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Abstract

This paper deals with lack-of-knowledge uncertainty in complex non-linear simulations on a com-
ponent level, i.e., a crashbox during frontal impact of a vehicle. Specifically, the focus lies on using
interval field techniques to model the uncertain boundary conditions during impact simulations.
The uncertainty considered in this work is the unknown mechanical response from the adjacent
structure. This uncertainty is considered to be epistemic, representing the case where this adjacent
structure is unknown at the time the impact analysis is performed. In practice, this refers to the
situation where the adjacent structure is still under development, e.g., at a different department
or even outsourced. In addition, the safety critical performance of both, the component and the
overall structure should be guaranteed under a wide range of circumstances, which are typically
encountered in real-life situations. Typically, car manufacturers use multidisciplinary optimisation
to identify component designs that perform best on all requirements in a deterministic sense, while
minimising the overall weight. Unfortunately, the results of such optimisation schemes are known
to converge to an often non-robust optimum. As a result, the response of the structure may be
sensitive to small changes in input parameters or boundary conditions.

As an answer to these challenges, this paper proposes an interval field approach that accounts
for the epistemic, i.e., lack-of-knowledge, uncertainty of the adjacent structures, even in an early
design stage. This is accomplished by introducing a spatially varying uncertain mechanical com-
pliance in elements that connect the component to the adjacent structures. These elements have
an interval valued stiffness, which is varied along the component following the realisations of an in-
terval field. The bounds on the interval-valued response quantities of interest, i.e., mean force and
peak force, are identified using a differential evolution algorithm. This method is demonstrated
on four case studies of a full overlap crash analysis of a rectangular crash box, which represents
a generic component within the front structure of a vehicle. These case studies demonstrate the
applicability and the potential of the proposed method. In addition, in the last case it is shown
that the performance of the component can be assessed under an increasing range of uncertainty.
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1. Introduction1

In recent years car manufacturers are changing from traditional test-based design towards2

more simulation-driven approach due to the ever rising complexity in development and increase3

of safety requirements. Examples of such safety requirements are, e.g., proposed by the United4

Nations Economic Commission for Europe (UN-ECE) [1], or based on consumer tests, e.g., those5

of the New Car Assessment Programmes (NCAP) like Euro NCAP [2] or Global NCAP [3]. These6

tests represent the relevant accident scenarios while being also sufficiently repeatable to enable7

controlled vehicle assessments and ratings. In these numerical approaches advanced numerical8

methods for multi-disciplinary and multi-criteria optimisation are used to identify the appropriate9

design compromises, see, e.g., [4]. However, even in standard cases, the performance of designs10

obtained though optimisation are known to be very sensitive to small changes in input parameters.11

This problem is further amplified when considering highly non-linear phenomena encountered in12

crashworthiness studies [5]. Furthermore, the robustness - low sensitivity of responses to input13

variations - as well as the reliability - low probability of constraint violations - have to be considered14

additionally. This leads to an even higher numerical effort than just needed for a deterministic15

optimisation.16

In addition design criteria for crashworthiness are mostly related to bio-mechanical measures17

(accelerations, velocities, deformations, forces, and moments) registered by Anthropometric Test18

Devices (ATDs), also known as “dummies”. Examples are the Head Injury Criterion (HIC),19

see the discussion in [6], or the Neck Injury Criterion (NIC), see [7]. The optimal quantity to20

use in crashworthiness assessment is changing frequently, see e.g. [8]. However, during the early21

development process, it is standard to consider mainly structural criteria, i.e., criteria related to22

the performance of the car structures, as detailed geometrical and material data is not available.23

Car-body related criteria address either aspects of the safety cage (deformation resistance parts)24

or aspects of the crumple zones (energy absorbing parts), as illustrated in Figure 1. The design25

of energy absorbing parts remains challenging, criteria as specific energy absorption (SEA), which26

is the total energy absorption divided by mass, peak force or peak acceleration are commonly27

used [9, 10].28

(a) Deformation resistance parts (blue) (b) Energy absorbing parts (blue)

Figure 1: Example of a car body highlighting deformation resistance (left) and energy absorbing parts (right) for
a frontal impact [11]

1.1. Simulation based car body development29

The development of the car body structure is a highly complex task, where all components30

interact and the required force-deformation behaviour of the components is completely inter-31
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dependent. Even the design of a single component is highly complex due to the high non-linear32

behaviour in terms of mechanical plasticity, failure, contact, buckling, large deformations, strain-33

and stress-rate-dependencies. In addition, a high number of different materials have to be mod-34

elled, ranging from different steel types and other metals to glass, polymers, foams, composites35

and bio-materials. The related computational effort is high; standard simulations take several36

hours and in some cases even days, despite the integration of high performance computing (HPC)37

in the simulation workflows. Therefore, to reduce this computational cost for the structural design38

of energy absorbing components there are two main approaches found in crash related literature,39

which are listed below and are illustrated in Figure 2.40

a) Full vehicle FEM simulations with models as shown exemplarily in Figure 2: the com-41

plete structure of the car is modelled and the developer modifies a component (or compo-42

nents) assessing the changes via a complete repeat of the full set of crash simulations (note43

that a small change will affect the car performance in multiple different crash tests).44

b) Component simulations with pre-defined boundary and initial conditions. For this, there45

are three options:46

b1) The energy absorption of a component is assessed under drop test conditions, i.e., a47

rigid plate or block with a certain mass and initial velocity is hitting the component.48

Here, the dynamic effects are covered more correctly.49

b2) A similar configuration as for b1) is used but by a crush test where a rigid wall with50

a prescribed and constant velocity deforms the component in axial direction. Because51

this is often done in a quasi-static manner, dynamic effects like inertia forces and52

(strain-)rate dependencies are neglected.53

b3) An alternative can be realised by using a full vehicle simulation and by registering54

the deformation- or velocity-over-time of the FE nodes at the interface between the55

component and the complete car structure. Then, the data of the interface nodes is56

used as constraints in the component simulations.57

In some cases, a full-vehicle simulation is used to assess the performance of a single component.58

The advantage of this approach is that it takes all surrounding parts, as well as their interaction59

with the component, into account. However, especially during early stages of the development60

process, properties or design details of neighbouring components are not fully known. Typically,61

the development is a concurrent process between multiple designers or even departments / com-62

panies, where each designer or department is designing an individual component in parallel with63

activities of the others. Therefore, the full vehicle model at this point may not be available, under64

construction, or far from the final version. Hence, having a complete vehicle simulation during65

development may mean that pseudo-accuracy is introduced by the level of detail that is obtained,66

which neglects the development of other components. Therefore, potential wrong conclusions are67

made and redesigns at a later stage would be needed to correct for these decisions.68

In addition, the potentially high computational effort of a full-vehicle simulation makes it69

nearly infeasible to realise a high number of full model simulations, such as needed for optimi-70

sation and robustness or reliability assessments. For instance, a single simulation of the Honda71

Accord model with 1.9 million elements [12] takes 14 hours on eight Intel(R) Core i9-7980XE72

