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While analyzing the persistence length of DNA atomistic simulations Wu et al. [J. Chem. Phys. 142, 125103 (2015)]
introduced an empirical formula to account for the observed length-dependence. In particular they found that the
persistence length increases with the distance. Here, we derive the formula by Wu et al. using a non-local twistable
wormlike chain which introduces couplings between distal sites. Finally, we show that the same formula can account
for the length-scale dependence of the torsional persistence length and is, in fact, applicable to any kind of polymer
model with non-local couplings.

In Ref. 1 Wu et al. analyzed the bending flexibility of short
DNA segments (of up to 50 bps) by molecular dynamics and
Monte Carlo simulations. They found that DNA is softer at
short lengths, which they accounted for with the empirical for-
mula

lB(m) = l∞
B −

A
B+m

, (1)

where lB(m) is the persistence length of a sequence of m base
pair-steps, l∞

B the asymptotic persistence length and A, B some
fitting parameters. In this comment we show that the above
formula is consistent with the asymptotic expansion of the
non-local Twistable Wormlike chain (nlTWLC)2 which gives

lB(m) = l∞
B

(
1− B

B+m

)
+ . . . (2)

with the dots indicating higher order corrections. Such ex-
pansion is valid both for (1) the local persistence length of a
long DNA molecule measured from the tangent-tangent cor-
relation of two base pairs separated by m steps and for (2) the
persistence length obtained from the correlation of the end-
point tangent vectors for a DNA molecule of finite length m.
The latter is the quantity analyzed by Wu et al.1. Furthermore,
we will show, that an expansion of the type (2) is also valid for
the torsional persistence length. Note, that expression (2) con-
tains one parameter less than (1) implying that A = l∞

B B. This
relation holds approximately for the values reported by Wu et
al.1: l∞

B = 50 nm, A = 450 nm and B = 10.
Non-local couplings – The nlTWLC describes DNA config-

urations using the three rotational densities tilt, roll (the two
bending modes), and twist indicated with τn, ρn, and Ωn +ω0
respectively, with n = 1,2, . . .N enumerating the base pair-
steps along the chain. The twist is subdivided into a constant
intrinsic twist density ω0 = 1.75 nm−1, corresponding to one
turn of the helix every 10.5 base pairs, and a fluctuating ex-
cess twist Ωn. While in the ordinary TWLC couplings are
strictly local and the energy is quadratic in τn, ρn, and Ωn, the
nlTWLC introduces couplings between distal sites, such as for
instance τnτn+m with m > 0. Non-local couplings have been
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observed in several all-atom simulations3,4 and they typically
extend to three flanking dinucleotide steps2.

Persistence lengths – The nlTWLC predicts similar length
scale dependence of both the bending and the torsional persis-
tence length, hence we discuss both. In the limit of an infinite
long chain N→∞ the correlation functions between two sites
separated by m base pairs decay with m-dependent persistence
lengths given by the following expressions2:

1
lχ

=
1

mπ

∫ +π/2

−π/2

sin2(my)
sin2 y

fχ(y)dy, (3)

with χ = {B,T} labeling either the bending or the torsional
persistence length. The variable y = πq/N is the rescaled mo-
mentum and fχ(y) are functions of the bending fields (tilt and
roll) and the excess twist field for the lB and lT respectively.
The full expressions are reported in Ref. 2. We also note, that
while the former expression contains certain approximations,
the latter is exact. The functions fχ(y) are symmetric in y, so
for small y the following expansions hold

fχ(y)≈ fχ(0)+
1
2

f ′′χ (0)y2 +O
(
y4) . (4)

To proceed further it is convenient to split fχ(y) in Eq. (3)
into two terms, a constant fχ(0) and the increment fχ(y)−
fχ(0) and integrate these two terms separately. That way, one
obtains (to simplify the formula we omitted the integration
boundaries)
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2mπ
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where we have used∫
π/2

−π/2

sin2 my
sin2 y

dy = mπ, (6)

and the definition

Bχ ≡
1

2π fχ(0)

