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Dear Leung, 

Please consider for publication in the AAPS Journal our manuscript entitled “Population model of 

serum creatinine as time dependent covariate in neonates”. Our objective was to develop a 

mechanistic population model describing the time course and variability of serum creatinine in 

neonates so it be used as part of full random effects models of renally cleared drugs. Our work is 

a continuation of population modeling of time variant covariates that we published in the AAPS 

Journal (AAPS J 21:68 (2019)) where a covariate of interest was the body weight. We believe our 

manuscript will be of interest to all modelers who need to deal with sparse or missing serum 

creatinine data for pediatric population models. We are looking forward to hearing from you about 

suitability of our manuscript for publication.  

Regards, 

Wojciech Krzyzanski 
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Abstract 1 

 2 
Serum creatinine (sCr) is a commonly measured and readily accessible biomarker to estimate 3 

glomerular filtration rate (GFR) and therefore widely used as a covariate in population 4 

pharmacokinetic models of renally excreted drugs. In neonates sCr dynamically changes during 5 

the first few weeks after birth. Missing covariates are a common problem in pharmacokinetic 6 

modeling of neonates due to limited availability of blood sampling in number and volume. The 7 

objective of this work is to develop a parsimonious population model describing time courses of 8 

sCr in neonates with the intent to be incorporated in pharmacokinetic models of various drugs 9 

where sCr values are sparse or missing. The data for model development consisted of sCr 10 

measurements in 1080 newborns with a gestational age of 24-42 weeks. The model is based on the 11 

assumption of a steady state pharmacokinetic model of sCr that involves GFR, back-flow of 12 

creatinine from the renal tubules, and urinary flow. Our model uses only gestational age (GA) as 13 

covariate explaining between-subject variability of sCr. The model adequately describes distinct 14 

features of the sCr time course such as a peak and decline to a plateau. For a neonate with a GAof 15 

35 weeks, the typical value of sCr at birth was 0.584 mg/dL, the peak occurred 2.3 days after birth 16 

and its value was 0.794 mg/dL, to reach a plateau of 0.255 mg/dL approximately after 24.7 days. 17 

Model simulations reveal that in neonates with a similar postnatal age, sCr decreases with 18 

increasing GA. In summary, our model is designed to be a part of full random effects 19 

pharmacokinetic models where sCr is a significant covariate. 20 

 21 
 22 
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Introduction 25 
 26 
Selection of an optimal dose of drugs for use in neonates is challenging since drug 27 
pharmacokinetics is highly variable due to postnatal development of body organs and their 28 

functions. The U.S. FDA has issued specific guidelines for clinical studies in neonates implicating 29 
gestational age (GA) at birth, and postnatal age (PNA) as essential components of any clinical 30 
pharmacology assessment because these two factors can alter the pharmacokinetics (PK) and 31 
pharmacodynamics (PD) of a drug (1, 2). Glomerular filtration rate (GFR) is the key contributor 32 
to renal clearance of drugs. Renally cleared drugs encompass antibiotics (e. g. amikacin, 33 

gentamicin, vancomycin), analgesics (e.g. morphine), antiarrhythmics (e.g. digoxin), and diuretics 34 
(e.g. chlorothiazide) or pharmacodynamically relevant metabolites, like α-hydroxy-midazolam or 35 
morphine-6-glucuronide. Serum creatinine (sCr) is a commonly measured and readily accessible 36 
biomarker to estimate GFR.  37 

 38 

Creatinine is a by-product of muscle metabolism in which creatine in the muscle is converted non-39 

enzymatically to creatinine. Creatinine is cleared from the plasma almost exclusively by 40 

glomerular filtration with minimal active secretion by the renal tubules. In the first days after birth 41 

a significant tubular creatinine reabsorption is present leading to a peak in sCr. This phenomenon 42 

is attributed to back-flow of creatinine across leaky immature tubular and vascular structures that 43 

vanishes with time when maturational renal changes impose a barrier to creatinine (3). After the 44 

peak, sCr decreases with PNA to reach a plateau during infancy. Although nephrogenesis is 45 

completed before term birth, the kidney continues to mature both from a functional and anatomical 46 

point of view potentially through increased filtration surface area, capillary growth, blood flow 47 

characteristics and maturation of tubular cells (4). 48 

SCr is used as a covariate in population pharmacokinetic models of drugs in neonates (5-6). Blood 49 

sampling in neonates is limited and measurements of sCr are sparse, resulting in missing data. 50 

Missing time dependent covariates create a particular challenge for population modeling of 51 

pharmacokinetic data. One of the recommended solutions to account for missing observations is a 52 

full random effects model (FREM) that consists of a mathematical model describing the time 53 

course of the covariate that is combined with a PK model (7). Then the missing covariate 54 

observations are generated by the covariate model that is consistent with available data and a mixed 55 

effects pharmacokinetic model. 56 

The objective of this work is to develop a mechanistic population model describing the time course 57 

and variability of sCr in neonates with GAs from 24 weeks onwards during the first 42 days after 58 

birth. Our intention is that our model will be used as part of future full random effects models of 59 

renally cleared drugs in neonates rather than to derive sCr reference ranges to facilitate monitoring 60 

and evaluation of kidney function in neonates (8).   61 

 62 

Methods 63 

Data 64 

Two data sets were used for our analysis: one for model development and another for model 65 

qualification. The data for model development consisted of measurements of individual sCr values 66 

https://www.sciencedirect.com/topics/engineering/creatinine
https://www.sciencedirect.com/topics/engineering/creatinine
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at varying postnatal ages (PNA), gestational ages (GA), and birth weights (BWT) collected from 67 

neonates admitted to the neonatal intensive care unit (NICU) of the University Hospitals Leuven 68 

