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Abstract

The difference in surface roughness between land and sea, and the terrain

complexities, lead to spatially heterogeneous atmospheric conditions, and therefore

affect the propagation and dynamics of wind-turbine and wind-farm wakes.

Currently, these flow heterogeneities and their effects on plant aerodynamics are not

modeled in the majority of engineering wake models. In this study, we address this

issue by developing a new wake-merging method capable of superimposing the

waked flow on a heterogeneous background velocity field. We couple the proposed

wake-merging method with four different wake models, i.e. the Gaussian,

super-Gaussian, double-Gaussian and Ishihara model, and we test its performance

against LES results, dual-Doppler radar measurements and SCADA data from the

Horns Rev, London Array, and Westermost Rough farms. The standard Jensen model

with quadratic superposition is also included. In homogeneous conditions, the new

method predicts slightly higher velocity deficits than the linear superposition method.

Overall, the distributions of the difference in power ratio between the two

wake-merging methods predictions and observations show a similar mean absolute

error (MAE) and interquartile range (IQR) in such conditions. On the other hand, the

new wake-merging method predictions display a lower MAE with a similar IQR in

case of a spatially varying background velocity, being overall more accurate than the

ones obtained with linear superposition. The most accurate estimates are obtained

when the wake-merging methods are coupled with the double-Gaussian and

Gaussian single-wake models. In contrast, the Jensen and super-Gaussian wake

models overestimate the velocity deficits for the majority of cases analyzed.

K E YWORD S

analytical wake model, coastal gradient, wake-merging method, wakes, wind-farm power
prediction

1 | INTRODUCTION

The majority of offshore wind farms are placed near coastal regions to minimize cabling costs and leverage fixed-bottom technology at shallower

depths of water. Moreover, due to the current expansion of wind power capacity, the construction of onshore wind farms on non-flat complex

terrains is common practice. The different surface roughness and temperature found over land and sea and the flow obstructions caused by
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orographic features account for the development of strong horizontal velocity gradients.1–4 Moreover, nowadays few wind farms much further

from the coast are also in operation (see, e.g., the Hornsea wind farm). For these sites the wind speed gradients across the area may not be as

steep as for a coastal site, but the variation of the wind resource may still be appreciable due to the large spatial extent of modern wind farms.

Also, wind farm wakes propagate several kilometers downwind, adding complexity to the surrounding flow fields.5,6 Under such conditions, power

and wake assessments performed with analytical wake models are challenging due to the heterogeneity of the background velocity field. In fact,

the local value of wind speed and turbulence intensity measured several hundreds of meters upstream of the farm are usually the only flow

characteristics used by existing wake models.7–10 The goal of the current study is to develop a new wake-merging method that accounts for a

spatially varying background velocity and to further validate it against other wake-merging methods, numerical results and field measurements.

The Jensen model,11 dating back to four decades ago, is one of the first ever analytical single-wake model. It states that
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where x¼ðx,y,zÞ with x the horizontal, y the lateral and z the vertical direction and rðxÞ¼ ðy2þ z2Þ1=2 denotes the radial distance from the center

of the wake. Moreover, Ub represents the background velocity, CT is the wind-turbine thrust coefficient, δðxÞ¼ k�x is the wake width with k* the

wake expansion coefficient, D is the turbine rotor diameter, H denotes the Heaviside function and ΔUðxÞ¼Ub�UðxÞ is the velocity deficit in

the wake, with UðxÞ representing the waked velocity. Note that we are assuming the background velocity field to be uniform and uni-directional

(i.e., only the horizontal component of the velocity field is non-zero). This model is derived applying only the mass conservation law in a control

volume located downwind of the turbine.12 Despite the lack of conservation of momentum, the Jensen model is one of the most used in both

academic studies13,14 and commercial software.15,16 Later, Frandsen et al17 proposed a new wake model based on both mass and momentum

conservation laws applied on a control volume located around the turbine. Both the Jensen and Frandsen model assume a top-hat shape for the

velocity deficit in the wake. This assumption leads to an underestimation of ΔUðxÞ at the center of the wake and to an overestimation of the

velocity deficit at the edges. Since the power depends on the cube of the wind speed, the top-hat shape assumption can lead to large errors when

used for predicting farm energy output.10,12

Bastankhah and Porté-Agel12 have shown that the velocity deficit ΔUðxÞ collapses on to a Gaussian curve when plotted against the radial

distance from the wake centerline, i.e. the wake of a turbine is self-similar.18 Hence, they have written the normalized velocity deficit as

ΔUðxÞ
Ub

¼WðxÞ, with WðxÞ¼CðxÞf rðxÞ,σðxÞð Þ ð2Þ

where C(x) denotes the maximum normalized velocity deficit at each downwind location, σ(x) represents a length scale which varies downstream

and f rðxÞ,σðxÞð Þ describes the shape of the velocity profile. Equation (2) allows to solve analytically the mass and momentum equations. Moreover,

in a self-similar state, the transverse distribution of the normalized mean velocity deficit remains Gaussian, which simplifies the wake modeling.

While the shape function f rðxÞ,σðxÞð Þ is prescribed, the maximum normalized velocity deficit C(x) is derived from the mass and momentum

conservation laws.12,19 The firsts three models displayed in Table 1 show three different C(x) relations derived with distinct shape functions. The

Gaussian wake model12 assumes a Gaussian-like velocity deficit profile. It has proven to outperform both the Jensen and Frandsen model12 and is

nowadays widely used in wake assessments and layout optimization problems.20,21 However, this model does not conserve momentum in the

near-wake region, i.e. when CT > 8σ
2/D2. To improve this deficiency, the super-Gaussian wake model uses a top-hat shape function in

the near-wake region which evolves to a Gaussian shape in the far wake.22,23 A different approach to improve the Gaussian wake model in the

near-wake region is offered by the double-Gaussian wake model,24,25 which includes the nacelle effects using two Gaussian functions which are

symmetric with respect to the wake center. Results have shown that the double-Gaussian model outperforms the Gaussian model in the

near-wake region, but it overestimates the velocity deficit far downstream of the turbine.24 Other types of models prescribe the shape function

TABLE 1 Shape function f rðxÞ,σðxÞð Þ and maximum normalized velocity deficit C(x) of four single-wake models

Model f(r, σ) C(x) (x > 0)

Gaussian exp � r2
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Note: That CðxÞ¼0 for x≤0.
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and derive the maximum velocity deficit C(x) by fitting of numerical results and experimental data. The idea behind these data-driven models is to

surgically insert error terms in the equations and further learn the associated parameters using operation data. The models proposed by Ishihara

and Qian26 and Schreiber et al.27 are an example. In the current manuscript, we use the Ishihara and Qian26 model, which is also reported in

Table 1, and for brevity we denote it as the Ishihara model. Finally, note that when f rðxÞ,σðxÞð Þ is assumed to be Gaussian-like, the length scale

σ(x) represents the standard deviation of the Gaussian function.

The wake models mentioned above are used for wake assessments of single wind turbines. However, to estimate the power output of large

farms, we have to deal with multiple wakes. Hence, superposition methods are applied to account for wake overlapping. To date, two main

superposition methods have been explored, i.e. summing the velocity deficits7,10 or summing the square of the velocity deficits.8,9 These methods

read as

UðxÞ¼Ub�
XNt

k¼1

ukWkðxÞ ð3Þ

UðxÞ¼Ub�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNt

k¼1

ukWkðxÞð Þ2
vuut ð4Þ

where UðxÞ is the horizontal component of the waked flow while uk denotes the wind velocity averaged over the rotor disk of turbine k. The

product ukWkðxÞ corresponds to a velocity deficit (see Equation (2)); therefore, Equation (3) proposed by Niayifar and Porté-Agel10 evaluates the

velocity field within the farm using a linear superposition of velocity deficits while Equation (4) proposed by Voutsinas et al.9 uses a superposition

of energy deficits. The models proposed by Lissaman7 and Katic et al.8 also use Equations (3) and (4), respectively, to merge wakes with the

additional assumption of uk ¼Ub, that is the mean wind speeds experienced by downwind turbines are equal to the farm inflow velocity. Figure 1

displays a three-dimensional representation of the velocity field within a staggered farm with streamwise and spanwise spacings of Sx ¼ Sy ¼6D.

The Jensen model combined with Equation (4) is used in Figure 1 (top) while the Gaussian model coupled with Equation (3) is adopted in Figure 1

(bottom). The plots reveal that a lower velocity gradient at the edges of the wakes is obtained with a Gaussian-like shape function, resulting in a

better representation of reality. A more extensive comparison between the two models is performed in Section 4.

Very recently, a few wake engineering models have been proposed that account for a spatially varying background velocity field. The model

of Brogna et al.28 superimposes a Gaussian shape wake model on top of the background flow field. Farrell et al.29 recently developed a model

F IGURE 1 Normalized velocity field through a staggered farm with 32 turbines with rotor diameter D = 154 m, thrust coefficient CT= 0.85,
ambient turbulence intensity TIb=12% and background velocity Ub= 10 m/s. The dimensionless streamwise and spanwise spacings are
Sx ¼ Sy ¼6D. (top) Jensen model combined with superposition of energy deficits and (bottom) Gaussian model coupled with linear superposition
of velocity deficits [Colour figure can be viewed at wileyonlinelibrary.com]

LANZILAO AND MEYERS 3

http://wileyonlinelibrary.com


which evaluates the background flow velocity at turbine location using a Delaunay triangulation in combination with a barycentric interpolation

and accounts for varying wind directions by rotating the numerical grid. However, both models use an adapted version of the sum-of-squares

method proposed by Katic et al.8 to merge wakes, which is based on empirical relations. Further, the model proposed by Shamsoddin and

Porté-Agel30 also accounts for varying background velocity. However, this model deals with the wake of a single turbine and it has never been

extended to a farm level. In the current manuscript, we aim to fill the aforementioned gap by developing a new wake-merging method that

accounts for spatial heterogeneity in the background flow field. The manuscript is structured as follows. First, Section 2 introduces the new

wake-merging method and shows some of its features. Next, Section 3 describes the single-wake models setup and details the simulation cases.

