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ABSTRACT

Context. The efficiency of the transport of angular momentum and chemical elements inside intermediate-mass stars lacks proper
calibration, thereby introducing uncertainties on a star’s evolutionary pathway. Improvements require better estimation of stellar
masses, evolutionary stages, and internal mixing properties.
Aims. We aim to develop a neural network approach for asteroseismic modelling and test its capacity to provide stellar masses, ages,
and overshooting parameter for a sample of 37 γ Doradus stars for which these parameters were previously determined from their
effective temperature, surface gravity, near-core rotation frequency, and buoyancy travel time, Π0. Here, our goal is to perform the
parameter estimation from modelling of individual periods measured for dipole modes with consecutive radial order rather than from
Π0. We assess if fitting of these individual mode periods increases the capacity of the parameter estimation.
Methods. We have trained neural networks to predict theoretical pulsation periods of high-order gravity modes (n ∈ [15, 91]), as well
as the luminosity, effective temperature, and surface gravity for a given mass, age, overshooting parameter, diffusive envelope mixing,
metallicity, and near-core rotation frequency. We have applied our neural networks for Computing Pulsation Periods and Photospheric
Observables, C-3PO, to our sample and compute grids of stellar pulsation models for the estimated parameters.
Results. We present the near-core rotation rates (from literature) as a function of the inferred stellar age and critical rotation rate. We
assess the rotation rates of the sample near the start of the main sequence assuming rigid rotation. Furthermore, we measure the extent
of the core overshoot region and find no correlation with mass, age, or rotation. Finally, for one star in our sample, KIC 12066947, we
find indications of mode coupling in the period spacing pattern which we cannot reproduce with mode trapping.
Conclusions. The neural network approach developed in this study allows for the derivation of stellar properties dominant for stellar
evolution – such as mass, age, and extent of core-boundary mixing. It also opens a path for future estimation of mixing profiles
throughout the radiative envelope, with the aim to infer those profiles for large samples of γ Doradus stars.

Key words. asteroseismology - stars: evolution - stars: oscillations (including pulsations) - stars: rotation - stars: interiors

1. Introduction

Accurate predictions of a star’s evolutionary path depend on the
accuracy of the description of transport of angular momentum
(AM, e.g. Maeder 2009; Aerts et al. 2019) and chemical ele-
ments (e.g. Salaris & Cassisi 2017). The transport mechanisms
are still poorly understood, thereby introducing uncertainties
in state-of-the-art stellar structure and evolution models. These
uncertainties already occur during the core-hydrogen burning
stage, and hence propagate into models of more evolved stars as
well. Asteroseismology, the study of stellar oscillations, of low-
to-intermediate mass M? . 3.3 M� stars constitutes a powerful
tool to measure surface- and near-core rotation rates across vari-
ous evolutionary phases: main sequence (MS); Kurtz et al. 2014;
Saio et al. 2015; Van Reeth et al. 2016, 2018; Christophe et al.
2018; Ouazzani et al. 2017, subgiants and red giants; Beck et al.
2012; Mosser et al. 2012; Gehan et al. 2018, and white dwarfs;
Hermes et al. 2017. The empirically derived rotation rates re-
quire the transport of AM to be one to two order(s) of magnitude
more efficient than what is currently predicted by theory (e.g.

Cantiello et al. 2014; Fuller et al. 2014; Eggenberger et al. 2017;
Tayar & Pinsonneault 2018; Eggenberger et al. 2019a,b; Fuller
et al. 2019; den Hartogh et al. 2019, 2020). It has been suggested
by Eggenberger et al. (2017) that the efficiency of AM transport
increases with increasing mass.

Aerts et al. (2019) (their Figure 4) present an overview of
measured core rotation rates versus the surface gravity (log g) in
the literature for stars with M? ∈ [0.72, 7.9] M�. While the dif-
ferent evolutionary stages can be distinguished based on log g,
the typical uncertainty is too large to infer any correlations be-
tween the rotation rate and the stellar age (Aerts et al. 2017). In-
stead of using log g as an age proxy, Ouazzani et al. (2019) used
the reduced asymptotic period spacing Π0, which represents the
buoyancy travel time throughout the star, as derived for a sam-
ple of γ Doradus (γ Dor) stars. Such stars are of spectral type
late-A to early-F (1.4 M� . M? . 1.9 M�) and show gravity (g)
modes excited via a convective flux blocking mechanism (e.g.
Guzik et al. 2000; Dupret et al. 2005), although the κmechanism
also plays a role for the hotter members of the class (Xiong et al.
2016).
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In a chemically homogeneous, non-rotating, non-magnetic
star, the periods of g modes – with the same spherical degree
` and azimuthal order m, but consecutive radial order n – are
equally spaced in period in the asymptotic regime (n � `),
namely by Π0/

√
`(` + 1). It is therefore customary to present

the oscillations in a period spacing diagram where the spacing
∆P = Pn+1 − Pn of each individual mode with radial order n is
plotted as a function of its period Pn. The advent of the Kepler
(Borucki et al. 2010) and TESS (Ricker et al. 2015) missions
have led to numerous detections of such period spacing patterns
in γDor stars (Kurtz et al. 2014; Saio et al. 2015; Van Reeth et al.
2015a; Keen et al. 2015; Saio et al. 2018; Li et al. 2019a,b; An-
toci et al. 2019). A first attempt at estimating stellar masses and
ages of a sample of 37 γ Dor stars was done by Mombarg et al.
(2019), using Π0, Teff , and log g assembled in Van Reeth et al.
(2015b, 2016) as input for the modelling. Their results show that
faster rotating stars tend to be in the early phases of the MS and
there was no correlation between age and the detection of Rossby
modes. In this paper we aim to refine their work by fitting the
measured periods for each of the individual dipole modes with
consecutive radial order instead of just Π0 as asteroseismic ob-
servable.

Besides probing stellar rotation rates, asteroseismology also
allows for the scrutiny of a star’s internal chemical mixing pro-
file (e.g. Pedersen et al. 2018; Michielsen et al. 2019; Pedersen
et al. 2021). During the core-hydrogen burning phase, a chem-
ical gradient is introduced in the near-core region as the mean
molecular weight inside the core increases.

The presence of a chemical gradient causes mode trapping,
which translates into characteristic dips in the period spacing
pattern (Miglio et al. 2008). Yet, mixing occurs in the core
boundary layers, due to effects such as core overshooting and a
variety of phenomena occurring at the bottom of the envelope.
In addition, mixing throughout the radiative envelope occurs,
for example as a result of shear instabilities (Maeder 2009) or
internal gravity waves (e.g. Rogers & McElwaine 2017). Such
forms of mixing alter the chemical gradient, making it possible
to probe the efficiency of the mixing throughout the stellar en-
velope and infer properties of the mixing profile provided that
modes with suitable probing power can be detected and iden-
tified (Aerts 2021). This has been achieved for a sample of B-
type g-mode pulsators, revealing a large range of mixing levels
ranging from ∼ 10 to ∼ 106 cm2 s−1 (Pedersen et al. 2021). For
γ Dor stars, our understanding of mixing in the envelope is less
advanced because their levels of mixing at the deep bottom of
the envelope, at the interface with the core overshoot zone, were
found to be much lower (Van Reeth et al. 2016; Mombarg et al.
2019).

In this paper, we take the first steps to develop a new mod-
elling approach based on deep learning, with the future aim to
estimate the mixing profile throughout the radiative envelope of
γ Dor stars. In this initial study, we only treat the mixing in the
near-core boundary layer, while fixing the one in the outer enve-
lope. We do this because we first aim to assess the precision esti-
mation of the global stellar parameters, such as the mass, metal-
licity, age, and convective-core overshooting for an exponential
overshooting prescription, by relying on the individual mode pe-
riod spacings rather than on just Π0. In order to test the capacity
of our new deep learning method, we re-model the measured
period spacing patterns of the 37 γ Dor stars from the sample
of Van Reeth et al. (2015b) and derive masses, ages, and near-
core mixing efficiencies. These are then compared to those ob-
tained earlier by Mombarg et al. (2019). If we achieve a better
modelling strategy based on our initial deep learning approach,

then future applications in a much higher-dimensional parame-
ter space become possible, which would allow for the additional
estimation of the envelope mixing profiles responsible for the
observed morphologies of the period spacing patterns in terms
of isolated or recurring dips as observed by (Van Reeth et al.
2015b; Li et al. 2019a,b).