(Belgium) between 2007 and 2011 and previously published as results of a retrospective study (9). 69 

The data were reduced by the following inclusion criteria: neonates with a GA of at least 24 weeks 70 

with at least one measurement of sCr during 42 days after birth and sCr value ≤ 2 mg/dL. The final 71 

dataset consisted of 1080 subjects with 7977 sCr observations. A spaghetti plot of individual sCr 72 

is shown in Fig. 1. The GA distribution ranged from 24 to 42 weeks with a median of 35 weeks 73 

and an interquartile range (IQR) between 31and 38 weeks. The BWT distribution ranged between 74 

370 and 4860 g with a median of 2300 g and an IQR between 1486 and 3203 g. Frequency 75 

histograms of GA and BWT distributions are shown in Fig. 2. The scatter plot of BWT vs GA is 76 

shown in Fig. 3. No additional covariates were included in the analysis.  77 

The data for model qualification were retrieved from an additional dataset of a retrospective study 78 
that explored postnatal albumin trends, but co-collected sCr values. This dataset included all 79 

neonates admitted to the NICU of the University Hospitals Leuven between June 2015 and March 80 
2017 whose albumin data were available. The dataset was reduced using the same inclusion criteria 81 

as for the development dataset. The final qualification dataset consisted of 765 subjects with 5095 82 
sCr observations. A spaghetti plot of individual sCr is shown in Fig. 1. The GA distribution ranged 83 
between 25 and 42 weeks with a median of 35 weeks and an IQR between 33 and 38 weeks. The 84 

BWT distribution ranged between 1014 and 6000 g with a median of 2505 g and an IQR between 85 
1860 and 3200 g. Frequency histograms of GA and BWT distributions are shown in Fig. 2. No 86 

additional covariates were included in the analysis. 87 
 88 

Creatinine assays 89 

The isotope dilution mass spectrometry (IDMS)-traceable enzymatic assay was used to measure 90 

serum creatinine concentrations (10). The colorimetric Jaffe assay is also broadly used for 91 

creatinine measurements (10). The enzymatic assay is preferable over the Jaffe assay in neonates 92 

and young infants due to potential interference with bilirubin. Hyperbilirubinemia is common in 93 

this population (9,11). sCR measurements prior to 2012 were based on the IDMS enzymatic CREA 94 

PLUS assay on the Modular P (Roche, Mannheim, Germany). In 2012 the CREA PLUS assay was 95 

replaced by the enzymatic CREP2 assay on the Cobas c702 (Roche, Mannheim, Germany) by the 96 

local lab. It has been reported that the CREP2 assay overestimated sCR in relation to the CREA 97 

PLUS assay and the following linear regression relationship has been established (12): 98 

sCrCREP (μmol/L) = 0.997 ∙ sCrCREA(μmol/L) − 5.011                               (1) 99 

Consequently, we corrected the qualification sCr (sCrqual) using the inverse relationship Eq. (1): 100 

sCrqual = 1.003 ∙ sCrdevel + 0.057                                         (2) 101 

where sCrdevel denotes the sCr values from the development data set. The creatinine molecular 102 

weight of 113.12 g/mol was assumed.  103 

Quasi steady state pharmacokinetic model for serum creatinine 104 
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We adopted a mechanistic pharmacokinetic model of renally cleared drugs which exhibit 105 

reabsorption as developed by Felmlee at al. (13). A schematic diagram of the model for sCr in 106 

neonates is shown in Fig. 4. Serum creatinine is secreted from the muscle at a rate ksynthat depends 107 

on the muscle mass. Given that the muscle mass changes much slower than the changes in 108 

creatinine clearance by the kidney, we assume that ksynis constant. Creatinine is cleared from 109 

plasma by glomerular filtration. Since glomerular filtration rate GFR(t) increases with the infant 110 

age, we assume it is time dependent and subject to a separate model presented in the following 111 

section. Creatinine in the renal tubules (rtCr) is secreted into urine by the urinary flow UF. Based 112 

on an increase in sCr during the first days after birth, we have attributed this phenomenon to a 113 

transient back flow of the creatinine from the renal tubules to the plasma Q(t) (2). The back flow 114 

vanishes after several days as the kidney of the neonate matures. We have introduced an empirical 115 

model for transient changes of Q(t) in the section below. The model equations are as follow: 116 

Vp
dsCr

dt
= ksyn − GFR(t) ∙ sCr + Q(t) ∙ rtCr                               (3) 117 

Vrt
drtCr

dt
= GFR(t) ∙ sCr − Q(t) ∙ rtCr − UF ∙ rtCr                        (4) 118 

where Vpand Vrt are the creatinine plasma and renal tubules volumes, respectively. The half-life 119 

of creatinine in plasma is in the order of hours. Indeed, for a typical term neonate with a BWT of 120 