Thereafter, we compare the performance of the new wake-merging method against LES results, dual-Doppler radar measurements and SCADA

data in Section 4. Finally, conclusions and suggestions for future research are drawn in Section 5.

2 | NEW WAKE-MERGING METHOD

In Section 2.1, we derive the new wake-merging method for a uni-directional flow which changes in magnitude along the streamwise and

spanwise directions. Thereafter, in Section 2.2, we generalize the model considering a background velocity field which changes in direction over

the wind farm area. Finally, some example cases which highlight the features of the new model are illustrated in Section 2.3.

2.1 | Uni-directional flow

Consider a wind-farm with Nt turbines displayed with an arbitrary layout. The turbines operate in a heterogeneous uni-directional

background velocity field which we denote with UbðxÞ. Moreover, the turbines are ordered according to the wind direction. To do so,

we compute the point-line distance between the turbine coordinates and a line orthogonal to the wind direction upstream of the

farm, and we sort the turbines from nearest to farthest. Next, to define the wake function WkðxÞ, we introduce a new coordinate system

XkðxÞ¼ XkðxÞ, YkðxÞ, ZkðxÞð Þ per turbine which has its origin at turbine k, with location xk ¼ðxk , yk , zh,kÞ, where zh, k is the turbine hub-height. We

then express WkðxÞ¼cW XkðxÞð Þ where

XkðxÞ¼ x�xk ð5Þ

YkðxÞ¼ y�yk ð6Þ

ZkðxÞ¼ z� zh,k ð7Þ

with

cW Xkð Þ¼C Xkð Þf rðXkÞ,σðXkÞð Þ: ð8Þ

Note that the maximum normalized velocity deficit and the wake width assume non-zero values only for XkðxÞ>0.
To compute the flow through the farm, we use a recursive formula. The velocity field at the first iteration is given by the background wind

speed, which is a model input. Hence, U0ðxÞ¼UbðxÞ. Using self-similarity in the wake of the most upwind turbine (i.e., Equation (2)), we can write

the velocity field U1ðxÞ as

U0ðxÞ�U1ðxÞ
U0ðxÞ ¼W1ðxÞ ) U1ðxÞ¼U0ðxÞ 1�W1ðxÞ½ �: ð9Þ

More generally, given the flow field generated by the background field and the firsts k � 1 turbines, the effect of the next turbine (k) is also

expressed using self-similarity of the wake (of turbine k), so that

Uk�1ðxÞ�UkðxÞ
Uk�1ðxÞ ¼WkðxÞ ) UkðxÞ¼Uk�1ðxÞ 1�WkðxÞ½ �, ð10Þ

providing the general recursive formula for any value of k. Note that, if we define ΔUkðxÞ¼Uk�1ðxÞ�UkðxÞ, Equation (10) becomes equivalent to

Equation (2), where the background velocity is now Uk�1ðxÞ. Finally, the full flow field in the farm (i.e. including the background flow and the
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turbine wakes) is given by UðxÞ¼UNt ðxÞ. For the current case of uni-directional flow, the recursive relation (Equation (10)) can be explicitly

elaborated into

UðxÞ¼UbðxÞ
YNt

k¼1
1�WkðxÞ½ �, with WkðxÞ¼ Ŵ XkðxÞð Þ: ð11Þ

Note that turbines downwind do not affect turbines located upwind. In fact, the wake function WkðxÞ is defined in such a way that WkðxÞ¼0

for any location x upstream of turbine k.

2.2 | Multi-directional flow

We now generalize the ideas discussed above for multi-directional flow. To this end, we consider an arbitrary farm layout now immersed in a

heterogeneous background velocity field which changes direction and magnitude throughout the farm. Hence, UbðxÞ¼ UbðxÞ,VbðxÞð Þ, and
θbðx,yÞ¼ arctan VbðxÞ=UbðxÞð Þ defines the local orientation of the background flow. For sake of simplicity, we keep the turbines aligned with

the flow (i.e., no yaw misalignment). We also assume that the vertical velocity component of the background velocity field is zero and that the

background flow does not change direction along the z axis, meaning that the ratio VbðxÞ=UbðxÞ is constant with height. Finally, we presume that

the wakes in the farm are carried by the background flow UbðxÞ. Thus, the coordinate system XkðxÞ¼ XkðxÞ,YkðxÞ,ZkðxÞð Þ still has origin at the

turbine location (i.e., XkðxkÞ¼0) but is now oriented along the streamlines of the background flow field. Hence,

XkðxÞ¼
ðx
xk

cos θbð�x,yÞð Þd�xþ
ðy
yk

sin θbðx, �yÞð Þd�y ð12Þ

YkðxÞ¼�
ðx
xk

sin θbð�x,yÞð Þd�xþ
ðy
yk

cos θbðx, �yÞð Þd�y ð13Þ

ZkðxÞ¼ z� zh,k: ð14Þ

Next, we construct the recursive formula. To this end, we first order the turbines from most upstream to most downstream, so that for any

k > l, the wake of turbine k does not interfere with turbine l. This can be achieved by using the same technique adopted for uni-directional flows,

but now the sorting algorithm has to be built by computing the point-line distance along the curvilinear system which follows the streamlines of

the background flow, and where the upstream line (curve) is constructed to be locally orthogonal to the streamlines. The starting term of the

recursion is given again by U0ðxÞ¼UbðxÞ, but the recursive formula now becomes

UkðxÞ¼ Uk�1ðxÞ �e ⊥ ,kð Þ 1�WkðxÞð Þe ⊥ ,kþ Uk�1ðxÞ �ek,k
� �

ek,k , for k¼1,…,Nt ð15Þ

with the total farm flow field given by UðxÞ¼UNt ðxÞ and WkðxÞ¼cW XkðxÞð Þ. Moreover, e ⊥ ,k ¼ cosθk , sinθkð Þ and ek,k ¼ �sin θk ,cos θkð Þ denote the

unit vector perpendicular and parallel to the rotor plane of turbine k with θk the turbine orientation angle (defined below). Equation (15) simply

expresses that the wake deficit is oriented in the axial direction of turbine k, while no velocity change occurs in the parallel direction. This axial

velocity deficit is then transported along the streamlines of the background flow as expressed by the coordinate system XkðxÞ. Finally, the angle

θk which corresponds to the orientation of turbine k is defined as

θk ≜ arctan VðxkÞ=UðxkÞð Þ¼ arctan Vk�1ðxkÞ=Uk�1ðxkÞð Þ, ð16Þ

where the second equality follows from the ordering of the turbines.

Note that we have used the simplifying assumption that the coordinate system XkðxÞ (Equations (12)–(14)) is oriented along the background

flow. This can be further generalized so that XkðxÞ is oriented along the streamlines of the full flow UðxÞ. However, this would require an iterative

procedure, that is starting with orientation along the background flow as an initial guess, and then iteratively updating the streamlines using

Equations 12–16 (e.g., based on a Newton method or a fixed-point iteration method). This is not further considered here and it is work for future

research.

Equation (15) can also be further generalized to include effects of yaw misalignment. In such case, the orientation of turbine k would be

expressed as ~θk ¼ θkþ γk with γk the yaw angle of turbine k. Moreover, the wake deficit function would need to be extended to include yaw

effects (see, e.g., Bastankhah and Porté-Agel31 and Qian and Ishihara32). However, the effects of yaw misalignment will be investigated in the

future and are not included in the current manuscript.
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In the discussion above, the wake function WðxÞ can be selected from Table 1. However, the derivation of C(x) assumes that the background

velocity field upstream of the turbine is uniform in the stream and cross-stream directions.12,19 Instead, in our derivation the background velocity

perceived by the turbine k is non-uniform due to heterogeneity in the background velocity field and preceding wakes. Hence, the maximum

normalized velocity deficit proposed by Shamsoddin and Porté-Agel30 should be adopted. However, the assumptions of slow varying background

velocity in the horizontal directions and large enough turbine spacings allow us to obtain the same functions C(x) reported in Table 1 (i.e., assuming

that the x and y derivative of both components of Uk�1ðxÞ at location xk are negligible). In other words, Equation (15) conserves mass and

momentum only if the waked flow induced by preceding turbines at the location of a downwind turbine is quasi-homogeneous in the horizontal

directions and if a slow varying background velocity is used. Note that this is usually the case for velocity changes induced by coastal gradients.

For example, Barthelmie et al1 observed an average wind speed difference of 0.1m/s between nearest and farthest turbine from the shore for

the Horns Rev farm.

Next, the inflow velocity of turbine k is obtained by averaging the velocity over the turbine rotor disk. To this end, we use a quadrature rule

with Nq ¼ 16 points spread over the rotor swept area. The quadrature-point coordinates are denoted with xk,q and are chosen following the

quadrature rule proposed by Holoborodko33 with uniform weighting factor ωq ¼1=Nq. Hence

uk ¼
XNq

q¼1

ωqSðxk,qÞ ð17Þ

where SðxÞ¼ kUðxÞk2. We also refer to Allaerts and Meyers34 for more details on the quadrature rule. The turbine power is then obtained from

Pk ¼PkcðukÞ where Pkc denotes the power curve of turbine k. Similarly, the turbine set-point is computed as CT,k ¼Ck
T,cðukÞ, where Ck

T,c is the thrust

coefficient curve of turbine k. Finally, to compute the turbulence intensity within the farm, we adopt the model proposed by Niayifar and Porté-

Agel10 which expresses TI¼ TI2bþTI2þ
� �1=2

where TIb denotes the ambient turbulence intensity while TIþ represents the added turbulence inten-

sity generated by a wind turbine. The added turbulence intensity is computed with the model of Crespo and Hernandez.35 Note that we are

assuming TIb to be uniform in and around the wind farm.

