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Abstract. We study (quasi-)cohomological properties through an analysis of quantum Markov
semi-groups. We construct higher order Hochschild cocycles using gradient forms associated with
a quantum Markov semi-group. By using Schatten-Sp estimates we analyze when these cocycles
take values in the coarse bimodule. For the 1-cocycles (the derivations) we show that under natural
conditions we obtain the Akemann-Ostrand property. We apply this to q-Gaussian algebras Γq(HR).

As a result q-Gaussians satisfy AO+ for |q| 6 dim(HR)−1/2. This includes a new range of q in low
dimensions compared to Shlyakhtenko [Shl04].

1. Introduction

The aim of this paper is to connect the theory of quantum Markov semi-groups to certain coho-
mological properties of their algebras. Quantum Markov semi-groups are continuous semi-groups of
trace preserving unital completely positive maps on a finite von Neumann algebra. Such quantum
Markov semi-groups naturally arise in time evolutions of open systems that undergo decoherence.
With the emergence of non-commutative probability, their theory had been investigated thoroughly.
We refer in particular to the papers of Goldstein-Lindsay [GoLi95] and Cipriani [Cip97].

A result that is of fundamental importance to us was obtained by Cipriani and Sauvageot in
[CiSa03]. They showed that any generator ∆ of a quantum Markov semi-group (e−t∆)t≥0 admits a

closable derivation ∂ as its square root, i.e. ∆ = ∂∗∂. Since derivations are 1-cocycles in Hochschild
cohomology, this is the first instance that shows relevance of quantum Markov semi-groups to
cohomology.

The results from [CiSa03] had several consequences in non-commutative potential theory and
quantum probability. Much more recently also links to approximation and rigidity properties of
von Neumann algebras were made. In particular, amenability [CiSa17] and Haagerup property
[CaSk15] can be characterized in terms of quantum Markov semi-groups with sufficient decay (see
also [Cas18, Appendix]). Further rigidity properties of von Neumann algebras can be obtained
[Cas18] by using quantum Markov semi-groups as input for the machinery developed by Ozawa-
Popa [OzPo10a], [OzPo10b] and Peterson [Pet09]. A crucial tool here is the gradient form (or carré
du champ) of a quantum Markov semi-group (or classically a diffusion semi-group)

We describe these rigidity results a bit further. In the celebrated paper [Voi96] Voiculescu
showed, using free entropy, that free group factors do not possess a Cartan subalgebra. Later on,
using completely different methods, Ozawa and Popa [OzPo10a] re-obtained this result. Ozawa
and Popa in fact prove a stronger result. Namely, they show that the normalizer of any amenable
diffuse von Neumann subalgebra generates a von Neumann algebra that is amenable again. This
property became known as strong solidity and plays a central role in the theory. Strong solidity

Date: January 15, 2020.

1



2 MARTIJN CASPERS, YUSUKE ISONO, AND MATEUSZ WASILEWSKI

results are usually proved from a combination of weak compactness and a malleable deformation
or a group geometric/cohomological property.

In particular, the rigidity results of [OzPo10b], [Pet09] show that proper 1-cocycles in group
cohomology with values in the coarse bimodule (or any bimodule weakly contained in it) can
be used to show that von Neumann algebras are strongly solid. After [OzPo10b], [Pet09] these
results were improved upon in [ChSi13], [PoVa14] and [Iso15], where it was shown that also the
Akemann-Ostrand property, which in the case of a group von Neumann algebra compares to quasi-
cocycles in bounded (group) cohomology, can be used to get strong solidity results and further
prime factorization results [OzPo04].

In the current paper we address the question whether also derivations in Hochschild cohomology
can be used to obtain (quasi-)cohomological properties like the Akemann-Ostrand property. We
do this as follows. Fix a finite von Neumann algebra M with a quantum Markov semi-group
on it having a dense ∗-algebra A in the domain of its generator. We first show that we can
construct natural n-cocycles in the Hochschild cohomology of A. The case n = 1 reduces to the
work of Cipriani-Sauvageot mentioned above [CiSa03]. The n-cocycles are defined inductively and
in each inductive step their coefficient bimodule changes by a construction which we refer to as
the ‘gradient tensor product’. Say that the n-cocycles take values in the n-fold gradient tensor
L2(M)∇(n) (we omit the construction here in the introduction). We then analyze when L2(M)∇(n)

is quasi-contained in the coarse bimodule; meaning that it is contained as a bimodule in an infinite
direct sum of copies of the coarse bimodule. In order to do this we introduce the notion of gradient-
Sp for a quantum Markov semi-group and prove the following.

Theorem A. If a quantum Markov semi-group is gradient-S2n then L2(M)∇(n) is quasi-contained
in the coarse bimodule of M .

So essentially under gradient-S2n the cohomology takes place in the coefficient bimodule given
by the coarse bimodule. Note that gradient-S2n becomes weaker for higher n. We illustrate this
for q-Gaussians algebras introduced by Bożejko and Speicher [BoSp91], see also [BKS97].

Theorem B. For |q| < dim(HR)−1/p we have that the Ornstein-Uhlenbeck semi-group on the
q-Gaussian algebra Γq(HR) is gradient-Sp.

The importance of Theorems A and B is so far mostly witnessed in the case n = 1. In fact, in
Theorem 4.1 we show that the cohomology of the ∗-algebras associated with q-Gaussians vanishes
for n ≥ 2 so that the cocycles we construct are in fact coboundaries. For n = 1 we show that
Theorem B can be used to obtain further results that serve as in input for the machinery developed
in [PoVa14] and [Iso15]. We give sufficient conditions on a derivation to imply the Akemann-
Ostrand property. We analyze these conditions in the case of group algebras but also many other
algebras by assuming that the quantum Markov semi-group has a type of filtration (or is radial in
some sense). In many known natural examples these condtions are verified, see the end of Section
5. As a culminating result we single out the following.

Theorem C. For |q| 6 dim(HR)−1/2 the q-Gaussian algebra Γq(HR) satisfies the Akemann-Ostrand
property; more precisely condtion AO+ from [Iso15].

In [Shl04] Shlyakhtenko obtained the same result for |q| <
√

2 − 1 using that the q-Toeplitz
algebra is nuclear in this range. In fact the q-Toeplitz algebras are isomorphic within this range
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[DyNi93] and nuclearity for
√

2 − 1 6 |q| < 1 is still an open problem. Theorem C thus strictly
extends the known range of q for which Γq(HR) has AO+ for dimension up until 5.

The outline of this paper is as follows. After the preliminaries we introduce the gradient tensor
construction in Section 3. We analyze when a repeated tensor product is contained in the coarse
bimodule through the notion of being gradient-Sp (Theorem A). We also show that in the group
case, under a domain condition, one may always average quantum Markov semi-groups to a semi-
group of Fourier multipliers retaining the gradient Sp-properties. In Section 4 we illustrate this
using q-Gaussians and we show that the Ornstein-Uhlenbeck semi-group is gradient-Sp for |q| <
dim(HR)−1/p (Theorem B). Section 5 is then concerned with the question of which derivations
imply condition AO+. We give sufficient conditions for the Cipriani-Sauvageot derivations [CiSa03];
amongst many other examples this includes q-Gaussians and we conclude Theorem C.

Acknowledgements. The authors thank Ebrahim Samei for useful discussions and Adam Skalski
for sharing a short proof of Lemma 3.14. The authors thank the referees for several comments that
led to an improvement of the manuscript. Research of MW was partially supported by National
Science Centre (NCN) grant 2016/21/N/ST1/02499, long term structural funding – Methusalem
grant of the Flemish Government – and by European Research Council Consolidator Grant 614195
RIGIDITY. Parts of this work were completed during a visit of MW to TU Delft; he thanks the
university and the host for a stimulating research environment.

2. Preliminaries

2.1. General conventions and notation. Throughout the paper M is a finite von Neumann
algebra with a trace τ . Let Ωτ ∈ L2(M) := L2(M, τ) be the cyclic vector given by 1 ∈ M . We
denote by Sp the Schatten-von Neumann class, which is the non-commutative Lp-space associated
with B(H) and its trace.

2.2. Containment of bimodules. Let A be a ∗-algebra. By an A–A bimodule H we mean a
Hilbert space together with ∗-homomorphisms πl : A → B(H) and πr : Aop → B(H) whose images
commute. If A is a von Neumann algebra then we assume moreover that πl and πr are normal.

We write L2(M) for the trivial bimodule and L2(M)⊗ L2(M) for the coarse bimodule with the
usual left and right actions. Let H and K be M -M bimodules. We say that H is contained in K
if H is (isomorphic to) a sub-bimodule of K; i.e. H is a closed subspace of K that is invariant for
the bimodule actions of M . We say that H is quasi-contained in K if H is contained in ⊕i∈IH
for some index set I. We use Popa’s definition of weak containment [Popa].

Definition 2.1. Let M be a von Neumann algebra and let H and K be M -M -bimodules. We say
that H is weakly contained in K if for every ε > 0, every finite set F ⊆ M and every ξ ∈ H
there exists finitely many ηj ∈ K indexed by j ∈ G such that for x, y ∈ F ,

|〈xξy, ξ〉 −
∑
j∈G
〈xηjy, ηj〉| < ε.

Notation H � K.

The following clarifies the connection to containment in the way we encounter it in this paper.

Lemma 2.2. Let M be a von Neumann algebra and A a σ-weakly dense ∗-subalgebra of M with
norm closure A. Let H be an A-A-bimodule and let K be an M -M -bimdoule. Suppose that there
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exists a dense subspace D ⊆ H such that for every ξ ∈ D there exists an η ∈ K such that for every
x, y ∈ A we have

〈xξy, ξ〉 = 〈xηy, η〉.
Then for every ξ ∈ D the sub-bimodule Hξ := AξA of H is contained in K as A-A bimodules.
Consequently, H is contained in a (possibly infinite) direct sum of copies of K and further the A-A
bimodule actions on H extend to normal M -M -bimodule actions.

Proof. Take ξ ∈ D. By assumption there exists η ∈ K such that for all x, y ∈ A we have that
〈xξy, ξ〉 = 〈xηy, η〉. Then set U : Hξ → K by aξb 7→ aηb where a, b ∈ A and it follows that this
map is isometric and intertwines the bimodule actions (of A and then by continuity of A).

Since UHξ admits normal M -M bimodule actions, we can extend the A-A actions on Hξ to
normal M -M bimodule actions.

