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1 Introduction

The conventional consumption and investment model dating back to Merton (1969) and based

on an individual with CRRA (that is, iso-elastic marginal) utility suggests that the optimal

drawdown ratio and optimal portfolio weight in the risky stock do not depend on past stock

returns; only age and the individual’s attitude towards risk and time play a role in determining

the optimal strategies. This paper explores how loss aversion and reference dependence, which

are two pronounced behavioral regularities that are supported by extensive experimental and

empirical observations, jointly affect this conventional wisdom.

We show that the optimal policies of a loss-averse individual with a reference level that

is endogenously determined by his own past consumption choices are fundamentally different

from the conventional optimal policies.1 His optimal drawdown ratio is not independent of

the stock price, but typically rather increases as the stock price declines, and increasingly so

if his reference level exhibits higher degrees of endogeneity. The extent to which a loss-averse

individual adjusts his drawdown ratio in response to a stock price movement depends on his

current wealth level: a medium-wealth individual has a stronger incentive to protect current

consumption and increase the drawdown ratio after a drop in wealth than a low-wealth and,

especially, a high-wealth individual.

The optimal portfolio weight of a loss-averse individual also differs from predictions of the

conventional consumption and investment model. In particular, a loss-averse individual takes

his reference level into account when making optimal portfolio decisions. As long as his reference

level can just be financed, he implements a (very) conservative investment strategy, but if the

financial market is in either boom or bust he typically increases stock holdings. Furthermore,

endogeneity of the reference level yields a preference for adopting a life-cycle investment strategy

that reduces risk exposure with age even without human capital, and increases overall risk-

taking. Hence, as we show in this paper, a loss-averse individual with an endogenous reference

level who consumes and invests according to the conventional consumption and investment

model suffers a substantial welfare loss.

Inspired by the seminal work of Kahneman and Tversky (1979) and Tversky and Kahneman

(1992), we represent the individual’s preferences over gains and losses in consumption, defined

relative to an endogenous reference level, by the two-part power utility function inducing loss

aversion. This utility function exhibits a kink at the reference level, so that losses hurt more

than gains satisfy. Furthermore, we assume that the individual updates his reference level in

each period based on his own past consumption experiences. As a result, a higher consumption

level today leads to an increase in the reference level tomorrow.

We derive explicit closed-form solutions to the individual’s consumption and investment

1Section 2 reviews the related literature, including papers with modern preference models, and discusses how
our findings differ from these papers.
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problem. This is non-trivial. It is achieved by first invoking the solution technique developed

in Schroder and Skiadas (2002). These authors propose a technique that enables us to convert

the individual’s optimization problem with endogenous updating of the reference level into an

equivalent dual problem without endogenous updating of the reference level. Then, we solve the

dual problem by using the martingale approach, and by using techniques proposed by Basak and

Shapiro (2001) (see also Berkelaar, Kouwenberg, and Post (2004)) to deal with pseudo-concavity

and non-differentiability aspects of the problem. We suitably adapt the latter techniques to our

setting with intertemporal consumption. Finally, we transform the optimal solutions of the dual

problem back into the optimal solutions of the individual’s original problem.

We show that optimal current consumption depends on past stock returns. A loss-averse

individual divides past stock returns into three categories: a normal past return in which current

consumption remains at (or slightly above) the reference level; a good past return in which

current consumption is substantially above the reference level; and a bad past return in which

current consumption falls below the reference level. A loss-averse individual thus adopts a self-

insurance strategy to protect against downside risk. Only in genuinely adverse circumstances,

he consumes below the reference level. In case of a normal past return, his optimal current

drawdown ratio goes up as the stock price goes down. Furthermore, a loss-averse individual who

endogenously updates his reference level strongly postpones reductions in current consumption

following a drop in wealth. Indeed, with a decreasing endogenous reference level, reductions in

future consumption levels affect utility less heavily than a reduction in his current consumption

level. This strengthens the motive to delay painful reductions in consumption that, as we show,

typically occurs already with a constant reference level. The incentive to postpone cuts in

current consumption after a negative wealth shock is strongest in case of bad and normal past

returns. In such circumstances, a loss-averse individual wants to either prevent that current

consumption falls below the reference level (normal past returns) or limit the size of a loss (bad

past returns). The flipside of this is that a loss-averse individual who endogenously updates

his reference level does not fully translate a positive wealth shock into his current consumption

level but saves precautionarily, and, as a result, exhibits an excessively smooth and excessively

sensitive consumption path.2

The extent to which current consumption is protected after a drop in wealth is found to be

heterogeneous across wealth levels. If we assume a constant reference level, such protection is

most pronounced for a medium-wealth individual, less pronounced for a low-wealth individual,

and null for a high-wealth individual. At higher degrees of endogeneity of the reference level,

protection of current consumption overall increases and the heterogeneity across wealth levels

gradually diminishes.

2Consumption is excessively smooth if consumption under-responds to wealth shocks; consumption is
excessively sensitive if past wealth shocks have predictive power for future consumption growth. Campbell
and Deaton (1989) show that an excessively smooth consumption stream is also excessively sensitive.
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The optimal portfolio weight in the risky stock displays primarily a U-shaped pattern across

states of the economy. In case of a normal past return, a loss-averse individual adopts a (very)

conservative portfolio strategy to prevent that current consumption falls below the reference

level. The optimal portfolio strategy is (much) less conservative in case of a good and a bad

past return. Indeed, in case of a good past return, a relatively aggressive portfolio strategy most

likely does not lead to a loss with respect to the reference level in the near future. In case of a

bad past return, a relatively aggressive portfolio strategy will increase the chance of realizing a

future gain with respect to the reference level, but can eventually deplete consumption.

Furthermore, we find that, unlike in the conventional consumption and investment model,

a loss-averse individual with an endogenous reference level adopts a life-cycle investment

strategy, which reduces risk exposure with age, even without taking human wealth into

account.3 Intuitively, as the individual ages and the investment horizon shrinks, he has less

time to absorb wealth shocks. As a result, to maintain a stable consumption pattern over the

life-cycle, he reduces the exposure to the risky stock as he grows older. Finally, we find that

endogeneity of the reference level induces the individual to adopt a less conservative portfolio

strategy.

We also compute the welfare loss (in terms of the relative decline in certainty equivalent

consumption) associated with the conventional CRRA strategy and analyze the roles played

by the preference parameters. In the welfare analysis, the loss-averse individual delegates his

drawdown and portfolio decisions to a professional asset manager. This asset manager only

offers strategies that are based on CRRA utility. The loss-averse individual chooses the CRRA

strategy that minimizes the difference between his optimal utility (i.e., the utility associated with

the optimal loss-averse strategy) and his actual utility (i.e., the utility associated with the CRRA

strategy). For realistic parameter values, we find that a loss-averse individual with a constant

reference level suffers a minimum welfare loss of 3%. If the individual has an endogenous

reference level instead, the welfare loss is likely to exceed 10%.

The remainder of this paper is structured as follows. Section 2 reviews the literature. Section

3 describes our consumption and investment model. Section 4 presents the optimal consumption

and portfolio policies. Section 5 provides an extensive analysis of the optimal policies. Section

6 conducts the welfare analysis. Finally, we conclude in Section 7.

2 Literature

The first to study the problem of optimal consumption and portfolio selection over an

individual’s life-cycle in a continuous-time setting was Merton (1969).4 The Merton model

3A CRRA individual optimally invests a constant proportion of his total wealth in risky assets. Bodie, Merton,
and Samuelson (1992) provide a rationale for a CRRA individual to implement a life-cycle investment strategy
that reduces risk exposure with age based on human capital considerations; see also footnote 27.

4See also the seminal contributions by Mossin (1968) and Samuelson (1969).

3



with CRRA utility suggests a consumption-to-total-wealth ratio and life-cycle investment

strategy that depend on age and attitudes towards risk and time only. These optimal policies

continue to serve as the dominant benchmark for drawdown and investment strategies

deployed in practice. Merton’s model has been generalized along many dimensions.5 We are

the first to explicitly solve Merton’s consumption-investment problem under prospect theory

utility (Kahneman and Tversky (1979) and Tversky and Kahneman (1992)) and analyze its

implications for both optimal intertemporal consumption and the corresponding optimal

portfolio behavior in an integrated setting.

Researchers have successfully applied prospect theory in many other domains of economics.

For instance, in the finance literature, elements of prospect theory have been used to explain

aggregate stock market behavior (e.g., Benartzi and Thaler (1995)), asset prices and the cross

section of stock returns (e.g., Shumway (1997), Barberis, Huang, and Santos (2001), Yogo

(2008), Barberis and Huang (2008), Andries (2012) and Pagel (2017b)), and trading patterns

(e.g., Shefrin and Statman (1985), Odean (1998), Barberis and Xiong (2009), and Meng and

Weng (2017)). Only a handful of papers have explored the implications of prospect theory for

either optimal consumption or portfolio behavior.

Importantly, Berkelaar et al. (2004) and Gomes (2005) were the first papers that examine

the optimal portfolio choice of a loss-averse individual. Their settings differ from ours in a

number of ways. First, while they define utility in terms of gains and losses in terminal wealth,

we consider a setting where the individual draws utility from gains and losses in intertemporal

consumption. Such a setting allows us to study how the optimal consumption and portfolio

policies of a loss-averse individual change as time proceeds and risk resolves, which is our

prime focus. Second, in our setting with intertemporal consumption, the reference level evolves

endogenously over time, which is not the case in Berkelaar et al. (2004) and Gomes (2005).

While Berkelaar et al. (2004) also find a U-shaped pattern for the optimal portfolio choice, we

find that our loss-averse individual with an endogenous reference level pursues overall a riskier

investment strategy and, furthermore, reduces his exposure to equity risk as age proceeds, even

without considering human capital, contrary to in Berkelaar et al. (2004).

Jin and Zhou (2008) and He and Zhou (2011, 2016) explore the implications of loss aversion

and, in particular, probability weighting for optimal portfolio holdings, developing a novel

analytical solution technique based on a quantile formulation. These authors do not study

intertemporal consumption choice, nor do they consider endogenous updating of the individual’s

reference level. Because probability weighting can lead to an even larger degree of protection

against downside risk (see also, e.g., Carlson and Lazrak (2014)), we indicate in Section 5.5 how

to include probability weighting into our setting with intertemporal consumption.

5These include, for example, generalizations to allow for risky labor income (e.g., Viceira (2001), Gomes and
Michaelides (2005), Cocco, Gomes, and Maenhout (2005), and Benzoni, Collin-Dufresne, and Goldstein (2007))
and a stochastic investment opportunity set (e.g., Campbell, Cocco, Gomes, Maenhout, and Viceira (2001),
Wachter (2002), Chacko and Viceira (2005), Liu (2007), and Laeven and Stadje (2014)).
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Prospect theory has also been incorporated into (personal) equilibrium models of optimal

consumption behavior. The focus of these models is on the optimal consumption dynamics and

not on the associated optimal portfolio behavior. A main example is Kőszegi and Rabin (2009)

who consider a discrete-time consumption and savings model in which the individual exhibits

so-called expectations-based loss aversion. In Kőszegi and Rabin’s model, the individual draws

utility from current consumption, and from changes in expectations about present and future

consumption. The individual is loss-averse in the sense that losses in expectations hurt more

than gains in expectations feel good. Furthermore, immediate losses affect utility more heavily

than future losses. Although Kőszegi and Rabin (2009) consider a different setting in which the

updating rule for the reference level is forward-looking rather than (as in our case) backward-

looking and time is discrete, some of our model’s implications for optimal consumption behavior

are consistent with theirs. In particular, as shown by Pagel (2017a), Kőszegi and Rabin’s

model also generates a (first-order) precautionary savings motive and an excessively smooth

and excessively sensitive consumption stream. This is reassuring for the robustness of these

implications with respect to the specification of the updating rule.

A backward-looking updating rule for the reference level has also been extensively used in

the habit formation literature since Constantinides (1990). In this literature, the reference level

serves as a minimum subsistence level rather than as a standard-of-living as in our general

setting, and thus this literature obtains different results. The optimal portfolio weight in the

risky stock for our individual is primarily U-shaped across states of the economy, while under

the difference internal habit model it is increasing in the state of the economy. In particular, we

show that the optimal portfolio strategy of a loss-averse individual with an endogenous reference

level is typically more conservative than the optimal portfolio strategy of an individual with

preferences that comply with the difference internal habit model.

Guasoni, Huberman, and Ren (2015) analyze the implications of ‘shortfall aversion’ for

optimal consumption and portfolio behavior. These authors consider a ratio habit model (see

Abel (1990)) in which the reference level is given by past peak consumption, which yields a

setting that is quite different from ours. Consistent with our results, they find that in normal

states of the economy, consumption is constant at the reference level. However, while we find a

U-shaped pattern for the optimal portfolio weight, they find that the optimal portfolio weight

is an increasing function of wealth.

Recently, Curatola (2015, 2017) also explores a preference model that combines loss

aversion with an endogenous reference level. While Curatola (2015) examines the asset-pricing

implications, Curatola (2017) analyzes the implications for optimal consumption and portfolio

choice. In Curatola (2017), the individual is restricted to be risk loving in the loss domain.

Furthermore, he assumes that the reference level is a linear function of the difference between

current consumption and an initial consumption level.6 By contrast, we also allow for

6The habit level specification assumed in Curatola (2015) differs from the standard habit formation literature,

5



risk-averse behavior in the loss domain, and, even more importantly, represent the reference

level by a weighted sum of the individual’s past consumption choices, i.e., of his realized past

consumption path. As a result of this substantial difference in model specification, our

solution strategy differs methodologically considerably from the solution strategy in Curatola

(2017). Furthermore, the focus of Curatola (2017) is different: he mainly studies the

performance of optimal portfolios, while we analyze how optimal consumption and portfolio

behavior varies across different individuals and how large the welfare costs are associated with

loss aversion and endogenous updating.

Prospect theory is, of course, not the only behavioral economic theory that has been

developed in the literature. Other behavioral theories include regret theory (Loomes and

Sugden (1982), Bell (1982, 1983), Sugden (1993), and Quiggin (1994)) and disappointment

(aversion) theory (Bell (1985), Loomes and Sugden (1986), and Gul (1991)). A number of

authors have studied these theories in the context of (only) optimal portfolio selection. For

instance, Muermann, Mitchell, and Volkman (2006) explore the optimal portfolio allocation

problem of a regret-averse individual. They show that if the equity risk premium is high

enough, a regret-averse individual invests less in the risky stock than a risk-averse individual.

