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ABSTRACT

Context. The Kepler and TESS space telescopes delivered high-precision, long-duration photometric time series for hundreds of main-
sequence stars, revealing their numerous gravito-inertial (g) pulsation modes. This high precision allows us to evaluate increasingly
detailed theoretical stellar models. Recent theoretical work extended the traditional approximation of rotation, a framework to evaluate
the effect of the Coriolis acceleration on g-modes, to include the effects of the centrifugal acceleration in the approximation of slightly
deformed stars, which so far had mostly been neglected in asteroseismology. This extension of the traditional approximation was
conceived by rederiving the traditional approximation in a centrifugally deformed, spheroidal coordinate system.
Aims. We explore the effect of the centrifugal acceleration on g modes and assess its detectability in space-based photometric obser-
vations.
Methods. We implement the new theoretical framework to calculate the centrifugal deformation of precomputed 1D spherical stellar
structure models and compute the corresponding g-mode frequencies, assuming uniform rotation. The framework is evaluated for a
grid of stellar structure models covering a relevant parameter space for observed g-mode pulsators.
Results. The centrifugal acceleration modifies the effect of the Coriolis acceleration on g modes, narrowing the equatorial band
in which they are trapped. Furthermore, the centrifugal acceleration causes the pulsation periods and period spacings of the most
common g modes (prograde dipole modes and r modes) to increase with values similar to the observational uncertainties of the
measured period spacing values in Kepler and TESS data.
Conclusions. The effect of the centrifugal acceleration on g modes is formally detectable in modern space photometry. Implementation
of the used theoretical framework in stellar structure and pulsation codes will allow for more precise asteroseismic modelling of
centrifugally deformed stars, in order to assess its effect on mode excitation, -trapping and -damping.

Key words. asteroseismology - waves - stars: oscillations - stars: rotation - stars: interiors - hydrodynamics

1. Introduction

Over the last decade, there have been major advancements in
observational asteroseismology. Thanks to space missions such
as CoRoT (Convection, Rotation and planetary Transits; Au-
vergne et al. 2009), Kepler (Borucki et al. 2009), the BRITE-
Constellation (BRIght Target Explorer Constellation; Weiss
et al. 2014) and TESS (Transiting Exoplanet Survey Satel-
lite; Ricker et al. 2014), long-time-base, high-cadence, high-
precision photometric light curves are now available for hun-
dreds of thousands of stars. This has resulted in the detection
and identification of g-mode oscillations, which have buoyancy
as the main restoring force, in hundreds of γDoradus (γDor)
and slowly-pulsating B-type (SPB) stars (e.g., Tkachenko et al.
2013; Van Reeth et al. 2015; Pápics et al. 2017; Christophe et al.
2018; Li et al. 2019b,c, 2020, Pedersen et al., submitted).

γDor (Kaye et al. 1999) and SPB stars (Waelkens 1991) are
main-sequence stars, with masses 1.4 M� . M . 1.9 M� and
3 M� . M . 9 M�, respectively. Their g-mode pulsations have
periods between 0.3 and 5 days, and are mostly sensitive to the
near-core regions of the stars. Asteroseismic modelling of ob-
served and identified g-mode pulsations allows us to constrain
the physical processes taking place in the deep stellar interior

(see e.g. Aerts et al. 2018). While similar on some fronts, ma-
jor differences occur in the modelling of g modes compared
to the case of stochastically-excited pressure modes (see Aerts
2021, for an extensive review on the overall methodology). For
g modes in γDor and SPB stars, key processes to infer are con-
vective core overshooting or convective penetration in the core
boundary layers (e.g., Pedersen et al. 2018; Michielsen et al.
2019), interior magnetic fields (Prat et al. 2019, 2020; Van Beeck
et al. 2020; Mathis et al. 2021, Bugnet et al. submitted), and mi-
croscopic or macroscopic mixing in the radiative envelope (e.g.,
Deal et al. 2016; Rogers & McElwaine 2017; Pedersen et al.
2018; Mombarg et al. 2020; Mathis et al. 2021, Pedersen et al.,
submitted; Bugnet et al., submitted).

One of the most crucial aspects that have to be taken into ac-
count in stellar structure and evolution theory is rotation (Zahn
1992; Maeder & Zahn 1998; Mathis & Zahn 2004; Maeder 2009,
and references therein). Aside from causing numerous physi-
cal processes such as rotational mixing, stellar rotation severely
influences the behaviour of g-mode pulsations via the Corio-
lis acceleration (e.g., Lee & Saio 1997; Dintrans & Rieutord
2000; Aerts et al. 2019, for a review). For high-frequency os-
cillations (ω � Ω , with ω the angular pulsation frequency in
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the co-rotating frame and Ω the angular rotation rate) the Cori-
olis acceleration can be treated as a perturbation (Hansen et al.
1977; Gough 1981). However, high-order g modes (with radial
order n � spherical degree `) typically lie in the low-frequency
range (ω . Ω), where the Coriolis force also contributes to the
restoring of the oscillations. Such g-mode pulsations therefore
occur in the gravito-inertial regime and correspond to gravito-
inertial waves (GIW, hereafter). Hence, the Coriolis force can
no longer be treated as a perturbation, and the hydrodynamical
equations that govern the oscillations become an infinite set of
coupled differential equations (Mathis 2009). However, approxi-
mate numerical solutions and general properties of GIW can still
be obtained by truncating the infinite set of coupled differential
equations (e.g., Berthomieu et al. 1978; Lee & Saio 1986, 1987;
Dziembowski & Kosovichev 1987b,a; Dziembowski et al. 1987;
Dintrans et al. 1999; Dintrans & Rieutord 2000; Mathis 2009).

The influence of the Coriolis force on GIWs is commonly
described using the traditional approximation of rotation (TAR).
It was first developed by Eckart (1960) in his study of the dy-
namics of shallow atmospheres and oceans on Earth, and later
introduced in stellar pulsation theory by Berthomieu et al. (1978)
and Lee & Saio (1987). The main assumption of the TAR is that
the stratification in which the waves propagate, is sufficiently
strong as to limit vertical wave motions. As a consequence, the
horizontal component of the rotation vector and therefore also
the vertical component of the Coriolis acceleration, can be ne-
glected within the description of the GIWs. This condition for
stable stratification (both in chemical composition and in en-
tropy) is typically met in the radiative near-core region of γDor
and SPB stars. By applying the TAR, the hydrodynamical oscil-
lation equations can be decoupled and rewritten in the form of
the Laplace tidal equation (Laplace 1799).

Two additional assumptions made within the TAR are those
of uniform rotation and spherical symmetry. Mathis (2009) aban-
doned the first assumption and included the effect of differen-
tial rotation within the framework of the TAR. Subsequently, the
sensitivity of GIWs to the effect of differential rotation was as-
sessed by Van Reeth et al. (2018). The assumption of spherical
symmetry is valid when the star is rotating sufficiently slowly
to ignore the centrifugal acceleration, i.e., Ω � Ωc, where

Ωc =

√
GM?/R3

eq =
√

8GM?/27R3
pole '

√
8GM?/27R3 is the

Roche critical rotation rate, G the universal gravitational con-
stant and where Req and Rpole stand for the equatorial and po-
lar radius of the star, respectively (see Maeder 2009, Chapter 2).
However, a significant fraction of the γDor and SPB stars are
moderate to fast rotators (Pápics et al. 2017; Li et al. 2020, Ped-
ersen et al., submitted). Hence, the effect of the centrifugal defor-
mation should be taken into account in the theoretical description
of their g-mode pulsations.

Mathis & Prat (2019) generalised the TAR for moderately-
to-rapidly rotating stars by considering the effects of the cen-
trifugal acceleration. First, they provide a prescription to deform
a stellar structure model into a centrifugally deformed oblate
spheroid. From the resulting perturbed physical quantities, a di-
mensionless deformation factor proportional to the square of the
rotation rate can then be calculated. Secondly, this deformation
factor is used to transition from a spherically symmetric to a
spheroidal coordinate system, keeping only first-order terms in
the deformation. Next, they re-derive the Laplace tidal equation
within this new coordinate system, arriving at the so-called gen-
eralised Laplace tidal equation. Finally, the authors derived an
asymptotic expression for the frequencies of GIWs, including
the effect of the centrifugal acceleration.

