
Selection of the Number of Participants in Intensive

Longitudinal Studies: A User-friendly Shiny App and Tutorial

to Perform Power Analysis in Multilevel Regression Models

that Account for Temporal Dependencies

Ginette Lafit∗1,2, Janne K. Adolf1, Egon Dejonckheere1, Inez Myin-Germeys2,
Wolfgang Viechtbauer2,3, and Eva Ceulemans1

1Research Group of Quantitative Psychology and Individual Differences, KU
Leuven, Leuven, Belgium

2Department of Neurosciences, Center for Contextual Psychiatry, KU Leuven,
Leuven, Belgium

3Department of Psychiatry and Neuropsychology, School for Mental Health and
Neuroscience, Maastricht University, Maastricht, the Netherlands

This manuscript was accepted for publication in Advances in Methods and Practices
in Psychological Science in September of 2020.

∗Corresponding author: Ginette Lafit (ginette.lafit@kuleuven.be)

1



Abstract

In recent years the popularity of procedures to collect intensive longitudinal data,
such as the Experience Sampling Method, has immensely increased. The data collected
using such designs allow researchers to study the dynamics of psychological function-
ing, and how these dynamics differ across individuals. To this end, the data are often
modeled with multilevel regression models. An important question that arises when
designing intensive longitudinal studies is how to determine the number of participants
needed to test specific hypotheses regarding the parameters of these models with suf-
ficient power. Power calculations for intensive longitudinal studies are challenging,
because of the hierarchical data structure in which repeated observations are nested
within the individuals and because of the serial dependence that is typically present in
this data. We, therefore, present a user-friendly application and step-by-step tutorial to
perform simulation-based power analyses for a set of models that are popular in inten-
sive longitudinal research. Since many studies use the same sampling protocol (i.e., a
fixed number of at least approximately equidistant observations) within individuals, we
assume this protocol fixed and focus on the number of participants. All included mod-
els explicitly account for the temporal dependencies in the data by assuming serially
correlated errors or including autoregressive effects.

Keywords: Power analysis; Monte Carlo simulation; intensive longitudinal designs; linear
mixed effect models; multilevel autoregressive models.
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1 Introduction

Over the last years, psychological research has increasingly focused on investigating how
complex psychological processes evolve dynamically across time within single individuals.
To this end, researchers use intensive longitudinal (IL) designs and data collection methods,
such as the Experience Sampling Method (ESM) (Myin-Germeys et al. 2009, 2018), in which
individuals are repeatedly measured. The repeated measurements allow researchers to study
dynamic aspects of psychological functioning within individuals and individual differences
therein. Examples of such dynamics are emotional variability and stability and emotional
inertia (Kuppens & Verduyn 2015). Individual differences in these dynamics have been
consistently linked to individual differences in well-being and health (e.g., Brose et al. 2015,
Dejonckheere et al. 2018, Kuppens et al. 2010).

Given the increased focus on dynamic psychological processes within individuals, it is
no surprise that the recent debate on the reproducibility and transparency of psychological
research (Munafò et al. 2017) has led to the development of guidelines for conducting IL
research (Trull & Ebner-Priemer 2020) and the promotion of open science practices (Kirtley
et al. In press). Here, we aim to continue along this path and focus on sample size planning
for IL designs. In IL studies, it is common practice to use a fixed sampling schedule
within individuals that is also motivated in terms of feasibility and the participants’ burden.
Therefore, we will focus on assessing the number of participants needed while assuming
a fixed number of (at least approximately) equidistant observations within individuals.
Adequate sample size planning allows to control the accuracy and power of statistical testing
and modeling and is therefore of crucial importance for the replicability of empirical findings
(see Ioannidis 2005, Szucs & Ioannidis 2017).

Although power analyses are often used to inform sample size planning in general (Cohen
1988), they are not yet well-established in IL research. One reason for this is that performing
power calculations to select the number of participants in the context of IL studies is
challenging because of the intricacies of the data (Bolger 2011, De Jong et al. 2010). First, IL
data have a multilevel structure, in that repeated observations are nested within individuals.
Second, observations are closer in time in comparison with traditional longitudinal designs.
This likely leads to considerable temporal dependencies between data measured at adjacent
observations. As we explained earlier, it is often the very purpose of an IL study to capture
such temporal dependencies, as they reflect psychological dynamics that are often of inherent
interest.

But not only the data structure is complicated; the applied statistical models are as
well, as they should capture such dynamics and individual differences therein. First, the
models have to distinguish inter-individual differences from intra-individual changes (e.g.,
Hamaker et al. 2015, Molenaar 2004). Multilevel regression modeling approaches offer an
established way of doing this. Second, models should also take temporal dependencies into
account, either to control for them or to quantify and model them. This requires that one
includes either serially correlated errors or the lagged outcome variable as a predictor in the
multilevel models. Although there are several resources available to perform power analyses
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for multilevel models (e.g., Arend & Schäfer 2019, Browne et al. 2009, Cools et al. 2008,
Green & MacLeod 2016, Hedeker et al. 1999, Landau & Stahl 2013, Lane & Hennes 2018,
Mathieu et al. 2012, Raudenbush 1997, Raudenbush & Liu 2001, Snijders & Bosker 1993,
Zhang & Wang 2009, Zhang 2014), these do not account for the temporal dependencies that
characterize IL data.

We therefore present a user-friendly application to perform simulation-based power anal-
yses for IL studies. The obtained power results allow informing sample size planning, by
shedding light on the number of participants needed to obtain accurate and significant pa-
rameter estimates. The application was developed in R (R Core Team 2013) using the
package Shiny (Chang et al. 2019). It covers a set of models that are widely used in the
literature to study individual differences in IL studies and properly account for the temporal
dependency.

In the remainder of the article, we first briefly review existing approaches to compute
power in multilevel models. Next, we discuss the multilevel models that are covered by
our application. In Section 4, we introduce the shiny app and discuss how it can be used
for sample size planning. Afterward, using an already published data set, we illustrate
how to perform sample size planning with the app. We conclude the article with a general
discussion of additional considerations and possible extensions.

2 Power analyses in intensive longitudinal studies

We use statistical power as the criterion to estimate the number of participants needed in an
IL study. High power is desirable because it improves the reproducibility of research findings,
and prevents the overestimation of effect sizes (see Ioannidis 2005, Szucs & Ioannidis 2017).
Formally, power is defined as the probability of correctly rejecting the null hypothesis, when
the alternative hypothesis is true in the population under study (Cohen 1988). The power
to detect an effect is therefore determined by the size of the effect in the population, the
predetermined type I error rate (i.e., the significance level), and the standard error of the
test statistic used. Power is higher if the population effect is larger, the type I error rate is
higher, and the standard error of the test statistic is smaller. The standard error, in turn,
is related to sample size, in that larger sample sizes lead to smaller standard errors. The
latter explains why power analysis can inform sample size planning.