2.3 | Example cases

To illustrate some features of the new wake-merging method, we report a couple of simple examples here. The background velocity UbðxÞ is a

model input. For instance, UbðxÞ and VbðxÞ could be three-dimensional fields taken in the vicinity of an operating farm (see Nygaard and

Newcombe36 and Djath et al.5) or, ideally, the velocity fields which would manifest assuming that the farm would not operate. If measurements

are not available, the background velocity needs to be modeled.

In a first application, we consider a uni-directional horizontally homogeneous background velocity field with a logarithmic profile37 in the

vertical direction (i.e., Ub ¼UbðzÞ), with friction velocity and surface roughness of 0.58m/s and 0.1 m, respectively. These values lead to a wind

speed at zh = 120m of 10 m/s. Moreover, the ambient turbulence intensity is fixed to TIb = 12%. A row of five turbines with streamwise spacing

of Sx ¼7D is immersed in such atmospheric conditions, with D = 154m. Figure 2 shows a side view of the velocity field through the row of

turbines obtained with the new wake-merging method coupled with the Gaussian wake model. The wake expansion in the vertical direction

mimics the formation of an internal boundary layer38,39 which grows along the streamwise direction. Moreover, the maximum normalized velocity

deficit decreases monotonically in the wake of each turbine, resulting in a velocity recovery. Note that the Gaussian wake model does not

conserve momentum in the near-wake region, that is, when CT > 8σ
2/D2 (see Table 1)—we fix CT ¼0:85 here. To represent the velocity deficits in

this region, the thrust coefficient is written as an error function of the streamwise coordinate, similarly to Zong and Porté-Agel.40 Finally, note that

ground-wake interactions are neglected throughout the whole manuscript. In fact, the image method inherently assumes a slip boundary

F IGURE 2 Side view of the normalized velocity field at the turbine centerline plane for a single row of five turbines with streamwise spacing
of Sx ¼7D. The velocity field is computed with the new wake-merging method coupled with the Gaussian wake model. The velocity Ub is
homogenous in the x and y direction. The black lines denote the wind-turbine rotor locations [Colour figure can be viewed at wileyonlinelibrary.
com]
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condition which could cause issues when logarithmic shear profiles or mesoscale velocity fields are used as a model input, since in these cases the

ground surface is not a symmetry plane.

As a second application, we consider a farm of 25 turbines immersed in a multi-directional spatially varying background velocity field. More

specifically, Figure 3A,B illustrates the turbines' wake behavior in presence of a gradual change in background velocity magnitude along the

streamwise and spanwise directions, respectively (i.e., the background wind speed increases linearly along the streamwise (spanwise) direction

with a difference of 2 m/s between x=D¼ 0 (y=D¼ 0) and x=D¼ 50 (y=D¼ 40)). Thereafter, Figure 3C shows the flow through a farm which is

subject to a gradual change in wind direction. In this specific case, we assume Sb ¼kUbðxÞk2 ¼ 10 m/s and we vary the wind direction with

θbðxÞ¼0:35x=D, so that there is a 10� change in background wind direction between the first and the last column of turbines.

In the current section, we have shown that the proposed wake-merging method properly accounts for preceding wakes. Moreover, the new

method does not rely on a single velocity value taken upstream of the farm. Instead, the turbine wakes are superimposed on heterogeneous back-

ground velocity fields. Despite the added features, the computation of the velocity through a farm is done within seconds, making the model suit-

able for optimization studies and annual energy yield assessments. A more extensive validation is performed in Section 4, where we compare the

model's performance against numerical results and field measurements in homogeneous and heterogeneous conditions. Moreover, more insights

about the differences between the new and the linear superposition method are provided in Appendix A.

3 | CASES DESCRIPTION AND SINGLE-WAKE MODEL SETUP

In this manuscript, we compare the performance of nine engineering wake models: the Gaussian12 (G), super-Gaussian23 (SG), double-Gaussian24

(DG) and Ishihara26 (I) single-wake models coupled with linear superposition of velocity deficits (Lin—Equation (3)) and with our new

wake-merging method (New—Equation (15)). As an additional reference, we also show results from the Jensen model11 combined with quadratic

superposition (Equation (4)). In the remainder of this section, we will briefly describe the setup of the aforementioned single-wake models. For

sake of simplicity, we assume uni-directional flow with the stand-alone turbine located in position x1 ¼ y1 ¼0, so that no horizontal axes

transformation is needed.

The Jensen model, which we use as a standard reference in the current work, evaluates the normalized velocity deficit using Equation (1),

which depends on the wake expansion coefficient k*, the only free parameter. Jensen11 assumed k� ¼ 0.1. Further offshore wind-farm studies

F IGURE 3 Top view of the normalized velocity field at a horizontal plane at hub height computed with the new wake-merging method
coupled with the Gaussian wake model. (A,B) Gradual change of background velocity magnitude along the streamwise and spanwise directions,
respectively. (C) Gradual change of background velocity direction over the wind farm. The farm contains 25 turbines with dimensionless
streamwise and spanwise spacing of Sx ¼ Sy ¼7D, respectively. The black lines denote the wind-turbine rotor locations [Colour figure can be
viewed at wileyonlinelibrary.com]
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noted that a smaller wake expansion coefficient enhances the model's performance.36,41–43 Hence, the value k ∗ ¼ 0.04 is typically used

nowadays. Moreover, very recently, k∗ has been expressed as function of the turbulence intensity, which could further improve the model's

predictions.14,44,45 In the current study, we assume k ∗ ¼ 0.04.

The Gaussian wake model used in our analysis is the one proposed by Bastankhan and Porté-Agel.12 The shape function and parameter C(x)

are reported in Table 1. Similarly to Jensen,11 a linear expansion of the Gaussian profile standard deviation, and consequently also of the wake

width, is assumed, that is,

σðxÞ¼ k ∗ xþεD ð18Þ

where ε¼0:2
ffiffiffi
β

p
is the limit value of σ(x)/D for x approaching 0, with

β¼1
2
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�CT
pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�CT

p : ð19Þ

Contrary to the Jensen model, the wake expansion coefficient is expressed as a function of the turbulence intensity following the empirical

relation proposed by Niayifar and Porté-Agel,10 that is k ∗ ¼ 0.3837 TIþ 0.003678. Note that this empirical relation provides good estimates of k∗

for turbulence intensity values in the range of 0.065 <TI < 0.15.

The choice of a super-Gaussian shape function implies a n-dependent maximum normalized velocity deficit C(x) (see Table 1). For high values

of n, the shape function resembles a top-hat filter, while for low values the function evolves toward a Gaussian shape. If n¼ 2, the model is

identical to the Gaussian one. Blondel and Cathelain23 proposed the following expression for the order n(x)

nðxÞ¼ afe
bf x=Dþcf : ð20Þ

Regarding the standard deviation of the Gaussian profile, the following linear form is used

σðxÞ¼ asTIþbs½ �xþcs
ffiffiffi
β

p
D: ð21Þ

Blondel and Cathelain 23 proposed a first calibration of the model with parameters not dependent on the thrust coefficient and turbulence

intensity values. However, in a later study, Cathelain et al 46 re-calibrated the model by minimizing the difference between predictions and LES

results using a larger weight on the error in the near-wake than in the far-wake region. In the current manuscript, we use the latter calibration.

Hence, as ¼0:18, bs ¼0:0119, cs ¼0:0564CTþ0:13, bf ¼1:59expð�23:31TIÞ�2:15 and cf ¼2:98. Finally, af is derived by imposing C(0)= a, with

a¼1=2 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�CT

p� �
the axial induction factor. To compute af, we have used the bisection method provided in the SciPy library.47 Note that with

the current parameter selection, the super-Gaussian wake model does not converge to the Gaussian one in the far-wake region. We refer to the

original publication for more details.23

In an attempt to improve the Gaussian wake model in the near-wake region, a double-Gaussian model was first proposed by Keane et al.25

and further corrected and re-calibrated by Schreiber et al.24 In this model, the shape function is assumed to have a double-Gaussian profile.

Moreover, the parameter C(x) (see Table 1) depends upon two analytically derived functions

MðxÞ¼2σ2ðxÞexp � r20
2σ2ðxÞ

� �
þ

ffiffiffiffiffiffi
2π

p
r0σðxÞerf r0ffiffiffi

2
p

σðxÞ

 !
ð22Þ

NðxÞ¼ σ2ðxÞexp � r20
σ2ðxÞ

� �
þ

ffiffiffi
π

p
2

r0σðxÞerf r0
σðxÞ
� �

ð23Þ

where r0 ¼Dkr=2 represents the radial position of the Gaussian extrema. Following Schreiber et al,24 we set kr ¼0:535 in the current manuscript.

The standard deviation of the Gaussian profile used by Schreiber et al24 reads as

σðxÞ¼ k ∗ ðx� s0Þþ εD ð24Þ

with s0 ¼4:55D the stream tube outlet position. However, we have noticed that this parametrization of the standard deviation leads to a strong

overestimation of the velocity deficits in the far-wake region, causing unrealistic power loss predictions when the model is coupled with

superposition methods (not shown). To avoid this issue, we have fixed s0 ¼1:5D. Moreover, the model admits momentum conserving solutions

only if M2(x)�1/2N(x)CTD
2≥0, which does not occur for large CT values and low ambient turbulence intensity. For further details, we refer to the

publication of Schreiber et al.24
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The only data-driven model considered in our analysis is the one proposed by Ishihara and Qian.26 This model assumes a Gaussian shape

function and it uses a parameter C(x) defined as

CðxÞ¼ 1

aþbx=Dþcð1þx=DÞ�2
� �2 ð25Þ

with

a¼0:93C�0:75
T TI0:17, ð26Þ

b¼0:42C0:6
T TI0:2, ð27Þ

c¼0:15C�0:25
T TI�0:7: ð28Þ

The expressions of these parameters are derived from fitting of numerical results and wind tunnel experiments (see Ishihara and Qian26 for

more information).