∫ +π/2

−π/2

fχ(y)− fχ(0)
sin2 y

dy. (7)

The oscillatory term cos(2my) in (5) yields an exponentially
small factor proportional to exp(−m/λ ), where the charac-
teristic decay length λ can be obtained from the poles of
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Figure 1. Bending and torsional persistence lengths deduced from
Monte Carlo simulations of the nlTWLC (black dots). The left-hand
panels show m-dependent bending (a) and torsional (b) persistence
lengths for a chain of length N = 200, while the right-hand pan-
els show end-to-end bending (c) and torsional (d) persistence length
(m = N) for various chain-lengths. Non-local energetic couplings
are included up to third closest neighbors and are chosen to induce
significant length-scale dependence, parameters are given in Table I.
Fits of (2) to the respective correlation lengths are shown as blue and
green lines.

the integrand2. We note that the integral in (7) is conver-
gent, in particular (4) implies that the integrand does not di-
verge as y→ 0. Finally, inverting Eq. (5) one gets (2) with
l∞
B = 1/ fB(0) and B = BB.

While so far we have considered the limit N → ∞ we can
extend the analysis for a sequence of finite length. For brevity
we limit the discussion to the bending persistence length. For
finite N this is given by2
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where τ∗m and ρ∗m are related to the original variables tilt and
roll by a linear transformation2. In particular, as in Ref. 1, we
are interested, in the case m = N, where lB is obtained from
the tangent-tangent correlation function between the two ends
of the chain. On general grounds the averages in (8) will pro-
duce a bulk type term extensive in m and boundary corrections
〈X〉= mΓ1+Γ2+ . . ., with X indicating the terms averaged in
(8). Such expression produces again the expansion (2).

Monte Carlo simulations– Figure 1 shows an example of
both torsional and bending persistence lengths obtained from
Monte Carlo simulations of the nlTWLC compared to fits with
Eq. (2) (solid lines). Left plots are for N = 200 and finite m,
while the right plot for sequences of finite length m = N. As
expected the asymptotic persistence lengths are the same in
these two cases, as both converge towards the same l∞

B,T for
large m. However, the Bχ are determined by the boundary
contributions of short segments (small m). These contribu-
tions are manifestly different when comparing a partial seg-
ments located within a larger chain (m� N) and segments
spanning the entire chain (m = N), as the latter case lacks any
couplings spanning beyond the considered range.

Static contributions – Thus far we have solely considered
models in which the persistence length only depends on the
thermal bending fluctuations of the molecule. However, it
is well established, that the ground-state of a DNA molecule
is not straight, but exhibits significant static bending. These
bending components will further expedite the decorrelation

of tangents. It has been shown5, that the bending peristence
length can be decomposed into the dynamic component lD de-
termined by thermal fluctuations and the static component lS
as

1
lB

=
1
lD

+
1
lS
. (9)

When considering a sufficiently large chain, one can define

Table I. Real-space couplings used in the Monte Carlo simulation
shown in Fig. 1. Xk indicates the couplings between sites displaced
by k base pair-steps. We used an isotropic model with bending
stiffness A and torsional stiffness C. The asymptotic bending- and
twist-stiffness according to Eq. (2) are indicated by X∞. For the in-
trinsic twist density and discretization length ω0 = 1.75 nm−1 and
a = 0.34 nm were used for respectively. Since the bending modes
are expressed as rotational densities the the couplings are expressed
as length in units of nm.

X0 X1 X2 X3 X∞

A 25 14 5 2 51
C 40 25 8 2 110

the average m-dependent static peristence length by consider-
ing a sequence ensemble. We assume that in this ensemble
averaging produces uncorrelated static bends. Following this
assumption lS is taken m-independent, while for the dynamic
component (which is of thermal origin) Eq. (5) still holds.
Hence we find
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)
+
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, (10)

which ultimately gives Eq. (2) with

1
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and B =
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B

l∞
D

BD. (11)
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