Intuitively, adopting an aggressive portfolio strategy strongly exposes a regret-averse

individual to the likelihood of significant regret if stocks do poorly. A loss-averse individual

also (typically) invests less in the risky stock than a risk-averse individual, but for a different

reason. Indeed, a loss-averse individual aims to avoid losses rather than to prevent regret.

Ang, Bekaert, and Lui (2005) explore the portfolio allocation decision of a

disappointment-averse individual. Their model generates empirically reasonable equity

portfolio allocations. In particular, the authors are able to explain the stock market

participation puzzle (Mankiw and Zeldes (1991)).

3 Model

3.1 Preferences

Time is continuous. We denote by t adult age, which corresponds to effective age minus 25. To

isolate the effects of loss aversion and an endogenous reference level, we abstract from longevity

risk. Let ct and θt denote the individual’s consumption choice and the individual’s reference

level at adult age t, respectively. If consumption is larger (smaller) than the reference level,

then the individual experiences a gain (loss). Expected lifetime utility is defined as follows:

U0 = E
[∫ T

0
e−δtu (ct; θt) dt

]
, (1)

and from Curatola (2017), in a few key aspects. First, habits are not predictable but are hit by unexpected
shocks. Second, the habit formation process includes a drift term, reflecting the future state of the world. As a
result of this, habits may go down significantly after an increase in current consumption.
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where T ≥ 0 denotes the adult age at which the individual dies, δ ≥ 0 is the subjective rate of

time preference, and u (ct; θt) corresponds to the instantaneous utility function. We assume that

instantaneous utility is represented by the canonical two-part power utility function (Tversky

and Kahneman (1992)):7

u (ct; θt) = v (ct − θt) =

(ct − θt)
γG , if ct ≥ θt;

−κ (θt − ct)
γL , if ct < θt.

(2)

Here, γG ∈ (0, 1) and γL > 0 denote the curvature parameters for gains and losses, respectively,

and κ ≥ 1 stands for the loss aversion parameter.8 Figure 1 illustrates the two-part power

utility function (2) for two different values of the curvature parameter for losses γL. As shown

by Figure 1, the two-part power utility function has a kink at the reference level. The kink in

the utility function is due to the different treatment of gains and losses.

[Insert Figure 1 near here]

The two-part power utility function (2) is convex (concave) in the loss domain if the

curvature parameter for losses γL is smaller (larger) than unity. Convexity corresponds to

risk-loving behavior and concavity to risk-averse behavior.9 Tversky and Kahneman (1992)

found experimentally that the utility function is convex in the loss domain. However, this

finding is heavily debated in the literature. For instance, Etchart-Vincent (2004) found that a

significantly higher proportion of subjects exhibited concavity when facing large losses than

when facing small losses; see also Abdellaoui, Vossmann, and Weber (2005), Abdellaoui,

Bleichrodt, and Paraschiv (2007) and Booij and van de Kuilen (2009) for further details on

this subject matter. Because large (absolute) fluctuations in consumption are not uncommon

in a life-cycle setting, we consider both the case of risk-averse and of risk-loving behavior in

the loss domain.

A standard assumption of conventional life-cycle models is that relative risk aversion is

constant. We do not assume constant relative risk aversion. Rather, the specification in (2)

implies that the relative risk aversion function R (ct; θt) = −ctucc (ct; θt) /uc (ct; θt) depends on

7This paper considers a partial equilibrium model; that is, we assume that asset prices are exogenously given.
For the asset-pricing implications of loss aversion, see, e.g., Shumway (1997), Barberis et al. (2001), Yogo (2008),
Andries (2012), Curatola (2015) and Pagel (2017b).

8There is some debate in the literature on how to define loss aversion. We follow Tversky and Kahneman
(1992). Under their specification (2), the disutility of one unit loss is κ times larger than the utility of one unit
gain. From Section 5 onwards, we assume γL to be at least as large as γG, so that −v(−x) > v(x) for all x > 1.
This assumption seems reasonable in a life-cycle setting where the stakes at risk are usually large.

9This statement may not be true if probabilities are distorted (see Chew, Karni, and Safra (1987)).

7



how close current consumption is to the individual’s reference level:

R (ct; θt) =


(1− γG) ct

ct−θt , if ct > θt;

+∞, if ct = θt;

−κ (1− γL) ct
θt−ct , if ct < θt.

(3)

Following the literature on (internal) habit formation (e.g., Constantinides (1990)), we

assume that the individual’s reference level evolves according to:10,11

dθt = (βct − αθt) dt, θ0 ≥ 0 given. (4)

We can explicitly express the reference level θt in terms of past consumption choices as follows:

θt = e−αtθ0 + β

∫ t

0
e−α(t−s)cs ds. (5)

Here, θ0 denotes the initial reference level, α ≥ 0 is a persistence (or memory) parameter, and

β ≥ 0 controls the relative importance between the initial reference level and the individual’s

consumption history. When α is small, the effect of current consumption on future reference

levels persists for a relatively long time; when β increases, consumption history becomes more

important. Given fixed α, the degree of endogeneity of the reference level increases as β

increases. The parameter β is usually taken to be close to α. Indeed, if β is close to α, then

the reference level is given by a weighted average of past consumption choices; see Appendix D

for a more formal statement and a derivation of this result.

Finally, we note that our preference model includes several important special (limiting)

cases. The habit formation model originally studied by Constantinides (1990) arises as a

special case when consumption is larger than the individual’s reference level in every state of

the economy. If, in addition, the reference level does not depend on the individual’s past

consumption choices, then the two-part power utility function reduces to a utility function

with an exogenous minimum consumption level. Such a utility function has been studied by,

for example, Deelstra, Grasselli, and Koehl (2003). The conventional CRRA utility function

arises as a special case when the reference level is equal to zero (i.e., when the individual

draws utility only from absolute levels of consumption).

10This reference level specification has been commonly adopted in the habit formation literature, see, e.g.,
Gomes and Michaelides (2003), Bodie, Detemple, Otruba, and Walter (2004), and Munk (2008).

11Kőszegi and Rabin (2006, 2007, 2009) and Pagel (2017a) consider a different specification of the individual’s
reference level. As we show in Section 5, some of our results for optimal consumption behavior are consistent
with theirs, despite the differences in specification.
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3.2 Financial Assets and Wealth Accumulation

This section introduces the financial market. For ease of exposition, we assume in the main

text that the market consists of only two assets: a risk-free asset and a risky stock which is

traded continuously on the finite time horizon [0, T ]. Furthermore, investment opportunities

are assumed to be constant. Appendix A treats the case of a general financial market with

multiple assets and a non-constant investment opportunity set.

Let us denote by Bt and St the risk-free asset price and the risky stock price at adult age t,

respectively. The risk-free asset price Bt evolves as follows:

dBt
Bt

= r dt, B0 ≥ 0 given, (6)

where r denotes the risk-free interest rate at adult age t. The risky stock price St satisfies the

following dynamic equation:

dSt
St

= µ dt+ σ dZt, S0 ≥ 0 given, (7)

where µ and σ represent the expected stock return and the stock return volatility at adult age

t, respectively, and dZt denotes the increment to the Brownian motion that drives the stock

return.

Let Mt denote the stochastic discount factor at adult age t which is defined as follows:

Mt = exp

{
−
∫ t

0
r ds−

∫ t

0
λ dZs −

1

2

∫ t

0
λ2 ds

}
. (8)

Here, λ = σ−1 (µ− r) represents the market price of risk at adult age t.

Let πt and Wt denote the total dollar amounts invested in the risky stock and the individual’s

total wealth at adult age t, respectively. Total wealth Wt is made up of both human capital

(that is, the discounted value of total lifetime earnings) and financial wealth. Total wealth Wt

satisfies the following dynamic budget constraint:

dWt = (rWt + πtσλ − ct) dt+ πtσ dZt, W0 ≥ 0 given. (9)

By integrating the increments dWt, we can show that the individual’s total wealth is equal

to initial total wealth, plus total trading gains, minus cumulative consumption. The amount

of total wealth invested in the risk-free asset at adult age t is given by Wt − πt. We call a

consumption and portfolio strategy admissible if total wealth is bounded from below.12

12This assumption implies that the static budget constraint is also satisfied; see, for example, Karatzas and
Shreve (1998, pp. 91-92) for further details.
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3.3 Dynamic Optimization Problem

The individual maximizes expected lifetime utility subject to the dynamic budget constraint,

i.e., the individual faces the following dynamic optimization problem:

max
ct,πt:0≤t≤T

E
[∫ T

0
e−δtv (ct − θt) dt

]
,

s.t. dWt = (rWt + πtσλ − ct) dt+ πtσ dZt,

dθt = (βct − αθt) dt,

θt − ct ≤ Lmax
t , for all t ∈ [0, T ].

(10)

We require that the amount by which consumption ct can fall below the reference level is capped

at Lmax
t ≥ 0.13 The maximum possible loss Lmax

t is assumed to depend only on adult age t (and

not on the state of the economy).14

4 Optimal Policies

This section presents closed-form expressions for the optimal consumption and portfolio policies.

An extensive analysis of the optimal policies is provided in Sections 5 and 6.

4.1 Equivalent Optimization Problem

By virtue of the martingale approach (Pliska (1986), Karatzas, Lehoczky, and Shreve (1987),

and Cox and Huang (1989, 1991)), we first transform the dynamic optimization problem (10)

13Given initial total wealth W0, the maximum possible loss Lmax
t should be such that the set of solutions to

the individual’s optimization problem (10) is non-empty. We note that the condition θt − ct ≤ Lmax
t (for all

t ∈ [0, T ]) is of a primarily technical nature and is moreover only needed in the case of risk-loving behavior in
the loss domain. Indeed, in that case, the individual’s optimization problem (10) is ill-posed if consumption is
not bounded from below (an optimization problem is called ill-posed if its supremum is infinite). One can set
Lmax
t to an arbitrarily large finite number to limit the impact of the lower bound on the optimal policies. For the

case of risk-averse behavior in the loss domain, one may take Lmax
t to be infinity so that the constraint becomes

redundant.
14We note that, in the case of an endogenous reference level, consumption can, in principle, fall below zero.

It can, however, never fall below the reference level by more than Lt (i.e., ct always exceeds θt − Lt). For
our benchmark parameter values (see Section 5.3), we find that the (unconditional) probability of consumption
being non-positive ranges from 0.00% to 0.12%, depending on the individual’s age. We have also computed

the discounted value of non-positive optimal consumption, i.e., E
[∫ T

0
Mt min(0, c∗t ) dt

]
. This number is equal

to 1.98% of initial wealth for our benchmark case. Based on these numbers, we conclude that the impact of
non-positive consumption on the optimal policies is very small.
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into the following equivalent static variational problem:15

max
ct:0≤t≤T

E
[∫ T

0
e−δtv (ct − θt) dt

]
,

s.t. E
[∫ T

0
Mtct dt

]
≤W0,

dθt = (βct − αθt) dt,

θt − ct ≤ Lmax
t , for all t ∈ [0, T ].

(11)

After we have solved for the optimal consumption strategy c∗t , we determine the optimal portfolio

strategy π∗t using replication arguments. Sections 4.2 and 4.3 present the optimal consumption

and portfolio policies, respectively.

4.2 Optimal Consumption Choice

Theorem 4.1 presents the individual’s optimal consumption choice c∗t .

Theorem 4.1 (optimal consumption choice). Consider an individual with the two-part

power utility function (2) and reference level specification (5) who solves the optimization

problem (11). Denote by θ∗t the individual’s optimal reference level at adult age t implied by

substituting the optimal past consumption choices into (5), by y the Lagrange multiplier

associated with the static budget constraint in (11), and by M̂t = Mt (1 + βFt) the so-called

dual stochastic discount factor at adult age t. Here, Ft denotes the price at adult age t of a

bond with coupon process
{
e−(α−β)(s−t)}

s≥t, i.e.,16

Ft = Et
[∫ T

t

Ms

Mt
e−(α−β)(s−t) ds

]
. (12)

Then:

(i) If the individual is risk averse in the loss domain, the optimal consumption choice at

adult age t is given by

c∗t =


θ∗t +

(
yeδtM̂t

γGM̂0

) 1
γ
G
−1

, if
M̂t

M̂0

≤ ξt;

θ∗t −min

{(
yeδtM̂t

κγLM̂0

) 1
γ
L
−1

, Lmax
t

}
, if

M̂t

M̂0

> ξt.

(13)

15Note that terminal wealth WT is zero by construction.
16Note that under the assumption of a constant investment opportunity set, Ft can be computed explicitly,

i.e.,

Ft =
1

r + α− β

[
1− e−(r+α−β)(T−t)

]
.
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Here, the threshold ξt is implicitly defined as follows:

0 = e−δt (1− γG)

(
yeδtξt
γG

) γG
γ
G
−1

+ e−δtκmin

{(
yeδtξt
κγL

) 1
γ
L
−1

, Lmax
t

}γL

− yξt min

{(
yeδtξt
κγL

) 1
γ
L
−1

, Lmax
t

}
.

(14)

(ii) If the individual is risk loving in the loss domain, the optimal consumption choice at

adult age t is given by

c∗t =


θ∗t +

(
yeδtM̂t

γGM̂0

) 1
γ
G
−1

, if
M̂t

M̂0

≤ ζt;

θ∗t − Lmax
t , if

M̂t

M̂0

> ζt.

(15)

Here, the threshold ζt is implicitly defined as follows:

0 = e−δt (1− γG)

(
yeδtζt
γG

) γG
γ
G
−1

+ e−δtκ (Lmax
t )γL − yζtLmax

t . (16)

The Lagrange multiplier y is chosen such that the static budget constraint in (11) holds with

equality.

Note first that the gain given by max (0, c∗t − θ∗t ) with c∗t as in (13) and (15) has a similar

representation as the familiar Merton consumption strategy. Here, the value of the dual

stochastic discount factor M̂t represents the current state of the economy; it differs from the

value of the ordinary stochastic discount factor Mt (see (8)), to which it is proportional, due

to the endogeneity in the individual’s reference level as captured through the factor 1 + βFt.

The larger the degree of endogeneity β, the more M̂t will differ from Mt. In the special case

where β = 0, M̂t coincides with Mt. Next, based on how large M̂t is compared to the

threshold ξt (risk-averse behavior in the loss domain) or the threshold ζt (risk-loving behavior

in the loss domain), both depending on the model parameters, the individual decides whether

to consume more or less than his current reference level. Finally, in the risk-averse case, the

loss given by −min (0, c∗t − θ∗t ) with c∗t as in (13) resembles the familiar Merton consumption

strategy (up to the loss Lmax
t ), while in the risk-loving case, the loss always equals Lmax

t .