In general, two approaches can be used for performing power analysis: the analytical
approach and the simulation-based approach. In the analytical approach, power is deter-
mined by using formulas for the standard errors of the estimated effects, expressing them
as a function of the parameters of the multilevel model under study and the sample size.
Using these formulas, it is possible to estimate the sample size that allows reaching a pre-
determined value of power (see, e.g., Cohen 1988, Hedeker et al. 1999, Moerbeek et al.
2000, 2001, Moerbeek & Maas 2005, Raudenbush 1997, Raudenbush & Liu 2001, Snijders
& Bosker 1993, Wang et al. 2015). However, as holds for many other complex models, so
far no analytical formulas have been derived for multilevel models that include temporal
dependencies (see Arend & Schäfer 2019). Also, the analytical approach usually relies on
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asymptotic estimation theory and might, therefore, be inaccurate in practice when deal-
ing with smaller numbers of participants and measurements per participant. For example,
Snijders & Bosker (1993) determined the optimal sample sizes for two-level linear models
by using normal approximations for the distribution of the estimated coefficients. How-
ever, in small samples, the distribution of the estimator can be non-normal and potentially
heavy-tailed, resulting in unreliable standard error estimates.

The simulation-based approach uses the hypothesized population model and concrete
specifications of the associated parameters to generate a large number of data sets. Each of
these data sets is then analyzed with the model under study and the parameter(s) of interest
are tested for significance. Since the data have been randomly generated, the parameter
estimates and the test results will vary across the data sets. Hence, we can compute the
power as the proportion of simulated data sets for which the null hypothesis about the
parameter(s) of interest has been rejected (see, e.g., Arend & Schäfer 2019, Astivia et al.
2019, Bolger 2011, Browne et al. 2009, Cools et al. 2008, Green & MacLeod 2016, Landau
& Stahl 2013, Lane & Hennes 2018, Maas & Hox 2005, Mathieu et al. 2012, Zhang & Wang
2009, Zhang 2014). Performing these calculations while varying the number of participants
allows us to determine the number of participants necessary to reach a predetermined
amount of power (e.g., 80%). The simulation-based approach is a good alternative when
analytical formulations are not available or too difficult to derive. Therefore, we adopt this
approach in this paper, given the complexity of IL data and associated modeling questions.

3 Population models of interest

We focus on a set of research questions regarding IL data that can be addressed using spe-
cific multilevel regression models (Raudenbush & Bryk 2002). Figure 1 provides a graphical
representation of the different models. This representation corresponds to a hypothetical
dataset that is used for illustration purposes. Table 1 shows a few rows of this dataset
involving individuals diagnosed with Major Depressive Disorder (MDD) and healthy con-
trols. The participants responded to momentary questionnaires at six equidistant time
points. The first column contains the participants’ identification number and the second
column the observation number. Moreover, the dataset includes the level-1 or time-varying
variables Affect (for negative affect) and Anhedonia, which are measured at every observa-
tion. The dataset also contains two level-2 or time-invariant variables. Variable Depression
refers to the sum score of a continuous self-report instrument on the experience of depressive
symptoms assessed at baseline. Finally, Diagnosis is a binary variable that equals one for
participants diagnosed with MDD and zero otherwise. Corresponding to Figure 1, formulas
for the models are given in Table 2, while Table 3 provides an overview of the effects of
interest.
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Table 1: Intensive longitudinal data structure.
PID Observation Negative Affect Anhedonia Depression Diagnosis

1 1 28.8 42 12 1
1 2 26.0 30 12 1
1 3 27.4 22 12 1
1 4 21.4 33 12 1
1 5 14.4 23 12 1
1 6 26.6 18 12 1
2 1 16.0 19 4 0
2 2 13.2 23 4 0
2 3 9.6 12 4 0
2 4 14.4 18 4 0
2 5 8.6 10 4 0
2 6 9.2 15 4 0

Table 2: Description of models for power estimation available in the application.
Level-1

Level-2
Random Intercept Random Slope

Model 1 Affectit = γ0i + εit γ0i = β00 + β10Diagnosisi + ν0i -
Model 2 Affectit = γ0i + εit γ0i = β00 + β10Depressioni + ν0i -
Model 3 Affectit = γ0i + γ1iAnhedoniait + εit γ0i = β00 + ν0i γ1i = β10 + ν1i
Model 4 Affectit = γ0i + γ1iAnhedoniait + εit γ0i = β00 + ν0i -
Model 5 Affectit = γ0i + γ1iAnhedoniait + εit γ0i = β00 + β10Diagnosisi + ν0i γ1i = β10 + β11Diagnosisi + ν1i
Model 6 Affectit = γ0i + γ1iAnhedoniait + εit γ0i = β00 + β10Diagnosisi + ν0i -
Model 7 Affectit = γ0i + γ1iAnhedoniait + εit γ0i = β00 + β10Depressioni + ν0i γ1i = β10 + β11Depressioni + ν1i
Model 8 Affectit = γ0i + γ1iAnhedoniait + εit γ0i = β00 + β10Depressioni + ν0i -
Model 9 Affectit = γ0i + γ1iAffectit−1 + εit γ0i = β00 + ν0i γ1i = β10 + ν1i
Model 10 Affectit = γ0i + γ1iAffectit−1 + εit γ0i = β00 + β10Diagnosisi + ν0i γ1i = β10 + β11Diagnosisi + ν1i
Model 11 Affectit = γ0i + γ1iAffectit−1 + εit γ0i = β00 + β10Depressioni + ν0i γ1i = β10 + β11Depressioni + ν1i

Table 3: Overview of the effects of interest for power estimation available in the application.

