
Requirements for Constraint Solvers in

Verification of Data-Intensive Embedded System

Software⋆

Qiang Fu1, Maurice Bruynooghe1, Gerda Janssens1, and Francky Catthoor2

1 Katholieke Universiteit Leuven, Department of Computer Science,
Celestijnenlaan 200A, B-3001 Heverlee, Belgium

qiang,maurice,gerda@cs.kuleuven.be
2 IMEC vzw, Kapeldreef 75, B-3001 Heverlee, Belgium

catthoor@imec.be

Abstract. In tuning data-intensive software such as multimedia and
telecom applications for embedded processors in portable devices, de-
signers use a combination of automated and manual transformations at
the source level to optimize the resource consumption of the software.
It is of crucial importance that the functionality of the software is pre-
served. For software with static control, a verification method exists that
first transforms the code into dynamic single assignment form and next
verifies the functional equivalence of the two versions. The verification is
based on geometric modelling using polyhedra.

In this paper, we describe in detail the basic operations of the verification
method, discuss the control issues that affect its overall performance, and
analyze the functionalities that constraint solvers have to offer to handle
this application.

1 Introduction

Embedded systems for the consumer electronics market run data-intensive mul-
timedia and telecom applications on devices with severe resource constraints.
Designing such systems is a complex task. Typically, designers start from an
initial design assembled by a straightforward combination of trusted algorithms
in a high level language. Then designers want to optimize performance, area on
chip, power consumption and overall cost of the design. For that purpose, they
use analysis tools and perform a mix of automated and manual transformations
according to some design methodology (e.g. [4]) to parallelize the loops or to im-
prove the array related memory management. Figure 1 illustrates a typical loop
transformation which would benefit the memory size. The whole process is very
error prone. Moreover, once the design in the high level language is frozen and
implemented in the embedded system, the cost of bugs in the design becomes
excessive. Hence there is a need for thorough testing and/or verification.

⋆ Work supported by FWO-Vlaanderen

void foo(int in, int b) {

 const int N=5;
 int i,j,p,k,l,a[N+1][N];

 for (i = 1; i <= N; ++i)
o1: a[0][i] = 5;
 for (j = 1; j <= N-i+1; ++j)
o2: a[i][j] = in[i][j] + a[i-1][j];

 for(p = 1; p <= N; ++p)
o3: b[p][1] = f(a[N-p+1][p], a[N-p][p]);

 for(k = 1; k <= N; ++k)
 for (l = 1; l <= k; ++l)
o4: b[k][l+1] = g(b[k][l]);
}

void foo(int in, int b){

 const int N=5;
 int i,j,l,a[N+1][N];

 for(i = 1; i <= N; ++i)
t1: a[0][i] = 5;

 for(j = 1; j <= N; ++j) {
 for (i = 1; i <= N-j+1; ++i)
t2: a[i][j] = in[i][j] + a[i-1][j];
t3: b[j][1] = f(a[N-j+1][j], a[N-j][j]);
 for (l = 1; l <= j; ++l)
t4: b[j][l+1] = g(b[j][l]);
 }
}

original program transformed program

Fig. 1. Program before and after loop transformation.

For (parts of) systems with static control flow where conditions, index ex-
pressions, and bounds on iterators are (piecewise) affine functions of the bounds
of the surrounding iterators and where no pointer references occur, the code can
be transformed to so called Dynamic Single Assignment (DSA) code [5] where
each array element is written only once by methods described in [5,15]. This
meets the requirements of a very relevant subset of all possible application codes
in our target domain. The resulting code is functional: Each element of an out-
put array is a function of a set of elements of the input arrays. Verification of
the equivalence of original and transformed code then reduces to checking for
each output element that the function mapping inputs to outputs is equivalent.
In order to ensure scalability to realistic data and loop sizes in the embedded
system domain, the crux of the methods is to do this verification not element by
element but to handle at once groups of elements for which the function is the
same. Such methods are described in [1,13].

