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Abstract

Smart robotics will be a core feature while migrating from Industry 3.0 (i.e., mass manufacturing) to Industry 4.0
(i.e., customized or social manufacturing). A key characteristic of a smart system is its ability to learn. For smart
manufacturing, this means incorporating learning capabilities into the current fixed, repetitive, task-oriented industrial
manipulators, thus rendering them ‘smart’. In this paper we introduce two reinforcement learning (RL) based compen-
sation methods. The learned correction signal, which compensates for unmodeled aberrations, is added to the existing
nominal input with an objective to enhance the control performance. The proposed learning algorithms are evaluated on
a 6-DoF industrial robotic manipulator arm to follow different kinds of reference paths, such as square or a circular path,
or to track a trajectory on a three dimensional surface. In an extensive experimental study we compare the performance
of our learning-based methods with well-known tracking controllers, namely, proportional-derivative (PD), model pre-
dictive control (MPC), and iterative learning control (ILC). The experimental results show a considerable performance
improvement thanks to our RL-based methods when compared to PD, MPC, and ILC.

Keywords: Reinforcement learning, tracking control, robotics, actor-critic scheme.

1. Introduction

In Industry 4.0, prominently referred to as the fourth
industrial revolution, the existing manufacturing processes
will be extensively computerized. This will lead to a ‘smart
factory’ which is characterized by modularity, inter-oper-
ability, and real-time capabilities. Thanks to these fea-
tures, the existing mass manufacturing methodology will
be eventually replaced by social or custom manufactur-
ing. Manufacturing firms including small and medium en-
terprises can gain easy and affordable access to robotic
technologies that can be customized to meet their needs
(Rüßmann et al., 2015). To get superior cost efficiency and
to provide better quality of the manufactured products,
for each task the industrial robot must be well calibrated.
This is also essential to ensure high accuracy and precision
(Conrad et al., 2000). Unfortunately calibration is a time

∗Corresponding author
Email address: snageshr@ford.com (Subramanya P.

Nageshrao)

consuming process hence in order to achieve faster deploy-
ment, the robotic industry may need to change from cur-
rent fixed control architecture to a flexible control frame-
work (Lu, 2017). That is, an industrial robot which is de-
signed for a fixed and repetitive task must be replaced by a
‘smart manipulator’. Here, a smart manipulator is defined
as a robotic manipulator that can utilize the operational
data to self-optimize. Additionally, a smart manipulator
must have the capability to learn and perform a desired
task without any explicit task-specific controller. In this
work, we augment the standard feedback controller with
learning-based compensators that self-optimize to provide
optimal performance.

Feedback control methods have been widely used in
manufacturing robotics, particularly in motion control prob-
lem such as tracking. Precise reference tracking is one of
the foremost requirements in the manufacturing robotic
applications. This will enable the manipulator arm to
move accurately along a predefined trajectory. It has been
an active research area for more than three decades (Lewis
et al., 2003). Numerous examples of tracking applica-
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tions using manipulator arms range from simple tasks such
as pick-and-place in packaging industry to more complex
tasks such as deburring, welding or printing on an irregular
surface.

Control methods for reference tracking can be broadly
classified into model-based methods (An et al., 1988) and
model-free methods (Longman, 2000). For many model-
based control approaches, closed-loop stability of the ma-
nipulator system can be proven. However, the perfor-
mance of a manipulator arm, being a physical system used
in a complex environment, is often stymied by system
non-linearities, sensor noise, and external disturbances.
These aberrations can be tedious to model and are dif-
ficult to compensate. If they are not corrected appropri-
ately, model uncertainties can lead to degradation of per-
formance during the course of operation (Murray et al.,
1994). The current trend in manufacturing requires fre-
quent re-programming of robots, this manual task-specific
modeling and tuning is prohibitively expensive. Even an
initially well-performing model-based controller provided
by the manufacturer may degrade over time. This effect
can be due to changes in physical characteristics of the ma-
nipulator such as, deteriorated servos, worn out gears, etc.
The subsequent re-modeling or re-tuning of the model-
based controller can be time consuming and costly. Some
aspects of this problem can be addressed by using model-
free methods such as learning-based control techniques.

Two of the well-known learning-based control techniques
are iterative learning control (ILC) (Bristow et al., 2006)
and repetitive control (RC) (Cuiyan et al., 2004). In ILC
the objective is to minimize the tracking error iteratively.
ILC works as follows, first the controller executes a given
task, calculates the tracking error, and uses the error to ob-
tain the control signal for the next iteration. This process
is repeated until the error is within an acceptable bound.
ILC is prominently used to achieve tracking and/or distur-
bance rejection of a periodic signal. However, ILC requires
the same initial position and velocity of the system in every
iteration. For various applications such as manufacturing
this requirement can be difficult to satisfy. Repetitive con-
trol is based on a similar principle. Additionally, in RC
the initialization problem of ILC is addressed by using the
internal model, however, this requires the reference trajec-
tory to be periodic. Because of this, a number of control
characteristics such as the convergence property needs to
be treated differently (Longman, 2000). Also, it is non-
trivial to incorporate a measure of optimality when using
ILC or RC for any generic nonlinear system.

The stated problem can be (partially) rectified by aug-
menting a nominal controller with learning capabilities re-
sulting in a combination of model-free and model-based
methods (Nguyen-Tuong and Peters, 2010). This leads
to a self-adjusting controller that can ensure operational
and performance constraints throughout the operational
life span of a manipulator arm. The self-adjusting prop-
erty can be considered as an extra degree of freedom and
can be used to compensate for model and parametric un-

certainties.
In this paper, we propose two novel reinforcement learn-

ing (RL) based methods to improve the performance of a
nominal tracking controller. RL is a semi-supervised ma-
chine learning approach that is prominently used in se-
quential decision making problems, where an agent1 is re-
quired to interact and control an uncertain or unknown
system. The agent learns to optimize its behavior by max-
imizing a predefined performance measure. RL has been
successfully applied in a wide variety of applications, e.g.,
games (Tesauro, 1995), human computer interaction (Is-
bell et al., 2006), and general purpose learning (Mnih et al.,
2015).

