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Abstract 

 

The binary view of inborn errors of immunity classified as either autoinflammatory conditions or 

primary immunodeficiency in the strict sense of the meaning i.e. increased susceptibility to infection 

is challenged by the description of recent inborn errors of immunity (IEI). Triggers leading to cell death 

pathway activation and disruption of cell death pathways, play a major part in the pathophysiology of 

infection and autoinflammation. In addition, molecules with a double role in the extracellular versus 

intracellular milieu add to the complexity. In all, in-depth study of human inborn errors of immunity, 

will continue to instruct us on fundamental immunology and lead to novel therapeutic targets and 

approaches that can be used in other monogenic and polygenic/complex immune disorders.  

 

 

 

INTRODUCTION 

Human inborn errors of immunity represent a growing body of inherited disorders in which one or 

more flaws in host defense result in increased susceptibility to infection - the “classic” clinical 

presentation of IEI - in addition to various other manifestations of failing immunity: severe 

autoimmunity, allergy, malignancy and autoinflammation [1,2]. We will here primarily focus on IEI 

presenting with infection and autoinflammation. The concept of autoinflammation and autoimmunity 

dates back to the early 1900s with Paul Ehrlich defining “horror autotoxicus”. However, the unraveling 

of the molecular origin of an autosomal dominant inherited syndrome of recurrent fever and 
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inflammation,  TNF receptor- associated periodic syndrome (TRAPS) and the locus for the gene 

associated with familial Mediterranean fever (FMF) after a decade of positional-cloning efforts revived 

the field and led to coining the term autoinflammation  [3-5]. Auto-inflammatory syndromes manifest 

with apparently unprovoked recurrent or continuous episodes of fever, systemic and/or organ specific 

inflammation that may lead to central nervous system findings in some patients. The inflammatory 

attacks can be triggered by stress or environmental factors (for instance infection) in some diseases.  

Auto-antibodies and self-reactive T cells, features of auto-immunity, are typically absent [6]. 

Classically, autoinflammation and auto-immunity were hypothesized to be mutually exclusive with 

autoinflammation resulting from monogenic defects in innate immunity  as opposed to auto-immune 

manifestations resulting from dysregulated adaptive immune responses. The classic auto-

inflammatory conditions, were also collectively seen as a distinct entity, with no associated increased 

susceptibility to infection. The so-called inflammasomopathies, leading to unhindered cleaving of pro-

IL-1β  and pro-IL-18, with cryopyrinopathies (CAPS) as a prototype fit this view perfectly.  As the 

discovery of new IEI races forth, it becomes increasingly clear that any dichotomous classification is an 

oversimplification. Increased susceptibility to infection and autoinflammation coalesce in many 

complex IEI, including in IEI affecting adaptive immunity, via multiple cellular signaling pathways. 

Besides,  in some cases, immunosuppressive or immunomodulatory treatment approaches may 

contribute to the increased susceptibility to infection. In this Review, we will provide an update on 

recent IEI with infection and autoinflammation as predominant phenotypes, and on novel insights in 

previously described IEI (Table 1).   

RECENTLY DESCRIBED IEI COMBINING INFECTION AND AUTOINFLAMMATION 

1. Defects of the NF-κB -pathway: recent updates and novel IEI 

The NF-κB pathway is a central gateway to inflammatory responses. Countless signaling pathways 

converge to activate NF- κB in response to diverse stimuli: cytokines (IL-1beta, TNF), pathogens (via 

Toll like receptors (TLR)), and various cellular stimuli (reactive oxygen species, signals of endoplasmic 

reticulum stress etc.). A proinflammatory response ensues, which is tightly regulated by a series of 

ubiquitination, deubiquitinating, and phosphorylation events [7,8].  Several IEI affect the NF-κB 

pathway, most presenting with a blended phenotype of variable severity of susceptibility to infection 

and autoinflammation [7,9]. Ectodermal dysplasia with anhidrosis and immunodeficiency, EDA-ID, is 

the prototype of the IEI affecting the NF-κB pathway. X-linked recessive EDA-ID, due to NF-κB essential 