Time-varying
Level 1 predictor

Time-invariant
Level 2 predictor

Model
Continuous

variable
Lagged

dependent variable
Dummy
variable

Continuous
variable

Random
Intercept

Random
Slope

Cross-level
Interaction effect

Model 1 - - X - X - X
Model 2 - - - X X - X
Model 3 X - - - X X -
Model 4 X - - - X - -
Model 5 X - X - X X X
Model 6 X - X - X - X
Model 7 X - - X X X X
Model 8 X - - X X - X
Model 9 - X - - X X -
Model 10 - X X - X X X
Model 11 - X - X X X X

3.1 Group differences in mean level

Model 1 in Figure 1 estimates differences in the mean of the outcome variable, Affect,
between the two groups of individuals (e.g., Heininga et al. 2019, Myin-Germeys et al.
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2001, 2003). This model includes the Affect it value as the outcome variable for the ith
individual at the tth observation and a level-2 dummy variable that indicates the diagnosis
group (i.e., Diagnosis i). For participants in the reference group (healthy controls), the mean
level of affect equals β00; for individuals diagnosed with MDD, the mean level of affect is
given by β00 + β01. Within both diagnosis groups, inter-individual differences in affect are
modeled by the random intercept γ0i. The random intercept expresses the deviation of each
participant’s affect level from the group-specific mean level. It is normally distributed and
the standard deviation is denoted by σν0 . To account for the likely temporal dependencies
in IL data, we allow for serially correlated errors. Therefore, we assume that the level-1
errors εit follow a first-order autoregressive (AR(1)) process (Goldstein et al. 1994), where
the correlation between two consecutive errors is denoted by ρε, and σε is the standard
deviation of the level-1 errors.1 To guarantee that the model is stationary (Hamilton 1994),
the autocorrelation ρε should range between -1 and 1. In model 1, the main effect of interest
is β01 (i.e., the size of the average group difference) and we test whether it is statistically
different from zero. As holds for all tests that we will discuss, the hypothesis test is two-
sided and significance is evaluated with a Wald-type test statistic using a t-distribution
(Snijders & Bosker 2011).

3.2 Effect of a level-2 continuous predictor on the mean level

Model 2 in Figure 1 focuses on the effect of a continuous level-2 predictor on the outcome
of interest.2 For the hypothetical dataset, we investigate whether the individual-specific
depression level Depressioni predicts individual differences in the mean level of Affect it
as captured by the random intercept γ0i. These random intercepts are assumed to be
normally distributed with mean β00 +β01Depressioni and standard deviation σν0 . We again
assume an AR(1) structure for the level-1 errors εit. When testing the effect of interest β01

(Raudenbush & Bryk 2002), we can grand-mean center the level-2 predictor to obtain a
meaningful zero point for this predictor to render the intercept interpretable (Enders &
Tofighi 2007).

3.3 Effect of a level-1 continuous predictor

Next, we focus on the effect of a continuous level-1 predictor on the outcome, through Models
3 and 4 in Figure 1. For example, we might be interested to what extent Anhedoniait predicts
Affect it in individuals diagnosed with MDD. Model 3 specifies a corresponding multilevel
model with AR(1) level-1 errors. The mean slope of Anhedoniait is denoted by β10, which
is the parameter of interest. This model captures inter-individual differences by including a
random intercept γ0i and a random slope γ1i. These random effects are bivariate normally

1The first-order autoregressive process is defined as εit = ρεεit−1 + ωij , where ωij is assumed to be
Gaussian white noise N(0, σω). Under this model the correlation between εit−1 and εit is given by ρε and
σ2
ε = σ2

ω/(1− ρ2
ε).

2Here and elsewhere, we use terms like ‘effect’ and ‘influence’ for brevity without implying that the
associations being modelled are necessarily causal.
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distributed. β00 then indicates the mean of the random intercepts and β10 the mean of the
random slopes. Their standard deviations are respectively denoted by σν0 and σν1 . The
correlation between the random effects is given by ρν01 (and the covariance between the
random effects is denoted by σν01). Model 4, on the other hand, assumes that the slope of
Anhedoniait does not vary across participants. In both models, person-mean centering the
level-1 predictor is recommended since the fixed slope β10 then provides an estimate that
only reflects the (average) within-person association between the predictor and outcome
(Enders & Tofighi 2007, Raudenbush & Bryk 2002).

3.4 Group differences in the effect of a level-1 continuous predictor

Models 5 and 6 in Figure 1 are used to investigate differences between two groups of par-
ticipants with respect to the association between a level-1 predictor and the outcome of
interest (while assuming AR(1) errors). These models thus include the outcome Affect it,
the level-1 predictor Anhedoniait, the level-2 variable Diagnosis i, as well as a ‘cross-level
interaction’ (Raudenbush & Bryk 2002) between the level-1 and level-2 predictors. β00 and
β00+β01 represent the mean intercept of all individuals in the reference (healthy controls)
and MDD group, respectively. The mean slope for the reference group is indicated by β10,
while the mean slope for the MDD group amounts to β10 + β11. Therefore, the effect of
interest is the difference in the mean slope between the two groups β11. Model 5 includes
random intercepts γ0i as well as random slopes γ1i. Model 6 is more restrictive and does
not include random slopes.

3.5 Cross-level interaction between two continuous predictors

Models 7 and 8 in Figure 1 focus on a cross-level interaction between the continuous level-
2 predictor Depressioni and the continuous level-1 predictor Anhedoniait (e.g., Arend &
Schäfer 2019), to investigate whether the level of depression (as measured at baseline)
moderates the effect of anhedonia on affect. Therefore, the effect of interest is again β11.
As was the case for Models 5 and 6, Model 7 includes both random intercepts and slopes,
whereas Model 8 assumes that the slope does not vary across participants.

3.6 Multilevel autoregressive models

Models 9 to 11 (see Figure 1) are multilevel AR(1) autoregressive models (Hamaker & Gras-
man 2015) that explicitly focus on the amount of temporal dependence in the outcome. In
such models, the lagged outcome variable (i.e., the observed outcome at the previous mea-
surement occasion) is included as the predictor of interest. Such autoregressive effects have
been extensively studied for example in affective research (Kuppens et al. 2010). Model 9
allows us to study the mean autoregressive effect across individuals as well as individual
differences therein, through β10 and γ1i, respectively. To satisfy the stationarity assumption
of the model, both effects have to range between -1 and 1. Given that temporal dependence
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is now captured through the autoregressive effect, the residuals εit are assumed to be inde-
pendent and normally distributed with zero mean σε. Some researchers person-mean center
the lagged outcome variable, although Hamaker & Grasman (2015) showed in an extensive
simulation study that this results in an underestimation of β10. The resulting bias will have
an impact on power.

Model 10 extends Model 9 in that it allows us to estimate the difference in the mean
autoregressive effect between two groups of individuals (Wang et al. 2012). The mean
autoregressive effect for the reference group (healthy controls) is β10, while it equals β10+β11

for the MDD group. Therefore, the effect of interest is β11.
Finally, Model 11 estimates a cross-level interaction effect between a continuous level-2

predictor and the lagged outcome, to study if the level-2 predictor moderates the autore-
gressive effect (e.g., Brose et al. 2015, Koval et al. 2013). Consequently, β11 is the effect
of interest. In this case, Hamaker & Grasman (2015) clearly recommend to person-mean
center the lagged predictor.