CPUs. The academic example used in this work on the other hand, as illustrated in case a) in73

Figure 2, requires several minutes to calculate. Moreover, as the full car model consists of multiple74
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Figure 2: Example of full vehicle test (top) and component / sub-structure tests (bottom), after [4]

parts and materials that interact with each other, the uncertainties about all these parameters75

should be carefully assessed and quantified. Therefore, detailed investigations should be conducted76

concerning the range of these parameters as well as the relative likelihood of certain parameter77

values within this range (as commonly quantified by a distribution function). This is very chal-78

lenging in general, and especially in an early design stage where many design decisions may still79

be open. In recent years, robustness studies on full vehicle models have been realised in, e.g.,80

[5, 13]. However, these are rarely embedded in an industrial development and more importantly,81

the uncertainties considered are far from complete.82

1.2. Uncertainty in crashworthiness83

In the three versions of crashworthiness assessment of a single component illustrated in Fig-84

ure 2, the parts are evaluated in an isolated environment neglecting the influence of possible85

modifications in the other components. However, from experience, we know that the mechanical86

response of other components strongly influences the behaviour of the component under consid-87

eration in the design study. Therefore, to the opinion of the authors, this - often unknown -88

difference between fixed boundary conditions and coupled boundary conditions to adjacent parts89

is of very high relevance, and should be considered in a single component impact performance90

optimisation under uncertainty. When neglected, the identified optimum may be of questionable91

value, as robustness or reliability problems on component level may lead to critical performance92

issues in the global crash performance of the complete vehicle. The advantage of the single com-93

ponent assessment is clearly the computational cost, i.e., a single assessment can be conducted94

at a fraction of the time it would take to run a full crash model. In addition, validation of these95
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simulations via physical experiments is less complicated as drop-tower tests or quasi-static tests96

are widely used for single component testing, as opposed to full vehicle tests. The number of97

scientific papers on the assessment of components is very high, see [14, 15] to give only some98

of the most recent papers. However, the consideration of uncertainties is rarely undertaken on99

component level. As an example the reader is referred to [16].100

Nevertheless, a range of methods is proposed in recent crash related literature that take these101

uncertain input parameters into account. Examples include load case and geometrical uncertain-102

ties [17, 13], or material uncertainties [18]. In these approaches, variations of the impact angles,103

locations and velocities are considered. In some cases, these quantities are also combined with the104

influence of manufacturing tolerances (variations in thickness, material parameters or geometrical105

features like radii) [4]. Following these numerical approaches, one typically assumes the uncer-106

tain input parameters to be independent. Regarding the parameters mentioned above, most of107

them are direct input parameters of the finite element model except the geometrical changes such108

as radii. For the latter, parametric shape modelling and mesh morphing tools have been devel-109

oped [4]. In addition, efforts have been made on reducing the computational cost of uncertainty110

propagation by a multi-fidelity approach in [19], or adaptive Kriging based approaches in [20].111

1.3. Complexity of hierarchical development112

The application of optimisation with robustness and reliability analyses in an industrial setting113

remains challenging and time consuming, not only because of the high numerical effort. The main114

reason is related to the context of systems engineering and the necessity of hierarchical develop-115

ment caused by the high complexity of the product. This means that the different crash types (e.g.116

front, side, and rear impacts) are treated by different people or even departments and companies.117

As a consequence, every developer is working on a single component and not on the complete118

vehicle. Therefore, requirements must be broken down to the component level. Consequently,119

assessments are done as well on single components rather than on the full vehicle or system.120

The well-known V-model approach and the more recently developed Component Solution Space121

methodology [21, 22] enable this hierarchical development. However, following the Component122

Solution Space approach, it is challenging to include the inter-dependencies of the different com-123

ponents during a crash. As in the original Component Solution Space approach [21], deterministic124

force-deformation curves are obtained for each of the components, with a range that is maximised125

for each component until constraints are violated, e.g., order of plastic deformation, or acceleration126

limits. However, in real incidents, impact angle, speed and impacting object are unknown and the127

occurring deformations and force levels are uncertain. To resolve this, Component Solution Space128

methods have been introduced that incorporate epistemic uncertainty: where [23] focuses on un-129

certainties in force levels and [24] on remaining uncertainties, i.e., deformation lengths, energy to130

be absorbed, critical acceleration limit. These methods provide bounds on the range in which the131

component is performing as well as information about the range of uncertainty allowed for by the132

adjacent structure.133

To overcome the issues related to the decoupled development of complex interacting structures,134

this paper presents a novel method to consider the interactions of a single component with these135

adjacent structures. Typically, the design and optimisation of these single components are based136

on droptower tests, b1 in Figure 2, where one typically measures force and deformation of an137

impacting object on a fixed specimen or component. However, this paper proposes a novel way138

to design and optimise a single component by introducing uncertain boundary conditions that139

account for the unknown behaviour of the adjacent structure, which is neglected in the typical tests.140

Nevertheless, from experience, we know that the mechanical response of other components strongly141
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influences the behaviour of the component under consideration in the design study. Therefore, to142

the opinion of the authors, this - often unknown - difference between fixed boundary conditions and143

coupled boundary conditions to adjacent parts is of very high relevance, and should be considered144

in a single component impact performance optimisation under uncertainty. The structure of this145

paper is as follows: Section 2 gives a detailed description of the proposed implementation of interval146

fields at the boundary conditions. The difference between deterministic and uncertain boundary147

conditions is illustrated for a number of case studies in Section 3, followed by a discussion of the148

results in Section 4. Final conclusions are drawn in Section 5, which also provides an outlook of149

future challenges.150

2. Non-deterministic modelling of the adjacent structure151

The uncertainty in the proposed modelling strategy stems from the assumptions and abstrac-152

tions that are made concerning the mechanical behaviour of the adjacent components. Since this153

uncertainty stems from a lack-of-knowledge about the final components, it is an attribute of the154

analysis, and hence, epistemic in nature. Therefore, it is proposed to model it using the interval155

framework. For the sake of argumentation, when one would attempt to model this type of uncer-156

tainty using probabilistic methods, subjective information is inserted into the analysis [25], which157

might give a false sense of accuracy. Applying interval analysis therefore is the most objective158

approach since it acknowledges that there is no information on the likelihood of relative parameter159

values within the interval bounds. Furthermore, when limited data about the actual boundary160

conditions are available, approaches to infer the bounds based either on Bayesian analysis [26] or161

inverse analysis can be applied [27].162

A particular convenient interval technique for parameters that are spatially distributed is163

the recently introduced framework of interval fields, which can be regarded as a possibilistic164

counterpart to random fields [28] for quantities that are spatial or time dependent [29]. Following165

this framework of interval fields, locally defined intervals are expanded through the model domain166

based on a set of a priori defined basis functions. Multiple definitions of these basis functions can be167

found in literature, which are based on inverse distance weighting [27], affine arithmetic [30, 31, 32],168

radial basis functions [33], a spatial averaging method [34], or set-theoretical approaches [35, 36].169

