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Abstract

Over the past decades, Answer Set Programming (ASP) has emerged as an important paradigm
for declarative problem solving. Technological progress in this area has been stimulated by
the use of common standards, such as the ASP-Core-2 language. While ASP has its roots in
non-monotonic reasoning, efforts have also been made to reconcile ASP with classical first-
order logic (FO). This has resulted in the development of FO(·), an expressive extension of
FO, which allows ASP-like problem solving in a purely classical setting. This language may be
more accessible to domain experts already familiar with FO, and may be easier to combine with
other formalisms that are based on classical logic. It is supported by the IDP inference system,
which has successfully competed in a number of ASP competitions. Here, however, technological
progress has been hampered by the limited number of systems that are available for FO(·). In
this paper, we aim to address this gap by means of a translation tool that transforms an FO(·)
specification into ASP-Core-2, thereby allowing ASP-Core-2 solvers to be used as solvers for
FO(·) as well. We present experimental results to show that the resulting combination of our
translation with an off-the-shelf ASP solver is competitive with the IDP system as a way of
solving problems formulated in FO(·).

1 Introduction

Answer set programming (ASP) is a knowledge representation (KR) paradigm in which a
declarative language is used to model and solve combinatorial (optimization) problems (Marek
and Truszczyński 1999). It is supported by performant solvers (Gebser et al. 2020), such as
Clingo (Gebser et al. 2016) and the DLV system (Leone et al. 2006). Development and use of
these solvers has been simplified and encouraged by the emergence of the unified ASP-Core-2
standard (Calimeri et al. 2020).

The roots of ASP lie in the area of non-monotonic reasoning and its semantics is defined in
a non-classical way. Work by Denecker et al. (Denecker and Ternovska 2008) has attempted to
integrate key ideas from ASP with classical first-order logic (FO), in an effort to clarify ASP’s
contributions from a knowledge representation perspective. This has resulted in the development
of the language FO(·), pronounced “ef-oh-dot”, which is a conservative extension of FO. This
language may be easier to use for domain experts who are already familiar with FO than
ASP, and can seamlessly be combined with other monotonic logics. A number of systems, such
as the IDP system (De Cat et al. 2016) and Enfragmo (Aavani 2014), already support the
FO(·) language. However, when compared to the variety of solvers for ASP-Core-2, the support
for FO(·) is still rather limited. This hinders technological progress, both in terms of solver
development and the development of applications.
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In this paper we present FOLASP, a tool that translates FO(·) to ASP-Core-2, thereby
allowing each solver that supports ASP-Core-2 to handle FO(·) as well. In this way, we
significantly extend the range of solvers that is available for FO(·).

We believe that this tool will make the FO(·) language more accessible and useful for practical
applications, while also helping to drive technological progress. To develop FOLASP, we build
on fundamental results about the relation between ASP and FO(·) (Mariën et al. 2004; Denecker
et al. 2012), which we have for the first time combined into a working tool.

2 Preliminaries

2.1 FO(·)

FO(·) is an extension of classical typed first-order logic with aggregates, arithmetic, and
(inductive) definitions. To maximize clarity, we will consider only a core subset of FO(·): typed
FO extended with definitions, cardinality aggregates, and comparison operators.

A vocabulary V consists of a set of types T , predicates P and function symbols F . Each
predicate P/n with arity n has an associated typing τ(P ) = (T1, . . . , Tn), as has each function
symbol F/n: τ(F ) = (T1, . . . , Tn+1).

A structure S for a vocabulary V (also known as a V -structure) consists of a domain D and
an appropriate interpretation σS for each symbol σ ∈ V . The interpretation TS of a type T is a
subset of D, the interpretation PS of a predicate P with τ(P ) = (T1, . . . , Tn) is a relation PS ∈
TS1 ×· · ·×TSn , and the interpretation FS of a function symbol F with τ(F ) = (T1, . . . , Tn, Tn+1)
is a function from TS1 × · · · × TSn to TSn+1. The interpretations TSi of the types Ti ∈ V partition
the domain D, i.e.,

⋃
i T

S
i = D and TSi ∩ TSj = ∅ for i 6= j.

A term is either a variable, an integer, a function f(~t) applied to a tuple of terms ~t, or
a cardinality expression of the form #{~x : ϕ(~x)}, which intuitively represents the number of
~x’s for which ϕ(~x) holds. Note that cardinality expressions are a special case of a aggregate
expressions, which sometimes are introduced as generalized quantifiers working as atoms. Here,
we use the FO terminology, where a cardinality expression is a term.

We use the notion of a simple term to refer to a variable or an integer. An atom is either
a predicate P (~t) applied to a tuple of terms or a comparison t1 ./ t2 between two terms,
with ./ ∈ {=, 6=,≤,≥, <,>}. As usual, formulas are constructed by means of the standard FO
connectives ¬,∨,∧,⇒,⇔, ∃,∀. Only well-typed formulas are allowed. A sentence is a formula
without free variables. A positive literal is an atom, a negative literal a negated atom.