modulator (NEMO) deficiency, is caused by hypomorphic mutations in IKBKG, encoding a key regulator 

of the canonical NF-κB pathway [10].  Patients with X-linked EDA-ID display reduced cellular responses 

including IL-1β, IL-18, TNF, and TLR ligands which probably explains their susceptibility to bacterial, 



mycobacterial, fungal and viral infections in the presence of grossly normal T, B and NK cell 

development.  Most patients can be managed with antimicrobials and immunoglobulin substitution; 

some have undergone hematopoietic stem cell transplantation (HSCT) [11]. A similar yet more severe 

phenotype, usually fatal prior to age 1y without HSCT, is caused by heterozygous gain-of-function 

mutations in NFKB Inhibitor Alpha (NFKBIA) encoding IκB-α, resulting in impaired NF-κB activation 

[12,13]. The exact molecular mechanism underlying the gastrointestinal autoinflammation in EDA-ID 

is unclear but is potentially linked to the gut protective function of NEMO [14].  

Biallelic loss-of-function mutations in Inhibitor of Nuclear Factor Kappa B Kinase Subunit Beta (IKBKB) 

encoding IKK2, result in a complete loss of expression with a clinical phenotype of early onset bacterial, 

viral, fungal and mycobacterial infections. The patients mostly have normal T and B cell numbers but 

with a naïve phenotype. Responses to stimulation of T-cell receptors, B-cell receptors, TLRs, 

inflammatory cytokine receptors are impaired [15-18]. These patients need urgent HSCT, but outcome 

is poor due to ongoing invasive pyogenic infections, potentially because of the failure of HSCT to 

correct the immunological defect in non-hematopoietic cells [19]. Recently, a homozygous missense 

mutation in IKBKB, resulting in a milder phenotype, was reported [20]. Interestingly, a de novo 

heterozygous gain-of-function mutation in IKBKB (p.V203I) leading to enhanced NF-κB signaling was 

described in two unrelated kindreds. These patients presented with early-onset recurrent viral, 

bacterial and fungal infections  due to lymphopenia and disturbed B- and T-cell signaling, and with 

features of autoinflammation including hidradenitis suppurativa, severe dermatitis, cataracts and 

dental anomalies compatible with ectodermal dysplasia [21]. The different outcomes of homozygous 

loss-of-function and heterozygous gain-of-function mutations in IKBKB present another example of the 

delicate balance governing NF-κB signaling. 

A similar yet narrower clinical picture of invasive pyogenic infections is seen in patients with rare 

inherited defects of the Linear ubiquitin chain assembly complex (LUBAC). LUBAC consists of HOIL-1 

interacting protein (HOIP) and the two accessory proteins HOIL-1 (Heme-Oxidized IRP2 Ubiquitin 

Ligase 1) and SHARPIN (or SHANK interacting protein like 1) and stabilizes NEMO and other key proteins 

in the NF-κB pathway by attaching linear ubiquitin chains [22]. Distorted LUBAC activity caused by 

biallelic deleterious / hypomorphic mutations in either HOIP or HOIL-1 lead to an infectious phenotype 

with impaired NF-κB signaling (as shown in fibroblasts) and autoinflammation with excessive 

responsiveness to IL-1 stimulation in patient derived monocytes [23,24]. Patients with HOIL-1 

deficiency have chronic autoinflammation and cardiac and muscular amylopectinosis [23].  The first 

described patient with HOIP deficiency presented multiorgan autoinflammation. The patient’s B cells 

show an impaired response to CD40 engagement and their fibroblast show impaired responses to IL-

1β and TNFα. [24].  Recent studies in a second patient confirmed the reduced phosphorylation and 



decreased degradation of I-kappa-B alpha (IκBα), and delayed phosphorylation of IκB kinase α/β 

(IKKα/β) with impaired activation of NF-κB. In the same study, transcriptomic analysis showed a type I 

IFN signature more strongly upregulated than the TNF gene expression pathway in patient-derived 

peripheral blood mononuclear cells [25]. However, the narrow infectious phenotype, at least in the 

few patients described, remains incompletely explained. 