4 A Shiny app to perform power analysis

In this section, we present the Shiny app PowerAnalysisIL that we developed to compute
power as a function of the number of participants for the models described in the previous
section. Figure 2 shows a screenshot of the app. The app was implemented using the R

package Shiny. It is available via a git repository hosted on GitHub at https://github.

com/ginettelafit/PowerAnalysisIL. Users can download the app and run it locally on
their computer in R or Rstudio (RStudio Team 2015). In what follows, we describe how the
app works.
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4.1 App input

First, the user indicates which multilevel model (i.e., Model 1 to 11) will be used to estimate
the effect of interest and specifies plausible values for all model parameters. For instance,
if one wants to focus on differences in mean affect between individuals diagnosed with
MDD and healthy controls, one selects Model 1. Next, the sample sizes that should be
considered in the power computations have to be provided. Returning to our example of
between group differences in mean affect, the user has to set the number of participants in
the reference group (i.e., healthy controls) and the corresponding number of participants
diagnosed with MDD. Based on this information the software will create a level-2 dummy
predictor, indicating group membership. For instance, possible sample sizes for the healthy
controls and MDD group could respectively amount to 20, 30, 40, and 80 and 15, 20,
25, and 30. Then, one sets the expected number of completed equidistant observations
per individual (e.g., 60). In case the selected model includes continuous level-1 or level-2
predictors, their mean and standard deviation have to be provided, assuming that they
are normally distributed. For level-1 continuous predictors, one indicates whether they
should be grand-mean or person-mean centered. Finally, one sets the estimation method
(i.e., Maximum Likelihood (ML) or Restricted Maximum Likelihood (REML) estimation3),
the desired significance level α, and the number of Monte Carlo replicates in the power
simulations (e.g., 1000). For Models 1 to 8, the app also allows estimating multilevel models
with independent errors (i.e., assuming ρε = 0). Comparing the power of models with and
without AR(1) errors makes it possible to assess the impact of temporal dependence.

4.2 Simulation

Based on this input, the app repeatedly simulates the data for each indicated sample size.
For the multilevel AR models (i.e., Models 9 to 11), simply sampling the random effects from
a normal distribution might yield data that are not stationary (i.e., the normal distribution
does not restrict the random autoregressive effects to belong to the interval [−1, 1]). To
guarantee stationarity, without changing the specified mean and standard deviation of the
random slopes, we draw the random slopes from a Beta distribution and linearly transform
them so that they fall into the interval (−1, 1).4 For each simulated dataset, the multilevel
model is fitted by means of the lme function from the nlme package (Pinheiro et al. 2019)
and the effect of interest is tested (i.e., two-sided Wald test). In case of convergence prob-
lems, the app shows a warning message signaling the total number of replicates that failed

3Both methods differ in how they estimate the variance components of the model. ML ignores the
uncertainty in the estimates of the fixed effects when estimating the variance components. As a result, the
estimates of the variance components are biased when the sample size is small. REML estimates unbiased
variance components by taking into account the degrees of freedom of the fixed effects estimates. Raudenbush
& Bryk (2002) recommend to use REML when the number of participants is small.

4For each individual, the random slope is generated as follow: first we draw Vi from a Beta distribution

with conditional mean E(Vi|i) = 1+E(γ1i|i)
2

and conditional variance Var(Vi|i) =
σ2
ν1
2

. The random slope

of participant i is computed as γ1i = 2Vi − 1, and the random intercept as γ1i = σν0ρν01
(γ1i−E(γ1i|i))

σν1
+√

1− ρ2
ν01Z + E(γ0i|i), where Z is drawn from a standard normal distribution.
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to converge. Convergence issues in multilevel models arise when the estimated covariance
matrix of the random effects is singular (see, Bates et al. 2015), and might be caused by not
having enough observations within participants, a small number of participants, or scaling
issues (see, e.g., Clark 2020). If this happens, we recommend to evaluate the following
alternatives: increasing the number of participants, increasing the number of repeated mea-
surements per person, centering predictors, or checking the specified values of the model
parameters. Finally, we note that the simulation-based approach is computationally inten-
sive, and therefore, may demand a lot of computational time. Depending on the number
of participants, the number of observations per participant, the number of Monte Carlo
replicates, the population model of interest, and the operating system, it may happen that
the simulation can run for multiple hours. Therefore, while performing the power analysis,
the app displays a message indicating for which number of participants power is currently
being computed. Moreover, users can estimate the expected number of hours necessary to
perform the simulation analysis by using the option Estimate Computational Time5.

4.3 App output

For the effect of interest as well as all other fixed effects included in the model, the app
provides a power curve, which shows how the estimated power varies as a function of
sample size (i.e., the number of participants). The estimated power is computed as the
proportion of Monte Carlo replicates in which the effect was significant (at the specified
α-level). Furthermore, the app presents a summary of the results for each sample size.
This summary includes power and measures to evaluate the estimation performance (see,
Morris et al. 2019): the average of the estimates of each fixed effect; the bias (i.e., the
difference between the average of the estimates and the true value); the standard error;
the (1-α)% coverage proportion, computed as the proportion of Monte Carlo replicates for
which the (1-α)% confidence interval includes the true value. Moreover, summary statistics
are provided for the variance components of the within-individual errors (i.e., ρε in the
AR(1) error model and σε) and for the random effects (i.e., standard deviations σν0 , σν1 ,
and correlations between the random effects σν01). Finally, for the largest sample size
considered, density plots and box-plots of the distribution of the estimated parameters are
given.

5 Applications

In this section, we illustrate how the app can be used to perform a power analysis to decide
on the number of participants needed to test three different research hypotheses. For all
models, the value of a large number of model parameters has to be specified. We recommend
to choose these values based on data from a pilot study, or based on existing IL studies

5To estimate the computational time, the app conducts a power analysis using ten replicates only. Next,
the run time for ten replicates is used to estimate the run time for the total number of replicates.
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with similar measures and designs (see, e.g., Lane & Hennes 2018) To this end, we will use
information from a clinical dataset reported on by Heininga et al. (2019).

5.1 Dataset

The dataset includes 38 individuals that have been diagnosed with MDD (score of one on the
Diagnosis variable) and 40 control subjects (score of zero). They all participated in an ESM
study of 7 days, in which they were asked to repeatedly fill in a questionnaire containing
27 items measuring various constructs, including negative affect (i.e., Affect ; 5 items that
were averaged) and Anhedonia (1 item). Participants answered these items on a sliding scale
ranging from ‘not at all’ on the left (0) to ‘very much’ on the right (100). The questions were
semi-randomly presented ten times a day between 9:30 a.m. and 9:30 p.m. within intervals
of 66 minutes. Therefore, the design included 70 measurement occasions per participant.
Depressive symptoms (Depression) were measured before the ESM testing period based
on the sum score of the items of the Quick Inventory of Depressive Symptomatology (i.e.,
QIDS; Rush et al. 2003).