Those methods rely on the use of the geometric model (also called poly-
hedral/polytope model) for representing the meaning of programs. Geometric
modelling of programs is well known in the parallel compiler and regular array
synthesis research domains and is used extensively to analyze the execution of
program statements [5,11,12]. The geometric model concisely represents all of
the necessary information about the data and control flow in the program. The
basic idea is to represent the iterations for which a statement is executed by the
integer points in a polytope, i.e., a bounded polyhedron. A polyhedron is a sub-
space in n-dimensional space bounded by a finite number of hyperplanes. These
hyperplanes can be represented as a system of linear inequalities. The latter can
be extracted from the iterator bounds and conditions that control the execution
of the statement.

This paper develops in more detail the method sketched in [13], discusses con-
trol issues that affect the performance, and analyzes the functional requirements
for the constraint solving. In Section 2, we explain the geometric modelling of the

2

program. The concept of proof obligations is introduced in Section 3. Also the
basic operations to reduce proof obligations together with the functionality they
require from the underlying constraint solvers are described in this section. In
Section 4, we discuss how to avoid redundant computations during the reduction
of proof obligations. Handling recurrences is presented in Section 5. In Section 6,
we discuss in more detail which operations are required and how existing solvers
provide support for them. Section 7 concludes.

2 Program representation under the geometric model

Geometric modelling is used by many authors. Here we recall the basics by means
of some examples. Consider statement o2 in Figure 1 (with N substituted by its
value) which is a writer of array a and a reader of arrays in and a:

for (i = 1; i <= 5; ++i)

for (j = 1; j <= 5-i+1; ++j)

o2: a[i][j] = in[i][j] + a[i-1][j];

The iteration domain is a relation over the iterators governing the state-
ment. Each tuple (i, j) in the relation defines a value of the iterators for which
the statement is executed. The relation is described by the integer points in a
polytope: D = {(i, j) | i ≥ 1 ∧ i ≤ 5 ∧ j ≥ 1 ∧ j ≤ 5 − i + 1}.

The definition domain is a relation over the indices of the array in the left
hand side of the statement. It defines which elements of the array are written
by the statement. Also this relation can be described by the integer points in
a polytope: Wa = {(a1, a2) | ∃i, j : a1 = i ∧ a2 = j ∧ (i, j) ∈ D} = {(a1, a2) |
∃i, j : a1 = i ∧ a2 = j ∧ i ≥ 1 ∧ i ≤ 5 ∧ j ≥ 1 ∧ j ≤ 5 − i + 1}. Because
the program is in DSA form, the constraints define a bijection between the
indices a1 and a2 of the array and the iterators i and j. Using the two equalities,
the existentially quantified variable i and j can be eliminated and one obtains
Wa = {(a1, a2) | a1 ≥ 1 ∧ a1 ≤ 5 ∧ a2 ≥ 1 ∧ a2 ≤ 5 − a1 + 1}.

For each operand in the right hand side, one can define an operand domain.
It is a relation over the indices of the operand array. It defines which elements
of the array are read by the statement. Similar to the definition domain, it can
be described by the integer points in a polytope. For the second operand, it is
given by: Ra = {(a1, a2) | ∃i, j : a1 = i − 1 ∧ a2 = j ∧ (i, j) ∈ D}. Note that
there is a functional dependency from the iterators to the indices as one value is
read in each iteration, but in general not from the indices to the iterators as the
same value can be read in different iterations. Again, i and j can be eliminated
and we obtain Ra = {(a1, a2) | a1 + 1 ≥ 1 ∧ a1 + 1 ≤ 5 ∧ a2 ≥ 1 ∧ a2 ≤ 5 − a1}.