In this work, we have set up a parameter study with the goal
of assessing the effect of the centrifugal acceleration on g-mode
pulsations in rotationally deformed stars and their detectability
in space-based photometric observations. By doing so, we ex-
pand upon the proof-of-concept study conducted in the theoreti-
cal work of Mathis & Prat (2019) and aim to answer the question
whether the effect of the centrifugal acceleration should be ac-
counted for in asteroseimic modelling of observed g-mode pul-
sators. A brief summary of the theoretical results and numeri-
cal implementation by Mathis & Prat (2019), as well as our im-
provements to the theoretical framework, are provided in Sect. 2.
The results of our upgraded implementation and parameter study
follows in Sect. 3. We discuss the results and conclude in Sect. 4.

2. Methodology

2.1. Theoretical background

2.1.1. Deformation of stellar structure

Following Mathis & Prat (2019, Appendix A), the pressure P,
density ρ and gravitational potential φ in a centrifugally de-
formed star are written as the sum of a spherically symmetric,
non-perturbed part (subscript ‘0’) and a perturbation (subscript
‘1’). This perturbation term itself is then expanded on an or-
thogonal basis of Legendre polynomials Pleg,l(cos θ) of degree
l = 0, 2, with θ the co-latitude and θ = 0 on the rotation axis.
Such an expansion corresponds to the projection of the perturbed
quantities on a spheroidal surface in the moderately rapid rota-
tion regime considered here. For fast rotators, additional terms of
(even) degree l should be included but that is beyond our current
scope.

For the gravitational potential, with φ0 = −GM(r)/r and
M(r) the mass contained within a sphere of radius r , we have:

φ(r, θ) = φ0(r) + φ1(r, θ) = φ0(r) +
∑
l=0,2

φl(r)Pleg,l(cos θ) . (1)

With the inclusion of the centrifugal acceleration, the hydrostatic
equilibrium in the star is written as:

∇P
ρ

= −∇φ +
1
2

Ω2
∇

(
r2 sin2 θ

)
. (2)

This last term corresponds to the gradient of the centrifugal po-
tential (per unit mass) U(r, θ) = − 1

2 Ω2r2 sin2 θ. The centrifugal
potential itself is then also expanded on the same basis of Leg-
endre polynomials as:

U =
∑
l=0,2

Ul(r)Pleg,l(cos θ) . (3)

This implies that the modal amplitudes of the centrifugal poten-
tial are given by Ul=0 = −(1/3)Ω2r2 and Ul=2 = (1/3)Ω2r2.

The modal amplitudes of the pressure and density, Pl(r) and
ρl(r), are recovered from the property that in the centrifugally
deformed star the equipotential surface (φ + U), isobar surface
and isodensity surface coincide and are given by (Mathis & Prat
2019, Appendix A):

Pl(r) = −ρ0(r)
[
φl(r) + Ul(r)

]
, (4)

ρl(r) =
1

g0(r)
dρ0(r)

dr
[
φl(r) + Ul(r)

]
. (5)

For the modal amplitude of the gravitational potential, φl(r) , it
is required to solve the perturbed Poisson equation

∇2φl(r) = 4πGρl(r) , (6)

Article number, page 2 of 14



Henneco et al.: Effect of centrifugal deformation on g-mode pulsations

which is simply recovered from substituting the modal expan-
sions of φ(r, θ) and ρ(r, θ) in the Poisson equation. Explicitly the
perturbed Poisson equation reads:

1
r

d2

dr2 (rφl) −
l (l + 1)

r2 φl −
4πG
g0

dρ0

dr
φl =

4πG
g0

dρ0

dr
Ul , (7)

with boundary conditions

φl(0) = 0 and
d
dr
φl(R) =

(l + 1)
R

φl(R) (8)

and l ∈ {0, 2} (Sweet 1950; Zahn 1966; Mathis & Prat 2019,
Appendix A).

Based on Lee & Baraffe (1995) and Mathis & Prat (2019),
we now define the pseudo-radial coordinate a as follows:

r = a [1 + ε(a, θ)] . (9)

At this point, we perform a transformation from a spherical coor-
dinate system (r, θ, ϕ) to a spheroidal coordinate system (a, θ, ϕ).
ε represents a dimensionless deformation factor, defined in the
spheroidal coordinate system. Again following Mathis & Prat
(2019, Appendix A), an expression for the modal amplitudes of
ε can be derived:

εl(a) = −
φl(AS) + Ul(AS)

g0(AS)
a3

A4
S

, (10)

with AS the surface pseudo-radius of the deformed star. The co-
ordinate mapping described by these expressions for ε and a is
more accurate than the linear approximation used by Mathis &
Prat (2019) and closely agrees with the physical mapping de-
scribed by, e.g., Zahn (1966) and Mathis & Zahn (2004), so that
r is equal to the deformed surface radius RS(θ) at a = AS. How-
ever, while this physical mapping has a singularity at the stellar
centre, our cubic expression ensures that a ' r when a→ 0.

From the expressions for the modal amplitudes of the pres-
sure, density and deformation factor (Eqs. 4, 5 & 10), it can be
seen that the centrifugal acceleration enters the expressions of
the perturbed quantities in the form of a second order perturba-
tion in the stellar rotation rate Ω. In the expression for εl(a) given
in Eq.(10) we have a dominant contribution from Ul (compared
to φl). Hence, εl=0 (εl=2) is positive (negative), and the deforma-
tion factor ε is positive in the direction of the equator.

To facilitate the calculation of εl, we can map the radial co-
ordinate r0 and the surface radius R of the spherically symmetric
(non-deformed) stellar model onto a and AS, respectively. Within
their respective stellar models, both the r0 and a coordinates co-
incide with the radial isobaric coordinate. Thus, we get

εl(r0) = −
φl(R) + Ul(R)

g0(R)
r3

0

R4 . (11)

2.1.2. Generalised Laplace tidal equation

The Laplace tidal equation is an eigenvalue equation that can
be derived from the oscillation equations by using the TAR. Its
simple form immediately demonstrates the simplifying power of
the latter approximation. Following Lee & Saio (1997), it can be
written as:

Lclass.
νm [Θνkm] = −Λclass.

νkm Θνkm, (12)

with the operator Lclass.
νm defined as:

Lclass.
νm =

1 − x2

1 − ν2x2 ∂
2
x −

2x
(
1 − ν2

)
(
1 − ν2x2)2 ∂x

+

mν
(
1 + ν2x2

)
(
1 − ν2x2)2 −

m2(
1 − x2) (1 − ν2x2)

 . (13)

In order to avoid confusion later on, we will refer to this equation
as the classical Laplace tidal equation (abbreviated as CLTE).
Here, ∂x = ∂/∂x , x = cos θ , and ν = 2Ω/ω the spin param-
eter. The latter is a measure of the effect of rotation; pulsation
modes for which ν > 1 (resp. ν < 1) are known as sub- (resp.
super-) inertial modes. The eigenfunctions Θνkm are the radial
Hough functions, after S. S. Hough, who pioneered in solving
the Laplace tidal equation (Hough 1898), and Λclass.

νkm represent
the eigenvalues of the equation. These radial Hough functions
give the co-latitudinal distribution of the radial displacement of
the star caused by the pulsations and in the limit ν → 0 reduce
to CPm

l (x), with C a constant and Pm
l (x) the associated Legendre

polynomial of degree l and order m. The eigenvalues reduce to
`(` + 1) without rotation.