2. Deep Learning

One of the biggest challenges in asteroseismic modelling of pe-
riod spacing patterns is that it requires a parameter search in a
high-dimensional space. The most important parameters con-
stitute the stellar mass (M?), the initial metallicity Z, and the
hydrogen mass fraction in the convective core (Xc; a proxy for
the stellar age). In addition, the chemical mixing profile is typi-
cally split in two parts; the convective core overshooting (dark-
coloured regions in Figure 1) and the mixing efficiency in the
radiative envelope (denoted as D0 in Figure 1). Given that the
physical mechanisms at stake are still unknown, both the over-
shoot and envelope mixing profile are parameterized by a func-
tion dependent on the local radius r, where the exact functional
description in real stars is still a matter of debate (e.g., Aerts
2021, for a general discussion and example profiles). Mombarg
et al. (2019) showed that diffusive exponentially decaying core
overshooting cannot be distinguished from convective penetra-
tion in their modelling based on Π0. As our main aim here is to
evaluate our new deep learning modelling method in terms of ca-
pacity to estimate the global parameters and not to investigate the
detailed morphology of the period spacing patterns, we rely on
an exponentially decaying diffusive core-overshooting prescrip-
tion. Our focus thus lies on the parameter estimation delivered by
the individual period spacing values coupled to a neural network.
The diffusive overshooting is expressed as a dimensionless pa-
rameter fov times the pressure scale height (Freytag et al. 1996):

DCBM(r) = DCBM(r0) exp
(
−2(r − r0)
fovHP(rcc)

)
, (1)

where rcc and HP are the distance from the stellar centre to the
(Schwarzschild) core boundary, and pressure scale height, re-
spectively. For numerical purposes, the mixing efficiency at the
stitching point between convective mixing in the core and the
core overshoot mixing is evaluated at rcc − f0HP(rcc), for which
we set f0 = 0.005. As said, we do not focus on the shape of the
mixing profile in the outer radiative envelope in this first applica-
tion of the neural network. Hence we assume a constant mixing
efficiency throughout the radiative zone for simplicity.

Aside from these most important parameters determining the
stellar structure and evolution (SSE) models, M?, Z, Xc, and fov,
we introduce the internal rotation frequency frot at the level of
the pulsation computations. Hence, asteroseismic modelling of
stars with a convective core is in general a +6D problem (Aerts
et al. 2018; Aerts 2021). This modelling scheme becomes rapidly
computationally expensive with the option to also assess mixing
profiles via free parameters and for application to large γ Dor
sample sizes such as the one provided by Li et al. (2020). To
deal with such types of future applications, grids of stellar or
pulsation models can be approximated and replaced by statisti-
cal models (Mombarg et al. (2019); Pedersen et al. (2021)) or
neural networks (this work). The latter method has been applied
to non-rotating pulsation models for a benchmark sample of pul-
sating B-type stars by Hendriks & Aerts (2019), reaching an ac-
curacy of ∼10% on the pulsation frequencies predicted by deep
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Fig. 1. Chemical mixing profile showing the different mixing zones
in a model for an intermediate-mass star. The ordinate shows the lo-
cal efficiency of chemical (diffusive) mixing. The thin outer convection
zone is not shown in the plot. The radii of the convective core boundary
(rcc) and overshoot zone (rov) are also indicated. Mixing inside the con-
vective regions is based on MLT and occurs instantaneously. The red
dashed line slightly to the left of rcc/R? indicates the starting point of
the overshoot zone (r0 in Eq. 1).

learning models, compared to those from the pulsation models.
The observed values for Z and frot show that the stars in our
sample cover a large range. Furthermore, the γ Dor instability
strip is narrow, compared to those of other pulsators. As such,
properly covering the most important stellar parameters with an
equally-spaced linear grid set-up, as is commonly done in astero-
seismic modelling, would require a very large amount of equilib-
rium models. We seek to circumvent this by replacing the need of
such extensive model grids by a neural network (NN). This study
serves as an initial proof-of-concept study of the application of
deep learning to asteroseismic modelling of g-mode pulsators,
with the idea that future studies may rely on a larger set of grids
with different input physics.

2.1. Predicting pulsation periods

In this work, we train a neural network to predict g-mode peri-
ods of theoretical pulsation models for a given M?, Xc, Z, fov,
D0, and frot. We have chosen this approach instead of using the
asteroseismic data as input and the stellar parameters as output
(e.g. Hon et al. 2020), because this allows for more flexibility in
the number of free parameters, as we can fix some of these pa-
rameters without having to retrain the NN. We keep this outlook
in mind for future applications based on more complex enve-
lope mixing profiles. In this initial study, we compute a grid of
stellar equilibrium models for the parameter ranges listed in Ta-
ble 1, based on the ranges used in Mombarg et al. (2019). We
base the range of fov on the typical values found by Claret &
Torres (2017) for the appropriate mass regime. The parameter
space is sampled both linear, and quasi random from a Sobol
sequence, following Bellinger et al. (2016). This way, we ob-
tain a high sampling density for each parameter whilst also al-
lowing the parameters to vary independently. The stellar equi-
librium models have been computed with the SSE code MESA
(r11701) (Paxton et al. 2011, 2013, 2015, 2018, 2019) for the
computations of the stellar equilibrium models, using the same
input physics as the models without atomic diffusion described
in Mombarg et al. (2020). The stars in our sample are assumed to
have a chemical mixture similar to the Sun, that is, we take the

Parameter Lower Upper
Boundary Boundary

M? (M�) 1.3 2.0
Xc 0.05 0.70
Z 0.011 0.023
fov 0.010 0.030
D0 (cm2s−1) 1 100
frot (d−1) 0.0 2.3

Table 1. Extent of the grid of stellar models used to train the C-3PO
neural network.

Solar abundances from Asplund et al. (2009), and scale these
according to the metallicity, Z. The helium mass fraction of the
models are set according to the enrichment rate found by Verma
et al. (2019) and the initial hydrogen mass fraction is set by
Xini = 1−Yini−Z = 0.756−2.226Z with 2H/1H and 3He/4He iso-
tope ratios set to the values measured by Asplund et al. (2009).

From the stellar equilibrium models, the theoretically pre-
dicted pulsations are computed with the pulsation code GYRE
(v5.2; Townsend & Teitler 2013; Townsend et al. 2018), using
the adiabatic framework and treating the Coriolis acceleration
non-perturbatively. The equations of motion are decoupled in
the angular and radial components by neglecting the latitudinal
component of the rotation vector (Traditional Approximation of
Rotation; TAR; Eckart 1960; Townsend 2003). Analyses of large
samples of γ Dor stars by Van Reeth et al. (2016) and Li et al.
(2019b) reveal the prograde dipole mode (` = 1,m = 1) is by far
the most observed mode geometry. Hence, for each stellar equi-
librium model we compute the predicted pulsation frequencies
for (`,m) = (1, 1) modes and radial orders n ∈ [15, 91] (thus
∆Pn for n ∈ [15, 90]), using the pulsation code GYRE (Townsend
2003; Townsend & Teitler 2013). The range of radial orders is
based on the distribution found by Li et al. (2020), taking the
most ubiquitous ones. Again, we quasi-randomly sample Xc and
frot within the ranges listed in Table 1. The rotation frequency
range is based on the minimum and maximum observed values
in the sample of Van Reeth et al. (2016). The total output data
set contains 38 915 pulsation models, of which 70% is used for
training and 30% for validation.

Neural networks are powerful numerical methods suitable to
treat multi-dimensional and complex regression problems (see
Bishop 1995; Glorot et al. 2011, to which we refer the reader
for an introduction and general overview on deep learning). We
constructed a dense NN comprising five layers, using the KERAS
package for Python (with Tensorflow 1.14.0), for which the
schematic overview of the NN is shown in Figure 2. A recti-
fied linear unit (ReLU) was used as activation function for the
neurons of the first four layers, and a linear activation function
for the output layer, including a bias term for both activation
functions. We have tested several of the most commonly used
activation functions (ReLU, sigmoid, tanh), for which we found
that the ReLU activation functions yielded the best performance
for our NN. The output of the NN are the predicted periods of
radials orders n ∈ [15, 91].

Similarly to the construction of statistical models as a means
to represent reality, adding nonlinear combinations of the in-
put parameters, may increase the performance of a NN. In-
spired by the regressions performed in Mombarg et al. (2019),
we found the performance of our NN to be enhanced by adding
two product terms of the most correlated parameters, the mass
and age, and mass and metallicity, to the input vector θ =
(M?, Xc,Z, fov,D0, frot,M? · Xc,M? · Z). Each component of θ
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is normalized as per,

θ̄i
j =

θi
j −min θi

max θi −min θi , (2)

where i is the parameter index and j the model index. The tech-
nique of ‘early stopping’ is applied to prevent the loss from in-
creasing again after several epochs, that is, the training is ter-
minated when the validation loss has not decreased during three
consecutive epochs. The weights are then restored to the config-
uration for which the validation loss was the lowest.

The problem of overfitting is common when training a NN,
that is, the NN achieves a high precision on the training set while
it fails to generalize the correlations, and thus underperforms on
the validation set. To remedy overfitting, a penalty term λ

∑
j w2

j
is added to the loss function, where w j are the synaptic weights
and λ the control parameter, which we set to 0.01. This technique
penalizes for large weights and is commonly referred to as L2 or
ridge regularization (cf. Bishop 1995, Chap. 9.2). As a loss func-
tion, the mean squared error is used. The final configuration of
the weights is somewhat dependent on the initial weights, which
introduces noise in the predictions. To remedy this, we train six
NNs with different initial weights and average their predictions
(this technique is often referred to as ‘ensemble learning’).