5.2 Application 1: Power to estimate the effect of a level-2 predictor

Consider a researcher who is planning a study to test the hypothesis that Depression is
positively related to negative affect and thus wants to run Model 2 (see Figure 1). The data
will be collected using an IL design, including 70 measurement occasions per individual.
How many participants does she need to involve?

To perform the simulation-based power analysis, we need to specify the parameter values
of the model of interest. Pilot data or the results from previous studies examining the same
hypothesis can be used to obtain appropriate values. Here, we will use the clinical dataset
and apply Model 2 to get estimates of these parameters. The continuous level-2 predictor,
Depression, is centered using the grand mean. Table 4 shows the estimated parameter
values. Note that estimation of this model is not part of the app (i.e., this step has to be
conducted separately). In the OSF page of the project https://osf.io/vguey/, we show
how to obtain the parameter values of Model 2 using the clinical dataset.
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Table 4: Illustration 1. Estimated parameters using the clinical dataset to estimate the effect
of depressive symptoms on negative affect on individuals with Major Depressive Disorder.

Notation Model Parameters
Number of participants N 38
Number of time points 70
Mean of the level-2 continuous variable (Depression) µW 15.70
Standard deviation of the level-2 continuous variable (Depression) σW 5.00
Fixed intercept β00 43.01
Effect of the level-2 continuous variable on the level-1 intercept β01 1.50
Standard deviation of the level-1 error σε 12.62
Autocorrelation of the level-1 error ρε 0.46
Standard deviation of the random intercept σν0 12.90

Step 1: App input. We select Model 2 and fill in the values of the model parameters
(see Figure 3). We indicate that we want to consider the following values for the number
of participants: 15, 30, 45, 60, 80, 100. We set the number of measurements within each
participant to 70. We specify the fixed effects: the fixed intercept β00 is set to 43.01, and
the effect of the level-2 continuous variable β01 is set to 1.50. Next, we set the standard
deviation σε and autocorrelation ρε of the within-individual errors, given by 12.62 and 0.46,
respectively. The standard deviation of the random intercept σν0 is set to 12.90. For the
variable depression, we fix the value of the mean to 15.70 and the standard deviation to
5.00. We select the options Center the level-2 variable W and Estimated AR(1) correlated
errors. In this and the following illustrations, we set the Type I error α to 0.05 and the
number of Monte Carlo replicates to 1000, and we choose the option Restricted Maximum
Likelihood when specifying the estimation method. Finally, we click on Compute Power.
Due to the computationally intensive nature of a simulation-based power analysis, it will
take multiple hours to obtain the results for the three applications.
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Figure 3: Illustration 1. Panel A shows a screenshot of the app, the user has to select Model
2 and set the sample size to estimate the effect of depressive symptoms on negative affect
on individuals with Major Depressive Disorder. Next, the user has to set the value of the
parameters of Model 2 (Panel B). Panel C shows the Power curve to estimate the effect of
depression on negative affect.

Step 2: Visualize the power curve and inspect app output. The app provides
the power curves as a function of the sample sizes indicated above. Figure 3 shows the
estimated power curve to test the effect of depression on negative affect. We observe that
when the number of participants is 15, the power for the effect of interest (i.e., β01 = 1.50)
is 53.8%. This result implies that in only 538 out of the 1000 simulated datasets, the null
hypothesis that depression does not have a significant effect on negative affect was rejected.
We observe that when the number of participants increases, the power increases as well.
Specifically, power larger than 80% is achieved when the number of participants is greater
than 30.

The app also provides information about the distribution of the estimates of the fixed
and random effects across the Monte Carlo replicates. Figure 4 shows the summary statistics
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for the fixed effects. We see, for instance, that the coverage rate for β01 is close to 95%,
indicating a satisfactory estimation of the 95% confidence interval. The app also calculates
the power for the fixed intercept, although this is of little interest here.

Figure 4: Illustration 1. Summary of the fixed effect across 1000 Monte Carlo replicates
to estimate the effect of depressive symptoms on negative affect on individuals with Major
Depressive Disorder.

5.3 Application 2: Power to detect the effect of a level-1 predictor

Now we turn to the effect of a level-1 predictor, anhedonia, on negative affect for individuals
diagnosed with MDD, and thus to Model 3. To set the values of the model parameters, we
again analysed the clinical dataset and obtained the results as shown in Table 5.

Table 5: Illustration 2. Estimated parameters using the clinical dataset to estimate the
effect of anhedonia on negative affect on individuals with Major Depressive Disorder.

Notation Model Parameters
Number of participants N 38
Number of time points 70
Mean of the level-1 continuous variable (anhedonia) µX 51.60
Standard deviation of the level-1 continuous variable (anhedonia) σX 23.70
Fixed intercept β00 42.90
Fixed Slope β01 0.13
Standard deviation of the level-1 error σε 12.00
Autocorrelation of the level-1 error ρε 0.43
Standard deviation of the random intercept σν0 15.00
Standard deviation of the random slope σν1 0.12
Correlation between the random intercept and the random slope ρν01 0.003
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Step 1: App input. We select Model 3 and set the sample size. We will evaluate
the power for the following numbers of participants: 15, 20, 30, 40, 60, 100, restricting the
number of measurements within participants to 70. Subsequently, we specify the associated
parameter values (see Figure 5). The fixed intercept β00 is 42.90 and the fixed slope β10

is 0.13. The standard deviation of the level-1 errors is 12, and the autocorrelation is 0.43.
The standard deviation of the random intercept and random slope are 15.00 and 0.12,
respectively. The correlation between the random effects is 0.003. The mean and standard
deviation of the level-1 variable are 51.60 and 23.70, respectively. To guarantee that the
fixed slope reflects the (average) within-person association between anhedonia and negative
affect, we select the option to person-mean center the level-1 variable (i.e., Person-center
level-1 variable X ). Finally, to account for temporal dependencies, we choose the option
Estimate AR(1) correlated errors.

Figure 5: Illustration 2. Panel A shows a screenshot of the app, the user has to select
Model 3 and set the sample size to estimate the effect of anhedonia on negative affect on
individuals with Major Depressive Disorder. Next, the user has to set the value of the
parameters of Model 3 (Panel B). Panel C shows the Power curve to estimate the effect of
anhedonia on negative affect.

