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Predicting speech intelligibility from EEG in a
non-linear classification paradigm

Bernd Accou, Mohammad Jalilpour Monesi, Hugo Van hamme and Tom Francart

Abstract— Objective: Currently, only behavioral speech
understanding tests are available, which require active par-
ticipation of the person being tested. As this is infeasible
for certain populations, an objective measure of speech
intelligibility is required. Recently, brain imaging data has
been used to establish a relationship between stimulus
and brain response. Linear models have been successfully
linked to speech intelligibility but require per-subject train-
ing. We present a deep-learning-based model incorporating
dilated convolutions that operates in a match/mismatch
paradigm. The accuracy of the model’s match/mismatch
predictions can be used as a proxy for speech intelligibility
without subject-specific (re)training. Approach: We evalu-
ated the performance of the model as a function of input
segment length, EEG frequency band and receptive field
size while comparing it to multiple baseline models. Next,
we evaluated performance on held-out data and finetuning.
Finally, we established a link between the accuracy of
our model and the state-of-the-art behavioral MATRIX test.
Main results: The dilated convolutional model significantly
outperformed the baseline models for every input segment
length, for all EEG frequency bands except the delta and
theta band, and receptive field sizes between 250 and
500 ms. Additionally, finetuning significantly increased the
accuracy on a held-out dataset. Finally, a significant cor-
relation (r=0.59, p=0.0154) was found between the speech
reception threshold estimated using the behavioral MATRIX
test and our objective method. Significance: Our method is
the first to predict the speech reception threshold from EEG
for unseen subjects, contributing to objective measures of
speech intelligibility.

Index Terms— match/mismatch, EEG decoding, speech,
auditory system, envelope

I. INTRODUCTION

Current tests to diagnose hearing loss require the active
participation of the person being tested. This can be labor
and time-intensive in certain populations or even impossible
in others (e.g., young children). Furthermore, most tests use
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artificial stimuli such as tones or clicks, which are not repre-
sentative of real-world hearing. Therefore, there is a need for
an objective and automatic measure of speech intelligibility
with more ecologically valid stimuli.

Recently, an objective measure of speech intelligibility has
been proposed using EEG or MEG data, based on a measure of
cortical tracking of the speech envelope [1], [2], [3]. Tracking
can be measured with 3 groups of models: backward models
[4], [2], [5], forward models [4], [3] and hybrid models
[6], [7]. While the results for backward and forward models
are promising and can be linked to speech understanding
[2], [8], [9], [10], the variability for repeated measurements
is high and the correlation between the reconstructed and
stimulus envelope remains low [11]. Subject-specific models
are more commonly used than subject-independent models.
However, subject-independent models are more attractive from
an application perspective as no training data needs to be
recorded for evaluation purposes.

A possible improvement is moving to a non-linear
model[12], which is better equipped to model the brain, a
highly complex and non-linear system, across subjects. For
instance, it has been shown by Ding et al. [1] that depending
on the level of attention and state of arousal of the subject,
response latencies can change dramatically, which cannot
be modeled using a purely linear approach. For intracranial
electrodes [8], [13], better results have been achieved with
simple artificial neural networks compared to linear models
for the same modality.

For EEG, convolutional networks have been applied for
auditory attention detection [14], [12], [15], [16]. Instead
of a two-step approach (reconstructing the attended stimulus
and comparing the similarity with the actual stimuli), these
convolution-based models can classify the attended speaker
directly from the EEG and envelope of the speech signal.
This approach is highly successful, as auditory attention can
be decoded in 10 seconds with 81% median accuracy [12]
and the locus of attention in 1-2 seconds with 80% accuracy
[14], and has been shown to outperform models that perform
classification based on an intermediate measure of similar-
ity/correlation [12]. Additionally, O’Sullivan et al. [17] showed
that decoding results correlated with a behavioral measure
(responses to multiple-choice questions).

Inspired by the recent developments in auditory atten-
tion decoding and CCA[6], we introduced a match/mismatch
paradigm [18] in [19], based on the method of de Cheveigné et
al. [18], to relate an acoustic stimulus to a corresponding EEG
recording. In this paradigm, a model with 3 inputs is presented:
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Fig. 1: To ensure similarity to the matched speech envelope
segment, the imposter speech envelope segment is extracted
from the same speech recording, 1 second in the future from
the time-aligned speech envelope segment.

(a segment of) EEG, the speech stimulus envelope and an
imposter envelope. The task of the model in this paradigm is
to determine which of the input envelope segments correspond
to the EEG segment. We showed in [19] that this approach
yields relatively high performance for short envelope segments
(∼ 90%).

