
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presented in which experiments can be deemed trustworthy. ‘Results and discussion’ shows 

then the validation of the instrument and its results of horizontal stretching using a Newtonian 

fluid. Subsequently,  the so far only theoretically postulated similarity solutions of the pinching 

process for dilute polymer solutions evaluated. Finally, low viscosity dilute and semi-dilute 

polymer solution are tested to map the limitations of the new device in terms of the measurable 

viscosity range. ‘Conclusion’ summarizes the main findings extracted from the measurements. 

Materials and methods 

Materials 

Six liquids have been used to probe the new apparatus, of which the main parameters are 

presented in Table 1: 

• PDMS 5 Pa∙s 

• PIB Boger solution: 0.2 wt% Oppanol B200 in PIB Infineum S1054 

• Dilute PS solution: 0.1 wt% PS6M in DEP 

• Semi-dilute PS solution: 0.5 wt% PS6M in DEP 

• Semi-dilute PEO solution: 0.06 wt% PEO8M in 40 wt% PEO35k-in-water solution 

 

Table 1 Main properties of used fluids at 22°C 

Fluid 𝜂7	[𝑃𝑎 ∙ 𝑠] 𝛾	 T
𝑚𝑁
𝑚 W 𝜌	 T

𝑘𝑔
𝑚0W 

𝑐
𝑐∗ 	[−] 

PDMS 5 5.9 21.4 965 NA 

PIB Boger fluid 54.9 26.0 935 / 

0.1 wt% PS6M in DEP 2.15 ∙ 10"# 35.4 1099.1 0.59 

0.5 wt% PS6Min DEP 0.5 35.4 1099.1 2.94 

0.06 wt% PEO8M in 40 

wt% PEO35k in H2O 
0.2 57.6 1080 1.72 

 

PDMS (Bluesil FLD 47 V5.000) has been used as received. The PIB Boger fluid (Boger, 1977) 

is prepared by dissolving 0.2 wt% Oppanol B200 (𝑀; = 4.1∙106 g/mol) in PIB Infineum S1054. 

Ingredient sources, preparation and other characteristics than those given in Table 1 of this 

Boger fluid can be found in the work of Verhulst, where the fluid is referred to as ‘BF2’. 

(Verhulst, Moldenaers, & Minale, 2007) The overlap concentration is not determined exactly. 
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The rheological behavior of this solution as a Boger fluid is described in the work of Verhulst 

et al in detail.  

 

Solutions of polystyrene (PS; Polymer Standards Service: PSS-ps6.5m; 𝑀; = 6.5∙106 g/mol) 

in diethyl phthalate (DEP; Sigma-Aldrich (Merck)) are prepared by weighing the required 

amount of PS on a Sartorius CPA225D balance and transferring it into a 20 ml glass vial. DEP 

is later added with a pipet after which the solution is put on a Heidolph Promax 2020 shaker at 

150 rpm to ensure gentle dissolution. Mixing occurred for a minimum of 24 hours and 

continued until the solution was optically transparent. Two solutions of PS6M in DEP are 

prepared following a similar procedure, one in the dilute regime, and one in the semi-dilute. 

The overlap concentration is determined via the Graessley equation (Graessley, 1980) 

𝑐∗ =
0.77
[𝜂]

(9) 

where 𝑐∗ is the overlap concentration and [𝜂] is the intrinsic viscosity. The intrinsic viscosity 

is determined with the Mark-Houwink equation (Rubinstein & Colby, 2003) 

[𝜂] = 𝐾𝑀;
< (10) 

where 𝑀; is the molecular weight of the polymer and the parameters 𝐾 and 𝑎 for PS in DEP 

are extracted from Clasen et al. (Clasen, Plog, et al., 2006) With this the overlap concentration 

for PS6M in DEP is equal to 0.17 wt%. The dilute solution of 0.1 wt% is thus at 0.59 𝑐∗, 

whereas the semi-dilute is at 2.94 𝑐∗ around three times the overlap concentration. 

 

Another semi-dilute polymer solution based on PEO in water is prepared analogous to the work 

of Sankaran et al. (Sankaran, Dros, Meerman, Picken, & Kreutzer, 2013) The long chains of 

PEO (𝑀; = 8∙106 g/mol) are obtained from Sigma-Aldrich (Merck), the shorter chains of PEG 

(𝑀; = 35.000 g/mol) are obtained from Fluka. 

 

Figure 1 shows the flow sweep measurements for the varying fluids employed in this study, 

visible in Table 1. The flow sweeps were conducted in the range from 0.01 to 100 s-1. The 

experiments were performed with a TA Instruments AR-G2 rheometer using a 60 mm cone 

with an angle of 1°. The zero-shear viscosity for the Newtonian PDMS is used for the validation 

of the instrument. 
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Fig. 1 Flow sweeps for all fluids measured in this study (see table 1).  