Let Σ be the set of all families of unit vectors (ξi)i in H such that each Hξi := AξiA is a sub A-A
bimodule of K and that all Hξi are orthogonal with each other. By Zorn’s lemma, take a maximal
element (ξi)i in Σ. Let Pi be the orthogonal projection onto Hξi and suppose by contradiction that
P :=

∑
i Pi 6= 1H . Note that P commutes with A-A bimodule actions. Let ξ ∈ D be such that

(1 − P )ξ 6= 0 and fix η ∈ K such that 〈aξb, ξ〉 = 〈aηb, η〉. Then observe that for all finitely many
ai, bi ∈ A,

‖
∑
i

ai(1− P )ξbi‖ = ‖(1− P )
∑
i

aiξbi‖ 6 ‖
∑
i

aiξbi‖ = ‖
∑
i

aiηbi‖.

One can define a contraction v : AηA → A(1− P )ξA by v(aηb) = a(1 − P )ξb for a, b ∈ A. Then

since v∗v commutes with A-A bimodule actions, if we put η′ := (v∗v)1/2η, then it satisfies

〈a(1− P )ξb, (1− P )ξ〉 = 〈aη′b, η′〉, for any a, b ∈ A.

This contradicts the maximality of (ξi)i. We conclude that there is an A-A bimodule embedding

H =
⊕
i

Hξi ⊂
⊕
i

K

and we can extend the A-A actions to normal M -M bimodule actions via this embedding. �

2.3. Hochschild cohomology. Fix an algebraA. We define Hochschild cohomology (see [CaEi56],
[Tho08] and also [CoSh05]) through the bar resolution as follows. Let Fn be the space of all linear
maps f : A⊗n → H to a fixed A-A bimodule H. For f ∈ Fn we define dnf : A⊗n+1 → H by

(dnf)(a1 ⊗ a2 ⊗ . . .⊗ an+1) = a1 · f(a2 ⊗ . . .⊗ an+1)

+

n∑
k=1

(−1)kf(a1 ⊗ . . .⊗ akak+1 ⊗ . . .⊗ an+1) + (−1)n+1f(a1 ⊗ . . .⊗ an) · an+1

with a1, . . . , an+1 ∈ A. Further, set for ξ ∈ H the map d0ξ : A → H by (d0ξ)(a) = aξ − ξa, a ∈ A.
We get a chain called the bar resolution,

. . .←d4 F4 ←d3 F3 ←d2 F2 ←d1 F1 ←d0 H,

with dn+1 ◦ dn = 0. Let Cn(A, H) be the kernel of dn, which we call the Hochschild n-cocycles.
Let Bn(A, H) be the image of dn−1, which we call the n-coboundaries. By definition B0(A, H) =
{0}. Let

Hn(A, H) = Cn(A, H)/Bn(A, H)

be the n-th Hochschild cohomology group with coefficients in H.
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3. Gradient tensoring, n-cocycles and gradient-Sp
The aim of this section is to construct n-cocycles in Hochschild cohomology using quantum

Markov semi-groups.

Definition 3.1. A quantum Markov semi-group (Φt)t≥0 on (M, τ) is a semi-group of unital
completely positive maps Φt : M →M that preserve the trace, i.e. τ ◦Φt = τ for all t ≥ 0. Further
we assume that Φt is symmetric τ(Φt(x)y) = τ(xΦt(y)), x, y ∈ M . Moreover, we assume that for
every x ∈M the map t 7→ Φt(x) is continuous for the strong topology of M .

3.1. Gradient tensoring. Let (Φt)t≥0 be a quantum Markov semi-group on M . Let

Φ
(2)
t : L2(M)→ L2(M) : xΩτ 7→ Φt(x)Ωτ ,

be the corresponding semi-group on L2(M). Let ∆ ≥ 0 be its generator, i.e. ∆ is the unbounded
positive (self-adjoint) operator on L2(M) such that

exp(−t∆) = Φ
(2)
t

as a semi-group on L2(M).

Assumption 1. We shall assume that there exists a σ-weakly dense ∗-subalgebra A of M such that
AΩτ is contained in the domain of ∆ and moreover ∆(AΩτ ) ⊆ AΩτ . We simply write ∆(a), a ∈ A
for the map ∆ on the level of A. We assume moreover that for every a ∈ A the map t 7→ Φt(a) is
norm continuous. Let

A := A‖ · ‖

be the C∗-closure of A. In general we cannot guarantee the existence of such an algebra A, but
in many concrete cases it exists. The assumption should be compared to similar assumptions and
remarks made in [CFL00, Section 5], [JuMe12] or [Cas18].

We introduce the following definition, which is in principle A-dependent. For p = 2 it was
introduced in [Cas18].

Definition 3.2. Let 1 6 p 6∞. We say that a quantum Markov semi-group (Φt)t≥0 is immedi-
ately gradient-Sp if for every a, b ∈ A and every t > 0 we have that

(3.1) Ψa,b
t : x 7→ −1

2
Φt (∆(axb) + a∆(x)b−∆(ax)b− a∆(xb)) ,

extends to a bounded map xΩτ 7→ Ψa,b
t (x)Ωτ on L2(M) that is moreover in Sp. (Φt)t≥0 is gradient-

Sp if for every a, b ∈ A the map (3.1) is in Sp for t = 0. We set Ψa,b = Ψa,b
0 .

Example 3.3. We illustrate Definition 3.2 by a simple (counter)example. Suppose that T is the
torus seen as the unit circle in C. Let ek(z) = zk, z ∈ T. Let A be the span of ek, k ∈ Z, i.e. the
∗-algebra of trigonometric polynomials. Set M = L∞(T).

• Let ∆ be the Laplacian given by ∆(ek) = k2ek which generates the heat semi-group
(e−t∆)t≥0. This semi-group is not gradient-Sp for any 1 ≤ p ≤ ∞. Indeed, we find that

Ψel,em(ek) = −1

2
((l + k +m)2 + k2 − (l + k)2 − (k +m)2)el+k+m = −lm el+k+m,

and this map is not even compact on L2(T) unless lm = 0.
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• However, if we consider the Poisson semi-group (e−t∆
1
2 )t≥0 then we find,

Ψel,em(ek) = −1

2
(|l + k +m|+ |k| − |l + k| − |k +m|)el+k+m,

which is 0 as soon as |k| ≥ |l|+ |m|. Therefore Ψel,em is finite rank and therefore (e−t∆
1
2 )t≥0

is gradient-Sp for every p ∈ [1,∞].

Remark 3.4. Morally, one can expect that a quantum Markov semi-group is gradient-Sp if the
eigenvalues of the generator grow (almost) linearly (like for the Poisson semi-group) and if there is
not too much interaction between the operators a and b in an expression axb if x has a very large
‘length’ (this obviously requires more structure to explain in more detail). The current paper gives
quantitative examples of this, see Section 4 and Theorem B of Section 1. More examples as well as
stability properties for gradient-S2 for free products were given in [Cas18].

In [CiSa03] the following bimodule is constructed. We set the gradient form (or carré du
champ),

Γ(x, y) =
1

2
(∆(y)∗x+ y∗∆(x)−∆(y∗x)), x, y ∈ A,

which we view as an A-valued inner product. Let H be any A-A-bimodule. Equip the algebraic
tensor product A⊗alg H with the (degenerate) inner product

〈x⊗ ξ, y ⊗ η〉 = 〈Γ(x, y)ξ, η〉, x, y ∈ A, ξ, η ∈ H.
The Hilbert space obtained by quotienting out the degenerate part and taking the completion will
be called the gradient tensor product which we denote by H∇. We will denote by a ⊗∇ ξ, a ∈
A, ξ ∈ H the class of a⊗ ξ in H∇. H∇ has an A-A bimodule structure given by the left action

(3.2) x · (y ⊗∇ ξ) = xy ⊗∇ ξ − x⊗∇ yξ, x, y ∈ A, ξ ∈ H,
and the right action

(3.3) (y ⊗∇ ξ) · x = y ⊗∇ ξx, x, y ∈ A, ξ ∈ H.

Proposition 3.5. The left and right actions defined in (3.2) and (3.3) are well-defined contractive
left and right actions of A that moreover commute. That is, H∇ is an A-A-bimodule where A is
the C∗-closure of A.

Proof. The proof in case H = L2(M) is the trivial M -M -bimodule is given as [CiSa03, Lemma
3.5]. But in fact the same proof works for any A-A-bimodule H. Note that the proof that the right
action is contractive is straightforward. �

Definition 3.6. We call (Φt)t≥0 gradient coarse if the A-A-bimodule actions on L2(M)∇ extend
to normal M -M -bimodule actions and further L2(M)∇ is weakly contained in the coarse bimodule
of M .

By Proposition 3.5 for an A-A-bimodule H we may define

H∇(n) = ((H∇)∇ . . .)∇,

for the n-fold application of H 7→ H∇. The following connects the map (3.1) to the bimodule
structure defined above.

Lemma 3.7. Let H be an A-A-bimodule. For x, y, a, b ∈ A and ξ, η ∈ H we have,

〈x · (a⊗∇ ξ) · y, b⊗∇ η〉 = 〈Ψb∗,a(x)ξy, η〉.



L2-COHOMOLOGY, DERIVATIONS AND SEMI-GROUPS ON q-GAUSSIAN ALGEBRAS 7

Proof. Indeed, we find that,

〈x · (a⊗∇ ξ) · y, b⊗∇ η〉 =〈(xa⊗∇ ξy − x⊗∇ aξy), b⊗∇ η〉
=〈(Γ(xa, b)− Γ(x, b)a)ξy, η〉

=
1

2
〈(∆(b∗)xa+ b∗∆(xa)−∆(b∗xa)−∆(b∗)xa− b∗∆(x)a+ ∆(b∗x)a)ξy, η〉

=〈Ψb∗,a(x)ξy, η〉.

This concludes the proof. �

Remark 3.8. Let H be an A-A-bimodule and let ξ ∈ H. Then the functional on A ⊗max A
op

given by x ⊗ yop 7→ 〈xξy, ξ〉 is positive and therefore also its restriction to A ⊗alg A
op → C sends

elements of the form x∗x with x ∈ A⊗alg A
op to non-negative reals. Therefore if this map is ⊗min

continuous we obtain a positive map A⊗min A
op → C.