We give the full proof of Theorem 4.1 in Appendix C; here, we only sketch the intuition

behind the proof. First, by invoking the solution technique of Schroder and Skiadas (2002), we

transform the individual’s optimization problem (11) into a dual optimization problem without

endogenous updating of the individual’s reference level; see Appendix B for further details. The

dual optimization problem is defined in terms of dual (or surplus) consumption ĉt = ct−θt. Next,

we solve the dual optimization problem in a dual financial market that is characterized by the

12



dual risk-free interest rate, the dual stock return volatility, the dual stochastic discount factor,

and the dual market price of risk; see Appendix B for the definitions of these quantities. The

dual optimization problem is solved by using convex duality (or martingale) techniques, and by

using the techniques proposed by Basak and Shapiro (2001) (see also Berkelaar et al. (2004)) to

deal with pseudo-concavity and non-differentiability aspects of the dual optimization problem.

We suitably adapt the latter techniques to our setting with intertemporal consumption. The

central step is to split the individual’s optimization (dual, in our case) problem into two separate

problems: a gain part problem and a loss part problem. The optimal solution corresponding

to each problem is a local maximum of the dual optimization problem. The global maximum

of the dual problem is found by comparing the two local maxima; see Appendix C for more

details. Finally, using Proposition 1 in Appendix B, we convert the optimal dual consumption

choice ĉ ∗t back into the optimal (primal) consumption choice c∗t .

4.3 Optimal Portfolio Choice

Theorem 4.2 presents the optimal portfolio choice π∗t .

Theorem 4.2 (optimal portfolio choice). Consider an individual with the two-part power

utility function (2) and reference level specification (5) who solves the optimization problem

(11). Let Ft be defined by (12). Then the optimal portfolio strategy at adult age t is given by

π∗t = π̂∗t + βFtπ̂
∗
t , (17)

where π̂∗t denotes the optimal dual portfolio strategy at adult age t and is defined as follows:

π̂∗t =

AtŴG∗
t +BtŴ

L∗
t , if γL > 1;

CtŴ
G∗
t +DtŴ

L∗
t , if γL ∈ (0, 1].

(18)

Here, wealth W ∗t to finance future optimal consumption is decomposed into ŴG∗
t ≥ 0 and

−ŴL∗
t ≤ 0, which denote the present value of future optimal gains {max (0, c∗s − θ∗s)}s≥t and the

present value of future optimal losses {min (0, c∗s − θ∗s)}s≥t, respectively, and a residual which

finances future optimal reference levels {θ∗s}s≥t. The explicit expressions for ŴG∗
t and ŴL∗

t are

given in Appendix C; see (58) and (59) for the case of risk-averse behavior in the loss domain,

and (69) and (70) for the case of risk-loving behavior in the loss domain. The coefficients At

(γL > 1) and Ct (γL ∈ (0, 1]) denote the shares of ŴG∗
t invested in the risky stock, while Bt

(γL > 1) and Dt (γL ∈ (0, 1]) represent the shares of ŴL∗
t invested in the risky stock. They are

also defined in Appendix C; see (76)–(79).

Theorem 4.2 shows that the individual’s optimal portfolio strategy π∗t can be decomposed

into several terms. If the reference level is equal to zero (i.e., β = 0 and ŴL∗
t = 0), optimal
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total wealth W ∗t coincides with the present value of future optimal gains ŴG∗
t . In that case, the

optimal portfolio strategy π∗t reduces to the term [σ (1− γG)]−1 λŴG∗
t = [σ (1− γG)]−1 λŴ ∗t

which corresponds to the optimal portfolio strategy of an individual with conventional CRRA

utility, who invests a constant proportion of total wealth in risky stocks.

The optimal portfolio strategy of an individual whose preferences are represented by the

difference internal habit model (Constantinides (1990)) also arises as a special case of Theorem

4.2 (i.e., β 6= 0 and ŴL∗
t = 0). An individual with such preferences divides his total wealth

into two parts. He uses ŴG∗
t to finance future optimal gains, and W ∗t − ŴG∗

t to finance future

optimal reference levels. Compared to conventional CRRA utility, the optimal portfolio strategy

under the difference internal habit model differs in two ways. First, relative risk aversion is not

constant under the difference internal habit model: the individual becomes more risk averse as

consumption approaches the reference level. This fact leads to a state-dependent (rather than

constant) optimal portfolio weight. The coefficients At (risk-averse behavior in the loss domain)

and Ct (risk-loving behavior in the loss domain) capture this effect.17 Second, habit formation

leads to an optimal portfolio strategy in which the exposure to the risky stock decreases, on

average, as the individual grows older. This effect is captured by the term βFtπ̂
∗
t in (17).

If the individual views the reference level as a standard-of-living (i.e., β 6= 0 and ŴL∗
t 6= 0)

rather than as a minimum subsistence level (as under the difference internal habit model), so

that consumption can fall below the reference level, then the individual divides his total wealth

into three (and not two) parts. He uses ŴG∗
t to finance future optimal gains, −ŴL∗

t to finance

future optimal losses, and W ∗t − ŴG∗
t + ŴL∗

t to finance future optimal reference levels. The

coefficients Bt 6= At (risk-averse behavior in the loss domain) and Dt 6= Ct (risk-loving behavior

in the loss domain) arise because the individual’s attitude towards risk is very different in the

loss domain than in the gain domain (see equation (3)).

5 Main Implications

This section explores our main implications. Section 5.1 outlines the setting used throughout

the analysis. Section 5.2 analyzes the optimal consumption and portfolio choice of a loss-averse

individual with a constant reference level. Section 5.3 explores how endogenous updating of the

reference level affects the individual’s behavior. Section 5.4 investigates the existing empirical

literature in relation to our main findings. Finally, Section 5.5 explains how we can incorporate

probability weighting, which is another main ingredient of prospect theory, into our consumption

and investment model.

17We note that under the difference internal habit model, the coefficients At and Ct coincide.
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5.1 Setting

We consider a loss-averse individual who works from age 25 to his retirement age 65. His salary

equals $50,000 per year, which roughly corresponds to the median household income in the U.S.

in 2014. Human capital at age 25 is given by the discounted value of total lifetime earnings.

Financial wealth at age 25 is zero. We assume that the individual passes away at age 85. In

each period, the individual decides how much of his total wealth (i.e., the sum of human capital

and financial wealth) to consume and how much to invest in the risk-free asset and the risky

stock. The return on the risk-free asset is constant and set at 1%. The equity risk premium

and the stock return volatility are constant as well. They are set at 4% and 20%, respectively.

These parameter values coincide with those used by Gomes, Kotlikoff, and Viceira (2008).

Estimates of the individual’s preference parameters differ widely across studies (see for an

overview Abdellaoui et al. (2007) and Booij, van Praag, and van de Kuilen (2010)). We set the

loss aversion parameter κ at 2 and the curvature parameter for gains γG at 0.4. The curvature

parameter for losses γL is set equal to either 1.3 (risk-averse behavior in the loss domain) or 0.95

(risk-loving behavior in the loss domain). These parameter values generate realistic consumption

and portfolio policies. In Section 6, we explore in detail the roles of the individual’s preference

parameters in determining the optimal consumption and portfolio policies.18 The subjective

rate of time preference δ equals 4%.19 Our main implications remain qualitatively unchanged

if we vary the values of the return and preference parameters within reasonable limits.

5.2 A Loss-Averse Individual with a Constant Reference Level

This section considers the optimal consumption and portfolio choice of a loss-averse individual

with a constant reference level; that is, θt = θ. Inspired by Barberis et al. (2001), we set the

reference level equal to the constant consumption level the individual would obtain if, in every

period, his total wealth were invested only in the risk-free asset.20

To understand the optimal behavior of a loss-averse individual, we first recall the behavior

of an individual with conventional CRRA preferences (henceforth also referred to as a CRRA

individual). When the stock price falls, a CRRA individual decreases his consumption level

proportionally to the decline in the stock price. How close current consumption is to a reference

level plays no role. As a result, the consumption-to-total-wealth ratio (i.e., the share of total

wealth consumed) and the portfolio strategy (i.e., the share of total wealth invested in the

risky stock) are constant across states of the economy: a CRRA individual does not adjust his

consumption-to-total-wealth ratio and portfolio strategy in response to a stock price movement.

18Section 6 also studies the relationship between the two-part power utility function and the CRRA utility
function.

19According to Samwick (1998), median rates of time preference for U.S. households are between 3% and 4%.
20Barberis et al. (2001) argue that the risk-free interest rate serves as a natural benchmark for evaluating gains

and losses.
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Only age and attitude towards risk and time affect the optimal strategies. In the analysis that

follows, we compare our findings to this conventional wisdom.

Contrary to a CRRA individual, a loss-averse individual derives utility from the difference

between consumption and his reference level: consuming below the reference level is relatively

painful due to loss aversion. A loss-averse individual thus takes his reference level into account

when making optimal consumption and portfolio decisions, leading to a state-dependent (rather

than constant) optimal consumption-to-total-wealth ratio and portfolio strategy. Figure 2 shows

how the optimal current choice of a 65-year-old loss-averse individual21 depends on the the past

stock return. The left panels assume risk-averse behavior in the loss domain, whereas the right

panels assume risk-loving behavior in the loss domain. The individual classifies past stock

returns into three categories: (i) a normal past stock return in which current consumption

is at (or slightly above) the reference level; (ii) a good past stock return in which current

consumption is substantially above the reference level; and (iii) a bad past stock return in

which current consumption is below the reference level. The following sections describe the

individual’s behavior for each category.

[Insert Figure 2 and Table 1 near here]

5.2.1 Normal Past Stock Return

In case of a normal past stock return, the individual consumes at, or slightly more than, his

reference level; see the solid line in Figures 2(a) and (b). A loss-averse individual thus adopts a

self-insurance strategy to minimize the risk of a loss.22 The individual finances the self-insurance

strategy by giving up some of the potential on the upside. In contrast to Basak and Shapiro

(2001), our model generates a self-insurance strategy without imposing an exogenous constraint

(e.g., Value-at-Risk constraint) on consumption.

As illustrated by the solid line in Figures 2(c) and (d), in case of a normal past stock

return, the consumption-to-total-wealth ratio increases as the stock price declines: a loss-averse

individual does not, or only to a very limited extent, adjust his current level of consumption in

response to a change in total wealth. By delaying painful cuts in current consumption following

a negative wealth shock, the individual avoids an immediate loss. Intuitively, he prefers an

uncertain loss tomorrow over a certain loss today. The flipside of protecting current consumption

is, however, that an improvement in the individual’s financial position does not directly translate

into a higher level of current consumption; rather, it goes into a precautionary savings fund to

support consumption in the event of an adverse shock. Kőszegi and Rabin (2009) and Pagel

(2017a) also find that a loss-averse individual holds a (first-order) precautionary savings motive.

21Table 1 gives a number of properties of the optimal consumption and portfolio policies at other ages.
22The individual optimally desires to consume more than his reference level; only under genuinely adverse

circumstances, the individual consumes below his reference level (see also Section 5.2.3).
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To avoid an immediate loss, a loss-averse individual implements a (very) conservative

portfolio strategy in case of a normal past stock return. He typically invests less in the risky

stock than a CRRA individual; see Figures 2(e) and (f).23 Generally speaking, the closer

current and expected future consumption levels are to the reference level, the lower the

individual’s willingness to invest in the risky stock. Indeed, the relative risk aversion function

(as defined in (3)) increases sharply as consumption approaches the reference level. Relative

risk aversion is thus not constant, as is assumed in many life-cycle models, but rather depends

on how close current and expected future consumption levels are to the reference level.

Finally, we note that relative risk aversion is highest if ct = θt. Based on this observation,

one might expect that the portfolio strategy attains a (local) minimum in the state of the

economy where consumption is closest to the reference level. We find, however, that in scenarios

where consumption is slightly more than the reference level, the portfolio strategy is, in fact, a

decreasing function of the past stock return; see Figures 2(e) and (f). The reason is that in these

scenarios, although current consumption exceeds the current reference level, the probability

that future levels of relative risk aversion are large is relatively high. Because the portfolio

strategy takes into account not just the individual’s current level of relative risk aversion but

also (probabilities of) future levels of relative risk aversion, the portfolio strategy attains a

(local) minimum in a scenario where consumption is slightly above the reference level.

5.2.2 Good Past Stock Return

In case of a good past stock return, the individual consumes substantially more than the

reference level; see the solid line in Figures 2(a) and (b). In that case, the

consumption-to-total-wealth ratio decreases (rather than increases as in Section 5.2.1 above)

when the stock price declines, as depicted by the solid line in Figures 2(c) and (d).

Consumption thus over-responds (rather than under-responds) to a change in total wealth.

Indeed, in case of a good past stock return, the individual can fully absorb a wealth shock into

current consumption without causing current consumption to fall below the reference level. In

fact, since the individual is relatively rich (compared to the costs of financing future reference

levels), he increases precautionary savings following a negative wealth shock. Because future

consumption levels will likely exceed the reference level, a loss-averse individual has no reason

to adopt a (very) conservative portfolio strategy in case of a good past stock return. He may

even invest more in the risky stock than a CRRA individual; see Figures 2(e) and (f).

23If the loss aversion index κ is sufficiently high, then the optimal portfolio weight takes on very low values
in some scenarios. The question becomes then whether or not in practice the individual should exit the stock
market in these scenarios. Exiting the stock market might be optimal in an economy with fixed stock market
participation costs.
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5.2.3 Bad Past Stock Return

In case of a bad past stock return, the individual consumes less than the reference level; see the

solid line in Figures 2(a) and (b). As these figures illustrate, the optimal consumption policy

differs between the case of risk-loving behavior in the loss domain and the case of risk-averse

behavior in the loss domain.

If the individual is risk loving in the loss domain (i.e., γL is smaller than unity), then the

individual follows a gambling policy. In case of a normal and a good past stock return, the

individual consumes more than the reference level, while in case of a bad past stock return,

he accepts a fixed loss of Lmax
t . Because a stock price movement leaves current consumption

unaffected in case of a bad past stock return, the consumption-to-total-wealth ratio increases as

the stock price declines, as illustrated by the solid line in Figure 2(d). To finance the minimum

consumption level θ−Lmax
t , the individual invests a relatively large share of his total wealth in

the risk-free asset; see the solid line in Figure 2(f). Berkelaar et al. (2004), Jin and Zhou (2008)

and He and Zhou (2011, 2016) also find that a loss-averse individual who is risk loving in the

loss domain adopts a gambling investment policy.