 

New set-up 

The new device to measure the pinching dynamics of liquid filaments is shown in figure 2. The 

set-up combines multiple functionalities with the possibility to precisely control temperature, 

conduct experiments in a liquid-in-liquid environment, and conduct vertical as well as 

horizontal pinching experiments. Figure 2a shows the entire set-up while figure 2b depicts a 

zoomed-in part of the fluid bath in the center. 
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Fig. 2 a) Experimental set-up in horizontal orientation; b) Close-up of fluid ‘bath’ where 

windows are not attached 

 

As can be seen on figure 2a, two large bearing housings hold a horizontal beam to which a 

brass fluid bath and a motor (LinMot PR01-52x60-R/37x120F-HP-C-100) are mounted, of 

which the latter can apply rotational as well as linear motion. The linear motion profile can 

freely be programmed, in particular with the possibility of a long deceleration step as to 

attenuate inertial effects as much as possible. Rotational motion can be applied in case preshear 

is of interest for the sample as for instance demonstrated previously for the study of wormlike 

micelle solutions. (Bhardwaj, Miller, & Rothstein, 2007)  

 

The shaft of the motor is connected via a flexible coupling to a cylindrical rod which enters the 

fluid bath and holds the top plate in position. Plates with a diameter of 2 millimeters were used 

for the current experiments, with plates of 4 and 6 millimeters being available as well. The cell 

is optically accessible with a light path through the holes of the large bearings. The set-up 

allows to switch easily between horizontal to vertical orientation of the filament. A high speed 

camera (Photron FastCam SA2; 2048 x 2048 pixels, frame rate up to 86,400 frames per second) 

with a magnification lens (Navitar 12x Zoom, resulting in a square pixel resolution of 6.2 

µm2/px) is mounted on the left side (figure 2a), while on the right side a light source (Fiber-

Lite DC-950) combined with a plano-convex collimator lens assembly (ThorLabs LMR75/M) 

is placed to create a telecentric illumination which is required to accurately determine the fluid 

filament silhouette. 
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Figure 2b shows the fluid bath. Windows can be mounted on all 4 sides to create a fluid 

reservoir to perform experiments with an inner and outer fluid. A plug-in connection is 

provided at the bottom of the bath to easily fill the bath up with a syringe pump. This set-up is 

advantageous for e.g. very volatile solutions (Sousa, Vega, Sousa, Montanero, & Alves, 2017) 

and to set up liquid-liquid experiments more accurately. (Verbeke et al., 2020) Furthermore, in 

the fluid bath cartridge heaters (Omega HDC19113) are inserted in holes in the corners of the 

brass frame for accurate temperature control via a RS Pro Type K thermocouple and a Red 

Lion PAX 2C controller. 

 

For all samples, besides the Boger fluid, the fluid was filled with a 1 ml syringe with precision 

tip (Precision Tips: 7018336) between top and bottom plate which were spaced 0.5 mm. The 

Boger fluid was more difficult to load due to its high viscosity and elasticity. For this reason, 

a larger precision tip (Precision Tips: 7018333) was used and the initial spacing between the 

two plates was set at 1.5 mm to accommodate the larger tip. The gap was underfilled with the 

fluid, and the upper plate was subsequently lowered until a correct filling is acquired. Miller et 

al. have shown that the initial and/or final step height for purely viscous and dilute polymer 

solutions is not of importance, whereas the final step height does matter for semi-dilute polymer 

solutions. (Hendricks, 2019; Miller, Clasen, & Rothstein, 2009) 

 

All experiments are conducted with small plates with a diameter of 2 mm to decrease effects 

of gravitational sagging. The moving plate translates a distance of 6 mm in a strike time 

between 20 and 100 ms. The longer strike times of 100 ms are chosen for the low viscous 

liquids to minimize the oscillations of the end droplets caused by the sudden de-acceleration 

of the endplates at the end of the strike (it should be noted that these strike times are still faster 

than the Rayleigh or visco-capillary timescales of the fluids, so that clearly observable 

filaments are formed). High viscous fluids such as the PIB Boger fluid for which the end droplet 

oscillations are sufficiently damped can be stretched faster at a strike time of 40 ms. All 

experiments were executed at an ambient temperature of 22°C. The frame rates of the video-

imaging are adjusted to the duration of the experiments, to produce around 150-200 frames per 

pinching profile. Frame rates thus vary from 1 fps for the highly viscoelastic PIB Boger fluid 

to 2000 fps for the low visco-elastic PS-in-DEP solution. 
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Image analysis of bending filaments 

In the horizontal orientation, the filament will bend under the influence of gravity. From the 

bending shape of the filament (once it has acquired this shape after the initial step stretch and 

the force balance holds), the axial tension force in the filament can be determined. For this the 

video-images obtained of the horizontal, bending filaments were processed with the self-

written, Matlab-based image processing algorithm EdgeHog developed (Vadillo, Mathues, & 

Clasen, 2012) in order to determine the horizontal position of the upper and lower edge of the 

filament. The bending line of the filament is then obtained as the middle line between these 

two edges. From the now known shape and bending line of the hanging filament depicted in 

figure 3, and a known dependency of the shape on the axial tension force, the bending line can 

be fitted in order to extract the tension force and its evolution over the course of the filament 

pinching process. 

