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Hatice Çalıka,b,∗, Bernard Fortza,c

aDepartment of Computer Science, Université libre de Bruxelles, 1050 Brussels, Belgium
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Abstract

We focus on a problem of locating recharging stations in one-way station based electric car sharing systems

which operate under demand uncertainty. We model this problem as a mixed integer stochastic program

and develop a Benders decomposition algorithm based on this formulation. We integrate a stabilization

procedure to our algorithm and conduct a large-scale experimental study on our methods. To conduct the

computational experiments, we develop a demand forecasting method allowing to generate many demand

scenarios. The method is applied to real data from Manhattan taxi trips. We are able to solve problems

with 100 to 500 scenarios, each scenario including 1000 to 5000 individual customer requests, under high

and low cost values and 5 to 15 mins of accessibility restrictions, which is measured as the maximum walking

time to the operating stations.

Keywords: Location, Urban Mobility, Electric Car Sharing, Benders Decomposition, Mixed Integer

Stochastic Programming, Stochastic Demand

1. Introduction

The increasing number of privately owned cars causes significant amount of pollution, traffic congestion,1

and parking problems in urban cities. The private cars are usually parked for very long hours and their2

utilization rates are very low. The car sharing systems are based on shared usage of vehicles by multiple3

people and the utilization rate of these vehicles, usually owned by companies or organizations, are much4

higher compared to the private ones. They usually serve their users based on a subscription system and5

charge each usage by traveling distance or time. Due to this kind of pricing, the users tend to drive less and6

therefore, create less traffic. Together with the integration of environmental friendly vehicles, car sharing7

systems have a high potential of reducing these crucial urban problems.8

The car sharing systems can be grouped into two categories as station based and free floating depending9

on whether the customers are required to visit certain stations or not. In station based systems, where the10

customers need to visit stations to pick-up and drop the cars, two types of trips can be observed: i) round11

trips which force to leave the cars to the stations that they were taken from and ii) one-way trips where the12

cars can be dropped at stations different than the originating one. One-way systems provide more flexibility13
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to the users but requires a more sophisticated management as otherwise there might be significant load14

imbalances at stations. In free-floating systems, the cars can be parked anywhere within a pre-defined zone15

and customers can pick the cars from wherever they are parked. Although they are more attractive from a16

flexibility perspective, free floating systems do not guarantee an available parking space to the users at the17

end of their trips and the cars need to be parked with at least a certain level of fuel or battery. Moreover,18

these systems in general require relocation of cars in order to balance the availability at different parts of19

the city and to perform refueling/recharging operations.20

In this work, we focus on design of a one way station based electric car sharing (ECS) system that21

operates under demand uncertainty. We assume that the users will be served with a fleet of identical electric22

cars. Our main goal is to decide on the location and number of stations with limited capacities and the initial23

level of cars at each station to operate the system in order to maximize the expected profit of the operating24

company. The expected profit is equal to the expected revenue obtained from served customers minus the25

fixed cost of opening stations and purchase cost of cars. The electric cars have a shorter range than the26

conventional cars and the recharging operations take much longer. Therefore, the location of stations plays27

a crucial role in service quality. To this end, we develop exact methods to design a system that takes into28

account accessibility of users to located stations, availability of a car at the departure station, and availability29

of an empty spot at the arrival station for forecasted customer requests. We measure accessibility by the30

walking time from origin and destination points, in other words, a station is accessible by a customer if their31

origin and destination points are within a certain walking time to some operating stations.32

We consider general capacities (non-identical) for stations and assume that the number of charging units33

is equal to the number of parking spots at the stations. The cars are plugged as soon as they are parked34

to a station and they are recharged until full battery capacity before being available for the next customer.35

This assumption enables solving real size problems with strategical level decisions [10, 14].36

We aim to solve large scale problems of locating recharging stations without aggregation of demand. In37

order to represent uncertainty in demand, we consider multiple scenarios with occurrence probability. Each38

scenario consists of a certain number of customer requests and each request is associated with an origin39

node, a destination node, and a starting time. The problem under consideration requires decisions on the40

number and location of stations, the number of cars available at each station, the customers to be served,41

the stations they need to visit, and the time of each visit. We assume that relocations will be be done42

outside the planning period (e.g. overnight). Therefore, we do not consider other operational decisions such43

as relocation time/network of cars and number of operators to hire for relocation etc.44

We formulate this problem as a two stage stochastic programming model and develop a Benders decom-45

position algorithm based on its deterministic equivalent. In order to test our methods, we develop a demand46

forecasting method that uses historical data to generate new requests. We evaluate the performance of47

our algorithm under different parametric and structural settings by using problem instances obtained from48

a real taxi trip data of Manhattan. From the experimental studies we conducted on the formulation, we49

observe that the average linear programming relaxation (LP) gap of the formulation is less than 0.4% on50

the instances tested. Moreover, a partial relaxation of the formulation provides the same objective value51

with the original model for most problems with an average gap less than 0.01% in our test bed. We further52

strengthen our Benders method with a stabilization procedure, which improves the average performance of53

our algorithm, especially, on instances with larger number of scenarios.54
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The rest of this paper is organized as follows: In Section 2, we present a brief summary of the related works55

in the literature. In Section 3, we provide a mathematical description of our problem with some notation56

and provide the details of our mixed integer programming formulation. Section 4 presents the results of the57

computational study we conducted on our formulation and its relaxations. We dedicate Section 5 to a brief58

summary of the classical Benders decomposition method, its adaptation to pure integer programming (IP)59

problems in the literature, and a detailed description of the Benders algorithm that we propose. Section 660

follows with the computational study on our Benders algorithm and a stabilized version of it. We conclude61

in Section 7 with a summary of our results and perspectives on future research.62

2. Related work63

The current studies in the car sharing literature mostly focus on tactical and operational level decision64

problems. Tactical and operational level problems concerning electric vehicles already attracted attention in65

logistics systems and several studies in the literature focused on different variants of electric vehicle routing66

problems [26, 28, 45, 43]. Within the context of car sharing systems, the most commonly considered problem67

is the relocation of cars to increase availability in high demand areas and avoid surplus of cars at the low68

demand points [4, 15, 19, 22, 35, 38, 39, 46, 33, 11]. On the other hand, as also indicated in a recent review69

[12], the car sharing literature on strategic level decision problems involving location of stations is relatively70

sparse.71

Optimal location of stations in one-way car sharing systems is first addressed by Correia and Antunes [24].72

The authors propose a mixed integer programming formulation that maximizes the profit of the operator73

by considering several cost and revenue factors. They compare the model, which enforces service via closest74

stations to origins and destinations, under three service strategies: (i) The operator has the possibility to75

decide on which customer requests to serve without any restriction (ii) all requests have to be served (iii)76

the operator can reject a request only if there is no car available at the starting station. The experiments on77

a real data from Lisbon, Portugal, show that serving all customers might decrease the profit significantly.78

Later, Correia et al. [25] extend the formulations of Correia and Antunes [24] to a more flexible system where79

the assumption of service through closest stations is relaxed. The experiments in the latter study reveal that80

this kind of flexibility increased the profit of the operator together with the introduction of vehicle stock81

information.82

In addition to the optimization models mentioned above, a discrete event simulation based model that83

analyzes the impact of strategy changes in car sharing systems is introduced by Fassi et al. [27]. The strategies84

considered include opening new stations, increasing station capacities, merging or splitting stations. The85

model is evaluated on a car sharing data from Montreal, Canada.86

Location of recharging stations in electric car sharing systems is first studied by Boyacı et al. [10]. The87

authors focus on a multi-objective problem that combines strategic and tactical decisions in a one-way88

electric car sharing system. One of the objectives is to maximize the net profit of the operating company89

and the other one is to maximize the net benefit of the clients. The authors propose a mixed integer linear90

programming formulation for solving this problem but due to the intractability of this formulation caused91

by the large number of relocation variables, they employ an aggregated demand structure, where the trips92

(demand) with the same origin and destination centers are grouped together to decrease the number of93

decision variables. Demand centers are the clusters of origin/destination points of trips that can be accessed94

3



by the same set of stations. Moreover, after each usage, the vehicles are charged for a fixed period of time95

and depending on the demand served by vehicles, these charging periods are calculated to reach the required96

battery level e.g. full battery. The proposed method is tested on a real data from Nice, France.97

In a recent paper, Çalık and Fortz [16] focus on location of stations in a one-way electric car sharing where98

the demand is known in advance. The problem includes decisions on location and number of the stations,99

initial level of cars at operated stations, the subset of requests to serve, and their service routes. The authors100

provide a mathematical formulation that maximizes the profit of the operator by taking into account the101

revenue obtained from the served demand and the fixed costs of stations and car purchases. They conduct102

experiments on large scale problem instances obtained through a real data of Manhattan (New York, USA)103

taxi trips. In this paper, we extend the mathematical formulation of Çalık and Fortz [16] to the case where104

there is uncertainty in demand and based on this formulation, we develop a decomposition algorithm that105

can solve large scale problems in reasonable amount of time. Another recent paper by Biesinger et al. [7]106

provides a bi-level heuristic algorithm that aims to find the location of recharging stations and the initial107

number of cars in an electric car-sharing system. The algorithm is tested on real-world instances from108

Vienna, Austria.109

We are also aware of a few recent works [13, 14] that provide heuristics and formulations for location of110

stations in electric car sharing systems. Among them, Brandstätter et al. [13] consider a system with perfect111

demand information. The authors provide integer programming formulations and construction heuristics112

which maximize the profit under budget constraints. They conduct experiments on randomly generated113

grid-graph instances and instances from Vienna (relatively larger in size). Brandstätter et al. [14] extend114

the methods of Brandstätter et al. [13] to the case with demand uncertainty where demand is represented115

by multiple scenarios. They consider a maximum walking time of five minutes and seven scenarios in their116

experiments on the Vienna instances. The model is tested on small-size grid-graph instances (maximum117