Work from mouse models suggested that receptor-interacting serine/threonine-protein kinase 1 

(RIPK1) is a target for treating autoinflammation in NEMO deficiency [14]. RIPK1 inhibitors have been 

studied to treat various human conditions [26].  However, recently IEI associated with pathogenic 

variants in RIPK1 have been described. RIPK1 is a key molecule for mediating mixed lineage kinase 

domain-like (MLKL) dependent necroptosis and caspase-8 dependent apoptosis and governs signalling 

downstream of death receptors and pattern recognition receptors. RIPK1 is post-translationally 

regulated by deubiquitinases, including A20, phosphorylation and caspase-8-mediated cleavage. 

Dysregulations of these post-translational modifications switch on the pro-death function of RIPK1, 

and kindle inflammation [27]. Homozygous loss-of-function mutations in RIPK1, described in 12 

patients from 9 kindreds, lead to impaired T- and B-cell development and lymphopenia and impaired 

NF-κB activity as well as decreased p38 mitogen-activated protein kinase activity. Enhanced propensity 

to TNF-induced necroptosis and increased NLRP3 inflammasome activity may explain the inflammatory 

features of the disease [28] [29]. The resulting phenotype is characterized by severe infections (sepsis, 

abscesses) and autoinflammation (including very early onset inflammatory bowel disease). In contrast, 

heterozygous - missense mutations p.D324N, p.D324H, p.D324Y prevent caspase cleavage of RIPK1 in 

humans, thereby promoting RIPK1 activation, and result in early-onset fevers and intermittent 

lymphadenopathy (cleavage resistant RIPK1 induced autoinflammatory (CRIA) syndrome) without 

infections [30,31]. These non-cleavable RIPK1 proteins promote cell death and pro-inflammatory 

cytokine production. While CRIA patients’ PBMCs and monocytes display a strong inflammatory 

signature induced by TNF, their fibroblasts demonstrate compensatory mechanisms to mitigate the 

deleterious effects of the activated RIPK1 [31,32]. The patients are treated successfully with 

tocilizumab.  

Early-onset severe multisystem autoinflammation without apparent infection susceptibility is 

observed in patients with biallelic loss-of-function mutations in OTULIN, a deubiquitinase that 

negatively regulates LUBAC. In contrast to OTULIN-deficient monocytes, in which TNF signaling and 

NF-κB activation are increased, loss of OTULIN in patient-derived fibroblasts leads to a reduction in 

LUBAC levels and an impaired response to TNF.  Both patient-derived fibroblasts and OTULIN-deficient 

monocytes are more prone to TNF-induced death [33,34]. As HSCT leads to complete resolution of 

inflammatory symptoms, including fevers, panniculitis and diarrhea, hematopoietic system derived 



cells likely play a major role in the development of autoinflammation. Several other IEI resulting from 

a dysregulation in the NF-κB pathway present with a blended phenotype of variable degrees of 

susceptibility to infection and autoinflammation. Based on the recent progress in gene discovery 

projects, additional  monogenic defects presenting with autoinflammation and infection will likely be 

discovered in the near future.  

2.  Inborn errors of immunity with increased type I IFN signalling 

The concept of type I interferonopathies was proposed by Crow in 2011 to refer to a group of novel IEI 

in which the homeostasis of type I interferon signaling is disturbed.  Already 30 years before, Ion 

Gresser had deduced from experiments in rodents that excessive  type interferon might be harmful to 

the host [35]. Type I interferons are key to antiviral defense and are induced upon detection of nucleic 

acids by various innate immune receptors. The trade-off to this mechanism in the context of the highly 

conserved structure of DNA and RNA is the risk of sensing self-nucleic acids as non-self. The tight 

regulation of nucleic acid sensing in the (intracellular and extracellular) environment, leading to type I 

IFN induction, is unavoidably subject to errors. Thus, both gain-of-function mutations in nucleic acid 

sensors as well as loss-of-function mutations in regulatory molecules can lead to type I 

interferonopathies [36], the disease prototype of which is Aicardi-Goutières syndrome. Intriguingly a 

direct link between the diseased status and the excessive type I IFN signaling remains to be 

demonstrated [36].  