A recent overview of interval fields can be found in [25]. The following sections start with a170

detailed description of the interval field framework, and end with a description how this concept171

is used to model the epistemic uncertainty about the adjacent structure in a component finite172

element simulation.173

2.1. Interval field analysis174

This section provides a detailed description of interval field analysis, as introduced in [29]. In
this work, the following definitions are used: interval parameters are indicated using apex I: xI ;
a vector is indicated as lower-case boldface characters x; matrices are expressed as upper-case
boldface characters X, and interval parameters are represented using the bounds of the interval
defined as:

xI = [x;x] = {x ∈ R | x ≤ x ≤ x}, (1)

where x stands for the lower bound and x for the upper bound. In addition, an interval can175

be represented by the centre point x̂ = x+x
2

and radius ∆x = x−x
2

of the interval. An interval176

is considered closed when both the upper and lower bounds are a member of the interval. The177

domain of a real-valued interval is denoted as IR.178
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2.1.1. Explicit interval fields179

The definition of an explicit interval field is given in Equation (2), where the field consists of a
superposition of nb ∈ N base functions ψi(r) : Ω 7→ R defined over the geometrical domain Ω ⊂ Rd,
where d is defined as the physical dimension of the problem. These base functions describe the
spatial nature of the uncertain parameter x, distributed along the coordinate r ∈ Ω. An interval
field scales these basis functions ψ(r) with independent interval scalars αIi ∈ IR, formally defined
as:

xI(r) = x̂(r) +

nb∑
i=1

ψi(r)α
I
i . (2)

with x̂(r) ∈ R the midpoint function of the interval field.180

When Ω is discretised into ne finite elements Ωe ⊆ Ω, these base functions ψi(r) interpolate181

the independent interval scalars αIi to dependent intervals for each Ωe
i , i = 1, . . . , ne by projecting182

them onto a non-orthogonal vector space [37]. Further, the input space dimension is reduced if183

nb < ne, which reduces the computational cost of propagating the interval uncertainty towards184

bounds on the response quantity of interest.185

2.1.2. Interval Field finite element analysis186

LetM(x) be the deterministic model that represents the crash situation under consideration.
The parameters ofM are represented as a vector x ∈ Rnx . The entries of x represent for instance
constitutive material parameters, inertial moments or clamping stiffness. Solving the numerical
model M corresponds to transforming the parameter vector x through a set of scalar function
operators mi : Rnx 7→ R, i = 1, . . . , ny to a vector of responses y(r) ∈ Rny , defined as:

M : y(r) = mi(x(r)) i = 1, . . . , ny. (3)

In an interval context, the uncertainty on x is represented as an interval vector xI = [xI1, x
I
2, . . . , x

I
nx

],187

with xIi , i, . . . , nx the ith parameter interval. It should be noted that xI is constructed as the nx-188

dimensional Cartesian product
nx

×
i=1
xIi , and hence, represents an nx-dimensional hyper-rectangle.189

In the following, we consider the specific case where a single parameter ofM is represented using190

an interval field xI(r). Hence, in this case, the input space is defined by the hyper-rectangle αI .191

Note that this does not affect the generality of the developments, as the discussion can straight-192

forwardly be extended towards multiple interval fields and/or combinations of interval fields and193

scalar intervals.194

The main goal of the interval field analysis is to identify the set of system responses ỹ that
bounds the possible range of the responses y given xI(r). Since finding the exact set is in general
computationally intractable, the exact solution set ỹ is usually approximated by a realisation set
ỹs defined as:

ỹs =
{
yj|yj = mi(xj(r));xj(r) ∈ xI(r); j = 1, . . . , nq

}
. (4)

The set ỹs is typically constructed by nq deterministic solutions yj =M(xj) of the numerical195

model, where yj is a vector containing the ny deterministic responses of the jth solution. For each196

of these nq solutions, the interval field realisations xj(r) are generated by drawing a realisation197

from the interval scalars constituting the interval field. The main challenge herein is choosing198

xj(r) such that ỹs is a conservative approximation of ỹ.199

One way to obtain such approximation is to follow an optimisation approach. Here, ỹ is
approximated by a conservative hyper-cube yI = [yI1 , y

I
2 , . . . , y

I
u], with ỹ ⊆ YI . The corresponding
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optimisation problem is defined as:

y
i

= min
x∈xI

mi(x) i, . . . , ny,

yi = max
x∈xI

mi(x) i, . . . , ny,
(5)

where yIi = [y
i
; yi] is the ith solution interval. When a global minimum or maximum is found200

through optimisation, the smallest hyper-cubic approximation of the solution set ỹs is identified.201

However, it should be noted that the behaviour of the goal function with respect to the uncertain202

parameters is unpredictable in the case of strongly non-linear problems, as considered in this203

paper. This makes the computational effort highly problem dependent [38]. It can furthermore be204

noted that the selection of the most appropriate optimisation algorithm is fully case-dependent.205

For a recent review on interval field propagation methods, the reader is referred to [25].206

In the specific case of crash analysis, the functional relationship between x and y, as given by207

M, is strongly not convex. Therefore, the analyst has to resort to global optimisation schemes208

to solve Eq. 5. A particularly well-known non-gradient based algorithm is differential evolution209

(DE) [39], which is based on randomly selected sample points within the search domain. The210

parameters governing the optimisation are the population size, the mutation constant, and the211

recombination constant, which govern the number of samples that are used for each generation and212

the amount of parameter space that is being explored, i.e., by additional samples, versus refined,213

i.e., the new sample point is close to previously good performing points. For more information214

about this approach, the reader is referred to [40].215

2.1.3. Definition of the basis functions216

An open question in the discussion in the preceding section on using interval fields to propagate
spatially uncertain quantities through M is the definition of the basis functions ψi(r) , i, . . . , nb.
Realisations of the interval field as defined in Equation (1) are obtained through discretisation of
the basis functions. In this paper, the basis functions are based on the intuitive Inverse Distance
Weighing (IDW) framework, as studied in detail in this context in [37]. Basis functions ψi(r)
based on IDW model the spatial dependence of the interval scalars αI proportional to the inverse
distance from predefined locations ri, i.e., control points, throughout the model domain Ω. In
practice, the interval field is discretised over rk, which corresponds for instance to the element
centre points, Gauss integration points, or nodal locations of the FE model under consideration.
In this approach, the basis functions are based on a set of normalised weight functions wi(r) ∈ Ω.
These functions are explicitly defined as:

ψi(r) =
wi(r)∑nb

j=1wj(r)
, (6)

with i = 1, . . . , nb. The weight functions wi are inversely proportional with respect to a distance
measure d(·). This distance is measured to all other coordinates in the domain. A weight function
wi is denoted as:

wi(r) =
1

[d(ri, r)]p
, (7)

with the power p ∈ R+ as a non-negative parameter that can be set by the analyst to influence217

the rate of decay from the control point ri.218
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2.2. Boundary conditions described by interval fields219