For any n ∈ N≥1, we say that a vector ξ ∈ L2(M)∇(n) is algebraic if it is contained in a linear
span of elements of a0 ⊗∇ a1 ⊗∇ · · · ⊗∇ an for some a0, . . . , an ∈ A.

Theorem 3.9. Let n ∈ N≥1. Suppose that the quantum Markov semi-group Φ = (Φt)t≥0 is
gradient-Sp for p = 2n.

Then for any algebraic ξ ∈ L2(M)∇(n), AξA is contained in the coarse bimodule L2(M)⊗L2(M)
as A-A bimodules. In particular, L2(M)∇(n) is contained in an infinite multiple of the coarse
bimodule L2(M) ⊗ L2(M) as A-A bimodules and the A-A bimodule actions on L2(M)∇(n) extend
to normal M -M bimodule actions via this embedding.

Proof. Take a0, a1, . . . , an, b0, b1, . . . , bn ∈ A. Consider vectors α := a0 ⊗ . . . ⊗ an−1 ⊗ anΩτ , β :=
b0 ⊗ . . .⊗ bn−1 ⊗ bnΩτ ∈ L2(M)∇(n) . For x, y ∈ A we get from Lemma 3.7 that,

〈x · α · y, β〉 =〈x · (a0 ⊗∇ . . .⊗∇ an−1 ⊗∇ anΩτ ) · y, b0 ⊗∇ . . .⊗∇ bn−1 ⊗∇ bnΩτ 〉

=〈Ψb∗n−1,an−1 ◦ . . . ◦Ψb∗1,a1 ◦Ψb∗0,a0(x)anΩτy, bnΩτ 〉

=〈b∗nΨb∗n−1,an−1 ◦ . . . ◦Ψb∗1,a1 ◦Ψb∗0,a0(x)anΩτ ,Ωτy
∗〉

=〈b∗nΨb∗n−1,an−1 ◦ . . . ◦Ψb∗1,a1 ◦Ψb∗0,a0(x)anΩτ , y
∗Ωτ 〉,

where the last equality uses the fact that Ωτy
∗ = y∗Ωτ .

Since each Ψb∗j ,aj is an element of Sp with p = 2n we find that

Ψ := Ψb∗n−1,an−1 ◦ . . . ◦Ψb∗1,a1 ◦Ψb∗0,a0 ∈ S2.

Then also xΩτ 7→ b∗nΨ(x)anΩτ is in S2. Therefore, there exists ζα,β ∈ L2(M)⊗ L2(M) such that,

(3.4) 〈x · α · y, β〉 = 〈xΩτ ⊗ y∗Ωτ , ζα,β〉

Since the map Mop 3 yop 7→ y∗ ∈ M is a ∗-isomorphism, we deduce that assigning (3.4) to
x⊗ yop ∈M ⊗alg M

op is ⊗min-bounded and moreover normal.
Now take any algebraic α ∈ L2(M)∇(n) . The previous paragraph shows that the map ρ :

M ⊗Mop : x⊗ yop → 〈x · α · y, α〉 extens to M⊗Mop. Moreover, ρ is positive on A⊗alg Aop → C,
see Remark 3.8. We claim that ρ is also a positive map M⊗Mop → C. Indeed, take z ∈ M⊗Mop

positive and write z = d∗d, d ∈ M⊗Mop. By Kaplansky’s density theorem, let dj ∈ A ⊗ Aop be
a bounded net converging strongly to d. Then d∗jdj → d∗d = z weakly and hence σ-weakly since

these topologies coincide on the unit ball. Since ρ is normal (i.e. σ-weakly continuous), we get
0 ≤ ρ(d∗jdj)→ ρ(z). Since L2(M)⊗ L2(M) is the standard Hilbert space for M⊗Mop there exists
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ζα ∈ L2(M) ⊗ L2(M) such that 〈x · α · y, α〉 = 〈x · ζα · y, ζα〉. As algebraic vectors in L2(M)∇(n)

form a dense subspace, we conclude by Lemma 2.2. �

Corollary 3.10. Suppose that the quantum Markov semi-group (Φt)t≥0 is gradient-S2; then it is
gradient coarse.

In a completely analogous way Theorem 3.11 can be proved. In particular it applies to H =
L2(M)⊗ L2(M) – the coarse bimodule.

Theorem 3.11. Let n ∈ N≥1. Suppose that the quantum Markov semi-group Φ = (Φt)t≥0 is
gradient-Sp for p = 2n. Let K be a right A module and consider L2(M) as a left A module. Set
H = L2(M)⊗K (Hilbert tensor product) as an A-A bimodule. If L2(M)⊗L2(M)⊗K is contained
in an infinite multiple of the coarse bimodule L2(M)⊗ L2(M) as A-A bimodules, then so is H∇(n)

and the left and right A-actions are normal and turn H∇(n) into an M -M -bimodule.

3.2. Construction of n-cocycles. The following proposition allows to construct cocycles at the
expense of changing the bimodule. We will remedy this change by using Schatten-Sp properties
below.

Theorem 3.12. Let H be an A-A-bimodule and let f : A⊗(n−1) → H be a linear map. Set
Gf : A⊗n → H∇ by,

(Gf)(a1 ⊗ . . .⊗ an) := a1 ⊗∇ f(a2 ⊗ . . .⊗ an) ∈ H∇.

Then Gd + dG = 0, where d’s are the differentials of the appropriate cochain complexes. In par-
ticular, G maps cocycles to cocycles and coboundaries to coboundaries, so it induces a map on the
level of cohomology G∗ : Hn(A, H)→ Hn+1(A, H∇).

Proof. Let us first compute G(df). We have

df(a1 ⊗ · · · ⊗ an) = a1f(a2 ⊗ · · · ⊗ an) +

n−1∑
k=1

(−1)kf(a1 ⊗ · · · ⊗ akak+1 ⊗ · · · ⊗ an)

+ (−1)nf(a1 ⊗ · · · ⊗ an−1)an,

hence

G(df)(a0 ⊗ · · · ⊗ an) = a0 ⊗∇ a1f(a2 ⊗ · · · ⊗ an) +
n−1∑
k=1

(−1)ka0 ⊗∇ f(a1 ⊗ · · · ⊗ akak+1 ⊗ · · · ⊗ an)

+ (−1)na0 ⊗∇ f(a1 ⊗ · · · ⊗ an−1)an.

On the other hand:

−d(Gf)(a0 ⊗ · · · ⊗ an) = −a0(a1 ⊗∇ f(a2 ⊗ · · · ⊗ an)) + a0a1 ⊗∇ f(a2 ⊗ · · · ⊗ an)

+
n−1∑
k=1

(−1)ka0 ⊗∇ f(a1 ⊗ · · · ⊗ akak+1 ⊗ · · · ⊗ an)

+ (−1)na0 ⊗∇ f(a1 ⊗ · · · ⊗ an−1)an.

Note that

−a0(a1 ⊗∇ f(a2 ⊗ · · · ⊗ an)) = −a0a1 ⊗∇ f(a2 ⊗ · · · ⊗ an) + a0 ⊗∇ a1f(a2 ⊗ · · · ⊗ an).

It follows that G(df) = −d(Gf), i.e. dG+Gd = 0. �
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Corollary 3.13. The map,

∂n : A⊗n → L2(M)∇(n) : a1 ⊗ . . .⊗ an 7→ a1 ⊗∇ . . .⊗∇ an ⊗∇ Ωτ .

defines an n-cocycle, i.e. an element in Cn(A, L2(M)∇(n)).

Proof. For n = 1 we get ∂1(ab) = ab⊗∇ Ωτ = a · (b⊗∇ Ωτ ) + (a⊗∇ Ωτ ) · b = a∂1(b) + ∂1(a)b and
so the corollary follows. For higher n use Theorem 3.12 inductively. �

3.3. The Haagerup averaging technique. We will show that under algebraic conditions gradient-
Sp properties behave well under Haagerup averaging techniques. We believe this result is of inde-
pendent interest, though we will not use it in the subsequent sections.

Let Λ be a discrete group with group algebra C[Λ] and von Neumann algebra (L(Λ), τ). We will
identify Λ with its image under the left regular representation. So for γ ∈ Λ we will also write γ for
the associated unitary in L(Λ). Let (Φt)t≥0 be a quantum Markov semi-group on L(Λ). Consider
the map,

(3.5) Ψt = E ◦ (Φt ⊗ id) ◦ δΛ

where δΛ : L(Λ) → L(Λ)⊗L(Λ) is the comultiplication δΛ : γ 7→ γ ⊗ γ and E is the conditional
expectation of L(Λ)⊗L(Λ) onto the image of δΛ (post-composed with the inverse of δΛ so that
the range is contained in L(Λ)). Then Ψt is a completely positive Fourier multiplier with symbol
ϕt(γ) = τ(Φt(γ)γ−1), γ ∈ Γ.

Lemma 3.14. Let Ψt : L(Λ) → L(Λ), t ≥ 0 be unital completely positive Fourier multipliers (not
necessarily a semi-group) and suppose that for every γ ∈ Λ the limit ∆Ψ

0 (γ) := limt↘0
1
t (γ−Ψt(γ))

exists. Then ∆Ψ
0 defines a preclosed (unbounded) operator on `2(Γ) with closure ∆Ψ. Moreover,

exp(−t∆Ψ) is a quantum Markov semi-group.

Proof. Since ∆Ψ
0 acts diagonally on `2(Λ) with respect to the basis γ ∈ Λ it is preclosed. The

remaining statements follow by following the constructions in [Jol04] and [CaSk15, Proposition 5.5].
Alternatively, there is the following short proof. Let ϕt be the symbol of the Fourier multiplier Ψt

which is positive definite and ϕt(e) = 1. Consider the state µt on C[Λ] that maps γ ∈ Λ to ϕt(γ).
Then ∆0(γ) := limt↘0

1
t (µt − ε) defines a generating functional on C[Λ] where ε(γ) = 1, γ ∈ Λ

is the counit (see [DFSW16, Section 6.2] for generating functionals). Therefore νt := exp(−t∆0)
defines a convolution semi-group of states on C[Λ]. Since the Fourier multiplier Ψt = (id⊗ νt) ◦ δΛ

is a trace preserving ucp map it extends from C[Λ] to a quantum Markov semi-group on L(Λ) with
generator ∆Ψ. �

Lemma 3.15. Let (Φt)t≥0 be a quantum Markov semi-group on L(Γ) with generator ∆ and assume
C[Γ] is in the domain of ∆. Consider Ψt as in (3.5) and let ∆Ψ be as in Lemma 3.14. We have,

∆Ψ(γ) =
d

dt
|t=0〈Φt(γ), γ〉γ = 〈∆(γ), γ〉γ, γ ∈ Γ ⊆ C[Γ].