 
Fig. 3 Visual representation of the bending line of a filament suspended on 2 points and 

bending due to gravitational force 

 

A hanging filament of constant diameter bends the same way as a chain of constant diameter 

and weight and can be described by a catenary function. Starting from a simple force balance, 

equation 11 can be derived for the shape of a catenary (Behroozi, 2014). 
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𝑦(𝑥, 𝑡) =
4𝐹$,7(𝑡)
𝜌𝑔𝜋𝐷#(𝑡)

cosh G
𝜌𝑔𝜋𝐷#(𝑡)
4𝐹$,7(𝑡)

𝑥I (11) 

where 𝑦(𝑥, 𝑡) is the y-coordinate of the filament bending line (average of the top and bottom 

edge for a specific x-coordinate), 𝑥 is the horizontal coordinate, 𝜌 is the fluid density, 𝑔 is the 

gravitational acceleration, 𝐷(𝑡) is the time dependent diameter of the filament, so that 

𝜌𝑔𝜋𝐷#(𝑡)/4 represents the time dependent line density of a filament of decaying cross-

sectional area 𝐴(𝑡) = 𝜋𝐷#(𝑡)/4. The tension along the filament is denoted 𝐹$ and the suffix 0 

indicates the position at the minimum. If the minimum of the bending line is moved to the 

origin of the coordinate system, the equation can be fitted with one parameter 𝑎: 

𝑦(𝑥, 𝑡) = 𝑎(𝑡) ∙ Mcosh M
𝑥
𝑎(𝑡)O

− 1O (12) 

where 𝑎(𝑡) is the bending parameter 

𝑎(𝑡) =
𝐹$,7(𝑡)
𝜌𝑔𝐴(𝑡)

(13) 

A low value for the bending parameter corresponds to a pronounced bending of the filament, 

whereas a high value indicates a filament to be very straight. The axial force is then simply 

obtained from the bending parameter via the simultaneously obtained diameter and cross-

sectional area of the filament.  

 

The bending line of a catenary can also be approximated by a parabola as done in the work of 

Sachsenheimer et al. However, in the current work we do not follow this simplification and the 

assumption of a constant force, but fit the bending line shape rather with the full expression of 

the catenary of eq. 11. The alternative integration method presented in the Sachsenheimer et 

al. proved to be very sensitive to the length and position of the fitted filament segment, 

especially around the minimum and for the very straight filaments of the Boger fluid 

investigated in this study, and the interpretation of the axial force was therefore not 

unambiguous. 

Limits of the analysis 

A first, upper limit for filament diameters that can be fitted (denoted as Dcrit in the following) 

is arising from gravitational effects. The interpretation of the axial tension 𝐹$(𝑡) along the 

filament, its incorporation into the force balance and the resulting pinching laws via the factor 
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X, is usually done under the assumption that gravitational effects can be neglected. As pointed 

out by McKinley and Tripathi (McKinley & Tripathi, 2000), gravitational sagging of a vertical 

filament breaks the symmetry demanded by the similarity solutions, and they defined a Bond 

number as ->'
"

5
 to determine when a filament diameter D is thin enough (such that the Bond 

number is below a critical value of 0.1) to neglect gravitational effects. This criterion is 

expected to hold for relatively short filaments where the axial and radial length scales are still 

of similar order of magnitude to be represented simply by D. Also for a horizontal filament the 

similarity solutions only apply once gravitational contributions to the force balance can be 

neglected. However, for the horizontal filaments considered here the presence of gravitational 

force is directly observable from the bending (and necessary for the evaluation of the axial 

tension from the degree of bending as described above), and we evaluate in the following when 

and if forces along the filament arising from this observed gravitational bending begin to 

significantly contribute to the axial forces in our force balance (that we consider in eq. 2 to 

arise only from surface tension and bulk stresses, and no gravitational contribution).  

 

For the horizontal case the axial length scale L cannot be neglected. In a catenary of constant 

line density along the chain (but time-dependent line density as the filament shrinks), it follows 

from eq. 11 that the tension along the chain including the gravitational contribution is given by  

𝐹$(𝑥, 𝑡) = 𝐹$,7(𝑡) cosh M
𝑥
𝑎(𝑡)O

(14) 

The gravitational contribution increases with distance x away from the minimum value 𝐹$,7 at 

the middle of the chain (and 𝐹$,7 contains no gravitational component, since it is acting only 

perpendicular to the direction of gravitational acceleration). In order to estimate the total extra 

contribution of the gravity to the axial tension along the whole chain, we integrate eq. 14 over 

the whole distance from the minimum to the end point x = L of the catenary to obtain an average 

tension in the filament, 𝐹g$(𝑡) =
.
? ∫ 𝐹$(𝑥, 𝑡)𝑑𝑥

?
7 ,	that includes the gravitational contribution. 