The convention is adopted in which, considering ν > 0 ,
positive azimuthal orders (m > 0) denote prograde modes and
m < 0 retrograde modes. Since in general for each pair (m, ν)
the CLTE yields an infinite set of solutions, the ordering num-
ber k is introduced. Inertial waves, such as r modes (which are
normal modes of global Rossby waves influenced by buoyancy)
(Saio et al. 2018), are not present in non-rotating stars and have
k < 0. For k ≥ 0, the ordering number is related to the spherical
degree l and azimuthal order through ` = |m| + k (Mathis & Prat
2019).

To include the effect of the centrifugal acceleration in the
Laplace tidal equation, it is re-derived in the spheroidal coor-
dinate system by Mathis & Prat (2019). The transition from a
spherical to spheroidal coordinate system involves the following
basis transformation:

ẽa = (1 + ε + a∂aε) êr,

ẽθ = ∂θε̂er + (1 + ε) êθ,
ẽϕ = (1 + ε) êϕ,

(14)

with ε ≡ ε(a, θ) =
∑

l=0,2 εl(a)Pleg,l(x) the deformation factor in-
troduced above. The resulting generalised Laplace tidal equation
(GLTE) then is:

Lνm [wνkm] =

(
1 − x2

D

)
∂2

xwνkm

+


(
1 − x2

)
∂xE

D
+ ∂x

(
1 − x2

D

) ∂xwνkm

−

[
m2(

1 − x2)D − mν
d
dx

(
xC
D

)
− mν

xC
D
∂xE

]
wνkm

= − Λνkm(a)wνkm , (15)

where

A(a, θ) = 1 + 2ε , B(a, θ) = A + tan θ∂θε

C(a, θ) = B/A , D(a, θ) = A
[
1 − ν2 cos2 θC2

]
E(a, θ) = 3ε + a∂aε .

Utilising the same nomenclature as Mathis & Prat (2019), the
eigenfunction wνkm = wνkm(a, θ) is called the modified radial
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Hough function. Note that the eigenvalue Λνkm(a) and modi-
fied radial Hough function have a parametric dependence on the
pseudo-radial coordinate a, whereas in the spherically symmet-
ric case there was no radial dependence of the solutions.

2.1.3. Asymptotic frequencies

Within the asymptotic regime, where the radial order n of the
modes is much larger than the spherical degree ` (n � `), and
where we consider modes with ω � |N | and ω � |S ` |, N and
S ` being the Brunt-Väisälä and Lamb frequency respectively,
asymptotic expressions for the pulsation frequencies can be de-
rived (Shibahashi 1979; Tassoul 1980; Unno et al. 1989). Fol-
lowing Mathis (2009) and Bouabid et al. (2013), these asymp-
totic expressions for the pulsation frequencies can be re-derived
to include the effect of the centrifugal force. Mathis & Prat
(2019) find the angular pulsation frequencies to be:

ωnkm =

∫ a2

a1

Λ
1/2
νkm(a)N̄(a)

a
da

(n + 1/2)π
(16)

and the pulsation periods:

Pnkm =
2π2(n + 1/2)∫ a2

a1

Λ
1/2
νkm(a)N̄(a)

a
da

. (17)

Here, N̄(a) is the perturbed Brunt-Väisälä frequency profile
(quantities denoted with a bar are defined within the spheroidal
coordinate system). To account for the large diversity of pulsa-
tion mode cavities of g modes with different identification (k,m)
or spin ν, N̄2(a) is calculated as a weighted average over the co-
latitude θ:

N̄2(a) =

∫ π

0 Hr(a, θ)N2(a, θ) sin θ dθ∫ π

0 Hr(a, θ) sin θ dθ
, (18)

where Hr(a, θ) is the radial eigenfunction that corresponds to the
eigenvalue Λνkm(a) in Eqs.(16) and (17), and

N2(a, θ) = −
ḡ

r

[
d ln ρ̄
d ln r

−
1
Γ̄1

d ln P̄
d ln r

]
, (19)

with Γ̄1 =
(
∂ ln P̄/∂ ln ρ̄

)
S̄

the perturbed adiabatic exponent de-
fined at constant (perturbed) entropy S̄ . The different quanti-
ties on the right-hand side of Eq.(19) all depend on both a
and θ. In the integral in Eq. (17), a1 and a2 are the inner- and
outer-boundaries of the mode cavity, determined as the region(s)
within the star where N̄2(a) > 0.

Another result from asymptotic theory is that, for a non-
rotating, non-magnetic g-mode pulsator without chemical gra-
dients, the pulsation periods of modes with consecutive radial
orders are equidistant. The differences in mode periods, ∆Pnkm =
Pn+1,km−Pnkm thus remain constant when plotted as a function of
the period Pnkm or radial order n (Miglio et al. 2008). When con-
structing these so-called period spacing patterns for more real-
istic stellar models (including rotation and chemical gradients),
they will deviate from a constant, as first observed for a main-
sequence massive early-type star by the CoRoT satellite (Deg-
roote et al. 2010). Comparing theoretical and observed period
spacing patterns then allows us to deduce information about ro-
tation and chemical mixing in the deep interior of stars (Aerts
2021).

2.2. Computational implementation

The computational method to derive the asymptotic GIW fre-
quencies from the solutions to Eq. (16) is provided in Ap-
pendix B. The implementation of the analytical framework of
Mathis & Prat (2019) described above consists of three parts.
First, a non-rotating 1D stellar structure model is calculated
and perturbed for a selected uniform rotation rate, following
Sect. 2.1.1. These 1D, non-rotating stellar structure models are
calculated using the code MESA1 (Modules for Experiments in
Stellar Astrophysics; Paxton et al. 2019 and references therein).
The resulting 2D (radial and latitudinal) profiles for r(a, θ) and
ε are subsequently used as input for solving the GLTE given in
Sect. 2.1.2. The solutions of the GLTE then allow us to compute
the asymptotic pulsation frequencies based on Eq. (16).

The computational implementation of the first step involves
solving the perturbed Poisson equation (e.g. through an itera-
tive shooting scheme) for l = 0 and l = 2, yielding the modal
amplitudes φl(r). These, in turn, are used to calculate the modal
amplitudes of the pressure and density (Eqs. 4 & 5). Two chal-
lenges occur in the computation of the perturbed Brunt-Väisälä
frequency profile:

i The calculation of Γ̄1 (at constant entropy S̄ ) requires de-
tailed knowledge on how the equation of state changes under
influence of the centrifugal deformation. This would require
the framework of Mathis & Prat (2019) to be directly imple-
mented in MESA.

ii High levels of numerical noise are introduced by the numeri-
cal derivatives of the physical quantities (such as the pressure
and density) with respect to r and a, which is a well-known
problem in stellar structure and evolution codes (Paxton et al.
2013).

The details of how we treated these aspects are described in Ap-
pendix A.

2.2.1. Solver for the GLTE

Several numerical methods are available for solving an eigen-
value problem such as the Laplace tidal equation, a number of
which are discussed in Wang et al. (2016). As in Mathis & Prat
(2019), the Chebyshev collocation method (Boyd 1976) is cho-
sen. In such a method, the eigenfunctions of the problem, in this
case the modified radial Hough functions, are expanded on a ba-
sis of N Chebyshev polynomials, where N is the number of col-
location points. For the current work, we improved an existing
solver for the CLTE of Prat et al. (2019) and Van Beeck et al.
(2020), which was developed by one of us (VP), with two mod-
ifications.

Contrary to the CLTE, the GLTE has a parametric depen-
dence on the radial coordinate (in this case a). In other words,
at each cell of the MESA model, the solutions of the GLTE will
be different, since ε(a, θ) depends on a. Furthermore, in order to
select the solution corresponding to the desired mode identifica-
tion (k,m) among the set of N solutions, the solver requires an
estimate for the eigenvalue Λνkm(a). At the centre of the model,
where ε = 0, the eigenvalue can be estimated by the solutions of
the CLTE tabulated in the TAR module of the stellar pulsation
code GYRE (Townsend & Teitler 2013; Townsend et al. 2018).
Going from the centre to the surface, at each subsequent cell,
the estimate is then provided by the eigenvalue from the previ-
ous cell. Since the effect of the centrifugal force increases from
1 MESA version r11701. For more information about the different ver-
sions, see http://mesa.sourceforge.net/.
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the centre to the surface (see Eqs. 2 &10) these eigenvalues will
increasingly diverge from the value at the centre. To keep the
computation time manageable, an appropriate number of sample
points in which the GLTE is solved, must be selected. Thanks to
the smooth behaviour of Λνkm(a) (see Sect.3) it suffices to calcu-
late solutions for ∼ 10 cells. These points are chosen equidistant
in cell index in the MESA model rather than in physical distance.
In that way, regions with higher cell density get a higher sam-
pling. Λνkm(a) profiles, required for asymptotic frequency calcu-
lations (see Eq. 16) are retrieved through quadratic interpolation.