If the individual is risk averse in the loss domain (i.e., γL is larger than unity), consumption

is not constant, but rather varies with past stock performance. As a result, the individual

has a relatively large exposure to the risky stock, as shown by the solid line in Figure 2(e).24

By adopting a relatively aggressive portfolio strategy, the individual increases the chance of a

future gain. Although current consumption depends on past stock performance, a wealth shock

is typically not fully reflected into current consumption. Indeed, as illustrated by the solid

line in Figure 2(c), the consumption-to-total-wealth ratio typically increases as the stock price

declines. By not fully absorbing negative wealth shocks into current consumption, the individual

avoids big reductions in current consumption. The flipside of this behavior is, however, that

the individual benefits only partially from an increase in total wealth.

5.3 A Loss-Averse Individual with an Endogenous Reference Level

This section considers a loss-averse individual who endogenously updates his reference level over

time. We choose the values of the preference parameters describing the reference level dynamics

(4) such that i) the reference level is given by a weighted average of past consumption choices,

and ii) the most recent 5 years of consumption contribute at least 80% of all past consumption

to the reference level.25 In addition, we choose the loss aversion index κ and the curvature

parameter for gains γG such that the individual’s median level of relative risk aversion at age

50 will remain the same, to facilitate the comparison between a loss-averse individual with a

24In order to finance the minimum consumption level θ−Lmax
t , the optimal portfolio policy eventually converges

to zero as the past stock return goes to -100%, similar to the case of risk-loving behavior in the loss domain.
25These two criteria fully characterize the preference parameters α and β in equation (4). More specifically,

we find α = β = 0.3.
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constant reference level and a loss-averse individual with an endogenous reference level. We

find κ = 5 and γG = 0.2. The initial reference level θ0 has the same value as in Section 5.2.

A loss-averse individual with an endogenous reference level has a strong incentive to postpone

painful cuts in current consumption following a negative wealth shock. Because the individual is

loss-averse relative to an endogenous reference level, a reduction in future consumption levels is

felt less heavily than a reduction in his current consumption level. Indeed, when the individual’s

total wealth decreases as a result of a poor stock return, future reference levels decrease as well,

while his current reference level remains unaffected.

Figure 3 shows the impact of a 10% drop in the individual’s total wealth at age 45 on

expected consumption for medium-wealth individuals (panels (a) and (b)), high-wealth

individuals (panels (c) and (d)), and low-wealth individuals (panels (e) and (f)). As shown by

the dashed lines in Figure 3, a CRRA individual reduces current and expected future

consumption levels by the same percentage (i.e., 10%), irrespective of the current value of his

total wealth. By contrast, a loss-averse individual absorbs a wealth shock based on how much

total wealth he possesses relative to the costs of financing future reference levels.

Furthermore, we have also computed the shock absorbing mechanism, which describes how

changes in past consumption impact future consumption, for other values of κ, γG and γL.

It turns out that the mechanism is quite insensitive to a change in these parameter values.

However, the shock absorbing mechanism does vary with changes in α and β. Table 2 shows,

for various values of α and β, the impact of a 10% drop in the individual’s total wealth on

expected future consumption. This table clearly shows that the higher α and β are, the larger

the individual’s tendency to postpone reductions in current consumption (i.e., the higher the

degree of excess smoothness in consumption).

[Insert Figure 3 and Table 2 near here]

Panels (a) and (b) illustrate the optimal behavior of medium-wealth individuals (i.e., the

individual’s total wealth at age 45 is equal to the costs of financing a consumption stream that

is equal to the reference level at age 45). As shown by the dash-dotted line, to avoid that

current consumption falls below the reference level, an individual with a constant reference

level postpones cuts in current consumption; see also Section 5.2.1. A loss-averse individual

with an endogenous reference level has an even stronger incentive to postpone cuts in current

consumption, as shown by the solid line. He postpones cuts in current consumption not only

because he wants to avoid that current consumption falls below the reference level, but also

because with a decreasing endogenous reference level, a reduction in future consumption levels

is less painful than a reduction in his current consumption level.26 Current consumption is

thus reduced by much less than 10%. Because the wealth shock is not fully reflected into

current consumption, expected consumption at ages 68 to 85 is reduced by more than 10%.

26Appendix E shows this intuition formally.
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Consumption is thus excessively smooth and excessively sensitive. Kőszegi and Rabin (2009)

and Pagel (2017a), within a discrete-time consumption model that has a forward-looking rather

than a backward-looking reference level specification, also find that the consumption stream of

a loss-averse individual satisfies these two empirically observed properties.

Panels (c) and (d) illustrate the optimal behavior of high-wealth individuals (i.e., the

individual’s total wealth at age 45 is twice the costs of financing a consumption stream that is

equal to the reference level at age 45). As shown by the dash-dotted line, an individual with a

constant reference level no longer has an incentive to postpone cuts in current consumption;

see also Section 5.2.2. Indeed, full absorption of wealth shocks does not lead to an immediate

loss. He even increases savings following a negative wealth shock so as to prepare for bad

times. By contrast, a loss-averse individual with an endogenous reference level still postpones

cuts in current consumption following a wealth shock, as shown by the solid line. Although

there is no need to protect current consumption, a reduction in future consumption levels is

still felt less heavily than a reduction in his current consumption level.

Panels (e) and (f) display the optimal behavior of low-wealth individuals (i.e., the

individual’s total wealth at age 45 is 85% of the costs of financing a consumption stream that

is equal to the reference level at age 45). As shown by the dash-dotted line, a low-wealth

individual with a constant reference level gradually adjusts current consumption in response

to a wealth shock. However, this individual absorbs a wealth shock much quicker into

consumption than a medium-wealth individual with a constant reference level. The main

driver for this is that the low-wealth individual is primarily concerned about avoiding large

losses in current consumption rather than to prevent consumption from falling below the

reference level as is the prime concern of the medium-wealth individual. A low-wealth

individual with an endogenous reference level has a stronger incentive to postpone cuts in

current consumption following a negative wealth shock than a low-wealth individual with a

constant reference level; see the solid line. Indeed, a reduction in current consumption causes

a relatively large loss, while, with a decreasing endogenous reference level, a reduction in

future consumption causes potentially a smaller loss.

While the optimal portfolio profile under an endogenous reference level has the same shape

as in Section 5.2, it is typically shifted upwards, everything else being equal. Indeed, because the

reference level is not constant but rather depends on past consumption choices, the individual

can typically afford to adopt a less conservative portfolio strategy. Furthermore, the individual

follows a life-cycle investment strategy (i.e., the share of total wealth invested in the risky stock

decreases, on average, over the life-cycle), even in the absence of human wealth; see the solid

line in Figures 4(a) and (b).27 Intuitively, as the individual grows older, he has less time to

27Bodie et al. (1992) give a justification for adopting a life-cycle investment strategy based on human capital
considerations. If human capital is risk-free, individuals implicitly hold a risk-free asset. To offset this implicit
risk-free asset holding, financial wealth should be tilted toward risky assets. As the share of human capital in
total wealth decreases from one to zero during the working period, the optimal share of financial wealth invested
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absorb wealth shocks (i.e., his intertemporal rate of substitution decreases over time). Hence,

to maintain an excessively smooth and excessively sensitive consumption stream, he reduces

the exposure to the stock over the course of his life. We note that a CRRA individual and

a loss-averse individual with a constant reference level do not adopt a life-cycle investment

strategy in terms of total wealth; see the dash-dotted line in Figures 4(a) and (b). As a result,

in terms of financial wealth, a loss-averse individual with an endogenous reference level has a

stronger preference for a life-cycle investment strategy than a CRRA individual or a loss-averse

individual with a constant reference level; see Figures 4(c) and (d).28 In other words, the

portfolio strategy of an individual with an endogenous reference level is more sensitive to age

than the portfolio strategy of an individual with a constant reference level.

[Insert Figure 4 near here]

Furthermore, we have also computed the median share of total wealth invested in the risky

stock for other values of κ, γG and γL. We find that a change in these parameter values hardly

affects the shape of the portfolio profile. It only affects the average level of risk taking because

relative risk aversion changes. A change in α and β does have an impact on the shape of

the portfolio profile, but overall the portfolio share remains decreasing with age. This can be

concluded from Figure 5 which shows, for various values of α and β, the median share of total

wealth invested in the risky stock over the life cycle.

[Insert Figure 5 near here]

Finally, we note that an individual with preferences that comply with the difference internal

habit model (Constantinides (1990)) also implements a life-cycle investment strategy. However,

such an individual typically invests more in risky stocks than a loss-averse individual with an

endogenous reference level.29 Indeed, an individual whose preferences are described by the

difference internal habit model views the reference level as a minimum subsistence level rather

than as a standard-of-living, so that ŴG∗
t (i.e., the present value to finance future optimal gains)

will be relatively large. As a result, an individual with an endogenous minimum subsistence

level pursues a relatively risky investment strategy; see also Theorem 4.2.

in risk-free assets increases over the life-cycle.
28The optimal share of financial wealth invested in the risky stock, f∗t , can be computed as follows:

f∗t =
π∗t

W ∗t −Ht
,

where Ht represents human capital (i.e., the value at adult age t of future labor earnings). For illustration
purposes, Figures 4(e) and (f) show how median total wealth, median financial wealth, and human capital evolve
over the individual’s life cycle.

29Here, we implicitly assume that the curvature parameter for gains is the same for both individuals.
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5.4 Review of Existing Empirical Literature in Relation to our Findings

Our consumption and investment model with loss aversion and an endogenous reference level

generates a number of implications that can be tested using data on consumption expenditures

and portfolio holdings. This section discusses the existing empirical literature in relation to our

model implications.

A first testable implication of our model is that consumption is excessively smooth (i.e.,

under-responds to wealth shocks) and excessively sensitive (i.e., past wealth shocks predict

current consumption growth), and particularly so with a high degree of endogeneity of the

reference level. This finding holds for a wide range of parameter values; see Section 5.3 and

Table 2. We can test our first model implication, and estimate the degree of excess smoothness

and excess sensitivity, by regressing changes in current consumption on changes in current total

wealth levels and changes in past total wealth levels.

To illustrate the connection between this model implication and empirical facts, we use

simulated consumption and wealth data and run the following regression model:

∆ log c∗t =
5∑
i=1

βi∆ logW ∗t+1−i + εt, (19)

where ∆ log c∗t and ∆ logW ∗t denote the changes in log (demeaned) optimal consumption and

log (demeaned) optimal total wealth between adult age t− 1 and adult age t, respectively, and

εt represents the error term at adult age t. If 0 ≤ β1 < 1, consumption is excessively smooth:

it responds less than one-to-one to a change in wealth. If βi > 0 for some i > 1, consumption

is excessively sensitive: past wealth shocks have predictive power for current consumption

growth. We assume that the individual is currently aged 65. Table 4 reports our results. The

regression analysis confirms that a loss-averse individual with an endogenous reference level

exhibits excess smoothness and excess sensitivity, as 0 ≤ β̂1 < 1 and β̂i > 0 (i > 1) for all sets

of parameters we consider. By contrast, the CRRA individual has β̂1 = 1 and β̂i = 0 for every

i > 1. Furthermore, we observe from Table 4 that as the degree of endogeneity of the reference

level increases, consumption becomes more excessively smooth (i.e., β̂1 decreases) and more

excessively sensitive (i.e., β̂2, . . . , β̂5 increase). Numerous empirical studies find pronounced

evidence of excess smoothness and excess sensitivity in aggregate consumption data; see, e.g.,

Flavin (1985), Deaton (1987), and Campbell and Deaton (1989). Furthermore, many annuity

providers nowadays offer variable annuity type products in which payouts respond sluggishly,

rather than directly, to stock return shocks.30 Our results, in particular those with both loss

aversion and endogenous updating in Section 5.3, thus provide a preference-based justification

for the existence of these (new) type of annuities.

30For more details on these (new) type of annuities, see, e.g., Guillén, Jørgensen, and Nielsen (2006), Jørgensen
and Linnemann (2011), Guillén, Nielsen, Pérez-Maŕın, and Petersen (2013), Linnemann, Bruhn, and Steffensen
(2014) and Maurer, Mitchell, Rogalla, and Siegelin (2016).
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[Insert Table 4 near here]

However, if individuals are heterogenous, properties of aggregate consumption data may

not be observed in consumption data at the micro-level. Interestingly, our results reveal that

the degree of excess smoothness and excess sensitivity in consumption varies considerably

across individuals. In particular, we find that the consumption stream of a medium-wealth

individual is typically smoother and more sensitive than the consumption stream of a

low-wealth and, especially, a high-wealth individual; see Section 5.3. This hypothesis can also

be tested in the data. Existing empirical studies already find some evidence in favor of this

hypothesis; see, e.g., Dynan, Skinner, and Zeldes (2004), and Johnson, Parker, and Souleles

(2006). More specifically, our comparative statics results are in line with the existing literature

which finds that the marginal propensity to consume, measuring the change in consumption

due to a change in income, is smaller for medium-wealth individuals than for low-wealth and

high-wealth individuals.

Our results on portfolio choice show that the degree of risk-taking depends on the state of

the economy and the loss aversion parameter. Hence, we can use time-series data on portfolio

holdings to test whether the optimal portfolio weight is (primarily) U-shaped across states of

the economy. A number of studies find that stock market participation is limited, especially

in normal and bad states of the economy; see, e.g., Mankiw and Zeldes (1991) and Vissing-

Jørgensen (2002). Although our model cannot generate non-participation in the stock market,

we note that the individual’s willingness to invest in the stock market decreases strongly as loss

aversion goes up.

Furthermore, a loss-averse individual with an endogenous reference level optimally

implements a pronounced life-cycle investment strategy that reduces risk exposure with age,

even without human capital; see Section 5.3. This finding holds true for a wide range of

parameter values; see Section 5.3 and Figure 5. Furthermore, it holds true not only for the

median scenario but also for other scenarios. We can test the hypothesis of a life-cycle

investment strategy in the data. Although data seems to provide limited support for our

hypothesis (see, e.g., the 2013 Survey of Consumer Finances), many financial advisors

recommend a life-cycle investment strategy to their clients; see also Morningstar (2017) and

the very recent evidence of substantial reduction of the risky share over the life-cycle in

Fagereng, Gottlieb, and Guiso (2017).