Proof. This is clear from the definitions. �

The following theorem shows that under a domain condition on ∆ we may average a quantum
Markov semi-group to a semi-group of Fourier multipliers while retaining the property of being
gradient-Sp.

Theorem 3.16. Let (Φt)t≥0 be a quantum Markov semi-group on L(Γ) with generator ∆ and
assume C[Γ] is in the domain of ∆. If (Φt)t≥0 is gradient-Sp then so is exp(−t∆Ψ).
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Proof. Take µ1, µ2 ∈ Γ fixed. Since (Φt)t≥0 is gradient-Sp we have that the assignment

Ψµ1,µ2 : γ 7→ ∆(µ1γµ2) + µ1∆(γ)µ2 − µ1∆(γµ2)−∆(µ1γ)µ2

is in Sp as an operator on `2(Γ). Therefore, also

µ−1
1 Ψµ1,µ2( · )µ−1

2 : γ 7→ µ−1
1 ∆(µ1γµ2)µ−1

2 + ∆(γ)−∆(γµ2)µ−1
2 − µ

−1
1 ∆(µ1γ)

is in Sp. Let D be the conditional expectation of B(`2(Γ)) onto the diagonal operators in B(`2(Γ)).

Certainly D(µ−1
1 Ψµ1,µ2( · )µ−1

2 ) is in Sp and, further,

D(µ−1
1 Ψµ1,µ2( · )µ−1

2 )(γ) = µ−1
1 ∆Ψ(µ1γµ2)µ−1

2 + ∆Ψ(γ)−∆Ψ(γµ2)µ−1
2 − µ

−1
1 ∆Ψ(µ1γ).

Multiplying again with µ1 and µ2 shows that the assignment

γ 7→ ∆Ψ(µ1γµ2) + µ1∆Ψ(γ)µ2 − µ1∆Ψ(γµ2)−∆Ψ(µ1γ)µ2

is in Sp. �

4. Schatten Sp-estimates for the Ornstein-Uhlenbeck semi-group on q-Gaussians

We show that q-Gaussians Γq(HR) with the Ornstein-Uhlenbeck semi-group are gradient-Sp for
a range of q depending on p and the dimension of the Hilbert space HR.

4.1. q-Gaussian algebras. Let HR be a finite dimensional real Hilbert space with complexification
H = HR ⊗ C. We denote by I the complex conjugation on H and we extend it to H⊗n by
I(v1 ⊗ · · · ⊗ vn) := Ivn ⊗ · · · ⊗ Iv1. Let q ∈ (−1, 1) and consider the symmetrization operator on
H⊗n given by

Pnq (ξ1 ⊗ . . .⊗ ξn) =
∑
σ∈Sn

qi(σ)ξσ(1) ⊗ . . .⊗ ξσ(n),

where i(σ) is the number of inversions in σ. Recall that an inversion is a pair (a, b) ∈ {1, . . . , n}
with a < b and σ(a) > σ(b). For q ∈ (−1, 1) we set new inner products on H⊗n by

〈ξ, η〉q = 〈Pnq ξ, η〉,

and we refer to the Hilbert space with this q-deformed inner product as H⊗nq . Also set the q-Fock

space Fq(H) = CΩ ⊕ (⊕∞n=1H
⊗n
q ), with Ω a unit vector called the vacuum vector. Note that the

conjugation I extends to an antiunitary operator on Fq(H); a typical permutation does not preserve
the q-deformed inner product, so it is a special feature of the permutation reversing the order. We
set the left creation operator for ξ ∈ H,

lq(ξ)η1 ⊗ . . .⊗ ηn = ξ ⊗ η1 ⊗ . . .⊗ ηn,

and the annihilation operator l∗q(ξ) = lq(ξ)
∗. These operators are bounded and extend to Fq(H)

for q ∈ (−1, 1). We define the q-Gaussian algebra as

Γq := Γq(HR) := A′′q , Aq := ∗−alg{ lq(ξ) + lq(ξ)
∗ | ξ ∈ HR}.

We let ϕΩ be the (tracial) vacuum state on Γq(HR) given by ϕΩ(x) = 〈xΩ,Ω〉. Ω is a separating
and cyclic vector for Γq(HR) and so ϕΩ is faithful and Fq(H) is the standard Hilbert space of Γq.
In this setting Ω is a tracial vector and further Γq is a II1-factor [Ric05].

For vectors ξ1, . . . , ξn ∈ H there exists a unique operator Wq(ξ1 ⊗ . . .⊗ ξn) ∈ Γq(HR) such that,

Wq(ξ1 ⊗ . . .⊗ ξn)Ω = ξ1 ⊗ . . .⊗ ξn.
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We call these operators elementary Wick operators or elementary Wick words. The
Ornstein-Uhlenbeck quantum Markov semi-group is then defined by1

Φt(Wq(ξ1 ⊗ . . .⊗ ξn)) = e−tnWq(ξ1 ⊗ . . .⊗ ξn).

It comes with a generator (the quantum Dirichlet form) given by the number operator

∆(ξ1 ⊗ . . .⊗ ξn) = nξ1 ⊗ . . .⊗ ξn.

We determine the cohomology as follows.

Theorem 4.1. For any Aq-Aq-bimodule H we have Hn(Aq, H) = 0 for n ≥ 2.

Proof. Let e1, . . . , em be an orthonormal basis of HR. We claim that algebraically Aq is isomorphic
to the ∗-algebra of non-commutative polynomials in m self-adjoint variables X1, . . . Xm by the
identification Xi := Wq(ei). Indeed, let P be a non-commutative polynomial and suppose that
P (X1, . . . , Xm) = 0. Let Q(X1, . . . , Xn) = Xi1 . . . Xid be a monomial occuring in P of highest
degree d. Then, from Lemma 4.3 below, we find Q(X1, . . . , Xn) = Wq(Xi1 ⊗ . . .⊗Xid) + A where
A is a linear combination of Wick operators Wq(ξ1 ⊗ . . . ⊗ ξk) of tensors of order k < d. If
P (X1, . . . , Xm) = 0 we must therefore have that Q(X1, . . . , Xm) = 0. By induction we conclude
that P = 0.

Now in [CaEi56, p. 192] it is shown that for the algebra of non-commutative polynomials, the
Hochschild cohomology with coefficients in any bimodule is 0. Alternatively, see [Kas04, Eqn.
(5.11)] for an explicit short exact projective resolution which also yields this result. �

4.2. Gradient-Sp estimates. Let [n] be the set {1, . . . , n}, with n ∈ N. [n] has its natural order.

We will consider the operator Ψa,b associated to the Ornstein-Uhlenbeck semigroup. We will need a
formula for products of Wick words to be able to work with this operator. We will follow Effros-Popa
[EffPop03] (see also [DeSch18]).

Definition 4.2. Let n1, . . . , nk be natural numbers. By P62(n1 ⊗ · · · ⊗ nk) we denote the set of
partitions of the set [n], where n = n1 + · · ·+nk, with blocks of size at most two, such that there is
no pairing inside the sets {1, . . . , n1}, {n1+1, . . . , n1+n2}, . . . , {n−nk+1, . . . , n}. For π ∈ P62(n1⊗
· · · ⊗ nk) we will define the number of crossings cr(π). Let π = (l1, r1), . . . , (lm, rm), s1, . . . , sl be
the blocks of the partition, so 2m+ l = n; we will denote by P (π) the set of pairs and by S(π) the
set of singletons. We will denote by c(π) the usual crossing number, i.e. the number of pairs (li, ri)
and (lj , rj) such that li < lj < ri < rj . The symbol d(π) will denote the set of degenerate crossings,
i.e. the number of triples x < y < z such that (x, z) = (li, ri) for some i and y = sj for some j, i.e.
y is not paired with anything. The crossing number cr(π) is defined to be cr(π) = c(π) + d(π).

While cumbersome to formally define, the crossing number is easy to compute, provided that we
have a graphical representation of the partition available:

1 2 3 4 5 6 7 8 9 10 11

1It extends to the q-Gaussian algebra by [BKS97, Theorem 2.11].
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For this partition π there are two regular crossings (i.e. c(π) = 2) and 5 degenerate crossings, so
cr(π) = 7.

We are now ready to state the multiplication formula for Wick words (cf. [EffPop03, Theorem
3.3]).

Lemma 4.3. Let ξ = ξ1 ⊗ · · · ⊗ ξn ∈ H⊗n, where n = n1 + · · · + nk. Let us call ξ1, . . . , ξk the
tensors that arise from this decomposition of n, i.e. ξ1 = ξ1 ⊗ · · · ⊗ ξn1, ξ2 = ξn1+1 ⊗ · · · ⊗ ξn1+n2,
etc. We have the following formula

(4.1) Wq(ξ1) . . .Wq(ξk) =
∑

π∈P62(n1⊗···⊗nk)

qcr(π)

 ∏
(l,r)∈P (π)

〈Iξl, ξr〉

Wq(ξS(π)),

where ξS(π) := ξs1 ⊗ · · · ⊗ ξsl if S(π) = {s1 < s2 < · · · < sl}.

This formula will be instrumental in the proof of the next proposition.

Proposition 4.4. Take operators in Aq of the form

a = Wq(ξ) = Wq(ξ1 ⊗ . . .⊗ ξn), b = Wq(η) = Wq(η1 ⊗ . . .⊗ ηk), x = Wq(µ) = Wq(µ1 ⊗ . . .⊗ µm),

where each ξi, ηi, µi ∈ H; define also v := ξ ⊗ µ⊗ η. Then we have

∆(axb)−∆(ax)b+ a∆(x)b− a∆(xb)(4.2)

= −2
∑

π∈P62(n⊗m⊗k)

|(l, r) ∈ P (π) : l ∈ [n], r ∈ [k]| qcr(π)

 ∏
(l,r)∈P (π)

〈Ivl, vr〉

Wq(vS(π)).

Proof. We determine the four summands in

(4.3) ∆(axb) + a∆(x)b−∆(ax)b− a∆(xb).