100 requests, 50 stations, 5 scenarios) and a reduced version of the Vienna instances (1060 requests, 201118

stations, 7 scenarios). With this model, most instances are solved to optimality within the one-week time119

limit enforced by the authors.120

Other than the car sharing systems, location of charging stations were also considered for private electric121

vehicles and urban taxi providers. The literature is relatively denser for these type of problems and it is122

possible to find both exact solution methodologies [32, 48, 21, 3, 20, 1, 2, 40] and heuristic approaches123

[34, 36, 47] for location of public charging units.124

3. Problem definition and formulation125

In this section, we present a formal definition and a mathematical formulation of our problem. Given a126

city network G = (V,A) with arc set A, node set V , and set of potential stations J ⊂ V , we are required to127

select a subset J of J and locate an initial number of cars to the selected stations in order to satisfy a part128

of the customer demand represented by multiple scenarios consisting of individual requests. Each request129

must be served by a car available at a station accessible from the origin node at the time of departure130

and the car should be left at an arrival station accessible from the destination of the request with a free131

parking/charging spot at the time of arrival. Additionally, the battery consumption between the departure132

and the arrival stations assigned to a request should not exceed the battery level of the car and the total133

length (time) of the trip from the origin node to the destination should not be larger than a given threshold134
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∆k for request k. The traveling time and the energy consumption for each request are computed based on135

the shortest path between the departure and arrival stations allocated. One can also consider the case where136

these values are known explicitly for each request. A car that completes its service is plugged into a charger137

at its arrival station and it does not become available until the beginning of the first period after it has full138

battery level. For any scenario, the total number of cars (available or being charged) at a station should139

not exceed the capacity of that station at any time. The objective of the problem is to maximize the total140

expected profit that is equivalent to the total expected revenue obtained from the requests served minus the141

total cost of stations selected and cars owned.142

Before going into the details of our mathematical formulation, we provide an initial set of parameter143

definitions used throughout the paper here. Upper case letters denote sets whereas lower case ones denote144

indices e.g. J is a set and j is the index of an element in J .145

• V = {1, . . . , n} is the set of nodes.146

• J = {1, . . . ,m} is the set of potential stations where J ⊂ V .147

• fj is the fixed cost of locating a station on node j ∈ J .148

• g is the cost of purchasing a car.149

• Cj is the capacity of station j ∈ J .150

• T = {0, . . . , τ} is the set of time slots (identical length)151

• S = {1, 2, . . . , |S|} is an index set corresponding to the scenarios.152

• qs is the probability that scenario s ∈ S will occur.153

• Ks is the set of requests in scenario s ∈ S, with origin Ok ∈ V , destination Dk ∈ V , starting time154

Tk ∈ T , and revenue pk for k ∈ Ks. K =
⋃

s∈S Ks.155

• δij is the battery usage (Ws) on the way from station i ∈ J to station j ∈ J .156

• β is the battery capacity (Ws) for each car .157

• dij is the travel time from station i ∈ J to station j ∈ J .158

• dwij is the walking time from node i ∈ V to node j ∈ S.159

• βw is the maximum walking time between the origin (destination) points of requests and the departure160

(arrival) stations they are assigned to.161

• ∆k is the maximum time that a trip assigned to customer k can take (including the walking time).162

We formulate our problem as a two stage stochastic program, in which location of stations and initial163

number of cars at each station are the first stage decisions whereas the requests served within each scenario164

and allocation of stations to the requests are second stage decisions. In this paper, we focus on the de-165

terministic equivalent of our model. We propose a path based formulation with a set of decision variables166

associated with the paths (ordered list of nodes to visit) allocated to the requests.167
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Figure 1: Feasible trips generated for a single request

We initially apply a preprocessing procedure to generate a set Hk of all feasible paths (trips) for each168

request k ∈ K. A path is feasible if it satisfies the accessibility, total length, and battery restrictions. Define169

H̄s =
⋃

k∈Ks
Hk for scenario s ∈ S and H =

⋃
k∈K Hk =

⋃
s∈S H̄s, then for each h ∈ H, we know the170

stations to visit on the trip (Ph) together with the time of visit, the amount of time required to recharge the171

car at the arrival station, thus, the time slot that the car will be ready for another customer. We illustrate172

this procedure for a single request on a simple example in Figure 1. In this figure, we use a grid network and173

rectilinear distances. For a request k with origin Ok and destination Dk, we illustrate two feasible trips. The174

nodes of the grid network that fall within each dashed circle of radius βw are the accessible points from/to175

Ok or Dk. Squares represent potential stations and in this case, j1 is the only potential station accessible176

to Ok whereas j2 and j3 are both accessible to Dk. As we consider only a single path between two stations,177

we can have two feasible trips for request k: Trip 1 (Path 1) is Ok → j1 → j2 → Dk if the total time spent178

is no greater than ∆k and δj1j2 ≤ β; and Trip 2 (Path 2) is Ok → j1 → j3 → Dk, similarly, if the total time179

spent is no greater than ∆k and δj1j3 ≤ β. We generate all such feasible trips for each request during the180

preprocessing.181

Our methods can be easily adapted to more challenging variants of our problem with slight modifications182

on this preprocessing procedure. One of these variants allows customers to visit intermediate stations when it183

is not possible to serve a request without recharging the battery or changing the car due to the long distance184

between the origin and destination nodes. We present a pseudo-code of our pre-processing procedure for185

this generalized case in [16]. We do not consider visits to intermediate stations in the computational results186

of this paper as we focus on the application inside cities where it is unlikely to have these type of requests.187

Another possible extension would be to consider time dependent traveling times and energy consumptions188

in the problem.189

After the pre-processing, we retrieve the following parameters:190

• bthj = 1 if the car used for trip h ∈ H̄s of scenario s ∈ S exits station j ∈ J at time t ∈ T , 0 otherwise.191

• µt
hj = 1 if the car used for trip h ∈ H̄s of scenario s ∈ S is being recharged at station j ∈ J at time192

t ∈ T , 0 otherwise.193
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• λthj = 1 if the charging of the car used for trip h ∈ H̄s of scenario s ∈ S is completed at station j ∈ J194

at time t ∈ T , 0 otherwise.195

Then, we define the following decision variables for our formulation:196

• uh = 1 if trip h ∈ H̄s of scenario s ∈ S is chosen, 0 otherwise.197

• Lts
j is the number of available cars at station j ∈ J at the beginning of time t ∈ T for scenario s ∈ S.198

• L0
j is the number of available cars at station j ∈ J at time 0.199

• yj = 1 if a station is located at node j ∈ J , 0 otherwise.200

Now, we can write our path based formulation (PF) as follows:

(PF ) max
∑
s∈S

qs
∑
h∈H̄s

phuh −
∑
j∈J

fjyj − g
∑
j∈J

L0
j (1)

s.t.
∑
h∈Hk

uh ≤ 1, ∀k ∈ K (2)

uh ≤ yj , ∀j ∈ J, h ∈ H : j ∈ Ph (3)∑
h∈H̄s

bthjuh ≤ Lts
j , ∀j ∈ J, t ∈ T, s ∈ S (4)

Lts
j +

∑
h∈H̄s

(µt
hj − bthj)uh ≤ Cjyj , ∀j ∈ J, t ∈ T, s ∈ S (5)

Lts
j = L

(t−1)s
j +

∑
h∈H̄s

(λthj − b
(t−1)
hj )uh, ∀j ∈ J, t ∈ T : t ≥ 1, s ∈ S (6)

L0s
j = L0

j , ∀j ∈ J, s ∈ S (7)

0 ≤ Lts
j ≤ Cjyj , ∀j ∈ J, t ∈ T, s ∈ S (8)

L0
j ∈ Z+

0 , ∀j ∈ J (9)

uh ∈ {0, 1}, ∀h ∈ H (10)

yj ∈ {0, 1}, ∀j ∈ J (11)

The objective function (1) maximizes the expected profit. The first term in this function gives the201

expected revenue obtained by serving the customers, the second term is the total fixed cost of opened202

stations, and the third term is total cost of purchasing cars.203

By Constraints (2), a customer is served with at most one trip and by Constraints (3) every station on204

a selected trip is forced to be opened.205

For each scenario, Constraints (4)-(8) ensure the following restrictions: Constraints (4) restrict the206

number of cars leaving a station with the number of available cars at that station for each time slot.207

Constraints (5) ensure that the capacity of each station is respected, so that parking a car is not allowed if208

there is no free space at the station. Constraints (6) balance the number of cars at each station at each time209

slot. Constraints (7) initialize the number of cars available for each station and Constraints (8) restrict this210

number with the capacity of that station for each time zone.211

Finally, Constraints (9)-(11) give the non-negative integrality and binary restrictions.212
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In the following section, we present the test results on our formulation PF, its LP relaxation, and the

partial relaxation RPF where we keep y variables as binary and relax the integrality of u variables as follows:

(RPF ) max (1)

s.t. (2)− (9), (11)

0 ≤ uh ≤ 1, ∀h ∈ H (12)

4. Computational study on PF and its relaxations213

In order to test our methods, we generate instances with multiple scenarios based on a real data obtained214

from Manhattan (New York, USA) taxi trips [49, 44]. The data file is based on a city network in Manhattan215

with 10556 nodes, 85 potential station locations, and 25592 arcs. It contains 27549 requests with origin,216

destination, starting time, revenue, and duration; the capacity of each station (maximum number of217

recharging units); the base cost of opening each station, per unit cost of installing a slow or fast charging218

unit, and purchase cost of three types of electric cars; charging speed for both types of charging units; and219

the distance and time dependent maximum traveling speed for each arc. Based on the information given in220

the Manhattan data file, we are able to obtain the values of all the parameters of an instance.221