Comparing this now to the axial tension 𝐹$,7(𝑡) at the minimum (that carries no gravitational 

contribution), allows to estimate if the extra gravitational contributions can still safely be 

neglected for a filament of total axial dimension 2L:  

𝐹g$(𝑡)
𝐹$,7(𝑡)

=
𝑎(𝑡)
𝐿

sinh M
𝐿
𝑎(𝑡)

O	 (15) 
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Equalizing 𝐹$,7(𝑡) of eq. 13 to the surface tension dependent relation of eq. 6 𝐹$,7(𝑡) = 𝑋𝜋𝛾𝐷 

allows to introduce a Bond number 

𝐵𝑜 =
𝜌𝑔𝐷𝐿
𝛾 = 4𝑋

𝐿
𝑎(𝑡)

(16) 

that depends with D and L on both relevant length scales of the filament. The comparison of 

𝐹g$(𝑡) to 𝐹$,7(𝑡), expressed as force error percentage 

𝜖@ =
𝐹g$(𝑡)
𝐹$,7(𝑡)

− 1 = M
4𝑋
𝐵𝑜

sinh M
𝐵𝑜
4𝑋
OO − 1 (17) 

can thus be expressed simply as a function of the this Bond number. Gravitational effects will 

dominate for large Bond numbers, and thus for the large diameters at the beginning of the 

experiment. With decreasing diameter and smaller Bond numbers, a Taylor series expansion 

approximates the error as AB
"

C/D"
, which allows to directly calculate a critical Bond number with 

decaying diameter, below which gravity can be neglected. Setting the boundary for negligible 

gravitational forces at @
E&(F)
@&,((F)

− 1 ≈ AB"

C/D"
≤ 𝜖@,GHI gives a critical value of the Bond number of 

𝐵𝑜JH>J = q96𝑋#𝜖@,GHI. Assuming the critical value to be reached for Bond numbers of order 

O(1) results in a relatively small value for the error margin of 𝜖@,GHI = 0.001. From this one 

can calculate an upper diameter limit,	𝐷JH>J =
AB)*+)5
->?

= q96𝜖@,GHI
D5
->?

. Only for filaments 

below this limit gravitational contributions to the force balance can be neglected. It should be 

noted that stretching to longer distances will lower the critical upper diameter limit Dhigh for a 

given critical Bond number. In the experiments considered in this paper, Dhigh is always larger 

than the actual filament diameter, even for the large initial diameters after the step stretch, due 

to the large ratio between final and initial gap in combination with the use of small diameter 

plates.  

 

It should be noted that all the above considerations to fit the filament as a catenary of constant 

line density along the chain is strictly valid only for filaments of a constant diameter. While 

fluids with a dominant elasto-capillary balance quickly acquire a near cylindrical shape, in 

particular for Newtonian fluids the filament becomes slender only at later stages, so that it is 

initially not possible to fit the whole filament, but rather only a subsection around the minimum 

diameter, for which the diameter can be assumed to be constant of the length of this subsection. 

The catenary description of eq. 12 is principally valid also for any subsection of the filament 
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that can be considered as slender and meets the constant diameter criterion. To identify a 

filament subsection with quasi-constant diameter, the following criterion is used 

𝐷(𝑥) < max	(1.05𝐷GHI, 𝐷GHI + 1	𝑝𝑥) (18) 

where 𝐷(𝑥) is the filament diameter as a function of the horizontal coordinate, 𝐷GHI is the 

smallest filament diameter observed for this subsection and 𝑝𝑥 is the square pixel dimension 

of the analyzed image of the filament. The latter criterion remediates the pixel resolution of the 

camera and objective for very small diameters, which is for the current set-up 2.49 µm/px. This 

pixel dimension is chosen to be large enough, so that all or nearly all 2048 horizontal pixels 

are used for the observation of the stretched distance of 6.5 mm, but still sufficiently small to 

resolve the bending of even the very straight filaments of the Boger fluid investigated in this 

study. To account for the still slightly varying diameter with the boundaries of eq. 18, the axial 

force in eq. 13 is calculated using the average cross-sectional area of the considered filament 

part. 

 

The second criterion in eq. 18 is also pointing at a second, lower limit for the filament diameter 

(denoted as 𝐷KB; in the following): the increasing straightening of the filament with with 

thinning will eventually prohibit a fitting of the catenary as one approaches the resolution limits 

to measure the vertical deflection or bending of the horizontal filament. The determination of 

the diameter at which this limit is reached is in particular important for the investigation of the 

very straight filaments observed for the elasto-capillary balance regime of the Boger fluid 

investigated in this study. But also having to choose a lower length of the filament subsection 

in order to meet the slenderness criterion of eq. 18 will in turn lead to a lower vertical deflection 

over the length of that filament segment due to gravitational bending, and therefore also lowers 

the accuracy of the fit of eq. 12 to the shorter bending line, similar to the increasing 

straightening with time. A criterion for the possibility to still accurately fit the bending line 

would be the maximum change of the vertical bending line position Δ𝑦 = 𝑦(𝑥 = 𝐿) −

𝑦(𝑥 = 0) over the fitted length 𝐿. From eq. 12 with 𝐹$,7(𝑡) = 𝑋𝜋𝛾𝐷 and the definition of the 

Bond number of eq. 16 one obtains   

Δ𝑦
𝐿 =

4𝑋
𝐵𝑜	Mcosh M

𝐵𝑜
4𝑋O − 1O		

(19) 

For small Bond numbers, a series expansion approximates this as LM
?
≈ AB

ND
, so that generally 

with decreasing filament diameter Δ𝑦 gets smaller, and the resolution of the determined axial 
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force decreases towards the end of a pinching experiment. Furthermore, the series expansion 

of eq. 19 indicates that Δ𝑦 depends quadratically on the selected filament segment length L. 