RL is also prominently used as a control approach in
robotics (Kober et al., 2013); well-known examples are
autonomous helicopter control (Coates et al., 2010), hu-
manoid robot (Peters et al., 2003), soccer robot (Duan
et al., 2007), and manipulators (Bayiz and Babuška, 2014;
Bucak and Zohdy, 2001). However, in spite of these promis-
ing results, applications of RL in industry or to industrial
robotics are rather limited. This can be attributed to the
lack of extensive experimental evaluation of RL-based ref-
erence tracking methods. The purpose of this article is to
bridge this gap and to demonstrate the feasibility of RL
in real-world applications such as industrial manipulators.
The framework we use is based on the actor-critic scheme
that was introduced in Bayiz and Babuška (2014). A ma-
jor advantage of our methods is that they can be used to
augment any existing, stabilizing feedback controller such
as PID or LQR. Both simulation and experimental studies
have shown a relatively safe learning, compared to pure
RL-based control. Additionally, if model-free control, e.g.,
PID, is used for nominal operation, then there will be no
explicit need to identify/learn a system model.

The main contributions of this paper are as follows.

• We extend our initial results from Pane et al. (2016).
Based on the RL-based control input compensator
from Pane et al. (2016), in this work a novel RL-
based method, called the reference compensation
method, is developed.

• An extensive experimental evaluation of the intro-
duced methods is performed on a 6-DoF industrial
robot, the UR5. The control objective is to follow
different types of reference paths, like a square or a
circular path, or to track a trajectory on a curved
three-dimensional surface.

• The methods developed are compared with well-
known tracking-control methods namely, PD, MPC
and ILC. PD is used as a baseline for model-free,
non adaptive control method, while MPC is used as
a reference for model-based control framework and

1In this article, the term agent is synonymous with actor and
controller, and are used interchangeably.
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finally ILC is chosen as a baseline for model-free and
adaptive method. In Pane et al. (2016) we only com-
pared against PD.

The rest of paper is organized as follows. Section 2
gives an introduction to RL. Following that, in Section 3,
the proposed RL-based methods are explained. The im-
plementation of the methods to control a six DoF manip-
ulator and a comparison with PD, MPC, and ILC is given
in Section 4. Finally, Section 5 concludes the paper with
a note on possible future research.

2. Reinforcement Learning Preliminaries

Reinforcement learning is an online data-driven ma-
chine learning method that enables an agent to perform
a desired control task without any prior knowledge of the
system’s dynamics. This section gives a brief introduction
on the theory of reinforcement learning and of the actor-
critic method.

2.1. Introduction to RL

In a reinforcement learning process, an agent learns
a specific task by interacting with its environment. The
learning process, assuming a discrete-time setting, is as
follows. At every time step t the agent applies an action
ut ∈ Rm which is a function of the system state xt ∈ Rn.
This results in the state transition of the environment to
a new state xt+1, and the agent also receives a numerical
reward rt+1 ∈ R. This process is repeated for Ts samples,
which is referred to as a learning episode.

The goal is to learn a controller, also called the policy
u = π(x), so as to maximize the cumulative discounted
sum of rewards, termed the return Rπ:

Rπ = Eπ

[
rt+1 + γrt+2 + γ2rt+3 + · · · =

Ts∑
k=0

γkrt+k+1

]
(1)

with the scalar constant γ ∈ [0, 1) is the discount factor.
In most RL methods, the learning process is modeled

as a Markov decision process (MDP) (Sutton and Barto,
1998). Mathematically, an MDP is represented as a tu-
ple 〈X,U, f, ρ〉 whose elements are: the state space X,
the action space U , the state transition function xt+1 =
f(xt, ut), and the reward function ρ : X × U → R provid-
ing the instantaneous reward rt+1. The reward function
is devised by the design engineer as per the control objec-
tive. The mathematical definition of MDP may include
the discount factor γ (Mansley et al., 2011) and the con-
trol horizon Ts (Coates et al., 2010) as additional elements
of the tuple.

If the agent follows a certain policy π, the return func-
tion (1) can be formulated in a recursive form, thus re-
sulting in the value function and Bellman equation in the
form:

V π(x) = Eπ
[
ρ
(
x, π(x)

)
+ γV π(x′)

]
.

Critic Rewardr

ProcessActor

x
u

δ

Figure 1: Actor critic structure (diagram reproduced from Grond-
man et al. (2012a)).

The value function V π gives the cumulative reward (1)
from certain state x ∈ X and following the policy π from
that state. In RL algorithms, the objective is to find a
policy π∗ that maximizes the value function.

According to Bellman’s optimality principle, the opti-
mal value function is

V ∗(x) = max
u

(
ρ(x, u) + γV ∗

(
f(x, u)

))
(2)

where ∗ denotes the optimality. The optimal policy π∗ can
be derived from V ∗ (Sutton and Barto, 1998). Most of
the widely used RL methods iteratively improve the value
function and the policy until the optimality condition is
satisfied.

2.2. Actor-Critic Method

Actor-critic (AC) is one of the solutions to the RL prob-
lem based on the temporal difference learning approach
(Grondman et al., 2012a). In AC a separate policy (actor)
and a value function (critic) are learned simultaneously.
Their relation to the environment (process) is visualized
in Figure 1. The AC method works as follows: at time
step t the actor senses the current system state xt and ap-
plies an action ut based on policy π. This leads to a new
system state xt+1 and a numerical reward rt+1. Using this
the temporal difference (TD) error δ at time t is calculated
as

δt = rt+1 + γV (xt+1)− V (xt). (3)

This indicates how well the value function V satisfies the
Bellman optimality (2) (Sutton and Barto, 1998). Using
the TD error, the critic updates its estimate of the opti-
mal value function. An action ut that results in a positive
TD, δt > 0, is favorable as it performs better than ex-
pected, hence it must be given a higher preference by the
agent. This is achieved by updating the actor to be more
preferential for ut when it encounters a similar state xt.
Conversely, the agent should prefer an action less when it
results in a negative TD, i.e., δt < 0.