Note that the formula for a triple product from the Lemma 4.3 can be obtained by applying the
formula for double products twice. It means that we can compute axb as either (ax)b or a(xb). The
fact that the crossings that we compute on the way add up to the crossing number of the whole
partition is not hard to check, but not immediate. For instance, if we compute axb as (ax)b, then
first we get a sum over partitions of n ⊗ m and then over partitions of (n + m) ⊗ k, where you
remove the nodes from [n + m] that have already been paired; you have to check that the sum of
the crossing numbers of these partitions is equal to the crossing number of the resulting partition
of n⊗m⊗ k.

Once we have this observation, it is not hard to arrive at the formula. Indeed, each of the four
terms in (4.3) will feature a sum as in the formula for a triple product of Wick words, but with
coefficients coming from the Laplacian. In case of ∆(axb) the coefficient is equal to n + m + k −
2|P (π)|. For ∆(ax)b the coefficient is equal to n+m−2|{(l, r) ∈ P (π) : l ∈ [n], r ∈ [m]}|. The term
a∆(x)b just yields m. The last one, a∆(xb), produces m+ k − 2|{(l, r) ∈ P (π) : l ∈ [m], r ∈ [k]}|.
If we compute ∆(axb)−∆(ax)b+a∆(x)b−a∆(xb) then the result is −2|{(l, r) ∈ P (π) : l ∈ [n], r ∈
[k]}|. Indeed, the pairings between [n] and [m] are accounted for by ∆(ax)b, the ones between [m]
and [k] by a∆(xb), and only pairings between [n] and [k] are left. �

We now have a formula for Ψa,b(x). In order to estimate the Sp-norm of this map, we will

estimate separately the Sp-norms of Ψa,b restricted to H⊗mq for each m > 0. Recall that on an
N -dimensional Hilbert space we can estimate the Sp-norm by the operator norm, namely ‖T‖p 6
N

1
p ‖T‖. Therefore we will be concerned only with the operator norm of Ψa,b restricted to H⊗m.
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Proposition 4.5. Let ξ := ξ1⊗ · · · ⊗ ξn ∈ H⊗n, η := η1⊗ · · · ⊗ ηn ∈ H⊗k and consider a := W (ξ)
and b := W (η). Then the norm of Ψa,b restricted to H⊗mq can be estimated as follows

(4.4) ‖Ψa,b

|H⊗m
q
‖ 6 C(q, ξ,η,dim(H))|q|m.

In order to obtain useful estimates, we need to replace the formula (4.1) by a new one, which
takes into account the q-deformed inner products. We will only consider the case of 2 or 3 Wick
words for simplicity. We will need operators R∗n,k : H⊗n+k → H⊗n+k given by

R∗n,k(v1 ⊗ · · · ⊗ vn) =
∑

A⊂[n+k]:|A|=n

qi(A)vA ⊗ v[n]\A,

where i(A) =
∑n

l=1(il − l) if A = {i1 < i2 < · · · < in}; one can interpret this number as the cost of
moving elements of A to the left of [n + k] or, equivalently, cost of moving its complement to the
right. Now we can rewrite the formula for the double product of Wick words.

Lemma 4.6. For (µ = µ1 ⊗ · · · ⊗ µm and η = η1 ⊗ · · · ⊗ ηk) we have

(4.5) W (µ)W (η)Ω =

m∧k∑
j=0

(Idm−j ⊗mj ⊗ Idk−j)(R
∗
m−j,j(µ)⊗R∗j,k−j(η)),

where mj : H⊗jq ⊗H⊗jq → C is the inner product pairing given by mj(v ⊗ w) = 〈Iv, w〉.

Proof. Note that in Lemma 4.3 the crossings of partitions come from two sources; from pairing a
subset of [m] with a subset of [k] (the degenerate crossings) and from crossings inside these subsets.
If you fix the subsets and sum over all partitions that pair these two subsets, the crossings can be
incorporated into the definition of the q-deformed inner product, and the numbers i(A) appearing
in the definition of R∗n,k count exactly the number of degenerate crossings. �

We can iterate this to obtain a formula for W (ξ)W (µ)W (η). But if we do not introduce a simpler
notation, it will get very complicated. We will start from an element of a triple tensor product
H⊗n ⊗H⊗m ⊗H⊗k. One thing that we will have to do is to apply inner product pairing between
any two of them, and we need a notation for that. So we will use the notation mab

j to denote the

pairing of H⊗j from between the a-th and b-th space, e.g. m13
j will first split H⊗n ⊗H⊗m ⊗H⊗k

into H⊗n−j⊗H⊗j⊗H⊗m⊗H⊗j⊗H⊗k−j and then pair the two H⊗j spaces. Another thing is that
operators R∗n,k only split the tensor power into two factors, but we will have to do it again, so we

need a notation for that as well. The defining property of operators R∗n,k is Pn+k
q = (Pnq ⊗P kq )R∗n,k

(cf. [Kro00, Lemma 5]). It motivates the following definition.

Definition 4.7. We define the operator R∗n,k,l : H
⊗n+k+l → H⊗n+k+l to be the unique operator

such that Pn+k+l
q = (Pnq ⊗ P kq ⊗ P lq)R∗n,k,l.

Later on we will have to use boundedness of these operators. In order to achieve that goal we
will need the following simple lemma.

Lemma 4.8. We have

R∗n,k,l = (R∗n,k ⊗ Idl)R
∗
n+k,l = (Idn ⊗R∗k,l)R∗n,k+l.

Proof. The equality Pn+k
q = (Pnq ⊗P kq )R∗n,k means exactly that R∗n,k is the adjoint of the ‘identity’

map Rn,k : H⊗nq ⊗ H⊗kq → H⊗n+k
q . By the same token R∗n,k,l is the adjoint of the identity map
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Rn,k,l : H
⊗n
q ⊗H⊗kq ⊗H⊗lq → H⊗n+k+l

q , which can be obtained by composition Rn+k,l(Rn,k ⊗ Idl)
or Rn,k+l(Idn ⊗Rk,l).

�

We are ready to state a new formula for a triple product.

Proposition 4.9. Let ξ ∈ H⊗n, µ ∈ H⊗m, and η ∈ H⊗k. Then we have
(4.6)

W (ξ)W (µ)W (η)Ω =
∑
j,r,s

qr(m−j−s)m13
r m

12
s m

23
j (R∗n−r−s,r,s(ξ)⊗R∗s,m−s−j,j(µ)⊗R∗j,r,k−j−r(η))

Proof. The first step is to apply formula (4.5) to W (µ)W (η). It means that we apply the operator∑
jmj(R

∗
m−j,j ⊗ R∗j,k−j) to µ ⊗ η. We denote the result by µ ⊗W η =

∑
j µ ⊗

j
W η. And then

we repeat the procedure to obtain a formula for the triple product, but we have to be careful at
this point. If we just used the formula for a double product, we would have to apply the operator∑

pmp(R
∗
n−p,p ⊗R∗p,m+k−2j) to ξ⊗ (µ⊗jW η) and sum over j. Now the tensors µ and η are mixed

and we do not want to let that happen. So we will pair a subset of [n] with a subset of [m+ k− 2j]
(with some elements removed by the first pairing) but we will split the latter into parts lying in
[m] and [k]; say they have cardinalities s and r (so p = r + s). The issue is that we have to
move this whole subset to the left of [m + k − 2j], pair with the corresponding subset of [n] and
compute the inner product in H⊗s+rq , which is not what we want; we prefer H⊗sq ⊗H⊗rq . Because

of the formula P s+rq = (P sq ⊗ P rq )R∗s,r, we can achieve this goal by applying (Idn−r−s ⊗ R∗s,r) to
R∗n−p,p(ξ). Note that our pairing m involves a second ingredient, the complex conjugation I, which
reverses the order of the tensor (i.e. I(v1 ⊗ · · · ⊗ vn) = Ivn ⊗ · · · ⊗ Iv1). So we should consider the
operator IP s+rq instead. To make things easier, we will denote by Ij the conjugation I acting on

H⊗j . We have to compute Is+rP s+rq = Is+r(P sq ⊗P rq )R∗s,r. Because Is+r reverses the order, we get

Is+r(P sq ⊗P rq )R∗s,r = (IrP rq ⊗ IsP sq )R∗r,s. Thus we can write ms+r = mrms(R
∗
r,s⊗ Ids+r). It follows

that we can replace the pairing ms+r by mrms at the cost of applying Idn−r−s⊗R∗r,s to R∗n−p,p(ξ);
by Lemma 4.8 this is the same as R∗n−r−s,r,s(ξ).

Look now at the part coming from µ ⊗jW η; we have a tensor of rank s coming from µ and
a tensor of rank r coming from η. We have to think about the cost of moving it to the left of
[m + k − 2j]. The µ part we can simply move to the left and it is accounted for by applying the
operator R∗s,m−j−s. The η part we move to the left of [k− j] using the operator R∗r,k−j−r and then
we have to move it to be adjacent to the µ part. There are m− j − s nodes that we have to cross,
and the subset has cardinality r, so the cost is equal to r(m − j − s). It means that our formula
can be written as∑

j,r,s

qr(m−j−s)m13
r m

12
s (R∗m−r−s,r,s(ξ)⊗ (R∗s,m−j−s ⊗R∗r,k−j−r)(µ⊗

j
W η)).

It is not yet exactly the formula (4.6), but it is very close to it. Recall that µ ⊗jW η is equal to
mj(R

∗
m−j,j(µ)⊗R∗j,k−j(η)). So we arrive at

(R∗s,m−j−s ⊗R∗r,k−j−r)(mj(R
∗
m−j,j(µ)⊗R∗j,k−j(η))).

Note that we can either apply the pairing immediately, just like in the formula above, but we can
also first apply identities on the spaces that will be paired, and apply the pairing afterwards. Thus
we get

mj((R
∗
s,m−j−s ⊗ Idj)R

∗
m−j,j(µ)⊗ (Idj ⊗R∗r,k−j−r)R∗j,k−j(η)).
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By Lemma 4.8, we get (R∗s,m−j−s⊗Idj)R
∗
m−j,j = R∗s,m−j−s,j and (Idj⊗R∗r,k−j−r)R∗j,k−j = R∗j,r,k−j−r.

In order to finish the proof, it suffices to add the decoration 23 to mj to make it m23
j , which exactly

matches the formula (4.6). �

Remark 4.10. In order to pass to the formula for Ψa,b(µ) we just need to multiply each summand
in (4.6) by −2r.

