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Abstract. Background: Respiratory sinus arrhythmia (RSA) is a form of

cardiorespiratory coupling. Its quantification has been suggested as a biomarker

to diagnose different diseases. Two state-of-the-art methods, based on subspace

projections and entropy, are used to estimate the RSA strength and are evaluated

in this paper. Their computation requires the selection of a model order, and their

performance is strongly related to the temporal and spectral characteristics of the

cardiorespiratory signals. Objective: To evaluate the robustness of the RSA estimates

to the selection of model order, delays, changes of phase and irregular heartbeats

as well as to give recommendations for their interpretation on each case. Approach:

Simulations were used to evaluate the model order selection when calculating the RSA

estimates introduced before, as well as 3 different scenarios that can occur in signals

acquired in non-controlled environments and/or from patient populations: the presence

of irregular heartbeats; the occurrence of delays between heart rate variability (HRV)

and respiratory signals; and the changes over time of the phase between HRV and

respiratory signals. Main results: It was found that using a single model order for all

the calculations suffices to characterize RSA correctly. In addition, the RSA estimation

in signals containing more than 5 irregular heartbeats in a period of 5 minutes might be

misleading. Regarding the delays between HRV and respiratory signals, both estimates

are robust. For the last scenario, the two approaches tolerate phase changes up to

54◦, as long as this lasts less than one fifth of the recording duration. Significance:

Guidelines are given to compute the RSA estimates in non-controlled environments

and patient populations.

Keywords: cardiorespiratory coupling, respiratory sinus arrhythmia, heart rate.
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Technical Aspects of Cardiorespiratory Estimation with OSP and CE 2

1. Introduction:

Respiratory sinus arrhythmia (RSA) is a form of synchronization between the cardiac

and the respiratory systems. It is characterized by an increased heart rate (HR) during

inhalation and a decreased HR during exhalation. RSA is hypothesized to be an

indicator of the efficiency of the cardiorespiratory system and has been suggested as

a biomarker for diseases such as diabetes or sleep apnea as well as for conditions like

stress, or anxiety [1, 2, 3, 4, 5, 6]. For this reason, the development of methods for RSA

estimation is an active research topic.

RSA is commonly evaluated using a heart rate variability (HRV) signal [7], which

can be derived from cardiac signals, such as the electrocardiogram (ECG) or the

photoplethysmogram. The most widely used method to assess RSA is based on the

analysis of the power spectral density (PSD) of the HRV signal. Here, it is assumed

that the respiratory modulations act in the high frequency band (HF: 0.15-0.4 Hz)

[8]. However, different studies suggest that this interpretation might be misleading

in cases in which the respiratory rate falls outside this band [9, 10, 11, 12]. For this

reason, alternative approaches that take into account the respiratory signal have been

recently proposed. Seven of them were compared in [13] using a simulation model. This

comparison highlighted the advantages of orthogonal subspace projections [6] and cross

entropy [14] for the RSA estimation.

Despite their good performance, these two methods have been mostly studied under

controlled conditions and using signals from healthy subjects. Furthermore, they require

the tuning of a model order, whose selection might significantly affect the outcomes of

the calculations. For these reasons, there is a need to understand the effect of the model

order and the interpretation of the results in patients and non-controlled environments.

In this context, the current paper assesses the aforementioned RSA estimates using

simulated data. First, the tuning of the model order is evaluated. Next, three scenarios

hypothesized in previous works to have an impact in the RSA estimation are assessed,

i.e. when irregular heartbeats appear, when delays between the signals exist and when

phase shifts occur.

First, the effect of the model order selection on the RSA estimates is studied. It is not

well understood how this selection affects the results and it is hypothesized to depend

on the spectral characteristics of the respiratory signals [6]. After understanding this

selection, three scenarios are assessed. The first one evaluates the RSA estimates when

different number of irregular heartbeats occur. Irregular heartbeats are commonly

observed in recordings from people with diseases such as diabetes [15] or cardiac

comorbidities related to sleep apnea [16]. Guidelines to correctly estimate RSA in these

cases have not been given yet while irregular heartbeats are known to affect the reliability

of HRV-based analyses [17]. The second scenario focuses on the possible delays between

the signals. Respiratory recordings acquired or derived from different modalities might

be delayed differently with respect to the HRV signal due to the hardware used to

acquire the signal, to the processing methods or to the physical characteristics of the
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Technical Aspects of Cardiorespiratory Estimation with OSP and CE 3

subjects [18]. The third and last scenario considers continuous phase changes between

the respiration and the HRV signal. It has been suggested that this phase is not

constant [19], and different patient populations show different phase patterns over time

[20, 21, 22].

With the results, guidelines for using the RSA estimates in future applications are

given. This paper is organized as follows. The methods and performed simulations are

described in Section 2. Section 3 and 4 show the results and discusses them, respectively.

Finally, section 4 gives the conclusions.

2. Materials and Methods

2.1. RSA estimators

According to [13], cross entropy and orthogonal subspace projections outperformed other

established methodologies for RSA estimation.