The calculation of the coefficients A,B,C,D,E and their
derivatives, which make up the coefficients of the GLTE, is sub-
ject to discontinuities when done from numerical differentiation.
We therefore relied on analytical differentiation where possible.
Only for E and its derivative with respect to the co-latitudinal
coordinate x we approximate the term a∂aε by 3ε in order to
avoid numerical issues. This approximation is justified by the
cubic polynomial behaviour of the deformation factor. The coef-
ficients, as implemented in the solver for the GLTE, are:

∂xε = 3xεl=2 (20)
A = 1 + 2ε (21)

B = A− 3εl=2(1 − x2) (22)
C = B/A (23)

D = A
(
1 − ν2x2C2

)
(24)

E ' 6ε , (25)

with εl=2 = εl=2(a) the modal amplitude in the expression for
ε = ε(a, θ) =

∑
l=0,2 εl(a)Pleg,l(x). The respective derivatives with

respect to x = cos θ are:

∂xA = 6xεl=2 (26)
∂xB = 12xεl=2 (27)

∂xC =
1
A2 (A∂xB − B∂xA) (28)

∂xD = ∂xA
(
1 − ν2x2C2

)
− 2ACxν2 (C + ∂xC) (29)

∂xE = 18xεl=2 . (30)

3. Numerical results

3.1. Covered parameter space of equilibrium models

With the goal of exploring the effect of the centrifugal accelera-
tion on the stellar structure and on high-order g-mode pulsations
in more depth than was done in the proof-of-concept by Mathis
& Prat (2019), the methodology described in the previous sec-
tion has been applied to a range of MESA equilibrium models
with varying input parameters. The ranges and values for these
parameters are shown in Fig. 1.

– mass: the masses of the MESA models are chosen within
the joint mass range of γDor [1.4, 1.9 M�] (Mombarg et al.
2019) and SPB [3, 9 M�] (Pápics et al. 2017, Pedersen et al.,
submitted) stars. The physical conditions inside these types
of pulsating stars allow the TAR to be applied and these are
the two types of main-sequence stars for which g-mode pe-
riod spacing patterns are observed.

– age: the age of the stellar models is quantified in terms of
their core hydrogen-mass fraction Xc. Each model has been
computed with an initial hydrogen mass fraction Xini = 0.715
and evolved to its specified Xc.

M = 2.0 Msol Xc = 0.50 Z = 0.014 Dmix = 1 cm2/s fov = 0.015

1.5 Msol

3.0 Msol

5.0 Msol

0.70

0.30

0.10

0.010

0.018

0.1 cm2/s

10 cm2/s

0.005

0.030

Fig. 1. Selected ranges and values for the input parameters of the 1D
stellar structure models used in this work.

– metallicity: the range in initial metal mass fraction, Z, cov-
ers values typical for stars in our Milky Way in the consid-
ered mass range. By considering a range, we assess how the
change in opacity caused by Z affects the Brunt-Väisälä pro-
file and the g-mode pulsation frequencies.

– envelope mixing: the amount of mixing that occurs in the
radiative envelope of the star is quantified by the diffusion
coefficient Dmix and affects the profiles of the mass fractions,
Xi, of all the isotopes considered in the chemical mixture
adopted as input physics. As such, Dmix has an influence on
the Brunt-Väisälä frequency. In each of the calculated MESA
models, we considered Dmix to be constant throughout the
radiative envelope, adopting values typical for g-mode pul-
sators (Van Reeth et al. 2016; Moravveji et al. 2016).

– convective core overshooting: this process is of major im-
portance for stellar evolution in the considered mass range,
yet it is least known among the various ingredients to be cho-
sen as input physics (Claret & Torres 2019; Johnston et al.
2019; Li et al. 2019a; Tkachenko et al. 2020). Different for-
malisms exist to describe this overshoot region. We adopted a
diffusive exponentially-decaying overshooting (Freytag et al.
1996; Herwig 2000) quantified by the overshooting parame-
ter fov.

Furthermore, each model is computed using the AGSS09
chemical abundances derived by Asplund et al. (2009) and a
mixing length αMLT = 2 within the mixing length theory de-
veloped by Henyey et al. (1965). For convergence purposes, a
hot wind with Vink scaling factor of 1 is turned on Vink et al.
(2001). In order to avoid numerical issues, rotation is not taken
into account during the MESA model calculations. The effects of
rotation enter in our models by applying the perturbation method
described in Sect. 2.1.1.

3.2. Solutions of the GLTE

Here, we investigate the difference in solutions of the GLTE
and CLTE. To illustrate these, we pick one baseline equilibrium
model from our grid setup, as indicated in the highlighted row
in Fig. 1. The behaviour is found to be equivalent for the other
models so we do not discuss these results for brevity.

Fig. 2 shows the solution spectrum for the GLTE for m = 2
with even and odd eigenfunctions. Four classes of solutions can
be distinguished (Lee & Saio 1997): (i) the prograde g modes
with ν > 0 and positive eigenvalues Λνkm(a), (ii) retrograde g
modes with ν < 0 and positive eigenvalues, (iii) Rossby modes
which are retrograde and have negative eigenvalues, and (iv)
prograde convective modes with negative eigenvalues. Just as
Rossby modes, the latter only appear in rotating stars and only

Article number, page 5 of 14



A&A proofs: manuscript no. centrifugaldeformation_arxiv

Fig. 2. Solution spectrum of the generalised Laplace tidal equation for
modes with m = 2. Modes with even eigenfunctions are shown in blue,
those with odd eigenfunctions in orange. Light/dark colours correspond
to solutions near the surface/core. The equilibrium model used as input
for the computations has parameters as in the highlighted row in Fig. 1.

exist for |ν| > 1. Specifically, these modes are able to propagate
in convective regions under the joint force of the Coriolis accel-
eration and buoyancy.

Keeping in mind that the solutions plotted in the darkest
colours correspond to those for the core and are therefore equiv-
alent to the solutions of the CLTE (see Sect. 2.2.1), Fig. 2 reveals
that the centrifugal deformation of the star causes a gradual shift
in the eigenvalues. Whether this is an upwards or downwards
shift depends on the mode identification (k,m) (we recall that so-
lutions for negative spin parameters ν and m > 0 are equivalent
to solution with ν > 0 and m < 0). The numerical ‘noise’ visible
at higher values of |ν| are an artefact due to the limited number of
Chebyshev collocation points (N = 200), but it can be seen that
this does not affect the selected solutions. We obtained that an
increase in the number of collocation points causes a decrease in
this noise.

The (normalised) eigenfunctions wνkm of the GLTE for a
(k = 0,m = 2) mode with ν = 2 are shown in Fig. 3. Equiva-
lent figures for ν = 0.5 (super-inertial) and ν = 9 (sub-inertial)
are displayed in Fig. 4. The eigenfunctions of the GLTE dif-
fer increasingly from those of the CLTE as the distance from
the centre of the model to the surface increases. More specif-
ically, the eigenfunctions migrate inwards, towards the equator
(x = 0), causing a narrowing of the overall shape of the eigen-
functions. Similar behaviour is observed for other modes, such
as prograde dipole (k = 0,m = 1) modes shown in Fig. 5,
retrograde quadrupole (k = 0,m = −2), retrograde Rossby
(k = −2,m = −1), quadrupole zonal (k = 2,m = 0), and
(k = 1,m = 1) oscillation modes. Off-equator extrema, such as
for the eigenfunctions of (k = 0,m = −2) and (k = −2,m = −1)
modes shown in Fig. 5, experience net inward shifts towards the
equator.

