
Source Space Reduction for eLORETA

A. Faes1,∗, A. de Borman1 and M.M. Van Hulle1

1 KU Leuven - University of Leuven, Department of Neurosciences, Laboratory
for Neuro- & Psychophysiology, B-3000 Leuven, Belgium

E-mail: axel.faes@kuleuven.be

Abstract.

Objective We introduce Sparse eLORETA, a novel method for estimating a
nonparametric solution to the source localization problem. Its goal is to generate
a sparser solution compared to other source localization methods including
eLORETA while benefitting from the latter’s superior source localization
accuracy.

Approach Sparse eLORETA starts by reducing the source space of the Lead
Field Matrix using Structured Sparse Bayesian Learning (SSBL) from which a
Reduced Lead Field Matrix is constructed, which is used as input to eLORETA.

Main results With Sparse eLORETA, source sparsity can be traded against
signal fidelity; the proposed optimum is shown to yield a much sparser solution
than eLORETA’s with only a slight loss in signal fidelity.

Significance When pursuing a data-driven approach, for cases where it is
difficult to choose specific regions of interest (ROIs), or when subsequently a
connectivity analysis is performed, source space reduction could prove beneficial.
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1. Introduction

It is commonly accepted that perception, motor
behavior, language, and cognition emerge from
coordinated information flows between functionally
specialized regions. As these activities and flows are
dynamic, imaging techniques such as MEG and (scalp-
based) EEG are preferred over spatially more accurate
yet temporally less detailed ones such as fMRI and
PET [1, 2].

When localizing active brain regions, MEG and EEG
signals need to be projected back into the brain, a
procedure called source localization [3, 4]. It requires
solving an inverse problem (from scalp electrode- or
MEG sensor space to 3D brain space) that is bound
by the recordings not providing sufficient information
to guarantee a unique and stable solution [5]. The
recordings reflect mixtures of local neural generators
of which the activity is spatially smeared out due to
volume conduction, causing localization errors or even
a failure of the localization procedure.

In the case of EEG, source localization starts with a
forward equation expressing the scalp electric potential
differences as a function of the current densities
produced by the neural generators, an easy to solve
problem using linear algebra. The difficulty arises
when the scalp potential differences are known and
we need to solve the inverse solution for unknown
amplitudes and orientations of the current densities
[6]. Because there are many more unknowns than
equations, additional assumptions are needed, leading
to several algorithmic approaches. Two mainstream
source localization techniques have been proposed:
the equivalent current dipole (parametric) and the
distributed source models (nonparametric) [6]. The
latter differs from the former in that it does not require
the prior specification of the number of neural sources.
The former solves the inverse solution to obtain the
location and orientation of these sources. The latter
assumes the entire brain volume to consist of fixed
source locations and solves the inverse solution to
estimate their amplitudes; as these sources are by no
means assumed to be independent, they cannot be
regarded as different neural generators. There is a
tendency to rely on distributed source modeling when
there is no prior information about the expected active
brain regions, in the opposite case about the equivalent
current dipoles. Within the realm of the nonparametric

approaches, several source localization methods have
been proposed.

Linearly Constrained Minimum Variance (LCMV) [7,
8] is a spatial filtering method that accepts activity
originating from a specific location, while attenuating
that from other locations, thus a way of beamforming.
The result is an estimate of the activity generated by
the target brain locations. LCMV assumes that the
sources are not temporally correlated. The inverse
filter is based on minimizing the source variance at
a given location, subject to a ‘unit-gain constraint’.
The mapping between multiple sources and scalp-
EEG is obtained by combining corresponding LCMV
filters.

Exact Low Resolution Electromagnetic Tomography
(eLORETA) [9] is a linear inverse method character-
ized by a spatially smooth current density. It be-
longs to the LORETA family with zero localization
error in the case of one active dipole and no noise.
Several studies in realistic settings (multiple sources,
noise, actual recordings) reported that eLORETA out-
performs other linear methods in localization accuracy
[10].