We propose a dilated convolutional network as the basis
of an objective measure of speech intelligibility (in our case,
word recognition accuracy in noise). Dilated convolutions are
a constrained way to do convolutions, with fewer weights, as
used in WaveNet [20]. By eliminating redundancy and leaving
holes in subsequent convolutional layers, each output node can
obtain information from exponentially more input nodes. At
the same time, the number of weights increases linearly per
layer instead of exponentially. This network is trained in a
subject-independent manner in the match/mismatch paradigm.
In section III of this paper, we evaluate our proposed model
[19] compare it to a baseline. In section IV, we show that
our model can be used to estimate the speech intelligibility of
unseen subjects by fitting a sigmoid function on the accuracy
of the model predictions, based on the technique used by
Vanthornhout et al [2]. In contrast with Vanthornhout et al [2],
however, we use a subject-independent model (dilated convo-
lutional model) instead of a subject-specific linear decoder.

II. METHODS

A. Datasets
In this paper, 2 datasets are used: our own collected dataset

(Fairytales/held-out) and a subset of the dataset used by
Vanthornhout et al. [2] (MatrixEEG).

1) Fairytales and held-out dataset: For this dataset, 68
subjects between 18-30 years old were recruited. This study
was approved by the Medical Ethics Committee UZ KU Leu-
ven/Research (KU Leuven, Belgium) with reference S57102
and all participants provided informed consent. To ensure
that participants had normal hearing, they were subjected
to pure-tone audiometry and an adaptive MATRIX test in
Flemish [21]. For the pure-tone audiometry, normal hearing
was defined as having all hearing thresholds ≤ 25 dBHL. The
MATRIX test consisted of 3 trials (2 for training purposes,
1 for the actual testing) in which 20 sentences (spoken by
a female voice in Flemish) were presented to the subject

binaurally at 62 dBA. Each sentence consisted of 5 words
(proper name-verb-number-color-noun) and carried little to no
semantic meaning. During a trial, the signal-to-noise ratio was
adjusted according to the score the subject obtained on the
previous sentence, converging to the point where the subject
understands approximately 50% of all words, known as the
speech reception threshold (SRT). Subjects with SRT’s higher
than -3dB were excluded.

Subsequently, all subjects listened to fairy tales narrated in
Flemish (without noise) while their EEG was recorded. The
recordings were randomly selected for each subject from a
pool of 10 stories. All recordings were approximately the same
length (14 minutes and 29 seconds ± 1 minute and 7 seconds),
and their presentation order was randomized across subjects.
To motivate subjects to pay attention during listening, they
were notified beforehand that a question would be asked about
the story’s content after each recording. Additionally, subjects
were given 3 breaks throughout the recording session. This
dataset is split into 2 parts for our experiments: the Fairytales
dataset and the held-out dataset. Both of these datasets will
be used for the training of the dilated convolutional model
(section III). The Fairytales dataset contains 48 subjects. Of
these 48 subjects, 23, 20, 4 and 1 subjects listened to 8, 7,
6 and 2 stimuli, respectively, accumulating to approximately
80 hours of data (64 hours for the train set, 8 hours for
the validation and test set). The 20 remaining subjects in
the held-out dataset all listened to 8 recordings, accumulating
approximately 36.5 hours of data (29.5 hours for the train set,
3.5 hours for the validation and test set).

2) MatrixEEG dataset: For the speech intelligibility estima-
tion part of this paper, a subset of the dataset described by
Vanthornhout et al. [2] and Lesenfants et al. [10] is used.
This dataset consists of 20 young normal hearing subjects
who were tested behaviorally and objectively using EEG.
For the behavioral part, the SRT was determined using a
constant MATRIX test in Flemish, which is considered the
gold standard in behavioral testing [22]. In contrast with the
adaptive MATRIX test, used in the screening procedure of the
Fairytales dataset II-A.1, the SNR is constant throughout an
entire list of sentences and does not depend on the previous
answer of the subject. Further details about the behavioral
testing are specified by Lesenfants et al. [10].

Next, all subjects listened to MATRIX lists at 7 SNR’s (-
12.5, -9.5, -6.5, -3.5, -0.5, 2.5, no noise) while their EEG
was recorded. For each SNR, 40 sentences were presented in
random order, while silences between sentences ranged from
0.8 to 1.2 seconds. This was repeated 2 times to evaluate test-
retest reliability. After each SNR presentation, subjects were
asked a question about the sentences (e.g., ”What color were
the boats?”) to motivate them to pay sufficient attention. This
dataset was only used to evaluate if the SRT (as found by
the MATRIX test) can be estimated based on the performance
of the dilated convolutional model. Each of the subjects in
the MatrixEEG dataset also listened to the fairytale Milan
(which is also present in the Fairytales dataset). This data was
only used for fine-tuning of the dilated convolutional model
to improve SRT estimation in Section IV-A.
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B. Preprocessing

A BioSemi Active Two system with 64 active electrodes
and 2 extra mastoid electrodes was used to record EEG at
a sampling rate of 8192 Hz. During measurement of the
EEG, stimuli were presented using a laptop with the APEX 4
platform, developed at ExpORL [23] in conjunction with an
RME Multiface II sound card and electromagnetically shielded
Etymotic ER-3A insert phones. Experiments were conducted
in an electromagnetically shielded and soundproofed cabin.