The so-called learning curve is a common diagnostic to as-
sess whether a NN is able to make robust predictions. This curve
shows the loss (which includes the L2 regularization term) as
a function of epoch. In the top panel of Figure 3 we show the
learning curves for all NNs trained to predict the pulsation pe-
riods. Ideally, a NN should obtain roughly the same loss on the
training and validation set, which is indeed the case here. When
ensemble learning is applied, a mean absolute error of 0.0024 d
(207 s) on the pulsation periods is obtained over all models used
to train and validate the NN. Typical observed spacings between
periods of consecutive radial order vary from several hundreds to
several thousands of seconds. It is more instructive to compare
the accuracy of the NN with typical spacings rather than ob-
servational uncertainties, as the accuracy of the state-of-the-art
pulsation models is typical orders of magnitude worse than the
uncertainties on the measured periods from Kepler light curves
(e.g. Buysschaert et al. 2018; Mombarg et al. 2020).

2.2. Lifting degeneracies

The modelling of mode periods or period spacing patterns is
prone the degeneracies, mainly between mass and age, and mass
and metallicity (e.g. Moravveji et al. 2015; Mombarg et al.
2019, 2020). We apply the same methodology as Mombarg
et al. (2020), where the best model is selected from models that
are compatible with the effective temperature (Teff) and surface
gravity (log g), measured from spectroscopy. In addition to these
two parameters, the luminosity (log(L/L�)) derived from the
Gaia DR2 distances (D) measured by Bailer-Jones et al. (2018)
is used:

log L/L� = −0.4
(
MV − V� − 31.572 + [BCV − BCV,�]

)
, (3)

where MV = mV − 5 log(D/10 pc) − 3.3E(B−V), V� = −26.76,
and BCV,� = −0.080. Bolometric corrections (BCV ) are com-
puted as per Torres (2010) and reddening corrections E(B − V)
are taken from the Bayerstar2019 extinction map (Green et al.
2018). From the extinction, the correction to the visual magni-
tude is calculated using AV = 3.3E(B − V). Figure 4 shows the
position of all stars in our sample in a Hertzsprung-Russell dia-
gram (see Table A in Appendix).

Output Configuration Networks
Pn, n ∈ [15, 91] 700, 700, 20000, 20000, 86 6
log L/L� 700, 700, 20000, 20000, 1 1
log Teff , log g 700, 700, 20000, 20000, 2 1

Table 2. Summary of the network configuration of C-3PO. The second
column lists the number of neurons for each layer.

In addition to the mode periods, we have trained two NNs
to predict (Teff , log g) and log L, respectively, using the same
configuration as the network shown in Figure 2. To train these
NNs, we use all time steps (on the MS) computed by MESA as
opposed to using only the time step for which pulsation models
were computed, that is, the training set comprises 423691 vec-
tors and the validation set comprises 141231 vectors. In Figure 5
we compare the predictions of the NNs of these photospheric ob-
servables to MESA evolutionary tracks. We obtain mean absolute
errors of ε̄log L/L� = 0.010, ε̄log Teff

= 0.004, and ε̄log g = 0.011 dex
on the complete data set (training plus validation). The models
shown in this figure were not included in the training or valida-
tion set. There is no exact method to find the optimal configu-
ration of a NN. We started from a similar network configuration
as presented in Hendriks & Aerts (2019), and experimented with
different numbers of hidden layers, and the number of neurons
per layer, by means of trial and error. Table 2 summarizes the
ensemble of all the networks for Computing Pulsation Periods
and Photospheric Observables, C-3PO.

3. Asteroseismic modelling

Until recently, g-mode modelling of single γ Dor stars relied on
(Π0, Teff , log g) as input (Mombarg et al. 2019). In the work
by Mombarg et al. (2020), Π0 is replaced with the individual
mode periods as asteroseismic input for the modelling of two
slowly rotating γ Dor stars. Furthermore, these authors investi-
gated whether Teff and log g should be added to the fit or used a
posteriori to select models which are consistent within nσ com-
pared to the observations. As typically tens of excited modes of
consecutive radial order are observed in a single star, the spectro-
scopic observables have little relative weight in the merit func-
tion. Therefore, we opt to use the log Teff and log g to select
the best-fitting model from a subset of models which are within
the 2-σ uncertainty ranges of these photospheric observables.
Aerts et al. (2018) introduced the Mahalanobis distance (MD)
as a merit function in asteroseismic modelling to account for the
correlated nature of the observed periods, as well as the theoret-
ical uncertainty of the modes. The MD takes the (co)variances
of the input parameters into account such that the contours of
equal MD are aligned with the principal components, whereas
for the χ2 merit function contours of equal χ2 are aligned with
the base vectors (free parameters). For a given vector Y(th), con-
taining the periods of the identified radial orders, and a vector
Y(obs) containing the observed periods, the MD is defined as

MD =
(
Y(th) − Y(obs)

)>
(V + Σ)−1

(
Y(th) − Y(obs)

)
. (4)

The matrix V is the (co)variance matrix and Σ is a diagonal
matrix, constructed from the uncertainties on the predicted
mode periods by the NN. These can be treated as aleatoric,
as the residuals on the training/validation set follow a normal
distribution (see Appendix C). Therefore, each uncertainty
σP(th)

n
, with n the radial order, is taken to be the standard

deviation of the residuals over the complete grid of pulsa-
tion models. The uncertainties of the predictions are typically
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Fig. 2. Schematic overview of the configuration of the dense neural network trained to predict the periods of the (`,m) = (1,1) modes for a given
θ = (M?, Xc,Z, fov,D0, frot,M? · Xc,M? · Z). The values of the input parameters are transformed as per Eq. (2).

two orders of magnitude larger than those from the observations.

The matching between the observed radial orders to those
from a model is non trivial. Observed period spacing patterns of
γ Dor stars do not always form a single sequence of consecutive
radial orders, but may be interrupted by missing modes. There-
fore, the radial order matching in this paper is done as follows:

1. Start with the longest observed continuous sequence of M
periods and assign the shortest period P(obs)

0 to the best-
matching period P(th)

j,i , as the shortest period has the smallest
relative uncertainty.

2. Assign periods P(obs)
1 , . . . , P(obs)

M to the consecutive radial or-
ders in the model.

3. Repeat step 1 for the second longest sequence, and so on.
When a radial order is selected which has already been as-
signed to an observed period in one of the longer sequences,
omit the model.

In this way, we account for the possibility of having multiple
sequences of consecutive radial orders with missing modes in
between those sequences. The construction of V can be done in
two ways. 1: For each evaluated model j, each of the observed
periods P(obs)

i is matched with a period P(th)
i corresponding to a

radial order that may vary for different models. Matrix V is given
by,

V =
1

q − 1

q∑
j

(
Y(th)

j − Ȳ(th)
) (

Y(th)
j − Ȳ(th)

)>
, (5)

where q is the number of evaluated models, and

Ȳ(th) =
1
q

q∑
j

Y(th)
j . (6)

2: Take Y(th)
j to contain the periods of all the radial orders pre-

dicted by the NN, that is, n ∈ [15, 91], and construct V, thereby
yielding a matrix with dimensions 77×77. Consecutively, for
each model with radial order identifications nmin, ..., nmax corre-
sponding to the N observed mode periods, remove the rows and
columns of V belonging to the radial orders that were not iden-
tified in model j, yielding an N×N matrix, V′j.

In this paper, we have used method (2) to compute the MD,
such that the (co)variances do not depend on the radial order
identification. This is the case for method (1), because the low-
est period is matched first and the consecutive periods are then
matched to the consecutive radial orders of the model. Hence,
when the observed Π0 does not match the Π0 of the model,
the discrepancy between the model and observations is larger
for higher radial orders. Therefore the variance across the grid
will also be larger for these radial orders, and by extension will
be given a smaller weight. The maximum likelihood estimate
(MLE) for our method is not equivalent to minimizing the merit
function, as is the case for χ2. Instead, the likelihood of the ob-
served data D, given parameters θ = (θ1, θ2, θ3), is given by,

L(θ|D) = P(D|θ)

= exp
(
−

1
2

(ln |V′| + MD + k ln(2π))
)
, (7)

where k = 3 is the number of free parameters. According to
Bayes’ theorem, the probability of component θk being within
interval [θk

a, θ
k
b] is given by

P(θk
a < θ

k < θk
b|D) =∑q

i P(D|θi)P(θ1
i )P(θ2

i )P(θ3
i )∑Q

j P(D|θ j)P(θ1
j )P(θ2

j )P(θ3
j )
. (8)
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Fig. 3. Loss (mean squared error + L2 regularization term) as a func-
tion of epoch. The NNs training on the pulsation models (bottom panel)
reached an optimal solution within the maximum number of epochs.
In all cases similar loss is obtained on the training and validation sets,
indicating the NNs were able to generalize the synaptic weights.