Fig. 6 shows the eigenfunctions at the surface (a = AS) and
the Λνkm(a) profiles for a M = 1.5 M�, Xc = 0.50 (Xc/Xini =
0.70) model for seven different rotation rates ranging from Ω =
0.1 Ωc to Ω = 0.7 Ωc. The figure is again for a quadrupole sec-
toral (k = 0,m = 2) mode. We find that the narrowing of the

1 0 1
x = cos

0.00

0.25

0.50

0.75

1.00

w
km

2M , Xc = 0.50
k = 0
m = 2

= 2
= 0.50 c

Fig. 3. Modified radial Hough functions wνkm(a, θ) (normalised) for ν =
2 and Ω/Ωc = 0.50. Solutions are plotted in a colour range from indigo
to yellow from the stellar core to the surface. The green dashed line
shows the solution of the CLTE. The number of collocation points for
this computation was N = 200.

0.0 0.5 1.0
x = cos

0.00

0.25

0.50

0.75

1.00

w
km

2M , Xc = 0.50
k = 0

m = 2
= 0.50 c

= 9 = 0.5

Fig. 4. Modified radial Hough functions wνkm(a, θ) (normalised) for
Ω/Ωc = 0.50 and two different spin parameters. The 2.0 M�, Xc = 0.50
equilibrium model was used as input. The colour scheme and number
of collocation points are identical to that of Fig. 3 (CLTE solutions are
left out for clarity).

shape of the eigenfunctions and the divergence of the eigenval-
ues from the value at the centre increase with increasing rotation
rate, as expected.

3.3. Asymptotic period spacing patterns

We solved the GLTE for each model in our grid, covering a range
of spin parameters for each of the models (see Appendix B). We
restricted to three specific mode identifications: prograde dipole
sectoral (k = 0,m = 1) modes, prograde quadrupole sectoral
(k = 0,m = 2) modes, and retrograde Rossby modes with
(k = −2,m = −1). The reason for this choice is that these GIWs
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Fig. 5. (a) Modified radial Hough functions wνkm(a, θ) (normalised) for three different modes (with specified spin parameter ν). Colour conventions
are the same as those in Fig. 3. (b) Eigenvalue Λνkm(a) profiles corresponding to the eigenfunctions in (a). Points indicated with a ? correspond
to eigenvalues obtained by solving the GLTE. Red points are found via quadratic interpolation. The considered number of collocation points was
N = 200.

are most often observed in rotating g-mode pulsators (Pápics
et al. 2017; Li et al. 2020). The computed period spacing pattern
for prograde dipole modes of the baseline model for Xc = 0.50
(Xc/Xini = 0.70) is shown in Fig. 7. By comparing the cen-
trifugally deformed period spacing pattern with their spherically
symmetric counterpart, we find that the spacing values increase
under the influence of the centrifugal acceleration. This increase
is largest at lowest radial orders (short pulsation periods). Simi-
lar behaviour is found for (k = 0,m = 2) modes.

Essentially two effects are at play here: on the one hand, the
centrifugal acceleration directly affects the g-mode pulsations,
via a Λνkm(a)−profile that changes throughout the star from a =
0 to a = AS instead of just one Λclass.

νkm value for r0 = 0→ r0 = R.
On the other hand, the stellar shape, including the Brunt-Väisälä
frequency profile and the volume, are perturbed, which has an
indirect on the g-mode pulsations. In order to isolate the effect
of this deformation, we re-calculated the period spacing pattern
for the centrifugally deformed star for Λνkm(a) = Λclass.

νkm , with
Λclass.
νkm the eigenvalue of the CLTE. This period spacing pattern

is plotted in red in Fig. 7. Similarly, the purple period spacing
pattern was calculated by setting N̄(a) = N0(r0) and a = r0,
isolating the effect of the a−dependence of the solutions of the
GLTE. Both effects lead to a net increase in the period spacings.
Also for the (k = −2,m = −1) Rossby modes shown in Fig. 8, a
net upward shift of the period spacing pattern occurs. The effect
is larger at longer pulsation periods, which for Rossby modes is

equivalent to low radial orders (Saio et al. 2018). In some cases,
such as for retrograde g modes with (k,m) = (0,-1), we do find
a net decrease in the period spacings ∆Pnkm. In such cases the
Λνkm(a)−value increases under the influence of the centrifugal
acceleration, and counteracts the effect of the centrifugally mod-
ulated Brunt-Väisälä frequency profile N̄(a).

3.4. Detectability in space-based photometric observations

To quantify the effect the centrifugal deformation of the star
on the pulsation frequencies, we computed the frequency differ-
ences between asymptotic frequencies calculated in the classical
formulation of the TAR, and those calculated in the generalised
formulation (through Eq. 16). We consider these frequency dif-
ferences as a function of the radial order n, as this is similar
to the common diagnostic observables used in g-mode astero-
seismic modelling (Aerts et al. 2018). We compare the obtained
frequency differences with the frequency resolutions (1/Tobs) of
Kepler and TESS light curves covering quasi-continuously ob-
servation times of Tobs = 4 years and Tobs = 351 days, respec-
tively. In this way, we were able to deduce the radial orders nmax
for which the frequency differences are expected to be detectable
in the absence of instrumental effects and assuming excellent
knowledge of the equilibrium models representing an observed
star. In reality asteroseismic modelling never represents the stel-
lar oscillations perfectly, meaning that the optimal reported nmax
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Fig. 6. (a) Modified radial Hough functions wνkm(a = AS, θ) for seven
different rotation rates and ν = 2 . (b) Eigenvalue Λνkm(a) profiles cor-
responding to the eigenfunctions in (a) .

leading to the largest frequency differences due to the centrifugal
deformation are in fact lower limits of detectability in real ap-
plications of asteroseismology. The results for prograde dipole
(k = 0,m = 1) modes in the central (2.0 M�, Xc = 0.50) model
rotating at 0.15 Ωc are displayed in Fig. 9. These computations
were done for all the models in our grid and the considered
modes. The results are listed in Table 1.

To assess whether the centrifugal acceleration is a necessary
ingredient in asteroseismic modelling, we computed the frac-
tional differences between asymptotic frequencies in centrifu-
gally deformed and spherically symmetric stars for a range of
rotation rates Ω/Ωc ∈ [0.10 − 0.70]. For these calculations, the
central 2 M�, Xc = 0.5 equilibrium model was used. We re-
stricted these tests to prograde dipole sectoral (k = 0,m = 1)
modes, as these are most frequently observed. The results are
displayed in Fig. 10. The middle and bottom panel of this figure
show that the deformation of the stellar structure and the diver-
gence of the eigenvalues of the GLTE each cause an increase
of δ fnkm/ fnkm (in absolute value) for increasing Ω = 0.1 Ωc to
0.7 Ωc. The fractional frequency differences caused by both ef-
fects are on the order of 1 %. And while the indirect effect of the
deformed stellar structure has a slightly larger impact, this again
shows that both the deformation of the stellar structure itself and
the generalisation of the TAR are required to accurately describe
the effect of the centrifugal acceleration on GIW.
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Fig. 7. Period spacing pattern in an inertial frame computed for (k =
0,m = 1) modes in a centrifugally deformed 2.0 M�, Xc = 0.50
(Xc/Xini = 0.70), Z = 0.014, Dmix = 1 cm2s−1, fov = 0.015 equilib-
rium model at Ω/Ωc = 0.50 (blue line). The black-dashed line shows
the equivalent period spacing pattern for the same model, but without
the effect of the centrifugal acceleration. The red and purple lines show
the results for N0(r)→ N̄(a); r → a and Λclass.