5.5 Probability Weighting

He and Zhou (2016) show that probability weighting can generate an endogenous floor on

wealth. Also, Carlson and Lazrak (2014) show that in a model with rank-dependent utility

(RDU), probability weighting leads to a high degree of downward protection.31 Probability

31Carlson and Lazrak (2014) do not assume loss aversion nor endogenous updating of the reference level.
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weighting may therefore be another important ingredient of why individuals wish to protect

against downside risk and hence do not want to participate in the stock market. Indeed, if

individuals overweight the probability of tail events such as financial crises, then individuals may

be reluctant to invest in risky stocks. We briefly indicate how we can incorporate probability

weighting into our setting with intertemporal consumption and endogenous updating of the

reference level, but leave a detailed analysis for future research. Instead of maximizing expected

lifetime utility U0 (see (1)), the individual now aims to maximize∫ T

0
e−δtV (ct − θt) dt, (20)

subject to the dynamic budget constraint, where

V (ct − θt) =

∫ ∞
0

xγG d
[
−wt,G

(
1− P

[
(ct − θt)+ ≤ x

])]
− κ

∫ ∞
0

xγL d
[
−wt,L

(
1− P

[
(ct − θt)− ≤ x

])]
.

(21)

Here, the functions wt,G and wt,L transform the decumulative distributions functions of gains

and losses, respectively. The individual’s optimization problem can be solved in two steps.

First, under technical conditions (see van Bilsen (2015), Chapter 3), we can use the quantile

method (see, e.g., He and Zhou (2011)) to convert (20) into an ordinary expectation. Next, we

can use the solution techniques of the current paper to obtain the optimal consumption and

portfolio policies.

6 Welfare Analysis

This section considers a loss-averse individual with (initially) a constant reference level who

delegates his consumption and portfolio decisions to a professional asset manager. The asset

manager offers strategies that are exclusively based on conventional CRRA utility. They differ

only in the degree of riskiness. The value of the CRRA parameter – which characterizes the

CRRA utility function – determines the degree of riskiness of the strategies offered. The loss-

averse individual chooses the value of the CRRA parameter such that the difference between

his optimal utility (i.e., the utility associated with the optimal loss-averse strategy) and his

actual utility (i.e., the utility associated with the CRRA strategy) be minimized. Because the

individual’s actual utility differs from the individual’s optimal utility, the individual suffers a

welfare loss. The welfare loss can be entirely attributed to the misspecification of the utility

function. This section explores the size of this welfare loss; further details on the computation

of the welfare losses can be found in Appendix F.

Interestingly, they find that RDU investors invest more in the stock market as they become richer. This behavior
is consistent with our model findings.
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Using the same parameter values as in Section 5.2, we find that a loss-averse individual with

a constant reference level who only has access to strategies based on CRRA utility suffers a

welfare loss of at least 2.96%. We measure the welfare loss in terms of the relative decline in

certainty equivalent consumption.32 The minimum welfare loss of 2.96% is obtained when the

asset manager implements the strategy of a CRRA individual with relative risk aversion equal

to 14.5. We can view this number as a measure of the individual’s relative risk aversion. The

next subsections explore how a change in the individual’s preference parameters affects the size

of the welfare loss.

6.1 Constant Reference Level

Figure 6(a) and Figure 7(a) illustrate the optimal consumption choice of a 65-year-old loss-averse

individual for various values of the (constant) reference level θ. As shown by these figures, the

larger the reference level, the higher is the desired protection against low consumption levels,

and the more upside potential is sacrificed. The dash-dotted lines correspond to a reference

level of zero. The dash-dotted line in Figure 6(a) would coincide with the consumption strategy

of a CRRA individual with relative risk aversion equal to 0.6. The minimum welfare loss is

thus zero by definition in this case; see also Table 3(a). A loss-averse individual with a positive

reference level always suffers a welfare loss, as shown by Table 3(a).

6.2 Loss Aversion Parameter

Figure 6(b) and Figure 7(b) illustrate the optimal consumption choice of a 65-year-old loss-

averse individual for various values of the loss aversion parameter κ. As illustrated by these

figures, the probability of losses decreases as κ increases. Intuitively, the more loss-averse the

individual is, the more the portfolio strategy is aimed at avoiding losses. Indeed, as shown by

Table 3(b), the individual requests a more risk-averse strategy as the value of the loss aversion

parameter κ increases. Furthermore, the minimum welfare loss is a decreasing function of κ.

Indeed, if the loss aversion parameter κ is (very) high, then we can adequately approximate

the optimal loss-averse strategy by the risk-free strategy (which is a special case of the CRRA

strategy), especially in bad and normal states of the economy.

6.3 Curvature Parameter for Gains

Figure 6(c) and Figure 7(c) illustrate the optimal consumption choice of a 65-year-old loss-averse

individual for various values of the curvature parameter for gains γG. The individual becomes

less risk averse in the gain domain as γG increases; see also the last column in Table 3(c). That

is, the larger the curvature parameter for gains γG, the higher is the degree of upside potential.

32The certainty equivalent of a risky consumption strategy is defined to be the constant consumption level that
yields indifference to the risky consumption strategy.
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A higher degree of upside potential comes, however, at the expense of a larger probability of

losses and less downward protection. Furthermore, the minimum welfare loss is an increasing

function of γG.

6.4 Curvature Parameter for Losses

Figure 6(d) and Figure 7(d) illustrate the optimal consumption choice of a 65-year-old loss-

averse individual for various values of the curvature parameter for losses γL. In case of risk-

averse behavior in the loss domain, the individual’s degree of risk-aversion in the loss domain

is increasing in γL, as shown by Figure 6(d) and Table 3(d). That is, the larger γL, the more

consumption is protected against stock price shocks. In case of risk-loving behavior in the loss

domain, the probability of a loss is decreasing in γL; see Figure 7(d). As shown by Table 3(d),

the minimum welfare loss is largest for low values of γL. Furthermore, because the probability

of a loss is relatively low, the minimum welfare loss is not very sensitive to a change in the

curvature parameter for losses γL.

6.5 Reference Level Dynamics

Table 3(e) shows the impact of a change in the dynamics of the reference level on the minimum

welfare loss. The welfare loss is likely to exceed 10% if the individual endogenously updates

his reference level over time. In particular, if α = 0.3 and β = 0.27, the minimum welfare loss

equals 11.05%.33 The results reveal that endogeneity of the reference level strongly amplifies

the welfare loss that our individual would incur if he followed the least suboptimal strategy

among the conventional CRRA optimal consumption and portfolio policies.

[Insert Figure 6, Figure 7 and Table 3 near here]

7 Conclusion

We have explored how loss aversion and endogenous updating of the individual’s reference

level jointly affect conventional wisdom on optimal drawdown and investment strategies. We

have shown that the optimal policies under these pronounced empirical regularities differ

fundamentally from predictions of the conventional consumption and investment model based

on CRRA utility. Instead of decreasing his consumption level proportionally after a drop in

wealth, a loss-averse individual with an endogenous reference level protects current

consumption and postpones reductions in current consumption following a wealth drop. We

33We note that if we also adapt the loss aversion and curvature parameter values as in Section 5.3 such that the
individual’s median level of relative risk aversion at age 50 will remain the same compared to the case without
endogenous updating (taking κ = 5, γG = 0.2, γL = 1.3, α = 0.3 and β = 0.3), the minimum welfare loss would
equal 7.0%.
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have shown that this typically occurs already with a constant reference level and amplifies

with higher degrees of endogeneity. The incentive to delay cuts in consumption after a wealth

drop depends on the individual’s current wealth level: a medium-wealth individual has a

stronger incentive to postpone cuts in current consumption than a low-wealth and, in

particular, a high-wealth individual. Furthermore, the individual’s optimal portfolio weight in

the risky stock is not constant across states of the economy as is predicted by the conventional

consumption and investment model, but rather depends on how close current and future

expected consumption levels are to the reference level. The individual implements a

conservative investment strategy in normal states and typically a more aggressive strategy in

good and bad states. Endogeneity of the reference level increases overall risk-taking and

makes the individual adopt a life-cycle investment strategy, which reduces risk exposure with

age, even without taking human capital into account.

The significant welfare losses incurred by implementing the least suboptimal conventional

consumption and portfolio policies highlight the importance of adequate individual drawdown

and investment decisions over the life-cycle, and motivate scrutiny over the design of such

financial plans.

27



A General Financial Market

This appendix outlines the general financial market with multiple risky assets and a

non-constant investment opportunity set that we assume in Appendix B and in the proof of

Theorem 4.1.

The uncertainty in the financial market is represented by a filtered probability space

(Ω,F ,F,P), on which is defined a standard N -dimensional Brownian motion {Zt}t∈[0,T ]. The

filtration F = {Ft}t∈[0,T ] is the augmentation under P of the natural filtration generated by the

standard Brownian motion {Zt}t∈[0,T ]. Throughout, equalities and inequalities between

random variables will be understood to hold P-almost surely.

The financial market is complete and consists of a (locally) risk-free asset and N risky stocks

which are traded continuously on the finite horizon [0, T ]. Let us denote by Bt and St the risk-

free asset price and the vector of risky stock prices at adult age t, respectively. The risk-free

asset price Bt evolves as follows:

dBt
Bt

= rt dt, B0 ≥ 0 given, (22)

where rt denotes the risk-free interest rate at adult age t. The vector of risky stock prices St

satisfies the following dynamic equation:

dSt
St

= µt dt+ σt dZt, S0 ≥ 0 given, (23)

where µt and σt represent the vector of expected returns and the volatility matrix at adult age

t, respectively, and dZt denotes the increment to the Brownian motion that drives the vector

of stock returns.

We assume that the risk-free rate process {rt}t∈[0,T ], the mean rate of return process

{µt}t∈[0,T ], and the volatility process {σt}t∈[0,T ] are all Ft-progressively measurable and

uniformly bounded. In addition, we assume that for every t (ε > 0),

ϑ>σtσ
>
t ϑ ≥ ε||ϑ||2 for all ϑ ∈ RN , (24)

with > denoting the transpose sign. The strong non-degeneracy condition (24) implies that σt

is invertible for every t.

Let Mt denote the stochastic discount factor at adult age t which is defined as follows:

Mt = exp

{
−
∫ t

0
rs ds−

∫ t

0
λ>s dZs −

1

2

∫ t

0

N∑
i=1

λ2
is ds

}
. (25)
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Here, λt = (λ1t, λ2t, . . . , λNt) represents the vector of market prices of risk at adult age t:

λt = σ−1
t (µt − rt) . (26)

Let πt and Wt denote the vector of total dollar amounts invested in the risky stocks and

the individual’s total wealth at adult age t, respectively. Total wealth Wt satisfies the following

dynamic budget constraint:

dWt =
(
rtWt + π>t σtλt − ct

)
dt+ π>t σt dZt, W0 ≥ 0 given. (27)

The consumption process {ct}t∈[0,T ] and the portfolio process {πt}t∈[0,T ] are assumed to be Ft-
progressively measurable. We impose the following integrability conditions, which we assume

to be satisfied for any consumption and portfolio process:∫ T

0
π>t σtσ

>
t πt dt <∞,

∫ T

0

∣∣πt (µt − rt)
∣∣dt <∞, E

[∫ T

0
|ct|r dt

]
<∞ for all r ∈ R. (28)

The individual now faces the following optimization problem:

max
ct,πt:0≤t≤T

E
[∫ T

0
e−δtv (ct − θt) dt

]
,

s.t. dWt =
(
rWt + π>t σλ − ct

)
dt+ π>t σ dZt,

dθt = (βct − αθt) dt,

θt − ct ≤ Lmax
t , for all t ∈ [0, T ].

(29)

We note that in the general financial market of Appendix A with multiple risky assets and a

non-constant investment opportunity set, the individual’s static variational problem remains

the same and is given by (11).

B Dual Optimization Problem

Schroder and Skiadas (2002) show that a generic consumption and portfolio choice model with

linear internal habit formation can be mechanically transformed into a dual consumption and

portfolio choice model without linear internal habit formation. Denote by ĉt the individual’s

dual (or surplus) consumption choice at adult age t; that is, ĉt = ct − θt. The individual’s
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optimization problem (11) is equivalent to the following dual optimization problem:

max
ĉt:0≤t≤T

E
[∫ T

0
e−δtv (ĉt) dt

]
,

s.t. E

[∫ T

0

M̂t

M̂0

ĉt dt

]
≤ Ŵ0,

− ĉt ≤ Lmax
t for all t ∈ [0, T ].

(30)

Here, M̂t and Ŵ0 represent the dual counterparts of the stochastic discount factor Mt and the

individual’s initial total wealth W0, respectively.

The relationship between the optimization problem (11) and the dual optimization problem

(30) is characterized in terms of the quantity Ft:

Ft =
1

Mt

Et
[∫ T

t
Mse

−(α−β)(s−t) ds

]
. (31)

We can view Ft as the price of a bond paying a continuous coupon. The dual stochastic discount

factor M̂t and the individual’s dual initial total wealth Ŵ0 are given by

M̂t = Mt (1 + βFt) , (32)

Ŵ0 =
W0 − F0θ0

1 + βF0

. (33)

Furthermore, the individual’s dual reference level is equal to the individual’s (primal) reference

level; that is,

θ̂t = e−(α−β)tθ̂0 + β

∫ t

0
e−(α−β)(t−s)ĉs ds = θt. (34)

Dual (or surplus) total wealth Ŵt is defined as follows:

Ŵt =
1

M̂t

Et
[∫ T

t
M̂sĉs ds

]
. (35)

Dual total wealth Ŵt is invested in a dual financial market which is characterized by the dual

risk-free rate r̂t, the dual volatility matrix σ̂t, and the vector of dual market prices of risk λ̂t:

r̂t = β +
rt − αβFt
1 + βFt

, (36)

σ̂t = σt, (37)

λ̂t = λt −
β

1 + βFt

∫ T

t
e−(α−β)(s−t)Pt,sΨt,s ds. (38)
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Here, Pt,s corresponds to the price of a default-free unit discount bond that matures at adult

age s ≥ t and Ψt,s stands for the volatility of the instantaneous return on such a bond (all in

the primal financial market).

Dual wealth Ŵt is subject to the following dynamic equation:

dŴt =
(
r̂tŴt + π̂>t σ̂tλ̂t − ĉt

)
dt+ π̂>t σ̂t dZt, Ŵ0 =

W0 − F0θ0

1 + βF0

. (39)

Here, π̂t denotes the the dual portfolio choice.

The following proposition is adapted from Schroder and Skiadas (2002).