Fig. 4. Positions in the Hertzsprung-Russel diagram of all stars in our
sample. The values of Teff and Π0 are taken from Van Reeth et al. (2016).
The evolution tracks shown are for Z = 0.014 and fov = 0.0175. For the
stars marked with red circles no reliable extinction estimate could be
made, because these are too close to the Sun, therefore, their interstellar
extinction values are close to zero.

The sum over index i is taken over the q models with the highest
likelihood such that P(θk

a < θk < θk
b|D) = 0.68, where the sum

over index j is taken over all of the models that are consistent
with the observed photospheric observables.

The modelling of g modes in γ Dor stars is a high-
dimensional, degenerate problem. Optimizing all six aforemen-
tioned parameters at once will lead to noisy solution spaces,
making uncertainty determination unwieldy. Yet, some param-
eters are more dominant than others, and thus, we first focus on
the parameters which have the largest influence on the mode pe-
riods. Since the metallicity and near-core rotation rate have al-
ready been determined by Van Reeth et al. (2016), we fix these
two parameters to the measured values. The influence of fov, and
specifically D0 on the period spacings are mostly seen in the
mode trapping. In this work, our aim is not to precisely model
the trapped modes, but rather get an accurate fit to the global pat-
tern of all observed modes. Accurately modelling trapped modes
adds additional dimensionality to the problem in the form of
structured (non-constant) mixing profiles (Pedersen et al. 2021),
which we do not consider here. For each star in our sample, a
best-fitting model is found as follows:

1. Randomly sample 5000 models in (M?, Xc, fov) with C-3PO,
where Z and frot are fixed to the measured values, and D0 =
1 cm2 s−1.

2. If some observed periods cannot be matched in 90% of the
models (because the radial order is outside the range of NN)
remove either the shortest or the longest period depending on
which one is outside the range. Repeat until a model can be
matched.

3. From these 5000 models, get the minimum and max-
imum values of M? and Xc such that the predicted
log(L/L�), log Teff , and log g are consistent within 2-σ of the
respective uncertainties.

4. Randomly sample 15000 models, but now within the mass
and Xc ranges obtained in the previous step. The solution
and uncertainties are computed according to Eqs 7 and 8.

5. Since the exact periods of trapped modes are difficult for
a NN to predict, we optimize the overshoot parameter with
GYRE models once we have a good estimate of (M?, Xc, fov)
from the previous steps. We compute GYRE models for
fov ∈ [0.005, 0.010, 0, 015, 0.020, 0.025, 0.030, 0.035] for
the MLEs for M? and Xc and for the upper/lower limits of
these two parameters (63 models per star in total). Models
rotating faster than the critical Roche frequency, Ωcrit,Roche =√

(8GM?)/(27R3
?), are not taken into account.

In the latter step, a χ2 merit function is used instead of
the MD, as scanning such a small parameter range results in
(co)variance matrices with very high condition numbers. The un-
certainties on fov are determined by,

χ2
1σ = χ2

min

1 +

√
2

N − k

 . (9)

For stars where an additional mode geometry has been observed,
the corresponding pulsation models are also computed and fitted
simultaneously with the prograde dipole modes in Step 5.

3.1. Theoretical benchmark

First, we demonstrate the capabilities of C-3PO by applying the
NN to a set of benchmark models (1.35 M�, 1.65 M�, 1.95 M�)
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Fig. 5. Comparison between the predictions of C-3PO (dots) and the MESA benchmark evolution tracks (solid lines) for Z = 0.012 and Z = 0.023.
The predictions are sampled from Xc = 0.70 to 0.05 with a step size of 0.05.

which were not included in the training/validation set. We use
radial orders n ∈ [20, 60], and the photospheric observables
from the MESA model as input, where we assume the follow-
ing uncertainties: σlog L/L� = 0.05 dex, σlog Teff

= 0.015 dex, and
σlog g = 0.6 dex. The metallicity and rotation frequency are fixed
to the values of the models in the fit, since these are also known
for the observations. Two examples are shown in Figure 6 for a
young star and an old star. The accuracy of the NN is less for
patterns with clear mode trapping, yet in both cases the peri-
ods are still predicted with enough accuracy such that, with the
inclusion of the photospheric observables, M? and Xc can be re-
covered. In Figure 7, we show the mass and Xc values of all the
inputs models, and the obtained estimates from C-3PO. On aver-
age, the input mass, Xc, and fov are recovered within 2%, 15%,
and 16%, respectively. It should also be noted that, as mentioned
before, degeneracies exist between young lower-mass stars and
old higher-mass stars. Thus, even if the NN would be able to
perfectly predict the pulsation periods, exactly recovering a (per-
turbed) input model would still be impossible (see middle panels
of Figure 6).

3.2. Observational benchmark

One of the stars in our sample, KIC 9751996, has been analysed
by Mombarg et al. (2020) who modelled the star using models
both with and without atomic diffusion (including radiative levi-
tation). As mentioned before, in this paper we use the same input
physics in our models compared to their grid without atomic dif-
fusion. It should be noted, however, that in this work only the
periods of the prograde mode are modelled, whereas in the work
by Mombarg et al. (2020) the periods of the retrograde, zonal,
and prograde are modelled simultaneously.

This yields M? = 1.740+0.009
−0.169 M�, Xc = 0.241+0.147

−0.040, and fov =

0.0124+0.0121
−0.0024, all of which are consistent with the values found

by Mombarg et al. (2020). The predicted period spacing pattern
of this best-fitting model from C-3PO is shown in Figure 8.

4. Application to the sample

For all 37 stars in our sample, we apply the modelling scheme
discussed in Section 3 to constrain M?, Xc, and fov, in order to
compare the results with those based on Π0 obtained by Mom-
barg et al. (2019). We recall that our aim is not to achieve good
fits to the dips in the patterns, as this requires stratified envelope
mixing profiles (Pedersen et al. 2021). Here, we merely wish to
compare the capacity of the NN with previous modelling based
on actual equilibrium models rather than a numerical NN ap-
proximation thereof.

Figure 9 shows the mass and Xc of the best model
predicted by C-3PO of each star. As is expected from
the position of the γ Dor instability strip (Dupret et al.
2004), there is a correlation between the estimated mass
and age, i.e., no young, more massive or old, less mas-
sive stars are observed, as already found by Mombarg
et al. (2019). KIC 2710594, KIC 3448365, KIC 6678174,
KIC 6953103, KIC 7380501, KIC 8645874, KIC 11099031, and
KIC 11294808 are stars for which a particularly complicated pe-
riod spacing pattern is observed, i.e., large deviations in the ob-
served morphology occur, compared to what we expect from the
pulsation models limited to the physics described in this work.
For these stars, part of the pattern has not been taken into ac-
count in the fitting. In the case of KIC 5522154, KIC 5708550,
KIC 6678174, KIC 6953103, KIC 7365537, the best solutions to
the observed mode periods do not seem to be in agreement with
the photospheric observables. The former and latter are fast ro-
tators ( frot > 2.15 d−1, Van Reeth et al. (2016)), and hence the
inferred Teff could suffer a larger systemic error due to the larger
uncertainty of the spectrum normalization and gravity darkening.
For the other three stars, it is primarily the luminosity which does
not agree with the observed pulsations. In any case, for these five
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Fig. 6. Examples of the recovered mass and Xc of two benchmark models (white stars: input, red stars: best model predicted by NN). Al-
though the period spacings of trapped modes are more difficult to predict (bottom panel), the inclusion of the photospheric observables
yields accurate predictions of the mass and Xc. The middle panels show the sampling density is increased in the parameter space where
the predicted photospheric observables comply with those of the input model, as explained in Section 3. Model 1: (M?, Xc,Z, fov,D0, frot) =
(1.35 M�, 0.515, 0.014, 0.0225, 1 cm2 s−1, 0.7457 d−1). Model 2: (M?, Xc,Z, fov,D0, frot) = (1.95 M�, 0.08, 0.014, 0.0225, 1 cm2 s−1, 0.0449 d−1).
Typical uncertainties on ∆P are of the order of several tens of seconds.

stars, no 2−σ cutoff in L,Teff , and log g is imposed, resulting in
a larger uncertainty on M? and Xc, as can be seen in Figure 9.

We have investigated the effect of adding the rotation fre-
quency (within the observational uncertainties) as an additional
free parameter in the fitting on the MLEs. For both the fastest ro-
tating star (KIC 12066947) and the star with the least precisely

determined rotation rate (KIC 6678174), fixing the rotation rate
in the modelling yields consistent estimates of the varied stellar
parameters, compared to when we allow it to vary.