The discussion in this paper is based on a full vehicle crash model and an exemplary component,220

here a generic crash box, to illustrate the principle ideas. Figure 3 illustrates this component and221

the typical simulation setup, where on the left the finite element model of the component is shown222

and on the right an illustration of the typical boundary conditions is given where the red crosses223

indicate the fixed nodes. The case that is considered in this work is a full-width overlap crash test224

of a passenger car driving against a rigid barrier at 56 km/h, in accordance with the corresponding225

NCAP test [2]. This type of test set-up is defined in several consumer and regulation tests and is226

commonly used in scientific studies.227

v0

(a) Finite Element Model of the crashbox with a rigid plane at-
tached to the nodes in the back (red) and impacting plane right

v0

F
ix

ed
n
o
d
es

Finite element mesh Impacting moving plane

(b) Illustration of a general crash set-up, with the red crosses indi-
cating the fixed nodes, and the impacting rigid plane on the right

Figure 3: Illustration of the crashbox and the general set-up of a crash analysis as used in this paper

The interval field concept is not directly applicable to this typical crash simulation, as illus-228

trated in Figure 3b. First, a representation of the adjacent structure should be defined. In this229

case the adjacent structure is modelled at the back of the component between the rigid wall and230

the fixed nodes, which corresponds well to the physical location of these components within the231

vehicle. Figure 4 illustrates the adjacent structure modelled by a set of connecting elements. The232

epistemic uncertain lateral stiffness of these elements is represented by the interval field. Note,233

that the described method also works for elements placed in front of the component, or a com-234

bination of both, although this would require additional considerations about the properties of235

these elements.236

2.2.1. Interval field modelling of the connecting elements237

In this work, a novel technique is used to model a one-dimensional interval field on a three-238

dimensional component. This interval field is defined on the lateral stiffness of the elements239

connecting the crash-box to the surrounding. As such, the interval field models the uncertain240

compliance of the structure that is adjacent to the crash box. Specifically, the crash box is241

modelled as a rectangular shell that is meshed by two-dimensional shell elements. In this case, the242

nodes of the shell elements describe the circumference of a rectangular shape, as the thickness is243

considered in the shell formulation. Therefore, the distance measure used in IDW can be calculated244

along the circumference of the rectangular box, which yields a continuous one-dimensional interval245

field along the circumference of the component. However, since the vector r describes a position246

on a closed rectangular grid, the determination of the distance d(·) from the control point ri to247

the other nodes r is less trivial as each nodal point can be reached following two distinct paths,248

i.e., clockwise, or counterclockwise. In this case, we consider the shortest distance between two249
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r

v0

Component mesh Impacting rigid plane

Element 1

Element 2

Element 3

Fixed nodes

Adjacent structure

Figure 4: Illustration of the connecting elements, with the fixed nodes in red, the component in orange, and the
rigid impacting plane on the right

points on the circumference. This can be solved by only using the shortest path between ri and r250

to determine the distance measure. e.g., using Dijkstra shortest path algorithm [41]. In addition,251

element lengths can be directly used as weights in these shortest path algorithms and one directly252

obtains the distance. Note that the application of Dijkstra’s algorithm in this case is superfluous253

since only two possible distances exist. However, in more general cases, multiple paths may exist.254

This motivates the application of shortest-path algorithms.255

The other parameters to fully determine the interval field as described in Section 2.1 are: the256

power p, the interval scalars αIi , i, . . . nb, and the location of the control points ri, i, . . . , nb. The257

influence of each of these parameters is described in detail in different case studies (see Section 3.258

In this paper, the power p is set at 2, which is reasonable based on prior experience [25]. It is259

interesting to point out that higher values of p will increase the weight of the closest control point260

and flatten the realisations near the control points, while a lower value of p decreases the influence261

of the control points where the realisation are all closer to an average value.262

Two illustrations of realisations of the interval field are given in Figure 15, where the dashed263

black lines and red dots illustrate the variation of the normalised lateral stiffness of the elements264

towards the fixed wall nodes in blue. In addition, the control points ri in this figure are shown as265

blue nodes with a black circle located at the coordinates ri = [30, 30; 30,−30;−30,−30;−30, 30],266

and for some cases the control points are placed between the corner nodes located at the coordi-267

nates ri = [2, 30; 30,−2;−2,−30;−30, 2].268

2.2.2. Modelling the connecting elements269

Depending on the analysis there are several ways to model the connecting elements at the back270

of the component. The appropriate selection of the element type is important, since it influences271

the energy balance of a crash simulation significantly. Figure 5 shows the effect of the connecting272

elements on the energy balance for two different material models. In a typical crash scenario,273

the kinetic energy Ek of the moving vehicle is fully translated into elastic and plastic deformation274

energy Ed = Eelastic+Eplastic, which is stored and dissipated by the deformation of the component.275

However, an additional energy storing and dissipation element is introduced by the introduction276

of the connecting elements. The amount of energy stored or dissipated in the elements depends277

on the interval field realisation and the material model that describes the behaviour of these278

elements. Figure 5b illustrates this behaviour where both, a linear and a bi-linear material model279

are shown by respectively the full and dashed lines. Here, the plastic deformation of the bi-280

linear model dissipates a part of the kinetic energy, which will therefore not be translated to the281
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component. Therefore, the crash box is not subjected to the full kinetic energy of the impact. Such282

situation is undesirable as this biases the comparison of the dissipated energy in the crash box283

with respect to cases where less energy is dissipated in these connecting elements. Therefore, the284

connecting elements are modelled with a linear material behaviour. Further, such linear model also285

ensures a constant interaction between the component and the adjacent structure. The physical286

interpretation corresponds to a crash where a certain amount of energy is stored elastically within287

the complete structure, e.g., front structure of a vehicle, test machine, and this energy is released288

back from the most rigid components to the deformed components. However, note that when the289

elements are modelled as linear elastic elements, i.e., beams, forces higher than the yield force of290

the material can be reached for a short moment of time. Since the failure of these connecting291

elements are not of interest for the analysis, this is not critical.292
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(a) Energy balance of one simulation where all the kinetic energy
Ek is transformed into deformation energy Ed, and energy in the
springs Es;

F

ε

Fy

(b) Illustration of the stress-strain behaviour of different material
models. Note that a little energy is lost in hourglass modes Eh,
while the total energy remains constant

Figure 5: Two figures illustrating the impact of different material models on the energy balance of an impact
simulation; indicated by the full and dashed lines

3. Case studies293

In this section, four different approaches to model the lack-of-knowledge uncertainty about the294

adjacent structure are illustrated on a generic crash example. Specifically, the lateral stiffness of295

the linear connecting elements is modelled according to following approaches: (1) a deterministic296

benchmark case, (2) a scalar interval valued model, (3) an interval field approach, and finally (4)297

an interval field approach with a varying degree of uncertainty, modelled by changing the interval298

radius. The reasoning behind each of these cases is different where in the first cases (1-3) the main299

goal is to quantify the bound on the output given a certain degree of uncertainty, and the final300

case (4) is an investigation on the effect of different levels of uncertainty.301