Each executed instance of the statement reads values from elements in the
operand arrays and writes a value in an element of the lhs array. For each
operand, there is a dependence mapping that defines which operand element
is read for each written element. As said above, the relation between the indices of
the lhs array and the iterators is a bijection while there is functional dependency
between the iterators and the indices of the operand array, hence the dependency

3

mapping can be understood as a function from the indices of the lhs array to
the indices of the operand array (and is in general not invertible). To stress
that the dependence mapping encodes a functional dependency, we denote it as
M(i → j) with i the indices of the written array and j the indices of the operand
array. Also this relation can be represented by the integer points of a polytope.
For the second operand of our example, we have: M((a′

1, a
′

2) → (a1, a2)) =
{a′

1, a
′

2, a1, a2 | ∃i, j : a′

1 = i ∧ a′

2 = j ∧ a1 = i − 1 ∧ a2 = j ∧ (i, j) ∈ D} =
{a′

1, a
′

2, a1, a2 | a′

1 = a1 +1∧a2 = a′

2∧a′

1 ≥ 1∧a′

1 ≤ 5∧a′

2 ≥ 1∧a′

2 ≤ 5−a′

1+1}.
In general, with m the dimension of the array being written and n the dimension
of the array being read, the dependence mapping is a polytope in a space of
dimension m + n. The dimension of the polytope however can be lower, because
the constraints can imply equalities.

Statements can be written in a normal form where all indices of the lhs
array are distinct variables and the indices of the rhs arrays are functions of
the indices of the lhs side. The latter correspond to the dependency mapping of
the statement. This normal form, together with the constraints on the indices
forms the geometric model of the statement and completely characterizes it. The
statement o2 is already in normal form as the indices are the iterators. The
constraints are those of the iterator domain.

While in the above examples, the relation of interest is represented by all

integer points inside a polytope, this is not always the case. Consider for example
a for loop with a non-unit stride:

for i=1, i<=21; i= i+5

Its iteration domain is modelled by the formula D = {(i) | ∃k : i ≥ 1 ∧ i ≤
21∧ i = 1+5k} which contains an existentially quantified variable. The relation
represents the points in the set {1, 6, 11, 16, 21}; these are not all the integer
points inside (i ≥ 1 ∧ i ≤ 21) which is the projection of the original two dimen-
sional polyhedron (i ≥ 1∧i ≤ 21∧i = 1+5k) upon i. The existentially quantified
variable is also introduced when normalizing a statement such as a[2i] =
Indeed, normalization will replace it with a[k] = ... and compute a constraint
(∃i : k = 2i ∧ . . . ≤ i ≤ . . .) in a normal form. Also modulo operations and
integer division can give rise to such variables. These formulae with existentially
quantified variables belong to the class of the Presburger formulae.

Now, a program can simply be represented by the geometric models of the
statements. The dependencies between reads and writes are captured by the use-
def chains which can be derived from the geometric models of the statements.
Note that the exact execution order is not modelled since it is irrelevant to the
verification purpose.

3 Verification method

Our verification task consists of proving that the original and the transformed
programs compute the same outputs when their inputs are equal. To do so, one
is given the names of the corresponding input and output arrays. Also, one can

4

assume that the functions called by programs are side-effect free and have not
been modified by the transformation, that the programs are in DSA form and
that the data flow is correct, i.e., that values are read after being written (or
are available as input). In what follows, we use some notational conventions.
The arrays in the original and the transformed program are distinguished by the
respective superscript o and t. A vector (i1, . . . , in) is denoted as i; il refers its lth

element. In the verification task for the programs of Figure 1, the corresponding
input arrays are ino and int; the corresponding output arrays are bo and bt.

The verification task can be expressed by a (conjunction of) proof obliga-
tion(s). A proof obligation describes an equivalence relation that must hold
between one expression from the original program and the other one from the
transformed program. It is formalized as a tuple (expo(i), expt(j), P (i, j)), where
expo(i) and expt(j) are expressions from the original and transformed program
respectively; these expressions are parameterized by respective vectors of vari-
ables i and j. P (i, j) is a set of constraints that specifies a relation between the
vectors i and j (the tuples in the relation are the integer points in the polytope).
The meaning is: for each pair (i, j) ∈ P (i, j) (i.e., all integer solutions of P) the
equality expo(i) = expt(j) has to be proven.