In addition to (`,m) = (1, 1) modes, (`,m) = (1, 0) modes for
KIC 4846809 and KIC 9595743, and an (`,m) = (2, 2) mode for
KIC 11294808 have been observed by Van Reeth et al. (2016).
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Fig. 7. Mass and Xc values of the benchmark models (open symbols)
and the corresponding retrieved values from the best-fitting model com-
puted with C-3PO (filled symbols). For the benchmark models Z =
0.014 and fov ∈ [0.0175, 0.0225].

Fig. 8. Observed period spacing pattern of KIC 9751996 from Van
Reeth et al. (2016) (black dots, prograde dipole mode only) and the
best-fitting pattern predicted with C-3PO (red dots). For comparison,
the solution from Mombarg et al. (2020) without atomic diffusion (their
model M01) is also shown (blue dots). The observational uncertainties
are typically smaller than the symbol size.

The additional period spacing patterns of these three stars have
also been taken into account in Step 5 of the modelling scheme
(Section 3).

Table F.3 lists the parameters of the best models found by
C-3PO and of the best-fitting GYRE model. In Appendix D, we
show the theoretically predicted period spacing patterns for all
stars in our sample, as well as the distribution of radial orders,
similar to the result from Li et al. (2020). Moreover, the Brunt-
Väisälä frequency profiles of the best-fitting models are shown
in Fig. D.39. In many cases, we are not able to reproduce the
wiggly characteristics of the observed patterns, indicating that
the physics used in this work is still incomplete and requires
improvement. Therefore, these deviations between the patterns
from our best solution and the observed ones offer a fruitful
guide to future studies with the aim to explain the morphology
of the patterns, by means of different core-boundary mixing pre-
scriptions and/or introducing stratified envelope mixing profiles.
In order to guide such future studies, we focus on one of the
stars in our sample which shows clear ‘wiggles’ in its observed
period spacing patterns, i.e., KIC 11294808. With the overshoot
prescription used in this work (Eq. 1), such wiggles are only
observed in our models at a level of D0 = 0.05 cm2s−1 (see
Fig. E.1). The same conclusion is found for this star when we

recompute the MESA and GYREmodels, but this time using a step-
like penetrative convection prescription as convective-boundary
mixing prescription, where we explore αov ∈ [0.05, 0.35; 0.05]
(other parameter ranges kept the same). We obtain the same best
model as for an exponential core overshoot in terms of mass
and evolutionary stage. This corresponding best convective pen-
etration model has a value of αov that is ten times the value of
fov, in agreement with previous studies where such comparisons
were made (Moravveji et al. 2016). This solution is also shown
in Fig. D in the Appendix (grey open circles).

The remaining differences between the observed and pre-
dicted mode periods via the NN seen in most of the stars is due
to the lack of stratified envelope mixing. As shown by Pedersen
et al. (2021), the latter results in structure to occur in the pat-
terns. Such structure can have various physical causes, for ex-
ample, atomic diffusion with radiative levitation (e.g. Deal et al.
2020; Mombarg et al. 2020), magnetism (e.g. Prat et al. 2019;
Van Beeck et al. 2020, which causes saw-tooth like features),
shear instabilities due to rotation or wave mixing (Pedersen et al.
2021), or nonlinear effects (discussed later on). Our results open
the way to include those types of phenomena by modelling the
residuals between the periods predicted by the current initial NN
and the observed ones.

As an extra sanity check to assess the quality of the NN
solution, we show in Figure 10 the Π0 value derived from our
best model and compare it to the observational values from Van
Reeth et al. (2016, 2018) as derived from the mode identification
along with the near-core rotation frequency. In general, we find
adequate correspondence between the two ways of estimating
Π0. The most significant discrepancy is found in KIC 11099031
(data point indicated in red). This is one of stars for which
Christophe et al. (2018) found a much lower value of Π0, com-
pared to Van Reeth et al. (2016) (see Fig. 5 in Ouazzani et al.
(2019)).

4.1. On the possible origins of CBM

The parameters of the best-fitting models discussed in this sec-
tion are those extracted from the MESA and GYRE models, com-
puted in Step 5 of the modelling scheme. As illustrated in Fig-
ure 11, the modelling of individual pulsations instead of the
method employed by Mombarg et al. (2019) allows for a better
constraint on fov, as the individual mode periods lead to less de-
generacy with respect to the stellar mass and age. In addition, the
luminosity is in general more precisely determined than log g for
F-type stars, which further reduces the degeneracy between the
stellar mass and age. The overshoot parameter has been astero-
seismically calibrated for eight solar-like oscillators with a con-
vective core by Deheuvels et al. (2016), covering a mass range
from roughly 1.1 to 1.45 M�. They observe an increase of the
overshoot parameter with increasing mass, although this trend is
much less outspoken for M? > 1.25M�. The results from De-
heuvels et al. (2016) for models with microscopic diffusion are
shown in Figure 11 in grey. To convert from a step-like over-
shoot (penetrative, αov) to the exponential-like overshoot (diffu-
sive) parameterizaton used in this work, we have used the ap-
proximation αov ≈ 10 fov as inferred by Claret & Torres (2017).
A similar correlation between overshooting and the mass was
found by these authors from isochrone fitting of binary systems,
plateauing to a value of ∼0.0175 for M? & 2.0M�.

Yet for the single stars modelled in this work, we do not
observe such a mass-overshoot relation, albeit a much smaller
range in mass is probed. Furthermore, for a significant portion
of the sample, we obtain higher values for fov than those from
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Fig. 9. Correlation structure of the 68%-confidence intervals of M? and Xc/Xini for all 37 stars in our sample from modelling the dipole period
spacing patterns with C-3PO. The MLE is indicated by the red dot. The KIC number is indicated in the bottom right corner of each plot.

Claret & Torres (2017). Caution is advised when comparing
overshoot values between different studies, as the exact location
in the star where the overshoot (core-boundary mixing; CBM)
profile starts is set by an additional parameter, f0, normalized by
the local pressure scale height, for which we use 0.005 in this

work. In Figure 12, the extent of the overshoot zone is plotted
against Xc/Xini. The size of the overshoot region is defined as
the difference between rov and rcc, where rcc is defined as the
radius where the temperature gradient transitions from adiabatic
to radiative, and rov is the radius where the overshoot zone ends
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Fig. 10. Comparison between the Π0 values derived by Van Reeth
et al. (2016, 2018) (Π0,obs, simultaneously with frot) versus the val-
ues found from the best models presented in Table F.3 of this paper
(Π0,model). The grey dashed line indicates perfect correspondence. The
outlier KIC 11099031 is indicated in red.

Fig. 11. Derived masses and overshoot parameters for all stars in our
sample from GYRE models. For comparison, inferred overshoot param-
eters of low-mass stars by Deheuvels et al. (2016) (solutions with mi-
croscopic diffusion, where we have used αov ≈ 10 fov) are plotted in
grey.

(cf. Figure 1). No evident correlation is observed between the ex-
tent of the overshoot zone and the evolutionary stage, although
the most evolved stars in our sample typically have smaller over-
shoot zones. It should be noted that if the value of fov is depen-
dent on the stellar age, this is not taken into account in current
SSE models. The modelling of period spacing patterns does not
probe the value of fov at the current age of the star, but rather the
constant value that is needed to have the correct core properties
at the age when the observations were taken. As illustrated in
Figure 13, we observe a correlation between the core mass, mcc,
and the extent of the overshoot region. An increase in rov − rcc
with increasing mcc is observed, where there is an offset between
younger and older stars. For the less massive stars, the convective
core grows in mass at first, whilst for the more massive stars, the
core recedes throughout the MS (cf. Figure 2 of Mombarg et al.
2019). This suggests that the correlation between rov − rcc and
mcc is dependent on the core density. The fractional core mass
versus the stellar mass is shown in Figure 14.

Fig. 12. Extent of the overshoot zone plotted against Xc/Xini.

Fig. 13. Correlation between the convective core mass and extent of the
overshoot zone. The symbol size is indicative of the mass.

Although we refer to fov as the convective core overshoot
parameter, fov encompasses all forms of mixing occurring close
to the core boundary. If CMB is induced via rotational shears
between the core and the envelope, a dependence between the
amount of CMB and the rotation rate is expected. In Figure 15
the inferred extent of the overshoot zone, relative to the core size
is plotted as a function of the near-core rotation rate from Van
Reeth et al. (2016) (Ω = 2π frot), scaled by

√
Gmcc/r3

cc, where
G is the gravitational constant1. No evidence is found that the
CMB increases with a faster rotating near-core region. To fully
rule out the connection between rotation and the extent of the
overshoot zone, the rotation of the convective core itself needs
to be measured. Saio et al. (2021) have derived the rotation of
the convective core in 16 rapidly rotating γ Dor stars from the
sample of Li et al. (2020) by studying the coupling between in-
ertial modes in the convective core and g modes in the radiative
envelope. These authors found only small differences with the
rotation rates derived from g modes in the TAR framework for
the majority of stars.