Brain Connectivity Variable Resolution Tomographic
Analysis (BC-VARETA) is a recent inverse method
developed by Gonzales et al. [11] that has already
been adopted in a few studies [12, 13, 14]. The
method estimates the inverse solution and its precision
matrix, which represents the connectivity parameters,
by using the frequency domain representation of the
stationary time series. It belongs to the category
of parametric source localization methods. As BC-
VARETA is computationally expensive, to reduce
source space dimensionality, a prior screening of the
sources is performed using Structured Sparse Bayesian
Learning (SSBL), which has a parameter that controls
to what extent (in %) source space is reduced, called
the sparsity constraint (κ). If it is set to 5%, then
source space is reduced to 5% of its original size [15].
The extent of dimensionality reduction is controlled
by an upper bound on the number of selected sources
so that κ is chosen depending on the context. One
should note that BC-VARETA localizes sources but
does not reconstruct their time series. However, it has
several interesting features, one of which is the much
sparser solution it produces than mainstream source
localization techniques. When applied to the Cuban
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Brain Mapping Project, BC-VARETA’s results have
been shown to be in alignment with the physiology
of human resting state EEG in the spectral domain
[11].

In this paper, we propose a novel method for source
localization from multiple stationary time series. The
method aims at a sparser solution compared to other
source localization methodologies while maintaining
localization accuracy. We first introduce our source
localization method called Sparse eLORETA. Then,
in Section 3, we apply the proposed method to
one simulated- and 2 real-world EEG datasets,
the Cuban Human Brain Project, and the Berlin
Brain Connectivity Benchmark and Data Analysis
Challenge Dataset, and report the results. Finally, we
summarize and discuss our results and draw our main
conclusion.

2. Materials and Methods

When pursuing a data-driven approach, for cases
where it is difficult to choose a priori regions of
interest (ROIs), or when subsequently a connectivity
analysis is performed, source space reduction could
prove beneficial. The advantage of BC-VARETA in
this respect is that it generates a sparse, yet accurate
source localization. This motivated us to utilize
several components from BC-VARETA to sparsify
source localization. Conceptually, we use the source
localization map obtained from BC-VARETA as a
mask for eLORETA. In what follows we briefly discuss
BC-VARETA. Implementation details, as well as of the
other used methods, are listed in the Supplementary
Materials section.

First, we apply SSBL to reduce the source space of
the Lead Field Matrix. SSBL extracts the possibly
active generators and gives us the indices of dipoles
that are potentially active. These indices are used
to reconstruct a new, partial Lead Field Matrix.
Finally, the resulting Lead Field Matrix is used within
eLORETA to generate the inverse solution.

Algorithm 1: Source Space Reduction for
eLORETA.

[miu]← ssbl(Svv,HM, seg, dip map);
[indms]← smoothing(miu, κ ∗ dip, vert, fac, ind);
ReducedHM ← HM(:, indms);
P ← eLORETA(ReducedHM, γ);

In Algorithm 1, we list the pseudocode behind Sparse
eLORETA. First, we apply SSBL to reduce the source
space of the Lead Field Matrix. SSBL requires the
Covariance Matrix of the input data (Svv), the head
model (HM), the number of epochs (seg) and a

dictionary mapping each dipole onto itself (i.e. 1 →
1). SSBL extracts the possibly active generators
as a list of indices (miu). In the next step, a
smoothing effect is applied to the results from SSBL.
Here we use the κ parameter to indicate to what
percentage of all dipoles (dip indicates the number
of dipoles) smoothing should prune dipoles. When
taken too small, relevant dipoles could be pruned,
when taken too large irrelevant dipoles could remain.
Note that the smoothing function also requires the
location of all dipoles (vertices), the triangulation
(fac), and the range of all dipole indices (ind). The
smoothing step returns the indices of the remaining,
potentially active dipoles, and this concludes source
space reduction. These indices are used to construct
the reduced head model that is input to eLORETA,
which generates the inverse solution P . eLORETA
takes only one other parameter, γ, which is the
regulariation parameter.

2.1. Simulated EEG Dataset

A simulation study provides us with a ground truth
against which our results can be verified and compared
with those of other methods. We adopt the simulation
framework of Anzolin et al. which consists of
several steps: the generation of brain signals with a
predetermined connectivity pattern as ground truth,
noise generation, forward modeling, inverse modeling,
connectivity estimation, and performance evaluation
[16]. However, we propose a different approach for
the first step, as we are not interested in connectivity
estimation.