For example, the verification task of Figure 1 can be modelled by the proof
obligation (bo[i1, i2], b

t[j1, j2], P ((i1, i2), (j1, j2))), in which P ((i1, i2), (j1, j2)) =
{(i1, i2), (j1, j2) | i1 = j1 ∧ i2 = j2 ∧ i1 ≥ 1 ∧ i1 ≤ 5 ∧ i2 ≥ 1 ∧ i2 ≤
i1 + 1 ∧ j1 ≥ 1 ∧ j1 ≤ 5 ∧ j2 ≥ 1 ∧ j2 ≤ j1 + 1}. This proof obligation be-
tween output arrays bo and bt expresses that both programs are equivalent if
one proves that bo[i1, i2] = bt[j1, j2] for all pairs (i, j) ∈ P . While in the initial
proof obligation, the relation between i and j is a bijection, this is in general
not the case. Also, the given correspondence between input arrays can be ex-
pressed in this form (as assumptions). For our example it can be formulated as :
(ino[i1, i2], in

t[j1, j2], {(i1, i2), (j1, j2)|i1 = j1 ∧ i2 = j2 ∧ i1 ≥ 1 ∧ i1 ≤ 5 ∧ i2 ≥
1 ∧ i2 ≤ 5)}.

The verification method then consists of using the geometric models of the
program statements to reduce the initial proof obligations to proof obligations
that trivially hold because they belong to the assumptions.

Reduction of proof obligations There are three basic reduction steps:

Reduction I Peeling expressions in a proof obligation of the form

(f(expo

1(i), . . . , expo

n(i)), f(expt

1(j), . . . , expt

n(j)), P (i, j))

The method leaves the functions uninterpreted and imposes (as sufficient
condition) that the arguments of the functions must be pairwise equiva-
lent3. Hence the proof obligation is replaced by the conjunction of n proof
obligations of the form (expo

k
(i), expt

k
(j), P (i, j)). The proof fails if different

top level function symbols are found. This indicates an error in the transfor-
mation.

3 See [13] for a discussion how to extend the approach for handling commutative and
associative functions.

5

Reduction II Propagation across an assignment. If one of the expressions is
an array reference, the corresponding writers of the array can be used to
reduce the proof obligation. Without loss of generality, let us assume a
proof obligation of the form (ao[f(i)], expt(j), P (i, j)), i.e., with an ar-
ray reference from the original program. Let the normalized statement s :
ao[k] = expo(k) be a writer of ao and C(k) the constraints on k. Using
the set of equalities k = f(i), the proof obligation can be rewritten as
(expo(f(i)), expt(j), P (i, j) ∧ C(f(i))) with C(f(i)) the constraint with
the elements of k substituted by the corresponding elements from f(i).
The new proof obligation can be discarded when the constraint is inconsis-
tent, i.e., when none of the values referred to by ao[f(i)] is actually written
by s . Doing the propagation for each of the writers of ao, the original proof
obligation is replaced by one proof obligation for each of the writers that
actually writes some of the values referred to by ao[i].

Reduction III When both expressions are references to input arrays, i.e., of
the form (ino[f(i)], int[g(j)], P (i, j)), the proof obligation can be dismissed
as satisfied after checking that it can be proved from the given assumptions
about the correspondence between input arrays. More precisely, given the
input equivalence assumption (ino[k], int[l], C(k, l)), the integer points in
P (i, j) are a subset of those in C(k, l) under the condition: k = f(i) ∧ l =
g(j), i.e., that P (i, j) ∧ ¬C(k, l) is unsatisfiable (or that C(k, l) is entailed
by P (i, j)).