As in FO, an FO(·) theory can be a set of sentences. However, in addition to sentences, FO(·)
also allows definitions. Such a definition is a set of rules of the form:

∀x1, . . . , xn : P (x1, . . . , xn)← ϕ(x1, . . . , xn).

where P/n is a predicate symbol, x1, . . . , xn variables, and ϕ a formula. The atom P (x1, . . . , xn)
is the head of the rule, while ϕ is the body. The purpose of such a definition is to define the
predicates that appear in the heads of the rules in terms of the predicates that appear only in
the body. The first kind of predicates are called the defined predicates Def(∆) of the definition
∆, while the second are called its open predicates Open(∆).

The formal semantics of these definitions is given by a parametrized variant of the well-
founded semantics (Van Gelder et al. 1988). In order for a definition to be valid in FO(·), it
must be such that it uniquely determines a single interpretation for the defined predicates, given
any interpretation for the open predicates. Formally, the condition is imposed on definitions that
their well-founded model must exist and always be two-valued, no matter what the interpretation
for their open predicates might be.

Different logical inference tasks can be considered for FO(·). In this paper, we focus on the
most common task, namely that of model expansion.
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Definition 1. Let Th be a theory over vocabulary V and S a structure for a subvocabulary
V oc(S) ⊆ V . The model expansion problem MX(V, S,Th) is the problem of computing a V -
structure S′ ⊇ S such that S′ |= Th.

Example 1. The following example models the well-known graph coloring problem as a model
expansion problem MX(V, S,Th), with an illustration of a definition for the symmetric closure
of the border relation.

V : type Country , type Color ,

predicate Border with τ(Border) = (Country ,Country),

predicate SymBorder with τ(SymBorder) = (Country ,Country),

function symbol ColorOf with typing τ(ColorOf ) = (Country ,Color)

S : CountryS = {be, nl, lux}

ColorS = {red, blue}

BorderS = {(nl, be), (be, lux)}
Th : ∀c1, c2 : Border(c1, c2)⇒ ColorOf (c1) 6= ColorOf (c2){

∀c1, c2 : SymBorder(c1, c2)← Border(c1, c2).
∀c1, c2 : SymBorder(c1, c2)← SymBorder(c2, c1).

}
One solution to MX(V, S,Th) is

S′ : CountryS
′

= CountryS ,ColorS
′

= ColorS ,BorderS
′

= BorderS

SymBorderS
′

= {(nl, be), (be, nl), (be, lux), (lux, be)}

ColorOf S
′

= {be 7→ red, nl 7→ blue, lux 7→ blue}

2.2 ASP

A normal logic program is a set of rules of the form:

H :- B1, . . . , Bm, not Bm+1, . . . , not Bn. (1)

Here, H and all Bi are atoms. Corresponding with definitions, H is called the head of the rule,
while the conjunction B1, . . . , not Bn is called the body. Both the rule head and body can be
empty. A rule with empty head (= false) is called a constraint, a rule with empty body (= true)
a fact.

The semantics of a program is defined in terms of its grounding which is an equivalent program
without any variables, so all atoms are ground atoms. An interpretation I is a set of ground
atoms. A rule of form (1) is satisfied in I if H ∈ I whenever B1, . . . , Bm ∈ I and Bm+1, . . . , Bn 6∈
I. An interpretation is a model of a program if it is a model of each rule. The reduct of a program
P w.r.t. interpretation I, denoted P I , contains the ground rule H :- B1, . . . , Bm for each rule of
form (1) for which none of the atoms Bm+1, . . . , Bn belong to I. An interpretation I is a stable
model or answer set of program P if it is a minimal model of P I .

The ASP-Core-2 language extends this basic formalism in a number of ways. For instance, it
includes choice rules that can be used to express that a certain atom H may be true:

{H} :- B1, . . . , Bm, not Bm+1, . . . , not Bn.

Choice rules allow to generate a search space of candidate answer sets, from which the desired
solutions can be filtered out with constraints.

A second extension is the cardinality aggregate, which, as in FO(·), counts the size of the set
of free variable instantiations for which a conjunction of atoms holds. Throughout this paper,
we make use of cardinality aggregates in body atoms, which have the form:

#count{ ~X : B1, . . . , Bm, not Bm+1, . . . , not Bn} ./ t



4

with ./ ∈ {=, 6=,≤,≥, <,>} and t a simple term.

Example 2. The following ASP program is the counterpart of the FO(·) graph coloring model
expansion problem from the previous section:

country(be). country(nl). country(lux).

border(nl, be). border(be, lux). color(red). color(blue). (2)

{colorOf (C,X)} :- country(C), color(X). (3)

:- #count{C,X : colorOf (C,X), color(X)} 6= 1, country(C). (4)

:- border(C1, C2), colorOf (C1, X), colorOf (C2, X). (5)

symBorder(C1, C2) :- border(C1, C2).

symBorder(C1, C2) :- symBorder(C2, C1). (6)

3 Translation of FO(·) to ASP

In this section, we define a translation α from an FO(·) model expansion problem M =
MX(V, S,Th) to an ASP program α(M). The translation α consists of four components
α1, α2, α3 and α4. α1 and α2 translate V and S, respectively (discussed in Section 3.2). α3 and
α4 translate the FO(·) sentences and definitions that belong to Th, respectively (Section 3.3
and 3.4). Prior to translation we normalize the specification in order to make it compatible for
translation to ASP (Section 3.1).