2.1.1. Cross Entropy: The cross entropy (CE) [14] is a term based on information

theory that is often used to estimate the interaction between the cardiac and the

respiratory systems. CE quantifies the information in the present samples of the HRV

signal shared with the past of the respiration, which can be achieved by means of

a multivariate autoregressive (MVAR) model. To derive this model, the respiratory

time-series, x1(n), and the HRV times-series, x2(n), are put together in a vector,

x(n) = [x1(n) x2(n)]
T where n = 1 : N , and N is the total number of samples. The nth

sample in x(n) can be estimated as a linear combination of q past samples as,

x(n) =

q∑
k=1

A(k)x(n− k) +w(n), (1)

where A(k) is a matrix of regression coefficients, w contains two independent residual

noises, and q is the model order. This equation is solved for A(k), which contains the

coefficients of different regressions between the signals and their past samples. The

residuals of these regressions serve to estimate the CE.

Assuming that the processes follow a Gaussian distribution and that their interactions

are linear, the following equation can be used to estimate the CE,

CE =
1

2
ln

(
σ2(x2)

σ2(x2 | x−
1 )

)
, (2)

where x−
1 corresponds to the past samples of the respiration up to N − q. σ2(x2) is the

variance of the HRV signal, and σ2(x2 | x−
1 ) is the partial variance of x2 given x−

1 or, in

other words, the variance of the residuals of the regression in which the past samples of

the respiration are used as regressor for the present samples of the HRV signal.

2.1.2. Orthogonal subspace projections: This approach measures the proportion of

variance in the HRV signal linearly correlated with the respiration [6]. To compute
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Technical Aspects of Cardiorespiratory Estimation with OSP and CE 4

it, an embedding (V) of the respiratory signal, with dimension q is generated. V is used

to build a projection matrix P as,

P = V(VTV)−1VT . (3)

The product between P and the HRV signal results in a time series representing the

dynamics in the HRV signal linearly correlated with the respiration as,

x̂2R = Px̂2, (4)

where x̂2 contains the samples in x2 from 1 to N − q. The proportion of variance in the

HRV signal linearly correlated with the respiration is then computed as,

Px =
x̂2R x̂

T
2R

x̂2x̂T
2

. (5)

2.2. Datasets

Two datasets generated with different approaches are used. The first one contains HRV

signals calculated with the simulation shown in Figure 1. This model uses a respiratory

segment and a noise signal as inputs. These are multiplied by a coefficient, which

represents the strength of the coupling, and added to produce a modulating signal.

With this, a train of pulses representing the heartbeats is constructed. The points in

time in which these pulses occur are defined by the modulating signal. Next, the HRV

signal is calculated and it is then used in combination with the respiration to compute the

RSA estimates. The motivation to use this dataset was to study the effect of the model

order selection while knowing the actual coupling levels. The second dataset consisted

of 5-minutes clean respiratory and HRV epochs taken from a dataset of sleep apnea

patients. Actual recordings were used here to have signals with coupling characteristics

that would occur in real life. Both datasets are explained in more detail next.

2.2.1. Simulated Data: Figure 1 illustrates the generation of the HRV and respiratory

signals with different coupling levels using the model described in [13]. In this model, a

modulating signal (m(t)) with a sampling frequency of 1000 Hz is built as the addition

of two components, one due to non-respiratory modulators (mC(t)) and a second one

due to the respiratory modulation (mR(t)) of the heart rate. A sampling frequency of

1000 hz was chosen to have enough time resolution in the simulation. To create mC(t),

a filter was built with the coefficients of an autoregressive model made using an HRV

signal obtained from a healthy subject during the tilt test described in [23]. These

coefficients were modified to remove the peak in the HF band, which is mainly due

to the respiration. A Gaussian noise epoch was generated (fs=1 Hz), filtered with the

aforementioned filter and then upsampled to 1000 Hz to obtain mC(t).

For mR(t), a dataset of 2459 5-minute respiratory segments was available. It was

built using the thoracic respiratory recording from three datasets. The first one was the

Fantasia dataset (fs=250 Hz), available in Physionet [24] and acquired from 40 healthy

volunteers. The second one was the stress recognition in the automobile drivers’ dataset
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Technical Aspects of Cardiorespiratory Estimation with OSP and CE 5

White Gaussian noise

Real respiration
(x1(t))               

Regression ModelHRV (x2(n))

Resp (x1(n))

Input signals               Generation of simulated signals                        Model application

Simulation model 

explained in [13]

Figure 1. Generation of the simulated signals. The inputs are a white gaussian noise

and a real respiratory segment. Details about the model can be found in [13].

(fs=31 Hz), also from Physionet [25] and acquired from 16 healthy volunteers. The third

one was recorded in the university hospitals UZ Leuven from 110 sleep apnea patients

(fs=500 Hz) and is not publicly available [26]. In the latter, segments with apneas were

eliminated. Three datasets were used to consider respiratory segments with different

spectral characteristics. Taking into account the sampling frequency on each case, the

signals were filtered to preserve frequency components between 0.03 and 0.9 Hz with

a Butterworth filter in forward and backward direction to have zero-phase distortions,

upsampled to 1000 Hz and then segmented into 5-minutes epochs. Next, these segments

were visually divided into two groups: regular and irregular, according to their spectral

characteristics, using the following rules: if the spectrum had a clearly defined peak, it

was classified as regular; otherwise, it was classified as irregular; segments contaminated

with artifacts were eliminated [13]. mR(t) is a signal randomly taken from this dataset.