The reduction of proof obligations requires the following primitive operations
on relations (constraints): emptiness checking (consistency checking) and subset
testing (entailment or negation).

However, a naive application of the above method results in a rather ineffi-
cient procedure because: ➀ Several statements can read (the same or different)
values written by some statements, hence several proof obligations involving the
same statement can be created. ➁ Recurrences (direct or indirect) are processed
by complete loop unrolling, which is definitely not feasible in practice.

4 Control issues in the absence of recurrences

A sequence of different statements s0 , s1 , . . . , sn−1 represents a recurrence
when each statement si is a writer of an array ai[ki] and a reader of an ar-
ray ai+1[li] with dependency mapping M(ki → li), a0 and an are the same
array, and the equijoin of dependency mappings4 i.e., M(k0 → kn) = M(k0 →
k1)∧M(k1 → k2)∧. . .∧M(kn−1 → kn) is a nonempty relation. M(k0 → kn) is
called a self dependence mapping about array a0. Note that a recurrence implies
that each statement si is a writer of a value used to compute another value it
writes; in particular, for statement s0 , we have that a0[kn] is used to compute
a0[k0] for each tuple (k0, kn) in M .

4 The dependency mapping can be viewed both as a relation and as a constraint, under
the constraint view, the equijoin can be denoted as a conjunction of constraints.

6

In this section we discuss how to tackle the inefficiencies caused by multiple
reads from elements written by the same statement in the absence of recurrences.

 for (i = 1; i <= 10; ++i)
s1: b[i] = ...
 for (i = 1; i <= 10; ++i) {
 if (i > 5)
s2: a[i] = b[i];
 else
s3: a[i] = 2*b[i]; }

 for (i = 1; i <= 10; ++i)
s1: b[i] = ...
 for (i = 1; i <= 10; ++i)
s2: a[i] = ... b[i] ...;
 for (i = 1; i <= 10; ++i)
s3: c[i] = ... 2*b[i] ...;

Case I Case II

Fig. 2. Two programs illustrating the need for a good control.

Case I of Figure 2 shows a program where array b written in statement s1 is
read two times. This will give rise to two different proof obligations involving
b[i] with the same boundaries on i. One should avoid proving it twice (there can
be many steps before the input is reached).

Case II of the same figure shows a slightly different circumstance. Now, the
two proof obligations refer to different pieces of the array b, so they will be
different. However, substantial work could be saved if one could merge both
proof obligations into a single one. Indeed, then only one proof obligation need
be reduced to a condition between input arrays instead of two.

A simple way to tackle the inefficiency of Case I is by tabling all proof
obligations. A new proof obligation can be dismissed if it is implied by an already
tabled one (in the same way as a proof obligation between input arrays can be
dismissed when implied by the assumptions, see Section 3). Permanently storing
all proof obligations that occur during the verification may result in the huge
table size.

In the absence of recurrences, it is possible to define a strategy that avoids
such redundancies and keeps table size to a minimum by storing only the neces-
sary proof obligations. Our strategy is to associate a counter with each statement
s ; this counter is initialized with the number of readers of the array written by s .
Now consider a proof obligation of the form (a[f(i)], expt(j), P (i, j)) and let s0

be one of the writers of a. The Reduction II step propagating the proof obligation
across s0 is delayed until the counter associated with statement s0 is 0, i.e., until
all proof obligations originating from readers of elements of a that are written
by s0 are available (and redundant ones have been removed). After propagation,
all counters of writers of arrays bi, for which s0 is a reader, can be decreased by
1 as all proof obligations originating from the reader s0 are now available. This
works fine when s0 is a copy statement as the new proof obligation is ready for
propagation. However, when the rhs is an expression, then the proof obligation
about bi is not ready for propagation until one or more peel steps have been

7

applied. It blocks propagation across the writers of bi until it has been further
reduced by peel steps.