3.1 Normalization of an FO(·) specification

As a first step, we normalize the specification of the model expansion problem MX(V, S,Th).
Firstly, we convert all formulas in Th to negation normal form (NNF), i.e., the Boolean operators
are restricted to negation (¬), conjunction (∧) and disjunction (∨), and the negation operator is
only applied directly to atoms, as described in (Enderton 2001). We also assume that the type
T of any variable x is known, either by automated type derivation or by an explicit annotation,
e.g., ∀x[T ] : ϕ.

In FO(·), a function symbol can be interpreted by any function of the appropriate arity and
type. By contrast, in ASP, each function symbol F is interpreted by the Herbrand function
that maps each tuple of arguments ~t to the syntactic term F (~t). Hence, we eliminate function
symbols from the FO(·) specification. For this, we first rewrite the theory such that function
symbols only appear in atoms of the form F (~x) = y with ~x and y simple terms. This is done by
recursively replacing a (negated) atom (¬)A with subterm F (~t) by the NNF equivalent of

∀x : F (~t) = x⇒ (¬)A[F (~t)/x]

In a similar way, we unnest cardinality terms, such that these only occur in a comparison
atom with simple terms, i.e., #{~x : ϕ(~x)} ./ y with y a simple term. After this, each term t
that is not simple occurs only in equality atoms t = x (if t is a function symbol application) or
comparison atoms t ./ x (if t is a cardinality expression), with x a simple term.

Each function symbol F/n is then transformed into a predicate PF /n+1 with the same typing,
i.e., τ(F ) = (T1, . . . , Tn, Tn+1) = τ(PF ). We replace the atoms F (~x) = y in the theory with
PF (~x, y). We also add the constraint implied by using a function symbol, i.e., that each tuple of
arguments has exactly one image, to the theory:

∀x1 . . . xn : #{xn+1 : PF (x1, . . . , xn, xn+1)} = 1.

If the structure S has an interpretation FS , then we replace it by

PSF = {(a1, . . . , an+1) | (a1, . . . , an) 7→ an+1 ∈ FS}.
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Finally, after eliminating function symbols, we push negations through atoms of the form
t ./ x by adjusting the ./ operator. After this, the only negated atoms remaining have the form
¬P (~x) for some predicate P and simple terms ~x.

Example 3. The normalized FO(·) graph coloring theory from Section 2.1 is:

Th ′ : ∀x[Country ] : #{y[Color ] : ColorOf (x, y)} = 1

∀c1[Country ] : ∀c2[Country ] : ¬Border(c1, c2)∨
∀x[Color ] : ¬ColorOf (c1, x) ∨ ¬ColorOf (c2, x){
∀c1, c2 : SymBorder(c1, c2)← Border(c1, c2).
∀c1, c2 : SymBorder(c1, c2)← SymBorder(c2, c1).

}

3.2 Generating the search space

The solutions to a model expansion problem MX(V, S,Th) are to be found among the set of
all structures for V that expand S – the search space. In this section, we translate vocabulary
V and structure S to generate precisely this search space.

Unlike FO(·), ASP-Core-2 imposes strict naming conventions: variable names must start with
a capital, while the names of all other kinds of symbols must start with a lower case letter. For
an FO(·) type, predicate, variable or domain element σ, we denote by σ̇ a corresponding ASP
symbol of the right kind. Naturally, we enforce that σ̇ 6= σ̇′ whenever σ 6= σ′.

In a model expansion problem M = MX(V, S,Th), some of the symbols in V are interpreted
by S (we denote these by V oc(S)), while others (i.e., V \ V oc(S)) are not. Because types must
always be interpreted by S and our normalization step transforms all function symbols into
predicates, the uninterpreted vocabulary V \ V oc(S) consists entirely of predicates.

We translate each P ∈ V \ V oc(S) with associated typing τ(P ) = (T1, . . . , Tn) into the
following ASP choice rule α1(P ):

{Ṗ (X1, . . . , Xn)} :- Ṫ1(X1), . . . , Ṫn(Xn).

This provides a first component α1(M) of our translation of the model expansion problem. The
second component α2(M) translates the structure S.

We translate an interpretation PS = {(a1
1, . . . , a

1
n), . . . , (am1 , . . . , a

m
n )} of an n-ary predicate

P into the following set α2(PS) of m ASP facts:

Ṗ (ȧ1
1, . . . , ȧ

1
n). . . . Ṗ ( ˙am1 , . . . , ˙amn ).

The interpretation of a type is translated as though it were a unary predicate. The second
component α2(MX(V, S,Th)) of our translation now consists of all α2(PS) for which P ∈
V oc(S). Together, α1 and α2 allow us to generate the correct search space in ASP, as the
following theorem shows.

Theorem 1. For each structure S for a subvocabulary V oc(S) ⊆ V , MX(V, S, {}) =
AnswerSets(A) with A the ASP program α1(V \ V oc(S)) ∪ α2(S)).

Here, the equality between structures and answer sets is of course modulo a straightforward
“syntactic” transformation: we can transform each structure S to the answer set f(S) that

consists of all atoms P (~d) for which ~d ∈ PS . Because we consider a typed logic, in which each
element of the domain of S must belong to the interpretation TS of at least one type T , this
transformation is an isomorphism, which we omit from our notation for simplicity.