After obtaining the two components, these are normalized and m(t) is calculated as,

m(t) = βRσmmR(t) + (1− βR)σmmC(t), (6)

where βR represents the RSA strength and σm is the standard deviation of the

modulating signal. For the sinoatrial node to work, its membrane potential has to

increase over time [27] and, when a threshold is reached, a pulse is fired. To model this

phenomena, the integral pulse frequency modulation (IPFM) model can be used. This

model was chosen since it has been widely studied and validated to assess the properties

of biomedical signals. The signal m(t) is fed into the IPFM model, which integrates

its input over time [28] and when the integral reaches a threshold, a unitary pulse is

fired, the integral is reset to zero and the integration starts again. The resulting pulses

represent the locations of the R-peaks in an ECG signal modulated by m(t). With the

time locations of these pulses, the RR-interval time-series is generated, which is then

interpolated with a spline to a constant sampling frequency of 4 Hz. This is used as

HRV signal. The HRV signal and the respiratory segments serve to estimate the RSA

strength using Px and CE. Next, the values of Px and CE are used to obtain β̂R with

regression models [13]. β̂R is an estimation of the “real” coupling value given by βR.

To generate the dataset of simulated signals, βR was varied from 0.05 to 0.95 in steps of

0.1. Afterwards, 50 simulated signals were generated for each βR. It is hypothesized that

a higher model order is needed when irregular respiratory signals are used to calculate

the RSA estimates. For this reason, the simulations were repeated twice with either the
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Technical Aspects of Cardiorespiratory Estimation with OSP and CE 6

regular or the irregular respiratory segments each time.

2.2.2. Real Data: The used dataset was recorded in the University Hospitals Leuven

(UZ Leuven), Belgium from 110 patients referred to the sleep laboratory [26]. The

recording of the data and its inclusion in this study was approved by the ethical

committee of the hospital (S53746, S60319). Polysomnographic recordings were

acquired, from which lead V1 ECG and thoracic respiratory signals recorded with

inductance plethysmography, both sampled at 500 Hz, were extracted. From the ECG

signals, the R-peaks were detected with the method proposed in [29] and then used

to build the RR-intervals time-series. Afterwards, this was interpolated to a sampling

frequency of 4 Hz to create a uniformly sampled HRV signal. Next, the HRV signal

was filtered with a 4th order buttterworth filter in forward and backward direction to

preserve frequency components between 0.03 and 1 Hz. The respiratory signals were first

bandpass-filtered in the same way as with the HRV signal and then downsampled to 4 Hz.

The resulting HRV signal and respiratory signals were segmented into 5-minutes epochs.

Segments with apneas were discarded using the annotations given by the doctors based

on the AASM 2012 scoring rules [30]. Furthermore, a visual selection was done to remove

segments with contaminated recordings or ECG signals with irregular heartbeats.

The cardiorespiratory coupling was estimated in the remaining segments using the

approach described in section 2.1.2. The obtained coupling value was used to divide

the segments in ten groups according to their Px level, from 0 to 1 in intervals of 0.1.

Finally, 50 segments per group were chosen at random. As a result of this procedure, a

dataset of clean HRV and respiratory signals with a known coupling value was obtained.

At this point, it is worth mentioning that the objective was to obtain a dataset of clean

epochs with known coupling. These were contaminated later on to simulate the scenarios

mentioned in the introduction. The dataset presented in this section corresponds to the

dataset 1 described in [31].

2.3. Technical aspects and experiments

2.3.1. Model order selection: An open problem in the quantification of the

cardiorespiratory coupling using Px and CE is the selection of the model order, q.

For CE, q is the number of past samples to build the MVAR model. For Px, it is the

dimension to construct the embedding of the respiration. In both cases, q determines

the time-scale of the dynamics captured by the RSA estimates. Some approaches exist

for this selection, but they are not robust when applied to different problems. For the

specific case of the evaluation of the cardiorespiratory coupling, the need to standardize

this selection is highlighted in [32]. Two methods frequently used in literature were

compared in this paper, namely, the Akaike’s information criterion (AIC) [33] and the

minimum description length (MDL) [34] criterion. In addition, the empirical approach

proposed in [13], used specifically for cardiorespiratory analysis, was evaluated. To

obtain the model order with this approach, the PSD estimation of the respiration was
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Technical Aspects of Cardiorespiratory Estimation with OSP and CE 7

calculated using the Welch’s algorithm with a Hanning window of 40 seconds and 20

seconds overlap. Afterwards, the 90% occupied bandwidth was identified and the modes

in this band were analyzed to decide the best model order. If the number of modes was

lower than 3, q was defined as the number of samples needed to capture two periods

of the frequency (Fr) corresponding to the maximum mode in terms of power. If the

number of modes was higher than 3, q was the number of samples needed to capture

two periods of the Fr of the first mode. However, if Fr < 0.1, it was chosen as 0.1. Some

examples of respiratory signals with different regularity characteristics can be found in

[35]. In the current work, 3 modes were empirically chosen since it has been observed

that the PSD of regular respiratory signals tends to be unimodal and, after 3 modes, it

can be considered irregular.