Pseudo-EEG data were generated by employing the
toolbox described in the work from Haufe et al.
[17]. We simulated three time series of 500 samples.
A 3-dimensional multivariate autoregressive (MVAR)
model of order 2 was used to simulate pseudo-EEG
data. This process has previously been used to evaluate
non-stationary, directed interactions in multivariate
neural data [18]. Hereby, x1, x2 and x3 represent
the electrical activity of three dipoles within the brain.
Each one is an active source contributing to the pseudo-
EEG measured on the scalp assuming an EEG cap with
108 electrodes.

x1(n) = 0.5x1(n− 1)− 0.7x1(n− 2)
+0.25x2(n− 1) + w1(n)

x2(n) = 0.7x2(n− 1)− 0.5x2(n− 2)
+0.2x1(n− 1) + 0.25x3(n− 1) + w2(n)

x3(n) = 0.8x3(n− 1) + w3(n)

(1)

In order to probe the robustness of source localization,
we considered not only brain sources but also 500 noise
sources as background activity. We considered multiple
types of noise: (incoherent) pink noise (i.e., standard
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Close Superficial (33.92, 59.40,−3.27)
Far Superficial (25.01,−93.32, 7.55)

Close Deep (−2.78,−2.56, 4.47)
Far Deep (58.19,−32.33, 33.18)

Close Superficial (40.87, 59.98, 5.69)
Far Superficial (40.87, 59.98, 5.69)

Close Deep (−5.88,−34.51, 34.22)
Far Deep (−30.73, 2.01,−6.17)

Table 1: Fixed dipole coordinates within the subsam-
pled New York head model, for each configuration. The
first table lists the positions of the first fixed dipole, the
second table those of the second fixed dipole.

pink noise), coherent autoregressive noise [19], and
coherent pink noise [20], and gauged their effect on
source localization accuracy.

BC-VARETA requires information about the cortex
mesh. We have used the New York Head Model
available in the Berlin Brain Connectivity Benchmark
and Data Analysis Challenge with mesh information
in terms of vertex coordinates and triangles or faces
[21]. We introduced 2004 electric equivalent dipoles,
homogeneously distributed and located using the
ICBM152v2009 stereotaxic registration model. The
2004 dipole positions were obtained by subsampling
the 75000 MNI coordinates available in the New York
Head Model [22].

For each simulation, a different triple dipole configura-
tion was created by having two dipoles at fixed posi-
tions and the third dipole at a randomly chosen one.
The fixed dipoles were positioned in four configura-
tions using the same stereotactical coordinates as in
[16]: two superficial dipoles (distance from the origin
> 6.5 cm), two deep ones (distance from the origin <
6 cm), or two close together (relative distance < 5 cm)
or far apart (relative distance > 8 cm) (Table 1). We
further assumed that the dipoles are oriented perpen-
dicularly to the cortical surface. The 500 noise sources
were randomly distributed within the brain mesh ex-
cluding the three active dipole locations.

Once we activate the 3 brain sources and the 500 noise
sources, we can project their activities to the 108 EEG
electrodes. Once projected, the scalp activity of the
brain source xactive(t) and the scalp activity of the
noise sources xnoise(t) are summed. This is done with a
coefficient λ, set to 0.5. ‖xactive(t)‖F and ‖xnoise(t)‖F
are the Frobenius norms of the multivariate time series
xactive(t) and xnoise(t), respectively, i.e., the square
root of the squared activity summed spatially and
temporally. The Frobenius norm is used to scale the

brain source and noise activities:

xbrain(t) = λ× xactive(t)

‖xactive(t)‖F
+(1−λ)× xnoise(t)

‖xnoise(t)‖F
.(2)

The signal definition, seen in equation 2, implies
that deep active dipoles can have the same strength
as shallow ones. This could make the discovery
of deep active dipoles more difficult but, on the
other hand, as the Signal to Noise ratio (SNR) is
computed not per source, but for all three dipoles
simultaneously, this imbalance is mitigated. Finally, in
order to simulate the measurement noise, spatially and
temporally uncorrelated signals, Gaussian-distributed
uncorrelated white noise xm noise is added to xbrain(t)
with a predefined Mean Squared Amplitude ratio of
0.9. The overall pseudo-EEG data is defined by the
following equation:

xmeasured(t) = 0.9× xbrain(t)

‖xbrain(t)‖F
+0.1× xm noise(t)

‖xm noise(t)‖F
.(3)

2.2. Real-world EEG Datasets

Two EEG datasets are considered as real-world cases.
The first set was recorded from a 32 year old healthy
male under resting state (eyes closed) condition using
128 channels of a MEDICID 5 system operating at
200 Hz sampling rate. It is part of the Cuban Brain
Mapping Project [23], created in 2005 with the aim to
obtain brain atlases of the Cuban population.