Preprocessing of stimuli and EEG recordings was performed
in MATLAB. First, the EEG signal was downsampled from
8192 Hz to 1024 Hz, and artifacts were removed using a
multichannel Wiener filter [24]. Then the EEG signal was re-
referenced to a common average. All stimuli had an initial
sampling frequency of 48 kHz. First, the envelope was esti-
mated for all stimuli with a gammatone filterbank [25], [26]
with 28 subbands. Each subband envelope was estimated by
taking the absolute value of each sample and raising it to the
power of 0.6. All subbands were averaged to obtain 1 speech
envelope [27]. Finally, both EEG and stimuli envelopes were
bandpass filtered between 0.5 and 32 Hz using a Chebyshev2
filter with an 80dB stopband attenuation and downsampled to
64 Hz.

For the Fairytale/held-out dataset, each recording was split
into a train, validation, and test set containing 80%, 10%, and
10% of each recording for each subject. The validation and
test set were extracted from the middle of every recording to
avoid unwanted effects at the edges of the recording (e.g., a
subject not yet paying full attention or being startled). The
remaining 80% of the recording was added to the train set.
None of the sets overlap so that after training the test set
remains unseen for the model. Each recording was normalized
separately by computing the mean and standard deviation for
each EEG channel and the stimulus envelope on the train set.
The mean was subtracted from the train, validation and test set
and divided by the previously computed standard deviation.

The data of the MatrixEEG dataset was treated as a (single)
test set, and each recording was normalized by subtracting the
mean from each channel and stimulus envelope and dividing
by the standard deviation (per channel). The Milan story was
divided into a train/validation/test set and normalized in the
same way as the recordings of the Fairytales dataset.

In the match/mismatch paradigm, all models are presented
with 3 inputs: A segment of the EEG recording, the matching
stimulus envelope segment and a mismatching (imposter)
speech envelope segment. The imposter was extracted as
specified by Monesi et al. [28], i.e. 1 second after the matched
stimulus envelope segment. If no imposter frame could be
extracted (i.e. at the end of the recording), the segment was
discarded from the dataset. Overlapping windows with 90%
overlap were extracted from each recording.

C. Baseline models

To compare the performance of our new model, we con-
structed 2 baseline models. The first baseline model is based
on a state-of-the-art linear decoder. The second baseline model

is based on CCA [18], which obtains state-of-the-art perfor-
mance when applied in a subject-specific setting.

1) Decoder baseline: The decoder baseline is based on a
linear decoder [4], [2], but adapted to be trained and evaluated
in a match/mismatch paradigm. The integration window of the
linear decoder is implemented as a convolution over the time
dimension and across all EEG channels. As the EEG segment
and envelope segments are time-aligned, the kernel of the con-
volution is functionally equivalent to the integration window
of a linear decoder. After applying the convolution operation,
a reconstruction of the stimulus envelope is obtained. This
reconstructed envelope is compared to both envelope inputs
with Pearson correlation. As the EEG and envelope input
segments have the same length, it is impossible to reconstruct
the last envelope samples because no EEG response is present
in the selected EEG frame. Therefore, the envelope segments
are truncated to the length of the reconstructed envelope
segment. After correlating the reconstructed and presented
envelope segments, the correlation coefficients are combined
using a sigmoid neuron to make a binary prediction (i.e. does
envelope segment 1 or 2 match with the EEG segment?). A
visual representation of this model can be seen in Figure 2 (a).
The kernel size of the convolution was chosen to correspond
to the integration window length that produces the highest
correlation in linear decoders [2], which is from 0-250ms.
The decoder baseline model was implemented in Tensorflow
(version 2.3.0) [29] with Keras [30] module.

2) CCA: Currently, CCA achieves state-of-the-art error rates
for relating EEG with a speech stimulus representation in
a subject-specific match/mismatch paradigm [6], [18]. De
Cheveigné et al. [18] propose a gold-standard model (model
G), to compare future work with. The baseline CCA model
that we propose differs in a five ways from the proposed
model G. Firstly, trials were selected across subjects, as this
baseline model should be a subject-independent model to
enable fair comparison with our proposed subject-independent
dilated convolutional model. Secondly, no cross-validation is
applied, as this is computationally infeasible due to the large
amount of trials across subjects. Thirdly, we use different
preprocessing (see section II-B for more details about the
specific preprocessing used in this paper). Fourthly, no PCA
is applied to the EEG to reduce the number of channels to 32.
In our subject-independent experiments, applying PCA to the
EEG (per subject or across subjects) either decreased or did
not significantly impact performance. Finally, the CCA model
is evaluated using 2 different methods. In the first method, the
classification is based on the difference of the distance between
the transformed EEG and matched segment and the average
distance between the transformed EEG and mismatched en-
velope segment, across trials per subject (as proposed by de
Cheveigné et al. [18]. In the second method, a single imposter
segment is selected 1 second after the end of a matching
segment (see Figure 1), following the same procedure as used
for the dilated convolutional model and the decoder baseline
model (see section II-B for more information). These models
will be annotated as ”CCA (averaged)” and ”CCA” in all
figures, respectively. According to de Cheveigné et al [18],
using an aggregate of mismatched windows is more robust and
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increases correlations and classification performance. How-
ever, this approach is also not straightforward to implement
for the dilated convolutional model. For completeness, both
versions are included for CCA and compared to the dilated
convolutional model. All CCA models were implemented
using the NoiseTools package (version 12-May-2021) [31] in
MATLAB 2020b.