Our strategy implies that the propagation steps across statements are bun-
dled in a different way. Instead of propagating one proof obligation (a[i], . . .)
across all writers of a at once, all proof obligations containing a are at once
propagated across a single writer of a (when its counter is 0 and there are no
pending peel operations). The correctness of the dataflow together with the ab-
sence of recurrences ensures that the verification will never be blocked as there
will always be a zero counter.

A proof obligation with an array reference is tabled when created and remain
active until it has been propagated to all writers of that array, at which point
it can be removed. Hence the table consists of a set of active proof obligations
which is only a fraction of the total number of proof obligations that are created
during the verification.

5 Handling recurrences

Figure 1 contains two recurrences consisting of a single statement (direct recur-

rences), namely statements o2 and o4 . Also, there exists indirect recurrences in
which several statements are involved. Figure 3 shows another example with a
direct recurrence in statement s3 . Note that the program slice that computes
the value of a[7] also contains the instances of s3 for i = 5 and i = 3.

s1: a[1] = 5;
s2: a[2] = 6;
 ...
 for (i=3, i<=7, i++)
s3: a[i] = a[i-2] + 5;
 ...
s4: b[0] = a[7]

transitive closure of self dependence mapping

self dependence mapping and across-recurrence mapping

a[7]

a[7] a[6] a[5] a[4] a[3] a[2] a[1]

a[6] a[5] a[4] a[3] a[2] a[1]

Fig. 3. A piece of code with a recurrence.

The control described in Section 4 will be blocked at recurrences. Consider
the example; the counter of s3 will never reach 0 because one of the readers
of the values it writes is inside the recurrence. Simply not counting the reads
inside the recurrence when initializing the counters will avoid the deadlock but
will result in a naive algorithm that unrolls the recurrence, what results in an
unacceptable performance degradation. In our example, the recurrence is entered
when propagating a proof obligation about a[7] reaches s3 . This is then reduced
to a proof obligation about a[5] and next about a[3]. Finally, the recurrence is
exited by the proof obligation about a[1].

8

Note that the dependencies in a recurrence are always well-founded because
the program is in DSA and the data flow is correct. Hence there are always
statements that exit the recurrence when tracing the dependencies (statements
s2 and s1 in our example). As we mentioned at the beginning of Section 4, a
recurrence can be characterized by a self dependency mapping M(k0 → kn)
for some array a. If the distance between k0 and kn is the same for all tuples
(k0, kn) in M then we can use an approach that avoids completely unrolling the
recurrence (for other recurrences, we simply use the naive approach mentioned
above).

One way, sketched in [13] is to compute the positive transitive closure of
the self dependence mapping (the arrows in the top right of Figure 3) and to
use the difference between domain and range of the transitive closure relation
to compute the across-recurrence mapping. Another approach is to combine the
constant distance of the self-dependency mapping with domain information to
extend the relation containing one tuple of the self dependency mapping into a
relation covering all tuples of the mapping (the arrows in the bottom right of
Figure 3) and to extend the proof obligation in the same way. Note that one must
have a recurrence in both the original and the transformed program and that
both have to be synchronous. This makes the whole technique rather involved
and we omit further details.

6 Solvers

6.1 Requirements

As we have seen in Section 2, for simple statements, the relations of interest
can be represented by the integer points in a polytope. However, for more com-
plex statements, more complex constraints are required that involve existentially
quantified variables. These existentially quantified variables cannot be eliminated
by projection because, as we illustrated, the set of integer points in the projec-
tion of a polyhedron can be strictly larger than the set obtained by projecting
the integer points in the original polyhedron. In other words, projection can in-
troduce an overestimation; as our verification method requires exact modelling,
it is not a safe operation.