Proof. The set MX(V, S, {}) consists of all V -structures S′ that can be constructed by starting
from the structure S and then adding, for each predicate P ∈ V \ V oc(S) with type τ(P ) =

(T1, . . . , Tn), any set of tuples ⊆ TS1 ×· · ·×TSn as interpretation PS
′

of P in S′. For each predicate

P interpreted by S, α2(S) contains precisely all facts P (~d) for which ~d ∈ PS . Moreover, P does
not appear in α1(V \ V oc(S)). This ensures that each answer set in AnswerSets(A) contains

precisely all atoms P (~d) for which ~d ∈ PS . For each predicate P ∈ V \ V oc(S), S′ may have
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any set of tuples ⊆ TS1 × · · · × TSn in its interpretation. The choice rules in α2(S) ensure that
precisely these tuples also make up the possible interpretations for P in AnswerSets(A).

3.3 Translating formulas

We now define a third component α3(MX(V, S,Th)) of our translation to transform the formulas
ϕ ∈ Th to ASP. We start by the base case: the translation α3(A) for an atom A. Due to our
normalization step, the only atoms A that appear in Th are of the form P (~x) (with P/n a
predicate and ~x a tuple of simple terms) or t ./ x (with t a simple term or a cardinality
expression, ./ a comparison operator, and x a simple term). The translation α3(P (x1, . . . , xn))
of a predicate atom is the ASP conjunction

Ṗ (ẋ1, . . . , ẋn), Ṫ1(ẋ1), . . . , Ṫn(ẋn) (7)

with typing τ(P ) = (T1, . . . , Tn). Hence, the type information implicit in the typing of a predicate
is added explicitly by means of the additional conjuncts Ṫi(Xi). With slight abuse of notation,
we shorten such a conjunction of type atoms to Ṫ (~̇x).

With x and y simple terms, the translation α3(x ./ y) is the ASP conjunction

ẋ ./ ẏ, Ṫ (ẋ), Ṫ (ẏ). (8)

The translation α3(#{~x[~T ] : ϕ(~x, ~y)} ./ z) of a normalized cardinality atom is

#count{~̇x : δ(~̇x, ~̇y), Ṫ (~̇x)} ./ ż, Ṫ (~̇y), Ṫ (ż) (9)

with δ a fresh auxiliary predicate representing the subformula ϕ. Hence, we also add the rule:

δ(~̇x, ~̇y) :- α3(ϕ(~x, ~y)), Ṫ (~̇x), Ṫ (~̇y). (10)

with a recursive application of α3.
After normalization, a negation occurs only in literals of the form ¬P (~x), whose translation

α3(¬P (~x)) simply is

not Ṗ (~̇x), Ṫ (~̇x). (11)

Note that the not is only added to the first atom and not to the type atoms.
Having defined how each (negated) atom (¬)A is translated into a corresponding ASP

expression α3((¬)A), we now inductively define how more complex formulas are translated.
The translation α3(ϕ ∧ ψ) of a conjunction is the ASP conjunction α3(ϕ), α3(ψ).
The translation α3(ϕ(~x) ∨ ψ(~y)) of a disjunction is the ASP atom δ(~̇x, ~̇y), with δ a fresh

auxiliary predicate. Additionally, for each such auxiliary predicate, we add the following ASP
rules:

δ(~̇x, ~̇y) :- α3(ϕ(~x)), Ṫ (~̇x), Ṫ (~̇y).

δ(~̇x, ~̇y) :- α3(ψ(~y)), Ṫ (~̇x), Ṫ (~̇y). (12)

to ensure that δ indeed corresponds to the disjunction of ϕ and ψ.
Since a variable that appears in the body of an ASP rule but not in its head is implicitly

existentially quantified, the translation α3(∃x[T ] : ϕ(x)) of an existential quantification is the
ASP conjunction α3(ϕ(x)), Ṫ (ẋ).

The translation α3(∀x[T ] : ϕ(x)) of a universally quantified formula is the ASP cardinality
atom α3(#{x[T ] : ϕ(x)}) = n, with n = |TS | the number of elements in type T . Note that,
because of this step, the translation α3 not only depends on the theory Th of our model
expansion problem, but also on the structure S. A first way to avoid this dependence is to
translate ∀x[T ] : ϕ(x) as α3(#{x[T ] : ¬ϕ(x)}) = 0. However, this would introduce an additional
negation, which might lead to the introduction of loops over negation in Section 3.4. A second
way introduces an aggregate term representing n, e.g., α3(#{x[T ] : ϕ(x)} = #{x[T ] : true}),
but we expect this to be less efficient.

For any formula ϕ(~x), we can now use the transformation α3 to define a fresh ASP symbol
δϕ(~̇x) such that the set of all ~x for which ϕ(x) holds in the FO(·) theory Th coincides with
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the set of all ~̇x for which δϕ(~̇x) holds in the ASP program. We do this by adding the following
reification rule rϕ:

δϕ(~̇x) :- α3(ϕ(~x)), Ṫ (~̇x).