D. Dilated convolutional model

The dilated convolutional model consists of 4 steps. In the
first step, the EEG channels are linearly combined from 64
to F1 using a 1D convolution with a kernel size of 1 and a
filter size of F1. Then, N repeated dilated convolutional layers
using F2 filters with a kernel size of K are applied to both
EEG and envelope segments. After each dilated convolutional
layer, a rectified linear unit (ReLU) non-linearity [32] is
applied. The weights of the dilated convolutional layers for
the envelopes are shared for both envelope inputs. After non-
linearly transforming the EEG and envelope data, the EEG
representations are compared to both envelopes using cosine
similarity. Finally, these similarity scores are fed into a single
neuron with a sigmoid non-linearity to generate a prediction.
After a hyperparameter sweep, values 8 and 16 were chosen
for F1 and F2, respectively. The dilated convolutional model
was implemented in Tensorflow (version 2.3.0) [29] with Keras
[30] module.

E. Model training

Both the decoder baseline and the dilated convolutional
model are implemented in used an Adam optimizer with a
learning rate of 0.001 and binary cross-entropy as a loss
function. Models were trained for maximally 400 epochs, and
early stopping was used based on the validation loss with
a patience factor of 5 epochs. If the training was stopped
early, the model’s weights were restored to their value in
the epoch with the lowest validation loss. The CCA models
were trained following the procedure for model G in de
Cheveigné et al. [18]. All experiments used input segment
lengths of 10 seconds unless indicated otherwise. All models
were trained in a subject-independent way, i.e., they received
data from multiple subjects during training on the train set of
the Fairytales dataset.

III. EVALUATION OF THE DILATED CONVOLUTIONAL
MODEL

To showcase the performance of the dilated convolutional
model, the influence of segment length, frequency range and
receptive field size were evaluated in this section. From an
application perspective, it is important to know whether the
model generalizes well to unseen data. If this is not the case,
extra subject-specific fine-tuning might be necessary if the
model’s performance is not high enough for clinical purposes.
Therefore, fine-tuning on unseen subjects was also evaluated.

A. Input segment length

In auditory attention decoding, increasing the length of
input segments increases the model performance, as the model
receives more data for making a single prediction [14]. As this
also applies to the match/mismatch paradigm for CCA [18],
[6], the performance of the dilated convolutional model and the
baseline models should increase with longer input segments.

1) Setup: The dilated convolutional and decoder baseline
were trained and evaluated on the Fairytale dataset for input
segment lengths of 0.5, 1, 2, 5, 10 and 20 seconds. The CCA
models were trained using the full train set of the Fairytale
data. The results for all models were compared for each input
segment length and statistically evaluated utilizing a linear
mixed-effects model, using the lme4 (version 1.1.23) [33]
and lmerTest [34] (version 3.1.2) packages in R (version
4.0.3)[35]. Input segment length and model were designated
to be fixed effects and the subject was designated as a random
effect.The emmeans (1.4.6) [36] package was used to perform
a pairwise Tukey’s test on the levels of the model fixed effect
to determine whether the performance of between models
differed significantly.

2) Results: The performance for the dilated convolutional
model and all baseline models is displayed in Figure 3. The
performance of all models increases with input segment length.
Note that the variability in the decoder baseline model also
increases with increasing input segment length (e.g., at 20
seconds, the accuracy ranged from 60% to 100%, revealing
major inter-subject differences). The effect of both model type
and input segment length were significant (p ≤ 10−4 and p
≤ 10−15 respectively). Further comparison within the model
types with the Tukey’s test revealed that the performance of
all models was significantly different (p ≤ 0.001)

3) Discussion: The increase in performance by enlarging
the input segment length is probably due to the model having
more data to decide on. The same trend can be seen in auditory
attention detection [14], [16] and in previous literature for
CCA [6], [18]. Caution should be advised when using large
input segment lengths (e.g., 20 seconds) as ceiling effects may
occur due to some subjects obtaining the maximal score on the
test set, at which point no further improvement can be gained.

B. Frequency band

EEG signals are usually evaluated in different frequency
bands: δ (0.5-4Hz), θ (4-8Hz), α (8-14Hz) and β (14-32Hz).
As shown in previous literature [2], [1], linear decoders
perform optimally in the δ-band. De Cheveigné et al. [6] also
show higher performance for lower frequencies. To evaluate
whether this is also the case for our baseline models and
the dilated convolutional model, all models were trained and
evaluated on (combinations of) different frequency bands.