In our experiments, we consider a single car type (Smart ED), a period of 5 minutes, a capacity of a station222

identical to its number of charging units, and only fast charging units. Through our demand forecasting223

method (detailed in [17]), we generate instances that include requests with different origin-destination pairs224

than the ones in the original data file. We compute the revenue of these newly generated requests by using225

the formula of the original data (0.3 e per minute) based on the shortest path distances between the226

origin and the destination nodes. By using a fixed driving speed of 50 km/h and a walking speed of 1.34227

m/s, we obtain the shortest paths for walking and traveling times via Dijkstra’s algorithm. Each one of228

the scenarios includes requests coming from a one-day period. In order to see how the results change with229

different scenario combinations, we create four different sets of scenarios (C1-C4) generated from the same230

probability distribution.231

The cost of a Smart ED in the data used in our experiments is 20000 e. Its battery capacity is 63360232

kWs and fast charging rate is 17600 W. The base cost of stations ranges between 9000 e and 64000 e .233

The cost of fast charging slots ranges from 22000 e to 32000 e per unit.234

We conduct our experiments by using IBM ILOG CPLEX 12.7 in the Java environment on an Intel(R)235

Xeon(R) E5-2630 v3 CPU at 2.40GHz with 16 cores and 32 GB of RAM.236

For the Dijkstra’s algorithm, we use the implementation of the JGraphT 1.0.1 package. We impose a237

one hour time limit and 16 GB memory limit to each experiment. We keep CPLEX cuts and presolve on as238

they seemed to be efficient in our experiments.239

In our preliminary experiments, we observe that the cost values in the original data are too high to have240

a profitable system. A similar issue is observed also by [14] in their case study for ECS systems in Vienna.241

This indicates the need for a comprehensive study on pricing and additional income resources for the initial242

investments of ECS systems but this remains out of the scope of our paper. In order to have solutions that243

open stations and serves customers, we introduce a parameter cost factor that divides the cost values of244

the original data. This way we try to preserve the distinct cost values for stations at the same proportion.245

This parameter can also be considered as expected repetitions of similar requests in the long run taking246
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into account the lifetime of stations and cars. In our experiments, we use two different values, namely, 105
247

and 106 as cost factor. We also conducted experiments with cost factor of 104, which is the realistic value248

obtained by considering the depreciation, but the system did not provide positive profits for such high249

costs. Similar results were observed also in our previous study for pre-booked ECS systems [16]. We also250

tested our instances with distinct cost factor values for cars and stations (105 for stations and less than 105
251

for cars), but we ended up with non-profitable systems. Therefore, we do not report them here. Moreover,252

we use ∆k = 1.1 × dOkDk
for every k ∈ K. ∆k is the time including walking times and driving times253

between the stations assigned. The walking times are already restricted by βw parameters and customers254

cannot be forced/expected to walk for longer than βw. This type of restriction allows longer driving time255

(rather than longer walking time) if the driving time between Ok and Dk is longer.256

In this section, we show results regarding PF, its LP relaxation, and RPF for costfactor values 105
257

(High cost) and 106 (Low cost) in Figures 3 - A.15. We provide tables with detailed results for one copy of258

scenarios, namely for C1, in the Appendix A.259

In these figures and tables, |Ks| denotes the number of requests in each scenario generated and this260

number is the same for every scenario of a single problem instance. The βw column gives the maximum261

walking time restriction in minutes, all other time values are given in seconds. The columns labeled ‘Obj’262

give the solution value obtained from the corresponding method at termination due to optimality or resource263

limitations (time or memory). We report two types of gap percentages: g1(%) gives the gap relative to the264

best known PF solution value, say Obj∗, then, g1(%) = 100× [(Obj −Obj∗)/Obj∗]; and g2(%) denotes the265

gap provided by CPLEX at the termination. We here note that for some instances, Obj∗ value might be266

obtained via the methods that we propose in Section 5. We further indicate the instances that cannot be267

solved to optimality within the time limit with ‘TL’ under the ‘time’ column. We do not hit the memory268

limit in any of the instances. If we are not able to obtain a feasible solution or the gaps within the time269

limit for an instance, we indicate this as ‘NA’. As the instances with βw = 15, |Ks| ≥ 3000 are intractable,270

we omit corresponding problems for |S| = 200 charts and tables.271

In Figure 2, we present the results related to pre-processing, the initial process to generate all feasible272

trips, on problems with |S| = 100 and |S| = 200 for the first set of scenarios (similar numbers for the273

others). On the X axis of these charts, we have instances corresponding to βw, |Ks| combinations. On the274

Y-axis, we use a logarithmic scale to show |Ka|, the total number of requests that satisfy accessibility and275

maximum length restrictions over all scenarios (Figure 2a); and |H|, the total number of trips generated i.e.276

the number of u variables in the model (Figure 2b). Here, we observe that even one minute of increase on277

the accessibility measure (βw) can double the number of requests that can be potentially served. The total278

time spent during the pre-processing of these instances ranges from 30 seconds to half an hour.279

In Figure 3, we observe that the LP relaxations provide very tight bounds, especially, for instances of low280

costs. The largest LP gap that we observe is 6.98% and it belongs to the C4 instance with βw = 5, |Ks| =281

1000, |S| = 100 and high costs. The average LP gap of all instances tested is 0.39%. Although there are a282

few exceptions, usually the LP gaps tend to decrease as βw increase.283

When we look at Figure 4 of instances with |S| = 100, we can observe a pattern of increase in the284

objective values in parallel to the increase in βw as well as in |Ks|. Moreover, we see that these objective285

values are higher when we have low cost parameters. We observe a similar pattern for C2-C4 instances.286

We present the solving times of LP, RPF, and PF in Figures A.13-A.15 of the Appendix. As expected,287
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(a) The total number of requests that satisfy accessibility and
maximum length restrictions.

(b) The number of feasible trips generated.

Figure 2: Preprocessing results

Figure 3: Average LP gaps (g1%) for C1-C4

Figure 4: LP, RPF, and PF values of C1 for 100 scenarios. Blue bars for low cost, gray bars for high cost.
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Figure 5: Number of stations opened per instance for C1-C4 for 100 scenarios and high cost.

Figure 6: Number of stations opened per instance for C1-C4 for 100 scenarios and low cost.

PF spends a larger amount of time to solve problems with larger βw values. PF is not able to find any288

solution with a positive profit value in instances with βw = 15 mins and it spends all the time given for the289

presolve of CPLEX when |Ks| ≥ 2000 for βw = 15. For some of the instances, RPF needs more time to290

reach optimality than PF.291

Moreover, we present the number of stations opened for the solution obtained from PF in Figures 5 and292

6 for |S| = 100. An important observation here is that the increase in the number of stations opened when293

βw is increased from 5 minutes to 6 minutes is more significant compared to other increments, for example,294

from 6 minutes to 7 minutes. This is worth to express as most recent works in the literature restrict the295

walking time by 5 minutes but we see through our experiments that a one-minute increase of this parameter296

might cover a much larger portion of the demand and yield a significant increase in the expected profit.297

Another important observation is on the number of trips that can be served by the solution of PF. We298

show these values for |S| = 100 in Figures 7 and 8. Here, we can see that the number of trips that can be299

served increases as βw increases, and usually also when |Ks| increases.300

Our experiments reveal that the computational difficulty increases parallel to the number of scenarios301

Figure 7: The number of trips that can be served per instance for C1-C4. |S| = 100, high cost.
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Figure 8: The number of trips that can be served per instance for C1-C4. |S| = 100, low cost.

as the number of constraints and variables increases significantly. In order to overcome this difficulty, we302

describe a Benders decomposition algorithm in the following section.303

Another interesting observation on these results is that the objective value of RPF is the same as304

the objective value of PF for almost every instance and the difference is very small for the nonidentical305

ones. As it will be explained in the next section, this observation encourages us to focus on two phase306

solution methodologies that will first focus on solving RPF which has less number variables with integrality307

restrictions compared to PF and then reach to the optimality of PF by using the information obtained from308

RPF.309

5. Decomposition algorithm (BAC)310

Before presenting the details of our algorithm, we give a general description of the Benders decomposition311

method [6]. For a mixed integer program with a group of integer variables and a group of continuous variables,312

the algorithm consists of solving the formulation by temporarily removing all continuous variables. This313

problem is called the master problem. Then, the Benders algorithm focuses on the dual of a subproblem,314

which is simply a restriction of the original problem where all the integer variables are fixed to the values315

of the master problem. From the dual problem, a so called feasibility cut for each extreme ray and an316

optimality cut for each extreme point is obtained. These cuts are added to the master problem to obtain317

another solution and the procedure is repeated. Since enumeration of all extreme rays and extreme points318

is not very practical, cutting plane algorithms are commonly used in the literature.319

The convergence rate of the classical Benders decomposition method might be very slow especially if320

the subproblem is difficult to solve. On the other hand, it might be very efficient if the subproblem can be321

decomposed further into smaller and easy-to-solve problems as in multi-commodity, multi-period, or multi-322

scenario problems [8]. Motivated by this fact, we aim further decomposing the second-stage problem of323

our two-stage recourse problem into smaller problems, each one corresponding to a single demand scenario.324