The second dataset consists of 118 channel EEG
activity recorded from five healthy subjects [24]
during a visually-cued multi-class motor imagery
task (imagined left hand, right hand and right foot
movements) at 100 Hz sampling rate, available under
Dataset IVa of the BCI Competition III (http://www.
bbci.de/competition/iii/desc_IVa.html). We
consider the case of imagined right hand movement
of subject ay. Prior to source localization, we apply
a 4th order zero-phase Butterworth filter to extract
alpha band activity (8-12 Hz) and cut out epochs
from 0.5s after the start cue until 0.5s before stop
cue to avoid contamination by the visual cue and
early stopping, respectively. We determine within each
epoch the degree of event-related desynchronization
(ERD) or -synchronization (ERS) with respect to
baseline activity. Baseline activity epochs are taken
from the rest periods between trials starting 0.3s
after the onset of a rest period until 0.3s before it
ends. In total, there are 18 epochs (18 epochs for
baseline activity and 18 epochs for imagined movement
activity). These epochs are then concatenated.

Similar to performed movement, we expect imagined
movement activity in motor areas including the pri-
mary motor cortex (M1) and supplementary motor
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area (SMA), and ventral and dorsal parts of the pre-
motor cortex (PMC), although activation of M1 dur-
ing imagined movement is weaker compared to that
during performed movement [25]. Activity is expected
in areas that relate to action planning, such as the
dorsolateral prefrontal cortex (DLPFC), ventrolateral
prefrontal cortex (VLPFC) (which anatomically corre-
sponds to the inferior frontal cortex, IFC), and poste-
rior parietal cortex (PPC) including the angular gyrus
[26]. However, given the rather simple motor task, we
expect less involvement of the medial prefrontal cor-
tex (MPFC), such as SMA. As far as we know, no
source localization results have been published for this
dataset.

For both datasets, we have used the Head Model of
the Cuban Brain Mapping Project [23]. It contains
mesh information in terms of vertex coordinates and
triangles or faces. We introduced 6003 homogeneously
distributed electric equivalent dipoles.

3. Results

3.1. Simulated EEG Dataset Results

The accuracy with which the active source signals
are estimated with LCMV, eLORETA and Sparse
eLORETA, for different source configurations and
noise types, are summarized in Tables 2- 3. The
tables list the average correlation coefficients between
the reconstructed dipoles and ground truth signals
(obtained from Eq 1), averaged over the 1000 randomly
chosen positions of the third source with the other 2
sources kept fixed.

A first observation is that LCMV yields the best
correlation coefficients, which is counter-intuitive
since in real-world cases we expect eLORETA to
outperform LCMV. eLORETA does not provide an
exact localization due to the presence of noise models
in the simulation. There is a slight decrease in
correlation obtained with Sparse eLORETA compared
to eLORETA. This is a side effect of our source space
reduction procedure: we found that, by increasing
the sparsity constraint κ, the correlation coefficient
increases and from κ = 0.12 onwards coincides with
eLORETA’s (blue line in Figure 1). However, κ
also affects source localization accuracy as reported
next.

Figure 2 shows the source distributions obtained
with eLORETA, BC-VARETA and Sparse eLORETA
for (uncoherent) pink noise in the case of the Far
Superficial dipole configuration. We observe that,
despite LCMV’s higher signal correlation (Table 3), the
reconstructed dipoles are dispersed without showing
any evidence of clustering around the true ones.

LCMV eLORETA Sparse eLORETA
PN 0.9867 0.9537 0.9234

CPN 0.9119 0.9329 0.9241
CAN 0.9807 0.9479 0.9020

Table 2: Average correlation coefficients of the Far
Superficial dipole configuration given 3 noise models.
PN = (incoherent) pink noise, CPN = coherent pink
noise, CAN = autoregressive pink noise.