Step 2: Visualize the power curve and inspect app output. From the power
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curve in Figure 5, we conclude that power is larger than 99% when there are more than
15 participants. Summary statistics of the fixed effects can be found in Figure 6. Figure
7 shows the summary statistics of the estimated parameters of the standard deviation and
autocorrelation of the level-1 errors and the standard deviation and correlation between
the random effects. We observe that when the number of participants increases, the bias
of the estimates of σν0 , σν1 and ρν01 diminished. Figure 8 shows the distribution of the
estimated parameters across the Monte Carlo replicates when the number of participants is
100. We observe that when the number of participants is 100, the estimates of σν0 and σν1

are slightly negatively biased.

Figure 6: Illustration 2. Summary of the fixed effect across 1000 Monte Carlo replicates
to estimate the effect of anhedonia on negative affect on individuals with Major Depressive
Disorder.
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Figure 7: Illustration 2. Summary of the standard deviation and autocorrelation of the
level-1 errors, and standard errors and correlation of the random effects across 1000 Monte
Carlo replicates.
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Figure 8: Illustration 2. Distribution of the estimate parameters across 1000 Monte Carlo
replicates when the number of participants is 100. Dashed lines are the true model param-
eters.

5.4 Application 3: Power to detect the differences in the autoregressive
effects between two groups

Finally, we focus on the difference in the autoregressive effect of negative affect between
individuals diagnosed with MDD and control subjects and thus on Model 10. As in the
previous examples, we use the clinical dataset to obtain estimates of the parameter values,
shown in Table 6.
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Table 6: Illustration 3. Estimated parameters using the clinical dataset to estimate differ-
ences in the autoregressive effect of negative affect between individuals with Major Depres-
sive Disorder and control subjects.

Notation Model Parameters
Number of participants in Group 0 (i.e., reference group) N0 40
Number of participants in Group 1 N1 38
Number of time points 70
Fixed intercept β00 10.20
Difference in the fixed intercept between the reference group and group 1 β01 32.40
Fixed slope (i.e., autoregressive effect) β10 0.20
Difference in the fixed slope between the reference group and group 1 β11 0.10
Standard deviation of level-1 errors σε 8.80
Standard deviation of the random intercept σν0 11.50
Standard deviation of the random slope σν1 0.16
Correlation between the random intercept and the random slope ρν10 0.265

Step 1: App input. We select Model 10: Multilevel AR(1) model - Group differences
in the autoregressive effects. The number of participants in the reference group (i.e., healthy
controls) and the number of participants in Group 1 (i.e., MDD) are set to 20, 40, 60, 80,
100, 200 and 250, respectively, and the number of measurements within participants to
70. We specify the parameter values as follows (see Figure 9): The fixed intercept β00 is
10.20 and the difference in the fixed intercept between the two groups (β01) is 32.40. The
autoregressive effect β10 is 0.20. The difference in the autoregressive effect between the
two groups β11 is 0.10. The standard deviation of the level-1 errors is 8.80. The standard
deviation of the random intercept and random slope are 11.50 and 0.16, respectively. The
correlation between the random effects is 0.265. We person-mean center the lagged outcome
variable.
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Figure 9: Illustration 3. Panel A shows a screenshot of the app, the user has to select Model
10 and set the sample size to estimate differences in the autoregressive effect of negative
affect between individuals with Major Depressive Disorder and control subjects. Next, the
user has to set the value of the parameters of Model 10 (Panel B). Panel C shows the Power
curve to estimate differences in the autoregressive effect of negative affect between the two
groups.

Step 2: Visualize the power curve and inspect app output. Figure 9 shows the
estimated power curve. The power to test the difference in the autoregressive effect (β11)
between the two groups is larger than 80% when there are 80 participants diagnosed with
MDD and 80 healthy controls. In Figure 10, we observe that there is a downward bias in
the estimated value of the fixed slope in the reference group β10. Furthermore, when the
number of participants increases, the 95% coverage proportion of the fixed slope diminishes.
This is related to the bias in the estimate of the fixed slope and narrower confidence intervals
(i.e., smaller standard errors) when the sample size increases. This result is in line with
Hamaker & Grasman (2015) who showed for this model that the estimated fixed slope is
negatively biased when the lagged dependent variable is person-mean centered.
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Figure 10: Illustration 3. Summary of the fixed effect across 1000 Monte Carlo replicates to
estimate differences in the autoregressive effect of negative affect between individuals with
Major Depressive Disorder and control subjects.

6 Discussion

Intensive longitudinal designs allow studying within-person psychological dynamics. When
multiple participants are included in an IL study, multilevel models are a powerful approach
to capture these within-person processes as well as inter-individual differences therein.
When planning IL studies, it is obviously essential to collect a sufficient amount of data
to ensure reliable estimates and sufficient power. In this paper, we focused on the number
of participants that are needed to obtain sufficient statistical power for testing hypotheses
about specific parameters of the multilevel models that are popular in IL studies. These
power questions cannot be addressed by existing software for standard multilevel models, as
standard models do not account for temporal dependencies in the outcome variable. There-
fore, we presented a Shiny app developed in R to compute power for models with an AR(1)
error structure or with the lagged outcome variable as a predictor in a simulation-based
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way. The app yields power curves that show how estimated power varies as a function
of the number of participants. In the following, we will discuss limitations of the current
version of the Shiny app as well as potential extensions.

6.1 Accommodating uncertainty about the hypothesized model parame-
ters

Using simulation-based power analysis for multilevel models is challenging, in that users
have to specify all the parameter values of the population model of interest. Following
Lane & Hennes (2018) and Maxwell et al. (2008), we recommend to base these values on a
literature review, on data from a pilot study (as we did by means of the clinical dataset),
or on previously conducted studies with similar measures and designs. Having said that,
we acknowledge that the second and third approaches may imply that data are used from a
small or unrepresentative sample which may produce biased estimates as input for the power
analysis (e.g., Albers & Lakens 2018). Therefore, a more robust power-calculation approach
would account for uncertainty regarding the hypothesized model parameters. This can be
achieved by performing a sensitivity analysis in which the values of the model parameters are
varied to some extent (e.g., Lane & Hennes 2018, Wang & Rhemtulla 2020). This way one
can assess whether and to which extent using different possible parameter values influences
the obtained power results. We note however that the current version of the app cannot
display power curves as a function of sets of different plausible parameter values. Therefore,
users have to perform a sensitivity analysis by conducting separate power analyses for each
set of parameter values.