AR Interferon Stimulated Gene 15 (ISG15) deficiency was first described in the context of Mendelian 

Susceptibility to Mycobacterial disease [37]. Follow-up reports described the presence of intracranial 

calcifications and central nervous system inflammation, reminiscent of Aicardi-Goutières syndrome, 

the prototypical type I interferonopathy [38]. More recently, necrotizing skin lesions, ulcerations, lupus 

and inflammatory myositis have expanded the phenotype [39]. The dual and diverse roles of 

extracellular versus intracellular ISG15 explain the distinct manifestations. ISG15 is an ubiquitin-like 

protein the expression and conjugation to target proteins (so-called ISGylation) is induced by infection, 

IFN- α/β, but also DNA damage and ageing [40]. Initial work mainly focused on its role in antiviral 

immunity in mice. However, the initial reports on AR ISG15 deficiency revealed a picture of 

mycobacterial disease, without overt susceptibility to severe viral disease, owing to the non-redundant 

role of ISG15 as an extracellular IFN- γ-inducing molecule. The ultimate effect of absent intracellular 

ISG15 lies in impaired accumulation of USP18, a critical negative regulator of cellular type I IFN 

signaling, which is stabilized by ISG15 in an ISGylation independent way [41,42]. Initial studies ascribing 

an antiviral role to ISG15 in human cells focused on the initial phases of infection and failed to 

recognize the role of ISG15 in regulating type I IFN response [41]. In vitro work contrasted findings in 

ISG15-deficient mice and humans: levels of viral replication were significantly lower in human ISG15- 



deficient fibroblasts upon priming with IFN- α/β, in line with the clinically observed lack of susceptibility 

to viral infection. This species-specific gain-of-function in antiviral immunity observed in ISG15 

deficiency is explained by the role of ISG15 to sustain USP18 levels in humans, a mechanism not 

operating in mice [41]. 

Another IEI combining increased susceptibility to infection and autoinflammation is human adenosine 

deaminase type 2 deficiency (DADA2). Initially described in 2014 as a condition with predominant 

severe vasculitis (polyarteritis nodosa, lacunar strokes and intracranial hemorrhages) [43,44],  

additional descriptions have demonstrated the various clinical presentations of this condition, 

including bone marrow failure, hematologic malignancy, auto-immunity and common variable 

immunodeficiency like conditions with bronchopulmonary infections and an unexpected increased 

susceptibility to infections with herpes viruses - cytomegalovirus (CMV), Epstein Barr virus (EBV), 

herpes simplex virus 1, human herpes virus 6 (HHV6) - as well as human papillomavirus (HPV) and 

Molluscum contagiosum virus [45].  Although the pathophysiology of the condition is incompletely 

unraveled, the central role of ADA2-deficient monocytes in fueling autoinflammation has been 

robustly demonstrated [46]. However, in addition to increased TNF signaling, a type I IFN signature is 

present [47]. A disputed hypothesis states that ADA2-deficient endothelium is key to the increased 

type I IFN signaling, due to decreased methylation of multiple endogenous retroviruses (i.e. 

reactivation of retroelements) fueling type I IFN expression [48,49]. DADA2 results in impaired B cell 

development and differentiation, accounting for the humoral immunodeficiency phenotype and the 

recurrent sinopulmonary infections. Moreover, T cell exhaustion and altered unconventional T cell 

generation may serve as an initial explanation for the increased susceptibility to viral infection [50]. 

However, additional research is needed to reconcile the increased type I IFN expression and the viral 

infection phenotype [50]. Potentially, the study of cell death mechanisms in this condition can shed 

additional light into this matter.  