LCMV eLORETA Sparse eLORETA
FS 0.9867 0.9537 0.9234
CS 0.9707 0.9750 0.9023
FD 0.9204 0.8833 0.7721
CD 0.8383 0.6297 0.5991

Table 3: Average correlation coefficients in the
presence of (uncoherent) pink noise for different dipole
configurations. FS = Far Superficial, CS = Close
Superficial, FD = Far Deep, CD = Close Deep.

Figure 1: Average correlation (blue line, left scale) and
complement of the average normalized spatial spread
(red line, right scale), normalized with respect to
eLORETA’s outcome (red ball), plotted as a function
of the sparsity constraint κ. The blue ball denotes
eLORETA’s average correlation. The Pareto-optimal
solution is at the intersection (κ ≈ 0.08).

With eLORETA, the found dipoles are clustered
around the true ones but still less than with BC-
VARETA. Compared to eLORETA, we clearly see the
effect of source space reduction: the reconstructed
dipoles are grouped and close to the true ones.
Results are analogous for other configurations given
the quantitative results listed in Table 3.

We also assessed the computational effort (i.e. elapsed
time) required by the source localization methods
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Timing
LCMV 0.0286

eLORETA 0.3567
Sparse eLORETA 1.0459

BC-VARETA 68.0538

Table 4: Average elapsed time (in seconds) of LCMV,
eLORETA, Sparse eLORETA and BC-VARETA,
determined using Matlab’s tic toc function, averaged
over 1000 runs.

(Table 4). We observe that BC-VARETA takes much
more time compared to the other methods. Although
the SSBL step is time-consuming, Sparse eLORETA
requires only slightly more time than eLORETA, a
beneficial side effect of reducing source space.

3.2. Clustering reconstructed dipoles

The results reveal major differences in the spatial
distributions of reconstructed sources returned by
the different methods. In order to quantify these
distributions, we applied medoid clustering [27] to
partition the reconstructed sources into clusters,
extract their centers (”medoids”) and determine their
”spatial spread” defined as the average distance
of the cluster members to their corresponding
medoids. Note that medoid clustering assumes
the number of clusters is known. We have
applied the method to cluster the eLORETA, Sparse
eLORETA, BC-VARETA and LCMV reconstructed
source distributions. Figure 2 shows the result of
the Far Superficial configuration in the presence of
(uncoherent) pink noise. The Supplementary Materials
Section shows the implementation details for the
mediod clustering.

Table 5 lists, for all dipole configurations considered,
the average spatial spread, averaged over the 3 clusters.
The first point to note is the widespread nature of
the LCMV dipole solutions. We also observe that
Sparse eLORETA consistently yields smaller cluster
sizes compared to eLORETA yet slightly larger than
BC-VARETA’s. Table 6 shows the average distance
between the cluster elements and the true sources. We
observe that the performances of eLORETA, Sparse
eLORETA and BC-VARETA are very similar. In
line with the (average) spatial spread, LCMV tends
to generate larger distances between medoids and true
sources.

When plotting the complement of the spatial spread
against the sparsity constraint κ (red line in Figure 1),
we see that the larger κ, the smaller the complement
of the spatial spread, or the larger the spatial spread,
until about κ = 0.12 after which it levels off. When

LCMV eLORETA
Sparse

eLORETA
BC-VA
RETA

FS 1196.7 199.47 113.16 113.89
CS 1165.6 335.71 57.61 4.41
FD 4473.1 9239.1 175.34 4.48
CD 3001.4 907.3 242 65.4

Table 5: Average spatial spread in the presence of
(uncoherent) pink noise for different dipole configura-
tions. FS = Far Superficial, CS = Close Superficial,
FD = Far Deep, CD = Close Deep.

LCMV eLORETA
Sparse

eLORETA
BC-VA
RETA

FS 68.71 11.88 11.64 11.43
CS 60.14 15.23 12.76 8.61
FD 19.24 41.46 37.07 35.28
CD 45.95 42.93 42.93 45.39

Table 6: Average distance between medoids and true
sources in the presence of (uncoherent) pink noise for
different dipole configurations. FS = Far Superficial,
CS = Close Superficial, FD = Far Deep, CD = Close
Deep.

comparing this with the average correlation (blue
line), we observe that κ = 0.12 is also the point
where it levels off and, in addition, where there is
no significant difference between eLORETA (blue ball)
and sparse eLORETA. This is likely due to the fact
that, for higher κ’s, the sparsity constraint only prunes
irrelevant dipoles. Hence, there seems to be a tradeoff
between signal correlation and spatial spread or, in
other words, between temporal and spatial accuracy.
When normalizing the two metrics, thus, time series
correlation and normalized complement of the average
spread, they can be plotted on the same [0,1] scale.
We take κ at the intersection as in this way we cannot
improve on one metric without worsening on the other
(Pareto optimum).