Theorem 2. Let ϕ be a formula in vocabulary V and let S be a structure for V . Consider
the ASP program Rϕ that consists of all reification rules rψ for which ψ is a subformula of ϕ,
together with all additional rules produced by the translation α3 (see Eq. 10 and Eq. 12). Let
RS = α2(S) be the translation of the structure S. Then RS ∪Rϕ has a unique answer set A and

for each subformula ψ the set of all ~d for which S |= ψ(~d) is equal to the set of all ~d for which

δψ(~d) ∈ A.

Proof. RS is a set of facts over V . Rϕ is a strictly stratified set of rules with non-empty heads.
Therefore, it is clear that the answer set of RS∪Rϕ is indeed unique. We now prove the theorem
by induction over the subformula order. The base cases are atoms as translated in Eq. 7 and
Eq. 8. Here, it is obvious from the translation that the correspondence holds. For an aggregate
(Eq. 10), we can apply the induction hypothesis to obtain a correspondence between the tuples
for which ϕ in the original aggregate holds and the tuples for which the fresh predicate δ in
its translation holds; from this, the result follows. Similarly, the case for disjunction follows
from applying the induction hypothesis to the fresh predicates in Eq. 12. The cases for negation,
conjunction and existential quantification are trivial. The case for universal quantification follows
immediately from the correctness of the translation of aggregates.

Once we have the reification rules rϕ as defined above, we can eliminate answer sets in which
the formula ϕ is not satisfied by adding a constraint :- not δϕ. Denoting such a constraint by
Cϕ, the third component of our translation – the translation of sentences – now is

α3(MX(V, S,Th)) = {rϕ | ϕ ∈ Th} ∪R ∪ {Cϕ | ϕ ∈ Th},

where the rules rϕ and constraints Cϕ are as above and R are all of the additional rules (see
Eq. 10 and Eq. 12) generated by producing the rϕ.

Theorem 3. Let M be a model expansion problem MX(V, S,Th) in which Th is a set of FO
sentences. The solutions to M coincide with the answer sets of α1(M) ∪ α2(M) ∪ α3(M).

Proof. By induction on the size of Th. The base case in which |Th| = 0 and therefore Th = {}
is covered by Theorem 1. Once the induction hypothesis gives us the correspondence between a
theory Th of size n− 1 and an ASP program An−1, we can add an additional formula ϕn and
prove the correspondence between Th ∪ {ϕn} and An = An−1 ∪ {rϕn , Cϕn} ∪ R, with R the
additional rules for producing α3(ϕn). The atoms in the head of the new rules {rϕn , Cϕn} ∪ R
are all fresh atoms that do not appear in An−1. Therefore there can be no interference between
the new rules and the old ones, and the result follows from Theorem 2.

We now have a translation for theories that consists entirely of FO sentences. The next section
examines how we can extend this to FO(·) theories that contain also definitions.

3.4 Translating definitions

In general, a theory in FO(·) can contain multiple definitions. However, it is well-known that each
such theory can be transformed into a theory that contains just a single definition Van Gelder
et al. (1991). This involves merging the different definitions and possibly renaming predicates
to avoid the introduction of new loops. The necessity for this renaming step can be seen by
comparing the following two theories: Th consists of two separate definitions (one defining p in
terms of q and the other defining q in terms of p) and Th ′, which consists of a single definition
that jointly defines both p and q:

Th =

{
{p← q.}
{q ← p.}

}
Th ′ =

{{
p← q.
q ← p.

}}
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The theory Th has two models, namely {} and {p, q}, while Th ′ has {} as its unique model.
We therefore cannot simply merge the two definitions in Th. The solution is to rename the
predicates that are defined in (at least one of) these definitions, and then assert the equivalence
between the old and the new predicates.

More formally, for each definition ∆, for each defined predicate P in ∆, we replace all
occurrences of P in ∆ with a fresh unique predicate P∆ and add the equivalence constraint
P ⇔ P∆. Applying this merge procedure to Th yields the following theory:

Th ′′ =

{
p⇔ p′, q ⇔ q′,

{
p′ ← q.
q′ ← p.

}}
This avoids the introduction of additional loops and ensures Th ′′ equivalent to the original Th.

We therefore from now on assume that the theory of the model expansion problem contains
only a single definition ∆. Each rule r ∈ ∆ is of the form

∀x1[T1] : . . . : ∀xn[Tn] : P (x1, . . . , xn)← ϕ.

We translate it to the following ASP rule α4(r):

Ṗ (ẋ1, . . . , ẋn) :- α3(ϕ), Ṫ1(ẋ1), . . . , Ṫn(ẋn).

We then define α4(∆) as {α4(r) | r ∈ ∆}.
We now first show the correctness of this transformation in isolation, before combining it with

previous results.

Theorem 4. Let ∆ be a definition in vocabulary V and let S be a structure for Open(∆), i.e,
the set of all symbols in V that do not appear in the head of any rule of ∆. Then α2(S)∪α4(∆)
has a unique answer set which coincides with the unique solution to MX(V, S, {∆}).

Proof. A valid definition in FO(·) must be such that its well-founded model is always two-valued.
Because the transformation from ∆ to α4(∆) introduces no additional loops over negation (in
fact, it introduces no additional negations at all), the set of ASP rules α4(∆) also has a two-
valued well-founded model. It is well known that a two-valued well-founded model is also the
unique stable model. Given this uniqueness result, the theorem now follows from the correctness
of α3 (Theorem 2).