Furthermore, the inverse dependency on the factor X indicates that elasto-capillary balance 

controlled filaments with a larger X will lead to straighter filaments and smaller Δ𝑦 than for 

filaments of Newtonian liquids. However, it should be noted that at the same time the elastic 

filaments are generally more slender, which leads to longer filament segments L that meet the 

diameter criterion of eq. 18, which partially compensates for the loss of resolution through the 

straightening.  

 

From a practical point of view, experimentally determined bending line deflections could be 

reliably fitted down to LM
?
≈ ?

#<
≥ .

.777
 = 0.001. With eqs. 16 and 19 and the simplification for 

small Bond numbers, this gives a practical lower fitting limit of also AB
ND
≥ 0.001, or a lower 

fitting limit for the diameter 𝐷KB;,OHF ≥ 0.008 D5
->?

.  

 

A general lower resolution limit for detecting Δ𝑦 is then set by the pixel dimension px. In order 

to properly perform a fit, a filament deflection of at least one pixel is required, or Δ𝑦 ≈ ?"

#<
≥

1	𝑝𝑥, which yields again with eqs. 16 and 19 for small 𝐵𝑜 a lower limit of AB	?
ND	QR

≥ 1	, and thus 

a lower diameter limit of 𝐷KB;,%84 ≥
ND5
->?"

𝑝𝑥. This equation yields a general lower limit for 

𝐷KB;,%84 of order O(5 µm) when fitting over the maximum experimental range of L = 3.25 mm, 

using the smaller pixel dimension px = 2.49 µm and the relevant theoretical parameter X for a 

Newtonian or elastocapillary pinching (or a lower Bond number limit of Bo = O(0.01)). It 

should be noted that it is this smaller pixel dimension and increased resolution of the filament 

bending line in comparison to previous studies on forces in horizontally bending filaments that 

enables the investigation of the relatively straight filaments observed for example for the Boger 

fluids in this study. Furthermore, it should be noted that this lower diameter limit rises when 

fitted over the shorter lengths L arising from the slenderness criterion of eq. 18.  

 

Important to note is that the proposed diameter limits 𝐷JH>J , 𝐷KB;,OHF and 𝐷KB;,%84 depend on 

the axial force (via the X-factor) and considered filament length satisfying eq. 18. These 

diameter limits are thus not perfect constants and vary throughout the experiment depending 

on the measured axial force and filament slenderness. Consequentially, the validation of the 
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diameter criteria needs to be conducted for every frame separately as the criteria will evolve 

over time. 

 

Examples of the fitting of the bending line for PDMS5 and the PIB Boger fluid are given in 

figure 4, together with images of the respective filament with an overlay of the detected edges 

of the filaments (in red) over the axial distance for which the slenderness criterion of eq. 18. 

Both graphs show qualitatively with a magnified view of the vertical distance of the stepped 

bending line that the high vertical pixel resolution of 2.49 µm/px is indeed required in order to 

sufficiently resolve the bending over the axial distance for which the filament can be considered 

slender (and show that indeed Δ𝑦 ≈ ?"

#<
≥ 1	𝑝𝑥, as required for the definition 𝐷KB;,%84). The 

eligibility of the fit can then be quantified from the obtained eqs. 17 and 18 and the ratio of 

fitted length L to the fitting bending parameter 𝑎 (or the Bond number Bo/8X = L/2a) of 0.0596 

and 0.0114, which are clearly beneath the critical limit of 0.001 (and the diameters of 241 µm 

and 37 µm are clearly above the limits 𝐷KB; of 36 µm and 27 µm). The fits clearly approximate 

the bending lines well with R2-fitting values of 0.7 and 0.93, respectively.   

 

 

Fig. 4 Fitting of the bending line of a hanging fluid filament. Left: PDMS5. Right: PIB Boger 

fluid. The red outlines on the filament images represents the horizontal range over which the 

slenderness criterion of eq. 18 is fulfilled and over which the bending line in the graphs is 

given, and subsequently fitted with eq. 12 to yield the bending parameter 𝑎 
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Finally, a comparison of the lower limit criteria, as for example the ratio of limiting diameters 
',-.,/*0
',-.,1%2

= ?
.777	QR

, shows that one can simply use the ratio of fitted length L to the pixel 

dimension px in order to determine which lower diameter limit will be applicable. With the 

front factor 1/1000 and the pixel resolution used in the current work of px = 2.49 µm, one 

expects the fitting limit to dominate only for filaments with fitted lengths L longer than 2490 

µm. In figure 4a the Newtonian sample PDMS5 could be fitted over a total distance of 1430 

µm (where the maximum fitted length L = 715 µm is determined by the slenderness criterion 

of eq. 18). With L shorter than the critical value of 2490 µm, the lower limit is thus expected 

to be the resolution limit. However, both the Bond number for the fitting limit AB
ND

 = 0.0145 and 

for the resolution limit AB?
ND	QR

 = 4.07 (calculated from the fluid and geometrical parameters of 

the fitted filament) are clearly larger than their critical values of 0.001 and 1, respectively. And 

also the observed bending over the fitted length of LM
?
≈ ?

#<
= 0.0136 and the deflection over 

the pixel size of LM
QR
= 5 agree well with these numbers.  