6.2 Selection of the numbers of measurement occasions and persons

When applying multilevel modeling to IL data, the obtained power is a function of both
the number of measurement occasions and the number of participants. In this paper, we
targeted the number of participants, however, and kept the number and spacing of the
measurement occasions fixed. While this worked well for the research questions that we
considered in this paper (i.e., we consider a relatively high number of measurement occa-
sions), it is important to note that for other research questions increasing the number of
measurement occasions might be called for. It makes, for instance, sense that when inter-
individual differences in within-person effects are of interest, the number of measurement
occasions should be high as well. Indeed, earlier work of de Haan-Rietdijk et al. (2017),
Krone et al. (2016), Liu (2017), Schultzberg & Muthén (2018), and Timmons & Preacher
(2015) has demonstrated the effect that the number and spacing of the measurement occa-
sions can have on estimation accuracy of multilevel approaches for IL data. Thus, how to
best plan for adequate power depends on where power vulnerabilities are (see e.g., Lane &
Hennes 2018).

The question thus is what users have to do when they are also interested in studying
how the number of measurement occasions might impact power. While one cannot get
power curves for that from the app, a relatively simple solution consists of repeatedly simu-

25



lating with different numbers of measurement occasions while keeping the vector of sample
sizes fixed. However, adding more participants or more measurements per participant may
come with different costs and burdens for both researchers and participants. Therefore,
researchers designing IL studies might be interested in balancing both sample size compo-
nents to optimize power and minimize costs and participant burden. One way to achieve
this is to obtain a set of combinations (i.e., of the number of participants and the number
of measurement occasions per participant) that yield equal power. Next, one selects the
combination that optimizes budgetary restrictions or feasibility. We, however, note that
the current version of the app does not allow the users to obtain such a set of combinations
that produce equivalent power. We, therefore, recommend the reader to refer to Brand-
maier et al. (2015), Moerbeek (2011), and von Oertzen (2010), for a broader discussion on
this topic.

6.3 Other remarks and future extensions

In the current tutorial, we illustrated how to use the app to estimate the number of partic-
ipants to answer three specific research questions. For each research question, we focused
on computing power for a single (fixed) effect. Yet, the app also provides the power curve
for all other fixed effects included in the model. Therefore, in studies that involve testing
multiple fixed effects, the number of participants should be large enough to detect all these
effects with high power.

Even though the app is already quite extensive and includes no less than eleven models,
many other models could be included still. For instance, in many applications, the objective
is to assess the significance of the random effects. This is not possible in the current version
of the app. As another example, we now focused on two-levels models in which repeated
measurements are nested within individuals. In the future, the proposed approach can be
extended to three-level models (i.e., occasions nested within days, which in turn are nested
within individuals). Three-level models are especially relevant if the dynamics under study
differ systematically across days. Ignoring these differences could affect the reliability of
the estimated results (de Haan-Rietdijk et al. 2016) and consequently the power.

We also highlight that the proposed app simulates and analyzes data under the assump-
tion that the measurement occasions are equally spaced and contain no missing data. In IL
research, participants might not respond at some measurement occasions or during night
breaks (e.g., Fuller-Tyszkiewicz et al. 2013, Santangelo et al. 2014, Stone et al. 2003). While
missingness might sometimes occur completely at random, it might be systematic in other
cases (e.g., associated with certain affective states or certain times or contexts), which can
lead to unreliable estimates (Courvoisier et al. 2012). To account for this, it would be useful
to extend the simulation approach to study the effect of different types of missing data and
attrition on power. For instance, when data can be assumed to be completely missing at
random, users could simply specify the expected number of completed measurement occa-
sions. Studying the effects of other mechanisms of missingness is more involved however,
because the missing data mechanism has to be fully specified in order to simulate data.

Finally, we would like to highlight that power is not the only criterion to base sample size
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selection on. Aside from maximizing the likelihood that a hypothesized effect in a population
is detected, researchers might, for instance, be interested in increasing the precision of an
estimate by controlling the width of the confidence interval of interest (e.g., Maxwell et al.
2008). Bearing in mind that sample size planning is important for two related objectives
power and precision, our simulation-based approach could be extended in this direction,
allowing users to additionally select the sample size that yields a targeted confidence interval
width.

7 Conclusion

The current study introduced a Shiny app to select the number of participants in IL designs.
The application performs simulation-based power analysis to detect effects in multilevel
models. We hope that the application contributes to good research practices by allowing
rigorous sample size planning for IL studies, which is of crucial importance to increase the
reliability and replicability of psychological research.
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Arend, M. G. & Schäfer, T. (2019), ‘Statistical power in two-level models: A tutorial based
on Monte Carlo simulation.’, Psychological Methods 24(1), 1–19.

Astivia, O. L. O., Gadermann, A. & Guhn, M. (2019), ‘The relationship between statisti-
cal power and predictor distribution in multilevel logistic regression: a simulation-based
approach’, BMC Medical Research Methodology 19(1), 97–117.

Bates, D., Kliegl, R., Vasishth, S. & Baayen, H. (2015), ‘Parsimonious mixed models’, arXiv
preprint arXiv:1506.04967 .

Bolger, N. (2011), Power analysis for intensive longitudinal studies, in N. Bolger, G. Stadler
& J.-P. Laurenceau, eds, ‘Handbook of research methods for studying daily life’, Guilford,
New York, pp. 285–301.

Brandmaier, A. M., von Oertzen, T., Ghisletta, P., Hertzog, C. & Lindenberger, U. (2015),
‘LIFESPAN: a tool for the computer-aided design of longitudinal studies’, Frontiers in
Psychology 6, 272.

Brose, A., Schmiedek, F., Koval, P. & Kuppens, P. (2015), ‘Emotional inertia contributes to
depressive symptoms beyond perseverative thinking’, Cognition and Emotion 29(3), 527–
538.

Browne, W. J., Lahi, M. G. & Parker, R. M. (2009), ‘A guide to sample size calculations
for random effect models via simulation and the MLPowSim software package’, Bristol,
United Kingdom: University of Bristol .

Chang, W., Cheng, J., Allaire, J., Xie, Y., McPherson, J. et al. (2019), Shiny: Web Appli-
cation Framework for R. R package version 1.3.2.

28

https://psyarxiv.com/dq6ky/


Clark, M. (2020), ‘Michael clark: Convergence problems’.
URL: https://m-clark.github.io/posts/2020-03-16-convergence/

Cohen, J. (1988), ‘Statistical power analysis for the behavioral sciences. 2nd’.

Cools, W., Van den Noortgate, W. & Onghena, P. (2008), ‘ML-DEs: A program for design-
ing efficient multilevel studies’, Behavior Research Methods 40(1), 236–249.