Velocity fields at a horizontal plane at hub height for a stand-alone wind turbine computed with the five single-wake models described above

are illustrated in Figure 4. The thrust set-point of the turbine is CT ¼ 0.7 with D¼ 154 m. The ambient turbulence intensity is TIb ¼ 12% and a

homogeneous uni-directional background velocity field of 10 m/s is used. It is worth to notice that the ratio U/Ub predicted by the Jensen and

super-Gaussian wake models is close to 0.9 at 15D downstream of the turbine (see Figures 4A and C, respectively), which is low if compared with

results of the other single-wake models. Moreover, the Gaussian, double-Gaussian and Ishihara models predict a similar wake profile far down-

stream the turbine and differ only in the near-wake region (i.e., when x/D< 5). Note that the Gaussian model does not conserve momentum when

CT > 8σ
2/D2 (which corresponds to x/D< 3/2 in the current example). The thrust coefficient is written as an error function of the streamwise coor-

dinate to simulate the wake deficits in this region (see Zong and Porté-Agel40).

In the remainder of the manuscript, the eight wake engineering models used in our analysis are denoted with Lin–G, Lin–SG, Lin–DG, Lin–I,

New–G, New–SG, New–DG, New–I, where the first acronym specifies the superposition method, the hyphen has to be read as “coupled with”
and the second acronym identifies the single-wake model. Moreover, the Jensen model coupled with quadratic superposition is simply denoted

with “Jensen”. All wind-farm models with a turbulence-dependent wake decay coefficient use the method proposed by Niayifar and Porté-Agel10

(which is inspired by the work of Frandsen and Thøgersen48) for computing the turbulence intensity through the farm. The performance of the

nine wind-farm models mentioned above is compared against numerical results, dual-Doppler radar measurements and Supervisory Control and

Data Access (SCADA) data for three different wind farms, namely the Horns Rev, London Array and Westermost Rough. The farms characteristics

are reported in Table 2. Moreover, Figure 5 shows the thrust and power curves of the turbines installed in the farms. The power and the thrust

coefficient of a generic turbine k are evaluated as Pk ¼PkcðukÞ and CT,k ¼Ck
T,cðukÞ, respectively. The results of our analysis are shown in the next

section.

F IGURE 4 Top view of the normalized velocity field at a horizontal plane at hub height computed with the (A) Jensen, (B) Gaussian, (C) super-
Gaussian, (D) double-Gaussian and (E) Ishihara single-wake model. The black lines denote the wind-turbine rotor locations [Colour figure can be
viewed at wileyonlinelibrary.com]
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4 | RESULTS AND DISCUSSION

The aim of this section is to compare the performance of the linear superposition method introduced by Niayifar and Porté-Agel10 with the new

wake-merging method when coupled with different single-wake models. As an additional reference, we also include the Jensen model in the anal-

ysis. The power predictions are compared against LES results and SCADA data from the Horns Rev and London Array wind farms in Section 4.1

and 4.2, respectively. In such cases, a homogeneous background velocity field is used. On the other hand, we compare the models' performance

in heterogeneous conditions in Section 4.3, where the background velocity field is reconstructed from dual-Doppler radar measurements taken at

the Westermost Rough farm. Note that we assume a vertically homogeneous background flow with constant wind direction in all cases.

4.1 | Horns Rev

Horns Rev was the first offshore wind farm in the North Sea, located 15 km off the westernmost point of Denmark. Eighty Vestas V-80 are laid

out as an oblique rectangle with a streamwise and spanwise spacings of 7D. The farm layout is shown in Figure 6 while the farm characteristics

are detailed in Table 2. The thrust curve of the Vestas V-80 is provided by Wu and Porté-Agel49 while the power curve is, for example, available

at The-Wind-Power.com50 and are both shown in Figure 5.

TABLE 2 Farms characteristics and types of data used

Wind farm Capacity [MW] N� of turbines Hub height [m] Rotor diameter [m] Turbine Data

Horns Rev 160 80 70 80 Vestas V-80 LES, SCADA

London Array 630 175 84.5 120 SWT-120-3.6 SCADA

Westermost Rough 210 35 106 154 SWT-154-6.0 Dual-Doppler radar

F IGURE 5 (A,B) Thrust and power curves of the Vestas V-80, SWT-120-3.6 and SWT-154-6.0 wind turbines. The thrust curve of the Vestas
V-80 is provided by Wu and Porté-Agel49 while the power curve is available at The-Wind-Power.com.50 The thrust curve of the SWT-120-3.6
turbine is available at wind-turbine-models.com51 while the power curve is accessible at The-Wind-Power.com.52 The SWT-154-6.0 turbine
thrust and power curves are available at Commissiemer.nl53 [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 6 Layout of the Horns Rev farm with distances normalized by the rotor diameter. The SCADA data are averaged along the dotted
green lines and are only available for turbines marked in black for three wind sectors (±5�, ±10� and ±15�) centered on wind directions of
(A) 221� , (B) 270�, and (C) 312� [Colour figure can be viewed at wileyonlinelibrary.com]
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First, we compare the farm power output predicted by the models with LES results. Following Porté-Agel et al,54 we set the background

velocity to 8 m/s, with ambient turbulence intensity of 7.7% (see Porté-Agel et al54 and Niayifar and Porté-Agel10 for more details on the LES

setup). Figure 7A illustrates the Horns Rev power output as function of the wind direction (from 173� to 353�). Note that the power is normalized

by the wake-less power (i.e. the power that the farm would extract if all turbines would operate as front-row turbines). To better summarize the

models' performance, Figure 7B displays the distribution of the difference between model (Pwf
Model) and LES (Pwf

LES) farm power output across all

wind directions normalized by the wake-less power, which is computed as

ΔM– L ¼Pwf
Model�Pwf

LES

NtP1
ð29Þ

where Nt is the total number of wind turbines and P1 ¼PcðUbÞ¼ 0.701 MW is the power extracted by a stand-alone turbine. To put things into

perspective, a ΔM– L of 10% corresponds to a difference in farm power output between model and LES results of 5.6 MW (3.5% of the farm rated

power). Note that positive values of ΔM– L denote an overestimation of farm power output. Overall, the new wake-merging method performs sim-

ilarly to linear superposition. In fact, when combining the predictions of all single-wake models, the mean absolute error (MAE) between predic-

tions and LES results computed with the linear and new wake-merging methods are of 3.6% and 4%, respectively. The higher MAE obtained with

the new wake-merging method is due to a slightly higher power underestimation occurring for low turbine spacing values (i.e., for wind directions

of 221�, 270� and 312�). Both the Gaussian and double-Gaussian wake models show very accurate power predictions with MAEs of 2.4% and a

maximum power underestimation of about 7%, which occurs at 270� On the other hand, the Jensen and super-Gaussian wake models show nega-

tive biases and wider interquartile ranges (IQRs), performing poorly when the farm is exposed to wind directions for which there is a small

streamwise distance between turbines (see Figure 7A). The bad performance obtained with the super-Gaussian model could be attributed to a

sub-optimal choice of the tuning parameters. In fact, the choice of cf ¼ 2.98 leads to higher velocity deficits in the far-wake region with respect

to the Gaussian wake model, as shown in Figure 4B,C. Finally, the Ishihara model mainly overestimates the power output, with a MAE of 4.8%.

Note that the Jensen model is the only one that uses a top-hat shape function, which explains the staircase (and less realistic) power behavior

observed in Figure 7A.

Next, we compare the models' performance with SCADA data taken from Barthelmie et al.55 These data were recorded at a wind speed of 8

±0.5 m/s with 7.7% ambient turbulence intensity and consist in power ratios averaged over three wind sectors (i.e., ± 5�, ± 10� and ± 15�) cen-

tered on three mean wind directions (i.e., 221�, 270�, and 312�). The power ratios are available only for turbines labeled in black in Figure 6 and

F IGURE 7 (A) Horns Rev power output computed with LES and nine analytical wind-farm models normalized by the wake-less power and
expressed as function of the wind direction. (B) Distribution of the difference in farm power output between analytical models and LES across all
wind directions normalized by the wake-less power. The box bounds the interquartile range (IQR). The horizontal black line and the white square
denote the median and the mean, respectively. The whiskers extend to a maximum of 1.5�IQR beyond the box. The dots represent outliers
[Colour figure can be viewed at wileyonlinelibrary.com]
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are averaged along the dotted green lines. Figure 8 illustrates the modeled and observed power ratios for the three transects. These ratios are

averaged over the studied sector using 1� increments and are further averaged over the wind speed range 8 ± 0.5 m/s using increments of 0.5

m/s. Overall, the observations show lower power ratios when the turbine spacing is small, for example, at 270�. Moreover, due to the limited

number of turbines per row, the power ratios do not always reach an asymptotic behavior far downstream in the transect. Instead, they decrease

monotonically. For a wind sector of ±5�, the highest error in power estimates occurs for the second turbine of the row. On the other hand, for

wind sectors of ±10� and ±15�, the difference between second-row turbine power prediction and data reduces and the models well capture the

power ratio trend along the transect. To better illustrate the models' performance, Figure 9 displays the distribution of the difference in power

ratio between models' predictions and SCADA data shown in Figure 8, which is computed as