Proposition 1 (relationship between dual solution and primal solution). Suppose

that we have solved the dual optimization problem (30). Denote by ĉ ∗t the optimal dual

consumption choice, by θ̂ ∗t the optimal dual reference level, by Ŵ ∗t the individual’s optimal

dual wealth, and by π̂∗t the optimal dual portfolio choice. Then:

• The individual’s optimal consumption choice at adult age t is given by

c∗t = ĉ ∗t + θ̂ ∗t .

• Optimal wealth at adult age t is given by

W ∗t = Ŵ ∗t + βFtŴ
∗
t + Ftθ̂

∗
t .

• The individual’s optimal portfolio choice at adult age t is given by

π∗t = π̂∗t + βFtπ̂
∗
t +

(
βŴ ∗t + θ̂ ∗t

)
(σ̂t)

−1
∫ T

t
e−(α−β)(s−t)Pt,sΨt,s ds.

Proposition 1 shows how to transform the optimal solution of the dual problem (30) back

into the optimal solution of the individual’s maximization problem (11).

C Proofs of Theorems

First, we note that in the general financial market of Appendix A with multiple risky assets

and a non-constant investment opportunity set, Theorem 4.1 applies identically.

Proof of Theorem 4.1: The proof uses some of the techniques developed by Basak and Shapiro

(2001) and Berkelaar et al. (2004) in order to deal with pseudo-concavity and

non-differentiability aspects of the individual’s optimization problem. We adapt these

techniques to our setting with intertemporal consumption.
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The dual optimization problem, which is equivalent to the optimization problem (11), is

defined as follows:

max
ĉt:0≤t≤T

E
[∫ T

0
e−δtv (ĉt) dt

]
,

s.t. E

[∫ T

0

M̂t

M̂0

ĉt dt

]
≤ Ŵ0,

− ĉt ≤ Lmax
t for all t ∈ [0, T ].

(40)

The corresponding Lagrangian L is given by

L = E
[∫ T

0
e−δtv (ĉt) dt

]
+ y

(
Ŵ0 − E

[∫ T

0

M̂t

M̂0

ĉt dt

])

=

∫ T

0
E

[
e−δtv (ĉt)− y

M̂t

M̂0

ĉt

]
dt+ yŴ0.

(41)

Here, y denotes the Lagrange multiplier associated with the static budget constraint in (40).

The individual aims to maximize e−δtv (ĉt) − yM̂tĉt/M̂0 subject to −ĉt ≤ Lmax
t . Denote by

vG the part of the utility function above the reference level, and by vL the part of the utility

function below the reference level. Let c∗t,G and c∗t,L be the optimal solutions of the functions

vG and vL, respectively.

We first consider the case where the individual is risk averse in the loss domain. Due to the

concavity of vG and vL, the optimal dual consumption choices c∗t,G and c∗t,L satisfy the following

optimality conditions (for j = G,L):34

e−δtv′j
(
c∗t,j
)

= yM̂t/M̂0 − xt,j , (42)

−c∗t,j ≤ Lmax
t , (43)

xt,j
(
c∗t,j + Lmax

t

)
= 0, (44)

xt,j ≥ 0. (45)

Here, xt,j (j = G,L) denotes the Lagrange multiplier associated with the constraint on dual

consumption. After solving the optimality conditions, we obtain the following two local maxima:

c∗t,G =

(
yeδtM̂t

γGM̂0

) 1
γ
G
−1

, (46)

c∗t,L = −min


(
yeδtM̂t

κγLM̂0

) 1
γ
L
−1

, Lmax
t

 . (47)

34We denote the derivative of a function f at a point a by f ′(a).
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To determine the global maximum ĉ ∗t , we introduce the following function:

f

(
M̂t

M̂0

)
= e−δtv

(
c∗t,G
)
− y M̂t

M̂0

c∗t,G −

(
e−δtv

(
c∗t,L
)
− y M̂t

M̂0

c∗t,L

)

= e−δt (1− γG)

(
yeδtM̂t

γGM̂0

) γG
γ
G
−1

+ e−δtκmin


(
yeδtM̂t

κγLM̂0

) 1
γ
L
−1

, Lmax
t


γL

− y M̂t

M̂0

min


(
yeδtM̂t

κγLM̂0

) 1
γ
L
−1

, Lmax
t

 .

(48)

The global maximum ĉ ∗t is equal to c∗t,G if f

(
M̂t

M̂0

)
≥ 0; and equals c∗t,L otherwise. It follows

that lim M̂t
M̂0

→∞
f

(
M̂t

M̂0

)
= −∞, lim M̂t

M̂0

→0
f

(
M̂t

M̂0

)
= ∞ and f ′

(
M̂t

M̂0

)
< 0 for all

M̂t

M̂0

. Hence,

f

(
M̂t

M̂0

)
is strictly decreasing. As a result, f

(
M̂t

M̂0

)
has one zero in the interval (0,∞). We

define ξt such that f (ξt) = 0. The global maximum ĉ ∗t is equal to c∗t,G if
M̂t

M̂0

≤ ξt; and equals

c∗t,L otherwise.

We now consider the case where the individual is risk loving in the loss domain. Due to

the concavity of vG, the optimal dual consumption choice c∗t,G satisfies the following optimality

conditions:

e−δtv′G
(
c∗t,G
)

= yM̂t/M̂0 − xt,G, (49)

−c∗t,G ≤ Lmax
t , (50)

xt,G
(
c∗t,G + Lmax

t

)
= 0, (51)

xt,G ≥ 0. (52)

After solving the optimality conditions, we obtain the following local maximum:

c∗t,G =

(
yeδtM̂t

γGM̂0

) 1
γ
G
−1

.

Due to the convexity of vL, the optimal dual consumption choice c∗t,L lies at a corner point of

the feasible region. Hence, the only two possible candidates for c∗t,L are −Lmax
t and 0.

To determine the global maximum ĉ ∗t , we introduce the following function:

g

(
M̂t

M̂0

)
= e−δtv

(
c∗t,G
)
− y M̂t

M̂0

c∗t,G −

(
e−δtv

(
c∗t,L
)
− y M̂t

M̂0

c∗t,L

)
. (53)
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The global maximum ĉ ∗t is equal to c∗t,G if g

(
M̂t

M̂0

)
≥ 0; and equals c∗t,L otherwise. We distinguish

between the following two cases:

• c∗t,L = 0. Straightforward computations show that g

(
M̂t

M̂0

)
is given by

g

(
M̂t

M̂0

)
= e−δt (1− γG)

(
yeδtM̂t

γGM̂0

) γG
γ
G
−1

. (54)

Since 0 < γG < 1 and y > 0, it follows that g

(
M̂t

M̂0

)
> 0 for all

M̂t

M̂0

. We conclude that

c∗t,L = 0 is never optimal.

• c∗t,L = −Lmax
t . Straightforward computations show that g

(
M̂t

M̂0

)
is given by

g

(
M̂t

M̂0

)
= e−δt (1− γG)

(
yeδtM̂t

γGM̂0

) γG
γ
G
−1

+ e−δtκ (Lmax
t )γL − y M̂t

M̂0

Lmax
t . (55)

It follows that g

(
M̂t

M̂0

)
> 0 for all

M̂t

M̂0

≤ κ
y e
−δt (Lmax

t )γL−1. Also, lim M̂t
M̂0

→∞
g

(
M̂t

M̂0

)
= −∞

and g′
(
M̂t

M̂0

)
< 0 for all

M̂t

M̂0

. Hence, g

(
M̂t

M̂0

)
is strictly decreasing. As a result, g

(
M̂t

M̂0

)
has one zero in the interval

(
κ
y e
−δt (Lmax

t )γL−1 ,∞
)

. We define ζt such that g (ζt) = 0. It

follows that the global maximum ĉ ∗t is equal to c∗t,G if
M̂t

M̂0

≤ ζt; and equals c∗t,L otherwise.

A standard verification (see, e.g., Karatzas and Shreve (1998), p. 103) that the optimal

solutions obtained from the Lagrangian are the optimal solutions of the dual problem

completes the proof. Q.E.D.

Proof of Theorem 4.2: We first compute optimal dual total wealth, which is defined as

follows:

Ŵ ∗t =
1

M̂t

Et
[∫ T

t
M̂sĉ

∗
s ds

]
. (56)

Suppose that the individual is risk averse in the loss domain. Substitution of the optimal dual

consumption choice ĉ ∗s into equation (56) yields

Ŵ ∗t = ŴG∗
t − ŴL∗

t , (57)
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where

ŴG∗
t =

1

M̂t

Et

[∫ T

t
M̂s

(
yeδsM̂s

γGM̂0

) 1
γ
G
−1

1[
M̂s
M̂0

≤ξs
] ds

]

=

(
yeδtM̂t

γGM̂0

) 1
γ
G
−1

Et

∫ T

t

(
M̂s

M̂t

) γG
γ
G
−1

e
δ(s−t)
γ
G
−1
1[

M̂s
M̂0

≤ξs
] ds

 ,
(58)

ŴL∗
t =

1

M̂t

Et

[∫ T

t
M̂s

{(
yeδsM̂s

κγLM̂0

) 1
γ
L
−1

1[
ξs<

M̂s
M̂0

<max{ξs,ηs}
]

+ Lmax
s 1[

M̂s
M̂0

≥max{ξs,ηs}
] ds

}]

=

(
yeδtM̂t

κγLM̂0

) 1
γ
L
−1

Et

∫ T

t

(
M̂s

M̂t

) γL
γ
L
−1

e
δ(s−t)
γ
L
−1
1[
ξs<

M̂s
M̂0

<max{ξs,ηs}
] ds


+ Et

[∫ T

t

M̂s

M̂t

Lmax
s 1[

M̂s
M̂0

≥max{ξs,ηs}
] ds

]
.

(59)

Here, ηt =
κγL
yeδt

(Lmax
t )γL−1. A closed-form expression for Ŵ ∗t can be computed in case the

investment opportunity set is constant. We find

Et

[
M̂s

M̂t

Lmax
s 1[

M̂s
M̂0

≥max{ξs,ηs}
]
]

= e−
∫ s
t r̂u duLmax

s N [−d1 (max {ξs, ηs})] , (60)

Et

(M̂s

M̂t

) γG
γ
G
−1

e
δ(s−t)
γ
G
−1
1[

M̂s
M̂0

≤ξs
]
 = e−

∫ s
t Γu duN [d2 (ξs)] , (61)

Et

(M̂s

M̂t

) γL
γ
L
−1

e
δ(s−t)
γ
L
−1
1[
ξs<

M̂s
M̂0

<max{ξs,ηs}
]
 = e−

∫ s
t Πu du

×
(
N [d3 (max {ξs, ηs})]−N [d3 (ξs)]

)
.

(62)

Here, N is the cumulative distribution function of a standard normal random variable, and Γt,
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Πt, d1(x), d2(x) and d3(x) are defined as follows:

Γt =
δ − γGr̂t
1− γG

− 1

2

γG(
1− γG

)2 ||λ||2, (63)

Πt =
δ − γLr̂u
1− γL

− 1

2

γL(
1− γL

)2 ||λ||2, (64)

d1(x) =
1

||λ||
√
s− t

·

[
log(x)− log

(
M̂t

M̂0

)
+

∫ s

t
r̂u du− 1

2
||λ||2(s− t)

]
, (65)

d2(x) = d1(x) +
||λ||

1− γG

√
s− t, (66)

d3(x) = d1(x) +
||λ||

1− γL

√
s− t. (67)

Substitution of the conditional expectations (60), (61) and (62) into equation (57) yields the

optimal dual wealth.

Suppose now that the individual is risk loving in the loss domain. Substitution of the optimal

dual consumption choice ĉ ∗s into equation (56) yields

Ŵ ∗t = ŴG∗
t − ŴL∗

t , (68)

where

ŴG∗
t =

1

M̂t

Et

[∫ T

t
M̂s

(
yeδsM̂s

γGM̂0

) 1
γ
G
−1

1[
M̂s
M̂0

≤ζs
] ds

]

=

(
yeδtM̂t

γGM̂0

) 1
γ
G
−1

Et

∫ T

t

(
M̂s

M̂t

) γG
γ
G
−1

e
δ(s−t)
γ
G
−1
1[

M̂s
M̂0

≤ζs
] ds

 ,
(69)

ŴL∗
t = Et

[∫ T

t

M̂s

M̂t

Lmax
s 1[

M̂s
M̂0

>ζs

] ds

]
. (70)

A closed-form expression for Ŵ ∗t can be computed in case the investment opportunity set is

constant. We find

Et

[
M̂s

M̂t

Lmax
s 1[

M̂s
M̂0

>ζs

]
]

= e−
∫ s
t r̂u duLmax

s N [−d1 (ζs)] , (71)

Et

(M̂s

M̂t

) γG
γ
G
−1

e
δ(s−t)
γ
G
−1
1[

M̂s
M̂0

≤ζs
]
 = e−

∫ s
t Γu duN [d2 (ζs)] . (72)

Substitution of (71) and (72) into (68) yields the optimal dual wealth.
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The optimal dual portfolio choice π̂∗t can be constructed using standard hedging

arguments. We explicitly determine the optimal dual portfolio choice for the case of a

constant investment opportunity set. To this end, it is convenient to express Ŵ ∗t as a function

of t and the dual stochastic discount factor M̂t; that is, Ŵ ∗t = h
(
t, M̂t

)
for some (regular)

function h. Straightforward application of Itô’s Lemma to the function h yields

dŴ ∗t =

[
∂h

∂t
− ∂h

∂M̂t

M̂tr̂t +
1

2

∂2h

∂M̂ 2
t

M̂ 2
t ||λ||2

]
dt− ∂h

∂M̂t

M̂tλ
> dZt. (73)

Comparing the diffusion part of the dynamic budget constraint (39) with the diffusion part of

equation (73), we arrive at the dual optimal portfolio choice:

π̂∗t = − ∂h

∂M̂t

M̂tλ
>σ−1. (74)

The individual’s optimal (primal) portfolio choice follows from Schroder and Skiadas (2002):

π∗t = π̂∗t + βFtπ̂
∗
t . (75)

We find:

• If the individual is risk averse in the loss domain, the optimal dual portfolio strategy is

given by

π̂∗t = At · ŴG∗
t +Bt · ŴL∗

t ,

where

At =
σ−1λ(

1− γG
) + σ−1λ

(
yeδtM̂t

γGM̂0

) 1
γ
G
−1 ∫ T

t
e−
∫ s
t Γu du φ [d2 (ξs)]

||λ||
√
s− t

ds
(
ŴG∗
t

)−1
, (76)

Bt = −
(
ŴL∗
t

)−1
(
yeδtM̂t

κγLM̂0

) 1
γ
L
−1

{∫ T

t
e−
∫ s
t Πu duφ [d2 (max {ηs, ξs})]− φ [d2 (ξs)]

||λ||
√
s− t

ds

+
σ−1λ

(1− γL)

∫ T

t
e−
∫ s
t Πu du

(
N [d3 (max {ηs, ξs})]−N [d3 (ξs)]

)
ds

}
+
(
ŴL∗
t

)−1
∫ T

t
e−
∫ s
t r̂u duLmax

s

φ [−d1 (max {ηs, ξs})]
||λ||
√
s− t

ds.