νkm → Λνkm(a), respectively.
The bottom panel shows the differences with respect to the spherically
symmetric period spacing pattern. The indicated global errors for the
periods and period spacings are averages calculated from the uncertain-
ties of P and ∆ P for a sample of 40 γDor stars by Van Reeth et al.
(2015), where the horizontal bar is hardly visible as it represents 10−4 d.

The frequency differences provide an assessment for the ap-
plicability of the analytical framework in Mathis & Prat (2019)
in terms of the fraction of the critical rotation rate Ωc. For rota-
tion rates near the critical value, i.e. Ω/Ωc = 0.80 − 0.99 (not
shown in Fig. 10) the behaviour of δ fnkm/ fnkm deviates from the
smooth curves in the figure for the lower values. This indicates
that the assumptions in the analytical frame work (e.g., only tak-
ing l = 0 and l = 2 projections into account) no longer hold for
higher rotation rates than those shown in Fig. 10. The case where
the centrifugal acceleration is treated in a non-perturbative man-
ner will be part of forthcoming work (Dhouib et al., in prep.).

4. Discussion & conclusions

The results in the previous section reveal that the centrifugal de-
formation of the star implies a shift in the extrema of the eigen-
functions towards the equator of the star. This effect becomes
more outspoken towards the surface, since the centrifugal accel-
eration (and hence the dimensionless deformation factor ε) be-
comes more important as one moves from the centre to the outer
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(k = −2,m = −1) modes in the same equilibrium model as in Fig. 7
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period spacing pattern for the same model, but without the effect of the
centrifugal acceleration. The red and purple show the isolated effect of
N0(r)→ N̄(a); r → a and Λclass.

νkm → Λνkm(a), respectively.

20 40 60 80 100
radial order n

0.10

0.08

0.06

0.04

0.02

0.00

0.02

0.04

f (
Hz

)

fres, TESS
fres, Kepler
fcentrifugal fspherical
nmax, TESS = 13
nmax, Kepler = 53

Fig. 9. Asymptotic frequency differences (black) for dipole (k = 0,m =
1) modes at Ω = 0.15 Ωc for the central 2.0 M�, Xc = 0.50 MESA model.
Red and blue bands represent the frequency resolution of Kepler and
TESS respectively. The respective values of nmax are indicated by verti-
cal dashed lines.

layers. The eigenfunctions centred around the equator reveal
narrower maxima, while the extrema of the off-equator eigen-
functions move inwards, towards the equator. We thus find that
the effect of the centrifugal acceleration modifies the one of the
Coriolis acceleration included in the CLTE. More precisely, the
Coriolis acceleration is responsible for a concentration of GIW
towards the equator, while the centrifugal acceleration causes
these equatorial bands to become narrower and the off-equator
extrema of eigenfunctions shift inwards.

We found differences between the proof-of-concept study by
Mathis & Prat (2019) and the quantitative numerical results in
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Fig. 10. (a) Fractional frequency difference δ fnkm/ fnkm , with δ fnkm =
fcentrifugal − fspherical and fnkm = fcentrifugal in function of the fractional
rotation rate, for n = 1 to n = 100 . Calculations based on central 2 M�,
Xc = 0.50 MESA model with Ω/Ωc ∈ [0.10 − 0.70], exhibiting prograde
dipole sectoral (k = 0,m = 1) modes. (b) Same as (a), but now with the
isolated effect of the deformation of the Brunt-Väisälä frequency profile
and radial coordinate (achieved by setting Λνkm(a) = Λclass.

νkm ). (c) Same
as (a), but now with the isolated effect of the deviation of the eigenvalue
of the GLTE (achieved by setting N̄(a) = N0(r0) and a = r0).

this work. The current new implementation uses a different ap-
proach for the computational aspects to solve the GLTE. In or-
der to avoid numerical issues, Mathis & Prat (2019) made use
of linearized expressions for the coefficients of the GLTE. How-
ever, such an approach revealed the solutions to be rather depen-
dent on the used number of collocation points. For this reason,
we circumvented the use of numerical derivatives to solve the
GLTE analytically where possible, as described in Sect. 2.2.1. In
this way, the avoided crossings in the solution spectrum for the
GLTE (Fig. 2; their Figs. 5 & 6) are circumvented here. More-
over, the current numerical approach leads to relatively modest
shift of the eigenfunctions towards the equator as shown graph-
ically in our Figs. 3, 5 & 6, as an improvement compared to the
more pronounced behaviour found in Figs. 7 & 8 in Mathis &
Prat (2019).
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Table 1. Potential detectability of the effect of the centrifugal accelera-
tion in space-based photometric observations.

model frot nmax nmax
[µHz] (Kepler) (TESS)

central model
2.0 M�, Xc = 0.5, Z = 0.014, 4.35 53 13
Dmix = 1 cm2/s, fov = 0.015 ,
0.15 Ωc, (k,m) = (0, 1)
1.5 M� 4.87 42 10
3.0 M� 3.72 62 16
5.0 M� 3.11 69 18
Xc = 0.7 6.01 74 19
Xc = 0.3 2.99 39 9
Xc = 0.1 1.88 28 6
Z = 0.010 4.62 60 15
Z = 0.018 4.14 50 13
Dmix = 0.1 cm2/s 4.35 53 13
Dmix = 10 cm2/s 4.35 53 13
fov = 0.005 4.51 55 14
fov = 0.030 4.13 50 13
0.10 Ωc 2.90 31 7
0.20 Ωc 5.80 82 22
0.30 Ωc 8.70 > 100 39
0.40 Ωc 11.59 > 100 59
0.50 Ωc 14.49 > 100 82
0.60 Ωc 17.40 > 100 > 100
k = 0, m = 2 4.35 > 100 25
(k,m) = (−2,−1), 0.20 Ωc 5.80 . . . . . .
(k,m) = (−2,−1), 0.30 Ωc 8.70 10 . . .
(k,m) = (−2,−1), 0.40 Ωc 11.59 14 . . .
(k,m) = (−2,−1), 0.50 Ωc 14.49 85 5
(k,m) = (−2,−1), 0.60 Ωc 17.39 > 100 8
(k,m) = (−2,−1), 0.70 Ωc 20.29 > 100 9

Notes. The first entry of the table (above the line) contains the result for
the central model, of which the MESA input parameters, fractional rota-
tion rate and mode identification are given. Subsequently, each of the
indicated parameters/rotation rates/mode identifications is varied with
respect to the central model. The influence of the rotation rate is evalu-
ated again separately for (k,m) = (−2,−1).

In essence, the centrifugal acceleration affects two aspects
within the theoretical description of g-mode pulsators. On the
one hand, the stellar structure as a whole becomes deformed,
which naturally leads to changes in the Brunt-Väisälä frequency
profile and therefore in the cavities of the gravity modes. This
is an indirect effect. On the other hand, the g-mode oscillation
equations, in the form of the Laplace tidal equations, are altered
and get a radial dependence, propagating into deformed solu-
tions compared to those of the CLTE. This is a direct effect. In
the case of prograde sectoral modes, these aspects have similar
effects on the mode frequencies, as demonstrated in Sect. 3.3.

The detectability of the effect of the centrifugal accelera-
tion in space-based photometry decreases with increasing stel-
lar age (decreasing Xc), increasing metallicity Z and increasing
core overshooting fov. Further, as seen in in Table 1, the value of
nmax increases with increasing stellar mass and increasing rota-
tion rate, since the deformation factor and rotation rate scale as
ε ∼ Ω2.

Comparing the nmax values with radial-order distributions of
observed GIWs (Li et al. 2020, and Pedersen et al., submitted),
we conclude that the values we obtained here correspond well
with the observations. This implies that it should be possible to

detect differences between theoretically computed pulsation fre-
quencies assuming spherically symmetric versus deformed stel-
lar models as computed in this work for real stars, provided that
the comparison is done for models with the same input physics
and rotation rate. The frequency differences as shown in Fig. 9
are of similar order as typical uncertainties of the observed fre-
quencies used in forward asteroseismic modelling (Aerts et al.
2018).