Experiment: In order to understand the effect of the model order selection, the

simulated signals described in 2.2.1 were used. The coupling was estimated 60 times on

each pair of epochs with a model order between 2 and 120 in steps of 2. Hence, 3000

RSA estimates were computed per coupling level with different model orders, to sum

up 30000 samples. Afterwards, the regression models were used to find β̂R, which is an

estimation of the “real” coupling value, βR. The goal was to evaluate the model orders

that resulted in a consistent β̂R. In addition, the model orders obtained with MDL, AIC

and the empirical approach were calculated and compared.

2.3.2. Effect of irregular beats: It is well-known that HRV indices are affected by the

presence of irregular heartbeats [17]. As a consequence, it is expected that the RSA

estimation is also affected. However, the extent in which this occurs, and the number

of tolerated irregular beats is not yet known.

Experiment: The RR-interval times series from the segments described in section

2.2.2 were contaminated with artificially generated irregular beats using the following

expressions [17],

RR′
n = γRRn−1, RR′

n+1 = RRn+1 −RR′
n, (7)

where the RRn and RRn+1 intervals are modified to RR′
n and RR′

n+1, respectively, by

slightly changing their length. Here, γ is a random value in the interval [0.3 0.8], and

determines the amount of time that a randomly chosen R-peak is delayed or advanced

with respect to the actual one [36]. RR′ are the simulated irregularities in the RR-

intervals. The available segments were contaminated 25 times with an increasing number

of simulated ectopic beats each time. A total of 25 irregular heartbeats was chosen as

the upper limit since it was a high enough number to guarantee that a clear effect

was observed in the RSA estimates. An example of an HRV signal before and after

contamination is shown in figure 2.

Afterwards, the simulated irregular beats were corrected. For this, the derivative of the

HRV signal was calculated and a threshold was defined by visual inspection. In cases in
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Technical Aspects of Cardiorespiratory Estimation with OSP and CE 8

Clean

Contaminated

Figure 2. An example of an HRV signal in which 6 simulated irregular beats are

added.

which the derivative was higher than the threshold, an irregularity was detected. Next,

an interpolation was done between one point before and one point after the detected

irregularity. A single threshold was used for the whole dataset since the HRV signals had

similar characteristics, therefore one threshold worked properly for all of them. RSA

was estimated using the contaminated as well as the corrected HRV signals.

2.3.3. Effect of delays between the signals: Different respiratory signals can be used

to estimate the cardiorespiratory coupling. Examples include belts, pressure sensors,

temperature sensors, bioimpedance sensors or the ECG derived respiration. Depending

on the used signals, the delay between the HRV signal and respiration might be different

[18]. The effect of this delay on the RSA estimates has not been investigated.

Experiment: To evaluate this effect, the respiratory signals from the segments described

in 2.2.2 were delayed by up to 7.5 seconds (30 samples) with respect to the HRV signal,

and Px as well as CE were calculated for each case.

2.3.4. Effect of phase changes: In [37], it was suggested that the phase between

breathing and HRV signals might not be constant. A moderate significant linear

correlation between phase and age (20-60 y.o.) was found, in which younger subjects

tended to present phases closer to 180◦. This means that the trend towards an increased

HR during inhalation and a decreased one during exhalation is less pronounced in the

elder. This is also the underlying reason to hypothesize the existence of another form of

cardiorespiratory coupling, the cardiorespiratory phase synchronization [38]. It is said

that a phase locking between the heartbeats locations and respiratory signals occurs and

changes over time. The amount of time in which this synchronization remains constant

has been used as a biomarker for different conditions [20].

From equations 2 and 5, it is inferred that Px and CE are only able to capture

instantaneous and linear interactions. When the phase between the signals changes

in a recording under analysis, this condition is not met and Px as well as CE fail to
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Technical Aspects of Cardiorespiratory Estimation with OSP and CE 9

Figure 3. An example of a respiratory segment before and after changing its

instantaneous phase. In gray, portion of the signal in which a phase shift of 180◦

is done.

reflect the actual coupling strength. The extend in which this occurs has not been

investigated.

Experiment: To simulate this effect, the Hilbert transform (HT) was used. Given a

respiratory signal, x1(t), its HT is defined as,

y(t) =
1

π
C

∫ ∞

−∞

x1(t
′)

t− t′
dt′, (8)

where C is the Cauchy principal value. The sampled version of y(t), y(n), can be found

with the discrete fourier transform, as explained in [39]. Using y(n), the analytical

function z(n) is defined as,

z(n) = x1(n) + iy(n) = B(n)eiϕ(n), (9)

with the following amplitude (B(n)) and instantaneous phase (ϕ(n)),

B(n) =
√
x2(n) + y2(n), (10)

ϕ(n) = tan−1

(
y(n)

x(n)

)
. (11)

The analytical time series of the respiratory segments extracted in 2.2.2 were calculated

with equation (9). Afterwards, ϕ(n) was derived using equation (11) and then modified

by adding a pulse function. The duration of this pulse was varied between 20 seconds

and 160 seconds, in steps of 20 seconds. A linear increase or decrease before and after the

pulse were added to have a smooth change of phase. In addition, the amplitude of the

pulse was varied in 10 uniformly separated steps between 0 and 180◦. These pulses were

added to the original ϕ(n) to generate a new phase, ϕ′(n). This new phase, together with

B(n) were used to generate a new analytical function z′(n) = B(n)eiϕ
′(n) = x′(n)+iy′(n).