For this purpose, we decide to choose y,L0 as first stage variables that are kept in the master problem325

and u,L as the variables of the subproblem. However, as u variables are integral, we cannot apply the326

classical Benders decomposition to PF without any further adaptations. On the other hand, with this type327

of categorization of variables, RPF is a good candidate for applying the Benders procedure as u,L variables328

are continuous in this model. In this case, we need additional steps to make sure that the optimal solution329

of our algorithm provides an integral vector u. Several successful adaptations of the classical Benders330

decomposition algorithm to different IP problems are available due to [9, 30, 37]. In our implementation,331

we use the “Combinatorial Benders cuts”, which are first named by Codato and Fischetti [23].332
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We implemented our Benders algorithm as a two phase method. In the first phase of our algorithm, we333

solve RPF with a classical Benders framework. Let v(RPF ) be the optimal value of RPF and (y∗,L∗) be334

the optimal values of the first stage variables (y,L0). Then, we solve PF by fixing values of y,L0 variables335

to (y∗,L∗) to see if there exists an integer feasible solution for RP with objective value v(RPF ). If yes,336

we stop as we have an optimal solution of PF on hand. Otherwise, we move to the second phase of the337

algorithm. The motivation behind this first phase is the fact that RPF gives the optimal value of PF in most338

instances; so, the values of the first stage decision variables obtained from RPF might possibly provide a339

complete integral solution for PF and avoid excessive number of integrality checks for addition of relatively340

weak combinatorial cuts.341

In Phase II, we restart a branch-and-cut framework for RPF and restrict the objective value from above342

with v(DRPF ), the value of the best dual bound obtained in Phase I. Then, for integer solutions of RPF343

tree, we solve individual subproblems with integrality restrictions on u variables for each scenario and add344

combinatorial Benders cuts if these subproblems are integer infeasible. Our experimental study reveals that345

the two-phase procedure converges faster than introducing the combinatorial cuts at the first phase in most346

instances and it is much more efficient in overall as most problems do not require the second phase.347

Now we present the details of Phase I and Phase II of our algorithm.348

Phase I:349

Through our experiments, we observed that the optimality cuts worsen the solving time of the algorithm350

so, we decided to avoid them. To do so, we make a modification on our formulation so that we obtain only351

feasibility cuts from our dual subproblem. We define a nonnegative decision variable zs for each scenario352

s ∈ S and ensure that its value will be equal to the revenue obtained from that scenario as follows:353

(PF2) max
∑
s∈S

qszs −
∑
j∈J

fjyj − g
∑
j∈J

L0
j (13)

s.t.
∑
h∈H̄s

phuh ≥ zs, ∀s ∈ S (14)

(2)− (11)

0 ≤ zs ≤
∑
k∈Ks

pk, ∀s ∈ S (15)

To solve (PF2) in a Benders fashion, we keep z,y,L0 variables in the master problem and deal only354

with u variables in the subproblem.355

In order to make our master problem stronger, we introduce two sets of valid inequalities (18) and (19).356

Thus, we solve (MP ) given below as the master problem of our Benders algorithm.357
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(MP ) max
∑
s∈S

qszs −
∑
j∈J

fjyj − g
∑
j∈J

L0
j (16)

s.t.

Cj∑
m=1

xjm ≤ yj , ∀j ∈ J (17)

zs ≤
∑
k∈Ks

pk
∑

j∈NOk

yj , ∀s ∈ S (18)

zs ≤
∑
k∈Ks

pk
∑

j∈NDk

yj , ∀s ∈ S (19)

zs ≥ 0, ∀s ∈ S (20)

(9), (11)

In this formulation, NOk
and NDk

denote the set of stations accessible by, respectively, origin and358

destination, of request k ∈ K. Once we introduce fixed values (z,y,L
0
) to our subproblem, we observe that359

it can be decomposed into |S| problems, one for each scenario, that can be solved independently.360

At this point, we make some simplifications and modifications to have smaller number of constraints and361

variables in our primal and dual subproblems. The first observation is as follows:362

Property 1. Constraints (8) are redundant.363

Proof. (i) Lts
j ≥ 0,∀j ∈ J, t ∈ T, s ∈ S :364

By Constraints (4), Lts
j −

∑
h∈H̄s

bthjuh ≥ 0,∀j ∈ J, t ∈ T, s ∈ S. Then, by Constraints (6), Lts
j =365

L
(t−1)s
j −

∑
h∈H̄s

b
(t−1)
hj uh +

∑
h∈H̄s

λthjuh ≥ 0,∀j ∈ J, t ∈ T, s ∈ S as λthj , uh ∈ {0, 1},∀j ∈ J, t ∈ T, h ∈366

H.367

(ii) Lts
j ≤ Cjyj ,∀j ∈ J, t ∈ T, s ∈ S :368

By Constraints (5),
∑

h∈H̄s
µt
hjuh ≤ Cjyj +

∑
h∈H̄s

bthjuh − Lts
j ,∀j ∈ J, t ∈ T, s ∈ S. Moreover,369 ∑

h∈H̄s
λ

(t+1)
hj uh ≤

∑
h∈H̄s

µt
hjuh,∀j ∈ J, t < τ as the number of cars who finished recharging at370

t + 1 cannot be larger than the number of cars being charged at t. Then,
∑

h∈H̄s
λ

(t+1)
hj uh + Lts

j −371 ∑
h∈H̄s

bthjuh ≤ Cjyj implying that L
(t+1)s
j ≤ Cjyj ,∀j ∈ J, t ∈ T : t < τ, s ∈ S via Constraints (6).372

373

Moreover, the following replacement of Lts
j is possible due to Constraints (6) and (7):

Lts
j = L0

j +
∑
h∈H̄s

(

t∑
r=1

λthj −
t−1∑
r=0

bthj)uh, ∀j ∈ J, t ∈ T : t ≥ 1, s ∈ S (21)

If we replace Lts
j with the right hand side of (21) throughout PF2 and omit equality Constraints (6) and374

(7), we obtain a formulation with z,y,u,L0 variables only. Then, for each scenario s ∈ S, we can express375

the corresponding subproblem (SPs) as follows:376
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(SPs) max 0 (22)

s.t.
∑
h∈H̄s

phuh ≥ zs, (23)

∑
h∈Hk

uh ≤ 1, ∀k ∈ Ks (24)

uh ≤ yj , ∀h ∈ H̄s, j ∈ Ph (25)∑
h∈H̄s

(

t∑
r=0

brhj −
t∑

r=1

λrhj)uh ≤ L
0

j , ∀j ∈ J, t ∈ T (26)

∑
h∈H̄s

(

t∑
r=1

λrhj −
t∑

r=0

brhj + µt
hj)uh ≤ Cjyj − L

0

j , ∀j ∈ J, t ∈ T (27)

uh ∈ {0, 1}, ∀h ∈ H̄s (28)

Let LPs denote the linear programming (LP) relaxation of SPs, where the integrality restriction on u377

variables is removed, therefore, 0 ≤ uh ≤ 1,∀h ∈ H̄s; DLPs denote the dual of LPs; and α, εk, γjh, θjt, and378

ωjt be the dual variables associated with Constraints (23)-(27), respectively. Here, we note that uh ≤ 1379

restriction is already satisfied due to (24) and (25) ∀h ∈ H̄s, so, we do not include an additional set of380

constraints for this restriction. Then, we can express DLPs as follows:381

(DLPs) min − zsα+
∑
k∈Ks

εk +
∑

h∈H̄s,j∈Ph

yjγhj +
∑
j,t

L
0

jθjt

+
∑
j,t

(Cjyj − L
0

j )ωjt (29)

s.t. − phα+
∑

k:h∈Hk

εk +
∑
j∈Ph

γhj +
∑
j,t

(

t∑
r=0

brhj −
t∑

r=1

λrhj)θjt

+
∑
j,t

(

t∑
r=1

λrhj −
t∑

r=0

brhj) + µt
hj)ωjt ≥ 0, ∀h ∈ H̄s (30)

α ≥ 0, (31)

εk ≥ 0, ∀k ∈ Ks (32)

γhj ≥ 0, ∀h ∈ H̄s, j ∈ Ph (33)

θjt, ωjt ≥ 0, ∀j ∈ J, t ∈ T (34)

In our implementation, we introduce α ≤ 1 to (DLPs) and associate unboundedness of the problem with382

a negative objective value. Therefore, as soon as the optimal value obtained from (DLPs) is negative, we383

add feasibility cuts (35) to our master problem. An important property of DLPs is that the feasible region384

of the model does not change by the solution of the master problem. We use this property by generating385

the individual dual problems once in our implementation and changing only the objective function at each386
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iteration. This modification in the implementation improves the efficiency of our algorithm significantly.387

− αzs +
∑
j

(
∑

h:j∈Ph

γhj + Cj

∑
t

ωjt)yj +
∑
j

(
∑
t

θjt −
∑
t

ωjt)L
0
j ≥ −

∑
k∈H̄s

εk (35)

In addition to every integral solution of the branch-and-bound tree, we add feasibility cuts (35) for vio-388

lated fractional solutions at the root node as well. We use the LazyConstraintCallback and UserCutCallback389

of CPLEX for separation of, respectively, integral and fractional solutions.390

After this branch-and-cut first phase, the feasibility of the optimal solution is checked as follows. Let391

v(RPF ) be the optimal value of RPF and (y∗,L∗) be the optimal values of the first stage variables (y,L0).392

Then, we solve PF by fixing values of (y,L0) variables to (y∗,L∗) to see if there exists an integer feasible393

solution for RP with objective value v(RPF ). If yes, we stop as we have an optimal solution of PF on hand.394

Otherwise, we move to the second phase of the algorithm.395

Phase II:396

In order to start Phase II, we make use of v(DRPF ) and (y∗,L∗) obtained from Phase I. At this stage,

we introduce a new set of binary variables x that will represent integral L0 variables with the variable

transformation L0
j =

∑Cj

m=1mxjm, j ∈ J in MP. Doing so, we can introduce combinatorial Benders cuts

associated with these variables when needed. We further add the following constraints to MP:

∑
s∈S

qszs −
∑
j∈J

fjyj − g
∑
j∈J

Cj∑
m=1

mxjm ≤ v(DRPF ) (36)

Cj∑
m=1

xjm ≤ yj , ∀j ∈ J (37)

Similar to Phase I, we solve DLPs for separation not only at integer solutions of the branch-and-bound397

tree but also at fractional solutions at the root node. But this time, the separation cut would be (38).398

−αzs +
∑
j

(
∑

h:j∈Ph

γhj + Cj

∑
t

ωjt)yj +
∑
j

(
∑
t

θjt −
∑
t

ωjt)

Cj∑
m=1

mxjm ≥ −
∑
k∈H̄s

εk (38)

Additionally, once DLPs is bounded (i.e. LPs feasible) for every s ∈ S, we check if we have an integral399

solution for SPMaxs for the current (y,x) values of the master problem iteratively for s = 1, . . . , |S|.400

(SPsMax) max
∑
h∈H̄s

phuh (39)

s.t. (24)− (28).