In order to finish the proof of Proposition 4.5, we just need bounds for the inner product pairings
and the operators R∗n,k.

Lemma 4.11. Let H be a Hilbert space. The inner product pairing m : H ⊗ H → C has norm√
dim(H).

Proof. Let (ei)i∈I be an orthonormal basis of H. Then the norm of v :=
∑

i∈I ei ⊗ ei is equal to√
|I|, while m(v) = |I|, so the norm is at least

√
|I|. On the other hand, a simple Cauchy-Schwarz

estimate shows that it is not larger than that. �

Lemma 4.12. Recall that the norm of R∗n,k : H⊗n+k → H⊗n+k is bounded by C(q). Then the norm

R∗n,k : H⊗n+k
q → H⊗nq ⊗H⊗kq is not greater than

√
C(q).

Proof. Because of the formula Pn+k
q = (Pnq ⊗ P kq )R∗n,k, we get Pn+k

q 6 C(q)Pnq ⊗ P kq . Indeed, if

we have an equality A = BT for positive operators A and B then A2 = BTT ∗B 6 ‖T‖2B2, hence
A 6 ‖T‖B, as square root is an operator monotone function. The majorisation Pn+k

q 6 C(q)Pnq ⊗P kq
shows that ‖Rn,k‖ 6

√
C(q), therefore also ‖R∗n,k‖ 6 C(q). �

Corollary 4.13. We have ‖R∗n,k,l‖ 6 C(q), where R∗n,k,l is viewed as an operator from H⊗n+k+l
q

to H⊗nq ⊗H⊗kq ⊗H⊗lq .

Proof. By Lemma 4.8 we can express R∗n,k,l as (R∗n,k ⊗ Idl)R
∗
n+k,l, and then we can appeal to the

lemma above. �

Proof of Proposition 4.5. Let µ ∈ H⊗mq and consider Ψa,b(µ). According to Proposition 4.9 we
have

Ψa,b(µ) = −2
∑
j,r,s

rqr(m−j−s)m13
r m

12
s m

23
j (R∗n−r−s,r,s(ξ)⊗R∗s,m−s−j,j(µ)⊗R∗j,r,k−j−r(η)).

We may assume that r > 1 (otherwise the corresponding summand is equal to zero), so the

(absolute value of the) factor qr(m−j−s) is bounded above by |q|m, up to a constant depending
on q, n, and k. As each of j, r, and s is bounded by either n or k, the range of summation is
finite, so it suffices to bound uniformly the norm of each summand. If we treat R∗n,k as a map

from H⊗n+k
q to H⊗nq ⊗ H⊗kq , then each summand in (4.6) should be thought of as an element of

the space H⊗n−r−sq ⊗H⊗m−s−jq ⊗H⊗k−j−rq and this norm is bounded by a constant depending on
q and dim(H) (coming from the inner product pairing). Because the norm of the identity map

Rn−r−s,m−s−j,k−j−r : H⊗n−r−sq ⊗ H⊗m−s−jq ⊗ H⊗k−j−rq → H
⊗m+n+k−2(j+r+s)
q has norm at most

C(q), the norm in H
⊗m+n+k−2(j+r+s)
q is bounded uniformly as well, which ends the proof. �

Theorem 4.14. Suppose that |q| < dim(H)
− 1

p . Then the Ornstein-Uhlenbeck quantum Markov

semi-group (Φt)t≥0 is gradient-Sp. If |q| 6 dim(H)
− 1

p then (Φt)t≥0 is immediately gradient-Sp.
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Proof. We we will estimate the Sp norm of Ψa,b by
∑∞

m=0 ‖Ψ
a,b

|H⊗m
q
‖p. Because dim(H⊗mq ) =

dim(H)m, we may estimate ‖Ψa,b
|H⊗m‖p by dim(H)

m
p ‖Ψa,b

|H⊗m
q
‖. The bound for this norm is pro-

vided by Proposition 4.5, so we get

‖Ψa,b‖p 6 C(q, ξ,η,dim(H))
∞∑
m=0

(
|q| dim(H)

1
p

)m
.

This series is convergent if |q| < dim(H)
− 1

p .

If |q| = dim(H)
− 1

p , then we want to show that the maps Ψa,b
t are in Sp for any t > 0. Running

again the same computation, we get the estimate

‖Ψa,b
t ‖p 6 C(q, ξ,η,dim(H))

∞∑
m=0

e−tm
(
|q|dim(H)

1
p

)m
= C(q, ξ,η,dim(H))

n∑
m=0

e−tm,

and this series is convergent. �

4.3. Consequences for Cartan rigidity. We gather some Cartan rigidity properties; these were
already obtained in an unpublished manuscript by Avsec [Avs11], where they were proved for any
−1 < q < 1. Our cohomological properties in the next section are new however. Recall that we
assumed that dim(HR) <∞.

We recall that a von Neumann algebra M has the W∗CMAP (weak-∗ complete metric approx-
imation property) if there exists a net Φi : M → M of completely contractive normal finite rank
maps such that for every x ∈M we have Φi(x)→ x σ-weakly and lim supi ‖Φi : M →M‖cb = 1.

Theorem 4.15. For any HR and |q| 6 dim(H)−
1
2 the q-Gaussian algebra Γq(HR) is strongly solid.

Proof. By [Avs11] we see that Γq(HR) has the W∗CMAP. In Corollary 3.13, we have constructed a
closable derivation ∂(= ∂1) : Aq → L2(Γq(HR))∇. This derivation is real by [Cas18, Lemma 3.10]

and proper as ∂∗∂ = ∆ and ∆ has compact resolvent. Further, by Theorem 4.14 we find that

(Φt)t≥0 is immediately gradient-S2 and gradient S2 if |q| < dim(H)−
1
2 .

In case |q| < dim(H)−
1
2 from Theorem 3.9 we see that the left and rightAq actions on L2(Γq(HR))∇

extend to normal Γq(HR) actions. Moreover, the thus-obtained Γq(HR)-Γq(HR) bimodule L2(Γq(HR))∇
is weakly contained in the coarse bimodule of Γq(HR). Then [OzPo10b, Corollary B] implies the
result except that we need a reformulation of [OzPo10b, Corollary B] in terms of derivations instead
of cocycles; that version can be found in [Cas18, Appendix A] (even for stable normalizers).

For arbitrary |q| ≤ dim(H)−
1
2 the proof follows in the same way using [Cas18, Proposition 4.3]

instead of Theorem 3.9; one only needs to prove that the left and right Aq actions on L2(Γq(HR))∇
extend to normal Γq(HR) actions. We do this in Proposition 4.16. �

Proposition 4.16. The left and right Aq-actions on L2(Γq(HR))∇ extend to commuting normal
Γq-actions.

Proof. The proof follows [Cas18, Proposition 3.8]. We prove it for the left action, the proof for the
right action is similar. We must show that the action is weakly continuous on the unit ball. Take
elementary Wick operators a = Wq(ξ), b = Wq(η), c = Wq(µ), d = Wq(ν) ∈ Aq. For ξ = ξ1⊗. . .⊗ξn
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we refer to n as the length of Wq(ξ). Consider,

(4.7) 〈x · a⊗∇ bΩ, c⊗∇ dΩ〉 = −1

2
〈d∗(∆(c∗xa) + c∗∆(x)a−∆(c∗x)a− c∗∆(xa))bΩ,Ω〉

Let x, a, b, c, d have length X,A,B,C,D respectively. The operator ∆ preserves the length of a
Wick word. Then using Lemma 4.3 we see that each of the expressions d∗∆(c∗xa)b, d∗c∗∆(xa)b,
d∗∆(c∗x)ab and d∗c∗∆(x)ab is a linear combination of Wick words of length at least X −A−B −
C −D. Therefore if X > A+B + C +D then (4.7) is 0. We therefore see that the map

(4.8) Aq → C : x 7→ 〈x · a⊗∇ bΩ, c⊗∇ dΩ〉,
factors through the normal projection P≤X : Γq(HR) → Γq(HR) onto Wick words of length ≤ X.
The range of this projection is finite dimensional and contained in Aq. Hence (4.8) extends to a
normal map Γq(HR)→ C.

Now let x ∈ Γq(HR) with ‖x‖ ≤ 1 and let xj ∈ Γq(HR) with ‖xj‖ ≤ 1 be a net converging to x
weakly (Kaplansky’s density theorem). Let ξ, η ∈ L2(Γq(HR))∇ and let ξ0, η0 be in the linear span
of vectors of the form a⊗bΩ with a, b ∈ Aq as in the previous paragraph with ‖ξ−ξ0‖, ‖η−η0‖ < ε.
Let j0 be such that for j > j0 we have |〈(x− xj)ξ0, η0〉| < ε. Then,

|〈(x− xj)ξ, η〉| ≤|〈(x− xj)ξ0, η0〉|+ ‖x− xj‖‖ξ − ξ0‖‖η0‖+ ‖x− xj‖‖ξ‖‖η − η0‖
≤ε+ 2ε‖η0‖+ 2ε‖ξ‖.

�

5. Derivations and the Akemann-Ostrand property

In this section we show that quantum Markov semi-groups may be used to prove the Akemann-
Ostrand property AO+ of a von Neumann algebra. In particular we find a new range of q for which
q-Gaussians have AO+. Let us first recall the definition of the Akemann-Ostrand property that is
most suitable for us, see [Iso15].

Definition 5.1. A finite von Neumann algebra M has condition AO+ if there exists a σ-weakly
dense unital C∗-subalgebra A ⊆M such that:

(1) A is locally reflexive [BrOz08, Section 9];
(2) There exists a ucp map θ : A⊗min A

op → B(L2(M)) such that θ(a⊗ bop)− abop is compact
for all a, b ∈ A.

Let M be a finite von Neumann algebra with faithful normal trace τ . Let A be a ∗-subalgebra
that is σ-weakly dense in M with C∗-closure A. Let ∂ : A → H be a closable derivation to an
A-A bimodule H. Assume that A has some linear basis ei, i ∈ I with I countable that is moreover
orthonormal in L2(M). Define the linear map,

(5.1) S : A → H : ei 7→
∂(ei)

‖∂(ei)‖
,

where we put any unit vector in H as S(ei) if ∂(ei) = 0. Then the map S is not necessarily bounded
on L2(M) and therefore we state the following assumption.

Assumption 2. Assume that S is a bounded map L2(M)→ H. Further, we assume that S∗S is
a Fredholm operator on L2(M).