2.5 kg, and a BSA of 0.18 m2 the GFR at birth is approximately GFR0 = 3.1 ml/min (8). Given the 121 

plasma volume Vp of 1250 mL, the calculated half-life (t1/2) is 4.6 h. On the other hand, a change 122 

in the sCr baseline reflects kidney maturation in the order of days if not weeks as seen in Fig. 1. 123 

In view of a many fold difference in the time scales present in our model, we have looked for a 124 

solution using a quasi-steady state assumption: 125 

Vp

GFR0

dsCr

dt
= 0    and     

Vrt

GFR0

drtCr

dt
= 0                                                     (5) 126 

that yields 127 

𝑠Cr = (1 +
Q(t)

UF
)

ksyn

GFR(t)
                                                         (6) 128 

Derivation of Eq. (6) is shown in Appendix 1. 129 

Model for GFR(t) 130 

In our study the observed sCr decreases after birth to reach a plateau at 30-40 days after birth. This 131 

implies that GFR(t) increases with time (t) to reach a steady-state GFRss. Therefore, we selected 132 

the sigmoidal Emax model to describe the time course of GFR in infants (14) 133 

GFR(PNA) = GFR0 +
(GFRss−GFR0)∙PNAγ

PNA50
γ

+PNAγ
                                       (7) 134 

where GFR0 is the glomerular filtration rate at birth, PNA50 is the time after birth at which 50% of 135 

GFRss is reached, and γ is the Hill coefficient. Since sCr in the both datasets were observed as 136 

functions of PNA with day as unit, we replaced the time after birth t with PNA. A hypothetical 137 

plot of GFR vs. PNA is shown in Fig. 5.  138 
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Model for Q(t) 139 

The back-flow of creatinine from the renal tubules to the plasma Q(t) was modeled by the truncated 140 

Gaussian distribution function designed to control its onset, peak and a gradual disappearance: 141 

Q(PNA) = Qmax ∙ exp (−
K2

2
∙ (PNA − PNAp)

2
)                                  (8) 142 

where Qmax is the peak of the back flow that occurs at time PNAp. The parameter K is the time 143 

scale factor that controls the width of Q (1/K is equal to the standard deviation of the Gaussian 144 

distribution). As for GFR we replaced the time t with PNA. A hypothetical plot of Q vs. PNA is 145 

shown in Fig. 5. 146 

Identifiability of model parameters 147 

Substitution of Eqs. (7) and (8) for GFR(t) and Q(t) into Eq. (6) provides insights on identifiability 148 

of the model parameters based on sCr observations: 149 

sCr = (
Qmax

UF
∙ exp (−

K2

2
∙ (PNA − PNAp)

2
))

ksyn GFR0⁄

1 +
(GFRss/GFR0 − 1) ∙ PNAγ

PNA50
γ

+ PNAγ

 150 

Therefore, the structurally identifiable parameters (15) are Qmax UF⁄ , PNAp, K, GFRss/GFR0, 151 

ksyn/GFRk0, PNA50, and γ.  152 

Random effects models 153 

All identifiable model parameters (P?)were assumed to be log-normally distributed among 154 

subjects: 155 

P = θPexp(ηP)  and ηP~N(0, ωP
2)                                              (9) 156 

where P ∈ {Qmax UF⁄ ,PNAp, K, GFRss/GFR0, ksyn/GFRk0, PNA50, γ}.  Serum creatinine 157 

observations for subject i time tj sCrijwere log-transformed and the constant residual error was 158 

assumed:  159 

log(sCrij) = log(sCr(tj)) + εij  and εij~N(0, σ2)                        (10) 160 

Covariate models 161 

The two available covariates GA and BWT were highly correlated with the Pearson correlation 162 

coefficient r = 0.91 (see Fig. 3). Therefore, only one covariate at the time was used for a covariate 163 

relationship with the model parameters. We assumed linear models for all relationships: 164 

P = (θP + θCOV_P(COV − COVmean)) exp(ηP)                                (11) 165 

where COV ∈ {GA, BWT}. The forward-inclusion backward-elimination technique for covariate 166 

selection was applied (16). We used the log-likelihood ratio test of the change in the objection 167 
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function value with significance levels for inclusion and elimination 0.001 and 0.0001, 168 

respectively.   169 

Assessment of model performance 170 

We evaluated the final model performance by applying pre-specified criteria for maximization of 171 
the likelihood, precision of parameter estimation (relative standard errors, RSEs), and goodness-172 

of-fit plots, such as predicted vs observed and conditional individual weighted residuals 173 
(CIWRES) vs PNA plots. Additionally, our model predictive performance was tested using the 174 
visual predictive check (VPC) method (17). To obtain VPC, 100 simulations of the data were 175 
performed with parameters estimates from the final model. Simulated 5th, median, and 95th 176 
percentiles and their 95% CIs were compared with observed values. 177 
 178 
Model qualification 179 