As a result, x′(n) corresponds to a phase-changed respiratory signal. An example is

shown in figure 3, where a phase change of 180◦ for 3 minutes was introduced.
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2.4. Analysis

The RSA estimates were hypothesized to change with different model orders and in each

simulated scenario. They were expected to increase with an increased model order, to

decrease with an increased number of irregulars, to decrease with an increased delay

and to decrease with stronger and longer phase changes.

To evaluate these, two analyses were performed. First, Bland-Altman plots [40] were

used to verify the change under the simulated conditions with respect to the originally

calculated values. Second, differences between the clean cases and the simulated ones

were evaluated using Kruskal-Wallis tests with Bonferroni correction, considering a

p < 0.05 as significant.

3. Results

3.1. Model order selection

Figures 4(a) and 4(b) show the results of the RSA estimation using Px when the model

order in samples is varied from 2 to 120, and using either regular or irregular respiratory

segments, respectively. These plots were made for the signals sampled at 4 Hz. Hence,

the simulated model orders correspond to 0.25 to 30 seconds. Different aspects can be

highlighted here. First, the interquartile range (IQR) of the estimates is wider when

irregular respiratory signals are used. For instance, when βR = 0.25, the average IQR

is 0.034 and 0.051, when using regular and irregular respiratory segments, respectively.

Furthermore, the selection of q needs to be carefully done when a weak coupling is

expected. In such cases, the use of a high model order is not advisable because Px is

not able to distinguish between similar coupling levels. On the other hand, when the

actual coupling is stronger (βR > 0.35), the model order does not have an important

impact on the calculations.

Figures 4(c) and 4(d) show the results of the RSA estimation for different model orders

with CE, using regular and irregular respiratory segments, respectively. It is observed

that the IQR of the quantification with irregular respiratory signals is broader when β

is below 0.4. For instance, when βR = 0.25, the average IQR is 0.042 and 0.060, when

using regular and irregular respiratory segments, respectively. In addition, a model order

below 5 samples might produce inconsistent estimations. This is observed in the figure

as values higher than the expected βR. However, above q = 5, an accurate estimation

is achieved.

In order to confirm if the RSA estimates with model orders higher than 8 were

significantly different to the results with 8 samples, Bland-Altman plots were used. A

q = 8 was chosen since, from figure 4, it is observed that this value produces consistent

estimates with both approaches. Figure 5 illustrates the results, in which it is observed

that the standard deviation of the differences for Px increases with the model order.

The figure confirms that this effect is more noticeable when a weak coupling occurs.

For CE, on the other hand, the standard deviation of the differences remains relatively
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(c) (d)

Figure 4. Effect of the model order in the predicted β̂R. (a) and (b) are made for

Px with regular and irregular respiratory segments, respectively. (c) and (d) are made

for CE with regular and irregular respiratory segments, respectively. The real (βR)

and the estimated (β̂R) coupling are indicated for each simulation. The means and

interquartile range (shaded areas) are shown. The black dotted line indicates a model

order of 8, point after which the obtained RSA estimates are consistent.

constant. To visualize the change of σ in the Bland-Altman plots, it was calculated

for all the model orders. Figure 6 shows the results. A relationship between q and σ

is clearly observed for Px. With CE, the change with different model orders is not

evident. To complement these results, the model order q′∗ in which the quantification

became significantly different to the computation with q = 8 was found. Table 1 shows

the results. The subindex indicates if the calculations involved regular or irregular

respiratory segments. It is seen that from a model order of 20, a significantly higher Px

is obtained in weakly coupled signals. For CE, the estimation was never significantly

different.

To have an idea of the meaning of the results presented so far, the application to

real data in [13] can be used. Here, the cardiorespiratory coupling was quantified for

different sleep stages using a dataset of healthy patients. Differences were found between

non rapid eye movement 1 (NEREM1), NREM2 and NREM3, with median β̂R of 0.36,
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Figure 5. Bland-Altman plots for different model order. Each column indicates the

use of either regular o irregular respiratory segments. The top plots correspond to Px

and the bottom to CE. The model order used for each plot is indicated.

Figure 6. Change of standard deviation in the Bland-Altman plots as function of the

model orders.
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Px CE

βR q′r q′irr q′r q′irr
0.9-1.0 - - - -

0.8-0.9 100 - - -

0.7-0.8 90 120 - -

0.6-0.7 96 98 - -

0.5-0.6 70 - - -

0.4-0.5 56 80 - -

0.3-0.4 48 80 - -

0.2-0.3 32 48 - -

0.1-0.2 30 30 - -

0.0-0.1 20 28 - -

Table 1. Model orders in which the estimates become significantly different to the case

in which q = 8. The subscripts r and irr stand for regular and irregular, respectively.