3. IEI causing autoinflammation through endoplasmic reticulum stress 

In conditions of decreased protein folding capacity of the endoplasmic reticulum (ER), un-or misfolded 

proteins accumulate to cause ER stress. This triggers the unfolded protein response, a set of reactions 

aimed at maintaining homeostasis, by transiently reducing protein translation, by increasing ER folding 

capacity and ER-associated protein degradation and by initiation of programmed cell death, if ER stress 

fails to resolve. Unsolved ER stress can lead to inadequate cytokine secretion with  strong induction of 

Interferon Stimulated Genes (ISGs) [51]. The prototypic condition in which protein misfolding plays an 

important role is Tumor Necrosis Factor Receptor-associated periodic syndrome (TRAPS), in which 

missense mutations in the ectodomain of the TNF receptor superfamily 1A gene (TNFRSF1A) lead to 

the protein misfolding and ER retention [3,52,53]. TRAPS is the most prevalent autosomal dominant 



autoinflammatory disorder characterized by prolonged attacks of fevers, peritonitis, and soft tissue 

inflammation. Patients with TRAPS do not experience increased susceptibility to infections. 

Dysfunction of the proteasome, which serves to maintain protein homeostasis by degrading 

polyubiquitinated proteins, can also lead to ER stress. A typical example is CANDLE (Chronic atypical 

neutrophilic dermatosis with lipodystrophy and elevated temperature), caused by biallelic loss-of-

function variants in some of the proteasome components, and resulting in type I interferon induction 

[54-56].  Recently, heterozygous mutations in the proteasome maturation protein (POMP), a 

chaperone for proteasome assembly, were described in two unrelated patients with early onset 

combined immunodeficiency, inflammatory neutrophilic dermatosis and auto-immunity 

(thrombocytopenia and auto-antibodies) [57]. The truncated protein escaped nonsense mediated 

decay and inhibited assembly of the proteasome, in a dominant negative manner. The patients’ 

predominantly naïve T cells showed impaired effector cytokine production, explaining the combined 

immunodeficiency phenotype. Both hematopoietic and non-hematopoietic cells displayed a type I IFN 

signature. However, the patients never experienced fever in the absence of demonstrable infection, 

in contrast to CANDLE [57]. Two patients received HSCT and are alive and well without infection and 

inflammation, highlighting that the proteasome dysfunction in hematopoietic cells, played the major 

part in the pathogenesis of the disease [58].  

4. Actinopathies 

The actin cytoskeleton is involved in countless cellular remodeling processes, such as cell migration, 

phagocytosis, immune synapse formation, cell division, endo- and exocytosis, vesicular trafficking and 

autophagy [59]. In the context of autoinflammatory disease, actin is indispensable to the assembly and 

activation of NOD-like receptor (NRL) family, pyrin domain containing 3 (NLRP3) inflammasome, which 

is located at sites rich in polymerizing actin [11]. Besides dysregulated inflammasome function, there 

is a role for disturbed autophagy in actin cytoskeleton diseases [60]. To date more than twenty 

monogenic IEI affecting the actin-cytoskeleton have been described with variable degrees of 

autoinflammation [1,61]. The phenotypic spectrum of these immuno-actinopathies ranges from 

predominant immunodeficiency phenotype (for instance DOCK8 deficiency)  to a blended phenotype 

of immunodeficiency and autoinflammation (for instance ARPC1B deficiency) to predominant 

autoinflammation (heterozygous C-terminal variants in CDC42) [59,62,63].  The gene product of cell 

division cycle 42 (CDC42), an intracellular member of the Ras-homologous (Rho) family of GTPases, 

plays a crucial role in spatiotemporal organization of actin cytoskeleton dynamics. Patients with 

Takenouchi-Kosaki syndrome harbor a heterozygous missense mutation in CDC42 (p.Y64C) and display 

developmental delay, dysmorphic features, macrothrombocytopenia and immunodeficiency [64-66].  

The phenotype of additional patients harboring heterozygous missense mutations in CDC42 is by and 



large similar [67]. More recently, four patients with the recurrent de-novo heterozygous missense 

mutation in the C-terminal domain of CDC42, p.R186C, were described to suffer from  a neonatal-onset 

cytopenia with dyshematopoiesis, autoinflammation, rash, and hemophagocytic lymphohistiocytosis 

(HLH) (NOCARH syndrome)[68]. The patients had defective NK cell cytotoxicity, migration, and 

immunological synapse formation, as well as excessive production of proinflammatory cytokines. 