For continuous state and action spaces, such as in the
case of a robot manipulator arm, the actor and critic need
to be approximated. For this purpose, we use linear-in-
parameter approximators with an a priori defined basis
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function vector and a yet to be learned unknown param-
eter vector. A generic function approximator F (x) is de-
noted by F (x, ψ) = ψ>φ(x), where ψ ∈ Rnp is the un-
known parameter vector of dimension np and φ(x) ∈ Rnp

is the user-defined known basis function vector. Using the
linear in parameters feature the derivative of F (x, ψ) is
∂F (x, ψ)/ ∂ψ = φ(x). In this work we have used radial

basis function (RBF) given by φ̃(x) = e−0.5(x−c)
>B−1(x−c)

where c ∈ Rn is the center and B ∈ Rn×n the covari-
ance matrix of the RBF. The basis function is normalized
(Grondman, 2015) φbi

(x) = φ̃bi
(x)
/∑np

j=1 φ̃bj
(x) where

b signifies which entity it belongs to, i.e., actor a or critic
c, for the ith element of the RBF vector. The actor and
critic are approximated as

π̂(x, ϑ) = ϑ>φa(x), (4)

V̂ (x, θ) = θ>φc(x), (5)

respectively, where ϑ ∈ Rna and θ ∈ Rnc are the unknown
actor and critic parameters, respectively.

The vanilla actor-critic method, which is used in this
work, is given in Algorithm 1. A Gaussian exploration
noise ∆ut is added to the output of the actor, i.e., ut =
π̂(xt, ϑt)+∆ut (see line 10 in Algorithm 1). Thanks to the
exploration ∆ut an agent can visit various states multiple
times. For a given approximated value function (5) at state
xt+1, reward rt+1, and value at state xt, i.e., V̂ (xt, θt), the
TD-error δt in (3) can be easily obtained (see line 13).
Eligibility traces ζt, are used to increase the convergence
rate of the critic (Sutton and Barto, 1998; Grondman et al.,
2012b). Finally, the actor and critic parameters, ϑ and
θ, are updated using the TD-error (see line 15 and 16 in
Algorithm 1) (Grondman et al., 2012b).

3. RL Compensation Methods

In this section, we present the two control methods,
namely, RL-based input compensation and RL-based ref-
erence compensation. We start by deriving a general frame-
work which incorporates the RL compensation into a nom-
inal feedback controller. Afterwards, we continue on to a
detailed explanation of each method.

3.1. General Framework

Let the dynamic model of the manipulator arm in dis-
crete-time be

xt+1 = f(xt, ut) (6)

where f : Rn×m → Rn is an unknown nonlinear function
of system state x and control input u. The discrete-time
assumption can be justified due to the computer control
of the manipulator arm. The system output is

yt = Cxt (7)

where y ∈ Rl and C ∈ Rl×n denote the output and output
matrix respectively. For accurate tracking the output y

Algorithm 1 Actor-critic algorithm.

1: Initialize λ, γ, αa, αc
2: Initialize ϑ0, θ0
3: for each episode do
4: Initialize x0
5: Obtain a random initial action u0
6: Initialize eligibility trace ζ0 = 0
7: t← 0
8: repeat
9: calculate the exploration term ∆ut

10: calculate the current action ut = π̂(xt, ϑt) + ∆ut
11: apply ut, measure xt+1

12: obtain reward rt+1 = ρ(xt+1, ut)
13: δt = rt+1 + γV̂ (xt+1, θt)− V̂ (xt, θt)

14: ζt+1 = λγζt + ∂V̂ (x,θ)
∂θ

∣∣∣∣
x=xt,θ=θt

15: θt+1 = θt + αcδtζt+1

16: ϑt+1 = ϑt + αaδt∆ut
∂π̂(x,ϑ)
∂ϑ

∣∣∣∣
x=xt,ϑ=ϑt

17: t← t+ 1
18: until t = Ts number of samples
19: end for

must follow a given reference trajectory yref ∈ Rl. We
assume an existing nominal feedback controller

u = g(yref − y) (8)

where g : Rl → Rm is a function of the tracking error
e = yref − y. The existing controller g is assumed to in-
clude a feedforward term that cancels the various forces
acting on the manipulator arm, e.g., gravity and Coriolis
terms. Typically, this controller is provided by the robot
manufacturer. However, as the extended operation can
lead to wear and tear, an existing nominal feedforward
controller may no longer compensate for the changes in
the dynamics. This will result in a deteriorated or unac-
ceptable control performance.

In this paper we propose two RL based compensation
methods that can reduce the tracking error thanks to their
online learning capabilities. The first approach is called
the reinforcement learning based control input compensa-
tion method and was introduced in Bayiz and Babuška
(2014), where model learning AC (Grondman et al., 2012b)
was used to learn a compensator for a 1-DoF robot in a
simulation environment. In this paper, we use the vanilla
actor-critic method instead of the model learning AC. This
will reduce the number of parameters to be learned, thus
simplifying the learning algorithm.

A correction signal is added to the nominal control in-
put. The resulting control input to the system at time t is

ut = g(et) + h(et) (9)

where h : Rl → Rm is a yet to be learned RL agent.
Similar to the nominal controller, the RL policy h is also
a function of the tracking error e.
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Figure 2: RL control input compensation framework for a 6-DoF robot, e.g., the UR5. A RL-based compensator is learned for each joint
separately using the actor-critic framework. Here the correction is added to the control action.

The second approach is called the reference compen-
sation method. As the name suggests, the correction is
added to the reference signal instead, resulting in a modi-
fied reference

ỹreft = yref t + p(et) (10)

where p : Rl → Rl is an error dependent RL-based refer-
ence compensator.

The compensators h and p are parameterized in terms
of the predetermined basis function vector and the param-
eter vector to be learned, see (4). Similarly, the value
function (critic) V is also approximated using a function
approximator (5).