0.4 and 0.44, respectively using Px. This application shows that such coupling levels

occur and an incorrect selection of the model order for the calculation of Px might have

an important impact in the drawn conclusions. This is confirmed when looking at the

change of σ in the Bland Altman plots in Figure 6. In this plot, for example when

q = 40, σ goes up to 0.03. This means that if different model orders up to 40 had

been used in [13], the wrong coupling level would have been estimated and significant

differences between sleep stages would not have been found.

Finally, the different criteria for model order selection, q, were analyzed. Figure 7 shows

the histograms of the selected q in each case for the computation with CE. The results

for Px are very similar and are not shown. In general, MDL chooses smaller values than

AIC and the empirical approach. In addition, when the coupling between the signals

is increased, MDL and AIC tend to select a smaller q compared to the case of a weak

coupling. The empirical approach, on the other hand, shows the same trends for any

coupling level and in general chooses q ≈ 80. From these results, it can be said that

MDL had a better performance because it chooses lower model orders, and these are

more consistent over different realizations. In any case, this figure shows the discrepancy

between the different criteria for model order selection.

In Figure 4, it is observed that q > 5 for CE and q < 15 for Px are values that result in

RSA estimations that are able to distinguish between different coupling levels. For this

reason, these values are considered a good selection for the model order. Accordingly,

the experiments in the rest of the paper were done using a unique model order of 2.5

seconds (10 samples) for both estimates.

3.2. Effect of irregular heartbeats

Figure 8 shows the results with the RSA estimates when different amounts of irregular

heartbeats are added to the signals. Both estimates behave similarly in the sense that
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Figure 7. Histograms for the model orders selected with MDL, AIC and the empirical

approaches for different coupling levels. The results are for the computation of CE.

The results with Px are very similar. Hence, they are not shown in the Figure.

Number of irregular heartbeats                              Number of irregular heartbeats 

Coupling Level = 0.1-0.2                                           Coupling Level = 0.6-0.7

Contaminated    Corrected

Figure 8. Effect of irregularities in the RSA estimates.

when the coupling is weak, the effect is less noticeable. In contrast, when the coupling

is stronger, and even with an irregular heartbeat correction step (i.e., detection and

interpolation), both RSA estimates are significantly affected.

Figure 9 shows the change of the standard deviation of the differences in the Bald-

Altman plots when different number of irregular heartbeats are allowed. As expected

from the results in Figure 8, there is a linear increasing relationship between the number

of irregular heartbeats and σ. Notice that, even after a step of correction, the increasing

trend is present and it is similar with both estimates. Table 2 depicts the number of

irregular heartbeats in which the estimates become significantly different to the clean

case. This table shows that, without a step of irregular heartbeats correction, the RSA

estimates are already significantly different to the clean case after having only 2 irregular
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Figure 9. Change of σ for the differences in the Bald-Altman plots for different

number of irregular heartbeats.

Px CE

# Irregulars # Irregulars

Actual Px Cont Corr Cont Corr

0.0-0.1 3 11 3 10

0.1-0.2 3 13 3 9

0.2-0.3 3 11 3 11

0.3-0.4 2 10 3 11

0.4-0.5 3 10 3 10

0.5-0.6 3 7 3 11

0.6-0.7 2 5 2 7

0.7-0.8 2 6 2 7

0.8-0.9 2 5 2 6

Table 2. Tests for the effect of irregular beats in the RSA quantification with Px

and CE. # irregulars indicates the number of irregular heartbeats in which the RSA

estimates become significantly different to the irregular-free case. The analyses are

done for the contaminated (Cont) and corrected (Corr) signals.

heartbeats. This occurs because the trends in the HRV signal change and both estimates

depend on these trends to work properly. Furthermore, it is seen that the number of

irregular heartbeats in which the RSA estimates become significantly different to the

irregular-free case depends on the strength of the coupling. In any case, even after a

correction step, the values are significantly different when 5 or more irregular heartbeats

occur, if the coupling between the signals is strong.

Similarly to the model order selection, the application to real data in [13] can be

used to have an idea of the magnitude of the errors. Figure 9 shows that, even after

correcting for irregular heartbeats, allowing around 6 irregular produces σ ≈ 0.05 with

both methods. This means that if irregular heartbeats had occurred in [13], it would

not have been possible to distinguish between different sleep stages.
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Figure 10. Effect of introducing delays between the HRV signal and respiratory

signals on the RSA quantification using Px and CE.

Figure 11. σ of the differences in the BaldAltman plots with different delays.

3.3. Effect of delays

Figure 10 shows the effect of the delays, δ, in the RSA estimates. The change is more

noticeable with CE than with Px, in particular for stronger coupling levels. A weak

inverse relationship between both estimates and the delay in samples is observed. In

any case, it is always possible to distinguish between different coupling levels.