To assess our model predictive performance we used the qualification dataset. The VPC method 180 
was applied to compare model predictions with observations as described above. The predictive 181 

performance of the final model was numerically evaluated by calculating mean prediction error 182 
(MPE) to assess prediction bias and mean absolute prediction error (MAPE) to estimate 183 

prediction accuracy: 184 

MPE =
1

∑ ni
N
i=1

∑ ∑
sCr(PNAij)−sCrij

sCrij

ni
j=1

N
i=1                                            (12) 185 

MAPE =
1

∑ ni
N
i=1

∑ ∑
|sCr(PNAij)−sCrij|

sCrij

ni
j=1

N
i=1                                            (13) 186 

 187 

Software 188 
 189 

All models were implemented in NONMEM 7.4 (ICON Development Solutions, Ellicott City, 190 

MD). Population model parameters were estimated using the first order conditional estimation 191 

(FOCE) method with η-ε interaction. The model performance diagnostic plots were obtained using 192 

R packages ggplot2, lattice, and vpc (18) implemented in RStudio version 1.2.5033 (RStudio Inc., 193 

Boston, MA).  194 

 195 

Results  196 

Parameter estimation for the base model 197 

The model without covariate relationships (base model) was fitted to the log-transformed sCr data. 198 

The estimates of the population parameters are listed in Table 1. The relative standard errors 199 

(%RSEs) of estimates of the typical values of all model are within the range 1.2%-5.3%. The RSEs 200 

for estimates of inter-individual variability (IIV) parameters were less than 19%. The observed vs. 201 

predicted diagnostic plots did not show signs of model misspecification (data not shown). 202 

Covariate analysis 203 

Individual estimates of the base model fixed effects parameters were correlated with two available 204 

covariates GA and BWT. Only parameters with a correlation coefficient r2 < 0.1 were added to 205 
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the model to test for significance. Since the model performance (measured as the change in the 206 

objective function value) was slightly better for GA then BWT we selected GA as the only 207 

covariate contributing to the explanation of the data variability. We did not consider using both 208 

covariates as they were highly correlated (see Fig. 3). Table 2 shows successful steps in the 209 

covariate selection process. GA significantly contributed to IIV of the following parameters 210 

Qmax/UF, PNAp,  GFRss/GFR0, ksyn/GFR0, and PNA50.  The parameter GFRss/GFR0 failed the 211 

inclusion criteria for forward selection (P=0.0013) and backward elimination (P=0.00063) by 212 

narrow margins. However, given the importance of both GFRss   and GFR0 in controlling the sCr 213 

curve we decided to include it in the final model.  214 

Final model 215 

The estimates of the final model parameters are shown in Table 1. Addition of covariate not only 216 

decreased the objective function value, but also reduced the IIV of all parameters. The RSEs of 217 

fixed effects model parameters do not increase compared to the base model and are in the range 218 

1.2%-5.3%. The RSEs of estimates of the IIV parameters are less than 14%. The observed vs. 219 

predicted diagnostic plots are shown in Fig. 6. They confirm the population model captured the 220 

trend in the data as well as the individual sCr vs. time profiles. The visual predictive check plot 221 

shown in Fig. 7 assesses the model ability to describe variability in sCr data. The 95% confidence 222 

intervals for model predicted 5th, 50th, and 95th percentiles of observed sCr at any moment of time 223 

are very narrow but still close to or covering the observed percentiles. The model slightly 224 

underpredicted the 95th observed sCr percentile for infants of postnatal ages 5 to 15 days. Overall, 225 

the population model well captured the variability in the observed data. 226 

The model estimate of the peak time in sCr coincides with the backflow peak time at 2.42 days. 227 

The peak back flow is estimated to be 57.5% of the urinary flow. The average duration of the back 228 

flow expressed as PNAp+2/K is 5.2 days. The estimate of the typical value of  GFRss/GFR0 is 1.97 229 

implying that GFR increases almost two-fold from its value at birth and 50% of this increase occurs 230 

on average at 18.5 days of postnatal age. The Hill coefficient of 3.57 indicates a sigmoidal shape 231 

of GFR vs. PNA curve with an inflection point at PNA50.  232 

Model qualification 233 

VPC plot of the final model predictions overlaid with sCr observations from the qualification 234 

dataset is shown in Fig. 8. The median observations are well captured whereas the 95th
 percentile 235 

is slightly over predicted for days 8-13 and 20-27 and the 5th percentile is under predicted for days 236 

6-10. The over and under predictions are noticeable but acceptable. The MPE = -0.0021 and 237 

MPAE=0.0651 values indicate no bias and high accuracy of the model predictions. Overall, the 238 

final model satisfactory well described the qualification data. 239 

Simulations 240 

We used the estimated parameters to simulate time courses of sCr, GFR/GFR0, and Q/UF for the 241 

typical subject with a GAmeanof 34.2 weeks and representative neonates with 𝑎 GA of 25 weeks 242 

(extremely preterm), 30 weeks (very preterm), 35 weeks (preterm), and 40 weeks (term). The 243 
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simulated curves are shown in Fig. 9 and Fig. 1S. In general terms, sCr decreases with increasing 244 

GA. The peak time becomes shorter and the peak value smaller. For GA of 40 weeks one can 245 

hardly observe a peak. The sCr at birth (sCr0), peak time (PNAmax), peak (sCrmax), and steady-state 246 