3.3. Real-world EEG Dataset Results

Figure 3 shows 300 source localizations (aka bootstrap-
ping) for the first real world case (Cuban EEG dataset)
as obtained with eLORETA, Sparse eLORETA, BC-
VARETA and LCMV. We observe that the sources
reconstructed with LCMV are more spread out. The
most active sources (darker color) in Sparse eLORETA
are in areas where BC-VARETA and Sparse eLORETA
also locate their sources. Compared to eLORETA, we
clearly observe the effect of source space reduction in
Sparse eLORETA. There are no notable differences be-
tween Sparse eLORETA and BC-VARETA’s results.
For κ we took 0.08, as in the simulation setup, also
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Figure 2: Distribution of reconstructed dipoles (brain top views, nose pointing upwards) of the simulation study,
(uncoherent) pink noise case. Shown are the results obtained using eLORETA, Sparse eLORETA, BC-VARETA
and LCMV given the Far Superficial configuration. with the 3 medoid clusters marked in orange, green and
cyan. Medoids centers are indicated with black filled circles, the ground truth dipoles with red filled circles. In
the bottom right cluster (green for eLORETA), the medoid center overlaps with the ground truth dipole.

given that it does not seem to prune sources from
relevant regions while maintaining the desired spar-
sity.

Figure 4 shows 300 source localizations for the
second real world set (subject ay, imagined right
hand movement) obtained with eLORETA, Sparse
eLORETA, BC-VARETA. We observe that BC-
VARETA does not perform well on this dataset
as only a few sources are localized. LCMV also
has issues as practically all sources are labeled
as ERS and distributed uniformly without showing
any identifiable clusters (not shown). eLORETA,
and Sparse eLORETA in particular, are able to
reconstruct sources in the motor cortex. For the
latter two methods, we observe alpha band ERS
activity (i.e. deactivation) in DLFPC (bilaterally),
angular gyrus (ANG, contralaterally), and superior
PPC (contralateral in Sparse eLORETA, bilateral in
eLORETA), and ERD activity in M1 (contralateral
in Sparse eLORETA, bilateral in eLORETA albeit

less ipsilateral) and VLPFC (bilaterally), but no
activity in MPFC (SMA) (see Figure 5 for a labeling
of the ERD/ERS active brain regions for Sparse
eLORETA). Time-locked deactivations during goal-
directed behavior in these regions have been observed
in several studies and are considered part of a default
mode network [28]. We observe that eLORETA
exhibits close-to-zero ERD/ERS activities near the
temporal pole and ERS activities along the inferior
temporal gyrus bilaterally but all these have been
pruned by SSBL in Sparse eLORETA.

4. Discussion

Localizing active brain regions from non-invasive
recordings is a challenging problem as there is simply
not enough information to arrive at a unique, stable
solution without relying on additional assumptions.
This has led to a gamut of localization methods at
least in the case of scalp EEG, most importantly
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Figure 3: Distribution of reconstructed dipoles (brain top views, nose pointing upwards) of the Cuban EEG
dataset using eLORETA, Sparse eLORETA, BC-VARETA and LCMV. The grey nodes in the background are
mesh nodes. The filed circles are active dipoles with a darker color indicating more activity.

LCMV and several members of the LORETA family,
such as eLORETA and sLORETA. Some methods
in addition provide estimates of the functional
connectivity between reconstructed sources as in BC-
VARETA [11], where sources and connectivities are
computed simultaneously. A more common approach
is to first anatomically define well-separated ROIs and
then to estimate their functional connectivity [29] with
recent studies pushing for adaptive cortical meshes
to improve sensitivity and distinguishability of the
ROIs [30]. Others have focused on demixing the
recorded signals, instead of localizing them, after which
their connectivity is estimated, e.g., using the method
proposed in [16].