1) Setup: For this experiment, both EEG and stimulus
envelopes of the Fairytales dataset were bandpass filtered with
a Chebyshev2 filter (order of 2000, 80dB stopband attenuation,
1dB passband ripple) for all possible bands and combinations
of bands (δ + θ, δ + θ + α, δ + θ + α + β) instead of the
previously stated 0.5-32 Hz in Section II-B. Both the dilated
convolutional and baseline models were trained and evaluated
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Fig. 2: The structure of the decoder baseline and dilated convolutional model
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Fig. 3: Each point in the boxplot is the accuracy for one
subject averaged across recordings on the (unseen) test set.
Hollow circles represent outliers. Performance increases with
larger input segment lengths (p ≤ 10−15), as does variance for
the decoder baseline model. The dilated model had a receptive
field size of 27 samples (' 420 ms). The dilated convolutional
model significantly outperforms all baseline models (p ≤
0.001).

on the resulting data for each (combination of) frequency
band(s). Finally, all models were evaluated using a Wilcoxon
signed-rank test with Holm-Bonferroni correction for each
band (combination) separately.

2) Results: The performance for all models increased by
adding more frequency components (as can be seen in Figure
4). Looking at single frequency bands, all models have de-
creased performance for higher frequency bands. Each model
performed significantly different (p ≤ 0.050) for the combined
bands, with the dilated convolutional model outperforming all
the baseline models. In the δ band, the dilated convolutional
model and CCA (averaged) both significantly outperformed
the decoder baseline and CCA model (p ≤ 0.010), but no
significant difference in performance was found between the
CCA (averaged) and the dilated convolutional model. In the θ
band, the CCA (averaged) significantly outperformed the CCA
model (p ≤ 0.001). The performance of all models differed
significantly in the α band (p ≤ 0.050), except the CCA
(averaged) and decoder baseline model. Finally, all models
performed significantly differently in the β band (p ≤ 0.010),
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Fig. 4: Each point in the boxplot is the accuracy for one
subject averaged across recordings on the (unseen) test set.
Hollow circles represent outliers. The dilated model had a
receptive field size of 27 samples (' 420 ms). The baselines
and dilated convolutional model are all trained and evaluated
on different frequency bands. Combining multiple frequency
bands increases performance for all models. For individual
bands, higher performance is obtained for lower frequency
bands.

except CCA and CCA (averaged), and CCA and the decoder
baseline.

3) Discussion: When looking at single frequency bands,
all models perform better in lower frequency bands. Crosse
et al.[37] have shown the same trend for linear decoders,
de Cheveigné et al.[6] have shown this for CCA . The best
performance for single frequency bands is obtained in the δ-
band. In literature, it has been shown that individual speech
recognition is linked to the responses in the δ-band [1], [38],
[39], [40], [2], [10].

When combining multiple frequency bands, all models
perform better, suggesting they can leverage additional infor-
mation from multiple frequency bands.

C. Receptive field size

In linear decoders, an integration window is used to com-
pensate for the delayed brain response. Optimally, integration
windows of around 250 ms are used [2], [17]. For CCA,
time-lags can be applied to both the EEG and envelope to
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compensate for this [6], [18], as well as a relative shift where
EEG is advanced with regards to the envelope [18]. Model
G in [18] and our CCA baselines advance the EEG relative
with 200 ms, and apply timelags from 0-250 ms for both EEG
and envelopes . In the dilated convolutional model, there is no
explicit integration window. However, as shown in Oord et
al. [20], we can define the receptive field size of the dilated
convolutions as the number of input samples involved in
computing a single output sample. This receptive field size can
be modified in the dilated convolutional model by varying the
kernel size and the number of consecutive dilated convolutions.
The receptive field size is equal to KN , where N denotes the
number of layers and K is the kernel size in samples.

1) Setup: A parameter sweep was executed for input seg-
ments of 10 seconds to determine which receptive field size
yields optimal results. For kernel sizes 2, 3 and 4, all possible
depths were explored (i.e. until the receptive field size became
larger than the input segment). A Wilcoxon signed ranked test
with Holm-Bonferroni correction was used to compare each
dilated convolutional model with the baseline models.

2) Results: The results for different receptive field sizes are
displayed in Figure 5. The performance rises with increasing
receptive field size until 27 samples (≈ 420 ms), after which
performance declines. Compared to the baseline models, the
dilated convolutional model significantly outperforms all base-
line models when using a receptive field size between 16 and
32 samples (250 ms to 500 ms) (p ≤ 0.001). Additionally,
the dilated convolutional model significantly outperforms the
CCA (averaged) model for configurations K = 4, N = 3 (64
samples, 1 second) and K = 3, N = 4 (81 samples, 1.27
seconds)(p ≤ 10−8). The dilated convolutional model also
outperforms the CCA and decoder baseline model significantly
when using a receptive field size between 8 and 512 (125 ms
and 8 seconds)(p ≤ 10−4). Both CCA models outperform the
dilated convolutional model significantly for receptive field
sizes ≤ 4 (≤ 63 ms)(p ≤ 0.001), while the decoder baseline
significantly outperforms the dilated convolutional model for
receptive field sizes ≤ 3 (≤ 47 ms)(p ≤ 10−7).