(sCrss) parameters characterizing sCr vs PNA curve are listed in Table 3 as functions of GA. The 247 

relationship between GFR and GA is the opposite of one for sCr. The GFR increases with 248 

increasing GA. Since we were able only to simulate GFR/GFR0 values, all curves start at 1 at birth 249 

and increase to reach steady state GFRss/GFR0. The steady state value is higher for neonates with 250 

greater GA. Also, the time to reach 50% of GFRss is shorter for such subjects. The values of 251 

GFRss/GFR0 and PNA50 as functions of GA are listed in Table 3. Finally, the simulations of  Q/UF 252 

for different GA values are shown in Supplementary Materials Fig. 1S. The peak time of the back 253 

flow PNAp and the peak value Qmax/UF decrease with increasing GA.  The values of Qmax/UF  254 

and PNAp as functions of GA are listed in Table 3.   255 

Discussion 256 

Many publications providing reference values for sCr in neonates and other pediatric populations 257 

are available. A statistical approach was to pool all observations, often allowing only one 258 

measurement per subject, and apply regression analysis to determine a mathematical relationship 259 

between sCr and subject age. Various empirical curves such as fractional polynomials (19), and a 260 

broken stick (19) were used to describe the data. The naïve pooled data approach is unable to 261 

quantify various sources of variability and does not permit additional covariates as explanatory 262 

variables. Moreover, discarding serial individual sCr measurements resulted in neglecting the 263 

presence of a peak in sCr during 2-3 days after birth (see for example (20)).  264 

Only recently a nonlinear mixed effects modeling approach has been applied to provide GA-265 

adjusted reference values in extremely low birth weight neonates (8). Besides GA, and BWT, 266 

current body weight, delivery mode, and treatment with ibuprofen or inotropic agents were 267 

considered as covariates for quantifications of data variability.  The mathematical model used for 268 

description of sCr time course in neonates employed a mechanistic turnover model where 269 

creatinine is synthesized by the muscle and cleared by the kidneys. The time-dependent 270 

reabsorption term in the creatinine clearance accounted for the peak in sCr data. We applied the 271 

same nonlinear mixed-effects statistical approach to a larger population based on data retrieved 272 

form the same retrospective clinical studies (9). However, our mathematical model is 273 

fundamentally different from the turnover model. Also, our objectives were not to provide GA-274 

adjusted reference values for sCr in neonates but rather to develop a parsimonious model of time-275 

dependent sCr that can be implemented in pharmacokinetic models of therapeutic agents as a 276 

covariate contributing to the clearance variability in neonates.  277 

Our initial model describing sCr time courses in neonates was a simplification of mechanistic 278 

pharmacokinetic models for renally cleared drugs with reabsorption (13). We added a zero-order 279 

production rate ksyn of creatinine and assumed a time dependent reabsorption from the renal tubules 280 

Q(t). After simulating sCr for a typical term neonate we observed that the changes in the sCr time 281 

course occurred much faster than in the observed data. This prompted us to consider a quasi steady 282 

state approximation of the pharmacokinetic model where the time dependent GFR(t) reflects 283 

kidney maturation and sCr is a direct function of GFR(t) and it is not described by a 284 
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pharmacokinetic system of differential equations. While ksyn and the urinary flow UF were 285 

assumed to be constant, we tested various functions to describe Q(t) and GFRT(t). These included 286 

the Bateman function, truncated gamma and normal probability density functions for Q(t) and 287 

logistic growth and sigmoidal Hill functions for GFR(t).  288 

Because of the quasi steady state, we were able to estimate parameters describing Q(t) peak and 289 

GFR(t) steady state relative to UF and GFR0, respectively. The time characteristics of Q(t) such as 290 

the peak time and duration of the back-flow were well estimated as well as the PNA50 that informs 291 

about the time to reach 50% of the GFR steady state. The typical value of 18.4 days is the time 292 

scale for kidney maturation that should be compared to the sCr half-life of 4.6 h when explaining 293 

the nature of the sCr dynamics in neonates. PNA50 allows us calculation of the time to reach 90% 294 

of GFRss PNA90=101/PNA50 =38.9 days. This value can be compared to the 65 day period 295 

necessary to reach sCr steady-state reported by Boer et al. (20). As our data set ended at 42 days 296 

of PNA, it possible that the PNA90 is shortened and does not reflect the actual time to reach the 297 

GFR values observed in infants. 298 

In our model ksyn represents the production of creatinine by the muscle that is assumed to be 299 

constant. Brion et al. (21) reported the muscle mass as percentage of body weight in two groups 300 

of infants PNA of 7 days and PNA 14-56 days as 17.2±1% (~245 g) and 19.6±1.1% (~254 g), 301 

respectively, for premature infants (25 ≤ GA≤ 34) and term infants (38 ≤ GA≤ 42) 21.3±1.3 % 302 

(~707 g) and 22.2±1.6% (~1072 g), respectively. This implies only a 3.7% increase in the muscle 303 

mass for neonates of GA ≤ 34 weeks, but a 51.6% increase for infants of GA ≥ 38 weeks. 304 

Consequently, ksyn values for patients in this GA group might have been about 50% higher at PNA 305 

> 14 days than assumed in our model, introducing a bias in the estimates of ksyn/GFR0 and 306 