Apart from acting on a different state (reference signal
or control input, which in our experiments correspond to
position and velocity respectively), the two methods also
differ in the space of signal to be compensated. While the
control input compensation only allows to compensate in
joint space, the reference compensation can provide correc-
tions in either joint or Cartesian space. Furthermore, as
will be explained in more details in the following sections,
our experiments show that there are trade-offs between
the two methods. The RL input compensation generally
results in a lower tracking error, but introduces a higher
amplitude of jitter in the presence of noise/disturbance.
The RL reference compensation converges faster, but the
error is larger and the rise-time is slower.

3.2. RL-Based Input Compensation Method

For the manipulator arm, the RL based input compen-
sator is formulated as a function of the joint space error

and its derivative. Therefore, the RL state is

x =

[
θref − θ
θ̇ref − θ̇

]
=

[
eθ
ėθ

]
, (11)

where θ, θ̇ ∈ R are the position and velocity of the arm,
and eθ ∈ R is joint error. In Bayiz and Babuška (2014)
the reference signal was also included while formulating
the input compensator. Including the reference signal has
the drawback that a different RL compensator has to be
learned whenever a new reference trajectory is provided.

A major advantage of the input compensation frame-
work is its scalability, i.e., it can be applied to a multiple
DoF manipulator arm in a straightforward fashion. For
instance, if we apply this method to a 6-DoF UR5 robot,
a separate RL compensator is learned for each joint, re-
sulting in a total of 6 ACs. A schematic representation of
the RL based input compensation framework is given in
Figure 2. As depicted in the diagram, the compensation
signal ∆θ̇i is added to the control input of each joint, i.e.,
u = θ̇ref . This signal is the output of the learned compen-
sation policy h which is a function of the state x (see 9 and
11). Following the actor-critic scheme explained in Sub-
section 2.2 and Algorithm 1, the policy is approximated by
parameterizing a number of basis functions. Furthermore,

the resulting compensated control signal
˜̇
θref is bounded

by saturation limits in order to ensure safe operation of
the systems.

3.3. RL-Based Reference Compensation Method

Instead of modifying the control signal, the second
method directly compensates the reference signal fed to
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Figure 3: RL reference compensation framework for the joint space trajectory. In this case, the method is applied to a 6-DoF robot, e.g.,
the UR5. A RL-based compensator is learned for each joint separately using the actor-critic framework. Here the correction is added to the
reference signal.

Figure 4: RL reference compensation framework for the Cartesian space trajectory. A RL-based compensator is learned for each Cartesian
direction separately using the actor-critic framework. Here the correction is added to the reference signal.

the system. Depending on the tracking task, the correc-
tion signal can be added either to the joint space reference
or to the Cartesian space reference. Figure 3 and Figure 4
shows the diagram of the RL reference compensation ap-
plied to the joint and Cartesian space respectively.

The RL based joint space reference compensator is a
function of joint space error and its derivative. The RL
state becomes

x =

[
eθ
ėθ

]
(12)

where eθ = r−y is the joint space error. For the Cartesian
space counterpart, the RL state is a vector of Cartesian
error and velocity given by

x =

[
ew
ẇ

]
(13)

where ew and ẇ are the error and the velocity in one of
the Cartesian axes respectively.

Similar to the RL-based control input compensation,
the correction policy is learned by using one of the above
state vectors as its variable. As the learning progresses,
improved approximations of the policy functions are ob-
tained by adjusting the basis functions weights.

Compensating in a different signal space may require
different number of AC agents. For the joint space com-
pensation method, the required number of learning agents
is the same as the number of DoFs. For the Cartesian
space compensation method, at most three RL-based com-
pensators are needed. The choice is generally dictated by
the trade-off between a fast response of the system and
the oscillatory behavior caused by the measurement noise.
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Figure 5: The UR5 Robot. Left: The joint’s axis positioning and the
reference frame used in this paper. The joints in alphabetical order
(A to F): base, elbow, shoulder, wrist 1, wrist 2, and wrist 3. Picture
is courtesy of Universal Robots. Right: the 3D printing system with
the robot moving on top of the surface of a curved object.

This trade-off will be a topic of the discussion in the next
section.

4. Experimental Results

In this section, experimental evaluations of the pro-
posed methods are presented. We start by describing the
robot setup and then we define the different tracking ref-
erences used for evaluation. Following this we briefly in-
troduce the three benchmark controllers: PID, MPC, and
ILC. Finally, we analyze the tracking results of the RL
methods in comparison to the benchmark controllers.

4.1. UR5 Robot

The UR5 is a 6-DoF industrial manipulator produced
by Universal Robots (see Figure 5). The robot has a
manufacturer-provided, internal controller to compensate
the gravity and Coriolis forces. The controller and the
robot model are not available due the manufacturer’s pro-
prietary reasons. This controller can hence be considered
as a black-box system.

The UR5 is chosen as the platform for a robotized 3D
printer system that was developed at TU Delft. A print
head and a laser scanner sensor are attached to the robot’s
end-effector. The objective is to print on a 3D curved
surface by taking the advantage of the manipulator arms
large workspace. First a CAD model of the 3D surface is
built by using the laser scanner. The model is then used
in the subsequent printing stage.

The UR5 can be controlled by sending a velocity or
position command either in the joint or Cartesian coordi-
nates. In this work, we choose joint-space velocity com-
mand since it results in a smoother motion and also avoids
singularity problems. As a consequence of this control in-
put, an implementation of an external feedback controller
to track the position reference is required.

4.2. Tracking Tasks

Three different tracking tasks have been designed to
assess the performance of the learning compensator. The
first task is to track a square-shaped trajectory in the x−z
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Figure 6: The tracking performance of the proposed RL compensa-
tion methods compared to the benchmark controllers for the square
reference.

plane with the objective to minimize the z axis error (see
Figure 5 for the orientation of the robot’s axis frames).
The reference trajectory is first generated in the Cartesian
space and then transformed to the joint space by using
inverse kinematics. In the second task, the reference is a
circular trajectory in the x− y plane. The objective is to
minimize both the x and y error. For the last task, the
robot minimizes the position errors in the x − y − z axes
while following a path above a smooth curved surface as
shown in the right panel of Figure 5.