1 No scaling of Ω does not reveal any correlation either.
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Fig. 14. Derived fractional convective core mass versus stellar mass.

Fig. 15. Extent of the overshoot region with respect to the radius of
the convective core as a function of the angular rotation rates from Van
Reeth et al. (2016), scaled with frequency

√
Gmcc/r3

cc, where mcc and rcc
are the core mass and radius, respectively. The symbol size is indicative
of the stellar mass.

4.2. Angular momentum of the sample

The AM of a star, J, is defined as

J =

∫
r2Ω(r)dm. (10)

For eight stars in our sample, Van Reeth et al. (2018) have
measured the ratio between the near-core rotation rate and the
surface rotation rate, suggesting all eight stars are quasi-rigidly
rotating. In addition, Saio et al. (2021) found the γ Dor stars in
their sample to be rotating nearly uniformly as well. Therefore,
assuming Ω(r) is constant throughout the star and that typical
mass loss in F-type stars (Ṁ ' 10−13 M�/yr) is too small to
carry away significant amounts of AM from the star, we can
infer the rotation rate at any point in time, since J is constant.
Figure 16 shows the fraction of AM in the convective core,
compared to the total AM of the whole star, J, as a function of
stellar age, τ. Furthermore, two examples of the evolution of the
AM of the convective core2, Jcc/J for KIC 2710594 (∼1.5 M�)
2 Jcc is computed by discretizing the integral in Eq. (10), i.e. Jcc =∑

i r2
i dmi, where i runs over the cells in the model below the convective

core, and r and dm are the central radius and enclosed mass of a cell,
respectively.

Fig. 16. Fractional AM of the convective core to total AM, assuming
rigid rotation throughout the MS. Stars with detected Rossby modes are
plotted as triangles and highlighted in red. The symbol size is indica-
tive of the mass. The grey symbols indicate the predicted evolution of
Jcc/J (assuming rigid rotation) for KIC 2710594 (upward triangles) and
KIC 6953103 (downward triangles).

Fig. 17. Near-core rotation rates (and Π0) from Van Reeth et al. (2016,
2018) as a function of age τ (this work). Stars with detected Rossby
modes are highlighted as red triangles. The symbol size is indicative of
the mass.

and KIC 7434470 (∼1.9 M�) when rigid rotation is assumed, are
shown.

Mombarg et al. (2019) observed that stars with detected
Rossby modes are situated across the entire MS (based on
Xc/Xini), which is in line with our findings. In Figure 17, we
show the near-core rotation as a function of absolute age, τ, and
highlighted stars in red for which Van Reeth et al. (2016) de-
tected Rossby modes. Again, we do not find any correlation be-
tween a star’s age and the presence of Rossby modes.

When rigid rotation is assumed, the initial rotation frequency
at the start of the MS can be estimated. Figure 18 shows the dis-
tribution of the rotation frequencies near ZAMS (i.e. not more
than 3% of the initial hydrogen in the core burnt) as well as the
distribution of the present rotation frequency (Van Reeth et al.
2016, 2018). While the distribution of the present-day near-core
rotation frequencies corresponds to the one found by Li et al.
(2020), we find a broader distribution for the near-ZAMS rota-
tion rates, which peaks around 1.8 d−1.
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Fig. 18. Red: Distribution of the present near-core rotation frequencies
from Van Reeth et al. (2016, 2018). Black: Distribution of the rotation
rate near the ZAMS, assuming rigid rotation throughout the MS. Grey:
Normalized distribution from Li et al. (2020).

4.3. Mode interaction in KIC 12066947

One particularly interesting star in our sample is KIC 12066947.
It shows just one characteristic dip in the period spacing pattern
at 0.38 days. Such a single dip is not expected to be caused by a
chemical gradient because this introduces multiple dips (Miglio
et al. 2008). Recently, Saio et al. (2021) were able to reproduce
the sharp dip observed in the period spacing pattern of this star,
using the formalism by Lee & Baraffe (1995) to compute the
coupling between g modes in the radiative envelope and an iner-
tial mode in the convective core. To exclude the scenario of con-
stant envelope mixing combined with a chemical gradient in the
core boundary layer as a possible second explanation, we again
repeat Step 5 (Section 3), but with extremely inefficient envelope
mixing, that is, D0 = 0.05 cm2 s−1. As can be seen from the best
pulsation model selected among those computed from the best
stellar models according to C-3PO, see Figure 19, a low D0 does
introduce a dip in the pattern around the observed dip in period
spacing close to 0.38 days. However, the additional theoretically
predicted dips are not observed. A rotation rate of 25+0.09

−0.10 µHz
for KIC 12066947 has been measured by Van Reeth et al. (2016).
Assuming a uniform rotation profile at 25 µHz, Ouazzani et al.
(2020) have computed the radial order at which the interaction
between inertial and gravito-inertial modes occurs. According to
the parameters derived for KIC 12066947 in this work, the star is
most akin to the mid-MS model from Ouazzani et al. (2020), for
which the mode interaction is estimated to occur at npg = −44.
The dip in the period spacing pattern occurs at npg = −44, there-
fore, if the dip is caused by interaction between gravito-inertial
and pure inertial modes, it should occur close to the dip. Hence,
the observed dip in the period spacing pattern of KIC 12066947
is most likely caused by mode interaction, confirming the results
by Ouazzani et al. (2020) and Saio et al. (2021).

4.4. Comparison with Mombarg et al. (2019)

In Figure 20, we compare the MLE for M?, Xc, and fov from
C-3PO (this work) with those from Mombarg et al. (2019). Sev-
eral key differences between the NN methodology in this work
and theirs should be noted while evaluating the comparison, as
summarised in Table 4. Keeping these differences in mind, the
agreement among the estimated parameters is adequate, given
the uncertainties in the parameter estimation. This is not the case
for all stars in terms of their masses, however. The mass esti-
mates from the NN methodology are in general lower compared
to those of Mombarg et al. (2019). This is not a consequence

Fig. 19. Best-fitting model with D0 = 0.05 cm2s−1 to the observed
period spacing pattern of KIC 12066947 (black dots, Van Reeth et al.
2016). For reference the best-fitting with the standard D0 = 1.0 cm2s−1

used in this work is shown in grey.

of the more complex NN modelling strategy adopted here, how-
ever, but rather due to the inclusion of the stellar luminosities
calculated from the Gaia DR2 data as a constraint imposed in the
modelling. Figure F.1 in the appendix shows the effect of includ-
ing the Gaia luminosity as an extra constraint in the modelling
on the inferred stellar mass. A systematic underestimation of the
stellar masses deduced from Gaia DR2 data was also found by
Pedersen et al. (2021) in their asteroseismic modelling of B-type
stars. We conclude that the NN itself performs well as an aster-
oseismic modelling strategy and opens the way forward for ap-
plications to large samples of γDor pulsators and for the use of
more complex stellar models, including parametrized stratified
envelope mixing profiles.

5. Conclusion & Discussion

In this paper, we have constructed a forward modelling scheme
for gravito-inertial modes in γ Dor stars, and used it to estimate
the stellar mass, the central hydrogen mass fraction, and the
overshooting parameter. We have eliminated the need of large
grids of stellar models by training a dense neural network on
a coarse grid of stellar evolution and pulsation models to pre-
dict the corresponding oscillation periods (n ∈ [15, 91]) and
the luminosity, effective temperature, and surface gravity, given
the mass, hydrogen mass fraction in the core, metallicity, core-
boundary mixing and radiative envelope mixing efficiency, and
rotation rate. All of the input parameters of the network have
been varied within appropriate ranges of γ Dor stars, making it
a versatile tool for estimating stellar parameter ranges with min-
imal computational effort. The C-3PO neural network, compris-
ing of eight different subnetworks has been applied to a sample
of 37 γ Dor stars for which period spacing patterns have been
detected by Van Reeth et al. (2016). For Teff and log g, we relied
on the measurements from Van Reeth et al. (2015b) and have
derived luminosities for the sample, using Gaia DR2 distances
from Bailer-Jones et al. (2018).

Using the mass and Xc estimates of C-3PO, we have com-
puted small grids of stellar pulsation models for each star, as to
further constrain the overshoot fov as well. We find no evidence
for the core boundary mixing efficiency to correlate with stellar
mass, age, or rotation rate. However, we do observe stars with
larger core masses tend to have larger overshoot regions. Fur-
thermore, we find that Rossby modes are only detected in the
more evolved stars in our sample, which is only seen when the
actual stellar age is used instead of Xc/Xini. Yet, a much larger
sample is needed to conclude whether Rossby modes are indeed
not observed for stars younger than about 1 Gyr. Li et al. (2020)
compiled a sample of 611 γDor stars, 83 of which have observed
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Fig. 20. Predictions of the C-3PO NN versus the results from Mombarg et al. (2019). The grey dashed lines indicate perfect concordance.