ΔM–M ¼ Pn,Model

P1,Model
�Pn,Measured

P1,Measured
ð30Þ

F IGURE 8 Power ratios for a wind sector of (left column) ±5�, (middle column) ±10� and (right column) ±15� centered on a mean wind
direction of (top row) 221�, (middle row) 270� and (bottom row) 312� for the Horns Rev wind farm. The power ratios are averaged over the
respective wind sector using a 1� increment and are further averaged over the wind speed range 8±0.5 m/s using increments of 0.5 m/s [Colour
figure can be viewed at wileyonlinelibrary.com]

F IGURE 9 Distribution of the difference in power ratio between models' predictions and SCADA data for a wind sector of (A) ±5�, (B) ±10�,
and (C) ± 15� centered on three mean wind directions (221�, 270� and 312�) for the Horns Rev wind farm. The power ratios are computed as in
Figure 8. The box bounds the IQR. The horizontal black line and the white square denote the median and the mean, respectively. The whiskers
extend to a maximum of 1.5�IQR beyond the box. The dots represent outliers [Colour figure can be viewed at wileyonlinelibrary.com]
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where Pn, Model and Pn, Measured represent the modeled and measured turbine power, respectively (n¼1 denotes a front-row turbine). For instance,

Figure 9A displays the distribution of ΔM–M encompassing the wind directions 221� ±5�, 270� ±5� and 312� ±5�. Note that ΔM–M is always zero

for a front-row turbine; hence, this value is not included in the statistics. All engineering wake models underestimate the power ratio if a narrow

wind sector is considered, as shown in Figure 9A. A similar behavior was already observed in Figure 7A. However, if wider wind sectors are used,

the models' predictions are more accurate, with biases closer to zero and narrower IQRs, as displayed in Figure 9B,C. These tendencies were also

noticed by Barthelmie et al.55 As shown in Appendix A1, the new wake-merging method predicts slightly higher velocity deficits than the linear

superposition method. Moreover, the difference in velocity deficits between the two methods and the turbine spacing are inversely proportional.

Since the linear superposition method already predicts lower turbine power outputs than SCADA data for a wind sector of ±5�, the new wake-

merging method provides worse predictions. However, an opposite trend is seen in Figure 9B,C. Overall, we can conclude that the two methods

have similar performance. The most accurate single-wake models are again the Gaussian and double-Gaussian ones, which show error distribu-

tions with close to zero biases and small IQRs for wind sectors of ±10� and ±15�. In fact, the very similar wake profile in the far-wake region

obtained with these two models, as shown in Figures 4B and 4D, makes them almost undistinguishable in terms of power outputs when Sx>4D.

Finally, the Jensen and the super-Gaussian wake models show a strong negative bias for wind sectors of ±5� and ±10�, with ΔM–M values down

to �18% and �25%. However, their performance improves considerably when the averages are computed over wider wind sectors. More infor-

mation on the MAE and IQR of the ΔM– L and ΔM–M distributions are reported in Table 3.

4.2 | London array

The London Array, with a capacity of 630 MW, is located 20 km off the Kent coast in the United Kingdom. The farm characteristics are listed in

Table 2 while the farm layout, consisting of turbine spacings of 5.4D and 8.3D for the north- and south-western wind directions, is displayed

in Figure 10. The farm has 175 SWT-120-3.6 turbines installed. The thrust curve of this turbine is, e.g., available at wind-turbine-models.com51

while the power curve is, for example, accessible at The-Wind-Power.com52 and are shown in Figure 5. The SCADA data are available in

Nygaard43 and consist in power ratios measured at two different wind speeds (6 ± 0.5 and 9 ± 0.5 m/s) for four different transects (the ones in

black, orange, blue, and pink in Figure 10). The ambient turbulence intensity is measured by a met mast located upstream of the farm. The

observed values are reported in Nygaard.43 Note that the farm is located in proximity of a complex-shaped coastline. Therefore, the SCADA data

could be affected by streamwise and/or spanwise velocity gradients induced by the different surface roughness between land and see surfaces.

These coastal gradients could have some impacts on the power ratios comparison performed in this section, since the analytical flow models only

use a homogeneous background velocity—no other data are available.

Figure 11A–D display the modeled and observed power ratios for the four transects at a wind speed of 6 ± 0.5 m/s. The power ratios are

averaged over a wind sector of ±15� using a 1� increment and are further averaged over the wind speed range 6 ± 0.5 m/s using increments of

0.5 m/s. For all transects, the observations show a modest power drop between the first and the second turbine of the row. As usually happens in

large farms, the power ratios stabilize after approximately the tenth turbine of the row. As expected, the new wake-merging method predicts a

slightly lower power ratio than the linear superposition method. The Gaussian, double-Gaussian and Ishihara models perform similarly and show

a very good agreement with observations. The Jensen model underestimates the power output of the firsts turbines in the row, but it captures

the asymptotic behavior in all transects. A different tuning of this model could possibly improve its performance (e.g., see Peña et al56), but this is

not in the scope of the current manuscript. As for the Horns Rev farm, the super-Gaussian wake model strongly underestimates the power output

in all transects, being on average 30% off from observations for the last turbine of the row.

The results obtained for a wind speed of 9 ± 0.5 m/s are shown in Figure 11E–H. It is worth to notice that the models' performance differ

from the ones observed at 6 ± 0.5 m/s, showing that it is bad practice to judge the quality of a model using data of a single row of turbines or

using a unique wind speed value, as often done in literature. In fact, although some models show good agreement with observations for the firsts

turbines in the row, they all fail in capturing the asymptotic behavior reached far downstream in the transects. Figure 11G shows that the

observed power ratios continue to drop through the array, in contrast to the previous cases. Nygaard43 did not find robust evidence that such a

drop could have been caused by the deep array effect42,57 and instead suggested that this behavior is due to the differences in ambient turbu-

lence intensity between the north- and south-western transects. The super-Gaussian model fits extremely well the observations in such condi-

tions, however it performs poorly in all other cases.

To better summarize the models' performance, Figure 12 displays the distribution of the difference in power ratio between models' predic-

tions and SCADA data shown in Figure 11. The error in power ratio for a front-row turbine is always zero, therefore it is not included in the statis-

tics. The box plots enlight the very similar performance between the two different wake-merging methods. In fact, when combining the

predictions of all single-wake models, the MAE for the linear and new wake-merging methods are of 5.7% and 6.6% for 6 ± 0.5 m/s and of 8.7%

and 7.5% for 9 ± 0.5 m/s. Moreover, Figure 12 also shows that the predictions of the Gaussian, double-Gaussian and Ishihara wake models are in

good agreement with SCADA data, particularly for a wind speed of 6 ± 0.5 m/s. In Table 3, we provide more information on the MAE and IQR of

the ΔM–M distributions.
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F IGURE 10 Layout of the London Array farm with distances normalized by the rotor diameter. The transects for which SCADA data are
available are marked in black and orange for the north-western transects (312.2�) and in blue and pink for the south-western ones (222.3�)
[Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 11 Power ratios along the north-western (312.2�) and south-western transects (222.3�). The power ratios are averaged over a wind
sector of ± 15� using a 1� increment and are further averaged over the wind speed range (A–D) 6±0.5 m/s and (E–H) 9±0.5 m/s using increments
of 0.5 m/s [Colour figure can be viewed at wileyonlinelibrary.com]
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4.3 | Westermost rough

The Westermost Rough farm, located 8 km off the Holderness coast in the United Kingdom, became operational in May 2015. The farm employs

35 SWT-154-6.0 turbines, one of the largest offshore turbine to date with rotor diameter D= 154 m and hub height zh= 106 m. The

SWT-154-6.0 turbine thrust and power curves are shown in Figure 5 while the farm layout and characteristics are shown in Figure 13 and

Table 2, respectively. In addition to the comparison between modeled and observed power ratios, we will asses the quality of the models also by

analyzing the velocity fields through the farm and in its wake. The observation data are provided by Nygaard and Newcombe36 and consist of

dual-Doppler radar wind speed at a horizontal plane at hub height. The data are averaged over a time window of 1 hr. The velocity field is

reconstructed from 3 to 32 km from the shore (streamwise direction) and for 20 km in a direction parallel to the shore (spanwise direction). There-

fore, the entire flow field in and around the farm, which is approximately 7 � 7 km2, is available. However, we will compare the models' predic-

tions only with two transects of the dual-Doppler data which span from 2 km upstream to 16 km downstream of the farm, running across the first

and fourth row of turbines. Two additional transects with a width of 250 m run parallel and on both sides of the farm at a distance of 10D from

the first and last row of turbines. At each downstream distance, the velocity is averaged over these bands. Since these two transects do not cross

the farm (and its wake), the resulting velocity is referred to as freestream or background velocity. Note that all transects are normal to the shore

line. To obtain the freestream velocity across the first and fourth rows of turbines, Nygaard and Newcombe36 used a linear interpolation between

the two freestream transects. As a result, the background wind speed at row 1 and row 4 is slightly different. Moreover, the authors quantified

F IGURE 12 Distribution of the difference in power ratio between models' predictions and SCADA data for a wind speed of (A) 6 ± 0.5 and