3.1. General setup and quantities of interest302

In this section, a detailed investigation to the interactions between the interval field and a303

generic impact-critical component are conducted under a load case that is defined on the full304

overlap crash test. The generic component is represented by a rectangular box, which has sides305

of 60 mm, a total length of 180 mm with a thickness of 2 mm, which is modelled by 2700306

four-node shell elements, as illustrated in Figure 3a. The properties of the sheet metal used for307

these components are modelled using a piece-wise linear plastic model [42]. The corresponding308

parameters are listed in Table 3.1. Following the load case, the component is impacted by a rigid309
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moving wall with a mass of 60 kg. The initial velocity is set to 56 km/h or an equivalent 15.6310

m/s. This provides a total kinetic energy of 7300.8 J at the start of the simulation. In engineering311

practice, it is common to assess the performance of these crash boxes in terms of the peak force312

and the mean force that are generated during impact. The goal of a general engineering design313

optimisation for impact is to identify the input parameters, such that an acceptable performance314

threshold is met. Conventionally, in crash analysis the goal is to achieve a force that is as constant315

as possible during the deformation.316

Material model properties used for the component
Mass density ρ 7830 kg/m3 Strain-rate parameter P 5
Young’s modulus E 200 GPa Strain-rate parameter C 40
Poisson ratio ν 0.3 Yield stress σ0 366 MPa
Equivalent stress σ1 424 MPa Equivalent strain e1 0.025
Equivalent stress σ2 476 MPa Equivalent strain e2 0.049
Equivalent stress σ3 507 MPa Equivalent strain e3 0.072
Equivalent stress σ4 529 MPa Equivalent strain e4 0.095
Equivalent stress σ5 546 MPa Equivalent strain e5 0.118
Equivalent stress σ6 559 MPa Equivalent strain e6 0.14
Equivalent stress σ7 584 MPa Equivalent strain e7 0.182

317

Table 1: Material properties used in the piece-wise linear plasticity material model of the component318

3.1.1. Peak force319

The peak force is a measurement of the highest force that occurs during the impact simulation.320

In all considered cases, the peak force is measured at the rigid plane located at the back of the321

springs. The location is also indicated as a red plane in Figure 7. The peak force is measured322

directly from the output data without using any additional filtering:323

Fpeak = max
t∈∆t

F (t) (8)

This causes this measurement to be noisy due to numerical instability of the explicit solution324

scheme. Typically, the peak force is measured just after the component and the rigid wall make325

contact, which initiates the start of the typical deformation folds. In general, high peak forces are326

avoided by car manufacturers as these are associated with high accelerations, which impose high327

forces on the adjacent structure and eventually the passengers leading to more severe injuries.328

3.1.2. Mean force329

The mean force is an average measurement of the force during impact and provides global330

information about the performance of a particular design. The mean force is calculated following331

Equation (9) where the total energy of the component Ecomp is divided by the average final332

deformation D(tfinal). In order to omit zero entries, only the force and deformation starting from333

impact until the kinetic energy is zero are considered tfinal : Ekinetic(tfinal) = 0, neglecting the elastic334

spring-back of the component.335

Fmean =
Ecomp(tfinal)

D(tfinal)
, (9)

where D(tfinal) is calculated as the average displacement between the nodes of the start and the336

end of the crash box.337
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3.2. Benchmark case338

This first case is used as a benchmark where the boundary conditions are applied in a normal339

way, with two rigid planes in correspondence with the illustration in Figure 3b. Therefore, only340

a single simulation is performed as there are no uncertainties considered in this case. The result341

of this simulation is provided by means of a force-displacement graph, shown in Figure 6. In342

this graph, the peak force and mean force measurements are indicated by a blue dot and an343

orange dashed line, respectively. Note that it is common within industry to filter the results of the344

numerical simulations of crash scenarios, see e.g., [43]. However, as there are no experimental data345

to compare to, the results shown in this paper are provided without the use of any filtering. It is346

clear that there is a large difference in peak force and mean force, which is not unexpected for a347

component with this geometry, which is not optimised in any sense. In an industrial environment,348

one would typically optimise the component such that the peak and mean force are more or less349

equal to each other, or below an a priori set threshold.350

0 20 40 60 80 100 120 140
Deformation (mm)

0

50

100

150

200

250

Fo
rc

e 
(k

N)

Fpeak = 254 kN

Fmean = 61 kN

Simulation Fpeak Fmean

Figure 6: Force-deformation curve of the benchmark case without filtering, red; location of the peak force, blue
dot; and the mean force, orange dashed line

The multiple peaks that are seen in Figure 6 are located at times where the force has built351

up until reaching a threshold before the next fold is initiated. This corresponds perfectly with352

the observed folding pattern, as illustrated in Figure 7. In this figure, the red plane is fixed and353

the white plane on the right is impacting the structure, in correspondence with Figure 3b. The354

folding pattern shows that three folds are created during the first 12 ms of the impact, which is a355

local buckling mode starting at the impacting plane. The computational time for this simulation356

is approximately 2 minutes on two cores of an Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.3GHz357

processor, which is reasonable in comparison to performing simulations on a full vehicle model.358
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Figure 7: Deformation of the benchmark case with fixed boundary conditions at different time steps, with the fixed
plane in red, and the impacting plane in white

3.3. Interval valued non-deterministic modelling of the adjacent structure359

In the following case studies, the non-deterministic effects of the adjacent structure are mod-360

elled by a set of springs at the back of the component. These springs are illustrated in Figure 4.361

The lateral stiffness of each element is determined following a discretisation of the interval field.362

This interval field with IDW basis functions is used to model the spatial dependency of the ele-363

ment stiffness, which corresponds to the physical reality where the point-wise deformation of two364

points in an adjacent component is also dependent on the neighbouring areas in this component.365

As such, the interval field models the spatial distribution that is in a full-scale analysis provided366

by adjacent connecting elements. Additionally, it is shown that it is needed to optimise the input367

parameters of the interval field to obtain the worst case response of the structure, i.e., a response368

that results in structural failure defined as higher accelerations.369

3.3.1. Interval valued stiffness of the adjacent structure370

For this case, the bounds of the lateral stiffness interval are considered to be given as kIt =371

[200; 330] MPa. Furthermore, it is assumed that all elements take the same stiffness value. This372

assumption will not provide the worst-case bounds on the response as this would require the use373

of optimisation, which is used in general for non-monotonic problems [44, 45], and as will be374

applied in the latter case studies in this paper. Nonetheless, the analysis is performed with these375

assumptions to illustrate the effect the elements have on the overall performance of the crashbox.376