GA_ksyn/GFR0 parameters. This calls for a future refinement of our model that should have ksyn 307 

that depends on time similarly to GFR. Another factor in our model contributing to sCr is the 308 

urinary flow UF that is assumed to be constant. Gubhaju et al. (4) reported the urinary output for 309 

pre-term neonates of GA less 36 weeks. During first 7 days PNA, there was no changes in the 310 

urinary output for all GA groups. However, on days 14, 21, and 28 the infants in the group 32 ≤ 311 

GA≤ 36 showed an increased the urinary output about 5 mL/kg/h whereas the remaining GA 312 

groups showed no change and remained at the level of 4 mL/kg/h. These data suggest that UF is 313 

relatively constant for neonates with lower GA and keeps increasing for patients with GA ≥ 32 314 

weeks. Since UF is present in Eq. (6) as the ratio Q(t)/UF and Q(t) vanishes after first week of 315 

PNA (see Fig. 1S), the reported increase in UF does not affect our predicted sCr.  316 

Our simulations of sCr and GFR/GFR0 vs PNA show a strong dependence of these markers on 317 

GA. sCr profile exhibits three phases: a peak that lasts about a week, a decline to a plateau that 318 

lasts about two to three weeks, and a plateau itself that starts at three to four weeks of PNA. The 319 

sCr level decreases with increasing GA except during first few days after birth when this trend is 320 

reversed. A decrease in sCr with GA for neonates of PNA = 7 days was reported by Go et al. (22). 321 

For later PNA, the impact of GA on sCr is in concordance with reports of reference values for 322 

neonates with similar PNA where the sCr values for premature infants are higher than ones for 323 

term infants (23). It is noteworthy to observe that the sCr peak diminishes with increasing GA both 324 

in the amplitude and the peak time to be virtually absent in neonates of GA ≥ 40 weeks. Our 325 
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simulations show that GFR increases with PNA to a plateau in a sigmoidal rather than hyperbolic 326 

fashion. During the first week after birth, the GFR increase is minimal to speed up between the 327 

second and third week of PNA to slow down before reaching the plateau. Our model has flexibility 328 

to account for both types of the GFR increase due to the presence of the shape Hill coefficient . 329 

Any value of   ≤ 1 would result in the hyperbolic behavior of the GFR vs PNA curve while  > 1 330 

yields sigmoidicity. Our data supported the latter. Similarly to sCr, the GA strongly impacts the 331 

GFR plateau values as well as the time to reach the plateau. For neonates of a given PNA, GFR 332 

increases with GA, and the time to reach the plateau decreases.  333 

Missing data is a common problem in pharmacokinetic modeling of neonates due to limited 334 

availability of blood sampling and small volume of blood. Covariates such as body weight, GA, 335 

sCr are used to explore and explain between and within-subject variability of pharmacokinetic 336 

parameters. If a covariate does not change during the duration of the study, it can be measured 337 

once. However, in neonates covariates such as body weight and sCr vary in time, particularly in 338 

the first weeks after birth. Implementation of covariates in a mixed effects model requires 339 

knowledge of their values at each observation time. When such values are missing statistical 340 

techniques such as data imputation are used to account for the absent covariate. The pros and cons 341 

data imputation are discussed elsewhere (24). Full random effects model (FREM) has been 342 

proposed as an alternative approach (7). We have applied FREM to account for missing body 343 

weight measurements in a pharmacokinetic model of paracetamol in neonates (25).  One of the 344 

biggest challenges for FREM of time-dependent covariates is that a covariate model is often more 345 

complex than a pharmacokinetic model. On the other hand, covariate models are drug independent 346 

and therefore they are universal. Once developed, they can be applied to the same or similar patient 347 

population together with various pharmacokinetic models. Hence, there is a need for parsimonious 348 

and simplistic models of time-dependent covariates. The presented here population model has been 349 

developed to fulfill this need for sCr in neonates. We plan to demonstrate the utility of our model 350 

in a future analysis of amikacin data in neonates.  351 

In summary, we have developed a semi-mechanistic population model describing time courses of 352 

sCr in neonates with a GA greater than 24 weeks. Our model used only GA as a covariate 353 

explaining between subject variability of sCr. The model is based on the quasi steady state 354 

assumption for a pharmacokinetic model of sCr that involves GFR, back-flow of creatinine from 355 

renal tubules, and UF. The model adequately describes distinct features of sCr time course such as 356 

a peak and decline to a plateau. Model simulations reveal that in neonates of similar PNA, sCr 357 

decreases with increasing GA. The model was built with intent to be applied together with 358 

pharmacokinetic models of various drugs in neonates where sCr are sparse or missing.     359 

 360 

Appendix 1 361 

Derivation of the quasi-steady state Eq. (6) 362 

Dividing Eqs. (3)-(4) by GFR0, one can obtain the time scale for creatinine clearance Vp/GFR0 363 

that is equal to 0.3 days for a typical term neonate of BWT =2.5 kg. If the time scale for GFR(t) 364 
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due to kidney maturation is several days or longer, the factor Vp/GFR0 will be proportionally 365 

decreased, justifying the quasi-steady state assumption Eq. (5). Consequently, 366 

0 =
ksyn

GFR0
−

GFR(t)

GFR0
∙ sCr +

Q(t)