Note that this theorem does not hold for structures S that interpret some of the defined
symbols of ∆. Consider, for instance, the definition consisting only of the rule p← true and the
structure S in which pS = false. The problem MX(V, S,∆) has no solutions, but α2(S) = {}
and α4(∆) = {p :- }, which means that α2(S) ∪ α4(∆) has {p} as an answer set.

For the same reason, we cannot simply combine α4(∆) with the choice rules introduced by
α1. To solve this problem, we will use the same renaming trick that we use to merge separate
definitions.

Definition 2. Let MX(V, S,Th) be a model expansion problem in which the theory Th contains
only a single definition ∆, and let Th ′ = Th \{∆}. Let ∆′ be the result of replacing each defined
predicate P of ∆ by a fresh predicate P∆, and denote by Eq the set of all equivalence constraints
∀~x : P (~x)⇔ P∆(~x) for defined predicates P . We define α(MX(V, S,Th)) as the following ASP
program:

α1(MX(V, S, ·)) ∪ α2(MX(V, S, ·)) ∪ α3(MX(·, S,Th ′ ∪ Eq)) ∪ α4(MX(·, S,∆′)).

(For clarity, arguments have been replaced by · where they are irrelevant.)

Theorem 5. For a model expansion problem M = MX(V, S,Th) in which the theory Th
contains only a single definition ∆, the solutions to M coincide with the answer sets of α(M).

Proof. Theorem 2 already shows that all parts of the model expansion problem apart from the
definition are correctly translated by α1, α2 and α3. Theorem 4 shows that the definition ∆ can
be correctly translated by α4(∆). The renaming of the defined predicates of ∆ ensures that both
can be combined without invalidating the correctness of either theorem.
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3.5 Translating the graph coloring example

We now show how MX(V, S,Th ′), with Th ′ the normalized theory from Example 3, can be
translated to ASP. This translation consists of four parts – α1, α2, α3, α4 – which correspond to
the translation of the vocabulary V , the structure S, the constraints in Th ′, and the definitions
in Th ′, respectively.

Example 4. The following is a translation of M = MX(V, S,Th ′) from Example 3 to ASP:

α1(M) : {colorOf (C,X)} :- country(C), color(X).

{symBorder(C1, C2)} :- country(C1), country(C2).

δ2(C) :- #count{C,X : colorOf (C,X), color(X)} = 1, country(C).

δ1 :- #count{C : δ2(C), country(C)} = 3.

:- not δ1.

α2(M) : country(be). country(nl). country(lux).

border(nl, be). border(be, lux). color(red). color(blue).

α3(M) : δ5(C1, C2, X) :- not colorOf (C1, X), country(C1), country(C2), color(X).

δ5(C1, C2, X) :- not colorOf (C2, X), country(C1), country(C2), color(X).

δ4(C1, C2) :- #count{X : δ5(C1, C2, X), color(X)} = 2,

country(C1), country(C2).

δ4(C1, C2) :- not border(C1, C2), country(C1), country(C2).

δ3 :- #count{C1, C2 : δ4(C1, C2), country(C1), country(C2)} = 9.

:- not δ3.

α4(M) : symBorder∆(C1, C2) :- border(C1, C2).

symBorder∆(C1, C2) :- symBorder∆(C2, C1).

:- symBorder(C1, C2),not symBorder∆(C1, C2).

:- not symBorder(C1, C2), symBorder∆(C1, C2).

Example 4 and Example 2 are both ASP programs representing the same graph coloring
problem. α1(M) in Example 4 corresponds to rules (3) and (4) in Example 2, α2(M) is the
same set of facts (2), α3(M) corresponds to the constraint (5), and α4(M) corresponds to the
rules (6).

It is clear that the translation in Example 4 is a lot less succinct. Firstly, the translation
introduces a significant number of auxiliary predicates, both reification predicates δi and a
renaming predicate symBorder∆ for the defined predicate of the definition. Secondly, the
universal quantifications in the FO(·) specification lead to several cardinality aggregates not
present in the original formulation. Thirdly, the FO(·) implication that represents the graph
coloring constraint is normalized into a nested disjunction (see Example 3) and this leads to
four translated rules, compared to the single rule (5) in Example 2.

4 Implementation

By implementing this translation, we created a new model expansion engine for FO(·),
called FOLASP. It uses the syntax of the IDP system for its input and output, and uses
Clingo (Gebser et al. 2019) as back-end ASP solver.

In addition to the subset of FO(·) discussed in this paper, FOLASP also supports minimum
and maximum aggregates, arithmetic, function symbols in the head of a definition, partial
interpretations, and partial functions. We thereby cover almost all language constructs supported
by IDP, except for symbol overloading, chained (in)equalities and constructed types. Besides the
model expansion inference, FOLASP also supports the optimization inference, which computes
a model that minimizes the value of some integer objective function.
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Where appropriate, FOLASP uses the FO(·) type information to add “guards” of the form
type(X) for each variable X to the bodies of the generated ASP rules. In other words, FOLASP
generates so-called safe rules, which allows the resulting programs to be handled by ASP solvers
such as Clingo.