Asteroseismic Spectroscopic Z Gaia L
input Teff and log g

This work Pn A posteriori Fixed to value A posteriori
cutoff from spectroscopy cutoff

Mombarg et al. (2019) Π0 Fitted Fixed to 0.014 Not included
Table 4. Comparison between the method used in Mombarg et al. (2019) and this work.

Rossby modes, but many of these stars lack spectroscopic obser-
vations therefore the MLEs may in general be less constrained.

To compute the mode periods, we have relied on the Tradi-
tional Approximation of Rotation (TAR), which assumes spher-
ical symmetry and loses its validity for rapidly rotating stars de-
formed by the centrifugal force (cf. Mathis & Prat 2019, for an
improved description of the TAR in that case). In Figure 21,
the distribution of the critical Roche frequency for the stars in
our sample is shown. Inspecting the quality of fit for the star
with the largest fraction of Ω/Ωcrit,Roche, namely KIC 12066947
(∼80%), suggests the TAR is still able to reproduce the observed
patterns to a satisfactorily level, in line with the findings by Hen-
neco et al. (2021). However, our models are not able the repro-
duce the sharp dip in the observed pattern, suggesting its caused
by resonances between gravito-inertial and pure-inertial modes
(Ouazzani et al. 2020; Saio et al. 2021). An improved formalism
of the TAR, taking into account the centrifugal deformation, has
been developed by Mathis & Prat (2019). The inclusion of the
centrifugal force in the pulsation computations of γ Dor stars has
a smaller effect on the predicted values for the periods than the
inclusion of stratified envelope mixing profiles due to radiative
levitation (Mombarg et al. 2020) or other mixing phenomena, al-
though for lower radial orders the effect of the centrifugal force
should be observable in long time-base, space-based photometry
Henneco et al. (2021).

In the stellar structure and evolution models used in this
work, the effect of atomic diffusion is neglected. Mombarg et al.
(2020) have demonstrated for two slowly-rotating γ Dor stars
that this process (including radiative levitations) can lead to
significant differences in the derived mass, age, and near-core
boundary mixing. The obtained period spacing pattern of the
best-fitting model for KIC 9751996 suggests that we are under-
estimating D0. The need for more envelope mixing supports the
conclusion of Mombarg et al. (2020) who found that models
without atomic diffusion better reproduce the observed mode
periods for this particular star, if other forms of envelope mix-
ing are able to counteract the effects of atomic diffusion. Even
though the use of a neural network greatly decreases the number
of required stellar models in the modelling, doing the full radia-

Fig. 21. Distribution of the rotation frequency as a fraction of the critical
rotation frequency in the Roche framework. Rotation frequencies are
taken from Van Reeth et al. (2016, 2018).

tive levitation calculations in MESA still requires a large amount
of computation time. The modelling of the sample in this work
with atomic diffusion (including radiative levitation), as well as
a non-constant parametrised mixing profile in the radiative enve-
lope will be taken up in a future paper.
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Appendix A: luminosities from Gaia

KIC mV BCV D (pc) AV Reliable AV? log L/L�
2710594 11.79 0.031 643+9

−9 0.21 Y 0.864+0.075
−0.075

3448365 9.92 0.031 261+2
−2 0.05 N 0.766+0.035

−0.035
4846809 12.36 0.035 852+23

−22 0.16 Y 0.86+0.023
−0.023

5114382 11.55 0.034 618+11
−10 0.27 Y 0.948+0.046

−0.046
5522154* 10.44 0.028 285+2

−2 0.0 N 0.615+0.072
−0.072

5708550* 11.93 0.03 641+13
−13 0.15 Y 0.782+0.071

−0.071
5788623 12.07 0.034 649+12

−12 0.12 Y 0.722+0.025
−0.024

6468146 9.96 0.035 326+3
−3 0.02 N 0.927+0.015

−0.015
6468987 12.67 0.034 910+19

−18 0.54 Y 0.947+0.083
−0.082

6678174* 11.74 0.033 686+13
−12 0.21 N 0.938+0.048

−0.048
6935014 10.91 0.033 395+3

−3 0.15 Y 0.767+0.03
−0.03

6953103* 12.56 0.035 781+16
−15 0.27 Y 0.748+0.016

−0.016
7023122 10.84 0.035 389+4

−4 0.05 N 0.744+0.006
−0.006

7365537* 9.19 0.035 178+1
−1 0.0 N 0.704+0.004

−0.004
7380501 11.98 0.029 663+11

−10 0.46 Y 0.917+0.114
−0.114

7434470 12.02 0.031 602+9
−9 0.25 Y 0.73+0.065

−0.065
7583663 12.69 0.031 972+26

−25 0.21 Y 0.862+0.151
−0.151

7939065 12.14 0.035 696+15
−15 0.2 Y 0.787+0.021

−0.021
8364249 11.95 0.032 806+16

−15 0.25 Y 1.011+0.085
−0.085

8375138 11.02 0.032 422+4
−4 0.13 N 0.775+0.04

−0.04
8645874 9.92 0.035 274+2

−2 0.02 N 0.795+0.015
−0.015

8836473 12.78 0.035 926+22
−21 0.56 Y 0.923+0.033

−0.033
9480469 12.78 0.035 908+18

−18 0.31 Y 0.806+0.037
−0.037

9595743 12.09 0.035 618+8
−7 0.06 Y 0.649+0.019

−0.019
9751996 10.96 0.034 588+9

−9 0.1 Y 1.073+0.049
−0.049

10467146 12.66 0.034 1114+45
−41 0.29 Y 1.027+0.084

−0.082
11080103 12.94 0.035 1017+27

−25 0.2 Y 0.797+0.018
−0.017

11099031 10.02 0.025 298+2
−2 0.02 N 0.831+0.093

−0.093
11294808 11.73 0.03 679+8

−8 0.21 Y 0.939+0.085
−0.085

11456474 12.49 0.032 864+18
−17 0.2 Y 0.836+0.098

−0.098
11721304 11.71 0.034 550+7

−7 0.13 Y 0.726+0.024
−0.024

11754232 12.24 0.035 799+22
−21 0.08 Y 0.821+0.02

−0.019
11826272 10.21 0.031 341+5

−5 0.04 N 0.877+0.048
−0.048

11907454 11.38 0.032 469+5
−5 0.05 Y 0.688+0.045

−0.045
11917550 11.12 0.033 448+5

−5 0.05 N 0.754+0.035
−0.035

11920505 9.88 0.034 243+2
−1 0.0 N 0.698+0.013

−0.013
12066947 10.23 0.035 325+3

−3 0.0 N 0.812+0.006
−0.006

Table A.1. Visual apparent magnitudes mV, bolometric corrections
BCV, distances D (Bailer-Jones et al. 2018), and extinctions AV used
to derive the luminosity. The ‘Reliable AV’ flag indicates whether
a reliable estimation of the extinction could be made with the
Bayerstar2019 extinction map. Stars for which no reliable estima-
tion could be made according to the Bayerstar2019map are relatively
close by and therefore the extinction is expected to be minimal. For the
stars marked with an asterisk (*) the luminosity is inconsistent with the
pulsations and is therefore not used in the modelling.
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Appendix B: Best-fitting parameters from neural
network