Figure 11 shows the change of the σ of the differences of the Bland Altman plots for

increased number of delays. An increasing trend is observed for δ ∈ [0 5]. For larger

delays, it does not change, suggesting that both estimates are relatively robust to the

delays. Table 3 shows the delay in number of samples, δ′, in which the estimates become

significantly different to the case in which the signals are not delayed. From this table,

it is seen that Px is less affected than CE. However, δ′ is always longer than 5 seconds,

or 20 samples.
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Px CE

Px δ′ δ′

0.0-0.1 - 27

0.1-0.2 - 23

0.2-0.3 - 22

0.3-0.4 - -

0.4-0.5 - 23

0.5-0.6 - 24

0.6-0.7 - 25

0.7-0.8 - 24

0.8-0.9 27 34

Table 3. Effect of the delays in the RSA quantification with Px and CE. δ′

indicates the number of samples in which the delay results in significantly different

RSA estimates compared to the case in which the signals are not delayed.

3.4. Effect of phase changes

Figure 12 shows the change of Px and CE when a change of phase between the signals

occurs over time. The plots are very similar for all coupling levels. The figure displays

the case of a coupling between 0.4 and 0.5, as an example. Three surfaces are shown

in each case, which correspond to the median value and the limits of the interquartile

range. It is observed that, when the change of phase is up to 54◦, the effect in the RSA

estimates is almost never significant, no matter the duration of this phase change. After

54◦, the significance of this effect in the quantification depends on the duration of the

phase shift, with a stronger effect when this is of 60 seconds or longer. After 60 seconds

and 54◦, the RSA estimates are always significantly different (p < 0.05) to the case in

which a phase distortion is not introduced.

Figure 13 shows the increasing trend of the σ in the Bland-Altman plots when the

duration/amplitude of the phase changes increase. The duration of the pulse was limited

to 160 seconds because afterwards it was longer than half of the total duration of the

segment.

3.5. Discussion

The goal of this paper was to assess the use of subspace projections and cross entropy

to quantify RSA. First, the effect of the model order in the calculations is tested. Then,

the estimates are applied to three simulated scenarios that can occur in non controlled

environments or in recordings from patient populations. More specifically, the analyses

included the occurrence of irregular heartbeat, the delays between the signals and the

changes of phase. This section discusses the results. To the best of the knowledge of

the authors, these scenarios have not been studied in the context of RSA estimation.
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Figure 12. Effect of the phase changes between the HRV signal and respiratory signals

on the RSA quantification using Px and CE. The Figure shows the case in which the

coupling level is between 0.4 and 0.5. The surfaces indicate the mean and interquartile

ranges.

Figure 13. Change of the σ of the differences in the Bland-Altman plots for phase

changes of different duration and amplitude.

3.5.1. Model order selection: Px was more affected by the model order selection than

CE. To understand this, it is important to explain that, similarly to CE, the calculation

of Px can be seen as the result of fitting a regression model to predict the HRV signal

in function of the past of the respiration. The coefficients of this regression are given by

the projection matrix P, which considers the whole dynamics of the respiration. This

is not the case for CE, which only considers q past samples, reducing the likelihood of

overfitting. This makes Px more prone to overfitting problems if q is bigger than needed

and this effect is more noticeable when a weak coupling between the signals occurs. A

stronger coupling results on more significant coefficients for the regression.

Regarding the criteria for model order selection, it was seen that, in general, lower

coupling levels need higher model orders. These criteria try to find the model order

that better fits the data with the lowest possible complexity. In cases in which the

coupling is weak, the relationship between the past of the respiration and the present
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samples of the HRV signal is more difficult to find. This produces regression models with

less significant coefficients. Hence, the addition of more coefficients for the regression,

which translates into a higher model order, represents an improvement to fit the data.

The problem of order selection for MVARmodels is not new. Each researcher tackles this

issue in different ways. The paper in [41] proposes a novel approach based on an iterative

optimization which is used to characterize electroencephalographic recordings. In [42],

an MVAR model is used to investigate if the inverse pulse time series could replace the

systolic blood pressure signal. MDL gave an initial q that was then refined by analyzing

the most significant coefficients in the regression. The work in [43] analyses the causal

interactions between electrodermal activity and HRV signal using an MVAR in which

q was tuned using an approach based on AIC. In the specific case of cardiorespiratory

coupling, the work presented in [32] highlights the need to standardize the selection

of q to facilitate the interpretability and usability of MVAR model-based methods. In

[6], q is calculated, depending on the characteristics of the respiratory signal, as the

minimum or maximum between MDL and AIC. In [13], it was found that MDL and

AIC resulted on very different model orders. Hence, an empirical approach based on

the spectral characteristics of the respiratory signals was proposed. The results from

the simulations done in the current work suggest that q can take a unique value. In this

way, the obtained estimate will reflect the actual coupling level between the HRV signal

and respiration.

At this point, it is important to mention that the final goal of the order selection for the

quantification of the cardiorespiratory coupling is not to produce a model that better

fits the data, but to obtain an RSA estimate able to reflect the actual coupling level.

Under this premise, and according to the results presented, a single model order works

well when clean segments are used. In any case, the analyses with Px is more sensitive to

the model order selection compared to CE, in particular when a weak coupling occurs.

The reasoning behind these results is that the RSA estimates will reflect how difficult

it is for the MVAR models to fit to the data which, in turn, depends on the coupling

strength between the signals. For this reason, if the model is adjusted each time the

estimates are calculated, the models will have a good fit to the input signals but will

not be able to reflect the actual coupling values.