Treatment with IL-1 and/or IFN-γ antagonists was efficacious in some patients, while one  patient 

underwent successful HSCT [68]. Subsequently, additional patients harboring either p.R186C,p.Y64C, 

or other mutations were reported with a phenotype resembling NOCARH and new features such as 

myelofibrosis and malignancy [69][69-72]. Although the precise mechanism of autoinflammation is yet 

to be solved, the p.R186C variant has been shown to lead to aberrant palmitoylation and inadequate 

protein retention at the Golgi, with increased NF-κB signaling [68,71].  

Recently, seven patients from 5 kindreds with neonatal onset of fever episodes in the absence or 

presence of infection, skin rashes, skin abscesses, upper and lower respiratory tract infections were 

found to harbor homozygous missense mutations in Nck-associated protein 1–like (NCKAP1L) [73,74]. 

These mutations give rise to a loss-of-function of hematopoietic protein 1 (HEM1), an essential 

component in the actin cytoskeleton dynamics of hematopoietic cells [73,74]. HEM1 is an element of 

the WASP-family verprolin homologous protein (WAVE) regulatory complex (WRC) and a loss-of-

function results in destabilization of the WRC or impaired binding and activation of ADP-ribosylation 

factor 1 (ARF1). Patient T-cells demonstrate reduced cortical F-actin, with ensuing impaired T cell 

lamellipodia formation, cell spreading and excessive granule release by T cells resulting in 

hyperinflammation.  T-cell receptor induced mTORC2 dependent AKT phosphorylation is also impaired 

in patient cells.  However, T cell and NK cell cytotoxicity was normal under the conditions studied [73-

75]. The B cells show decreased lamellipodia formation and reduced membrane bound IgM in the 

immunological synapse, leading to reduced extracellular signaling. Hypothetically this can promote 

auto-antigen signaling and a BCR skewing towards autoantigens with selection of autoreactive B cells 

[75]. The autoinflammation likely results from the excessive cytokine release due to decreased cortical 

F actin accumulation and defective WRC formation [74].  

CONCLUSION 

The description of recently identified monogenic IEI revealed several examples of clinical phenotypes 

in which the presence of concurrent inflammation and infection refutes the deep-rooted  strictu senso 

dogma that immunodeficiency  and autoinflammation are mutually exclusive features of human 

disease [76]. Moreover, autoinflammation can no longer be solely attributed to IEI of innate immunity 

and the same is true for auto-immune reactions and IEI of adaptive immune response. A blended and 



subtle phenotype of immunodeficiency, autoinflammation is at play in the conditions described in this 

review. Another pattern emerges: diverse cellular mechanisms contribute to autoinflammation, 

ranging from dysregulated cell death, ER stress, to disturbed negative inhibition of tonic and induced 

type I IFN signalling, to disorganised cellular skeletal architecture. Although intrinsically 

oversimplifying, such pathway-based conceptualization will improve recognition of monogenic IEI and 

create new therapeutic targets or approaches [76]. As an example the combined immunodeficiency 

phenotype in POMP deficiency prompted clinicians to transplant the patients – an option less easily 

considered in the context of autoinflammation - with resolution of the immunodeficiency and 

autoinflammation demonstrating the crucial role of the hematopoietic derived cells in the generation 

and control of autoinflammation. It is clear that the study of IEI in patient derived cells is essential, as 

in many of the described conditions, the mouse phenotype is different from the human phenotype, as 

shown convincingly for ISG15 deficiency. The unravelling of robust autoinflammatory phenotypes will 

also aid in deciphering the more subtle but troublesome presentations of autoinflammation in IEI 

presenting predominantly with increased susceptibility to infection. Studying the effect of different 

mutations in the same gene or the effect of pathogenic variants that affect various genes of a signaling 

pathway will inform about the subtilities of balancing the level of required inflammation to meet the 

needs of host defense. Furthermore, these studies will shed light on the opportunities and risks of 

targeting the pathways that are disrupted in IEI.  
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Table 1. Selected recent inborn errors of immunity with autoinflammation and infection as predominant phenotypes 