KIC M? [M�] Xc fov

2710594 1.495+0.128
−0.093 0.482+0.108

−0.241 0.0265+0.0035
−0.0164

3448365 1.485+0.010
−0.075 0.459+0.171

−0.107 0.0271+0.0029
−0.0171

4846809 1.487+0.049
−0.022 0.409+0.062

−0.070 0.0206+0.0037
−0.0106

5114382 1.613+0.022
−0.135 0.390+0.121

−0.138 0.0222+0.0078
−0.0122

5522154 1.723+0.276
−0.219 0.554+0.146

−0.433 0.0253+0.0047
−0.0153

5708550 1.990+0.010
−0.613 0.137+0.562

−0.045 0.0165+0.0135
−0.0065

5788623 1.474+0.001
−0.052 0.505+0.054

−0.057 0.0102+0.0056
−0.0002

6468146 1.594+0.010
−0.041 0.444+0.014

−0.099 0.0205+0.0095
−0.0104

6468987 1.568+0.133
−0.159 0.522+0.122

−0.339 0.0274+0.0026
−0.0174

6678174 1.768+0.232
−0.220 0.650+0.050

−0.506 0.0157+0.0143
−0.0057

6935014 1.452+0.027
−0.031 0.613+0.004

−0.095 0.0293+0.0007
−0.0120

6953103 1.877+0.121
−0.194 0.339+0.360

−0.133 0.0280+0.0020
−0.0180

7023122 1.515+0.004
−0.045 0.697+0.002

−0.121 0.0101+0.0199
−0.0001

7365537 1.700+0.300
−0.256 0.578+0.122

−0.483 0.0188+0.0112
−0.0088

7380501 1.717+0.001
−0.348 0.138+0.346

−0.005 0.0107+0.0135
−0.0007

7434470 1.483+0.014
−0.163 0.449+0.228

−0.103 0.0263+0.0037
−0.0163

7583663 1.467+0.267
−0.159 0.450+0.143

−0.320 0.0204+0.0096
−0.0104

7939065 1.479+0.020
−0.062 0.465+0.090

−0.037 0.0193+0.0093
−0.0069

8364249 1.519+0.235
−0.048 0.452+0.014

−0.271 0.0275+0.0025
−0.0174

8375138 1.469+0.048
−0.070 0.499+0.124

−0.173 0.0116+0.0184
−0.0016

8645874 1.518+0.022
−0.008 0.639+0.012

−0.045 0.0297+0.0002
−0.0057

8836473 1.482+0.107
−0.009 0.315+0.089

−0.072 0.0111+0.0142
−0.0011

9480469 1.487+0.049
−0.106 0.383+0.196

−0.072 0.0231+0.0069
−0.0131

9595743 1.424+0.032
−0.040 0.630+0.042

−0.093 0.0107+0.0193
−0.0007

9751996 1.740+0.009
−0.169 0.241+0.147

−0.040 0.0124+0.0121
−0.0024

10467146 1.768+0.021
−0.274 0.161+0.256

−0.023 0.0115+0.0157
−0.0015

11080103 1.528+0.019
−0.088 0.545+0.082

−0.111 0.0175+0.0125
−0.0075

11099031 1.572+0.034
−0.215 0.290+0.284

−0.071 0.0299+0.0001
−0.0140

11294808 1.450+0.205
−0.041 0.291+0.194

−0.101 0.0101+0.0198
−0.0001

11456474 1.487+0.143
−0.131 0.387+0.124

−0.209 0.0127+0.0134
−0.0027

11721304 1.431+0.038
−0.031 0.633+0.015

−0.161 0.0104+0.0196
−0.0004

11754232 1.532+0.022
−0.038 0.641+0.012

−0.134 0.0102+0.0196
−0.0001

11826272 1.524+0.044
−0.070 0.364+0.066

−0.075 0.0172+0.0119
−0.0060

11907454 1.465+0.012
−0.102 0.597+0.102

−0.171 0.0104+0.0196
−0.0004

11917550 1.512+0.001
−0.099 0.486+0.176

−0.076 0.0192+0.0108
−0.0092

11920505 1.445+0.026
−0.013 0.602+0.035

−0.082 0.0101+0.0126
−0.0001

12066947 1.490+0.023
−0.013 0.475+0.062

−0.011 0.0186+0.0044
−0.0079

Table B.1. Best-fitting parameters of the model predicted by the C-3PO
neural network.

Appendix C: Distribution of the residuals

In Figure C.1 we show the residuals (Ptrue − Ppred) – per radial
order – of the NN on the grid of 38 915 stellar pulsation models
used for training and validation.

Appendix D: Best-matching period spacing
patterns

In this appendix we present the best-fitting period spacing pat-
terns found with C-3PO (in red) and GYRE (in blue) for all stars
in our sample. The observed period spacing patterns are taken
from Van Reeth et al. (2015b), where the uncertainties are typ-
ically smaller than the symbol size. Missing radial orders are

Fig. C.1. Normalized distributions of the residuals of the NN on the
grid of pulsation models used for training and validation. Darker colors
indicate higher radial orders.

Fig. D.1. The distribution of the identified radial orders for all stars in
our sample.

indicated by dashed lines. As only the mode periods are fitted,
these values are also indicated by dashes at the bottom/top of
each panel. Furthermore, in Fig D.1 we show the distribution of
radial orders. A similar distribution is found compared to the one
from Li et al. (2020) (their Figure 17).
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Fig. D.2. Best-fitting models from the neural network and GYRE for KIC 2710594.

Fig. D.3. Best-fitting models from the neural network and GYRE for KIC 3448365.
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Fig. D.4. Best-fitting models from the neural network and GYRE for KIC 4846809. Top: (`,m) = (1, 1), bottom (`,m) = (1, 0).

Fig. D.5. Best-fitting models from the neural network and GYRE for KIC 5114382.
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Fig. D.6. Best-fitting models from the neural network and GYRE for KIC 5522154.

Fig. D.7. Best-fitting models from the neural network and GYRE for KIC 5708550.

Fig. D.8. Best-fitting models from the neural network and GYRE for KIC 5788623.
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Fig. D.9. Best-fitting models from the neural network and GYRE for KIC 6468146.

Fig. D.10. Best-fitting models from the neural network and GYRE for KIC 6468987.

Fig. D.11. Best-fitting models from the neural network and GYRE for KIC 6678174.
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Fig. D.12. Best-fitting models from the neural network and GYRE for KIC 6935014.

Fig. D.13. Best-fitting models from the neural network and GYRE for KIC 6953103.

Fig. D.14. Best-fitting models from the neural network and GYRE for KIC 7023122.

Article number, page 22 of 35



Mombarg et al.: modelling gravito-inertial modes

Fig. D.15. Best-fitting models from the neural network and GYRE for KIC 7365537.

Fig. D.16. Best-fitting models from the neural network and GYRE for KIC 7380501.

Fig. D.17. Best-fitting models from the neural network and GYRE for KIC 7434470.
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Fig. D.18. Best-fitting models from the neural network and GYRE for KIC 7583663.

Fig. D.19. Best-fitting models from the neural network and GYRE for KIC 7939065.

Fig. D.20. Best-fitting models from the neural network and GYRE for KIC 8364249.
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Fig. D.21. Best-fitting models from the neural network and GYRE for KIC 8375138.

Fig. D.22. Best-fitting models from the neural network and GYRE for KIC 8645874.

Fig. D.23. Best-fitting models from the neural network and GYRE for KIC 8836473.
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Fig. D.24. Best-fitting models from the neural network and GYRE for KIC 9480469.

Fig. D.25. Best-fitting models from the neural network and GYRE for KIC 9595743. Top: (`,m) = (1, 1), bottom (`,m) = (1, 0).

Article number, page 26 of 35



Mombarg et al.: modelling gravito-inertial modes

Fig. D.26. Best-fitting models from the neural network and GYRE for KIC 9751996.

Fig. D.27. Best-fitting models from the neural network and GYRE for KIC 10467146.

Fig. D.28. Best-fitting models from the neural network and GYRE for KIC 11080103.
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Fig. D.29. Best-fitting models from the neural network and GYRE for KIC 11099031.

Fig. D.30. Best-fitting models from the neural network and GYRE for KIC 11294808. Top: (`,m) = (1, 1), bottom: (`,m) = (2, 2). Additionally, the
best-fitting GYRE model based on equilibrium models with a step-like core overshoot prescription is shown in grey.
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Fig. D.31. Best-fitting models from the neural network and GYRE for KIC 11456474.

Fig. D.32. Best-fitting models from the neural network and GYRE for KIC 11721304.

Fig. D.33. Best-fitting models from the neural network and GYRE for KIC 11754232.

Article number, page 29 of 35



A&A proofs: manuscript no. main

Fig. D.34. Best-fitting models from the neural network and GYRE for KIC 11826272.

Fig. D.35. Best-fitting models from the neural network and GYRE for KIC 11907454.

Fig. D.36. Best-fitting models from the neural network and GYRE for KIC 11917550.
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Fig. D.37. Best-fitting models from the neural network and GYRE for KIC 11920505.

Fig. D.38. Best-fitting models from the neural network and GYRE for KIC 12066947.

Article number, page 31 of 35



A&A proofs: manuscript no. main

Fig. D.39. Brunt-Väisälä frequency profiles of the best model for each star in our sample. For clarity, the profiles are offset by 50 d−1 from one
another.
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Appendix E: Test with D0 = 0.05 cm2s−1

In the appendix, we show the result of the modelling of
KIC 11294808, where we have fixed D0 = 0.05 cm2s−1 instead
of D0 = 1 cm2s−1 used in the rest of the paper.

Appendix F: The effect of including Gaia
luminosities on the derived mass

In Figure F.1, we show the difference in inferred stellar mass
when we do not include the luminosity from Gaia DR2 in our
modelling procedure.
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Fig. E.1. Best-fitting GYRE model for KIC 11294808, when D0 = 0.05 cm2s−1 is assumed. Top: (`,m) = (1, 1), bottom: (`,m) = (2, 2).

Fig. F.1. Differences in inferred mass per star (KIC ID on the abscissa) when the luminosities of the models are not required to comply with the
observed luminosity deduced from Gaia DR2 data. Constraints on Teff and log g are in both cases enforced. The stars for which we have not used
the Gaia luminosity in the modelling are indicated in red. For these stars, we have put no constraints on the spectroscopic parameters either in our
final MLE (hence this solution is not indicated here).
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