(B) 9 ± 0.5 m/s for the London Array wind farm. The power ratios are computed as in Figure 11. The box bounds the IQR. The horizontal black
line and the white square denote the median and the mean, respectively. The whiskers extend to a maximum of 1.5�IQR beyond the box. The
dots represent outliers [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 13 Layout of the Westermost Rough farm with distances normalized by the rotor diameter. The transects for which models'
predictions are compared with dual-Doppler data are marked in blue (row 1) and red (row 4). Both transects are normal to the shore line [Colour
figure can be viewed at wileyonlinelibrary.com]
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the uncertainty of the dual-Doppler measurements through a comparison with a co-located scanning lidar. They found out that the uncertainty is

less than 0.2 m/s inside the wind farm and its wake, reaching a maximum of 0.8 m/s on the edges of the domain scanned by the lidar. Finally, the

ambient turbulence intensity is fixed to 5.9% which corresponds to the value reported by Nygaard et al.45 A plot of the dual-Doppler radar wind

speed at hub height and more details about the measurement campaign are reported in Nygaard and Newcombe.36

Figure 14 shows the freestream velocity and the dual-Doppler wind speed measurements along transects which run through the first and

fourth row of the farm together with the models' predictions. To not overcomplicate the plot, we show the streamwise velocity of only two wind-

farm models, i.e. linear superposition and the new-wake merging method coupled with the Gaussian wake model (Lin-G and New-G). Note that

the wind speed computed with the models is averaged over an imaginary rotor with the same diameter as the turbines disk at each point along

the streamwise direction. The freestream velocity takes a quasi-constant value of 10.4 m/s in the farm induction region and it slightly decreases

down to 10 m/s at the end of the farm. However, far downstream, the freestream velocity gradually increases up to 11.3 m/s. Since the farm is

located only 8 km from the shore, the increase in freestream velocity is attributed to a coastal gradient. Note that the freestream velocity, which

is interpreted as background velocity in our study, only varies by approximately 0.4 m/s within the farm. The dual-Doppler wind speed along the

blue and red transects show the typical sawtooth behavior with maxima and minima located upstream and downstream of the turbines.

The velocity reduction upstream of the third turbine of row 4 is attributed to axial induction. A similar behavior is also observed for the first tur-

bine of row 1 and 4. The Lin-G model does not account for spatially varying background velocity. Instead, it relies on a global wind speed value

measured several hundreds of meters upstream of the farm, which we fix to 10.4 m/s. On the other hand, the New-G model uses the spatially

varying freestream velocity as input. The two predictions begin to diverge from the second turbine of the row. In fact, the Lin-G model overesti-

mates the velocity at turbine locations in both row 1 and 4. Contrarily, the New-G model shows very good agreement with observations. Also,

the wind speed far downstream the farm converges to the freestream velocity and not to the upstream wind speed value, which is more realistic.

However, in this region, the Lin-G model's predictions are closer to the observations than the ones obtained with the New-G model. This could

be due to a poor estimation of the freestream velocity in the far-wake region or to an underestimation of the velocity deficits computed with the

Gaussian wake model. Finally, note that the Gaussian wake model does not conserve momentum in the near-wake region. For this reason, the

model's predictions are plotted only in the far-wake regions, which corresponds to the region of interest of our study.

A two-dimensional plot displaying the freestream velocity at hub height is shown in Figure 15A, where the increase in wind speed along the

streamwise direction is noticeable. Note that we plot the background velocity interpolated along the transect which crosses the fourth row of tur-

bines and we assume it constant along the spanwise direction. Moreover, the velocity field is normalized by the wind speed measured 2D

upstream of the farm. Next, Figure 15B,C illustrates the velocity at a horizontal plane at hub height obtained with the Lin-G and New-G models,

respectively. Since both wake-merging methods are coupled with the same single-wake model, the observed differences only reside in how the

methods overlap preceding wakes and deal with the freestream velocity.

Finally, we compute the differences in power ratio using Equation (30). Note that SCADA data are not available for this case study. Hence,

Pn, Measured is computed using the turbine power curve where the velocity input refers to the turbine inflow velocity (i.e., the observed velocity in

F IGURE 14 One-hour averaged dual-Doppler wind speed, freestream velocity and velocity predicted with the linear (Lin-G) and the new
(New-G) wake-merging method coupled with the Gaussian wake model for the (A) blue and (B) red transects. All transects are normal to the shore
line. The vertical dashed lines indicate the turbine positions [Colour figure can be viewed at wileyonlinelibrary.com]
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correspondence of the vertical dashed lines in Figure 14A,B). For completeness, we have included all wind-farm models in this analysis. The

results are shown in Figure 16. Overall, the new wake-merging method outperforms the linear superposition one. In fact, since the freestream

velocity decreases over the wind-farm area, the new model predicts lower turbine power outputs, showing biases closer to zero than the ones

obtained with the linear method, which are on average 10% off from observations. As in the previous analysis, the Lin-SG model strongly underes-

timates the turbine power outputs. Consequently, in light of the above reasoning, the New-SG model shows an even higher bias. However, we

believe that a different tuning of the super-Gaussian wake model would reduce the bias, but this is out of the scope of the current manuscript.

When clustering the predictions of all single-wake models, the linear and new wake-merging methods show a MAE of 10.5% and 7.2%, respec-

tively. More information on the MAE and IQR of the ΔM–M distributions are reported in Table 3. The better agreement with observations

achieved with the new wake-merging method (except when coupled with the super-Gaussian wake model) once again points out the importance

of accounting for a spatially varying background velocity when doing energy yield assessments.

5 | CONCLUSIONS

In the current study, we proposed a new wake-merging method for predicting wake losses and farm power output. The waked flow through the

farm is expressed in conjunction with a spatially varying background velocity. Hence, the new superposition method does not rely on a global

wind-speed value, which is usually taken upstream of the farm. Instead, it superimposes the wake velocity deficits generated by turbines on a het-

erogeneous velocity field. This is of fundamental importance for achieving better farm power predictions and consequently more accurate annual

energy yield assessments. In fact, the mesoscale horizontal velocity gradients that develop in coastal regions or in proximity of orographic features

F IGURE 15 Top view of the (A) freestream wind speed and (B,C) velocity field computed with the linear and new wake-merging method
coupled with the Gaussian wake model, respectively. The velocity is normalized by the wind speed measured 2D upstream of the Westermost
Rough farm and is visualized at a horizontal plane at hub height. The x and y direction are normal and parallel to the shore line, respectively. The
black lines denote the wind-turbine rotor locations [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 16 Distribution of the difference in power ratio between models' predictions and dual-Doppler data for the Westermost Rough
wind farm. The box bounds the IQR. The horizontal black line and the white square denote the median and the mean, respectively. The whiskers
extend to a maximum of 1.5�IQR beyond the box. The dots represent outliers [Colour figure can be viewed at wileyonlinelibrary.com]
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make wind farms operating in velocity fields which are rarely uniform. The proposed superposition method is consistent with self-similarity in the

wake of every turbine in the farm. Moreover, the new wake-merging method is momentum-conserving if the flow induced by preceding turbines

at the location of a downwind turbine is quasi-homogeneous in the horizontal directions and if a slow varying background velocity is used.

LES results, Dual-Doppler radar measurements and SCADA data from the Horns Rev, London Array and Westermost Rough farm were used

for validating the new wake-merging method. To this end, the new and the linear superposition methods were coupled with the Gaussian, super-

Gaussian, double-Gaussian and Ishihara single-wake models. The Jensen model coupled with quadratic superposition was also included in the

analysis, as an additional reference. A homogeneous background velocity field was used in the Horns Rev and London Array case studies. In such

conditions, the distributions of the difference in power ratio between the new and linear superposition methods predictions and observations

show a similar MAE and IQR, with the new wake-merging method predicting slightly higher velocity deficits. Next, a heterogeneous background

velocity field was used in the Westermost Rough case study. The new wake-merging method predictions display a lower MAE with a similar IQR

in such conditions, being overall more accurate than the ones obtained with linear superposition. The most accurate power predictions were pro-

vided by the Gaussian and double-Gaussian wake models, independently from the flow conditions. Despite being a data-driven model, the

Ishihara model shows decent agreements with observation, partially underestimating the velocity deficits in most of the cases. The Jensen model

showed a negative bias in power estimates for the majority of wind speeds and wind directions. The super-Gaussian wake model was the one that

diverged the most from observations, underestimating the power output in most of the circumstances. We believe that a different tuning of the

model coefficients, for example by minimizing the difference between predictions and LES results using a larger weight on the error in the far-

wake than in the near-wake region, could improve its performance.

Future research will focus on a more extensive validation of the proposed wake-merging method in presence of heterogeneous background

velocity fields. To do so, a combination of ERA5 data, met mast and lidar measurements and mesoscale simulations in the region around a farm of

interest (prior to its construction) could be used, to estimate the yearly variation of wind conditions and turbulence intensity. This procedure

would allow to compute the background velocity fields over a certain time span. Next, these fields can be used as inputs by the new wake

merging-method, which will provide an energy yield estimate. After the construction of the farm, it will be more challenging to define a back-

ground velocity field and interpolation techniques similar to the ones used in Djath et al5 and Nygaard and Newcombe36 could be adopted. For

instance, the Anholt wind farm is a suitable candidate for this type of study due to the strong coastal gradients present in its location.4,58 Also, the

new wake-merging method can account for velocity gradients generated by self-induced gravity waves. Hence, we plan to couple the new wind-

farm model with the recently developed mid-fidelity three-layer model34 in the future. Finally, yaw effects will be included in the model formula-

tion. To further improve the performance of wake engineering models, a more general parametrization of the wake growth rate is necessary.

Moreover, the inclusion of axial induction effects would improve the models reliability and representation of reality in the vicinity of turbines.

ACKNOWLEDGEMENTS

The authors acknowledge support from the Research Foundation Flanders (FWO, grant no. G0B1518N), and from the project FREEWIND, funded

by the Energy Transition Fund of the Belgian Federal Public Service for Economy, SMEs, and Energy (FOD Economie, K.M.O., Middenstand en

Energie).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

AUTHOR CONTRIBUTIONS

L.L. and J.M. jointly developed the new wake-merging method and set up the simulation studies. L.L. performed code implementations and carried

out the simulations. L.L. and J.M. jointly wrote the manuscript.