3) Discussion: The dilated convolutional model performs
best with a receptive field size of 27 samples, which corre-
sponds to 420 ms. This is very long compared to the best
performing integration window of the linear decoder, which
is from 0 to 250 ms [2], [17], or the timelags introduced for
CCA (250 ms)[18]. The need for this long receptive field size
might be explained by the dilated convolutional network’s non-
linear nature and bigger size [41]. Due to this, the model might
capture later responses more effectively.

D. Generalization

The test set of the Fairytales dataset contains data extracted
from the middle of individual recordings, which all models
have not seen during training. However, as the training data
is extracted from the same recording, the models have seen
the subjects from the test set during training. Therefore, it is
important to check whether the dilated convolutional model
still performs well on subjects not present in the train set for
our application perspective.

1) Setup: The dilated convolutional model was trained on
the Fairytales dataset and evaluated on the test set of the
20 remaining (i.e., unseen) subjects of the Fairytales held-out
set. To test if there was a significant difference between the
performance, the Mann-Whitney U-test was used. From an
application perspective, it is also useful to know how many
subjects are necessary to saturate the generalizability of the
dilated convolutional model, i.e. how many subjects are needed
in training to ensure good performance on unseen subjects. For
this experiment, the dilated convolutional model was trained
on a varying number of subjects (1-48) from the Fairytales
dataset training set and evaluated on the held-out Fairytales
test set.

2) Results: In Figure 6, the performance of the dilated
convolutional model for the Fairytales test set and the held-
out set are shown. The difference between the scores for both
test sets is not significantly different (W=449, p=0.3407). The
learning curve in Figure 7 indicates that the generalization
saturates at approximately 28 subjects.

3) Discussion: The learning curve (Figure 7) and held-
out dataset performance (Figure 6) confirm that the dilated
convolutional model generalizes well to unseen subjects. This
is especially interesting from an application perspective, as it
removes the need to collect training data from a prospective
subject. This can substantially reduce the time spent during
hearing assessment procedures. Only 28 subjects are needed
to train a well-performing generalizable model.

E. Fine-tuning

A plausible way to increase performance is to fine-tune a
pre-trained model to an unseen subject. By doing this, the
model is effectively transformed from a subject-independent
model to a subject-specific model for the new subject.

1) Setup: The dilated convolutional model was trained on
the Fairytales dataset and fine-tuned on the training set of each
subject of the held-out dataset separately. Then, the fine-tuned
models were compared to the performance of the subject-
independent model on the held-out dataset with a Wilcoxon
signed-rank test. A learning curve was constructed to see how
much data was needed for each subject to reach equilibrium.
As weights can also be frozen and only specific layers can
be tuned, an experiment was also conducted where differ-
ent layers of the dilated convolutional model were grouped
(spatial EEG layer, dilated convolutional EEG layers, dilated
convolutional envelope layers and the output layer) and the
permutation of each grouping was evaluated. To compare the
performance to the baseline, a Wilcoxon signed-rank test was
used with Holm-Bonferroni correction.

2) Results: Fine-tuning the pre-trained dilated convolutional
model on each subject in the held-out set separately improved
performance for all but 1 subject. The increase in performance
overall is statistically significant (W=3, p=0.001). The learning
curve in Figure 8 shows increasing performance on the held-
out dataset up until 1 hour of data for each subject. In
Figure 9, the results of fine-tuning different groups of layers
are shown. Each configuration significantly outperforms the
dilated convolutional model without retraining (p ≤ 0.050).
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Fig. 6: Each point in the boxplot is the accuracy for one
subject averaged across recordings. A dilated convolutional
model trained on the Fairytales dataset is evaluated on the
test sets of the Fairytales dataset and the held-out dataset.
The dilated model had a receptive field size of 27 samples
(' 420 ms). The performance for the Fairytales test set,
containing subjects that the model has seen during training,
does not significantly differ from the performance held-out
dataset, containing only unseen subjects.

3) Discussion: Fine-tuning on the held-out training set has
shown that performance can significantly increase for most
subjects by fine-tuning the model on a specific subject. This
boost in performance can be used in Section IV-A to improve
sigmoid fits, which might allow SRT estimation for subjects
for whom the fits failed previously. In practice, this would
come at the cost of collecting a small amount of training
data from the new subject, which would increase the time
duration of data collection. Looking at Figure 8, the model’s
performance seems to saturate when using more than 60
minutes of data. As shown in Figure 9, every fine-tuning
scheme will result in significantly higher performance.