The results of this case study are illustrated in Figure 8. In this figure, the force deformation377

curves of this case are compared with those of the benchmark case. Figure 8 shows that both378

the obtained mean force as well as the peak forces are lower than those of the benchmark case,379

by 5.4 kN and 15 kN respectively. In addition, it also shows that the peak force is reached at a380

lower deformation in both cases. This behaviour is explained by the elements that absorb, and381

therefore deform, a part of the kinetic energy especially at the start of the impact, which is shown382

in Figure 9. This figure shows that the time to absorb the kinetic energy is both higher and lower383

depending whether the lower or upper bound is used. Hence, the time to build up the force and384

initiate the first folds is increased.385

Figure 9 shows that in the final stages of the impact event the elements set at the lower value386

of the stiffness accumulate more energy than the stiffer elements (indicated in red), which causes387

the total kinetic energy to be absorbed sooner. Therefore, the elements influence the time in388

which the kinetic energy is absorbed by the component and the amount of kinetic energy, as a389

part remains within the elements. The latter is of course an undesired effect as these components390

are designed to dissipate a certain amount of kinetic energy. Therefore, care should be taken to391
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Figure 8: Force-deformation curves of the interval valued case with the minimal and maximal peak- and mean
force indicated by arrows and solid lines, in blue and red

limit the amount that is elastically stored within the springs. Moreover, this figure also shows the392

energy accumulated by the deformation of the component Ecomp, the kinetic energy Ekin, hourglass393

energy Ehg, and the total energy Etot of the simulation, which are truncated at the time all kinetic394

energy is dissipated.395

Finally, Figure 10 illustrates the deformation pattern at specific time steps where the results396

of the upper row are set at the upper limit of the interval and the second row is set at the lower397

interval value. It is clear from this figure that the deformation in both runs is quite similar but398

with a small time delay for the lower limit, which is also less deformed at the end of the impact399

after 18 ms.400

3.3.2. Interval valued spatial uncertain stiffness controlled at the corners401

In this case study, the interval valued stiffness for the elements is assumed to be spatially402

coupled, while the size of the interval is identical to this of the previous case. As explained earlier,403

this corresponds to the physical presence of the adjacent structure. The stiffness values of the404

elements are coupled by means of an interval field. In this interval field, a set of discrete control405

points are placed at the corner nodes of the crashbox. Further, rather than modelling the stiffness406

of each of the 60 elements separately, only 4 parameters are required. This is advantageous from a407

computational standpoint. The interval field used in this case is defined in section 2.1 with basis408

functions that are based on IDW with p = 2, and the interval of the lateral stiffness is assumed409

to have a midpoint of x̂ = 265 MPa with a radius of ∆x = 65 MPa, which corresponds to the410

interval used in previous case kIt = [200; 330] MPa. The bounds of the response are in this case411

estimated by global optimisation using a differential evolution algorithm (DE). DE uses different412

populations for each generation within the input space to actively search for the global minimum.413

The results and the settings for the optimisation algorithm are summarised in Table 2, where the414
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Figure 9: Energy balance of the interval valued case whit: the total energy Etot blue, the kinetic energy Ekin

yellow, hourglass energy Ehg green, the energy of the adjacent structure Eadj red, and the energy of the component
Ecomp purple
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(c) time = 18 ms

Deformation obtained by propagation of upper limit
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(f) time = 18 ms

Deformation obtained by propagation of lower limit

Figure 10: Deformation of the interval valued case at identical time steps, with the fixed plane in red, and the
impacting plane in white

interval scalars are denoted with an ∗ when obtained through optimisation α∗ = maxmi(x
I).415
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results of DE using control points at the corner nodes
value pop rec mut nfal nit α∗1 α∗2 α∗3 α∗4 Optimisation
224.4 20 0.3 [0.9 1.7] 1155 56 0.0634 0.9663 0.1508 0.2748 minFpeak

261.7 20 0.3 [0.9 1.7] 220 8 0.4767 0.6706 0.6464 0.3902 maxFpeak

42.2 20 0.3 [0.9 1.7] 1325 59 0.5267 0.9036 0.5703 0.0222 minFmean

61.4 20 0.3 [0.9 1.7] 9850 257 0.7300 0.1332 0.8988 0.1077 maxFmean

416

Table 2: Results of the case study with control points at the corner nodes, including the DE parameters: population
size (pop), recombination constant (rec), mutation constant (mut), with the number of evaluations (nfal) and
iterations (nit) needed to identify the optimal interval scalar parameter α∗ for the different optimisation runs417

From the summary in Table 2 and the corresponding force-deformation curves in Figure 11, it418

is clear that when optimisation is used to actively search for the bounds, a larger interval is found419

for both, the mean force and the peak force. Especially in comparison with the previous case,420

it is clear that variation of the stiffness between elements yields larger bounds on the response421

for both quantities of interest. Figure 11 further illustrates that both the minimal mean force as422

well as the minimal peak force are very low in the region between 30 and 80 mm of deformation,423

before starting to increase again. The cause of this effect can be seen in the deformation pattern424

in Figure 12, where it is clear that a global buckling mode is activated. This causes the crashbox425

to ”fold” and lose its structural integrity. The force is only going up after 140 mm of deformation426

because the collapsed structure is still between the two rigid planes and is starting to get further427

compressed. Hence, it is argued that from this level of uncertainty realisations are possible where428

the performance of the component is no longer guaranteed, as the global buckling mode prevents429

the dissipation of the kinetic energy.430
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Figure 11: Force-deformation curves for the case with four control points at the corners obtained through opti-
misation; with the minimal and maximal peak- and mean force indicated by arrows and solid lines, in blue and
red
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Figure 11 also shows that the optimisation procedure yielded a mean force which is higher than431

the mean force that was obtained in the benchmark case. This is illustrated in green colour. The432

reason for a higher mean force is found in Figure 12. Based on this figure, the higher mean force433

is attributed to a more dense folding pattern. Because of this denser folding pattern, the total434

deformation of the crashbox is also shorter than for the benchmark case, which can also be seen435

in Figure 11. This indicates that, for an equal kinetic energy, interactions between the component436

and the adjacent structure can result in mean forces both higher and lower than these identified437

with the benchmark case.438
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Deformation resulting in the minimal mean force

Figure 12: Deformation of the case with four control points at the corners at identical time steps, with the fixed
plane in red, and the impacting plane in white

To gain a better understanding of these interactions, it is also useful to look at the realisations439

of the interval field. These realisations are illustrated in Figure 13 with the left hand realisation440

corresponding to the maximum peak force and the right hand configuration to the minimum mean441

force. The control points of the interval field are indicated by a black circle in this figure and442

the normalised stiffness of the elements is indicated by the relative length of the black dashed443

lines. It is clear from this figure that the global buckling mode is obtained by a realisation that444

resembles a plane which is placed at an angle, while the maximum mean force is obtained by445

making differences between opposite corners. These realisations are not only interesting from446

the point of uncertainty quantification as they can also assist in the way these components are447

manufactured and joined together, which initiates relative changes of stiffness.448

3.3.3. Interval valued spatial uncertain stiffness controlled between the corner nodes449

For this case, the locations of the control points are changed, which directly influences the450

possible realisations of the interval field. A summary of the results obtained through optimisation451

using a differential evolution algorithm is given in Table 3. In a comparison with the previous452

case it is noticed that there is a change in the upper limit of the peak force and the mean force,453

which indicates that this configuration allows for a different interaction with the elements.454
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(a) Realisation of the interval field according to α∗ = maxmi(x
I) (b) Realisation of the interval field according to α∗ = minmi(x