If SPMaxs is infeasible for some s ∈ S, we add the combinatorial feasibility cut (40) and do not check401

integer feasibility for the remaining subproblems. If SPMaxs is feasible but the optimal value is greater402
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than zs for some s ∈ S, then we add the optimality cut (41). This cut requires either the value of zs variable403

to be tightened by
∑

h∈H̄s
phu
∗
h for the same (y,x) solution or to change the value of yj for some j ∈ J or404

xjm for some (j,m) where j ∈ J,m = 1, . . . , Cj . At the termination of this branch-and-cut procedure, we405

obtain an optimal solution for PF.406

F (y, x) ≥ 1 (40)

zs ≤
∑
h∈H̄s

phu
∗
h +

∑
k∈Ks

pkF (y, x) (41)

where u∗ is the solution vector obtained from SPMaxs of s ∈ S and

F (y, x) =
∑

j:yj=0

yj +
∑

j:yj=1

(1− yj) +
∑

j,m:xjm=0

xjm +
∑

j,m:xmj=1

(1− xjm).

We here note that we also implemented a classical Benders decomposition by leaving u variables in the407

master problem and tested it both with the automated Benders function of CPLEX and with our manual408

implementation and we observed that this type of decomposition had a poor performance.409

6. Computational Study on BAC410

In this section, we provide a detailed analysis of the experimental study on our algorithm. Before411

going into this analysis, we briefly describe our demand generation method as follows: In order to generate412

multiple demand scenarios which follow the pattern of the available data to certain extent, we fit the data413

into several probability distribution (mass) functions (PDF) from the literature. Among these PDFs, we414

choose the one that gives the minimum of least squared errors to generate scenarios, each with a certain415

number of requests. Finally, we compute the probability of scenarios based on the probability of individual416

requests in each scenario. The details of this method can be found in [17].417

6.1. Results418

In addition to the metrics reported in earlier charts and tables, we also report here the number of nodes419

explored in the branch-and-bound tree (nodes). Moreover, regarding our algorithms, we give the number of420

integral and fractional solutions separated during branch-and-cut procedures via columns ‘lazy’ and ‘user’,421

respectively. We tried turning off the presolve option of CPLEX in our instances but decided to keep it on422

as the solving time performance was worse without presolve.423

When we compare the solving times of model PF and algorithm BAC for instances with |S| = 100, 200424

(see Figures A.16-A.19 in Appendix A), we see that BAC performs better in tackling instances of C1 and425

C3 with large βw values and instances with |Ks| ≥ 4000. However, the problems with βw = 15 become426

intractable also by BAC when |Ks| ≥ 3000. When we test PF and BAC on instances with |S| = 200, we427

see that both PF and BAC needed more time on average to reach optimality. They hit the time limit for428

more instances but the average and maximum gaps from the best solution value were much larger for PF429

compared to BAC. The better performance of BAC compared to PF becomes more visible in these instances.430

Although the time spent by BAC for C2 and C4 seems larger compared to PF, BAC is able to find very high431
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quality solutions within one hour for most instances whereas PF struggles with finding a non-zero feasible432

solution in many of them (see Figure 10 for average gap percentages).433

An interesting observation is that among the problems for which we obtain feasible solutions, less than434

20% need a call to Phase II. The solving times that go up to 2 hours for BAC in Figures A.16-A.19 correspond435

to some of these instances for which Phase II was needed.436

On average, BAC needs to visit more branch-and-bound nodes than PF and usually, it needs to separate a437

larger number of fractional solutions than integer solutions even though the fractional solutions are separated438

only at the root node.439

We provide a detailed comparison of PF and BAC for C1 instances in Tables A.6-A.9 of Appendix A.440

6.2. Stabilization441

When we compare the performance of BAC on problems with |S| = 200 with those of |S| = 100, we442

observe that more iterations of separation are needed in Phase I of the algorithm and Phase II iterations are443

needed in a larger portion of problems. To overcome these difficulties, we introduce a stabilization procedure444

that enables addition of potentially stronger cuts for separation of infeasible solutions at individual iterations445

of our Benders algorithm. This method was originally proposed by Ben-Ameur and Neto [5] for cutting-446

plane and column generation algorithms and it was successfully adapted to several Benders decomposition447

implementations [29, 18, 42].448

In the original form of our algorithm, for each optimal solution, say πm = (zm, ym, Lm), we solve the449

dual of subproblem SP1 for πm and add a cut associated with πm to our master problem if there is a450

violation and move to subproblem SP2 to solve its dual for πm and repeat for each subproblem. Now,451

instead of moving to next subproblem immediately after finding a violation with the current one, we do the452

following: Let πf be a global feasible solution to the original problem PF and ϕ ∈ (0, 1). Differently the453

core point of [41], πf is not necessarily an interior point and it can be any feasible point. We find another454

point π1 = ϕπm + (1− ϕ)πf that is located on the line segment between πm and πf , and check if the dual455

of the current subproblem is violated by this point π1. If yes, then we obtain a potentially stronger cut456

that separates both πm and π1, so, we add the new cut to our master problem. Then, we move to another457

point π2 = ϕπ1 + (1 − ϕ)πf and check if there is a violation. If there is no violation, we move to another458

point π3 = ϕπ1 + (1−ϕ)π2 and we keep moving on the line segment between the last feasible point and the459

last separation point found for certain number of iterations. In our implementation, we move for only two460

iterations between πm and πf for each subproblem and then, we move to the next subproblem to repeat the461

same stabilization steps. We further choose ϕ = 0.5 in our experiments.462

We illustrate the stabilization procedure on a sample polyhedra in Figure 9. Here, the convex hull of463

the master problem is shown with the dashed blue lines and inside that, we have the intersection, initially,464

with the first subproblem SP1. The solution of the master problem πm is infeasible for SP1 and FC1 is a465

feasibility cut that separates πm. Now, we move to π1 and find another feasibility cut FC2 to separate π1
466

as it is also infeasible for SP1. Then, we move to another point π2, which turns out to be feasible for SP1.467

After two iterations, we add FC1 and FC2 to our master problem and move to the second subproblem SP2.468

As πm is feasible for SP2, we do not get any feasibility cuts and we do not need any stabilization for SP2, so,469

we can move to the next subproblem if there is any; otherwise, to the next solution of the master problem.470

A summary of the results comparing the performance of BAC with and without stabilization is presented471

in Figures 10 and 11. Even though there is not an absolute winner among the two methods, the stabilized472
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Figure 9: A sample stabilization iteration

Figure 10: Average gaps (g2%) of our algorithms for C1-C4 instances

version performs slightly better on average solving time. It is also better on the average gap for C1 instances473

(1.18% vs 1.06%) whereas the non-stabilized version is better for C2-C4 instances and in overall average474

(1.06% vs 1.13%). Stabilization decreases the average number of LazyConstraintCallback iterations and it475

decreases the average number of UserCutCallback iterations by around 50% for each of C1-C4. The impact476

of stabilization on the number of nodes explored does not follow a clear pattern and it is difficult to draw477

any conclusion on this aspect (Detailed results regarding the stabilization experiments can be provided by478

the authors upon request).479

6.3. Sensitivity Analysis480

In this section, we provide a brief sensitivity analysis based on our observations regarding the effects of481

changes in parameters costfactor, βw, |S|, |Ks| on problem outputs.482

When we look at the average gap % in Figure 10, we can easily see that it decreases when the cost values483

decrease and it usually increases when the number of scenarios increases. We do not observe a clear pattern484

in correlation with parameters βw or |Ks|.485

The profit of the system increases with the increase in βw or in |Ks| whereas it decreases with the increase486

in costs or in the number of scenarios (see Figure 4 and Tables A.2-A.9 in Appendix A).487

We have already seen in Figures 5 and 8 in Section 4 that system tends to open more stations as we488

decrease cost values or increase βw values. We do not observe any correlation with |S| and although it seems489

that there might be a positive correlation with |Ks|, it is not very obvious.490
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Figure 11: Average solving time (in seconds) of our algorithms for C1-C4

(a) The expected number of trips served per vehicle.

(b) The expected number of trips served per vehicle

Figure 12: Utilization rates for the stations and the vehicles.

As we have a multi-scenario problem, in order to provide an estimation of the utilization rates of the491

stations and the vehicles, we calculate the expected number of trips served for each instance via the formula492

E[u] =
∑

s∈S qs
∑

h∈Hs
uh. Then, we obtain the utilization rate for the stations as E[u] divided by the493

number of stations opened, and similarly, as E[u] divided by the number cars purchased for the vehicles.494

From Figure 12 of C3 instances, we observe that the utilization rates increase in parallel to the increase in495

βw and especially, in |Ks|, whereas they decrease when |S| or the costfactor increases.496

We provide a summary of our analysis in Table 1.497

Finally, we do some additional experiments by using more variations of fixed costs for cars. These values498

are closer to the actual costs of Smart ED in the US. We still use a costfactor = 105 to divide the fixed499

costs of stations as otherwise the system does not provide a positive profit. We see from our experiments500

that the maximum profit that could be obtained among all instances falls below 5000 e for βw = 10 and501

it is below 150 e for βw = 5. As these values seems to be rather too small to run a profitable business, it502
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Table 1: Correlation between the changes on problem parameters and outputs

costfactor ↑ βw ↑ |S| ↑ |Ks| ↑
Obj ↑ ↑ ↓ ↑
|J | ↑ mostly ↑ no pattern no pattern
PP time not applicable ↑ no pattern mostly ↑
PF time decreases in average mostly ↑ ↑ ↑
BAC time decreases in average mostly ↑ ↑ no pattern
BAC-S time decreases in average mostly ↑ ↑ no pattern
BAC Phase II no pattern no pattern no pattern no pattern
BAC-S Phase II no pattern no pattern no pattern no pattern
Avg. gap % ↓ no pattern mostly ↑ no pattern

might be necessary to find additional financial means to wave the fixed costs.503