IV. SPEECH INTELLIGIBILITY PREDICTION

We established a link between the speech reception thresh-
old (SRT) of the (behavioral) MATRIX test in Flemish [21]
and the performance of the dilated convolutional model, to
investigate whether our model performance can be used as
a proxy of speech intelligibility. Like the MATRIX test, we
define speech intelligibility as word recognition accuracy in
noise.

A. Comparison to state-of-the-art behavioral testing

1) Setup: To evaluate the dilated convolutional model as
an objective measure of speech intelligibility, a dilated con-
volutional model was trained on the Fairytales dataset with
an input segment length of 20 seconds and evaluated on the
MatrixEEG dataset. The model was evaluated per subject for
each SNR separately. Per subject, the relationship between
SNR and accuracy was modeled using a psychometric curve
(see Equation 1) [2].

Accuracy(SNR) = γ+(1−γ−λ)∗ 1

1 + exp−SNR−α
β

(1)

The accuracy for the condition without noise was discarded
before fitting, the guess rate (γ) and lapse rate (λ) were fixed
to 0.5 and 0, respectively, while the boundary values for the
slope (β) were set to 0.05 and 50. There were no boundary
conditions for the midpoint (α). These boundary values were
similar to the ones used in Vanthornhout et al [2]. Fitting was
performed using the non-linear least-squares implementation
of SciPy [42] (scipy.optimize.curve_fit). Fits co-
inciding with the boundary conditions were discarded. The
midpoints of these newly fitted sigmoids were correlated,
using a Pearson correlation, with the SRT as found by the
behavioral MATRIX test. In this way, a link between the
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After this point, performance still fluctuates but does not increase anymore.

0
(no retraining)

1 2 5 10 15 30 45 60 75 90 105 120

Training data per subject (minutes)

50

60

70

80

90

100

M
at

ch
/m

ism
at

ch
 a

cc
ur

ac
y 

(%
)

Learning curve - training data per subject

Fig. 8: Each point in the boxplot is the accuracy for one
subject averaged across recordings. Hollow circles represent
outliers. A dilated convolutional model was fine-tuned on
the train set of the held-out dataset with varying amounts
of training data per subject, as displayed on the x-axis. The
dilated model had a receptive field size of 27 samples ('
420 ms). An input segment length of 10 seconds was used.
The model is then evaluated on the (unseen) test set of the
held-out dataset for each subject separately. Including more
training data for each subject increases performance up until
60 minutes, after which performance stagnates.

accuracy of dilated convolutional and speech intelligibility as
estimated by a behavioral test can be established. The Milan
fairytale data (see II-A.2) can be used to finetune the model,
gaining overall better performance and improving sigmoid fits.
However, seeing that data collection in clinical practice is
difficult and costly, we will restrict finetuning to the subjects
for which the sigmoid fitting failed.

To estimate the influence of the 0.5dB test-rest variability
of the behavioral MATRIX test [21], we used a Monte-Carlo

simulation of 100000 iterations. In this simulation, random
Gaussian noise with a mean of 0 and a standard deviation
of 0.5 dB was added to the SRT values of the behavioral
MATRIX test, before the Pearson correlation between the
SRT’s of the behavioral MATRIX test and midpoints of the
sigmoids was calculated.

2) Results: Fits for 4 sigmoids reached boundary conditions
and were discarded from further analysis. The remaining 16
midpoints of the sigmoids are significantly correlated with the
SRT’s as found with the MATRIX test (r=0.59, p=0.0154),
as seen in Figure 10. Finetuning on the Milan fairytale data
improved one of 4 sigmoid fits that previously failed. Adding
this subject to the analysis decreased the overall correlation to
0.53 (p=0.0287), as can be seen in Figure 11.

The Monte-Carlo simulations yielded 0.5129 (95% confi-
dence interval = [0.5122, 0.5135]) and 0.4556 (95% confi-
dence interval = [0.4549, 4563]) as average Pearson correlation
value across iterations for the non-finetuned and the finetuned
case respectively.

3) Discussion: In Figure 10, a significant correlation is
shown between the golden standard behavioral MATRIX test
and the sigmoids fitted on the accuracies of the dilated con-
volutional model. This suggests that the dilated convolutional
model can be used as an objective proxy or alternative for the
MATRIX test. Similar results have been shown using subject-
specific linear decoders [2]. While the correlation coefficient
between objective measure and Matrix SRT is lower compared
to Vanthornhout et al. [2] (0.59 vs. 0.69); our approach has
multiple advantages. Firstly, a pre-trained subject-independent
model is used, eliminating the need to collect training data
for new subjects to evaluate. Secondly, if the sigmoid fitting
fails, it is possible to improve the model by fine-tuning it
to the specific subject, although at the cost of collecting
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Fig. 9: Each point in the boxplot is the accuracy for one subject averaged across recordings. Hollow circles represent outliers.
The dilated model had a receptive field size of 27 samples (' 420 ms). The dilated convolutional model is fine-tuned on the
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Fig. 10: Comparison between the midpoints of the sigmoids
fitted on the performance of the dilated convolutional model
and the behavioral MATRIX score for the MatrixEEG dataset.
Each cross corresponds to a single subject. 4 subjects were
excluded due to the bad fit of the sigmoid. A significant
relationship is found between the midpoints of the fitted
sigmoids and the SRT as estimated by the behavioral MATRIX
test.