As a summary, the basic operations required by the verification method are
consistency checking (does the constraint has an integer solution) and entail-
ment. Another useful operation is convex hull. It can be used to merge several
active proof obligations into a single one, and hence to reduce the size of the
table (Section 4) and the number of reduction steps (Section 3). In fact, there
are two ways to simplify the set of active proof obligations between the same
pair of expressions:

– When the constraint part of one proof obligation is entailed by the constraint
part of another one, it can be discarded.

– When the convex hull of the constraints of two proof obligations entails their
disjunction (in other words, the convex hull is equivalent to the disjunction),

9

they can be replaced by a single proof obligation that has the convex hull as
constraint.

The example below (taken from case II in fig 2) shows an application of this
simplification.

Example 1. In the program, statement s2 gives rise to a proof obligation of the
form (a[i], exp(k), i ≥ 1∧i ≤ 5∧C(k)). A similar proof obligation (a[j], exp(l), j ≥
6∧j ≤ 10∧C(l)) is raised by statement s3 . Imposing the equalities i = j and k =
l one can derive that the convex hull is given by (i ≥ 1∧i ≤ 10∧C(k)) and that it
is equivalent to the disjunction (i ≥ 1∧i ≤ 5∧C(k))∨(i ≥ 6∧i ≤ 10∧C(k)), hence
both proof obligations can be replaced by (a[i], exp(k), i ≥ 1 ∧ i ≤ 10 ∧ C(k)).

6.2 Solvers

In simple verification tasks, all constraints correspond to polytopes (the con-
straints do not contain existential variables). However, solutions are the integer
points in these polytopes, hence, more is required than basic capabilities for
solving linear equalities and inequalities over rationals or reals.

CLP(Q) [3] is a library in SICSTUS Prolog [14] for solving linear program-
ming problems with a limited support for mixed integer linear optimization
problem. Besides the consistency check over the rational domain, it allows one
to check that there is at least one integer solution (using the bb inf opera-
tion). Using these primitive operations, one can build more complex operations
needed by our verification. As described in [2], a convex hull operation can be
constructed.

The PolyLib [8] library is a software package that is designed for manipu-
lating polyhedra. PolyLib is designed to handle polyhedral domains which refer
to the set of integer points in the union of a finite number of polyhedra. It pro-
vides functions for various operations including testing for the existence of an
integer solution and calculating convex hull. So it provides all the functionality
for handling simple verification tasks.

PPL [10] is another library, however it is oriented more towards the support
of rational convex polyhedra, and includes the ability to handle the strict in-
equalities. But the lack of support for checking the existence of integer solutions
makes it not suitable for our verification task.

When it comes to the verification of more complex problems involving existen-
tial variables, then all of the above systems are not suited. For certain kinds
of constraints there may be work-arounds that eliminate the existential vari-
ables. In particular Z-polyhedra [9] may be useful to represent certain types of
constraints with existential variables. Also PIP [6], a tool which computes the
lexicographic minimum of the integer points in a parametric polyhedron, can
sometimes be helpful in eliminating certain existential variables [17]. However,
not all existential variables can be eliminated. In such case we need a solver
that supports general Presburger formulae that contains existentially quantified
variables.

10

The Omega library [11] is designed specifically for handling full Presburger
formulae. It is based on an extension of the Fourier-Motzkin method called
Omega test. It also provides the other operations required by our application,
such as entailment, convex hull, and even simplification that replaces a disjunc-
tion with its convex hull when they are equivalent. It also provides a transitive
closure operation [7].

Presburger formulae have a super-exponential time complexity. Hence Omega
necessarily employs various heuristics. Sometimes, these heuristics may fail. Then
the calculation either continues running without returning a solution in a rea-
sonable time or simply gives an UNKNOWN result, as reported in Section 5.2.1
of [16]. That is likely inherent to any solver for the general class of Presburger
formulae. Moreover, as reported by [16], the implementation of Omega has other
problems that may cause it to abort the calculation with an error message, or
in very rare cases even produce incorrect results.