3.5.2. Irregular heartbeats: The presence of irregular heartbeats in the ECG signals

is problematic for HRV analyses. In [8], this is highlighted and it is recommended

to apply proper interpolation techniques to correct for them. In addition, the study

in [17] showed that despite the fact that beat replacement reduced the errors in the

estimation of HRV indexes in the frequency domain, these were still affected even with

a low number of irregularities. These results are confirmed in [44], where the analyses

are extended to HRV indexes in the time domain. These works show that irregular

heartbeats significantly affect HRV indexes and the same would be expected for the

cardiorespiratory parameters.

The simulation results show that the irregular heartbeats have an important influence
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on the RSA estimates. In addition, and in line with the literature for HRV, even after

a step of irregular heartbeat correction the estimates are significantly affected after

allowing 5 or more irregular heartbeats in a period of 5 minutes. The application and

interpretation of CE and Px in these cases must be done carefully.

3.5.3. Delay: The authors in [35] and [45] used the maximum of the cross correlation

function in a window of 3 seconds to evaluate the accuracy of methods for ECG derived

respiration (EDR). This is done to correct for possible delays between the EDR and

the actual respiratory signals. Also, in [18] it is shown that depending on the electrode

configuration, the delays between the respiratory volume and the bioimpedance signal

is different. For RSA estimation, different modalities can be used as respiratory signal.

Examples include belts, the impedance plethysmography, the EDR or the bioimpedance.

The aforementioned papers suggest that these signals might be delayed differently with

respect to the HRV signal. As a result, the quantification of the cardiorespiratory

coupling might also be different depending on the used modality. The current paper

tested this hypothesis.

The results of the simulations suggest that the delays do not have a strong impact on

the RSA estimates. This result is due to the fact that the respiratory signals have a

repetitive pattern, which facilitates the fitting of the models to calculate the estimates.

This repetitiveness is intrinsic of the respiratory signals and it occurs even when they

have irregular patterns. It was observed that CE changed significantly when the signals

were delayed with a smaller delay compared to Px. Similarly to the selection of the

model order, an explanation for this observation is that the calculation of the projection

matrix P for Px considers the dynamics of the respiration in the whole segment. This is

not the case for CE, which only considers q past samples. Hence, CE is more likely to

be affected by the delays. However, the number of delays in which significant differences

were found in the simulations was always higher than 5 seconds, when in practice such

long delays are not expected. For this reason, correcting the delays is not essential for

the calculations.

3.5.4. Change of phase: In diseases such as sleep apnea [46] or chronic obstructive

pulmonary disease [47], paradoxical respiration can happen. This is an example of a

real case in which a phase change between the HRV and respiratory signals will occur.

In addition, as mentioned in the introduction, changes in the phase locking between

both signals have been reported in the literature. For these reasons, it is important to

study the effect of these changes in the RSA estimates. The results from the simulations

show that the extend in which the estimates are affected by phase changes depends on

their duration and amplitude. This occurs because Px and CE are linear approaches.

As such, they need stationary segments and a linear correlation maintained over the

duration of the recording to properly capture the RSA strength. These methods should

be adapted to be computed in short windows and continuously in order to work well in

cases in which phase changes occur.
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In general, it was observed that both estimates were affected similarly by the

scenarios simulated in this paper. Hence, the results do not suggest a clear advantage of

any method over the other, instead they serve to give guidelines on the interpretation of

these RSA estimates. However, one aspect that was not evaluated is the computational

cost of the algorithms. Our previous work in [13] found that calculating Px requires

significantly less computational resources than CE. Hence, Px might be advantageous

in devices with limited computational power. In addition, there are other factors

that might be worth investigating. First, it is important to highlight that there are

different estimators of the cross entropy, which might have an important effect on the

results [48]. The linear estimator was chosen in this paper since it is the one that

can be compared in the fairest way with Px, since the latter focusses on the linear

cardiorespiratory interactions. Second, another aspect not considered in this study

that might affect the RSA estimates is the application of filters with different cutoff

frequencies to preprocess the input signals. As explained in [49], this might result in

spurious phase synchronization detections. The investigation of the effect of these two

factors is suggested as future work.

4. Conclusions

This paper evaluated the use of orthogonal subspace projections and cross entropy to

estimate the RSA strength in different scenarios. The results identify pitfalls of state-

of-the art methods when used in real conditions. Directions on how to perform optimal

analysis and interpretation of results in future applications are given. For the model

order, a single value higher than 5 for cross entropy or lower than 15 for orthogonal

subspace projections produced consistent estimations. In case of irregular heartbeats,

the results suggest that the interpretation should be careful if 5 or more irregulars

occur in a 5-minute epoch, even after a step of irregular heartbeats correction. For the

delay, orthogonal subspace projections were less affected than cross entropy, but both

estimates are robust. Regarding the phase between the signals, a change of 54◦ lasting

more than one fifth the duration of the recording significantly affected the estimates.

As future work, it is suggested to study the effect of other factors that might influence

the RSA estimates like using filters with broader bandwidths or using different entropy

estimators.
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