(77)

• If the individual is risk loving in the loss domain, the optimal dual portfolio strategy is

given by

π̂∗t = Ct · ŴG∗
t +Dt · ŴL∗

t ,
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where

Ct =
σ−1λ(

1− γG
) + σ−1λ

(
yeδtM̂t

γGM̂0

) 1
γ
G
−1 ∫ T

t
e−
∫ s
t Γu du φ [d2 (ζs)]

||λ||
√
s− t

ds
(
ŴG∗
t

)−1
, (78)

Dt = σ−1λ

∫ T

t
e−
∫ s
t r̂u duLmax

s

φ [−d1 (ζs)]

||λ||
√
s− t

ds
(
ŴL∗
t

)−1
. (79)

D Reference Level as an Average of Past Consumption Choices

Fix t. We can write the individual’s reference level (5) at adult age t as follows:

θt = e−αtθ0 +

∫ t

0
ωscs ds, (80)

where

ωs = βe−α(t−s). (81)

The reference level is given by a weighted average of past consumption choices if the weights

sum to unity; that is, if e−αt +
∫ t

0 ωs ds = 1. Straightforward computations show that

e−αt +

∫ t

0
ωs ds = e−αt +

∫ t

0
βe−α(t−s) ds = e−αt + β

1

α

(
1− e−αt

)
. (82)

It follows from (82) that if β = α, the reference level is given by a weighted average of past

consumption choices.35

E Impact of a Current Shock on Future Consumption

This appendix shows that the impact of a current shock on future median consumption is

typically larger the further into the future consumption occurs (in other words, the individual

has a strong incentive to postpone cuts in current consumption). For ease of exposition, we

restrict ourselves to the case of infinite loss aversion (i.e., κ = ∞) and constant investment

opportunities, so that consumption always stays above the reference level. Optimal median

35We note that in a discrete-time setting, β should be taken slightly smaller than α. More specifically, if

β =
1− e−α∆t

∆t
, (83)

then the reference level is given by a discrete-time weighted average of past consumption choices (here, ∆t denotes
the time step).
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consumption at time s > t is given by

Mt [c∗s] = Mt

θ∗s +

(
yeδs

γG

) 1
γ
G
−1

(
M̂s

M̂0

) 1
γ
G
−1


= Mt

e−αsθ0 + β

∫ s

0
e−(α−β)(s−v)ĉ ∗v dv +

(
yeδs

γG

) 1
γ
G
−1

(
M̂s

M̂0

) 1
γ
G
−1


= Mt

e−αsθ0 + β

∫ s

0
e−(α−β)(s−v)

(
yeδv

γG

) 1
γ
G
−1

(
M̂v

M̂0

) 1
γ
G
−1

dv

+

(
yeδs

γG

) 1
γ
G
−1

(
M̂s

M̂0

) 1
γ
G
−1

 .

(84)

Here, we have used the definitions of θ∗s and ĉ ∗v (see (34) and (46)). Substituting the analytical

expression of M̂v into (84) and computing the median, we arrive at

Mt [c∗s] = β

∫ s

0
e−(α−β)(s−v)

(
yeδv

γG

) 1
γ
G
−1
(
e

1
1−γ

G

∫ v
0 r̂u du− 1

2
λ2v
γ
G
−1
− λ
γ
G
−1

∫min(v,t)
0 dWu

)
dv

+ e−αsθ0 +

(
yeδs

γG

) 1
γ
G
−1
(
e

1
1−γ

G

∫ s
0 r̂u du− 1

2
λ2s
γ
G
−1
− λ
γ
G
−1

∫ t
0 dWu

)
.

(85)

Note that the Brownian increments on the right-hand side of (85) have been realized and are

thus non-random. Next, we compute ∂Mt [c∗s] /∂Wt. We find

∂Mt [c∗s]

∂Wt
= β

∫ s

t
e−(α−β)(s−v) λ

1− γG

(
yeδv

γG

) 1
γ
G
−1

Mt

(M̂v

M̂0

) 1
γ
G
−1

dv

+
λ

1− γG

(
yeδs

γG

) 1
γ
G
−1

Mt

(M̂s

M̂0

) 1
γ
G
−1

 .
(86)

It follows from (86) that ∂Mt [c∗s] /∂Wt tends to increase as the horizon s − t widens. Indeed,

as s increases, the interval over which the positive function

f(v) := βe−(α−β)(s−v) λ

1− γG

(
yeδv

γG

) 1
γ
G
−1

Mt

(M̂v

M̂0

) 1
γ
G
−1


is integrated increases. Furthermore, if δ is not too large, the second term on the right-hand

side of (86) becomes larger as s goes up. Hence, the individual has a preference to postpone

adjustments in current consumption.
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F Computation of Minimum Welfare Loss

This appendix describes a numerical procedure for computing minimum welfare losses. This

procedure is based on the assumptions that the investment opportunity set is constant and the

individual can only invest in one risky stock. We introduce the following notation:

• γ ∈ {0, 0.1, . . . , 99.9, 100}: CRRA parameter (i.e., relative risk aversion coefficient of an

individual with power utility);

• S: total number of simulations;

• ∆t: time step;

• tn = n∆t for n = 0, . . . ,
⌊
T
∆t

⌋
.

The floor operator b·c rounds a number downward to its nearest integer.

To compute the minimum welfare loss associated with the CRRA consumption strategy, we

apply the following steps:

1. We generate S trajectories of the stochastic discount factor (s = 1, . . . ,S):

Ms,tn+1
= Ms,tn − rMs,tn∆t− λMs,tn

√
∆tεs,tn , n = 0, . . . ,

⌊
T

∆t

⌋
. (87)

Here, εs,tn is a standard normally distributed random variable.

2. We compute the optimal dual consumption choice ĉ ∗s,tn for s = 1, . . . ,S and

n = 0, . . . ,
⌊
T
∆t

⌋
. We note that the optimal dual consumption choice ĉ ∗s,tn is a function of

the dual stochastic discount factor M̂s,tn = Ms,tn

(
1 + βFtn

)
. Expected lifetime utility

can now be approximated by

E
[∫ T

0
e−δtv (ĉ ∗t ) dt

]
≈ 1

S

S∑
s=1

⌊
T
∆t

⌋∑
n=0

e−δtnv
(
ĉ ∗s,tn

)
∆t. (88)

3. We solve for the optimal certainty equivalent consumption ce∗:

1

S

S∑
s=1

⌊
T
∆t

⌋∑
n=0

e−δtnv
(
ĉ ∗s,tn

)
∆t =

⌊
T
∆t

⌋∑
n=0

e−δtnv
(
ce∗ − θtn (ce∗)

)
∆t, (89)

where

θtn (ce∗) = θ0e
−αtn + β

n−1∑
i=0

e−α(tn−ti)ce∗∆t. (90)

4. We compute the CRRA consumption strategy cγ,s,tn for γ = 0, 0.1, . . . , 99.9, 100, s =
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1, . . . ,S and n = 0, . . . ,
⌊
T
∆t

⌋
. The associated reference level can be computed as follows:

θγ,s,tn = θ0e
−αtn + β

n−1∑
i=0

e−α(tn−ti)cγ,s,tn∆t, (91)

so that the suboptimal dual consumption strategy is given by ĉγ,s,tn = cγ,s,tn − θγ,s,tn .

Expected lifetime utility can now be approximated by

E
[∫ T

0
e−δtv (ĉt) dt

]
≈ 1

S

S∑
s=1

⌊
T
∆t

⌋∑
n=0

e−δtnv
(
ĉγ,s,tn

)
∆t. (92)

5. We solve for the suboptimal certainty equivalent consumption ceγ for

γ = 0, 0.1, . . . , 99.9, 100:

1

S

S∑
s=1

⌊
T
∆t

⌋∑
n=0

e−δtnv
(
ĉγ,s,tn

)
∆t =

⌊
T
∆t

⌋∑
n=0

e−δtnv
(
ceγ − θtn (ceγ)

)
∆t, (93)

where

θtn (ceγ) = θ0e
−αtn + β

n−1∑
i=0

e−α(tn−ti)ceγ∆t. (94)

6. Finally, we compute the minimum welfare loss m:

m = min
γ∈{0,0.1,...,99.9,100}

ce∗ − ceγ

ce∗
. (95)

41



References

Abdellaoui, M., Bleichrodt, H., Paraschiv, C., 2007. Loss aversion under prospect theory: A
parameter-free measurement. Management Science 53, 1659–1674.

Abdellaoui, M., Vossmann, F., Weber, M., 2005. Choice-based elicitation and decomposition of
decision weights for gains and losses under uncertainty. Management Science 51, 1384–1399.

Abel, A. B., 1990. Asset prices under habit formation and catching up with the Joneses.
American Economic Review 80, 38–42.

Andries, M., 2012. Consumption-based asset pricing with loss aversion, Working Paper.

Ang, A., Bekaert, G., Lui, J., 2005. Why stocks may disappoint. Journal of Financial Economics
76, 471–508.

Barberis, N., Huang, M., 2008. Stocks as lotteries: The implications of probability weighting
for security prices. American Economic Review 98, 2066–2100.

Barberis, N., Huang, M., Santos, T., 2001. Prospect theory and asset prices. Quarterly Journal
of Economics 116, 1–53.

Barberis, N., Xiong, W., 2009. What drives the disposition effect? An analysis of a long-standing
preference-based explanation. Journal of Finance 64, 751–784.

Basak, S., Shapiro, A., 2001. Value-at-risk based risk management: Optimal policies and asset
prices. Review of Financial Studies 14, 371–405.

Bell, D. E., 1982. Regret in decision making under uncertainty. Operations Research 30, 961–
981.

Bell, D. E., 1983. Risk premiums for decision regret. Management Science 29, 1156–1166.

Bell, D. E., 1985. Disappointment in decision making under uncertainty. Operations Research
33, 1–27.

Benartzi, S., Thaler, R. H., 1995. Myopic loss aversion and the equity premium puzzle. Quarterly
Journal of Economics 110, 73–92.

Benzoni, L., Collin-Dufresne, P., Goldstein, R. S., 2007. Portfolio choice over the life-cycle when
the stock and labor markets are cointegrated. Journal of Finance 62, 2123–2167.

Berkelaar, A. B., Kouwenberg, R., Post, T., 2004. Optimal portfolio choice under loss aversion.
Review of Economics and Statistics 86, 973–987.

van Bilsen, S., 2015. Essays on Intertemporal Consumption and Portfolio Choice. Tilburg:
CentER, Center for Economic Research.

Bodie, Z., Detemple, J. B., Otruba, S., Walter, S., 2004. Optimal consumption-portfolio choices
and retirement planning. Journal of Economic Dynamics and Control 28, 1115–1148.

Bodie, Z., Merton, R. C., Samuelson, W. F., 1992. Labor supply flexibility and portfolio choice
in a life-cycle model. Journal of Economic Dynamics and Control 16, 427–449.

Booij, A. S., van de Kuilen, G., 2009. A parameter-free analysis of the utility of money for the
general population under prospect theory. Journal of Economic Psychology 30, 651–666.

Booij, A. S., van Praag, B. M. S., van de Kuilen, G., 2010. A parametric analysis of prospect
theory’s functionals for the general population. Theory and Decision 68, 115–148.

Campbell, J. Y., Cocco, J., Gomes, F., Maenhout, P. J., Viceira, L. M., 2001. Stock market
mean reversion and the optimal equity allocation of a long-lived investor. European Finance
Review 5, 269–292.

42



Campbell, J. Y., Deaton, A., 1989. Why is consumption so smooth? Review of Economic
Studies 56, 357–373.

Carlson, M., Lazrak, A., 2014. Household wealth and portfolio choice when tail events are
salient, Working Paper.

Chacko, G., Viceira, L. M., 2005. Dynamic consumption and portfolio choice with stochastic
volatility in incomplete markets. Review of Financial Studies 18, 1369–1402.

Chew, S. H., Karni, E., Safra, Z., 1987. Risk aversion in the theory of expected utility with rank
dependent probabilities. Journal of Economic Theory 42, 370–381.

Cocco, J. F., Gomes, F. J., Maenhout, P. J., 2005. Consumption and portfolio choice over the
life cycle. Review of Financial Studies 18, 491–533.

Constantinides, G. M., 1990. Habit formation: A resolution of the equity premium puzzle.
Journal of Political Economy 98, 519–543.

Cox, J. C., Huang, C., 1989. Optimal consumption and portfolio policies when asset prices
follow a diffusion process. Journal of Economic Theory 49, 33–83.

Cox, J. C., Huang, C., 1991. A variational problem arising in financial economics. Journal of
Mathematical Economics 20, 465–487.

Curatola, G., 2015. Loss aversion, habit formation and the term structures of equity and interest
rates. Journal of Economic Dynamics and Control 53, 103–122.

Curatola, G., 2017. Optimal portfolio choice with loss aversion over consumption. The Quarterly
Review of Econimics and Finance 66, 345–358.

Deaton, A., 1987. Life-cycle models of consumption: Is the evidence consistent with the theory?
In: Bewley, T. F. (ed.), Advances in Econometrics: Fifth World Congress, Cambridge
University Press, vol. 2, pp. 121–148.

Deelstra, G., Grasselli, M., Koehl, P.-F., 2003. Optimal investment strategies in the presence of
a minimum guarantee. Insurance: Mathematics and Economics 33, 189–207.

Dynan, K. E., Skinner, J., Zeldes, S. P., 2004. Do the rich save more? Journal of Political
Economy 2, 397–444.

Etchart-Vincent, N., 2004. Is probability weighting sensitive to the magnitude of consequences?
An empirical investigation on losses. Journal of Risk and Uncertainty 28, 217–235.

Fagereng, A., Gottlieb, C., Guiso, L., 2017. Asset market participation and portfolio choice over
the life-cycle. Journal of Finance 72, 705–750.

Flavin, M., 1985. Excess sensitivity of consumption to current income: Liquidity constraints or
myopia? Canadian Journal of Economics 18, 117–136.