Frequency differences caused by other approximations that
are commonly made in the TAR, such as the Cowling approx-
imation and the neglect of the horizontal component of the ro-
tation vector, are smaller than or comparable to those caused by
the centrifugal acceleration. This is shown in Appendix C, where
we obtain relative differences . 1 % dependent on the stellar ro-
tation rate, comparable to the differences between the TAR and
the Mathis & Prat (2019) framework. A comparison between the
TAR and full 2D-computations carried out with ACOR by Ouaz-
zani et al. (2017, Figure 1), gave similar results. This indicates
that, just like the neglect of the centrifugal acceleration, other
assumptions made within the TAR also have negligible or minor
effects on the pulsation calculations. A limitation of the asymp-
totic expressions that is still present in the Mathis & Prat (2019)
framework, is that the effect of the centrifugal acceleration in-
creases with decreasing radial order of the g modes. At low ra-
dial order, both the TAR and the asymptotic expressions cease to
be valid.

In practice, Fig. 10 reveals that the fractional frequency dif-
ferences due to the centrifugal acceleration remain well below
1 % for high-order g modes in the asymptotic regime. Compar-
ing this with typical fractional frequency differences in Aerts
et al. (2018, Table 2), points out that the effect of the centrifugal
acceleration is negligible compared to that introduced by some
aspects of missing input physics, such as atomic diffusion in
slow rotators among the g-mode pulsators (Mombarg et al. 2020)
or near-core boundary mixing in fast rotating single SPB stars
(Moravveji et al. 2016; Szewczuk & Daszyńska-Daszkiewicz
2018, and Pedersen et al., submitted) and SPB binaries (Johnston
et al. 2019). Hence, although the frequency differences induced
by the centrifugal acceleration are expected to be detectable, one
can ignore them for initial attempts of asteroseismic modelling.
Once appropriate equilibrium models are found that explain well
the overall structure in the measured period spacing pattern of a
star, it is meaningful to test the effect of the centrifugal accelera-
tion for those models to see if it brings an improved fit, particu-
larly for stars with relatively fast rotation.

Following the conclusions of Mathis & Prat (2019) and ours,
a next logical step would be to include the effect of the cen-
trifugal acceleration in stellar pulsation codes such as GYRE. Al-
though our work has shown that the centrifugal acceleration can
be treated as a lower-priority ingredient for forward asteroseis-
mic modelling compared to other missing ingredients in the in-
put physics, its effect is in principle detectable at the level of the
mode computations. Hence, including it would lead to overall
more realistic stellar pulsation predictions.
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Appendix A: Centrifugal deformation of
Brunt-Väisälä frequency profiles

After calculating the deformed stellar radius r(a, θ) using
Eqs. (9) and (10), we compute the two-dimensional centrifugally
deformed Brunt-Väisälä frequency profile

N2(a, θ) = −
ḡ

r

[
d ln ρ̄
d ln r

−
1
Γ̄1

d ln P̄
d ln r

]
, (A.1)

to ensure numerical stability and to account for the nonlinear de-
pendence of N2(a, θ) on the density ρ̄ and the pressure P̄. These
calculations are done at discrete values of the co-latitude θ, and
we use the calculation methods for ρ̄ and P̄ described in Section
2.1.1.

The perturbed adiabatic exponent Γ̄1 can then be estimated
as follows:

1
Γ̄1

=

(
∂ ln ρ̄
∂ ln P̄

)
S̄

=

 ∂ ln ρ̄
∂a

∂ ln P̄
∂a


S̄

(A.2)

≈

(
∂ ln ρ̄
∂a

d ln P0

dr0

) (
d ln ρ0

dr0

∂ ln P̄
∂a

)−1 (
∂ ln ρ0

∂ ln P0

)
S

(A.3)

=

(
ρ0P̄

∂ρ̄

∂a
dP0

dr0

) (
ρ̄P0

dρ0

dr0

∂P̄
∂a

)−1 1
Γ1,0

, (A.4)

where quantities X from the spherical non-rotating input model
are indicated as X0.

The perturbed gravitational acceleration is the gradient of the
effective gravitational potential φ̄;

ḡ = ∇̄φ̄ = ∇̄ (φ0 + φ1 + U) = g0 + ∇̄(φ1 + U) . (A.5)

The spheroidal gradient ∇̄, defined as (Mathis & Prat 2019)

∇̄X ≡
∂X
∂a

ẽa +
1
a
∂X
∂θ

ẽθ +
1

a sin θ
∂X
∂ϕ

ẽϕ , (A.6)

reduces to the total derivative d/da since the calculations of the
perturbed quantities are discretized in the co-latitude θ, i.e. they
are calculated for a specific, constant value of θ.

To avoid direct numerical differentiation of the perturbed
pressure P̄, it is rewritten as:

dP̄
dr

= −ρ̄
dφ̄
dr

= −
ρ̄

1 + 4ε
d

da
φ̄ (A.7)

= −
ρ̄

1 + 4ε

[
g0 +

d
da

(φ1 + U)
]

(A.8)

= −
ρ̄

1 + 4ε

[
g0 +

d
dr0

(φ1 + U)
]
, (A.9)

where we map the radius r0 of the non-deformed stellar model
onto the pseudo-radius a, as in the evaluation of Eq. (11). Within
their respective coordinate systems, both r0 and a coincide with
the isobaric radial coordinate. Consequently, only the last deriva-
tive with respect to r0 in Eq.(A.9) remains to be evaluated
through numerical differentiation. This is numerically more sta-
ble than performing the derivation of P̄ with respect to r. Simi-

larly, for the derivative of the perturbed density ρ̄ we have:

dρ̄
dr

=
1

1 + 4ε
d
da

(ρ0 + ρ1) (A.10)

=
1

1 + 4ε
d

dr0
(ρ0 + ρ1) (A.11)

=
1

1 + 4ε

[
dρ0

dr0
+

d
dr0

(
1
g0

dρ0

dr0
(φ1 + U)

)]
(A.12)

=
1

1 + 4ε
dρ0

dr0

1 − φ1 + U
g2

0

 dg0

dr0
+

1
g0

d
dr0

(φ1 + U)


+
φ1 + U

g0(1 + 4ε)
d

dr0

(
dρ0

dr0

)
. (A.13)

The last three derivatives with respect to a are again evaluated
through numerical differentiation without numerical issues.

Finally, dP0/dr0 and dρ0/dr0 can be expressed in terms of
physical quantities included in the (non-deformed) MESA stellar
structure profiles. The former can be calculated by using hydro-
static equilibrium (in a spherically symmetric star):

dP0

dr0
= −ρ0g0, (A.14)

and the latter can be retrieved from the non-perturbed squared
Brunt-Väisälä frequency:

dρ0

dr0
= ρ0

 1
Γ1,0P0

dP0

dr0
−

N2
0

g0

 . (A.15)

Appendix B: Computation of asymptotic
frequencies

Here we provide our strategy to compute the asymptotic frequen-
cies and period spacing patterns presented in Sect. 3.3 & 3.4.
This is summarised in a flowchart in Fig. B.1 and concerns the
computation of the asymptotic frequencies for given pulsation
mode with mode identification (k,m), for a chosen stellar struc-
ture model with a particular rotation rate (in terms of Ωc).