GFR0
∙ rtCr                                     (A1) 367 

0 =
GFR(t)

GFR0
∙ sCr −

Q(t)

GFR0
∙ rtCr −

UF

GFR0
∙ rtCr                                 (A2) 368 

One can add Eqs. (A1) and (A2) side by side and arrive at 369 

0 =
ksyn

GFR0
−

UF

GFR0
∙ rtCr                                               (A3) 370 

Hence 371 

rtCr =
ksyn

UF
                                                           (A4) 372 

On the other hand, solving Eq. (A2) for yields 373 

sCr = (UF + Q(t))
rtCr

GFR(t)
                                             (A5) 374 

Substituting rtCr from Eq. (A4) into Eq. (A5) results in Eq. (6). 375 

 376 
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Table 1.  Estimates and their percent relative standard errors (%RSE) of the population parameters for the base and final models. 

Estimates of IIV parameters are presented as variance and coefficient of variation for lognormal distribution (%CV*). 

Parameter Estimate of θP(%RSE) 

Base 
Estimate of ωP

2   

(%RSE, %CV)   

Base 

Estimate of θP(%RSE) 

Final 
Estimate of ωP

2  

(%RSE, %CV)  

Final 

PNA50, day 18.4 (4.0) 0.427 (12.4, 73.0) 18.5 (3.0) 0.145 (12.2, 39.5) 

GFRss/GFR0 2.09 (1.8) 0.0215 (18.5, 14.7) 1.97 (1.8)  0.0141 (18.9, 11.9) 

ksyn/GFR0, dL/mg 0.55 (1.2) 0.0259 (9.3, 16.2) 0.516 (1.2) 0.0169 (8.5, 13.1)  

γ  3.08 (5.3) 0.431 (13.0, 73.4) 3.57 (5.3) 0.52 (11.8, 82.6) 

K, 1/day 0.77 (3.8) 0.229 (13.5, 50.7) 0.709 (3.3) 0.207 (13.9, 48.0) 

PNAp, day 2.52 (2.4) 0.22 (19.0, 49.6) 2.42 (1.5)  0.11 (7.0, 34.1) 

Qmax/UF  0.496 (3.3) 0.154 (11.6, 40.8) 0.575 (3.2) 0.153 (9.4, 40.7) 

GA_PNAp, day/week NA NA -0.0747 (4.8) NA 

GA_PNA50, day/week NA NA -0.0547 (16.9) NA 

GA_ksyn/GFR0, dL/mg/week NA NA -0.0255 (7.9)  NA 

GA_GFRss/GFR0, 1/week NA NA 0.00763 (30.9) NA 

GA_Qmax/UF , 1/week NA NA 0.0178 (27.9) NA 

σ2  0.0153 (2.2) NA 0.0151 (2.2) NA 

* %CV = 100%√exp(ωP
2) − 1 

** Parameter was fixed 

NA = not applicable  

GFRss = glomerular filtration rate (GFR) value at steady state ; GFR0 = GFR value at birth; PNA50 = postnatal age (PNA) at which 

GFR is equal to 50% of GFRss;  ksyn = sCr synthesis rate constant; γ = Hill factor; K= time scale factor that controls the width of the 

back-flow curve Q; PNAp = PNA at the back-flow peak; Qmax= back-flow peak value; UF=urinary flow; GA_PNAp= slope in the 

covariate relationship between PNAp and GA; GA_PNA50= slope in the covariate relationship between PNA50 and GA; GA_ksyn/GFR0 

=  slope in the covariate relationship between ksyn/GFR0 and GA; GA_GFRss/GFR0 =  slope in the covariate relationship between 

GFRss/GFR0 and GA; GA_Qmax/UF =  slope in the covariate relationship between Qmax/UF and GA; σ2= variance of residual error for 

sCr observations; 
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Table 2.  Objective function value (OFV) and its change (OFV) for the successful steps of the forward-inclusion covariate selection 

process and the final model in the backward elimination process. P value is calculated for the chi square distribution of |OFV| with one 

degree of freedom. 

 

Covariate relationship OFV (OFV) P 

Base model -18275.6 (0) NA 

GA_PNAp -18682.4 (-424.8) 2.20E-94 

GA_PNAp & GA_PNA50 -19049.2 (-366.8) 9.31E-82 

GA_PNAp & GA_PNA50 & GA_ksyn/GFR0 -19300.0 (-250.8) 1.74E-56 

GA_PNAp & GA_PNA50 & GA_ksyn/GFR0& GA_GFRss/GFR0 -19319.9 (-10.4) 0.0013 

𝐆𝐀_𝐏𝐍𝐀𝐩 & 𝐆𝐀_𝐏𝐍𝐀𝟓𝟎 & 𝐆𝐀_𝐤𝐬𝐲𝐧/𝐆𝐅𝐑𝟎& 𝐆𝐀_𝐆𝐅𝐑𝐬𝐬/𝐆𝐅𝐑𝟎& 𝐆𝐀_𝐐𝐦𝐚𝐱/𝐔𝐅 -19330.3 (-26.2) 3.08E-07 