FOLASP is implemented in Python 3. Its source code is published on Gitlab.1 We tested
the correctness of the implementation by checking that the solutions produced by FOLASP
are accepted as such by IDP, and that, for optimization problems, the optimal objective values
produced by IDP and FOLASP were in agreement.

5 Experiments

In our experiments, we evaluate FOLASP (commit 82ec7edc on the development branch) using
Clingo (version 5.4.0) as backend ASP solver. This configuration is compared to two other
approaches. The first comparison approach runs IDP (commit 4be3c797) on the same FO(·)
specifications as taken as input by FOLASP. The second comparison runs Clingo (again version
5.4.0) on native ASP encodings of the same problems.

As benchmark set, we use the problem instances from the model-and-solve track of the fourth
ASP competition (Alviano et al. 2013). Both IDP and Clingo participated in this competition,
which means that we have—for these same problems—both FO(·) and ASP specifications already
available, written by experts in both languages. As such, we believe these benchmarks provide
a good opportunity for a fair comparison.

We used the scripts and FO(·) specifications from the IDP submission to generate FO(·)
instances that are accepted by both IDP and FOLASP. For the ASP system Clingo, we used
the native ASP encodings provided by the organizers of the fifth ASP competition (Calimeri
et al. 2016) (which uses the same problem set) since Clingo could not parse the specifications
from the fourth ASP competition.

IDP solves problems in NP. This covers all problems in the benchmark set, apart from the
strategic companies problem, which has a higher complexity. In the competition itself, the IDP
team therefore solved this problem using a separate script to generate an exponentially sized
search space, which was then given to IDP. Because this trick is not representative of how IDP is
intended to be used in the real world, we decided to omit this benchmark from our experiments.
Fourteen benchmark families remained with each (close to) thirty instances. They cover a wide
range of applications, from a simple reachability query over a transportation planning problem
to optimizing the location of valves in an urban hydraulic network.

The experimental hardware consisted of a dual-socket Intel R© Xeon R© E5-2698 system with
512 GiB of RAM memory, with twenty hyper-threaded cores for each of the two processors. To
reduce resource competition, we run only twenty instances simultaneously, using twenty threads,
for a total of ten per processor. We employ a high memory limit of 64 GiB for each instance, as
we observed that Clingo requires a significant amount of memory to solve instances generated
by FOLASP.2 We run the instances with a 6000 second timeout limit, but, to avoid imprecision
at the timeout limit, we consider an instance unsolved if it takes more than 5000 seconds.
Optimization instances are considered solved when the last solution is proven to be optimal.

Runnable software, instance files, and detailed experimental results are made available at
Zenodo.3

We compare the efficiency of the three approaches—FOLASP, IDP and Clingo.
Figure 1 (best viewed in color) shows the time needed for both FOLASP and IDP
to solve each instance. For benchmarks such as nomystery , sokoban, ricochet robot and

1 https://gitlab.com/EAVISE/folasp
2 Note that even though twenty simultaneous instances utilizing 64 GiB of memory each is more than
the total of 512 GiB of memory available, this worst-case scenario did not occur in practice and the
machine did not run out of memory.

3 https://doi.org/10.5281/zenodo.4771774



FOLASP 11

100 101 102 103

IDP3

100

101

102

103

FO
LA

SP
Time (s) (max 5000) (413 instances)

01_permutation_pattern_matching (30 vs 15)
02_valves_location_problem (4 vs 0)
04_still_life (3 vs 4)
05_graceful_graphs (2 vs 16)
06_bottle_filling (30 vs 0)
07_nomystery (29 vs 29)
08_sokoban (18 vs 16)
09_ricochet_robot (30 vs 23)
10_crossing_minimization (10 vs 9)
11_reachability (0 vs 0)
13_solitaire (23 vs 21)
14_weighted_sequence (30 vs 0)
15_stablemarriage (30 vs 6)
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Fig. 1. Scatter plot comparing IDP and FOLASP runtime performance. “(x vs y)” denotes
that IDP solved x instances within the family, and FOLASP y.

crossing minimization, the performance of FOLASP and IDP is about equal. For benchmarks
such as permutation pattern matching , valves location problem, solitaire and weighted sequence,
IDP clearly outperforms FOLASP. This suggests that the specifications that were hand-crafted
by the IDP team are indeed well-suited to this solver’s particular characteristics, and less to
those of Clingo. In addition, our translation of course introduces a number of artifacts, such
as reification predicates, renaming predicates and cardinality aggregates, that may adversely
impact performance as well. Interestingly, however, on the graceful graphs benchmark, FOLASP
clearly outperforms IDP. Here, the inefficiencies of the translation are apparently overcome by
the speed of Clingo. This highlights the usefulness of a translation such as ours: different
benchmarks might be more suited for the architecture of different systems.

While the above experiments used different back-ends to handle precisely the same input,
our next experiments (Figure 2) use the same Clingo back-end to solve the native ASP
encodings as well as the translations that are automatically generated by FOLASP from the
FO(·) specification for the same benchmark. Here, we see that performance is about equal for
sokoban, still life and graceful graphs. For all other benchmarks apart from nomystery , the native
ASP specification significantly outperforms the automatic translation. This further confirms our
earlier remark that the native version is able to better take advantage of the particular properties
of Clingo, and that our translation’s performance may suffer from the introduction of artificial
predicates.