7. Conclusion504

In this paper, we introduce a strategic decision-making problem arising in the design of a one-way station505

based electric car sharing system that operates under demand uncertainty. The strategic decisions include506

the number and location of the recharging stations which need to be selected meticulously as opening of507

these kind of facilities requires large amount of investment in money and time, and it is undesirable to508

replace them frequently. Our model takes into account the potential customer demand based on a relevant509

historical data and the expected revenue of the demand portion that could be served in a feasible way with510

the opened stations. As we aim to solve this problem optimally, we develop a mathematical formulation511

and a Benders decomposition algorithm that we further enrich with a stabilization procedure. We observe512

that our algorithm has the potential to solve real size problems to optimality, if not we can obtain very high513

quality solutions within very short amount of time.514

We observe through our experimental study that the problem is harder to solve when the costs (station515

opening and car purchasing) are higher and as expected, less number of stations are operated and less profit516

is made. Moreover, even a small portion of increase in the maximum walking time for customers increases the517

profit significantly. Therefore, the accessibility measures should be selected very carefully when operating518

the system. The accessibility measures can also be used as a parameter in formation of pricing strategies.519

Another parameter that needs to be taken into account in design or operation of electric car sharing systems520

is the number of different demand scenarios. As we observe in this study, considering too few scenarios521

in taking decisions might cause an overestimation of the actual profit or misplacement of stations. The522

length of the planning horizon is also very effective in the profit of the system constructed. We observe that523

the profit increases as the number of requests per scenario increases, which can be interpreted as a longer524

planning period. A future study could focus on deciding the optimal length of the planning horizon for525

strategic decisions such as location of stations or recharging units.526

The main focus of this work is on exact methods but the methods we propose can be easily modified or527

combined with practical procedures to obtain near optimal solutions.528

As mentioned in Section 3, we can easily adapt our methods to more complicated variations of the529

problem we proposed here. These variations include considering time-dependent traveling time and energy530

consumption as well as visiting intermediate stations. An interesting and more challenging extension would531
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be to relax full battery restriction for availability and develop methods that can ensure sufficient battery at532

the beginning of each trip. In this case, an additional index for each operating car would be needed and533

the mathematical models might have problems in tackling large scale problems. On the other hand, some534

meta-heuristic methods might be developed to solve these problems heuristically.535
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[13] Georg Brandstätter, Markus Leitner, and Ivana Ljubić. Location of charging stations in electric car sharing systems.570

Technical report, Department of Statistics and Operations Research, University of Vienna, Vienna, Austria, 2016.571

[14] Georg Brandstätter, Michael Kahr, and Markus Leitner. Determining optimal locations for charging stations of electric572

car-sharing systems under stochastic demand. Transportation Research Part B: Methodological, 104, pages 17–35, 2017.573
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[42] Eduardo Álvarez Miranda, Ivana Ljubić, Martin Luipersbeck, and Markus Sinnl. Solving minimum-cost shared arbores-642

cence problems. European Journal of Operational Research, 258(3):887 – 901, 2017.643

[43] Samuel Pelletier, Ola Jabali, and Gilbert Laporte. 50th anniversary invited article—goods distribution with electric644

vehicles: Review and research perspectives. Transportation Science, 50(1):3–22, 2016. doi: 10.1287/trsc.2015.0646.645

[44] Mario Ruthmair, Martin Stubenschrott. Input Data Processing. Technical Report: AIT Austrian Institute of Technology,646

Vienna, Austria, 2015.647

[45] Michael Schneider, Andreas Stenger, and Dominik Goeke. The electric vehicle-routing problem with time windows and648

recharging stations. Transportation Science, 48(4):500–520, November 2014. ISSN 1526-5447. doi: 10.1287/trsc.2013.0490.649

[46] Frederik Schulte and Stefan Voß. Decision support for environmental-friendly vehicle relocations in free-floating car sharing650

systems: The case of car2go. Procedia CIRP, 30:275–280, 2015.651

[47] Hengsong Wang, Qi Huang, Changhua Zhang, and Aihua Xia. A novel approach for the layout of electric vehicle charging652

station. In The 2010 International Conference on Apperceiving Computing and Intelligence Analysis Proceeding. IEEE,653

December 2010. ISBN http://id.crossref.org/isbn/978-1-4244-8025-8. doi: 10.1109/icacia.2010.5709852.654

[48] Ying-Wei Wang and Chuah-Chih Lin. Locating multiple types of recharging stations for battery-powered electric vehicle655

transport. Transportation Research Part E: Logistics and Transportation Review, 58:76–87, November 2013. ISSN 1366-656

5545. doi: 10.1016/j.tre.2013.07.003.657

[49] Chris Whong. NYC Taxi Trip Data https://chriswhong.com/, 2018.658

24



Appendix A. Detailed computational results659
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Table A.2: Model results for |S| = 100 and costfactor = 105 - gaps & solution values

LP RPF PF
|Ks| βw Obj g1(%) Obj g2(%) Obj g2(%) time
1000 5 7342.31 1.71 7218.65 0.00 7218.65 0.00 4.12
1000 6 15605.92 3.88 15022.45 0.00 15022.45 0.00 15.76
1000 7 27573.03 1.80 27085.46 0.00 27085.46 0.00 46.71
1000 8 37518.81 1.45 36980.87 0.00 36980.87 0.00 247.10
1000 9 44984.52 0.58 44723.11 0.00 44723.11 0.00 656.09
1000 10 52304.87 0.28 52158.64 0.00 52158.64 0.00 723.22
1000 15 89960.52 0.13 0.00 NA 0.00 NA TL
2000 5 21016.22 0.85 20839.93 0.00 20839.93 0.00 11.72
2000 6 32538.52 1.90 31931.30 0.00 31931.30 0.00 33.56
2000 7 45264.42 0.80 44907.15 0.00 44907.15 0.00 97.92
2000 8 53763.37 0.32 53593.97 0.00 53593.97 0.00 294.15
2000 9 61039.66 0.06 61004.03 0.00 61004.03 0.00 850.56
2000 10 68256.41 0.12 68173.08 0.00 68173.08 0.00 2987.40
2000 15 120772.52 0.05 0.00 NA NA NA TL
3000 5 25213.00 1.74 24781.00 0.00 24781.00 0.00 18.78
3000 6 42570.33 0.87 42204.00 0.00 42204.00 0.00 86.56
3000 7 53092.93 0.24 52964.00 0.00 52964.00 0.00 794.61
3000 8 63073.87 0.22 62933.00 0.00 62933.00 0.00 784.47
3000 9 72583.38 0.15 72480.00 0.00 72476.00 0.04 TL
3000 10 78374.00 0.02 78358.00 0.00 78358.00 0.00 TL
3000 15 141114.40 NA 0.00 NA NA NA TL
4000 5 32185.67 0.64 31980.00 0.00 31980.00 0.00 27.40
4000 6 50607.83 0.32 50444.00 0.00 50444.00 0.00 94.88
4000 7 63640.95 0.25 63485.00 0.00 63485.00 0.00 1720.41
4000 8 70676.08 0.14 70577.00 0.00 70577.00 0.00 2042.30
4000 9 76461.20 0.04 76346.00 0.12 76431.00 0.01 1655.19
4000 10 79728.28 0.03 79666.00 0.00 79708.00 0.00 2329.47
4000 15 149452.50 NA 0.00 NA NA NA TL
5000 5 38549.29 0.99 38169.82 0.00 38169.82 0.00 68.72
5000 6 53705.84 0.41 53488.83 0.00 53488.83 0.00 312.48
5000 7 65663.05 0.17 65554.10 0.00 65554.10 0.00 1877.70
5000 8 72589.00 0.05 72554.02 0.00 72554.02 0.00 2357.71
5000 9 79130.76 0.16 79005.40 0.00 79005.40 0.04 TL
5000 10 85073.95 0.09 84986.33 0.00 84998.90 0.00 TL
5000 15 161011.19 NA NA NA NA NA TL

Avg.: 0.64 0.00 0.00 1518.65
Max: 3.88 0.12 0.04 3777.61
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Table A.3: Model results with |S| = 100 and costfactor = 106 - gaps & solution values