4.3. Benchmark Controllers

Three different types of controllers namely, PD, MPC,
and ILC, are used as a basis to compare the performance
of the developed RL methods. PD is used as an exam-
ple for a model-free, non adaptive controller, MPC is used
as a reference for model-based controllers and finally ILC
represents model-free and adaptive controllers. Brief de-
scriptions of these controllers are given below.

4.3.1. Proportional-Derivative Controller (PD)

The nominal controller is a standard PD described by
the following discrete-time transfer function

C(z) = Kp +Kd
z − 1

Ts
(14)

where Kp and Kd are the P and D gains, respectively,
and Ts is the sampling time. The PD controller regulates
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each joint of the UR5 robot. Since the UR5 internal con-
troller compensates the dominant nonlinearities, the joints
become decoupled. This way, the PD controllers can be
tuned independently.

4.3.2. Model Predictive Control (MPC)

Model predictive control is a model based control method
that is prominently used in the process industry (Richalet
et al., 1976; Cutler and Ramaker, 1980). MPC uses the
system model to predict, at each time step, the future
states and to compute the corresponding control inputs
up to a specified horizon. The control input is calculated
so as to minimize a cost function subject to pre-defined
constraints.

In this paper, we use linear MPC that was previously
implemented in de Gier (2015). Each UR5 joint is mod-
eled as a SISO system with commanded velocity and joint
position as the input and output, respectively. The model
parameters are identified using the subspace identification
method (Verhaegen and Verdult, 2007). This model is
used to predict the system states up to Np steps. The
optimal control input is calculated by minimizing the fol-
lowing cost function

Jt =

Np−1+t∑
i=t

(yrefi+1 − yi+1)>We(y
ref
i+1 − yi+1) + ∆u>i Wu∆ui

(15)
where yref denotes the reference signal, ∆ut = ut − ut−1,
Np is the prediction horizon, We and Wu are the error and
control weight (diagonal) matrix, respectively.

Similarly to the PD controller, the MPC is implemented
for each joint separately. In order to ensure real-time per-
formance, no constraints are imposed on the MPC. This
results in an unconstrained quadratic optimization prob-
lem whose globally optimal solution can be obtained easily.

4.3.3. Iterative Learning Control (ILC)

Iterative learning control is a model-free, adaptive con-
trol approach. It is based on the premise that in the ab-
sence of an explicit external correction the tracking errors
in a repetitive task remain unchanged. To compensate
for the repetitive error, an ILC correction is added to a
nominal tracking controller thus resulting in a gradual er-
ror minimization. The working principle of the ILC-based
compensation method is similar to the RL based methods
described before.

In this paper we use linear ILC to control each joint of
the UR5 robot. The ILC control law is based on a PD-type
learning rule

ûj+1
t = Q(q)

[
ûjt + kpe

j
t+1 + kd(e

j
t+1 − e

j
t )
]

(16)

where superscript j denotes the j-th iteration, e is the
tracking error, Q(q) is a discrete-time low pass filter to
improve robustness (Bristow et al., 2006), kp and kd are
the proportional and derivative gain respectively.
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Figure 7: The sum of rewards (return) of all the learning agents for
the square reference. Left: RL input compensation, right: RL refer-
ence compensation. Note that appropriate scaling to the discounted
return curves is applied for readability.

Table 1: The z-axis tracking performance of RL compensation meth-
ods compared to the other controllers for square reference tracking

Error (mm) PD MPC ILC RL-1 RL-2

Final steady state -0.5858 0.0185 -0.4798 0.0412 0.1423
RMS 7.4669 9.676 5.502 6.4721 7.2051

4.4. Reference Tracking Results

The tracking results of both RL compensation methods
compared to the three benchmark controllers are provided
as follows. For all tasks, the control loop is executed with
a sampling time of 0.008 second (125 Hz). A video of the
tracking experiments can be obtained from the website
from the supplementary material.

4.4.1. Task 1: Square Reference

A square trajectory along the x direction is used as ref-
erence to evaluate the developed tracking control method.
Since the end effector orientation does not change through-
out the trajectory, only four learning agents, namely for
the base, shoulder, elbow and the wrist 1, are needed. The
reward function is formulated as the following quadratic
function

ρ(ei, ėi) = [ei ėi]Qi[ei ėi]
> (17)

where e is the joint error, Q ∈ R2×2 is a diagonal reward
matrix and i is the joint index.

For each agent, the AC parameters are tuned sepa-
rately using the following approach. The number of RBFs
are obtained by iterating through a range of values; a value
which balances the trade-off between under-fitting and ex-
cessive computational cost is chosen. The diagonal values
of Q and α are first initialized with low values in order
to yield a relatively small actor output. These values are
then gradually increased to achieve a faster, yet monotonic
convergence.

Similarly, the PD and MPC controllers are also tuned
with heuristics. The PD gains are first initialized with low
values. The proportional gain is then gradually increased
to reduce the error until a slight overshoot occurs. Finally,
the derivative gain is increased to suppress the overshoot.
As for the MPC, the diagonal elements of We are first ini-
tialized with small values while those of Wu with large val-
ues in order to have a less aggressive control input. Then,
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Table 2: The parameters of the RL-based input compensation for the first reference tracking task. Note that there are four actor-critics for
the first four joints.

Parameter Symbol base elbow shoulder wrist-1

Actor learning rate αa 0.04 0.06 0.03 0.03
Critic learning rate αc 0.8 0.7 0.9 0.9
No. of actor RBFs - [19 9] [19 9] [19 9] [19 9]
No. of critic RBFs - [21 9] [21 9] [19 9] [19 9]

Actor RBF variance Ba

[
3e−7 0

0 9e−3

] [
3e−5 0

0 3e−2

] [
3e−4 0

0 9e−2

] [
3e−4 0

0 9e−2

]
Critic RBF variance Bc

[
3e−7 0

0 6e−3

] [
3e−5 0

0 8e−3

] [
1e−4 0

0 4e−2

] [
3e−4 0

0 7e−2

]
Reward matrix Q

[
8e4 0
0 10

] [
4e5 0
0 10

] [
5e5 0
0 10

] [
5e5 0
0 10

]

Table 3: The ACs parameters of the RL-based reference compen-
sation for the first reference tracking task. There is only one actor
critic that corrects the z-axis reference.