In these experiments, the nomystery benchmark is the odd one out, since the FOLASP
translation here significantly outperforms the native encodings. One possible explanation for
this is that the modeling style encouraged by FO(·) has computational properties different to
those of typical ASP programs, and that the FO(·) style happens to be particularly well-suited
to nomystery . This would again point towards the value of a translation such as ours, but now
from a different perspective: it is not only useful to be able to try out different back-ends with the
same specification, but it is also useful to be able to run the same back-end with specifications
that were written according to different paradigms.

In our discussion of the previous experiments, we have hypothesised that the artifacts of
our translation may make FOLASP’s specifications harder to solve. To further investigate this,
Figures 3 and 4 compare the size of the ground programs for the three approaches. This ground
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Fig. 2. Scatter plot comparing Clingo and FOLASP runtime performance. “(x vs y)”
denotes that Clingo solved x instances within the family, and FOLASP y.
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Fig. 3. Scatter plot comparing IDP and FOLASP ground size. “(x vs y)” denotes that IDP
printed a ground size for x instances, and FOLASP for y.

size is measured as the number of atoms in the ground program, for both the ASP-solving
approaches (FOLASP and Clingo) and IDP, with the caveat that a ground ASP program and
a ground FO(·) specification may still be quite different. For instance, IDP retains non-Boolean
CP variables (De Cat et al. 2013) in its grounding, though we did switch off lazy grounding (De
Cat et al. 2015).
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Fig. 4. Scatter plot comparing Clingo and FOLASP ground size. “(x vs y)” denotes that
Clingo printed a ground size for x instances, and FOLASP for y.

For most benchmarks, the ground size for FOLASP is indeed significantly larger than the
ground size for both IDP and Clingo. Moreover, the ground size seems to correlate roughly
with performance. For instance, FOLASP outperforms IDP and Clingo on graceful graphs
and nomystery , respectively, and also has the smaller ground sizes on these benchmarks. On
other benchmarks, such as bottle filling or weighted sequence, FOLASP actually hit the 64 GiB
memory limit during grounding.

These observations appear to confirm our hypothesis that artifacts introduced by the
translation, such as auxiliary predicates, cardinality aggregates and extra rules, are a main
source of poor performance. Future work may focus on how to tweak the translation such that
the ground size can be reduced.

6 Conclusion

To solve real-world problems using declarative methods, both a suitable modeling language and
a suitable solver are needed. The Answer Set Programming community has converged on the
ASP-Core-2 standard as a common modeling language. However, while such a common language
is a great driver for technological progress, it is not necessarily well-suited for all applications.

The FO(·) language may provide an interesting alternative. It builds on classical first-order
logic, which may make it easier to use for domain experts who are already familiar with FO,
and which may make it easier to integrate with other FO-based languages. However, it is only
supported by a few solvers, which restricts the applications for which FO(·) can be used in
practice.

In this paper, we aim to provide more flexibility: by presenting a translation of FO(·)
model expansion problems to ASP-Core-2, we both extend the range of solvers for FO(·) and
enable the use of FO(·) as an alternative modeling language for these solvers. In this way, we
stimulate technological progress in solver development and in the development of applications.
We implemented our approach in the FOLASP tool, which, to the best of our knowledge,
is the first tool to offer a full translation from FO(·) to ASP for both model expansion and
optimization.
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In our experimental evaluation, we used benchmarks from the ASP competition to verify that
the results computed by FOLASP are indeed correct. We also compared the performance of
running Clingo on the FOLASP translation of an FO(·) specification to two alternatives:

• directly running the IDP system on the FO(·) specification;
• running Clingo directly on a native ASP specification.

In general, our experiments confirmed what one would typically expect, namely that the best
performance is obtained by running a specification that was native to a particular solver on that
solver. However, the experiments also showed that, for a number of benchmarks, our translation-
based approach is actually able to match or even, in rare cases, outperform the native approaches.
This demonstrates the usefulness of our translation also from a computational perspective: a
specification that performs poorly with one solver, may be more efficient when translated to the
input language of another solver.

Our experiments also demonstrate that, in cases where the translation performs significantly
worse than the native solutions, the grounding size often appears to play an important role.
Future work will therefore focus on further optimising the translation to reduce the overhead it
introduces.

In summary, the main contribution of our work is to provide increased flexibility, both in
choice of specification language and in choice of solver. We believe that this will be useful to
drive technological progress, to develop real-world applications using the best tools for the job,
and to allow cross-fertilisation between different research groups.
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Mariën, M., Gilis, D., and Denecker, M. On the relation between ID-Logic and answer set
programming. In Alferes, J. J. and Leite, J. A., editors, JELIA 2004, volume 3229 of
LNCS, pp. 108–120. Springer.

Van Gelder, A., Ross, K. A., and Schlipf, J. S. Unfounded sets and well-founded semantics
for general logic programs. In PODS 1988, pp. 221–230. ACM.

Van Gelder, A., Ross, K. A., and Schlipf, J. S. 1991. The well-founded semantics for
general logic programs. J. ACM, 38, 3, 619–649.