PEER REVIEW

The peer review history for this article is available at https://publons.com/publon/10.1002/we.2669.

ORCID

Luca Lanzilao https://orcid.org/0000-0003-1976-3449

Johan Meyers https://orcid.org/0000-0002-2828-4397

REFERENCES

1. Barthelmie RJ, Badger J, Pryor SC, Hasager CB, Christiansen MB, Jrgensen BH. Offshore coastal wind speed gradients: issues for the design and devel-

opment of large offshore windfarms. Wind Engng. 2007;31 (6):369-382.

2. Van der Laan MP, Pea A, Volker P, Hansen KS, Srensen MN, Hasager CB. Challenges in simulating coastal effects on an offshore wind farm. J Phys

Conf Ser. 2017;854:12046. https://doi.org/10.1088/1742-6596/854/1/012046

LANZILAO AND MEYERS 19

https://publons.com/publon/10.1002/we.2669
https://orcid.org/0000-0003-1976-3449
https://orcid.org/0000-0003-1976-3449
https://orcid.org/0000-0002-2828-4397
https://orcid.org/0000-0002-2828-4397
https://doi.org/10.1088/1742-6596/854/1/012046


3. Durran DR. Mountain waves and downslope winds. In Atmospheric Processes Over Complex Terrain. Boston, MA: American Meteorological Society;

1990:59-81.

4. Ahsbahs T, Badger M, Volker P, Hansen KS, Hasager CB. Applications of satellite winds for the offshore wind farm site anholt. Wind Energ Sci. 2018;3:

573-588. https://doi.org/10.5194/wes-3-573-2018

5. Djath B, Schulz-Stellenfleth J, Caadillas B. Impact of atmospheric stability on x-band and c-band synthetic aperture radar imagery of offshore windpark

wakes. J Renew Sustain Energy. 2018;10:43301. https://doi.org/10.1063/1.5020437

6. Ahsbash T, Nygaard NG, Newcombe A, Badger M. Wind farm wakes from sar and doppler radar. Remote Sensing. 2020;12:462. https://doi.org/10.

3390/rs12030462

7. Lissaman PBS. Energy effectiveness of arbitrary arrays of wind turbines. J Energy. 1979;3(6):323-328.

8. Katic I, Hjstrup J, Jensen N. A simple model for cluster efficiency, In: Proceedings of the European Wind Energy Association Conference and Exhibi-

tion; 1986:407-410. Rome, Italy.

9. Voutsinas S, Rados K, Zervos A. On the analysis of wake effects in wind parks. Wind Engng. 1990;14(4):204-219.

10. Niayifar A, Porté-Agel F. Analytical modeling of wind farms: a new approach for power prediction. Energies. 2016;9:741. https://doi.org/10.3390/

en9090741

11. Jensen NO. A note on wind generator interaction. Technical report Ris-M-2411, Roskilde, Denmark, Risø National Laboratory; 1983.

12. Bastankhah M, Porté-Agel F. A new analytical model for wind-turbine wakes. Renew Energy. 2014;70:116-123.

13. Gonzlez JS, Rodriguez AGG, Mora JC, Santos JR, Payan MB, Hjstrup J, Thgersen M. Optimization of wind farm turbines layout using an evolutive algo-

rithm. J Renew Energy. 2010;35(8):1671-1681. https://doi.org/10.1016/j.renene.2010.01.010

14. Pea A, Rthor PE, Van der Laan MP. On the application of the Jensen wake model using a turbulence-dependent wake decay coefficient: the sexbierum

case. Wind Energy. 2016;19:763-776. https://doi.org/10.1002/we.1863

15. Hassan G, Ltd P. Gh windfarmer theory manual; 2009.

16. Truepower AWS. Openwind theoretical basis and validation; 2010.

17. Frandsen S, Barthelmie RJ, Pryor S, Rathmann O, Larsen S, Hjstrup J, Thgersen M. Analytical modelling of wind speed deficit in large offshore wind

farms. Wind Energy. 2006;9:39-53. https://doi.org/10.1002/we.189

18. Tennekes H, Lumley JL. A first course in turbulence. Cambridge, UK: The MIT Press; 1972.

19. Anderson JD. Fundamentals of aerodynamics. McGraw-Hill; 2011.

20. Xiaoxia G, Hongxing Y, Lin L. Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model. Appl

Energy. 2016;174:192-200. https://doi.org/10.1016/j.apenergy.2016.04.098

21. Parada L, Herrera C, Flores P, Parada V. Wind farm layout optimization using a gaussian-based wake model. Renew Energy. 2017;107:531-541.

https://doi.org/10.1016/j.renene.2017.02.017

22. Shapiro CR, Starke GM, Meneveau C, Gayme DF. Wake modeling paradigm for wind farm design and control. Energies. 2019;12:15. https://doi.org/

10.3390/en12152956

23. Blondel F, Cathelain M. An alternative form of the super-gaussian wind turbine wake model. Wind Energy Sci. 2020;5:1225-1236. https://doi.org/10.

5194/wes-2019-99

24. Schreiber J, Balbaa A, Bottasso CL. Brief communication: a double-Gaussian wake model. Wind Energy Sci. 2020;5:237-244. https://doi.org/10.5194/

wes-5-237-2020

25. Keane A, Aguirre PEO, Ferchland H, Clive P, Gallacher D. An analytical model for a full wind turbine wake. J Phys: Conf Ser. 2016;753:32039. https://

doi.org/10.1088/1742-6596/753/3/032039

26. Ishihara T, Qian GW. A new gaussian-based analytical wake model for wind turbines considering ambient turbulence intensities and thrust coefficient

effects. J Wind Eng Ind Aerod. 2018;177:275-292. https://doi.org/10.1016/j.jweia.2018.04.010

27. Schreiber J, Bottasso CL, Salbert B, Campagnolo F. Improving wind farm flow models by learning from operational data. Wind Energ Sci. 2020;5:

647-673. https://doi.org/10.5194/wes-5-647-2020

28. Brogna R, Feng J, Srensen JN, Shen WZ, Porté-Agel F. A new wake model and comparison of eight algorithms for layout optimization of wind farms in

complex terrain. Appl Energy. 2020;259:114189. https://doi.org/10.1016/j.apenergy.2019.114189

29. Farrell A, King J, Draxl C, Mudafort R, Hamilton N, Bay CJ, Fleming P, Simley E. Design and analysis of a spatially heterogeneous wake. Wind Energy

Sci. 2021;6:737-758. https://doi.org/10.5194/wes-6-737-2021

30. Shamsoddin S, Porté-Agel F. A model for the effect of pressure gradient on turbulent axisymmetric wakes. J Fluid Mech. 2018;837:R3. https://doi.org/

10.1017/jfm.2017.864

31. Bastankhah M, Porté-Agel F. Experimental and theoretical study of wind turbine wakes in yawed conditions. J Fluid Mech. 2016;806:506-541.

https://doi.org/10.1017/jfm.2016.595

32. Qian GW, Ishihara T. A new analytical wake model for yawed wind turbines. Energies. 2018;11:665. https://doi.org/10.3390/en11030665

33. Holoborodko P. Cubature formulas for the unit disk. 2011. http://www.holoborodko.com/pavel/numerical-methods/numericalintegration/cubature-

formulas-for-the-unit-disk/

34. Allaerts D, Meyers J. Sensitivity and feedback of wind-farm induced gravity waves. J Fluid Mech. 2019;862:990-1028.

35. Crespo A, Hernandez J. Turbulence characteristics in wind-turbine wakes. J Wind Eng Ind Aerodyn. 1996;61:71-85. https://doi.org/10.1016/0167-

6105(95)00033-X

36. Nygaard NG, Newcombe AC. Wake behind an offshore wind farm observed with dual-doppler radars. J Phys: Conf Ser. 2018;1037:72008. https://doi.

org/10.1088/1742-6596/1037/7/072008

37. Tennekes H. The logarithmic wind profile. Int J Atmos Sci. 1973;30:234-238.

38. Wu KL, Porté-Agel F. Flow adjustment inside and around large finite-size wind farms. Energies. 2017;10:2164. https://doi.org/10.3390/en10122164

39. Allaerts D, Meyers J. Boundary-layer development and gravity waves in conventionally neutral wind farms. J Fluid Mech. 2017;814:95-130.

40. Zong H, Porté-Agel F. A momentum-conserving wake superposition method for wind farm power prediction. J Fluid Mech. 2020;889:A8. https://doi.

org/10.1017/jfm.2020.77

41. Cleve J, Greiner M, Enevoldsen P, Birkemose B, Jensen L. Model-based analysis of wake-flow data in the nysted offshore wind farm. Wind Energy.