LP RPF PF
|Ks| βw Obj g1(%) Obj g2(%) Obj g2(%) time
1000 5 16980.75 0.03 16975.83 0.00 16975.83 0.00 5.59
1000 6 27698.48 0.08 27675.73 0.00 27675.73 0.00 14.35
1000 7 41089.05 0.14 41030.45 0.00 41030.45 0.00 42.35
1000 8 51404.74 0.05 51380.12 0.00 51380.12 0.00 116.04
1000 9 58869.93 0.05 58838.80 0.00 58838.80 0.00 543.88
1000 10 66417.96 0.02 66402.34 0.00 66402.34 0.00 521.08
1000 15 106736.62 0.00 0.00 NA 0.00 NA TL
2000 5 33364.02 0.04 33349.13 0.00 33349.13 0.00 15.77
2000 6 45939.10 0.07 45904.90 0.00 45904.90 0.00 41.48
2000 7 59443.25 0.07 59399.62 0.00 59399.62 0.00 139.59
2000 8 67929.84 0.04 67903.56 0.00 67903.56 0.00 1096.80
2000 9 75852.91 0.01 75843.23 0.00 75843.23 0.00 TL
2000 10 83831.89 0.01 83820.27 0.00 83820.27 0.00 TL
2000 15 139678.53 0.00 0.00 NA NA NA TL
3000 5 36036.00 0.09 36003.00 0.00 36003.00 0.00 23.38
3000 6 55492.75 0.05 55466.00 0.00 55466.00 0.00 96.77
3000 7 67553.75 0.04 67527.00 0.00 67527.00 0.00 248.83
3000 8 78213.28 0.01 78209.00 0.00 78209.00 0.00 701.07
3000 9 88457.67 0.01 88446.00 0.00 88446.00 0.00 2693.32
3000 10 94913.75 0.01 94909.00 0.00 94909.00 0.00 2726.03
3000 15 160490.00 NA 0.00 NA NA NA TL
4000 5 45154.33 0.04 45137.00 0.00 45137.00 0.00 32.39
4000 6 65262.25 0.02 65252.00 0.00 65252.00 0.00 115.26
4000 7 79767.07 0.02 79753.00 0.00 79753.00 0.00 1746.54
4000 8 86871.00 0.00 86868.00 0.00 86868.00 0.00 1035.95
4000 9 93277.00 0.00 93277.00 0.00 93277.00 0.00 1655.19
4000 10 96947.00 0.00 96947.00 0.00 96947.00 0.00 1824.23
4000 15 168970.00 NA 0.00 NA NA NA TL
5000 5 51641.00 0.05 51614.58 0.00 51614.58 0.00 53.21
5000 6 68400.66 0.06 68362.75 0.00 68362.75 0.00 423.10
5000 7 81719.65 0.03 81695.37 0.00 81695.37 0.00 1223.83
5000 8 89801.18 0.02 89786.21 0.00 89786.21 0.00 2706.08
5000 9 96651.38 0.01 96645.94 0.00 96645.70 0.00 3337.07
5000 10 103253.62 0.00 103252.48 0.00 103252.48 0.00 3024.76
5000 15 180913.30 NA 0.00 NA NA NA TL

Avg.: 0.03 0.00 0.00 1491.68
Max: 0.14 0.00 0.00 3888.52
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Table A.4: Model results for |S| = 200 and costfactor = 105 - gaps & solution values

LP RPF PF
|Ks| βw Obj g1(%) Obj g2(%) Obj g2(%) time
1000 5 6969.82 2.00 6832.88 0.00 6832.88 0.00 14.46
1000 6 15444.12 3.74 14887.28 0.00 14887.28 0.00 62.97
1000 7 27442.90 1.66 26994.52 0.00 26994.52 0.00 265.89
1000 8 37319.10 1.50 36740.66 0.18 36766.38 0.00 2550.04
1000 9 44926.41 0.64 0.00 NA 44496.02 0.38 TL
1000 10 52354.37 0.30 0.00 NA 0.00 NA TL
1000 15 0.02 NA 0.00 NA NA NA TL
2000 5 17369.70 0.69 17251.00 0.00 17251.00 0.00 31.43
2000 6 32614.25 1.22 32220.00 0.00 32220.00 0.00 147.28
2000 7 44027.19 1.16 43229.00 0.74 43524.00 0.09 TL
2000 8 52368.69 0.14 0.00 NA 52294.00 0.00 2088.65
2000 9 62119.02 1.55 0.00 NA 0.00 NA TL
2000 10 68569.30 1.74 0.00 NA 0.00 NA TL
2000 15 0.00 NA 0.00 NA NA NA TL
3000 5 25213.00 1.74 24781.00 0.00 24781.00 0.00 63.67
3000 6 42570.33 0.87 42204.00 0.00 42204.00 0.00 485.12
3000 7 53092.93 0.24 52964.00 0.00 52964.00 0.00 3286.40
3000 8 63073.87 2.76 0.00 NA 0.00 NA TL
3000 9 72583.38 1.42 0.00 NA 0.00 NA TL
3000 10 78374.00 0.75 0.00 NA 0.00 NA TL
4000 5 32046.28 0.64 31842.00 0.00 31842.00 0.00 160.84
4000 6 50500.08 0.32 50337.72 0.00 50337.72 0.00 575.42
4000 7 63537.28 0.25 63005.95 0.62 0.00 NA TL
4000 8 70579.57 0.14 0.00 NA 0.00 NA TL
4000 9 76396.01 0.03 0.00 NA 0.00 NA TL
4000 10 79660.24 0.05 0.00 NA NA NA TL
5000 5 38280.05 0.91 37934.12 0.00 37934.12 0.00 673.09
5000 6 53494.06 0.36 53216.43 0.16 53300.98 0.00 1903.53
5000 7 65459.66 0.15 0.00 NA 0.00 NA TL
5000 8 72521.60 0.05 0.00 NA 0.00 NA TL
5000 9 79074.33 0.16 0.00 NA 0.00 NA TL
5000 10 85072.10 0.09 0.00 NA NA NA TL

Avg.: 0.91 0.11 0.03 2438.34
Max: 3.74 0.74 0.38 3739.77
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Table A.5: Model results with |S| = 200 and costfactor = 106 - gaps & solution values

LP RPF PF
|Ks| βw Obj g1(%) Obj g2(%) Obj g2(%) time
1000 5 16766.10 0.00 16766.10 0.00 16766.10 0.00 12.64
1000 6 27615.35 0.07 27597.19 0.00 27597.19 0.00 30.69
1000 7 41037.19 0.11 40992.58 0.00 40992.58 0.00 79.90
1000 8 51395.72 0.05 51371.33 0.00 51371.33 0.00 354.34
1000 9 58943.52 0.07 58855.20 0.11 58899.58 0.01 TL
1000 10 66533.64 0.01 66524.12 0.01 66528.32 0.00 1782.33
1000 15 0.21 NA 0.00 NA NA NA TL
2000 5 27767.50 0.03 27758.00 0.00 27758.00 0.00 24.26
2000 6 44523.50 0.09 44485.00 0.00 44485.00 0.00 89.46
2000 7 56945.73 0.04 56921.00 0.00 56921.00 0.00 1051.88
2000 8 65833.38 0.01 65824.00 0.00 65824.00 0.00 TL
2000 9 76688.18 0.80 0.00 NA 0.00 NA TL
2000 10 83826.47 0.21 0.00 NA 0.00 NA TL
2000 15 0.01 NA 0.00 NA NA NA TL
3000 5 36036.00 0.09 36003.00 0.00 36003.00 0.00 134.59
3000 6 55492.75 0.05 55466.00 0.00 55466.00 0.00 388.46
3000 7 67553.75 0.04 67527.00 0.00 67527.00 0.00 1150.57
3000 8 78213.28 0.01 78206.00 0.00 78209.00 0.00 1877.87
3000 9 88457.67 0.16 0.00 NA 0.00 NA TL
3000 10 94913.75 0.22 0.00 NA 0.00 NA TL
4000 5 45063.29 0.04 45047.24 0.00 45047.24 0.00 177.75
4000 6 65174.09 0.02 65164.01 0.00 65164.01 0.00 747.65
4000 7 79657.46 0.02 79643.34 0.00 79643.34 0.01 TL
4000 8 86775.66 0.01 86768.81 0.00 0.00 NA TL
4000 9 93220.05 0.00 93220.05 0.00 0.00 NA TL
4000 10 96908.38 0.01 0.00 NA 0.00 NA TL
5000 5 51525.43 0.03 51508.09 0.00 51508.09 0.00 429.57
5000 6 68232.66 0.03 68215.50 0.00 68215.50 0.00 1099.12
5000 7 81548.30 0.03 81521.92 0.00 81521.92 0.00 2349.23
5000 8 89735.76 0.02 89720.81 0.00 89714.20 0.02 TL
5000 9 96601.81 0.00 0.00 NA NA NA TL
5000 10 103249.59 0.00 0.00 NA 0.00 NA TL

Avg.: 0.07 0.01 0.00 2081.68
Max: 0.80 0.11 0.02 3768.34
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Table A.6: Comparison of PF with BAC for |S| = 100 and costfactor = 105

PF BAC BAC Phase I BAC Phase II
|Ks| βw g1(%) time nodes g1(%) time lazy user nodes lazy user nodes |J |
1000 5 0.00 4.12 0 0.00 36.44 24 44 17 49
1000 6 0.00 15.76 0 0.00 95.51 42 82 104 62
1000 7 0.00 46.71 4 0.00 80.21 15 63 3 67
1000 8 0.00 247.10 500 0.00 1518.94 148 87 27853 67
1000 9 0.00 656.09 40 0.00 2826.21 21 60 241 6 53 197 66
1000 10 0.00 723.22 83 0.00 498.66 19 53 328 66
1000 15 100.00 3629.30 0 0.00 2942.05 8 19 15 6 0 0 76
2000 5 0.00 11.72 0 0.00 6.96 4 1 0 60
2000 6 0.00 33.56 0 0.00 18.87 4 1 0 67
2000 7 0.00 97.92 0 0.00 25.42 2 0 0 72
2000 8 0.00 294.15 0 0.00 52.37 4 1 0 68
2000 9 0.00 850.56 0 0.00 120.18 4 1 0 70
2000 10 0.00 2987.40 1068 0.00 604.06 9 7 13 3 0 0 72
2000 15 NA TL NA 0.00 1763.26 1 6 0 81
3000 5 0.00 18.78 0 0.81 TL 130 353 58812 165 1040 8146 58
3000 6 0.00 86.56 0 0.40 TL 134 634 7781 66
3000 7 0.00 794.61 230 0.19 TL 51 493 0 67
3000 8 0.00 784.47 20 1.96 TL 16 84 0 69
3000 9 0.00 TL 511 1.90 TL 11 81 0 74
3000 10 0.00 TL 969 0.00 3481.80 21 84 985 76
3000 15 NA TL NA NA TL 1 4 0 NA
4000 5 0.00 27.40 0 0.00 11.66 4 1 0 64
4000 6 0.00 94.88 0 0.00 22.17 4 1 0 68
4000 7 0.00 1720.41 1111 0.00 184.13 21 6 64 74
4000 8 0.00 2042.30 525 0.00 262.33 10 6 47 74
4000 9 0.00 1655.19 967 0.00 385.09 4 7 5 75
4000 10 0.00 2329.47 99 0.00 636.52 6 7 3 76
4000 15 NA TL NA NA TL 0 6 0 NA
5000 5 0.00 68.72 36 0.00 62.78 23 38 75 66
5000 6 0.00 312.48 66 0.00 106.57 14 22 80 69
5000 7 0.00 1877.70 1177 0.00 359.93 27 20 354 75
5000 8 0.00 2357.71 2052 0.00 481.01 10 13 35 77
5000 9 0.00 TL 942 0.00 637.82 6 11 22 78
5000 10 0.00 TL 16 0.00 1087.72 13 8 60 79
5000 15 NA TL NA NA TL NA NA NA NA