 

Only for very straight filaments will the fit be limiting. Figure 4b shows with the PIB Boger 

fluid and its very slender shape such an extreme case. Here, eq. 18 allows a fit over a much 

longer distance of L = 2430 µm, which is very close to the limit of 2490 µm and therefore the 

resolution limit is very close to the limit of the fit. This becomes clear from the absolute data, 

since the observed LM
?
≈ ?

#<
= 0.0028 is close to the limiting value of 0.001, while the detected 

deflection in figure 4b is with LM
QR

 = 3 even for the high optical resolution of the current setup 

just above the critical value of 1. Finally it should be noted that also in this case the Bond 

number calculations of AB
ND

 = 0.0030 and AB?
ND	QR

 = 2.93 predict the observed bending well.   

Results and discussion 

PDMS 5 Pa∙s 

For Newtonian liquids, McKinley and Tripathi indicated the validity of the X-factor of 0.7127 

predicted by Papageorgiou, which was experimentally verified by Sachsenheimer et al. 

(McKinley & Tripathi, 2000; Sachsenheimer et al., 2012). In order to validate the current set-

up and evaluation procedure of the axial force, experiments were conducted with a Newtonian 
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PDMS oil with a measured viscosity of 5.8 Pa∙s, for which a pinching time on the order of 

seconds assures stable and observable filaments, in order to extract the X-factor accurately and 

to compare to the known Newtonian value. The results of 3 experiments are summarized in 

figure 5 as to indicate reproducibility of the measurements. The time of break-up is set equal 

to t = 0 to collapse the curves onto a single one during the relevant pinching stages. Figure 5a 

shows the decrease of the minimal diameter over time, which appears quasi-linear as expected 

for Newtonian fluids in the V-regime from eq. 7 (the inertia-viscous (IV) regime of eq. 7 with 

X = 0.5912 will not be observed at later times as predicted from the geometrical parameters of 

the filament as introduced by Verbeke et al. (Verbeke et al., 2020)). However, a closer 

comparison to the theoretical thinning of the VC-regime of eq. 7 using the actual viscosity and 

the X-factor of 0.7127 of Papageorgiou (straight line in figure 5a) shows that this linear decay 

is just attained at a later stage (after -250 ms).  
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Fig. 5 Minimal diameter and X-factor evolution over time. The diameter limits determined 

for the dimensions of each individually fitted filament image are given in the top graph as an 

average of the 3 samples. The actual critical diameters from the intersection with the limiting 

values are given as vertical lines in both graphs. The X-factor of 0.7127 is indicated with a 

solid line 
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The independently determined axial force data from the filament bending and the resulting X-

factor are directly supporting this observation. As can be seen in figure 5b, the measured X-

factor is initially constant, however the high resolution allows to observe that it is with 0.67 

lower than the Papageorgiou solution. A lower initial predicted X-factor was predicted by 

McKinley and Tripathi, based on the earlier work of Kolte and Szabo. They show numerically 

that X is approaching the Papageorgiou solution only asymptotically at later stages. Our lower 

initial value of 0.67 agrees well and confirms now experimentally their predicted lower X-

value during the initial pinching regime. These observations demonstrate again that for the 

quantitative measurement of an extensional viscosity the use of the correct (experimentally 

determined) X-factor is crucial, and that the use of a general similarity solution as the 

Papageorgiou one for Newtonian fluids should only be applied at later pinching stages when 

the similarity solution is finally approached. The expected X-factor can be calculated based on 

the pinching curve following eq. 9 in the paper of McKinley and Tripathi. The measured values 

correspond very well to the theoretical ones indicating a proper working of the analysis.  

 

At later stages, the X-factor rises as expected. The postulated X-factor of 0.7127 by 

Papageorgiou is not clearly visible due to scatter on the data. Further fine tuning of the device 

is required to analyze these data points properly. 

 

Figure 5a also contains the limiting values for the diameters 𝐷JH>J, 𝐷KB;,OHF and 𝐷KB;,%84 , that 

indicate the range in between which the diameter is small enough that gravity can be neglected, 

but still sufficiently large to have a reliably detectable bending. The importance of the limits 

becomes obvious in particular when approaching break-up (and diameters are smaller than 

𝐷KB;,%84), where results for X start to scatter significantly due to an increasingly straight 

filament that causes the deflection LM
?

 to approach the resolution limit of the set-up and prevents 

an interpretation of force and X data outside the limits.  

 

PIB Boger Fluid 

With the applicability of the force determination and its limits tested for the Newtonian model 

case, we are now able to probe the so far only theoretically predicted axial force evolution of a 

very dilute polymer solution, for which in eq. 6 an X-factor of 1.5 was arising from a similarity 

solution of Clasen et al. (Bhat et al., 2012; Clasen, Eggers, et al., 2006). For the chosen Boger 
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fluid with a high solvent viscosity, residual effects of inertia can be neglected, and its high 

relaxation time leads to very stable fluid bridges lasting for several seconds and even minutes, 

enabling an accurate observation of the pinching and bending dynamics, limited only by the 

above derived resolution and deflection limits.  