Parameter Symbol z-axis AC

Actor learning rate αa 0.002
Critic learning rate αc 0.5
No. of actor RBFs - [19 11]
No. of critic RBFs - [20 10]

Actor RBF variance Ba

[
2e−6 0

0 3e−3

]
Critic RBF variance Bc

[
9e−7 0

0 9e−4

]
Reward matrix Q

[
5e8 0
0 0.1

]

Table 4: The MPC parameters used for all three tracking tasks.

Parameter Symbol Value

Prediction & control horizon Np 30

Error cost matrix Q

[
1000 0
0 10

]
Input cost matrix R 1

we gradually increase We and decrease Wu in order to have
a faster controller and smaller errors. Finally, for the ILC
controller, we follow the tuning rule described in (Bristow
et al., 2006).

Figure 6 shows reference tracking in the z axis for the
two RL methods in comparison to the benchmark con-
trollers. Two performance criteria, final steady state and
RMS errors, are compared in Table 12. Compared to the
nominal PD controller, the two learning-based methods
successfully reduce both the steady-state and the RMS er-
ror. Compared to MPC, the RL controllers achieve a lower
RMS error, while the steady state error is larger. The op-
posite result is obtained when it is compared to ILC. The
reason of the large RMS error is that we limit the RL to
learn the compensation policy within the continuous re-
gion to avoid large spikes in the error derivatives, making
the compensation signal outside that region almost zero,
i.e., uncompensated. Although the RL controllers outper-
forms MPC and ILC only in one of the two performance
criteria, Figure 6 shows that its step response is still prefer-

2In Table 1, Table 9, Figure 6, Figure 8, and Figure 11,
RL-1 and RL-2 corresponds to input-compensation and reference-
compensation, respectively.

Table 5: The ILC parameters for the first and second reference track-
ing task

Joint
Parameter

kp kd Filter time constant τ

base 0.4 4 0.35
shoulder 0.1 10 0.5
elbow 0.1 15 0.5
wrist-1 0.1 10 0.35
wrist-2 0.1 1 0.35
wrist-3 0.1 1 0.35

able since it exhibits neither nonminimum-phase behavior
nor overshoot. Furthermore, the RL controller’s step re-
sponses also show faster settling times.

If we compare the two RL methods, the RL reference
compensation has a slightly larger RMS error than the
RL input compensation. A possible explanation for this
difference is that the latter method modifies a reference
trajectory instead of the control input directly. The re-
sult is a less aggressive response which is unable to reduce
the error as quickly as the RL control input compensation
method.

The discounted return or learning curve for the first
RL method is shown in Figure 7. As evident from the fig-
ure, the return is monotonically converging for all joints.
On the other hand, the learning curve for the RL refer-
ence compensation method shows an erratic behavior, as
shown in Figure 7. There are two possible reasons for this
behavior. First, it might be caused by the RBFs which are
initialized with inappropriate values, causing the learning
curve to deteriorate before improving. The second expla-
nation is that the reference discontinuities introduce very
large TD errors. This causes the policy and value function
to change rapidly during the first 80 trials before finally
settling to more “stable” parameters.

The convergence time for RL input and reference com-
pensation is approximately 350 and 170 trials, respectively
(each trial consists of 1375 samples). Both RL methods
are still slower than ILC which reaches convergence in 55
trials. The final tracking performance improves with the
number of learning trials.

The RL-based input and reference compensation pa-
rameters are reported in Table 2 and 3, respectively. Mean-
while, the parameters for PD, MPC and ILC are listed in
Tables 2, 4 and 5, respectively.
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Figure 8: Top to bottom: the x − y trajectory of the RL methods
compared to other control methods for the circular reference, x axis
error, y axis error.

Table 6: Tracking performance comparison for the circular reference

Error measure (mm) MPC ILC PD RL-1 RL-2

RMS x 1.0613 0.5109 4.2388 0.4847 0.4962
RMS y 1.0108 0.4662 1.9859 0.3215 0.2408

Max absolute x 1.6935 1.0565 6.0253 1.0529 0.9557
Max absolute y 1.6938 1.9269 3.0798 1.1213 1.6508

4.4.2. Task 2: Circular Reference

The second reference tracking task is to follow a circu-
lar path in the x-y plane with a fixed end-effector orien-
tation. This causes all joints except for wrist 3 to move.
Therefore, a total of five learning agents are needed for
the RL-based input compensation. As for the RL-based
reference compensation, Cartesian space compensation is
chosen again. Since the goal is to minimize errors in the x
and y axes, two actor-critics are needed.

The x-y reference trajectory and the tracking error
are given in Figure 8. Two performance measures, RMS
and maximum absolute errors, are provided in Table 6.
Clearly, the proposed RL controllers outperform PD, MPC
and ILC. The only drawback is that the RL based con-
trollers produce high-frequency jitters. This can be at-
tributed to the inherent jitter in the robot manufacturer’s
velocity controller that influences the learned policy. This
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Figure 9: The sum of rewards (return) of all the learning agents for
the circular reference. Left: RL-input compensation, right: RL refer-
ence compensation. Note that appropriate scaling to the discounted
return curves is applied for readability.

jitter cannot be removed due to the black-box nature of
the robot’s velocity controller. The amplitude of the jit-
ter is, however, not larger than in the nominal case. The
learning curves for both methods are shown in Figure 9.
The RL-based input and reference compensation required
70 and 30 trials, respectively. This is comparatively faster
than ILC which requires about 90 iterations.

Between the two proposed methods, the RL control in-
put compensation method is better as it quickly minimizes
the tracking error. This is because it directly compensates
the joint velocity. The RL reference compensation has a
slower response since the corrected trajectory is tracked
by the nominal PD controller. However, the RL-based ref-
erence compensation converges much faster. Furthermore,
since this method modifies the position reference instead
of the control input, a slightly smoother behavior is ob-
tained. The parameters for RL-based methods are listed
in Tables 7 and 8, while the ILC and MPC parameters
remain unchanged.