7 Conclusion

In this paper we analyzed a verification task for embedded software that was
previously sketched in [13]. We described in more detail the basic operations of
the verification process. We also analysed the functionality a solver has to offer
to be useable in this application. For simple verification tasks, where existential
variables do not appear, or can be eliminated by simple work-arounds, various
solvers that can handle polyhedra can be applied. However, for more complex
verification tasks, only Omega[11] offers all the needed functionality, though
there are no guarantees that it will never fail.

Acknowledgement

We are grateful to Peter Vanbroekhoven and Sven Verdoolaege for the many
discussions and useful comments.

References

1. D. Barthou, P. Feautrier, and X. Redon. On the equivalence of two systems of
affine recurrence equations. Technical Report Report RR-4285, INRIA, Oct. 2001.

2. F. Benoy, A. King, and F. Mesnard. Computing Convex Hulls with a Linear Solver.
Theory and Practice of Logic Programming, 5:259–271, 2005.

3. H. C. OFAI CLP(Q,R) manual, edition 1.3.3. Technical Report TR-95-09, Austrian
Research Institute for Artificial Intelligence, Vienna, 1995.

4. F. Catthoor, S. Wuytack, E. de Greef, F. Balasa, L. Nachtergaele, and A. Van-
decappelle. Custom Memory Management Methodology Exploration of Memory

Organisation for Embedded Multimedia System Design. Kluwer Academic Publish-
ers, 1998.

5. P. Feautrier. Dataflow analysis of array and scalar references. International Journal

of Parallel Programming, 20(1):23–53, 1991.

11

6. P. Feautrier. Parametric integer programming. RAIRO Recherche Opérationnelle,
Sep 1998.

7. W. Kelly, W. Pugh, E. Rosser, and T. Shpeisman. Transitive closure of infinite
graphs and its applications. International Journal of Parallel Programming, 24(6),
1996.

8. V. Loechner. PolyLib: A library for manipulating parameterized polyhedra. Tech-
nical Report PI-785, IRISA, 1999.

9. S. P. K. Nookala and T. Risset. A Library for Z-polyhedral Operations. Technical
Report PI-1330, IRISA, Mai 2000.

10. PPL. http://www.cs.unipr.it/ppl/.
11. W. Pugh. The Omega Test: a fast and practical integer programming algorithm

for dependence analysis. Comm. of the ACM, Aug 1992.
12. F. Quilleré and S. Rajopadhye. Optimizing memory usage in the polyhedral model.

ACM Trans. Prog. Lang. Syst., 22(5):773–815, Sep 2000.
13. K. C. Shashidhar, M. Bruynooghe, F. Catthoor, and G. Janssens. Verification

of source code transformations by program equivalence checking. In Compiler

Construction, 14th International Conference, CC 2005, Proceedings, volume 3443
of LNCS, pages 221–236. Springer, 2005.

14. SICSTUS. http://www.sics.se/isl/sicstus.html.
15. P. Vanbroekhoven, G. Janssens, M. Bruynooghe, and F. Catthoor. Transformation

to dynamic single assignment using a simple data flow analysis. In Proceedings of

The Third Asian Symposium on Programming Languages and Systems, Tsukuba,

Japan, 2005.
16. S. Verdoolaege. Incremental loop transformations and enumeration of parametric

sets. PhD thesis, Department of Computer Science, Katholieke Universiteit Leuven,
2005.

17. S. Verdoolaege, K. Beyls, M. Bruynooghe, and F. Catthoor. Experiences with
enumeration of integer projections of parametric polytopes. In Compiler Con-

struction, 14th International Conference, CC 2005, Proceedings, volume 3443 of
LNCS. Springer, 2005.

12

	Requirements for Constraint Solvers in Verification of Data-Intensive Embedded System Software
	Qiang Fu, Maurice Bruynooghe, Gerda Janssens, and Francky Catthoor