 

Figure 6a shows the evolution of the minimal diameter over time on a semilog scale. During 

an initial period after the stretch of ~20 s for each sample the filament is still acquiring its 

slender conformation. After that the diameter evolution follows the exponential pinching 

profile of eq. 8 for an intermediate period up to ~100 s before breakup, indicating in this regime  

the applicability of Oldroyd-B type constitutive model for which the similarity solution was 

derived. For the last ~100 s the filament diameter starts to decay faster than the exponential 

pinching which is attributed to the onset of finite extensibility effects of the unraveling 

polymer, which has been successfully modelled expanding the Oldroyd-B to a finitely 

extensible nonlinear elastic dumbbell (or FENE) model (Clasen, Plog, et al., 2006; Entov & 

Hinch, 1997). Figure 6b shows the independently measured X-factor obtained from each 

pinching profile as a function of time, and it is clear that the experimental data qualitatively 

confirm the theoretical X-value of 1.5 in the exponential pinching regime. However, it is also 

clear that this value is not approached right away, but only later in the exponential thinning 

regime. Although the slender filament shape and thus applicability of the similarity solution 

(indicated by the exponential decay) is attained relatively early (~50 s after the initial step 

stretch for each experiment in figure 6b), Bhat et al. have pointed out that the complete 

similarity solutions should also account for the capillary pressure in the end droplets. While 

this becomes eventually subdominant to the pressure developing in the pinching filament, this 

can possibly affect the axial tension at earlier stages. The total bulk stress contribution to eq. 2 

of the thinning Oldroyd-B filament is then 𝜎$$ − 𝜎%% =
&5
'
− &5

S31-4
, where the second term on 

the right hand side accounts for the capillary back-pressure of the end droplets of radius Rdrop 

into the bulk filament (Bhat et al., 2012). This effectively lowers the bulk stress, and leads thus 

to a lower value for 𝑋 = 1.5 − '
S51-4

. However, the end droplet radius Rdrop remains nearly 

constant over the course of the experiment, since the amount of fluid entering from the filament 

is small compared to the end droplet volume, in particular after the similarity solution is 

attained. The factor X approaches this with decreasing filament diameter D eventually the 

limiting value of 1.5. For the specific case and geometrical parameters of the experiments in 



27 

 

Figure 6, the end droplet radius can be approximated by the radius of the endplates of 1 mm, 

leading to an initial value of X for the initial filament diameters of ~200 um (once the slender 

shape has been acquired) shown in figure 6 of 𝑋 = 1.5 − 7.#	UU
.	UU

= 1.3, which develops until 

the visible onset of finite extensibility effects at filament diameters of ~50 um to 𝑋 = 1.5 −
7.7V	UU
.	UU

= 1.45 

 

The deviation from the exponential decay in figure 6a and the faster decay is usually attributed 

to the approach of the finite extensibility limit of the unraveling polymer chains. (Anna et al., 

2001; Mathues et al., 2018; Szabo, McKinley, & Clasen, 2012) Numerical calculations (Clasen, 

Plog, et al., 2006) for the Oldroyd-B model, expanded to a FENE model, predict a faster than 

exponential growth of the bulk stresses in the thinning filament in the approach of the finite 

extensibility limit. However, the calculations also predict a similar increase in capillary 

pressure, so that X should not be affected by finite extensibility within the resolution limit 

indicated in figure 6b. 

 

Figure 6b also contains the upper and lower limits, and it is again clear that the strong scatter 

and apparent deviation of X to higher values close to the breakup of the filament is indeed 

within the regime below the resolution limit where interpretation is ambiguous. 
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Fig. 6 Minimal diameter and X-factor evolution over time for the Boger fluid. The diameter 

limits determined for the dimensions of each individually fitted filament image are given in 

the top graph as an average of the 3 samples. The actually critical diameters from the 

intersection with the limiting values are given as vertical lines in both graphs. The X-factor of 

1.5 is indicated with a solid line 
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Similarly, the initial upturns at the beginning of the experiments are beyond the indicated upper 

limit and attributed to the fact that the filament is still being stretched or hasn’t found its stable 

position yet. Similar to the case of the Newtonian fluid, also this case demonstrates the utility 

of independently measuring the evolution of the tension and X-factor in order to determine the 

regime in which the similarity solutions strictly hold in order to extract material functions, as 

in this case the relaxation time via eq. 8 as indicated in figure 6a. 

 

Dilute PS solution 

The diameter evolution of the dilute polymer solution of 0.1 wt% PS6M in DEP is shown in 

figure 7a. The time to break-up is shorter for these solutions (≈50 ms) due to the lower solvent 

viscosity. Due to the lower viscosity, a strike time of 100 ms is employed instead of the standard 

40 ms, to reduce inertia induced oscillations in the filament. With these adaptations of the 

measurement protocol, reproducible pinching data are obtained, and also here an exponential 

pinching regime can be identified at earlier times similar to the dilute PIB Boger fluid. 