The period spacing pattern for a spherically symmetric, uni-
formly rotating star is computed within a radial order range of
n = 1 to n = 100. This particular range is motivated by the
radial order distributions of typically observed GIWs (Li et al.
2020). Based on the resulting period spacing pattern, a suitable
ν−range is chosen. To anticipate the (relatively small) effect of
the centrifugal force on the asymptotic pulsation periods, small
margins are taken above and below this range (typically ±0.5).
In the next step, the GLTE is solved for a number of spin param-
eters within the predetermined range. A step size of 0.01 in ν is
found suitable to avoid numerical inaccuracies, while maintain-
ing reasonable computation times (typical values for νmax − νmin
are on the order of 10). In the subsequent step, the expression
for the asymptotic pulsation frequencies Eq. (16) is rewritten as
follows:

1
ωnkm

=
(n + 1/2)π∫ a2

a1

Λ
1/2
νkm(a)N̄(a)

a
da

, (B.1)

and multiplied by 2 Ω to arrive at:

I(ν) = ν

∫ a2

a1

Λ
1/2
νkm(a)N̄(a)

a
da = 2Ω(n + 1/2)π . (B.2)
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for a mode with mode ID (k,m)

compute period spacing pattern for spherically 
symmetric star for n in [1; 100]

→ estimate for spin parameter range

solve GLTE for ν  in spin parameter range
(step size = 0.01)

compute

at every ν   

for each n, find the corresponding ν
nkm

 by 
interpolating 2Ω(n + 1/2)π 
between the [I(ν), ν] points 

compute asymptotic frequencies ω
nkm

 

by  ω
nkm

 = 2Ω/ν
nkm

 

1

2

3

4

5

Fig. B.1. Flowchart describing the strategy used in this work to compute
asymptotic pulsation frequencies in a centrifugally deformed star.

The LHS of this equation is then evaluated at every ν in the
spin parameter range, while the RHS is evaluated for every
n ∈ [1; 100]. In the fourth step, the spin parameters νnkm corre-
sponding to the radial orders n ∈ [1; 100] are computed through
linear interpolation of the RHS of Eq. (B.2) to the (I(ν), ν)-points
from the previous step. Finally, the asymptotic angular frequen-
cies ωnkm are retrieved by taking the inverse of the νnkm from the
previous step, and multiplying them with 2Ω. The correspond-
ing asymptotic pulsation periods are Pnkm = 2π/ωnkm. The cor-
responding pulsation periods in the inertial (observer’s) frame
Pin

nkm are then found through (Bouabid et al. 2013):

Pin
nkm =

Pnkm

1 + m Pnkm
Prot

, (B.3)

with Prot the rotation period.

Appendix C: Comparison with other theoretical
assumptions

Other assumptions that are included within the TAR, are still
made in the generalised framework developed by Mathis & Prat
(2019), such as the neglect of the horizontal rotation vector com-
ponent ΩH and the Cowling approximation. Here we assess the
impact of these approximations on our results.

Appendix C.1: Neglect of the horizontal rotation vector

The spheroidal radial component of the momentum equation is
given by Mathis & Prat (2019, Eq.(13)) as

− N̄2
(
ω

N̄

)2 [
(1 + 2 (ε + a∂aε)) ξa + ξθ∂θε

]
− iN̄2

(
ω

N̄

) (2Ω

N̄

)
(1 + 2ε + a∂aε) sin θ ξϕ

= −∂aW̃ − N̄2ξa −
1
ρ̄2 ∂aρ̄P̃ , (C.1)

where W̃ = P̃/ρ̄ with P̃ the wave fluctuation of the pressure, and
ξ = (ξa, ξθ, ξφ) is the Lagrangian displacement vector. Within the
generalised TAR-framework, the two terms on the left-hand side
(LHS) of Eq.(C.1) are neglected in favour of the N̄2ξa-term on
the right-hand side (RHS), and the second LHS-term contains
the horizontal component of the rotation vector ΩH = Ω sin θ.
Mathis & Prat (2019) combined the simplified Eq.(C.1) with the
horizontal components of the momentum equation, and solved
the resulting system for a selected pulsation mode identification
(k,m) and spin parameter value ν as a function of the normalised
pressure W ′νkm(a, θ):

ξ′a;νkm(a, θ) = −i kV;νkm(a)
W ′νkm

N̄2(a)
= −i

√
Λνkm(a)
aωkm

W ′
νkm

N̄(a)
(C.2)

ξ′θ;νkm(a, θ) =
1
a

1
ω2

km

1
D

[
∂θW ′νkm − mν

cos θ
sin θ

CW ′
νkm

]
(C.3)

ξ′ϕ;νkm(a, θ) = i
1
a

1
ω2

km

1
D

[
νC cos θ∂θW ′νkm −

m
sin θ

W ′νkm

]
(C.4)

Expressions for the coefficients C (a, θ) and D (a, θ) are given in
Eqs.(20) to (25).

We assess the validity of neglecting the LHS-terms in
Eq.(C.1) by taking their ratios with the N̄2ξa-term and filling in
the solution for ξ′νkm. For the first LHS-term, we obtain

N̄2
(
ωkm

N̄

)2 [
(1 + 2 (ε + a∂aε)) ξa;νkm + ξθ;νkm∂θε

] [
N̄2ξa;νkm

]−1

'

(
ωkm

N̄

)2
(1 + 8ε) +

(
ωkm

N̄

) 3εl=2

D
√

Λνkm

×

 sin 2θ ∂θW ′νkm

2iW ′
νkm

−
mνC cos2 θW ′νkm

iW ′
νkm

, (C.5)

and for the second LHS-term, we find

iN̄2
(
ωkm

N̄

) (2Ω

N̄

)
(1 + 2ε + a∂aε) sin θ ξϕ

[
N̄2ξa;νkm

]−1

'

(
2Ω

N̄

)
(1 + 5ε)

2D
√

Λνkm

[
sin (2θ) νC

∂θW ′νkm

iW ′
νkm
−

2mW ′νkm

iW ′
νkm

]
. (C.6)

Hence, the errors introduced by neglecting the terms in Eq.C.1,
scale with ωkm/N̄ and 2Ω/N̄, respectively. We can ignore the
contribution from the horizontal component of the rotation vec-
tor when the GIWs propagate in a strongly stratified radia-
tive region, i.e., for 2Ω � N̄. This is further illustrated in
Fig. C.1, where we compare the terms in the momentum equa-
tion Eq.(C.1) for a (n, k,m) = (50, 0, 1) pulsation mode in the
central model of our MESA grid, with a rotation rate Ω =
0.15 Ωc. The relative contribution of the neglected LHS-terms,
which include the Ω sin θ-component of the rotation vector, is ∼
1 %. The (normalised) components of the Lagrangian displace-
ment (ξa, ξθ, ξφ), calculated in this simulation using Eqs. (C.2) to
(C.4) are shown in Fig. C.2. As can be seen, ξa � ξθ, ξϕ.
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Fig. C.1. The N̄2ξa-term (red), the first LHS-term (black) and second
LHS-term (blue) in the momentum equation Eq.(C.1), calculated for the
(n, k,m) = (50, 0, 1) pulsation mode in the central model of our MESA
grid, with 2 M�, Xc = 0.50 and a rotation rate Ω = 0.15 Ωc. The values
are shown at co-latitudes θ = π/6 (top), π/4 (middle) and π/2 (bottom).
Parts of the LHS-terms are shown again in the insets, magnified 27×.

Appendix C.2: The Cowling approximation

We evaluate the Cowling approximation for the central MESA
model in our grid (2 M�, Xc = 0.50) using GYRE, for rotation
rates Ω/Ωc ∈ [0.10 − 0.70], without the centrifugal acceleration.
As shown in Fig. C.3, the relative differences between the pul-
sation frequencies, caused by the Cowling approximation, are
∝ 0.1 %. These are smaller than the relative differences intro-
duced by the centrifugal acceleration, but increase with increas-
ing radial order of the g modes.
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Fig. C.2. The (normalised) components of the Lagrangian displacement
ξa (red), ξθ (black) and ξφ (blue), calculated in the numerical simulations
shown in Fig. C.1. The functions are shown at co-latitudes θ = π/6 (top),
π/4 (middle) and π/2 (bottom).
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Fig. C.3. Relative pulsation frequency shifts δ fnkm/ fnkm caused by the
Cowling approximation, with δ fnkm = fCowling − fwithoutCowling and fnkm =
fwithoutCowling, as a function of the fractional rotation rate, for n = 1 to
n = 100. Calculations are done using the central 2 M�, Xc = 0.50 MESA
model with Ω/Ωc ∈ [0.10 − 0.70], for prograde dipole sectoral (k =
0,m = 1) modes.
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