I)

Figure 13: Realisations of the interval field with four control points, resulting in the minimal and maximum mean
force; control points are indicated by a black circle and the length of the dashed line indicates the normalised
stiffness value

results of DE using control points between the corner nodes
value pop rec mut nfal nit α∗1 α∗2 α∗3 α∗4 Optimisation
224.3 20 0.3 [0.9 1.7] 1140 55 0.0391 0.2447 0.8808 0.3498 minFpeak

264.0 20 0.3 [0.9 1.7] 320 14 0.5126 0.7282 0.3702 0.6913 maxFpeak

41.9 20 0.3 [0.9 1.7] 5125 250 0.3034 0.9278 0.9953 0.1621 minFmean

62.8 20 0.3 [0.9 1.7] 975 44 0.5595 0.5065 0.9198 0.2090 maxFmean

455

Table 3: results of the case with control points between the corner nodes, including the DE parameters: population
size(pop), recombination constant (rec), mutation constant (mut), with the number of evaluations (nfal) and
iterations (nit) needed to identify the optimal interval scalar parameter α∗ for the different optimisation runs456

Figure 14 shows the deformation pattern that yielded the minimal and maximal mean force at457

different time steps. Compared to the previous case, these deformation patterns look quite different458

at a first glance, nevertheless when a closer look is taken it seems that these are more familiar to459

the previous cases, seen from a different viewpoint. This could be the case as the configuration460

of the interval field is not unique, which causes the component to buckle in a different direction461

when the control points are rotated. This is not true in general as in this case the box is a simple462

symmetric geometry, which is not true in the presence of holes and fold initiators.463

In addition, the realisations of the interval field are provided in Figure 15 where the different464

location of the control points are indicated by the black circle. The non-uniqueness in this case465

can be seen as rotating the interval realisation by 90 degrees, which yields the same results. It466

is also visible in this figure that the minimal mean force is obtained by a similar realisation as467

seen in the previous case. For the maximal mean force a different realisation is responsible for the468

observed differences.469
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Figure 14: Deformation of the case with four control points at the corners at identical time steps, with the fixed
plane in red, and the impacting plane in white

(a) Realisation of the interval field according to α∗ = maxmi(x
I) (b) Realisation of the interval field according to α∗ = minmi(x

I)

Figure 15: Realisations of the interval field with four control points, resulting in the minimal and maximum mean
force; control points are indicated by a black circle and the length of the dashed line indicates the normalised
stiffness value

3.3.4. Increased degree of freedom by placing additional control points470

In this case, the degrees of freedom of the interval field are increased by placing additional471

control points, which allows the realisations of the interval field to have a more complex shape.472

Hence, this case represents a combination of the previous cases constructed by placing control473

points at both, the corner nodes and between them. The results of this case are summarised in474

20



Table 4, which indicates that in general the bounds on the response have increased.475

results of DE using eight control points
value pop nfal nit α∗1 α∗2 α∗3 α∗4 α∗5 α∗6 α∗7 α∗8 Optimisation
224.1 26 5652 350 0.08 0.05 0.79 0.55 0.65 0.68 0.19 0.02 minFpeak

263.4 26 864 32 0.25 0.85 0.33 0.55 0.66 0.59 0.46 0.89 maxFpeak

41.3 26 5832 350 0.95 0.90 0.56 0.04 0.04 0.53 0.20 0.92 minFmean

64.7 26 5831 350 0.53 0.67 0.05 0.96 0.46 0.26 0.98 0.35 maxFmean

476

Table 4: results of the case using eight control points, here the DE parameters: recombination constant (rec),
mutation constant (mut) are identical to the previous case, while the population size(pop), number of evaluations
(nfal) and iterations (nit) needed to identify the optimal interval scalar parameter α∗ for the different optimisation
runs are provided477

These increasing bounds are expected as the additional control points increase the dimension478

of the input space, which also results in an increased time to perform the optimisation. It is479

noticed that the optimisation algorithm quickly identifies realisations that result in a high or low480

mean force, and starts optimising the elements to have the lowest stiffness that still initiates the481

global buckling mode. The mean reason is that after buckling of the component the moving rigid482

plane starts impacting the elements, which provide a lower force if they have a lower stiffness.483

This is observed by the fast increase in force in Figure 16 while the energy in the springs Figure 17484

is not increasing. Hence, it can be argued that the component is not capable of dissipating all485

kinetic energy under this amount of uncertainty.486
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Figure 16: Force-deformation curves for the case with eight control points obtained through optimisation; with the
minimal and maximal peak- and mean force indicated by arrows and solid lines, in blue and red

The realisations of the interval field with eight control points are shown in Figure 18b where487

the realisation yielding the maximum mean force is shown on the left and the minimal mean force488
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Figure 17: Energy balance of the interval valued case whit: the total energy Etot blue, the kinetic energy Ekin

yellow, hourglass energy Ehg green, the energy of the adjacent structure Eadj red, and the energy of the component
Ecomp purple

on the right. As in the previous cases, the realisation that yields the minimal mean force is quite489

similar and the maximum mean force is a result of a more complex interaction with the elements490

at the end of the component.491

3.4. Interval field with increasing uncertainty492

In this case the uncertainty in the interval field model, quantified by the width of the bounds,493

is varied by changing the radius of the interval ∆x. This study is aimed at identifying the perfor-494

mance of the component under different levels of uncertainty. In this case, the level of uncertainty495

that allows to deform the component by a global buckling mode is of main concern as this pre-496

vents the component from fully dissipating the kinetic energy, which is the main purpose of this497

component. The corresponding level of uncertainty is identified by running a set of optimisations498

using the same settings as in Section 3.3.2 while the interval radius ∆x is varied. The results of499

all these individual optimisations are provided in Figure 19 where each of the optimisation runs500

are identified by a marker for the upper and lower bound. Figure 19 shows that with an increase501

of the interval radius a non-monotonic increase of the bounds on the output, indicated in red and502

blue, is obtained. Especially the large step made by the lower bound of the mean force between503

∆x = 32.5 MPa and ∆x = 34.5 MPa is of interest as this indicates the transition between a folding504

pattern towards the global buckling mode, which is regarded as a failure. This is also observed505

in the deformation patterns, in the same figure, at a single time step of 5 ms, which illustrate506

the transition in the observed deformation pattern. This information can be used in a component507

optimisation where a better design is performing better under a wider range of uncertainty, which508

would make it more robust. This robustness is not limited to the component alone as it translates509

to the complete structure, which will meet the requirements under a wider range of circumstances.510
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(a) Realisation of the interval field according to α∗ = maxmi(x
I) (b) Realisation of the interval field according to α∗ = minmi(x

I)

Figure 18: Realisations of the interval field with eight control points, resulting in the minimal and maximum mean
force; control points are indicated by a black circle and the length of the dashed line indicates the normalised
stiffness value