However, this dilute polymer solution does not attain the X-factor of 1.5 as the PIB Boger fluid, 

but a lower value of X = 1.1 is determined within the limits of reliable fitting of the bending 

filament. Although the exponential thinning is still indicating the excitation of a single 

relaxation process (Entov & Hinch, 1997), the solution with a concentration of 0.588 𝑐∗ is not 

following the similarity solution of a dilute case with X = 1.5 and described by a simple FENE 

model anymore, as has already been hinted as for example in the work of Clasen et al. (Clasen, 

Eggers, et al., 2006)   
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Fig. 7 Minimal diameter and X-factor evolution over time for the dilute PS solution. The 

diameter limits determined for the dimensions of each individually fitted filament image are 

given in the top graph as an average of the 3 samples. The actual critical diameters from the 

intersection with the limiting values are given as vertical lines in both graphs. The X-factor of 

1 is indicated with a solid line 
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Semi-dilute PS solution 

For the semi-dilute PS solution, the deviation of the X-factor from the limiting case of 1.5 for 

dilute systems becomes even more apparent. The diameter and force factor data for this case 

are shown in figure 8. Also here the diameter evolution exhibits clearly an exponential decay 

similar to an EC-regime. However, in this case, the independently determined X-factor values 

start at around 1.2 and seem to slowly decrease to a value of around 1 before break-up.   

 

Since the behavior of semi-dilute polymer solutions under extensional flow is practically 

uninvestigated, only hypotheses can be made on the physical nature of the internal dynamics 

which might explain this behavior. A potential hypothesis is that the entanglements unravel 

under the influence of the extensional flow and reduce the force in the filament and thus the X-

factor. Also Sachsenheimer et al. recorded X-factor value of around 1 for several semi-dilute 

unentangled polymer solutions of PEO in water (Sachsenheimer et al., 2012, 2014). Potentially 

the fluid moves to a new found steady-state similar to those observed in their work.  

 

The large ‘bump’ at the end for 2 of the 3 measurements is due to inertial after-effects 

originating from a shorter strike time and the resulting oscillations of the end droplets caused 

by the sudden de-acceleration of the endplates at the end of the strike. The three samples had 

different respective strike time of 40, 20 and 100 ms. The images of the former 2 experiments 

show a larger up- and downward movement of the filament over the course of the experiment 

than the latter experiment with the longest strike time, pointing at the importance of a well-

tuned motion profile with a minimal deceleration of the moving plate. It is interesting to note 

that the effect of the moving filament is dominantly present in the beginning and end of the 

experiment but has a less dominant effect during the middle of the pinching. 
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Fig. 8 Minimal diameter and X-factor evolution over time for the semi-dilute PS-solution. 

The diameter limits determined for the dimensions of each individually fitted filament image 

are given in the top graph as an average of the 3 samples. The actual critical diameters from 

the intersection with the limiting values are given as vertical lines in both graphs. The X-

factor of 1 is indicated with a solid line 
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Semi-dilute PEO solution 
The second semi-dilute polymer solution tested in addition to the semi-dilute PS solution is 

also low viscous but consists of different polymers. The molecular weights of the long polymer 

chains are comparable for both solutions. The added high molecular weight chains’ absolute 

concentration greatly differs from that of the semi-dilute PS, but differs only slightly when 

comparing to the overlap concentration (see table 1). . 

 

Figure 9 shows the results of this semi-dilute PEO solution in terms of diameter and X-factor 

evolution. A first observation to make is that the X-factor data follow a similar trend as for the 

semi-dilute PS polymer solution. An initial start slightly above 1 after which the force in the 

filament slowly decreases over the duration of the experiment. By the end of the reliability 

window, the X-factor has dropped to a value of around 0.9. Once 𝐷KB;,%84 has passed, the data 

starts to scatter more and the data can no longer be relied on. 

 

These results show the limited impact on the axial force of using a different polymer-solvent 

combination. Due to the similarity in axial force, it is likely that these two semi-dilute solutions 

exhibit the same unraveling mechanisms. 
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Fig. 9 Minimal diameter and X-factor evolution over time for the semi-dilute PEO solution. 

The diameter limits determined for the dimensions of each individually fitted filament image 

are given in the top graph as an average of the 3 samples. The actual critical diameters from 

the intersection with the limiting values are given as vertical lines in both graphs. An X-factor 

of 1 is indicated with a solid line 
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Conclusion 

In this paper a new device for executing capillary pinching experiments of horizontal fluid 

filaments is presented, together with a precise method of extracting axial forces in the fluid 

filament from fitting the bending of the filament with the full expression of a catenary. The 

device and method are validated using a purely viscous liquid of known extensional viscosity 

and axial forces. This also allowed to confirm the theoretical upper and lower limits of the 

filament diameter to reliably extract the axial force as a result of the material properties under 

extensional flow. This validation allowed then to probe a viscoelastic solution in form of a truly 

dilute polymer solution (a Boger fluid), which allowed to experimentally approach for the first 

time the theoretical prediction of Clasen et al. (Clasen, Eggers, et al., 2006) of the axial force 

evolution and the force factor X = 1.5 for dilute polymer solutions. Finally, the applicability of 

the new test method and its limits were experimentally explored for less accessible, low 

viscosity dilute and semi-dilute solutions. Although still following an exponential decay of the 

pinching filament, typical for dilute solutions, these fluids exhibited a lower X-factor of around 

1 to 1.2, while the cause of this deviation still remains to be explored. 
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