Gomes, F., Michaelides, A., 2003. Portfolio choice with internal habit formation: A life-cycle
model with uninsurable labor income risk. Review of Economic Dynamics 6, 729–766.

Gomes, F., Michaelides, A., 2005. Optimal life-cycle asset allocation: Understanding the
empirical evidence. Journal of Finance 60, 869–904.

Gomes, F. J., 2005. Portfolio choice and trading volume with loss averse investors. Journal of
Business 78, 675–706.

Gomes, F. J., Kotlikoff, L. J., Viceira, L. M., 2008. Optimal life-cycle investing with flexible
labor supply: A welfare analysis of life-cycle funds. American Economic Review 98, 297–303.

Guasoni, P., Huberman, G., Ren, D., 2015. Shortfall aversion, Working Paper.

43



Guillén, M., Jørgensen, P. L., Nielsen, J. P., 2006. Return smoothing mechanisms in life
and pension insurance: Path-dependent contingent claims. Insurance: Mathematics and
Economics 38, 229–252.
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Figure 1: Illustration of the two-part power utility function. The figure illustrates the two-part power
utility function for two different values of the curvature parameter for losses γL. The individual’s reference level
is set equal to 10, the loss aversion parameter κ to 2, and the curvature parameter for gains γG to 0.4.
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Consumption choice:

(a) Risk averse for losses (b) Risk loving for losses

Consumption-to-total-wealth ratio:
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(c) Risk averse for losses

-3 0 3 6 9

Realized (Annualized) Stock Return from Age 25 to Age 65 (in %)

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

S
ha

re
 o

f T
ot

al
 W

ea
lth

 C
on

su
m

ed
 (

in
 %

)

(d) Risk loving for losses

Share of total wealth invested in the stock:
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(e) Risk averse for losses
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(f) Risk loving for losses

Figure 2: Optimal behavior of a loss-averse individual. The figure shows the optimal current behavior
of a 65-year-old loss-averse individual as a function of the annualized stock return from t = 0 (age 25) to t = 40
(age 65). The left panels assume risk-averse behavior in the loss domain (γL = 1.3), whereas the right panels
assume risk-loving behavior in the loss domain (γL = 0.95). The dash-dotted lines show the behavior of a CRRA
individual with relative risk aversion equal to 2. The parameter Lmax

t – which denotes the maximum amount by
which consumption can fall below the reference level – is set equal to 50% of the reference level. The gray areas
represent the probability density function of the annualized stock return conditional upon information available
at age 25.



Medium-wealth individuals:
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(a) Risk averse for losses
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(b) Risk loving for losses

High-wealth individuals:
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(c) Risk averse for losses
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(d) Risk loving for losses

Low-wealth individuals:
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(e) Risk averse for losses
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(f) Risk loving for losses

Figure 3: Shock absorbing mechanisms. The figure shows the impact of a 10% drop in the individual’s
total wealth at age 45 on expected (discounted) consumption for medium-wealth individuals (upper panels), for
high-wealth individuals (middle panels), and for low-wealth individuals (lower panels). The value of the reference
level at age 45 is the same in all six panels. The upper, middle and lower panels assume, respectively, that,
before the wealth shock is realized, the individual’s total wealth at age 45 is 100%, 200% and 85% of the costs of
financing a consumption stream that is equal to the reference level at age 45. The left panels assume risk-averse
behavior in the loss domain (γL = 1.3), whereas the right panels assume risk-loving behavior in the loss domain
(γL = 0.95). The parameter Lmax

t – which denotes the maximum amount by which consumption can fall below
the reference level – is set equal to 50% of the initial reference level.



Portfolio choice expressed as share of total wealth:
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(a) Risk averse for losses
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(b) Risk loving for losses

Portfolio choice expressed as share of financial wealth:
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(c) Risk averse for losses
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(d) Risk loving for losses

Median wealth accumulation:
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(e) Risk averse for losses
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(f) Risk loving for losses

Figure 4: Median optimal portfolio choice. The figure shows the median share of wealth invested in the
stock as a function of age. The upper panels illustrate the portfolio strategy in terms of total wealth, whereas
the middle panels illustrate the portfolio strategy in terms of financial wealth. The lower panels show the median
wealth accumulation for a loss-averse individual with an endogenous reference level. The parameter Lmax

t – which
denotes the maximum amount by which consumption can fall below the reference level – is set equal to 50% of
the initial reference level. The left panels assume risk-averse behavior in the loss domain (γL = 1.3), whereas the
right panels assume risk-loving behavior in the loss domain (γL = 0.95).
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(a) Risk averse for losses
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(b) Risk loving for losses

Figure 5: Median optimal portfolio choice. The figure shows the median share of total wealth invested
in the stock for various values of α and β. The left figure assumes risk-averse behavior in the loss domain
(γL = 1.3), whereas the right figure assumes risk-loving behavior in the loss domain (γL = 0.95). The other
parameter values are as follows: (κ, γG) = (5, 0.2). The parameter Lmax

t – which denotes the maximum amount
by which consumption can fall below the reference level – is set equal to 50% of the initial reference level.
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(a) Change in the reference level
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(b) Change in the loss aversion parameter

-3 0 3 6 9

Realized (Annualized) Stock Return from Age 25 to Age 65 (in %)

2

2.5

3

3.5

4

4.5

5

Lo
g 

C
on

su
m

pt
io

n 
C

ho
ic

e 
(in

 th
ou

sa
nd

 U
S

$)

(c) Change in the curvature parameter for gains
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(d) Change in the curvature parameter for losses

Figure 6: Optimal consumption behavior of a loss-averse individual for various values of the
preference parameters. The figure shows the optimal current consumption behavior of a 65-year-old loss-
averse individual as a function of the annualized stock return from t = 0 (i.e., age 25) to t = 40 (i.e., age 65).
The solid lines correspond to the benchmark case (see also Figure 2(a)). The benchmark parameter values are
as follows: (θ, κ, γG, γL, α, β) = ($36000, 2, 0.4, 1.3, 0, 0). The parameter Lmax

t – which denotes the maximum
amount by which consumption can fall below the reference level – is set equal to 50% of the (initial) reference
level. The gray areas represent the probability density function of the annualized stock return conditional upon
information available at age 25.
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(a) Change in the reference level
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(b) Change in the loss aversion parameter
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(c) Change in the curvature parameter for gains
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(d) Change in the curvature parameter for losses

Figure 7: Optimal consumption behavior of a loss-averse individual for various values of the
preference parameters. The figure shows the optimal consumption behavior of a 65-year-old loss-averse
individual as a function of the annualized stock return from t = 0 (i.e., age 25) to t = 40 (i.e., age 65). The solid
lines correspond to the benchmark case (see also Figure 2(b)). The benchmark parameter values are as follows:
(θ, κ, γG, γL, α, β) = ($36000, 2, 0.4, 0.95, 0, 0). The parameter Lmax

t – which denotes the maximum amount by
which consumption can fall below the reference level – is set equal to 50% of the (initial) reference level. The
gray areas represent the probability density function of the annualized stock return conditional upon information
available at age 25.
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Table 1:
Consumption and Portfolio Dynamics

The table reports, for various ages, the (unconditional) probability that i) consumption is lower than the reference
level (second column), ii) consumption exceeds the reference level by more than 10% (third column), and iii) the
share of total wealth invested in the stock is less than 50% (third column). The benchmark parameter values
are as follows: (θ, κ, γG, α, β) = ($36000, 2, 0.4, 0, 0). The upper table considers risk-averse behavior in the loss
domain (γL = 1.3), whereas the lower table considers risk-loving behavior in the loss domain (γL = 0.95). We set
the parameter Lmax

t – which denotes the maximum amount by which consumption can fall below the reference
level – to 50% of the initial reference level.

(a) Risk Averse for Losses

Age P [c∗t < θ∗t ] (in %) P [c∗t > 1.1× θ∗t ] (in %) P [π∗t /W
∗
t < 0.5] (in %)

35 0.0 46.4 97.9
45 2.7 45.3 94.0
55 13.1 44.4 90.6
65 19.6 43.6 87.9
75 24.2 42.9 83.0

(b) Risk Loving for Losses

Age P [c∗t < θ∗t ] (in %) P [c∗t > 1.1× θ∗t ] (in %) P [π∗t /W
∗
t < 0.5] (in %)

35 0.0 56.6 93.3
45 0.0 52.5 86.4
55 9.9 50.3 83.5
65 16.8 48.7 81.0
75 21.7 47.5 73.6
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Table 2:
Shock Absorbing Mechanisms

The table shows, for various degrees of endogeneity, the impact of a 10% drop in the individual’s total wealth at
age 45 on expected (discounted) consumption for medium-wealth individuals (panels (a) and (b)) and for low-
wealth individuals (panels (c) and (d)). The value of the reference level at age 45 is the same in all four panels.
Panels (a) and (b) (respectively, (c) and (d)) assume that, before the wealth shock is realized, the individual’s
total wealth at age 45 is 100% (respectively, 85%) of the costs of financing a consumption stream that is equal
to the reference level at age 45. Panels (a) and (c) assume risk-averse behavior in the loss domain (γL = 1.3),
whereas panels (b) and (d) assume risk-loving behavior in the loss domain (γL = 0.95). The parameter Lmax

t –
which denotes the maximum amount by which consumption can fall below the reference level – is set equal to
50% of the initial reference level. The other parameter values are as follows: (κ, γG) = (5, 0.2).

(a) Medium Wealth and Risk Averse for Losses

β = α
Horizon 0 0.1 0.3 0.6

1 -1.29 -0.39 -0.22 -0.15
5 -1.23 -0.60 -0.50 -0.50
10 -2.28 -1.73 -1.32 -1.22
20 -9.81 -8.40 -7.26 -6.52
40 -24.05 -26.72 -28.38 -29.07

(b) Medium Wealth and Risk Loving for Losses

β = α
Horizon 0 0.1 0.3 0.6

1 -2.25 -0.63 -0.32 -0.19
5 -1.99 -0.85 -0.68 -0.63
10 -2.54 -1.83 -1.42 -1.36
20 -10.34 -8.62 -7.37 -6.79
40 -22.24 -26.53 -27.54 -29.40

(c) Low Wealth and Risk Averse for Losses

β = α
Horizon 0 0.1 0.3 0.6

1 -1.30 -0.03 -0.04 -0.04
5 -4.54 -0.96 -0.28 -0.18
10 -10.21 -3.44 -1.58 -1.00
20 -13.50 -10.11 -8.31 -7.17
40 -10.02 -28.76 -35.40 -40.63

(d) Low Wealth and Risk Loving for Losses

β = α
Horizon 0 0.1 0.3 0.6

1 -0.15 -0.10 -0.09 -0.08
5 -3.35 -0.43 -0.22 -0.28
10 -10.87 -3.24 -1.40 -1.00
20 -14.14 -10.21 -8.01 -7.08
40 -9.86 -29.31 -36.62 -42.69
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Table 3:
Minimum Welfare Losses

The table reports the effect of a change in the individual’s preference parameters on the minimum welfare loss.
We measure welfare losses in terms of the relative decline in certainty equivalent consumption. The benchmark
parameter values are as follows: (θ, κ, γG, γL, α, β) = ($36000, 2, 0.4, 1.3, 0, 0). We set the parameter Lmax

t – which
denotes the maximum amount by which consumption can fall below the reference level – to 50% of the initial
reference level. The last column denotes the value of the CRRA parameter that minimizes the difference between
the individual’s actual utility and the individual’s optimal utility.

(a) Change in the Reference Level

θ (in US$) Welfare Loss (in %) CRRA Parameter

0 0 0.6
9,000 11.48 1.3
18,000 13.84 2.4
27,000 9.60 4.9
36,000 2.96 14.5

(b) Change in the Loss Aversion Parameter

κ Welfare Loss (in %) CRRA Parameter

1 3.35 7.3
1.5 3.19 10.8
2 2.96 14.5
5 2.04 37.8
10 1.40 80.1

(c) Change in the Curvature Parameter for Gains

γG Welfare Loss (in %) CRRA Parameter

0.2 1.80 32.5
0.3 2.26 21.3
0.4 2.96 14.5
0.5 4.32 9.7
0.6 7.88 6.3

(d) Change in the Curvature Parameter for Losses

γL Welfare Loss (in %) CRRA Parameter

0.75 6.48 3.5
0.85 6.24 4.8
0.95 5.60 6.5
1.1 4.38 9.7
1.2 3.62 12.0
1.3 2.96 14.5
1.4 2.41 16.9
1.5 1.95 19.3

(e) Change in the Dynamics of the Reference Level

(α, β) Welfare Loss (in %) CRRA Parameter

(0,0) 2.96 14.5
(0.05,0.04) 10.70 6.9
(0.05,0.045) 9.65 13.7
(0.1,0.07) 19.37 3.7
(0.1,0.09) 22.33 15.6
(0.2,0.19) 18.76 26.3
(0.3,0.27) 11.05 34.2



Table 4:
Sensitivity of Consumption Shocks to Current and Past Wealth Shocks

The table reports the OLS coefficient estimates β̂1, . . . , β̂5 of the following regression model:

∆ log c∗t =

5∑
i=1

βi∆ logW ∗t+1−i + εt,

where ∆ log c∗t and ∆ logW ∗t denote the changes in log (demeaned) optimal consumption and log (demeaned)
optimal total wealth between adult age t − 1 and adult age t, respectively, and εt represents the error term
at adult age t. We use simulated consumption and wealth data to estimate the regression model. The
individual is currently aged 65 (i.e., t = 65 − 25 = 40). The benchmark parameter values are as follows:
(θ0, κ, γG, γL, α, β) = ($36000, 5, 0.2, 1.3, 0.3, 0.3). We set the parameter Lmax

t – which denotes the maximum
amount by which consumption can fall below the reference level – to 50% of the initial reference level. The
last three columns show the impact of assuming a different α and β on the OLS coefficient estimates. All the
estimates are significant at the 1% level.

Different α and β
Variable Benchmark CRRA α = β = 0.05 α = β = 0.15 α = β = 0.6

∆ logW ∗t 0.2006 1.0000 0.6577 0.3391 0.1141
∆ logW ∗t−1 0.0531 0.0000 0.0177 0.0426 0.0626
∆ logW ∗t−2 0.0497 0.0000 0.0176 0.0392 0.0583
∆ logW ∗t−3 0.0463 0.0000 0.0168 0.0373 0.0539
∆ logW ∗t−4 0.0442 0.0000 0.0166 0.0345 0.0501
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