We proposed Sparse eLORETA for source localiza-
tion. It relies on Structured Sparse Bayesian Learning
(SSBL) to reduce source space dimensionality. Com-
bined with eLORETA, it yields a much sparser solu-
tion, while retaining the advantages of the latter (i.e.,
a low localization error and few ghost sources). The
much sparser solution is expected to facilitate subse-

quent connectivity analysis.

Similar to other simulation studies, we modulated the
depth of the sources, their reciprocal distance, and the
SNR (brain noise level). We adopted the framework of
Anzolin et al. to develop a realistic simulation of brain
activity to assess Sparse eLORETA’s performance for
multiple configurations of the 3 active sources [16]. As
expected, superficial sources that are far apart were
much easier to localize, compared to deep sources
close together, as seen in Table 3. Compared to
LCMV and eLORETA, Sparse eLORETA performed
better, gaining more sparsity while sacrificing only
minimally on accuracy, showing the benefit of SSBL.
We mainly looked at how accurately these state-of-
the-art techniques could locate 3 active sources. We
had instances where the sources were not accurately
located but their signals correlated well with the true
ones. Moreover, we could show that, despite the
SSBL step, the computational effort of our method
is similar to eLORETA’s since our solution is more
sparse. However, BC-VARETA requires significantly
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Left Hemisphere Right Hemisphere

Figure 4: ERD/ERS post-cue imagined right hand movement activation of 300 sources (aka bootstrapping)
obtained with eLORETA, Sparse eLORETA and BC-VARETA, mapped on left and right lateral brain views
(arranged column-wise). The grey nodes in the background are mesh nodes. Blue dots correspond to ERS,
yellow/red to ERD and green to neither. For BC-VARETA dipoles are grey dots as no ERS/ERS assessment is
possible.

more effort compared to eLORETA and our method.
LCMV is the fastest to compute, although the results
were disappointing.

To quantify source localization accuracy of our
simulation results, we performed a medoid clustering
analysis on the reconstructed source distributions. We
extracted two metrics from this analysis, the distance
of the medoids to the true sources and the spatial
spread around the former, and showed that our method
performed better than eLORETA. However, our results
also showed that BC-VARETA still holds an edge
over the methodology we propose as seen in Table 5.

Since BC-VARETA localizes sources but does not
reconstruct their time series, a comparison with BC-
VARETA cannot account for the fidelity with which
these time series are reconstructed. In that sense, our
method is a compromise between source sparsity and
signal fidelity, two aspects of the source reconstruction
problem. Medoid clustering could also be used to
reduce source space similar to Wang et al. [31], albeit
using different clustering approaches. We believe that
source screening, which we proposed for eLORETA,
and (data-driven) clustering, or a combination thereof,
have their merits in generating sparse solutions.
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Figure 5: Contralateral view of the Sparse eLORETA solution with clusters labeled by the corresponding brain
regions.

In order to show the applicability in practice, we
considered a resting state and a cued imagined
movement EEG dataset. For the first case, except
for LCMV, we observe that the source estimates of
eLORETA, Sparse eLORETA and BC-VARETA are
located in similar regions but with a smaller spread for
the latter two, as expected (Fig. 3). However, while in
our simulation study BC-VARETA exhibited a smaller
spread, this was no longer the case with the real-world
dataset.

As to the results of the second case (Figure 4),
we observe that, compared to Sparse eLORETA,
eLORETA has more ipsilateral clusters of sources
but at the same time more spurious ones. Again,
BC-VARETA performs much worse by consistently
locating sources in medial central and temporal cortices
(with almost zero spread).

Finally, for cases where ROIs are not predefined, such
as with the real world datasets we have also considered,
our method could be used to perform source space
reduction prior to applying source localization. In
the future, it would be interesting to expand on our
work by integrating Sparse eLORETA with a method
for selecting ROIs. In this way, we could arrive
at a completely data-driven method. Since source
localization results returned by Sparse eLORETA are
sparse, it would be interesting to see how clustering
algorithms based on pairwise connectivities could assist

in charting ROIs.

5. Conclusion

We show that Sparse eLORETA offers the possibil-
ity for eLORETA to trade temporal for spatial accu-
racy.
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Puoliväli, Satu Palva, and J Matias Palva. Hyperedge
bundling: A practical solution to spurious interactions
in meg/eeg source connectivity analyses. NeuroImage,
173:610–622, 2018.