4.4.3. Task 3: Printing Trajectory

For the third tracking task, the robot follows a tra-
jectory along a smooth curved surface while keeping the
printing head aligned with the normal of the surface (see
the right panel of Figure 5). This trajectory simulates the
path that the robot must execute during a 3D printing
process. Since the task is performed in a configuration
where the robot arm stretches out, a slight deviation in
the joint position significantly affects the y and z position.
Therefore, this task is expected to require more iterations
to achieve minimal joint errors. A total of 5 actor-critic
agents are required for the RL-based input compensation.
For wrist-3, no learning agent is needed as it does not
change the position of the end-effector. As for the RL-
based reference compensation method, the correction is
performed in the joint space instead of Cartesian space.
The reason is that the inverse kinematics algorithm of the
UR5 controller is apparently not reliable as it sometimes
returns non-smooth joint-space trajectories. Therefore, 5
actor-critics are also employed for the RL-based reference
compensation.
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Table 7: The ACs parameters of the RL-based control input compensator for the second reference tracking task

Parameter base shoulder elbow wrist-1 wrist-2

Actor learning rate αa 0.04 0.06 0.03 0.04 0.04
Critic learning rate αc 0.8 0.7 0.9 0.8 0.8
No. of actor RBFs [19 9] [19 3] [19 3] [19 3] [19 3]
No. of critic RBFs [21 9] [21 9] [19 9] [19 9] [19 9]

Actor RBF variance Ba

[
3e−5 0

0 0.1

] [
3e−5 0

0 6

] [
3e−5 0

0 8

] [
3e− 6 0

0 0.1

] [
3e−5 0

0 6

]
Critic RBF variance Bc

[
3e−5 0

0 9e−3

] [
3e−5 0

0 1

] [
3e−5 0

0 1

] [
3e−6 0

0 3e−2

] [
3e−5 0

0 0.3

]
Reward matrix Q

[
1e6 0
0 10

] [
1e6 0
0 10

] [
1e6 0
0 10

] [
1e6 0
0 10

] [
1e6 0
0 10

]

Table 8: The ACs parameters of the RL-based additive reference
modifier for the second reference tracking task

Parameter Symbol AC-1 AC-2

Actor learning rate αa 0.02 0.02
Critic learning rate αc 0.5 0.5
No. of actor RBFs - [19 11] [19 11]
No. of critic RBFs - [20 10] [20 10]

Actor RBF variance Ba

[
3e− 6 0

0 0.05

] [
5e− 7 0

0 0.1

]
Critic RBF variance Bc

[
3e− 6 0

0 0.05

] [
5e− 7 0

0 0.1

]
Reward matrix Q

[
5e8 0
0 0.8

] [
5e8 0
0 0.1

]
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Figure 10: The discounted sum of rewards (return) of each learning
agent for the 3D printing reference. Note that appropriate scaling
to the discounted return curves is applied for readability. Further-
more, the number of trials per agent can be different, as shown with
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The evaluation of the RL control law and of the bench-
mark controllers is given in Figure 11. The performance
measures are provided in Table 9. The comparison shows
that both RL controllers significantly improve the nom-
inal performance. However, compared to the MPC and
ILC controllers, the first RL method performs worse in
the y and z axis tracking. In the x axis, it outperforms all
other controllers. Meanwhile for the second RL method,
in comparison to ILC, it loses in all RMS errors. However,
the maximum absolute errors attained in the x and z axes
show a better result. This implies that the ILC is superior
at reducing the overall error, but inferior at minimizing the
error variance. This is verified in Figure 11 which shows
that there are several spikes in the ILC errors.

In the experiment, it is again found that the RL con-
trollers suffer from the inherent jitter caused by the robot’s
internal velocity controller. This issue may be rectified by
using a low pass filter for the joint state measurement.

Table 9: The tracking performance comparison for the 3D printing
reference

Error (mm) MPC ILC PD RL-1 RL-2

RMS x 1.9287 0.6111 19.3509 0.46153 0.82856
RMS y 0.0616 0.0979 0.53016 0.20632 0.1972
RMS z 0.3107 0.3440 2.6643 0.36981 0.43733

Max absolute x 2.3499 3.9082 20.8915 1.2626 1.9246
Max absolute y 0.2963 0.4854 2.0685 0.60674 0.5844
Max absolute z 1.1019 1.5896 4.2995 1.3896 1.0341

This was not carried out during the experiment since it
may result in a lower overall bandwidth due to the filter-
ing delay. The learning curves for all the RL-compensated
joints are visualized in Figure 10. The proposed meth-
ods need around 650 and 300 trials (each one consisting
of 1250 samples), respectively, to reach the optimal pol-
icy. It is important to highlight that in the experiments,
the individual actor-critic compensators are not necessar-
ily trained simultaneously. This is due to the difficulty
in finding learning parameters which would synchronize
them, i.e., achieve a similar learning duration for all of
them. This is the reason why the number of trials for
each joint may be different, as Figure 10 shows. For this
task, the RL-based controller parameters are reported in
Tables 10 and 11, while the ILC parameters are shown in
Table 12.

Based on the experimental results, we showed that
RL-based compensation methods can significantly reduce
the tracking errors without relying on a model, which is
an advantage compared to a model-based controller such
as MPC. Furthermore, another benefit of using RL-based
methods is that the control engineers can flexibly define
the reward function so that it is most suitable for the tasks
at hand. For example, a higher penalty with respect to the
larger error can be imposed by using a higher-order poly-
nomial function. Nevertheless, some limitations still exist.
One is that for some tasks, the learning time can be quite
slow, as indicated in the last tracking example. Another
drawback is the number of parameters to specify is larger
than with the MPC and ILC methods.