2009;12(2):125-135. https://doi.org/10.1002/we.314

20 LANZILAO AND MEYERS

https://doi.org/10.5194/wes-3-573-2018
https://doi.org/10.1063/1.5020437
https://doi.org/10.3390/rs12030462
https://doi.org/10.3390/rs12030462
https://doi.org/10.3390/en9090741
https://doi.org/10.3390/en9090741
https://doi.org/10.1016/j.renene.2010.01.010
https://doi.org/10.1002/we.1863
https://doi.org/10.1002/we.189
https://doi.org/10.1016/j.apenergy.2016.04.098
https://doi.org/10.1016/j.renene.2017.02.017
https://doi.org/10.3390/en12152956
https://doi.org/10.3390/en12152956
https://doi.org/10.5194/wes-2019-99
https://doi.org/10.5194/wes-2019-99
https://doi.org/10.5194/wes-5-237-2020
https://doi.org/10.5194/wes-5-237-2020
https://doi.org/10.1088/1742-6596/753/3/032039
https://doi.org/10.1088/1742-6596/753/3/032039
https://doi.org/10.1016/j.jweia.2018.04.010
https://doi.org/10.5194/wes-5-647-2020
https://doi.org/10.1016/j.apenergy.2019.114189
https://doi.org/10.5194/wes-6-737-2021
https://doi.org/10.1017/jfm.2017.864
https://doi.org/10.1017/jfm.2017.864
https://doi.org/10.1017/jfm.2016.595
https://doi.org/10.3390/en11030665
http://www.holoborodko.com/pavel/numerical-methods/numericalintegration/cubature-formulas-for-the-unit-disk/
http://www.holoborodko.com/pavel/numerical-methods/numericalintegration/cubature-formulas-for-the-unit-disk/
https://doi.org/10.1016/0167-6105(95)00033-X
https://doi.org/10.1016/0167-6105(95)00033-X
https://doi.org/10.1088/1742-6596/1037/7/072008
https://doi.org/10.1088/1742-6596/1037/7/072008
https://doi.org/10.3390/en10122164
https://doi.org/10.1017/jfm.2020.77
https://doi.org/10.1017/jfm.2020.77
https://doi.org/10.1002/we.314


42. Barthelmie RJ, Jensen LE. Evaluation of wind farm efficiency and wind turbine wakes at the nysted offshore wind farm. Wind Energy. 2010;13(6):

573-586. https://doi.org/10.1002/we.408

43. Nygaard NG. Wakes in very large wind farms and the effect of neighbouring wind farms. J Phys: Conf Ser. 2014;524:12162. https://doi.org/10.1088/

1742-6596/524/1/012162

44. Duc T, Coupiac O, Girard N, Giebel G, Gmen T. Local turbulence parameterization improves the Jensen wake model and its implementation for power

optimization of an operating wind farm. Wind Energ Sci. 2019;4:287-302. https://doi.org/10.5194/wes-4-287-2019

45. Nygaard NG, Steen ST, Poulsen L, Pedersen JG. Modelling cluster wakes and wind farm blockage. J Phys: Conf Ser. 2020;1618:62072. https://doi.org/

10.1088/1742-6596/1618/6/062072

46. Cathelain M, Blondel F, Joulin PA, Bozonnet P. Calibration of a super-gaussian wake model with a focus on near-wake characteristics. J Phys: Conf Ser.

2020;1618:62008. https://doi.org/10.1088/1742-6596/1618/6/062008

47. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright. Scipy 1.0: fundamental

algorithms for scientific computing in python. Nature Methods. 2020;17:261-272. https://doi.org/10.1038/s41592-019-0686-2

48. Frandsen S, Thøgersen ML. Integrated fatigue loading for wind turbines in wind farms by combining ambient turbulence and wakes. J Wind Eng. 1999;

23:327-339. http://www.jstor.com/stable/43749903

49. Wu YT, Porté-Agel F. Atmospheric turbulence effects on wind-turbine wakes: an les study. Energies. 2012;5:5340-5362. https://doi.org/10.3390/

en5125340

50. The-wind-power.com. Accessed March 14, 2021.

51. Wind-turbine-models.com. Accessed March 14, 2021.

52. The-wind-power.com. Accessed March 14, 2021.

53. Commissiemer.nl. Accessed March 14, 2021.

54. Porté-Agel F, Wu YT, Chen CH. A numerical study of the effects of wind direction on turbine wakes and power losses in a large wind farm. J Energies.

2013;6(10):5297-5313. https://doi.org/10.3390/en6105297

55. Barthelmie RJ, Hansen K, Frandsen ST, Rathmann O, Schepers JG, Schlez W, Phillips J, Rados K, Zervos A, Politis ES, Chaviaropoulus PK. Modelling

and measuring flow and wind turbine wakes in large wind farms offshore. Wind Energ. 2009;12:431-444. https://doi.org/10.1002/we.348

56. Pea A, Rthor PE, Hasager CB, Hansen KS. Results of wake simulations at the horns rev i and lillgrund wind farms using the modified park model. DTU

Wind Energy-E-Report-0026(EN); 2013.

57. Schlez W, Neubert A. A new developments in large wind farm modelling. EWEC 2009; 2009.

58. Pea A, Schaldemose K, Ott S, van der Laan MP. On wake modeling, wind-farm gradients, and aep predictions at the anholt wind farm. Wind Energy Sci.

2018;3:191-202. https://doi.org/10.5194/wes-3-191-2018

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Lanzilao L, Meyers J. A new wake-merging method for wind-farm power prediction in the presence of

heterogeneous background velocity fields. Wind Energy. 2021;1-23. https://doi.org/10.1002/we.2669

APPENDIX A

COMPARISON BETWEEN LINEAR SUPERPOSITION OF VELOCITY DEFICITS AND NEW WAKE-MERGING METHOD

The aim of this section is to compare two different wake-merging methods, namely the one proposed by Niayifar and Porté-Agel10 and the one

derived in this manuscript. The linear superposition method does not support a varying background velocity field. Therefore, to conduct a fair

comparison, we use a uni-directional homogeneous background flow.

First, let's consider a row of Nt turbines aligned with the flow direction. Following the derivation of Niayifar and Porté-Agel10 and Allaerts and

Meyers,34 we can write the turbine inflow velocity of a generic turbine k as

uLink ¼Ub�
XNt

l¼1

uLinl Wl!k with Wl!k ¼
XNq

q¼1

ωqWlðxk,qÞ ðA1Þ

where WðxÞ is a generic wake deficit function, ωq ¼1=Nq is a weighting factor and xk,q are the quadrature-point coordinates on the rotor disk of

the turbine k chosen following the quadrature rule proposed by Holoborodko.33 Moreover, �Wl!k denotes the wake deficit function of turbine l

averaged over the rotor disk of turbine k. On the other hand, if we use Equation (11) together with Equation (17), the turbine inflow velocity of a

generic turbine k computed with the new wake-merging method is expressed as
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uNew
k ¼Ub

YNt

l¼1
1� �Wl!k

	 

: ðA2Þ

If we set Nt=2, it is easy to show that uLin2 ¼ uNew
2 . However, for Nt=3, we have

uLin3 ¼Ub 1� �W1!3� �W2!3þ �W1!2
�W2!3

	 

, ðA3Þ

uNew
3 ¼Ub 1� �W1!3� �W2!3þ �W1!3

�W2!3

	 

: ðA4Þ

The only difference between Equations (A3) and (A4) is in the last term on the right hand side. Since WðxÞ decreases monotonically with dis-

tance, �W1!2 > �W1!3 which implies uLin3 > uNew
3 . This simple example shows that the two wake-merging methods differ even when Ub is homoge-

neous. Moreover, it also illustrates that the new wake-merging method predicts higher velocity deficits than the linear superposition method in

homogeneous conditions.

Next, we look at the difference in velocity fields predicted by the two methods. To this end, we fix Ub to 10 m/s with ambient turbulence

intensity of 12%. Moreover, the turbine rotor diameter is D= 154 m and the turbine thrust set-point is CT=0.85. Both methods are coupled with

the Gaussian wake model. The difference between velocity fields is computed as

EUðxÞ¼UNewðxÞ�ULinðxÞ
Ub

ðA5Þ

where UNewðxÞ and ULinðxÞ denote the velocity through the farm predicted by the new and the linear superposition method, respectively.

Figure A1 displays a side view of EUðxÞ at the turbine centerline plane for a row of five turbines. Since the two wake-merging methods are

analytically equal for a single turbine, the velocity fields are identical up to the second turbine of the row. However, the models clearly

differ far downstream in the row. As expected, the new superposition method predicts a lower velocity through the farm specially for a

small streamwise turbine spacing, as displayed in Figure A1A. In such case, EUðxÞ reaches values down to -2.3%. Note that EUðxÞ assumes

positive values only in the near-wake region of the second turbine of the row. However, the thrust coefficients are written as an error function of

the streamwise coordinate in this region,40 since the Gaussian wake model is not momentum-conservative for CT > 8σ
2/D2 (which happens here

when 0 < (x� xk)/D<1.5). Therefore, the models' predictions are not relevant in this region. On the other hand, Figure A1C shows that the models'

predictions become comparable when turbines are widely spaced (e.g., EU ≈ �0:2% when Sx ¼10D). In fact, the wake deficit function WðxÞ
converges to zero for large streamwise distances, reducing the differences between wake-merging methods predictions. Note that EUðxÞ shows

an axisymmetric distribution for all turbine spacings since we have not considered vertical shear and we have neglected ground-wake

interactions.

F IGURE A1 Difference between velocity fields computed with the new and the linear superposition method coupled with the Gaussian
wake model. The difference is visualized at the turbine centerline plane for a turbine spacing of (A) 5D, (B) 7D, and (C) 10D. The black lines denote
the wind-turbine rotor locations [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure A2 illustrates the distribution of EUðxÞ at a horizontal plane at hub height for a farm of 25 turbines with streamwise and spanwise spac-

ings of Sx ¼ Sy ¼7D. The models setup and atmospheric conditions correspond to the ones detailed above. The new superposition method pre-

dicts a lower velocity than the linear one far downstream in the farm, specially through the centerline of the wakes where EU ≈ �1.5%. As

mentioned above, there is no difference between the two models up to the second turbine of the rows. Moreover, EUðxÞ assumes lower values

for a wind direction of 225� since the turbine spacing is larger than the one at 270�.

F IGURE A2 Difference between velocity fields computed with the new and the linear superposition method coupled with the Gaussian
wake model. The difference is visualized at a horizontal plane at hub height for a wind direction of (A) 270� and (B) 225�. The black lines denote
the wind-turbine rotor locations [Colour figure can be viewed at wileyonlinelibrary.com]
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