Courvoisier, D. S., Eid, M. & Lischetzke, T. (2012), ‘Compliance to a cell phone-based eco-
logical momentary assessment study: The effect of time and personality characteristics.’,
Psychological Assessment 24(3), 713–720.

de Haan-Rietdijk, S., Kuppens, P. & Hamaker, E. L. (2016), ‘What’s in a day? a guide to
decomposing the variance in intensive longitudinal data’, Frontiers in Psychology 7, 891.

de Haan-Rietdijk, S., Voelkle, M. C., Keijsers, L. & Hamaker, E. L. (2017), ‘Discrete-
vs. continuous-time modeling of unequally spaced experience sampling method data’,
Frontiers in Psychology 8, 1849.

De Jong, K., Moerbeek, M. & Van der Leeden, R. (2010), ‘A priori power analysis in longi-
tudinal three-level multilevel models: an example with therapist effects’, Psychotherapy
Research 20(3), 273–284.

Dejonckheere, E., Mestdagh, M., Houben, M., Erbas, Y., Pe, M., Koval, P., Brose, A.,
Bastian, B. & Kuppens, P. (2018), ‘The bipolarity of affect and depressive symptoms.’,
Journal of Personality and Social Psychology 114(2), 323–341.

Enders, C. K. & Tofighi, D. (2007), ‘Centering predictor variables in cross-sectional multi-
level models: a new look at an old issue.’, Psychological Methods 12(2), 121–138.

Fuller-Tyszkiewicz, M., Skouteris, H., Richardson, B., Blore, J., Holmes, M. & Mills, J.
(2013), ‘Does the burden of the experience sampling method undermine data quality in
state body image research?’, Body Image 10(4), 607–613.

Goldstein, H., Healy, M. J. & Rasbash, J. (1994), ‘Multilevel time series models with
applications to repeated measures data’, Statistics in Medicine 13(16), 1643–1655.

Green, P. & MacLeod, C. J. (2016), ‘SIMR: an R package for power analysis of generalized
linear mixed models by simulation’, Methods in Ecology and Evolution 7(4), 493–498.

Hamaker, E. L. & Grasman, R. P. (2015), ‘To center or not to center? investigating inertia
with a multilevel autoregressive model’, Frontiers in Psychology 5, 1492.

Hamaker, E. L., Kuiper, R. M. & Grasman, R. P. (2015), ‘A critique of the cross-lagged
panel model.’, Psychological Methods 20(1), 102–116.

Hamilton, J. D. (1994), Time series analysis, Vol. 2, Princeton New Jersey.

29



Hedeker, D., Gibbons, R. D. & Waternaux, C. (1999), ‘Sample size estimation for longi-
tudinal designs with attrition: comparing time-related contrasts between two groups’,
Journal of Educational and Behavioral Statistics 24(1), 70–93.

Heininga, V. E., Dejonckheere, E., Houben, M., Obbels, J., Sienaert, P., Leroy, B., van
Roy, J. & Kuppens, P. (2019), ‘The dynamical signature of anhedonia in major depressive
disorder: positive emotion dynamics, reactivity, and recovery’, BMC Psychiatry 19(1), 59.

Ioannidis, J. P. (2005), ‘Why most published research findings are false’, PLoS Medicine
2(8), e124.

Kirtley, O., Lafit, G., Achterhof, R., Hiekkaranta, A. P. & Myin-Germeys, I. (In press),
‘Making the black box transparent: A template and tutorial for (pre-) registration of
studies using Experience Sampling Methods (ESM)’, Advances in Methods and Practices
in Psychological Science .

Koval, P., Pe, M. L., Meers, K. & Kuppens, P. (2013), ‘Affect dynamics in relation to
depressive symptoms: Variable, unstable or inert?’, Emotion 13(6), 1132–1141.

Krone, T., Albers, C. J. & Timmerman, M. E. (2016), ‘Comparison of estimation procedures
for multilevel AR(1) models’, Frontiers in Psychology 7, 486.

Kuppens, P., Allen, N. B. & Sheeber, L. B. (2010), ‘Emotional inertia and psychological
maladjustment’, Psychological Science 21(7), 984–991.

Kuppens, P. & Verduyn, P. (2015), ‘Looking at emotion regulation through the window of
emotion dynamics’, Psychological Inquiry 26(1), 72–79.

Landau, S. & Stahl, D. (2013), ‘Sample size and power calculations for medical studies by
simulation when closed form expressions are not available’, Statistical Methods in Medical
Research 22(3), 324–345.

Lane, S. P. & Hennes, E. P. (2018), ‘Power struggles: Estimating sample size for multilevel
relationships research’, Journal of Social and Personal Relationships 35(1), 7–31.

Liu, S. (2017), ‘Person-specific versus multilevel autoregressive models: Accuracy in param-
eter estimates at the population and individual levels’, British Journal of Mathematical
and Statistical Psychology 70(3), 480–498.

Maas, C. J. & Hox, J. J. (2005), ‘Sufficient sample sizes for multilevel modeling.’, Method-
ology: European Journal of Research Methods for the Behavioral and Social Sciences
1(3), 86–92.

Mathieu, J. E., Aguinis, H., Culpepper, S. A. & Chen, G. (2012), ‘Understanding and
estimating the power to detect cross-level interaction effects in multilevel modeling.’,
Journal of Applied Psychology 97(5), 951–966.

30



Maxwell, S. E., Kelley, K. & Rausch, J. R. (2008), ‘Sample size planning for statistical
power and accuracy in parameter estimation’, Annual Review of Psychology 59, 537–563.

Moerbeek, M. (2011), ‘The effects of the number of cohorts, degree of overlap among cohorts,
and frequency of observation on power in accelerated longitudinal designs’, Methodology:
European Journal of Research Methods for the Behavioral and Social Sciences 7(1), 11–24.

Moerbeek, M. & Maas, C. J. (2005), ‘Optimal experimental designs for multilevel logistic
models with two binary predictors’, Communications in Statistics—Theory and Methods
34(5), 1151–1167.

Moerbeek, M., van Breukelen, G. J. & Berger, M. P. (2000), ‘Design issues for experiments
in multilevel populations’, Journal of Educational and Behavioral Statistics 25(3), 271–
284.

Moerbeek, M., Van Breukelen, G. J. & Berger, M. P. (2001), ‘Optimal experimental designs
for multilevel logistic models’, Journal of the Royal Statistical Society: Series D (The
Statistician) 50(1), 17–30.

Molenaar, P. C. (2004), ‘A manifesto on psychology as idiographic science: Bringing the
person back into scientific psychology, this time forever’, Measurement 2(4), 201–218.

Morris, T. P., White, I. R. & Crowther, M. J. (2019), ‘Using simulation studies to evaluate
statistical methods’, Statistics in Mdicine 38(11), 2074–2102.
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