                     GA_PNA50 & GA_ksyn/GFR0& GA_GFRss/GFR0& GA_Qmax/UF -18962.6 (367.7) 5.93E-82 

GA_PNAp &                       GA_ksyn/GFR0& GA_GFRss/GFR0& GA_Qmax/UF -19270.3 (60.0) 9.49E-15 

GA_PNAp & GA_PNA50 &                             GA_GFRss/GFR0& GA_Qmax/UF -19162.8 (168.3) 1.74E-38 

GA_PNAp & GA_PNA50 & GA_ksyn/GFR0&                                GA_Qmax/UF -19318.612 (11.7) 0.00063 

 

NA = not applicable  

GA_PNAp= slope in the covariate relationship between PNAp and GA; GA_PNA50= slope in the covariate relationship between 

PNA50 and GA; GA_ksyn/GFR0 =  slope in the covariate relationship between ksyn/GFR0 and GA; GA_GFRss/GFR0 =  slope in the 

covariate relationship between GFRss/GFR0 and GA; GA_Qmax/UF =  slope in the covariate relationship between Qmax/UF and GA; 
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Table 3.  The parameters characterizing sCr, GFR/GFR0, and Q/UF vs PNA curves calculated for 

the indicated values of GA. 

GA, weeks 25 30 35 40 

sCr0, mg/dL 0.643 0.598 0.584 0.589 

PNAmax, days 4.1 3.2 2.3 1.4 

sCrmax, mg/dL 1.04 0.914 0.794 0.679 

sCrss, mg/dL  0.35 0.30 0.255 0.214 

GFRss/GFR0 1.83 1.91 1.98 2.06 

PNA50, days 27.8 22.8 11.7 12.7 

Q0/UF  0.00941 0.0468 0.154 0.337 

Qmax/UF 0.630 0.60 0.571 0.543 

PNAp, days 4.09 3.19 2.28 1.38 

 

sCr0=sCr at birth; PNAmax= PNA at sCr peak; sCrmax= sCr peak value; sCrss=sCr at steady state; 

GFRss = GFR value at steady state; GFR0 = GFR value at birth; PNA50 = PNA at which GFR is 

equal to 50% of GFRss;  PNAp = PNA at the back-flow peak; Q0= back-flow value at birth; 

Qmax= back-flow peak value; UF=urinary flow; 
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Figure legends 

Fig. 1. Time courses of individual serum creatinine sCr measurements for 1083 patients from the 

development dataset (upper panel) and the 765 patients from the qualification dataset (lower 

panel). The bold line is the mean of observed values. 

Fig. 2.   Frequency histograms of distributions of gestational age  and birth weight  in the 

population of (pre)term neonates from the development dataset (upper panels) and qualification 

dataset (lower panels) (Q1, Q2 and Q3 indicated) 

Fig. 3. Scatter plot between the body weight at birth BWT and the gestational age GA for subjects 

in the study. The LOESS line is red. The regression line is added to the plot for assessment of the 

linearity.  

Fig. 4. Schematic diagram of pharmacokinetic model of creatinine. Serum creatinine (sCr) is 

synthesized from the muscle at a zero-order rate (ksyn) and cleared by the kidney glomerular 

filtration (GFR(t)) into the renal tubules (rtCr). The creatinine from the renal tubules is excreted 

into the urine by the urinary flow (UF). Transiently, rtCr is also secreted into the plasma by the 

back-flow (Q).   

Fig. 5. a) A plot of a sigmoidal curve describing a hypothetical GFR vs. postnatal age (PNA) time 

course. The curve is normalized by the GFR value at birth GFR0. It starts at 1 and increases to 

approach the steady-state GFRss/GFR0. PNA50 indicates PNA at which GFR reaches the midpoint 

between GFRss and GFR0 b) A plot of a hypothetical time course of the back-flow Q(t). The curve 

is normalized by the urinary flow UF. The back flow reaches a peak Qmax at the time PNAp. After 

the peak Q declines to a value of 0. 

Fig. 6. Upper panels: Observed vs. predicted diagnostic plots for sCr. The left panel shows sCr 

predicted using the typical values of model parameters and the right panel shows sCr predicted 

using the individual subject parameter values. Lower panel: Conditional individual weighted 

residuals (CIWRES) vs. postnatal age diagnostic plot.  The solid line is the LOESS regression line. 

Fig. 7. Visual predictive check plots for sCr from the development data set.  Symbols represent 

observed sCr, the continuous line is the median, and the dashed lines are 5th and 95th percentiles 

of observed values. The shaded regions are model predicted confidence intervals for these 

percentiles.  

Fig. 8. Visual predictive check plots for sCr from the qualification dataset. Symbols represent 

observed sCr, the continuous line is the median, and the dashed lines are 5th and 95th percentiles 

of observed values. The shaded regions are model predicted confidence intervals for these 

percentiles.  

Fig. 9. Simulated time courses of sCr (upper panel) and GFR/GFR0 (lower panel) for a typical 

patient of the indicated GA. GFR0 is the GFR at birth.  GA=34.2 weeks represents the population 

mean. The parameter values used for simulations are listed in Table 1.  
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Fig. 1S. Simulated time courses of Q/UF for typical a patient of the indicated GA. Q is the back-

flow and UF is the urinary flow. GA=34.2 weeks represents the population mean. The parameter 

values used for simulations are listed in Table 1. 