Next, for every x, y ∈ A we introduce a bounded linear map

(5.2) Tx,y : L2(M)→ H : ξ 7→ xS(ξ)y − S(xξy).
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Let S = V |S| be the polar decomposition of S and note that 1 − V ∗V is a finite rank projection.
Denote by K(L2(M)) the compact operators.

Proposition 5.2. Assume that H is weakly contained in the coarse bimodule of M as A-A bimod-
ules (namely, the assignment x ⊗ yop ∈ B(L2(M) ⊗ L2(M)) 7→ xyop ∈ B(H) for x, y ∈ A extends
to a bounded ∗-homomorphism). Suppose that Assumption 2 holds and that Tx,y is compact for all
x, y ∈ A. Then there is a ucp map

θ : A⊗min A
op → B(L2(M)),

such that θ(a⊗ bop)− abop is compact for all a, b ∈ A.

Proof. Observe that one can write Tx,y = xyopS − Sxyop for all x, y ∈ A, where x and yop mean
the corresponding left and right actions. Let Π be the quotient map on B(L2(M)) onto the Calkin
algebra. Then by the assumption, for x, y ∈ A,

0 = Π(S∗Tx,y) = Π(S∗xyopS)−Π(S∗Sxyop)

= Π(|S|)Π(V ∗xyopV )Π(|S|)−Π(|S|2)Π(xyop).

It holds that

(5.3) Π(|S|2)Π(xyop) = Π(|S|)Π(V ∗xyopV )Π(|S|).
By taking the adjoint of this equation and by exchanging x, y by x∗, y∗, we get that

Π(|S|2)Π(xyop) = Π(xyop)Π(|S|2), for all x, y ∈ A,
so that Π(|S|) commutes with Π(xyop) for all x, y ∈ A. Since Π(|S|) is invertible by assumption,
by applying Π(|S|)−1 to (5.3) from left and right, we get

Π(xyop) = Π(V ∗xyopV ), for all x, y ∈ A.
We conclude that V ∗xyopV − xyop is compact for all x, y ∈ A.

Finally by the weak containment assumption, there is a bounded ∗-homomorphism

ϕ : A⊗Aop → C∗{xyop ∈ B(H) | x, y ∈ A}; ϕ(x⊗ yop) = xyop.

Then if P := V ∗V = 1, the composition Ad(V ∗) ◦ϕ works as a desired ucp map θ. For the general
case, Ad(V ∗) ◦ ϕ is a ucp map into PB(L2(M))P . Since 1− P is compact, by using a fixed state
φ on A⊗min A

op, we can consider φ(·)(1− P ) + Ad(V ∗) ◦ ϕ as a desired ucp map. �

We now investigate sufficient conditions such that the assumptions of Proposition 5.2 are satisfied.

5.1. Group algebras. We first consider group von Neumann algebras. This case was (essentially)
discussed in [BrOz08, Section 15], but we include all proofs for reader’s convenience.

Let Γ be a discrete group. Let π : Γ → U(H) be a unitary representation and b : Γ → H a
1-cocycle for π in the sense that b(xy) = b(x) + πxb(y) for all x, y ∈ Γ. Consider left and right
actions of Γ on H ⊗ `2(Γ) given by πx ⊗ λx and 1⊗ ρy for all x, y ∈ Γ respectively. Then using the
canonical basis (δx)x∈Γ for `2(Γ), one can construct a closable derivation by

∂ : C[Γ]→ H ⊗ `2(Γ); ∂(x) = b(x)⊗ ex, x ∈ Γ.

As above, put A := C[Γ] and define S : A → H ⊗ `2(Γ) by Sex := ∂(x)‖∂(x)‖−1 (and put Sex =
ξ⊗ ex for any fixed unit vector ξ ∈ H if ∂(x) = 0). Recall that b is proper if ‖b(g)‖ → 0 whenever
g →∞. In this setting, we prove the following.

Proposition 5.3. Suppose that b is proper and that π is weakly contained in the left regular
representation. Then ∂ and S satisfy all the assumptions in Proposition 5.2.
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Proof. Since S is an isometry, Assumption 2 is trivially satisfied. Since π ≺ λ, it holds that the
representation Γ×Γ 3 (x, y) 7→ πx⊗λxρy is weakly contained in the one of Γ×Γ 3 (x, y) 7→ λx⊗λxρy,
which is in turn unitarily equivalent to Γ×Γ 3 (x, y) 7→ πx⊗ ρy via the unitary ex⊗ ey 7→ ex⊗ exy
on `2(Γ)⊗ `2(Γ). We conclude that H ⊗ `2(Γ) is weakly contained in the coarse bimodule as A-A
bimodules.

It remains to show that Tx,y is compact for all x, y ∈ A. For this we can assume x, y ∈ Γ. Using
Lemma 5.4 below and using the properness of b, one has ‖Tx,y(eg)‖ → 0 as g → ∞. Observe
that Tx,y(eg) ∈ H ⊗ Cexgy, hence T ∗x,yTx,y ∈ `∞(Γ), so T ∗x,yTx,y ∈ c0(Γ). We conclude that Tx,y is
compact. �

Lemma 5.4. For every γ1, γ2 ∈ Λ, there is a constant Cγ1,γ2 > 0 such that

‖Tγ1,γ2(µ)‖ 6 Cγ1,γ2‖∂(µ)‖−1.

Proof. We have,

Tγ1,γ2(µ) =‖∂(µ)‖−1γ1∂(µ)γ2 − ‖∂(γ1µγ2)‖−1∂(γ1µγ2)

=(‖∂(µ)‖−1 − ‖∂(γ1µγ2)‖−1)γ1∂(µ)γ2 − ‖∂(γ1µγ2)‖−1(γ1∂(µ)γ2 + γ1µ∂(γ2)).
(5.4)

We have that,

‖∂(γ1µγ2)‖ − ‖∂(µ)‖ 6 ‖∂(γ2)‖+ ‖∂(γ1)‖,
so

‖∂(µ)‖−1 − ‖∂(γ1µγ2)‖−1 6
‖∂(γ2)‖+ ‖∂(γ1)‖
‖∂(γ1µγ2)‖‖∂(µ)‖

,

converges to 0 with order O(‖∂(µ)‖−2) as ∂ is proper. We conclude that ‖Tγ1,γ2(µ)‖ converges to
0 with order O(‖∂(µ)‖−1). �

5.2. Von Neumann algebras with filtration. We fix again (M, τ) a finite von Neumann algebra
with (Φt)t≥0 = (exp(−t∆))t≥0 a quantum Markov semi-group. Let

∂ : A → L2(M)∇ : a 7→ a⊗ Ωτ

be the derivation of Corollary 3.13. We shall assume that ∆ satisfies certain properties that are
close to being a length function.

Definition 5.5. We say that ∆ is filtered if it has a compact resolvent and for every eigenvalue
λ of ∆ there exists a (necessarily finite dimensional) subspace A(λ) ⊆ A such that A(λ)Ωτ equals
the eigenspace of ∆ at eigenvalue λ ≥ 0. Moreover, let λn, n ∈ N be an increasing enumeration of
the eigenvalues of ∆, and we assume the spaces A(λn), n ∈ N, to be filtered in the sense that

(5.5)
∞⊕
k=0

A(λk) = A and A(λn)A(λm) ⊆
m+n⊕
k=0

A(λk) for all n,m ∈ N,

where
⊕

means the algebraic direct sum.

Suppose now that ∆ has a compact resolvent with a complete set of eigenvectors (ei)i in A which
is an orthonormal basis in L2(M) (for example if ∆ is filtered this holds). Then since it is also a
linear basis for A, we can define the map S by (ei)i and ∂ as in (5.1). Observe that if ei ∈ A(λn),
then ‖∂(ei)‖2 = 〈∆(ei), ei〉 = λn. Using this, it is easy to see that

(5.6) S(a) = λ
− 1

2
n ∂(a), for all a ∈ A(λn) and all eigenvalues λn.

In particular, the map S does not depend on the choice of (ei)i.
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Lemma 5.6. Suppose that ∆ has a compact resolvent with a complete set of eigenvectors in A.
Then the map S in (5.6) is an isometry and hence satisfies Assumption 2.

Proof. By definition, S is given by eigenvectors (ei)i. Then we have,

〈S(ei), S(ej)〉 =‖∂(ei)‖−1‖∂(ej)‖−1〈∂(ei), ∂(ej)〉 = ‖∂(ei)‖−1‖∂(ej)‖−1〈∆
1
2 ei,∆

1
2 ej〉 = δi,j .

So S is an isometry. �

Lemma 5.7. Suppose that ∆ is filtered, then in fact we have A(λm)A(λn) ⊂
⊕m+n

k=|m−n|A(λk).

Proof. As ∆(x∗) = ∆(x)∗ for x ∈ A, the spaces A(λ) are self-adjoint. Now take x ∈ A(λm),
y ∈ A(λn) and z ∈ A(λk). Assume that m > n and that k < m − n. By assumption we find

that y∗z ∈
⊕n+k

l=0 A(λl). As n+ k < m this shows that 0 = 〈y∗zΩτ , xΩτ 〉 = 〈zΩτ , yxΩτ 〉. So yx is
orthogonal to A(λk). The same holds for xy, which yields the lemma. �

Example 5.8. Let Λ be a discrete finitely generated group and let L : Λ → N be the length
function given by the graph distance to the identity in the Cayley graph of Λ. Set ∆ to be the
closure of γ 7→ L(γ)γ as an unbounded operator on `2(Λ). Suppose that L is conditionally positive
definite so that

Q(ξ) =
∑
γ∈Γ

L(γ)‖ξ(γ)‖2 = 〈∆
1
2 ξ,∆

1
2 ξ〉

is a quantum Dirichlet form (see [CiSa03]), i.e. the generator of a quantum Markov semi-group.
Then ∆ is easily seen to be filtered.

Remark 5.9. Let Γq(HR) be the q-Gaussian algebra for −1 < q < 1 with the Ornstein-Uhlenbeck
semi-group e−t∆, see Section 4. Then it follows from the Wick product formula of Lemma 4.3 that
∆ is filtered.

Definition 5.10. We say that ∆ has subexponential growth if it has a complete set of eigen-
values λ0 < λ1 < λ2 < . . . for which

(5.7) lim
n→∞

λn+1

λn
= 1.