In addition, the markers in Figure 19 show that the DE algorithm was unable to identify the511

same minimum that was obtained in another optimisation run, which yields the adjusted bounds512

identified by a circle. The adjustments of the bound for each of these circles was about ten times513

smaller in absolute value compared to the step that is observed at the minimum mean force bound.514

Although, this step occurs at a seemingly arbitrary value of ∆x = 32.5 MPa, the important lessons515

are the different worst-case deformation patterns that are occurring. Moreover, this value of ∆x516

can be seen as a measure of the robustness of the component with respect to the uncertain input.517

Hence, the robustness is interpreted as the ability of the component to perform within certain518

limits for a range of uncertainty.519

4. Discussion520

In the previous section, a number of cases are shown starting from a benchmark case, an interval521

valued case, interval field analysis and finally an interval field approach with increasing uncertainty.522

These cases illustrate the use and additional value of using non-deterministic modelling strategies523

in crash simulation. However, a number of important findings are further elaborated on in this524

section that allow for a more general discussion about the results.525

The first finding is that the elements at the back of the component are also dissipating kinetic526

energy, which is a direct result of the stiffness of each spring and the reaction force of the com-527

ponent. This effect is first shown in the benchmark case, Section 3.2, where at the start of the528

impact energy is stored at the springs, which is released later. Nevertheless, in Section 3.3.4 it529

is also shown that the optimisation algorithm converges to a configuration of the elements that530

ensures failure of the component while maximising the amount of elastic energy stored within531

the elements. This configuration leads to lowest mean force after the component lost structural532

rigidity, which can be interpreted as failure. Therefore, energy storage at the end of the impact533
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Figure 19: Bounds of the mean force identified through global optimisation for different values of interval radius
∆x, with the corresponding deformation at identical times

event stored within these elements is undesired and should be limited or accounted for within the534

optimisation, as this limits the kinetic energy dissipated by the component.535

The second point that stands out in this analysis is related to the optimisation algorithm536

that is used to obtain the bounds on the output quantities. It is noted that the DE algorithm537

experiences some difficulties to reach a converged solution for some of the optimisation runs.538

Since, these simulations are quite time consuming, a limit on the maximum number of iterations539

of the DE solver has to be placed for practical reasons. Specifically, this bound was set at 350540

iterations, which corresponds to about 5700 deterministic crash simulations. Figure 20 shows the541

convergence of the best candidate point at each iteration for the minimisation of the mean force,542

for the cases in Section 3.3. For each of these optimisation runs, the best candidate point is not543

improved for the last 50 iterations before reaching the maximum number of allowed iterations.544

Hence, this point is accepted as the global minimum with the knowledge that with a large number545

of additional iterations a better candidate point might be identified. In the authors opinion this546

is not justified by the additional computational cost that would be required. Note that it is547

not possible in general to prove that the global minimum is identified using global optimisation548

approaches in combination with non-convex functions.549
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Figure 20: Convergence of the differential evolution algorithm for the minimisation of the mean force, described in
section 4.3.2., 4.3.3., and 4.3.4.

In addition, Figure 19 shows that for the multiple independent simulation runs different global550

minima were identified, which were not always lower than the minima found at a lower interval551

radius. The bounds of these optimisation runs, marked by a circle, are adjusted to the previously552

identified minima. One of the reasons for these difficulties is of course the heavy non-linear response553

of the crash model with respect to the uncertain input parameters. To illustrate this, Figure 21a554

shows the function evaluation of 5000 samples, for which X1,2 are generated by a Latin hyper-555

cube and X3,4 are set at zero. This figure shows that optimisation of this function is not trivial as556

there are multiple local minima and maxima, which means that small perturbations of the input557

parameters can easily lead to a different result. In addition, Figure 21b shows the same data as in558

Figure 21a represented as a two-dimensional colour plot. The rectangles in Figure 21b represent559

the input space dimensions that were used in the optimisation runs of Figure 19 with the edge of560

the figure representing ∆x = 65 MPa. This figure shows the symmetry that exists between the561

interval field and the rectangular crash box, and some of the local minima and maxima. However,562

note that because of the interpolation used to create this colour plot some of these local effects are563

not well-represented. With these challenges in global optimisation of this function in mind it can564

be argued that the differences between the three cases in Sections 3.3.2, 3.3.3 and 3.3.4 are not that565

significant. This is especially interesting towards the case with eight control points, in Section 3.3.4566

where the dimension of the search space doubled resulting in a much larger computational cost.567

This case demonstrates that there is a dependence between the number of control points of the568

interval field and the performance of the component. Hence, it is worthwhile to investigate this569

dependence as in a more complex case the presence of small triggers, e.g., holes, can lead to570

bifurcations.571

A final point of discussion relates to the use of the peak force and the mean force measure for572

anti-optimisation of crash structures under uncertainty. Although these measures have a profound573

physical background and are widely used within the crash community, it is illustrated in Section 3.4574

that optimisation on these responses is very hard. In addition, in Section 3.3.4 it is shown that575

over time the optimisation is more focused on storing energy within the elements than it is at576

identifying bifurcation modes for the component. Therefore, further investigations should be made577

to a measure that captures the performance of the overall system with an output that is less prone578

to small bifurcations in optimisation.579
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(a) three-dimensional representation of the input and output
(b) two-dimensional representation of the slice

Figure 21: Slice of the input space with the mean force as a response, constructed with 5000 Latin hyper-cube
samples for X1 and X2 while X3,4 = 0 the surface is then created by linear interpolation

5. Conclusions580

This paper introduces a new framework for modelling and evaluating the crashworthiness of a581

single component in an early development stage under epistemic uncertainty. This is accomplished582

by modelling the behaviour of the impacted adjacent structure as unknown but spatially coupled583

uncertain element stiffnesses. The interval valued performance of the structure is obtained using584

a global optimisation approach, which is shown to be challenging yet feasible for interval field585

analysis applied to crash simulation. Based on an academic case study, the results obtained586

by this innovative framework are demonstrated. The focus is on the sensitivity of the typical587

main quantities of interest, i.e., mean and peak force during impact, towards the uncertainty588

included in the interval field modelling strategy. In the presented case study, three dominant589

deformation modes are identified for the considered range of uncertainty, one of them a global590

buckling mode. The results indicate that even limited uncertainty in the adjacent structure can591

affect the deformation mode significantly, resulting in fundamentally different conclusions. In592

addition, by investigating the realisations of the interval field, the cause of these deformation593

modes can be further analysed.594

Although this work is aimed specifically at crash analysis, this technique can be applied to595

impact simulations in general. Especially in cases that typically consider fixed boundary conditions596

while the actual conditions are unknown, the interval field proves to be a powerful concept that597

allows to tackle uncertainty efficiently. Hence, in future work the combination with the Component598

Solution Spaces for early stage crash component design is further investigated, which allows for599

faster design of complex structures in a large and decentralised design process while guaranteeing600

overall system performance from an early design stage.601
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