5. Conclusion & Further Research

In this paper we have developed and implemented two
RL-based compensation schemes to improve the subop-

11



Table 10: The ACs parameters of the RL-based control input compensator for the third reference tracking task

Parameter base shoulder elbow wrist-1 wrist-2

Actor learning rate αa 0.005 0.06 0.03 0.01 0.05
Critic learning rate αc 0.1 0.5 0.9 0.1 0.5
No. of actor RBFs [35 5] [35 5] [35 5] [21 5] [19 5]
No. of critic RBFs [21 9] [21 9] [21 9] [19 9] [19 9]

Actor RBF variance Ba

[
1e−5 0

0 0.1

] [
4e−5 0

0 0.2

] [
3e−5 0

0 0.5

] [
1e−4 0

0 0.3

] [
2e−5 0

0 0.3

]
Critic RBF variance Bc

[
4e−5 0

0 2e−3

] [
5e−5 0

0 0.01

] [
7e−5 0

0 0.01

] [
1e−4 0

0 0.01

] [
2e−5 0

0 0.01

]
Reward matrix Q

[
1e6 0
0 10

] [
1e3 0
0 10

] [
1e3 0
0 10

] [
1e5 0
0 10

] [
2e4 0
0 10

]

Table 11: The ACs parameters of the RL-based reference compensator for the third reference tracking task

Parameter base shoulder elbow wrist-1 wrist-2

Actor learning rate αa 0.002 0.002 0.002 0.002 0.002
Critic learning rate αc 0.5 0.5 0.5 0.5 0.5
No. of actor RBFs [19 11] [19 11] [19 11] [19 11] [19 11]
No. of critic RBFs [20 10] [20 10] [20 10] [20 10] [20 10]

Actor RBF variance Ba

[
6e−7 0

0 1e−3

] [
1e−5 0

0 5e−3

] [
7e−6 0

0 5e−3

] [
7e−6 0

0 5e−2

] [
7e−7 0

0 1e−1

]
Critic RBF variance Bc

[
6e−7 0

0 8e−4

] [
1e−5 0

0 3e−3

] [
7e−6 0

0 3e−3

] [
7e−6 0

0 8e−3

] [
7e−7 0

0 7e−2

]
Reward matrix Q

[
2e7 0
0 0.8

] [
4e7 0
0 0.8

] [
4e7 0
0 0.8

] [
8e7 0
0 0.8

] [
6e7 0
0 0.8

]

Table 12: The ILC parameters for the third reference tracking task

Joint
Parameter

kp kd Filter time constant τ

base 0.6 1 0.35
shoulder 0.4 1 0.5
elbow 0.4 1 0.5
wrist-1 0.4 1 0.35
wrist-2 0.4 1 0.35
wrist-3 0.4 1 0.35

timal tracking performance of a feedback controller in a
multi DoF robot arm. The capacity to self-optimize the
controllers of robot arms is essential in the Industry 4.0
setting. This capability is required in order to cope with
frequent changes in the manufacturing process, to guaran-
tee high accuracy and precision, and hence to ensure cost
efficiency and high quality of the manufactured products.
For both methods, the technique of additive compensation
is used. The first method compensates the control input
given by the nominal controller whereas the second method
compensates the nominal reference trajectory. The com-
pensation is realized as a continuous state policy function
which is constructed by an actor-critic algorithm. Three
reference tracking tasks are devised to test the methods.
Furthermore, PD, MPC, and ILC controllers are also im-
plemented and their performances are compared.

The RL control input compensation method has an
advantage in a faster response since it compensates in the
velocity space, thus a higher bandwidth is obtained. Fur-
thermore, it also achieves a smaller error compared to the
second method. However, the first RL method is more sus-
ceptible to oscillatory behavior. The oscillation is typically
induced by the measurement noise or an uncertainty in the
robot’s servo system (e.g., inherent jitter). Moreover, since

the learning process must be kept safe, it results in a slower
learning speed. On the other hand, RL reference compen-
sation is advantageous with respect to the smoothness of
the tracking response. This is because it only changes the
reference while the gain of the controller is kept intact.
Another advantage is it converges faster compared to the
first method. The limitation of the second method, how-
ever, is that the response is less aggressive and the tracking
error is slightly larger than that of the first RL method.

The comparative experimental study shows that, for
a discontinuous reference such as the square trajectory,
the RL-based method results in a more favorable response
than the MPC and the ILC. For a simpler smooth trajec-
tory such as the circular reference, the RL-based meth-
ods successfully outperform both the ILC and the MPC.
However, in a more complex task, like following the print-
ing trajectory, the RL-based controller performance is still
slightly inferior to the MPC and ILC. For all tasks carried
out in the experiment, we always assume that the refer-
ence is known. Had the assumption been invalid, RL would
lose the Markov property and hence convergence would no
longer be guaranteed.

There are at least two issues which are interesting for
future research. First is to see how the proposed methods
perform in a torque controlled robot manipulator. The
UR5 robot used in our experiments only allows for ve-
locity commands to its internal controller. This method,
however, is limited in terms of the control bandwidth. An
access to the motor torques means a higher control band-
width therefore the possibly of reducing the tracking error
even more.

Secondly, for the RL control input compensation method,
it would be interesting to investigate the effect of formu-
lating the reward function in terms of the Cartesian errors
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Figure 11: Reference tracking result of the 3D printing reference task
using RL controllers. Top to bottom: the reference and measured x,
y and z trajectory of the end-effector, absolute tracking error on x,
y and z axes.

instead of the joint errors. In our implementation, we only
work with joint errors because this was seen as the most
feasible approach since the compensation signal is sent to
each joint of the robot.

The proposed RL-based methods are relevant for In-
dustry 4.0 where a much wider variety of products are
manufactured while, at the same time, quality must be
maintained. For applications that require high position-
ing accuracy, fine tuning the controller for each task will
be infeasible, hence a self-learning capability will be nec-
essary. The proposed methods are also well aligned with
the data-driven philosophy of Industry 4.0, in which the
logged data can be continuously exploited to better the
performance.

Appendix A. Supplementary Data

Supplementary material related to this article can be
found online at
http://dx.doi.org/10.1016/j.engappai.2018.11.006 or
https://www.dropbox.com/s/tdkhp4io6yojh94/RL_based_

compensation.wmv?dl=0.
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