training data for that subject. Lastly, the linear trend between
the objective and behavioral SRT estimation (i.e. the SRT as
estimated by the behavioral MATRIX test and the midpoints
of the sigmoids fitted on the accuracy scores of the dilated
convolutional model) seems to be parallel to y = x, which
makes sense because the target of the behavioral measure (50%
correct word score) is arbitrary, leading to an arbitrary offset
to our objective measure. It should be noted, however, that the
performance of our objective method still could depend on a
number of cognitive effects, such as attention [17], [43].

Apart from the potential imprecision of the objective mea-
sure, the remaining differences between objective and subjec-
tive measures can be due to (1) imprecision of the behavioral
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Fig. 11: Comparison between the midpoints of the sigmoids
fitted on the performance of the dilated convolutional model
and the behavioral MATRIX score for the MatrixEEG dataset.
Each cross corresponds to a single subject. Sigmoid fitting
improved for one out of the 4 subjects that had bad fitting
previously in Figure 10 by fine-tuning the dilated convolu-
tional model to these subjects. The relationship between the
midpoints of the fitted sigmoids and the SRT as estimated by
the behavioral MATRIX test is still significant after adding
this subject, although it slightly decreased (0.59 vs. 0.52).

measure (as our Monte-Carlo simulation reveals that the test-
retest reliability can reduce the correlation with 0.08) (2) in-
herent differences between (presumably) decoding the acoustic
representation of speech from the brain and engaging the entire
auditory/language/memory circuits of the brain.

To improve SRT estimation accuracy, the input segment
length may be increased at the cost of needing more data.
Another possibility is using a more flexible method than the
sigmoid fitting to find a value to correlate with the MATRIX
SRT, e.g., a simple artificial neural network.
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V. DISCUSSION

This paper evaluated both the robustness and viability of
the dilated convolutional model as a proxy for speech intel-
ligibility. Section III-A and Section III-B showed that model
performance increases with longer input segment lengths and
broader frequency bands. Furthermore, the dilated convolu-
tional model benefits from a large receptive field compared
to the integration windows of linear models (420 ms vs.
250 ms), as shown in Section,III-C. Furthermore, in a move
towards better applicability, in Section III-D and Section
III-E generalisability to subjects unseen during training was
evaluated, and the possibility to increase model performance
through finetuning. Lastly, in Section IV-A, it was shown that
the dilated convolutional model could be used as an effective
proxy of speech intelligibility, even on completely unseen
data (unseen subjects and speech material), which is the main
benefit of a subject-independent model.

While model performance is promising, the non-linear na-
ture of the model makes it hard to evaluate and interpret
what feature of the data it is using to base predictions on.
In literature, efforts have been made to create a locally linear
version of non-linear models[44]. The same techniques were
used on the dilated convolutional model, but the results proved
difficult to interpret and did not seem biologically plausible.
Further work should aim to extract neuroscientific knowledge
from the model and move away from the ”black box” paradigm
common for non-linear neural networks.

Currently, the speech envelope was used as the only speech
feature input to the network. In future work, models may
benefit from less coarse features such as a mel spectrogram[8]
or more advanced features such as phoneme identity [41] or
word embeddings[45], possibly in a hierarchical model.

VI. CONCLUSION

This paper introduced a dilated convolutional neural net-
work to model the relationship between EEG and acous-
tic stimulus, which can be trained in a subject-independent
manner. We established a significant correlation between our
model and the current golden standard in behavioral auditory
testing, signifying that our model can be used as a proxy
for speech intelligibility, even on previously unseen subjects.
Furthermore, this model benefits from a broad frequency
range and a moderately long receptive field size of 420 ms .
Finally, the dilated convolutional model generalizes very well
to unseen data, which is interesting for applicability in hearing
assessment.
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Monga , Sherry Moore , Derek Murray , Chris Olah , Mike Schuster ,
Jonathon Shlens , Benoit Steiner , Ilya Sutskever , Kunal Talwar , Paul
Tucker , Vincent Vanhoucke , Vijay Vasudevan , Fernanda Viégas , Oriol
Vinyals , Pete Warden , Martin Wattenberg , Martin Wicke , Yuan Yu ,
and Xiaoqiang Zheng, “Tensorflow: Large-Scale Machine Learning on
Heterogeneous Systems,” 2015.

[30] Chollet, François, “Keras,” 2015.
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APPENDIX I
SIGMOID FIT EXAMPLES
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Fig. 12: An example of a good sigmoid fit (left) and a
discarded, bad sigmoid fit (right).
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