 

Condition Gene defect Inheritance Infections Autoinflammation References 

XR anhidrotic 

ectodermal 

dysplasia with 

immunodeficiency 

(EDA-ID) 

OMIM *300291 

 

Hypomorphic 

IKBKG mutation 

XR Viral, fungal, bacterial, 

mycobacterial infections 

Inflammatory bowel 

disease 

[10] 

EDA-ID  

OMIM *164008  

 

 

Gain-of-function 

mutation in NFKBIA 

AD Viral, fungal, bacterial (recurrent 

and invasive Klebsiella, 

Pseudomonas aeruginosa, 

Haemophilus influenzae), 

mycobacterial infections 

Recurrent diarrhea / 

colitis – systemic 

inflammation  

[12] 

 

 

 

 

 Gain-of-function 

mutation in IKK2 

(V203I) 

AD Viral, fungal, bacterial infections Hidradenitis 

suppurativa, severe 

dermatitis and 

cataracts; 

ectodermal dysplasia 

[21] 



HOIL-1 deficiency 

OMIMI *610924 

 

Loss-of-function 

mutation in RBCK1 

AR Viral infections, recurrent 

invasive pyogenic infection 

Systemic 

autoinflammation, 

amylopectinosis 

 

[24] 

HOIP deficiency 

OMIM *612487 

 

 

Loss-of-function 

mutations in HOIP 

AR Recurrent invasive pyogenic 

infection 

Systemic 

autoinflammation, 

amylopectinosis 

 

[24] 

RIKP1 deficiency 

OMIM *603453 

 

Loss-of-function 

mutation in RIPK1 

AR Recurrent viral, bacterial, fungal 

and mycobacterial  infection 

Early onset IBD with 

perianal abscesses, 

progressive 

polyarthritis 

[28,29] 

ISG15 deficiency 

OMIM *616126 

Loss-of-function 

mutation in ISG15 

AR Mendelian susceptibility to 

mycobacterial disease 

Intracranial 

calcifications and 

necrotic skin diseases 

[39,41] 

ADA2 deficiency 

OMIM * 607575 

Loss-of-function 

mutations in ADA2 

AR Increased susceptibility to 

infection with herpes viruses, 

Human  Papillomavirus and 

Molluscum contagiosum virus 

infection 

Vasculitis, 

polyarteritis nodosa, 

stroke 

[43,44] 

POMP deficiency 

OMIM * 613386 

Heterozygous 

truncating, 

dominant- 

negative  

AD Increased susceptibility to 

diverse viral infections resulting 

in bronchopneumonia 

(adenovirus, RSV, 

and parainfluenza, rhinovirus) 

and diarrhea (Norovirus, 

Neutrophilic 

dermatosis, no 

lipodystrophy  

[57] 



mutation in POMP astrovirus), Pneumocystis 

jiroveci pneumonia; invasive 

pyogenic infections (MRSA, K. 

pneumoniae, Pseudomonas, 

gram-negative rods) 

recurrent Salmonella 

and C. difficile diarrhea,  

Mycobacterial infection 

 

NOCARH syndrome Heterozygous 

variants in CDC42 

(mainly Arg186Cys) 

AD Immunodeficiency with infection 

and sepsis mostly associated 

with mutations outside the C-

terminal domain 

Hemophagocytic 

lymphohistiocytosis, 

neonatal onset of 

cytopenia, fever and 

rashes  

 

HEM1 deficiency 

OMIM *141180 

Loss- of-function 

mutation in 

NCKAP1L 

AR Increased susceptibility to 

infection (upper and lower 

respiratory tract infection, skin 

abscesses), lymphadenopathy 

and splenomegaly, allergy, auto-

immunity 

Oral ulcerations, 

hemophagocytic 

lymphohistiocytosis 

[73-75] 

 

XR: X-linked recessive, AR: Autosomal Recessive, AD: autosomal dominant 

 