Avg.: 3.23 1518.65 0.16 1460.36
Max: 100.00 3777.61 1.96 7208.06
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Table A.7: Comparison of PF with BAC for |S| = 100 and costfactor = 106

PF BAC BAC Phase I BAC Phase II
|Ks| βw g1(%) time nodes g1(%) time lazy user nodes lazy user nodes |J |
1000 5 0.00 5.59 0 0.00 9.70 19 22 0 68
1000 6 0.00 14.35 0 0.00 14.74 19 27 0 74
1000 7 0.00 42.35 2 0.00 35.82 34 44 44 76
1000 8 0.00 116.04 11 0.00 49.91 9 23 10 77
1000 9 0.00 543.88 14 0.00 90.99 10 41 24 73
1000 10 0.00 521.08 0 0.00 184.31 15 24 10 73
1000 15 100.00 TL 0 0.00 1691.83 6 17 0 6 0 0 80
2000 5 0.00 15.77 0 0.00 7.06 3 0 0 71
2000 6 0.00 41.48 0 0.00 14.47 4 1 0 75
2000 7 0.00 139.59 0 0.00 24.15 6 2 0 78
2000 8 0.00 1096.80 1557 0.00 63.43 10 5 10 76
2000 9 0.00 TL 75 0.00 134.13 6 7 9 76
2000 10 0.00 TL 858 0.00 284.24 8 6 56 77
2000 15 NA TL NA 0.00 2633.47 3 10 0 NA
3000 5 0.00 23.38 0 0.00 962.87 60 1004 179 64
3000 6 0.00 96.77 0 0.00 1371.60 50 765 331 69
3000 7 0.00 248.83 0 0.00 1876.95 50 695 1084 75
3000 8 0.00 701.07 0 0.03 TL 42 368 0 76
3000 9 0.00 2693.32 0 0.01 TL 17 219 0 77
3000 10 0.00 2726.03 24 0.00 TL 21 145 62 80
3000 15 NA TL NA NA TL 1 4 0 NA
4000 5 0.00 32.39 0 0.00 9.56 3 0 0 71
4000 6 0.00 115.26 0 0.00 21.85 3 1 0 76
4000 7 0.00 1746.54 1017 0.00 70.61 5 7 18 77
4000 8 0.00 1035.95 0 0.00 177.57 8 8 0 77
4000 9 0.00 1655.19 0 0.00 218.38 3 2 0 79
4000 10 0.00 1824.23 0 0.00 300.02 1 2 0 79
4000 15 NA TL NA NA TL 0 5 0 NA
5000 5 0.00 53.21 0 0.00 53.51 22 82 50 75
5000 6 0.00 423.10 90 0.00 82.80 21 28 24 76
5000 7 0.00 1223.83 17 0.00 141.18 14 16 36 78
5000 8 0.00 2706.08 546 0.00 201.82 2 8 55 80
5000 9 0.00 3337.07 28 0.00 492.26 11 7 0 5 0 0 80
5000 10 0.00 3024.76 0 0.00 437.84 2 1 0 81
5000 15 NA TL NA NA TL 0 0 0 NA

Avg.: 3.23 1485.64 0.00 959.53
Max: 100.00 3888.52 0.03 3699.71
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Table A.8: Comparison of PF with BAC for |S| = 200 and costfactor = 105

PF BAC BAC Phase I BAC Phase II
|Ks| βw g1(%) time nodes g1(%) time lazy user nodes lazy user nodes |J |
1000 5 0.00 14.46 0 0.00 52.38 31 35 195 48
1000 6 0.00 62.97 0 0.00 268.96 31 70 206 9 0 0 62
1000 7 0.00 265.89 3 0.00 155.95 25 46 11 10 0 0 68
1000 8 0.00 2550.04 1079 0.00 2606.79 98 76 21161 11 0 0 66
1000 9 0.32 TL 3 0.00 969.98 46 56 1194 66
1000 10 100.00 TL 0 0.00 866.58 18 45 581 66
1000 15 NA TL 0 NA TL 0 12 0 NA
2000 5 0.00 31.43 0 0.00 1280.23 51 417 489 53
2000 6 0.00 147.28 0 1.52 TL 58 569 0 62
2000 7 0.00 TL 173 0.44 TL 133 974 1103 66
2000 8 0.00 2088.65 0 0.21 TL 43 589 10 64
2000 9 100.00 TL 0 0.00 TL 21 203 0 71
2000 10 100.00 TL 0 0.00 TL 13 53 0 70
2000 15 NA TL 0 NA TL 1 3 0 NA
3000 5 0.00 63.67 0 5.26 TL 170 368 23932 61 1186 0 58
3000 6 0.00 485.12 0 0.81 TL 42 439 0 66
3000 7 0.00 TL 144 2.75 TL 30 190 0 67
3000 8 100.00 TL 0 0.00 TL 14 63 0 71
3000 9 100.00 TL 0 0.00 TL 12 51 0 72
3000 10 100.00 TL 0 0.00 TL 7 36 0 76
4000 5 0.00 160.84 0 0.00 27.79 5 2 0 64
4000 6 0.00 575.42 0 0.00 45.32 3 3 0 68
4000 7 100.00 TL 0 0.00 264.77 17 8 47 74
4000 8 100.00 TL 0 0.00 335.08 5 6 86 74
4000 9 100.00 TL 0 0.00 3494.47 6 5 7 4 7 51 75
4000 10 NA TL 0 0.00 867.07 3 6 71 76
5000 5 0.00 673.09 25 0.00 69.24 14 30 92 66
5000 6 0.00 1903.53 0 0.00 264.90 14 25 50 69
5000 7 100.00 TL 0 0.00 463.73 17 21 151 75
5000 8 100.00 TL 0 0.00 TL 0 11 37 10 12 9 75
5000 9 100.00 TL 0 0.00 813.33 6 9 35 77
5000 10 NA TL 0 0.00 TL 0 6 11 8 9 0 78

Avg.: 42.87 2438.34 0.37 2236.12
Max: 100.00 3739.77 5.26 7207.33
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Table A.9: Comparison of PF with BAC for |S| = 200 and costfactor = 106

PF BAC BAC Phase I BAC Phase II
|Ks| βw g1(%) time nodes g1(%) time lazy user nodes lazy user nodes |J |
1000 5 0.00 12.64 0 0.00 9.75 18 14 0 68
1000 6 0.00 30.69 0 0.00 61.61 36 42 87 8 0 0 75
1000 7 0.00 79.90 0 0.00 66.85 28 28 13 9 0 0 77
1000 8 0.00 354.34 0 0.00 209.72 17 24 56 10 0 0 77
1000 9 0.01 TL 0 0.00 TL 26 51 91200 18 29 7044 76
1000 10 0.00 1782.33 0 0.00 484.39 7 25 45 74
1000 15 NA TL 0 0.00 TL 9 13 158 15 0 0 80
2000 5 0.00 24.26 0 0.00 804.65 56 641 83 56
2000 6 0.00 89.46 0 0.00 2546.39 57 1520 416 64
2000 7 0.00 1051.88 0 0.00 2201.05 47 861 243 68
2000 8 0.00 TL 147 0.00 3081.48 45 626 333 68
2000 9 100.00 TL 0 0.00 TL 18 101 0 73
2000 10 100.00 TL 0 0.00 TL 25 109 0 76
2000 15 NA TL 0 NA TL 1 4 0 NA
3000 5 0.00 134.59 0 0.00 1719.39 50 890 84 64
3000 6 0.00 388.46 0 0.00 2744.97 43 856 314 69
3000 7 0.00 1150.57 7 0.00 3051.89 45 553 2983 74
3000 8 0.00 1877.87 0 0.05 TL 40 302 0 76
3000 9 100.00 TL 0 0.00 TL 22 121 0 79
3000 10 100.00 TL 0 0.00 TL 13 44 0 83
4000 5 0.00 177.75 0 0.00 74.96 32 0 184 71
4000 6 0.00 747.65 0 0.00 66.64 5 9 0 76
4000 7 0.00 TL 361 0.00 138.63 7 8 25 77
4000 8 100.00 TL 0 0.00 306.16 5 9 38 78
4000 9 100.00 TL 0 0.00 343.61 3 3 0 80
4000 10 100.00 TL 0 0.00 500.06 2 2 0 79
5000 5 0.00 429.57 153 0.00 154.87 32 64 22 77
5000 6 0.00 1099.12 0 0.00 730.80 14 29 40 13 34 123 76
5000 7 0.00 2349.23 180 0.00 488.06 19 13 117 10 0 0 79
5000 8 0.01 TL 0 0.00 756.91 8 8 36 80
5000 9 NA TL 0 0.00 922.29 3 3 0 10 0 0 80
5000 10 NA TL 0 0.00 1404.04 3 3 0 81

Avg.: 25.00 2081.68 0.00 1758.44
Max: 100.00 3768.34 0.05 7226.77
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Figure A.13: LP solving times per instance for C1-C4
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Figure A.14: RPF solving times per instance for C1-C4
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Figure A.15: PF solving times per instance for C1-C4
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Figure A.16: Solving time of PF and BAC for |S| = 100, High cost

Figure A.17: Solving time of PF and BAC for |S| = 100, Low cost
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Figure A.18: Solving time of PF and BAC for |S| = 200, High cost

Figure A.19: Solving time of PF and BAC for |S| = 200, Low cost

38