Remark 5.11. Subexponential growth of a generator of a quantum Markov semi-group should be
compared to the amenability results obtained in [CiSa03] and [Cas18, Appendix]. These results
show that often one cannot expect a growth on the eigenvalues that is more than linear and so in
particular (5.7) holds.

Theorem 5.12. Let M be a finite von Neumann algebra and let (Φt)t≥0 = (exp(−t∆))t≥0 be a
quantum Markov semi-group such that ∆ is filtered with subexponential growth. Let S be as in
(5.6). Then for every x, y ∈ A the operator Tx,y in (5.2) is compact.

Proof. Fix x, y ∈
⊕K

k=0A(λk) for some K ∈ N. For each eigenvalue λ, let Pλ be the orthogonal
projection onto A(λ)Ωτ and we also regard it as a map A → A(λ). Only in this proof, we will
use the notation ‖a‖∞ for the operator norm for a ∈ A. Our first goal is to prove ‖Tx,yPλn‖ → 0
as n → ∞. For this, we have only to prove that ‖Tx,y(an)‖ → 0 as n → ∞, where (an)n is any
sequence such that an ∈ A(λn) and ‖anΩτ‖ = 1 for all n ∈ N.

Take such a sequence (an)n and fix n ∈ N. Then since xany ∈
⊕2K

k=−2K A(λn+k) by Lemma 5.7

(where A(l) = 0 if l < 0), one has xany =
∑2K

k=−2K Pλn+k
(xany) (where Pl = 0 if l < 0), so that

S(xany) =
2K∑

k=−2K

λ
− 1

2
n+k∂(Pλn+k

(xany)).
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Using this, we can write

Tx,y(an) = xS(an)y − S(xany) = λ
− 1

2
n x∂(an)y −

2K∑
k=−2K

λ
− 1

2
n+k∂(Pλn+k

(xany))

and further using ∂(xany) =
∑2K

k=−2K ∂(Pλn+k
(xany)), this translates into

(5.8) Tx,y(an) = λ
− 1

2
n (x∂(an)y − ∂(xany)) +

2K∑
k=−2K

(λ
− 1

2
n − λ−

1
2

n+k)∂(Pλn+k
(xany)).

We will show that the first and the second term on the right hand side converges to 0 as n→∞.
We see the second term. Observe that for each −2K 6 k 6 2K,

‖∂(Pλn+k
(xany))‖ = ‖∆

1
2 (Pλn+k

(xany))‖ = λ
1
2
n+k‖Pλn+k

(xany)‖ 6 λ
1
2
n+k‖x‖∞‖y‖∞.

The subexponential growth condition then shows that for any such k,

‖(λ−
1
2

n − λ−
1
2

n+k)∂(Pλn+k
(xany))‖ 6 λ

1
2
n+k|λ

− 1
2

n − λ−
1
2

n+k|‖x‖∞‖y‖∞ → 0

as n→∞. This finishes the case of the second term.
We next see the first term. By using the Leibniz rule, our term is

(5.9) λ
− 1

2
n (x∂(an)y − ∂(xany)) = −λ−

1
2

n (∂(x)any + xan∂(y)) .

To estimate this term we firstly find

‖∂(x)any‖2 = ‖x⊗∇ anyΩτ‖2 6 ‖Γ(x, x)‖∞‖anΩτ‖2‖y‖2∞ = ‖Γ(x, x)‖∞‖y‖2∞,

hence, as n→∞,

(5.10) λ
− 1

2
n ‖∂(x)any‖ 6 λ

− 1
2

n ‖Γ(x, x)‖
1
2∞‖y‖∞ → 0.

This shows that the first summand on the right hand side of (5.9) converges to 0. For the sec-
ond summand, we first observe a couple of preliminary estimates. Using the equation any =∑K

k=−K Pλn+k
(any) by Lemma 5.7 (where Pl = 0 if l < 0), we have

‖(∆(an)y −∆(any))Ωτ‖2 =

∥∥∥∥∥
K∑

k=−K
λnPλn+k

(any)−
K∑

k=−K
λn+kPλn+k

(any)

∥∥∥∥∥
2

=
K∑

k=−K
|λn − λn+k|2

∥∥Pλn+k
(any)

∥∥2

6
K∑

k=−K
|λn − λn+k|2 ‖y‖2∞ ,

so that by combining with the subexponential growth condition, as n→∞,

(5.11) λ−1
n ‖(∆(an)y −∆(any))Ωτ‖ → 0.

Secondly, as ∆ is self adjoint,

(5.12) λ−1
n τ(∆(y∗a∗nan)y) = λ−1

n τ(y∗a∗nan∆(y)) =
K∑
k=0

λk
λn
τ(y∗a∗nanPλk(y))→ 0,
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as n→∞, where we used the estimate for each summand as

λk
λn
|τ(y∗a∗nanPλk(y))| = λk

λn
|τ(anPλk(y)y∗a∗n)| 6 λk

λn
‖Pλk(y)y∗‖∞,

which converges to 0 as n→∞. Similarly,

(5.13) λ−1
n τ(y∗∆(a∗nan)y) = λ−1

n τ(a∗nan∆(yy∗))→ 0,

as n→∞. Now we find that

2|λ−1
n τ(Γ(an, any)y − y∗Γ(an, an)y)|

6 λ−1
n |τ(∆(any)∗any − y∗∆(an)∗any)|+ λ−1

n |τ(∆(y∗a∗nan)y)|+ λ−1
n |τ(y∗∆(a∗nan)y)|

6 λ−1
n ‖(∆(any)−∆(an)y)Ωτ‖‖y‖∞ + λ−1

n |τ(∆(y∗a∗nan)y)|+ λ−1
n |τ(y∗∆(a∗nan)y)|

which converges to 0 as n → ∞ by (5.11), (5.12) and (5.13). Essentially the same estimates show
that

λ−1
n τ(Γ(any, any)− y∗Γ(any, an))→ 0.

We therefore get that, as n→∞,

λ−1
n ‖an∂(y)‖2 =λ−1

n τ (Γ(any, any) + y∗Γ(an, an)y − y∗Γ(any, an)− Γ(an, any)y)→ 0.

This shows that, as n→∞,

(5.14) λ
− 1

2
n ‖xan∂(y)‖ 6 λ−

1
2

n ‖x‖∞‖an∂(y)‖ → 0.

In all, the convergences (5.14) and (5.10) show that (5.9) and hence (5.8) goes to 0. We conclude
that Tx,y(an)→ 0 as n→∞ and therefore ‖Tx,yPλn‖ → 0 as n→∞.

By Lemma 5.7, for any n,m with |n−m| > 2K, xany and xamy are orthogonal, so that

〈xan ⊗∇ y, xam ⊗∇ y〉 = 〈xan ⊗∇ y, xamy ⊗∇ 1〉 = 〈x⊗∇ any, xamy ⊗∇ 1〉 = 0.

This implies 〈x∂(an)y, x∂(am)y〉 = 〈x∂(an)y, ∂(xamy)〉 = 0. We obtain

〈Tx,y(an), Tx,y(am)〉 = 0, for all n,m with |n−m| > 2K.

It turns out that T ∗x,yTx,yPλn =
∑2K

k=−2K Pλn+k
T ∗x,yTx,yPλn for all n ∈ N (where Pl = 0 if l < 0).

By putting T := T ∗x,yTx,y, we see that

T =
∑
n∈N

TPλn =
∑
n∈N

2K∑
k=−2K

Pλn+k
TPλn =

2K∑
k=−2K

∑
n∈N

Pλn+k
TPλn ,

where the sum is in the strong topology. For each fixed −2K 6 k 6 2K and m ∈ N, since Pλn+k
is

orthogonal for different n, it holds that∥∥∥∥∥∥
∑

m6n∈N
Pλn+k

TPλn

∥∥∥∥∥∥ = sup
m6n∈N

‖Pλn+k
TPλn‖ 6 sup

m6n∈N
‖Tx,yPλn+k

‖‖Tx,yPλn‖,

which converges to 0 as m→∞. Thus the sum
∑

n∈N Pλn+k
TPλn converges in the norm topology,

hence it is a compact operator. We conclude that T is compact, so Tx,y is also compact. �

We conclude as follows.

Theorem 5.13. Let M be a finite von Neumann algebra and let (Φt)t≥0 = (exp(−t∆))t≥0 be a
quantum Markov semi-group that is gradient coarse and suppose that ∆ is filtered with subexponen-
tial growth. Assume further that A as defined above is locally reflexive. Then M satisfies AO+.
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Proof. Lemma 5.6 and Theorem 5.12 show that the assumptions of Proposition 5.2 are satisfied.
Therefore this proposition together with local reflexivity of A implies that M satisfies AO+. �

The following corollary is then a consequence of [Iso15] (see also [PoVa14]).

Corollary 5.14. Suppose M has the W∗CMAP. Then under the assumptions of Theorem 5.13, M
is strongly solid.

The following examples are covered by Theorem 5.13.

Corollary 5.15. For |q| 6 dim(H)−
1
2 the q-Gaussian algebra Γq(HR) satisfies Condition AO+.

Proof. In case |q| < dim(H)−
1
2 we verify the conditions of Theorem 5.13 as follows. From Theorem

4.14 and Remark 5.9 we see that a Γq(HR) admits a filtered quantum Markov semi-group that is
gradient-S2. From Corollary 3.10 this semi-group is gradient coarse and the conditions of Theorem

5.13 are verified. In case |q| 6 dim(H)−
1
2 we have that Theorem 4.14 and Remark 5.9 show that

Γq(HR) admits a filtered quantum Markov semi-group that is immediately gradient-S2. Then from
[Cas18, Proposition 4.3] and Proposition 4.16 we see that the semi-group is gradient coarse. We
conclude again by Theorem 5.13. �

As mentioned before, Shlyakhtenko [Shl04] obtained the same result for |q| <
√

2− 1 so that up
to dimension 5 we find a new range. Other examples include the following.

Example 5.16. Free group factors with the natural radial semi-group coming from the length
function. Here conditon AO+ is known, see [BrOz08].

Example 5.17. Free orthogonal quantum groups O+
N (tracial case). In [Cas18] a gradient coarse

quantum Markov semi-group was constructed which has the filter and subexponential growth prop-
erty. Together with local reflexivity (which follows from the CMAP of [Fre13] or [CFY14]) one
obtains AO+. Here AO+ was obtained already in [VaVe07] using boundary actions.
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